xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision c85611e8583e6392d56075ebdfa60893b6284813)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 
40 #include <cmath>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 // Enable conversion of operator new calls with a MemProf hot or cold hint
52 // to an operator new call that takes a hot/cold hint. Off by default since
53 // not all allocators currently support this extension.
54 static cl::opt<bool>
55     OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false),
56                        cl::desc("Enable hot/cold operator new library calls"));
57 static cl::opt<bool> OptimizeExistingHotColdNew(
58     "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false),
59     cl::desc(
60         "Enable optimization of existing hot/cold operator new library calls"));
61 
62 namespace {
63 
64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
66 // option with a specific set of values.
67 struct HotColdHintParser : public cl::parser<unsigned> {
68   HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
69 
70   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
71     if (Arg.getAsInteger(0, Value))
72       return O.error("'" + Arg + "' value invalid for uint argument!");
73 
74     if (Value > 255)
75       return O.error("'" + Arg + "' value must be in the range [0, 255]!");
76 
77     return false;
78   }
79 };
80 
81 } // end anonymous namespace
82 
83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
85 // hints, so that the compiler hinted allocations are slightly less strong than
86 // manually inserted hints at the two extremes.
87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
88     "cold-new-hint-value", cl::Hidden, cl::init(1),
89     cl::desc("Value to pass to hot/cold operator new for cold allocation"));
90 static cl::opt<unsigned, false, HotColdHintParser>
91     NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128),
92                         cl::desc("Value to pass to hot/cold operator new for "
93                                  "notcold (warm) allocation"));
94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
95     "hot-new-hint-value", cl::Hidden, cl::init(254),
96     cl::desc("Value to pass to hot/cold operator new for hot allocation"));
97 
98 //===----------------------------------------------------------------------===//
99 // Helper Functions
100 //===----------------------------------------------------------------------===//
101 
102 static bool ignoreCallingConv(LibFunc Func) {
103   return Func == LibFunc_abs || Func == LibFunc_labs ||
104          Func == LibFunc_llabs || Func == LibFunc_strlen;
105 }
106 
107 /// Return true if it is only used in equality comparisons with With.
108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (IC->isEquality() && IC->getOperand(1) == With)
112         continue;
113     // Unknown instruction.
114     return false;
115   }
116   return true;
117 }
118 
119 static bool callHasFloatingPointArgument(const CallInst *CI) {
120   return any_of(CI->operands(), [](const Use &OI) {
121     return OI->getType()->isFloatingPointTy();
122   });
123 }
124 
125 static bool callHasFP128Argument(const CallInst *CI) {
126   return any_of(CI->operands(), [](const Use &OI) {
127     return OI->getType()->isFP128Ty();
128   });
129 }
130 
131 // Convert the entire string Str representing an integer in Base, up to
132 // the terminating nul if present, to a constant according to the rules
133 // of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
134 // return the result, otherwise null.
135 // The function assumes the string is encoded in ASCII and carefully
136 // avoids converting sequences (including "") that the corresponding
137 // library call might fail and set errno for.
138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
139                               uint64_t Base, bool AsSigned, IRBuilderBase &B) {
140   if (Base < 2 || Base > 36)
141     if (Base != 0)
142       // Fail for an invalid base (required by POSIX).
143       return nullptr;
144 
145   // Current offset into the original string to reflect in EndPtr.
146   size_t Offset = 0;
147   // Strip leading whitespace.
148   for ( ; Offset != Str.size(); ++Offset)
149     if (!isSpace((unsigned char)Str[Offset])) {
150       Str = Str.substr(Offset);
151       break;
152     }
153 
154   if (Str.empty())
155     // Fail for empty subject sequences (POSIX allows but doesn't require
156     // strtol[l]/strtoul[l] to fail with EINVAL).
157     return nullptr;
158 
159   // Strip but remember the sign.
160   bool Negate = Str[0] == '-';
161   if (Str[0] == '-' || Str[0] == '+') {
162     Str = Str.drop_front();
163     if (Str.empty())
164       // Fail for a sign with nothing after it.
165       return nullptr;
166     ++Offset;
167   }
168 
169   // Set Max to the absolute value of the minimum (for signed), or
170   // to the maximum (for unsigned) value representable in the type.
171   Type *RetTy = CI->getType();
172   unsigned NBits = RetTy->getPrimitiveSizeInBits();
173   uint64_t Max = AsSigned && Negate ? 1 : 0;
174   Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
175 
176   // Autodetect Base if it's zero and consume the "0x" prefix.
177   if (Str.size() > 1) {
178     if (Str[0] == '0') {
179       if (toUpper((unsigned char)Str[1]) == 'X') {
180         if (Str.size() == 2 || (Base && Base != 16))
181           // Fail if Base doesn't allow the "0x" prefix or for the prefix
182           // alone that implementations like BSD set errno to EINVAL for.
183           return nullptr;
184 
185         Str = Str.drop_front(2);
186         Offset += 2;
187         Base = 16;
188       }
189       else if (Base == 0)
190         Base = 8;
191     } else if (Base == 0)
192       Base = 10;
193   }
194   else if (Base == 0)
195     Base = 10;
196 
197   // Convert the rest of the subject sequence, not including the sign,
198   // to its uint64_t representation (this assumes the source character
199   // set is ASCII).
200   uint64_t Result = 0;
201   for (unsigned i = 0; i != Str.size(); ++i) {
202     unsigned char DigVal = Str[i];
203     if (isDigit(DigVal))
204       DigVal = DigVal - '0';
205     else {
206       DigVal = toUpper(DigVal);
207       if (isAlpha(DigVal))
208         DigVal = DigVal - 'A' + 10;
209       else
210         return nullptr;
211     }
212 
213     if (DigVal >= Base)
214       // Fail if the digit is not valid in the Base.
215       return nullptr;
216 
217     // Add the digit and fail if the result is not representable in
218     // the (unsigned form of the) destination type.
219     bool VFlow;
220     Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
221     if (VFlow || Result > Max)
222       return nullptr;
223   }
224 
225   if (EndPtr) {
226     // Store the pointer to the end.
227     Value *Off = B.getInt64(Offset + Str.size());
228     Value *StrBeg = CI->getArgOperand(0);
229     Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
230     B.CreateStore(StrEnd, EndPtr);
231   }
232 
233   if (Negate)
234     // Unsigned negation doesn't overflow.
235     Result = -Result;
236 
237   return ConstantInt::get(RetTy, Result);
238 }
239 
240 static bool isOnlyUsedInComparisonWithZero(Value *V) {
241   for (User *U : V->users()) {
242     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
243       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
244         if (C->isNullValue())
245           continue;
246     // Unknown instruction.
247     return false;
248   }
249   return true;
250 }
251 
252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
253                                  const DataLayout &DL) {
254   if (!isOnlyUsedInComparisonWithZero(CI))
255     return false;
256 
257   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
258     return false;
259 
260   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
261     return false;
262 
263   return true;
264 }
265 
266 static void annotateDereferenceableBytes(CallInst *CI,
267                                          ArrayRef<unsigned> ArgNos,
268                                          uint64_t DereferenceableBytes) {
269   const Function *F = CI->getCaller();
270   if (!F)
271     return;
272   for (unsigned ArgNo : ArgNos) {
273     uint64_t DerefBytes = DereferenceableBytes;
274     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
275     if (!llvm::NullPointerIsDefined(F, AS) ||
276         CI->paramHasAttr(ArgNo, Attribute::NonNull))
277       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
278                             DereferenceableBytes);
279 
280     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
281       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
282       if (!llvm::NullPointerIsDefined(F, AS) ||
283           CI->paramHasAttr(ArgNo, Attribute::NonNull))
284         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
285       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
286                                   CI->getContext(), DerefBytes));
287     }
288   }
289 }
290 
291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
292                                          ArrayRef<unsigned> ArgNos) {
293   Function *F = CI->getCaller();
294   if (!F)
295     return;
296 
297   for (unsigned ArgNo : ArgNos) {
298     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
299       CI->addParamAttr(ArgNo, Attribute::NoUndef);
300 
301     if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
302       unsigned AS =
303           CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
304       if (llvm::NullPointerIsDefined(F, AS))
305         continue;
306       CI->addParamAttr(ArgNo, Attribute::NonNull);
307     }
308 
309     annotateDereferenceableBytes(CI, ArgNo, 1);
310   }
311 }
312 
313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
314                                Value *Size, const DataLayout &DL) {
315   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
316     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
317     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
318   } else if (isKnownNonZero(Size, DL)) {
319     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
320     const APInt *X, *Y;
321     uint64_t DerefMin = 1;
322     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
323       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
324       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
325     }
326   }
327 }
328 
329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
331 // in this function when New is created to replace Old. Callers should take
332 // care to check Old.isMustTailCall() if they aren't replacing Old directly
333 // with New.
334 static Value *copyFlags(const CallInst &Old, Value *New) {
335   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
336   assert(!Old.isNoTailCall() && "do not copy notail call flags");
337   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
338     NewCI->setTailCallKind(Old.getTailCallKind());
339   return New;
340 }
341 
342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
343   NewCI->setAttributes(AttributeList::get(
344       NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
345   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(
346       NewCI->getType(), NewCI->getRetAttributes()));
347   for (unsigned I = 0; I < NewCI->arg_size(); ++I)
348     NewCI->removeParamAttrs(
349         I, AttributeFuncs::typeIncompatible(NewCI->getArgOperand(I)->getType(),
350                                             NewCI->getParamAttributes(I)));
351 
352   return copyFlags(Old, NewCI);
353 }
354 
355 // Helper to avoid truncating the length if size_t is 32-bits.
356 static StringRef substr(StringRef Str, uint64_t Len) {
357   return Len >= Str.size() ? Str : Str.substr(0, Len);
358 }
359 
360 //===----------------------------------------------------------------------===//
361 // String and Memory Library Call Optimizations
362 //===----------------------------------------------------------------------===//
363 
364 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
365   // Extract some information from the instruction
366   Value *Dst = CI->getArgOperand(0);
367   Value *Src = CI->getArgOperand(1);
368   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
369 
370   // See if we can get the length of the input string.
371   uint64_t Len = GetStringLength(Src);
372   if (Len)
373     annotateDereferenceableBytes(CI, 1, Len);
374   else
375     return nullptr;
376   --Len; // Unbias length.
377 
378   // Handle the simple, do-nothing case: strcat(x, "") -> x
379   if (Len == 0)
380     return Dst;
381 
382   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
383 }
384 
385 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
386                                            IRBuilderBase &B) {
387   // We need to find the end of the destination string.  That's where the
388   // memory is to be moved to. We just generate a call to strlen.
389   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
390   if (!DstLen)
391     return nullptr;
392 
393   // Now that we have the destination's length, we must index into the
394   // destination's pointer to get the actual memcpy destination (end of
395   // the string .. we're concatenating).
396   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
397 
398   // We have enough information to now generate the memcpy call to do the
399   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
400   B.CreateMemCpy(
401       CpyDst, Align(1), Src, Align(1),
402       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
403   return Dst;
404 }
405 
406 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
407   // Extract some information from the instruction.
408   Value *Dst = CI->getArgOperand(0);
409   Value *Src = CI->getArgOperand(1);
410   Value *Size = CI->getArgOperand(2);
411   uint64_t Len;
412   annotateNonNullNoUndefBasedOnAccess(CI, 0);
413   if (isKnownNonZero(Size, DL))
414     annotateNonNullNoUndefBasedOnAccess(CI, 1);
415 
416   // We don't do anything if length is not constant.
417   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
418   if (LengthArg) {
419     Len = LengthArg->getZExtValue();
420     // strncat(x, c, 0) -> x
421     if (!Len)
422       return Dst;
423   } else {
424     return nullptr;
425   }
426 
427   // See if we can get the length of the input string.
428   uint64_t SrcLen = GetStringLength(Src);
429   if (SrcLen) {
430     annotateDereferenceableBytes(CI, 1, SrcLen);
431     --SrcLen; // Unbias length.
432   } else {
433     return nullptr;
434   }
435 
436   // strncat(x, "", c) -> x
437   if (SrcLen == 0)
438     return Dst;
439 
440   // We don't optimize this case.
441   if (Len < SrcLen)
442     return nullptr;
443 
444   // strncat(x, s, c) -> strcat(x, s)
445   // s is constant so the strcat can be optimized further.
446   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
447 }
448 
449 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
450 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
451 // is that either S is dereferenceable or the value of N is nonzero.
452 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
453                                   IRBuilderBase &B, const DataLayout &DL)
454 {
455   Value *Src = CI->getArgOperand(0);
456   Value *CharVal = CI->getArgOperand(1);
457 
458   // Fold memchr(A, C, N) == A to N && *A == C.
459   Type *CharTy = B.getInt8Ty();
460   Value *Char0 = B.CreateLoad(CharTy, Src);
461   CharVal = B.CreateTrunc(CharVal, CharTy);
462   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
463 
464   if (NBytes) {
465     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
466     Value *And = B.CreateICmpNE(NBytes, Zero);
467     Cmp = B.CreateLogicalAnd(And, Cmp);
468   }
469 
470   Value *NullPtr = Constant::getNullValue(CI->getType());
471   return B.CreateSelect(Cmp, Src, NullPtr);
472 }
473 
474 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
475   Value *SrcStr = CI->getArgOperand(0);
476   Value *CharVal = CI->getArgOperand(1);
477   annotateNonNullNoUndefBasedOnAccess(CI, 0);
478 
479   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
480     return memChrToCharCompare(CI, nullptr, B, DL);
481 
482   // If the second operand is non-constant, see if we can compute the length
483   // of the input string and turn this into memchr.
484   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
485   if (!CharC) {
486     uint64_t Len = GetStringLength(SrcStr);
487     if (Len)
488       annotateDereferenceableBytes(CI, 0, Len);
489     else
490       return nullptr;
491 
492     Function *Callee = CI->getCalledFunction();
493     FunctionType *FT = Callee->getFunctionType();
494     unsigned IntBits = TLI->getIntSize();
495     if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
496       return nullptr;
497 
498     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
499     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
500     return copyFlags(*CI,
501                      emitMemChr(SrcStr, CharVal, // include nul.
502                                 ConstantInt::get(SizeTTy, Len), B,
503                                 DL, TLI));
504   }
505 
506   if (CharC->isZero()) {
507     Value *NullPtr = Constant::getNullValue(CI->getType());
508     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
509       // Pre-empt the transformation to strlen below and fold
510       // strchr(A, '\0') == null to false.
511       return B.CreateIntToPtr(B.getTrue(), CI->getType());
512   }
513 
514   // Otherwise, the character is a constant, see if the first argument is
515   // a string literal.  If so, we can constant fold.
516   StringRef Str;
517   if (!getConstantStringInfo(SrcStr, Str)) {
518     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
519       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
520         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
521     return nullptr;
522   }
523 
524   // Compute the offset, make sure to handle the case when we're searching for
525   // zero (a weird way to spell strlen).
526   size_t I = (0xFF & CharC->getSExtValue()) == 0
527                  ? Str.size()
528                  : Str.find(CharC->getSExtValue());
529   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
530     return Constant::getNullValue(CI->getType());
531 
532   // strchr(s+n,c)  -> gep(s+n+i,c)
533   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
534 }
535 
536 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
537   Value *SrcStr = CI->getArgOperand(0);
538   Value *CharVal = CI->getArgOperand(1);
539   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
540   annotateNonNullNoUndefBasedOnAccess(CI, 0);
541 
542   StringRef Str;
543   if (!getConstantStringInfo(SrcStr, Str)) {
544     // strrchr(s, 0) -> strchr(s, 0)
545     if (CharC && CharC->isZero())
546       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
547     return nullptr;
548   }
549 
550   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
551   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
552 
553   // Try to expand strrchr to the memrchr nonstandard extension if it's
554   // available, or simply fail otherwise.
555   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
556   Value *Size = ConstantInt::get(SizeTTy, NBytes);
557   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
558 }
559 
560 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
561   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
562   if (Str1P == Str2P) // strcmp(x,x)  -> 0
563     return ConstantInt::get(CI->getType(), 0);
564 
565   StringRef Str1, Str2;
566   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
567   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
568 
569   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
570   if (HasStr1 && HasStr2)
571     return ConstantInt::get(CI->getType(),
572                             std::clamp(Str1.compare(Str2), -1, 1));
573 
574   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
575     return B.CreateNeg(B.CreateZExt(
576         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
577 
578   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
579     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
580                         CI->getType());
581 
582   // strcmp(P, "x") -> memcmp(P, "x", 2)
583   uint64_t Len1 = GetStringLength(Str1P);
584   if (Len1)
585     annotateDereferenceableBytes(CI, 0, Len1);
586   uint64_t Len2 = GetStringLength(Str2P);
587   if (Len2)
588     annotateDereferenceableBytes(CI, 1, Len2);
589 
590   if (Len1 && Len2) {
591     return copyFlags(
592         *CI, emitMemCmp(Str1P, Str2P,
593                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
594                                          std::min(Len1, Len2)),
595                         B, DL, TLI));
596   }
597 
598   // strcmp to memcmp
599   if (!HasStr1 && HasStr2) {
600     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
601       return copyFlags(
602           *CI,
603           emitMemCmp(Str1P, Str2P,
604                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
605                      B, DL, TLI));
606   } else if (HasStr1 && !HasStr2) {
607     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
608       return copyFlags(
609           *CI,
610           emitMemCmp(Str1P, Str2P,
611                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
612                      B, DL, TLI));
613   }
614 
615   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
616   return nullptr;
617 }
618 
619 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
620 // arrays LHS and RHS and nonconstant Size.
621 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
622                                     Value *Size, bool StrNCmp,
623                                     IRBuilderBase &B, const DataLayout &DL);
624 
625 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
626   Value *Str1P = CI->getArgOperand(0);
627   Value *Str2P = CI->getArgOperand(1);
628   Value *Size = CI->getArgOperand(2);
629   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
630     return ConstantInt::get(CI->getType(), 0);
631 
632   if (isKnownNonZero(Size, DL))
633     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
634   // Get the length argument if it is constant.
635   uint64_t Length;
636   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
637     Length = LengthArg->getZExtValue();
638   else
639     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
640 
641   if (Length == 0) // strncmp(x,y,0)   -> 0
642     return ConstantInt::get(CI->getType(), 0);
643 
644   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
645     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
646 
647   StringRef Str1, Str2;
648   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
649   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
650 
651   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
652   if (HasStr1 && HasStr2) {
653     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
654     StringRef SubStr1 = substr(Str1, Length);
655     StringRef SubStr2 = substr(Str2, Length);
656     return ConstantInt::get(CI->getType(),
657                             std::clamp(SubStr1.compare(SubStr2), -1, 1));
658   }
659 
660   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
661     return B.CreateNeg(B.CreateZExt(
662         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
663 
664   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
665     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
666                         CI->getType());
667 
668   uint64_t Len1 = GetStringLength(Str1P);
669   if (Len1)
670     annotateDereferenceableBytes(CI, 0, Len1);
671   uint64_t Len2 = GetStringLength(Str2P);
672   if (Len2)
673     annotateDereferenceableBytes(CI, 1, Len2);
674 
675   // strncmp to memcmp
676   if (!HasStr1 && HasStr2) {
677     Len2 = std::min(Len2, Length);
678     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
679       return copyFlags(
680           *CI,
681           emitMemCmp(Str1P, Str2P,
682                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
683                      B, DL, TLI));
684   } else if (HasStr1 && !HasStr2) {
685     Len1 = std::min(Len1, Length);
686     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
687       return copyFlags(
688           *CI,
689           emitMemCmp(Str1P, Str2P,
690                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
691                      B, DL, TLI));
692   }
693 
694   return nullptr;
695 }
696 
697 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
698   Value *Src = CI->getArgOperand(0);
699   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
700   uint64_t SrcLen = GetStringLength(Src);
701   if (SrcLen && Size) {
702     annotateDereferenceableBytes(CI, 0, SrcLen);
703     if (SrcLen <= Size->getZExtValue() + 1)
704       return copyFlags(*CI, emitStrDup(Src, B, TLI));
705   }
706 
707   return nullptr;
708 }
709 
710 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
711   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
712   if (Dst == Src) // strcpy(x,x)  -> x
713     return Src;
714 
715   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
716   // See if we can get the length of the input string.
717   uint64_t Len = GetStringLength(Src);
718   if (Len)
719     annotateDereferenceableBytes(CI, 1, Len);
720   else
721     return nullptr;
722 
723   // We have enough information to now generate the memcpy call to do the
724   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
725   CallInst *NewCI =
726       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
727                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
728   mergeAttributesAndFlags(NewCI, *CI);
729   return Dst;
730 }
731 
732 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
733   Function *Callee = CI->getCalledFunction();
734   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
735 
736   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
737   if (CI->use_empty())
738     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
739 
740   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
741     Value *StrLen = emitStrLen(Src, B, DL, TLI);
742     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
743   }
744 
745   // See if we can get the length of the input string.
746   uint64_t Len = GetStringLength(Src);
747   if (Len)
748     annotateDereferenceableBytes(CI, 1, Len);
749   else
750     return nullptr;
751 
752   Type *PT = Callee->getFunctionType()->getParamType(0);
753   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
754   Value *DstEnd = B.CreateInBoundsGEP(
755       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
756 
757   // We have enough information to now generate the memcpy call to do the
758   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
759   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
760   mergeAttributesAndFlags(NewCI, *CI);
761   return DstEnd;
762 }
763 
764 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
765 
766 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
767   Value *Size = CI->getArgOperand(2);
768   if (isKnownNonZero(Size, DL))
769     // Like snprintf, the function stores into the destination only when
770     // the size argument is nonzero.
771     annotateNonNullNoUndefBasedOnAccess(CI, 0);
772   // The function reads the source argument regardless of Size (it returns
773   // its length).
774   annotateNonNullNoUndefBasedOnAccess(CI, 1);
775 
776   uint64_t NBytes;
777   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
778     NBytes = SizeC->getZExtValue();
779   else
780     return nullptr;
781 
782   Value *Dst = CI->getArgOperand(0);
783   Value *Src = CI->getArgOperand(1);
784   if (NBytes <= 1) {
785     if (NBytes == 1)
786       // For a call to strlcpy(D, S, 1) first store a nul in *D.
787       B.CreateStore(B.getInt8(0), Dst);
788 
789     // Transform strlcpy(D, S, 0) to a call to strlen(S).
790     return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
791   }
792 
793   // Try to determine the length of the source, substituting its size
794   // when it's not nul-terminated (as it's required to be) to avoid
795   // reading past its end.
796   StringRef Str;
797   if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
798     return nullptr;
799 
800   uint64_t SrcLen = Str.find('\0');
801   // Set if the terminating nul should be copied by the call to memcpy
802   // below.
803   bool NulTerm = SrcLen < NBytes;
804 
805   if (NulTerm)
806     // Overwrite NBytes with the number of bytes to copy, including
807     // the terminating nul.
808     NBytes = SrcLen + 1;
809   else {
810     // Set the length of the source for the function to return to its
811     // size, and cap NBytes at the same.
812     SrcLen = std::min(SrcLen, uint64_t(Str.size()));
813     NBytes = std::min(NBytes - 1, SrcLen);
814   }
815 
816   if (SrcLen == 0) {
817     // Transform strlcpy(D, "", N) to (*D = '\0, 0).
818     B.CreateStore(B.getInt8(0), Dst);
819     return ConstantInt::get(CI->getType(), 0);
820   }
821 
822   Function *Callee = CI->getCalledFunction();
823   Type *PT = Callee->getFunctionType()->getParamType(0);
824   // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
825   // bound on strlen(S) + 1 and N, optionally followed by a nul store to
826   // D[N' - 1] if necessary.
827   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
828                         ConstantInt::get(DL.getIntPtrType(PT), NBytes));
829   mergeAttributesAndFlags(NewCI, *CI);
830 
831   if (!NulTerm) {
832     Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
833     Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
834     B.CreateStore(B.getInt8(0), EndPtr);
835   }
836 
837   // Like snprintf, strlcpy returns the number of nonzero bytes that would
838   // have been copied if the bound had been sufficiently big (which in this
839   // case is strlen(Src)).
840   return ConstantInt::get(CI->getType(), SrcLen);
841 }
842 
843 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
844 // otherwise.
845 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
846                                              IRBuilderBase &B) {
847   Function *Callee = CI->getCalledFunction();
848   Value *Dst = CI->getArgOperand(0);
849   Value *Src = CI->getArgOperand(1);
850   Value *Size = CI->getArgOperand(2);
851 
852   if (isKnownNonZero(Size, DL)) {
853     // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
854     // only when N is nonzero.
855     annotateNonNullNoUndefBasedOnAccess(CI, 0);
856     annotateNonNullNoUndefBasedOnAccess(CI, 1);
857   }
858 
859   // If the "bound" argument is known set N to it.  Otherwise set it to
860   // UINT64_MAX and handle it later.
861   uint64_t N = UINT64_MAX;
862   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
863     N = SizeC->getZExtValue();
864 
865   if (N == 0)
866     // Fold st{p,r}ncpy(D, S, 0) to D.
867     return Dst;
868 
869   if (N == 1) {
870     Type *CharTy = B.getInt8Ty();
871     Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
872     B.CreateStore(CharVal, Dst);
873     if (!RetEnd)
874       // Transform strncpy(D, S, 1) to return (*D = *S), D.
875       return Dst;
876 
877     // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
878     Value *ZeroChar = ConstantInt::get(CharTy, 0);
879     Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
880 
881     Value *Off1 = B.getInt32(1);
882     Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
883     return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
884   }
885 
886   // If the length of the input string is known set SrcLen to it.
887   uint64_t SrcLen = GetStringLength(Src);
888   if (SrcLen)
889     annotateDereferenceableBytes(CI, 1, SrcLen);
890   else
891     return nullptr;
892 
893   --SrcLen; // Unbias length.
894 
895   if (SrcLen == 0) {
896     // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
897     Align MemSetAlign =
898       CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
899     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
900     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
901     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
902         CI->getContext(), 0, ArgAttrs));
903     copyFlags(*CI, NewCI);
904     return Dst;
905   }
906 
907   if (N > SrcLen + 1) {
908     if (N > 128)
909       // Bail if N is large or unknown.
910       return nullptr;
911 
912     // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
913     StringRef Str;
914     if (!getConstantStringInfo(Src, Str))
915       return nullptr;
916     std::string SrcStr = Str.str();
917     // Create a bigger, nul-padded array with the same length, SrcLen,
918     // as the original string.
919     SrcStr.resize(N, '\0');
920     Src = B.CreateGlobalString(SrcStr, "str", /*AddressSpace=*/0,
921                                /*M=*/nullptr, /*AddNull=*/false);
922   }
923 
924   Type *PT = Callee->getFunctionType()->getParamType(0);
925   // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
926   // S and N are constant.
927   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
928                                    ConstantInt::get(DL.getIntPtrType(PT), N));
929   mergeAttributesAndFlags(NewCI, *CI);
930   if (!RetEnd)
931     return Dst;
932 
933   // stpncpy(D, S, N) returns the address of the first null in D if it writes
934   // one, otherwise D + N.
935   Value *Off = B.getInt64(std::min(SrcLen, N));
936   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
937 }
938 
939 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
940                                                unsigned CharSize,
941                                                Value *Bound) {
942   Value *Src = CI->getArgOperand(0);
943   Type *CharTy = B.getIntNTy(CharSize);
944 
945   if (isOnlyUsedInZeroEqualityComparison(CI) &&
946       (!Bound || isKnownNonZero(Bound, DL))) {
947     // Fold strlen:
948     //   strlen(x) != 0 --> *x != 0
949     //   strlen(x) == 0 --> *x == 0
950     // and likewise strnlen with constant N > 0:
951     //   strnlen(x, N) != 0 --> *x != 0
952     //   strnlen(x, N) == 0 --> *x == 0
953     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
954                         CI->getType());
955   }
956 
957   if (Bound) {
958     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
959       if (BoundCst->isZero())
960         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
961         return ConstantInt::get(CI->getType(), 0);
962 
963       if (BoundCst->isOne()) {
964         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
965         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
966         Value *ZeroChar = ConstantInt::get(CharTy, 0);
967         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
968         return B.CreateZExt(Cmp, CI->getType());
969       }
970     }
971   }
972 
973   if (uint64_t Len = GetStringLength(Src, CharSize)) {
974     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
975     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
976     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
977     if (Bound)
978       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
979     return LenC;
980   }
981 
982   if (Bound)
983     // Punt for strnlen for now.
984     return nullptr;
985 
986   // If s is a constant pointer pointing to a string literal, we can fold
987   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
988   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
989   // We only try to simplify strlen when the pointer s points to an array
990   // of CharSize elements. Otherwise, we would need to scale the offset x before
991   // doing the subtraction. This will make the optimization more complex, and
992   // it's not very useful because calling strlen for a pointer of other types is
993   // very uncommon.
994   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
995     // TODO: Handle subobjects.
996     if (!isGEPBasedOnPointerToString(GEP, CharSize))
997       return nullptr;
998 
999     ConstantDataArraySlice Slice;
1000     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
1001       uint64_t NullTermIdx;
1002       if (Slice.Array == nullptr) {
1003         NullTermIdx = 0;
1004       } else {
1005         NullTermIdx = ~((uint64_t)0);
1006         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
1007           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
1008             NullTermIdx = I;
1009             break;
1010           }
1011         }
1012         // If the string does not have '\0', leave it to strlen to compute
1013         // its length.
1014         if (NullTermIdx == ~((uint64_t)0))
1015           return nullptr;
1016       }
1017 
1018       Value *Offset = GEP->getOperand(2);
1019       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
1020       uint64_t ArrSize =
1021              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
1022 
1023       // If Offset is not provably in the range [0, NullTermIdx], we can still
1024       // optimize if we can prove that the program has undefined behavior when
1025       // Offset is outside that range. That is the case when GEP->getOperand(0)
1026       // is a pointer to an object whose memory extent is NullTermIdx+1.
1027       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
1028           (isa<GlobalVariable>(GEP->getOperand(0)) &&
1029            NullTermIdx == ArrSize - 1)) {
1030         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
1031         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1032                            Offset);
1033       }
1034     }
1035   }
1036 
1037   // strlen(x?"foo":"bars") --> x ? 3 : 4
1038   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1039     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
1040     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
1041     if (LenTrue && LenFalse) {
1042       ORE.emit([&]() {
1043         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1044                << "folded strlen(select) to select of constants";
1045       });
1046       return B.CreateSelect(SI->getCondition(),
1047                             ConstantInt::get(CI->getType(), LenTrue - 1),
1048                             ConstantInt::get(CI->getType(), LenFalse - 1));
1049     }
1050   }
1051 
1052   return nullptr;
1053 }
1054 
1055 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1056   if (Value *V = optimizeStringLength(CI, B, 8))
1057     return V;
1058   annotateNonNullNoUndefBasedOnAccess(CI, 0);
1059   return nullptr;
1060 }
1061 
1062 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1063   Value *Bound = CI->getArgOperand(1);
1064   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1065     return V;
1066 
1067   if (isKnownNonZero(Bound, DL))
1068     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1069   return nullptr;
1070 }
1071 
1072 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1073   Module &M = *CI->getModule();
1074   unsigned WCharSize = TLI->getWCharSize(M) * 8;
1075   // We cannot perform this optimization without wchar_size metadata.
1076   if (WCharSize == 0)
1077     return nullptr;
1078 
1079   return optimizeStringLength(CI, B, WCharSize);
1080 }
1081 
1082 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1083   StringRef S1, S2;
1084   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1085   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1086 
1087   // strpbrk(s, "") -> nullptr
1088   // strpbrk("", s) -> nullptr
1089   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1090     return Constant::getNullValue(CI->getType());
1091 
1092   // Constant folding.
1093   if (HasS1 && HasS2) {
1094     size_t I = S1.find_first_of(S2);
1095     if (I == StringRef::npos) // No match.
1096       return Constant::getNullValue(CI->getType());
1097 
1098     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1099                                B.getInt64(I), "strpbrk");
1100   }
1101 
1102   // strpbrk(s, "a") -> strchr(s, 'a')
1103   if (HasS2 && S2.size() == 1)
1104     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1105 
1106   return nullptr;
1107 }
1108 
1109 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1110   Value *EndPtr = CI->getArgOperand(1);
1111   if (isa<ConstantPointerNull>(EndPtr)) {
1112     // With a null EndPtr, this function won't capture the main argument.
1113     // It would be readonly too, except that it still may write to errno.
1114     CI->addParamAttr(0, Attribute::NoCapture);
1115   }
1116 
1117   return nullptr;
1118 }
1119 
1120 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1121   StringRef S1, S2;
1122   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1123   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1124 
1125   // strspn(s, "") -> 0
1126   // strspn("", s) -> 0
1127   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1128     return Constant::getNullValue(CI->getType());
1129 
1130   // Constant folding.
1131   if (HasS1 && HasS2) {
1132     size_t Pos = S1.find_first_not_of(S2);
1133     if (Pos == StringRef::npos)
1134       Pos = S1.size();
1135     return ConstantInt::get(CI->getType(), Pos);
1136   }
1137 
1138   return nullptr;
1139 }
1140 
1141 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1142   StringRef S1, S2;
1143   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1144   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1145 
1146   // strcspn("", s) -> 0
1147   if (HasS1 && S1.empty())
1148     return Constant::getNullValue(CI->getType());
1149 
1150   // Constant folding.
1151   if (HasS1 && HasS2) {
1152     size_t Pos = S1.find_first_of(S2);
1153     if (Pos == StringRef::npos)
1154       Pos = S1.size();
1155     return ConstantInt::get(CI->getType(), Pos);
1156   }
1157 
1158   // strcspn(s, "") -> strlen(s)
1159   if (HasS2 && S2.empty())
1160     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1161 
1162   return nullptr;
1163 }
1164 
1165 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1166   // fold strstr(x, x) -> x.
1167   if (CI->getArgOperand(0) == CI->getArgOperand(1))
1168     return CI->getArgOperand(0);
1169 
1170   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1171   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1172     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1173     if (!StrLen)
1174       return nullptr;
1175     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1176                                  StrLen, B, DL, TLI);
1177     if (!StrNCmp)
1178       return nullptr;
1179     for (User *U : llvm::make_early_inc_range(CI->users())) {
1180       ICmpInst *Old = cast<ICmpInst>(U);
1181       Value *Cmp =
1182           B.CreateICmp(Old->getPredicate(), StrNCmp,
1183                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1184       replaceAllUsesWith(Old, Cmp);
1185     }
1186     return CI;
1187   }
1188 
1189   // See if either input string is a constant string.
1190   StringRef SearchStr, ToFindStr;
1191   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1192   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1193 
1194   // fold strstr(x, "") -> x.
1195   if (HasStr2 && ToFindStr.empty())
1196     return CI->getArgOperand(0);
1197 
1198   // If both strings are known, constant fold it.
1199   if (HasStr1 && HasStr2) {
1200     size_t Offset = SearchStr.find(ToFindStr);
1201 
1202     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1203       return Constant::getNullValue(CI->getType());
1204 
1205     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1206     return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1207                                         Offset, "strstr");
1208   }
1209 
1210   // fold strstr(x, "y") -> strchr(x, 'y').
1211   if (HasStr2 && ToFindStr.size() == 1) {
1212     return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1213   }
1214 
1215   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1216   return nullptr;
1217 }
1218 
1219 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1220   Value *SrcStr = CI->getArgOperand(0);
1221   Value *Size = CI->getArgOperand(2);
1222   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1223   Value *CharVal = CI->getArgOperand(1);
1224   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1225   Value *NullPtr = Constant::getNullValue(CI->getType());
1226 
1227   if (LenC) {
1228     if (LenC->isZero())
1229       // Fold memrchr(x, y, 0) --> null.
1230       return NullPtr;
1231 
1232     if (LenC->isOne()) {
1233       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1234       // constant or otherwise.
1235       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1236       // Slice off the character's high end bits.
1237       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1238       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1239       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1240     }
1241   }
1242 
1243   StringRef Str;
1244   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1245     return nullptr;
1246 
1247   if (Str.size() == 0)
1248     // If the array is empty fold memrchr(A, C, N) to null for any value
1249     // of C and N on the basis that the only valid value of N is zero
1250     // (otherwise the call is undefined).
1251     return NullPtr;
1252 
1253   uint64_t EndOff = UINT64_MAX;
1254   if (LenC) {
1255     EndOff = LenC->getZExtValue();
1256     if (Str.size() < EndOff)
1257       // Punt out-of-bounds accesses to sanitizers and/or libc.
1258       return nullptr;
1259   }
1260 
1261   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1262     // Fold memrchr(S, C, N) for a constant C.
1263     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1264     if (Pos == StringRef::npos)
1265       // When the character is not in the source array fold the result
1266       // to null regardless of Size.
1267       return NullPtr;
1268 
1269     if (LenC)
1270       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1271       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1272 
1273     if (Str.find(Str[Pos]) == Pos) {
1274       // When there is just a single occurrence of C in S, i.e., the one
1275       // in Str[Pos], fold
1276       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1277       // for nonconstant N.
1278       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1279                                    "memrchr.cmp");
1280       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1281                                            B.getInt64(Pos), "memrchr.ptr_plus");
1282       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1283     }
1284   }
1285 
1286   // Truncate the string to search at most EndOff characters.
1287   Str = Str.substr(0, EndOff);
1288   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1289     return nullptr;
1290 
1291   // If the source array consists of all equal characters, then for any
1292   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1293   //   N != 0 && *S == C ? S + N - 1 : null
1294   Type *SizeTy = Size->getType();
1295   Type *Int8Ty = B.getInt8Ty();
1296   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1297   // Slice off the sought character's high end bits.
1298   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1299   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1300   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1301   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1302   Value *SrcPlus =
1303       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1304   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1305 }
1306 
1307 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1308   Value *SrcStr = CI->getArgOperand(0);
1309   Value *Size = CI->getArgOperand(2);
1310 
1311   if (isKnownNonZero(Size, DL)) {
1312     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1313     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1314       return memChrToCharCompare(CI, Size, B, DL);
1315   }
1316 
1317   Value *CharVal = CI->getArgOperand(1);
1318   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1319   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1320   Value *NullPtr = Constant::getNullValue(CI->getType());
1321 
1322   // memchr(x, y, 0) -> null
1323   if (LenC) {
1324     if (LenC->isZero())
1325       return NullPtr;
1326 
1327     if (LenC->isOne()) {
1328       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1329       // constant or otherwise.
1330       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1331       // Slice off the character's high end bits.
1332       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1333       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1334       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1335     }
1336   }
1337 
1338   StringRef Str;
1339   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1340     return nullptr;
1341 
1342   if (CharC) {
1343     size_t Pos = Str.find(CharC->getZExtValue());
1344     if (Pos == StringRef::npos)
1345       // When the character is not in the source array fold the result
1346       // to null regardless of Size.
1347       return NullPtr;
1348 
1349     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1350     // When the constant Size is less than or equal to the character
1351     // position also fold the result to null.
1352     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1353                                  "memchr.cmp");
1354     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1355                                          "memchr.ptr");
1356     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1357   }
1358 
1359   if (Str.size() == 0)
1360     // If the array is empty fold memchr(A, C, N) to null for any value
1361     // of C and N on the basis that the only valid value of N is zero
1362     // (otherwise the call is undefined).
1363     return NullPtr;
1364 
1365   if (LenC)
1366     Str = substr(Str, LenC->getZExtValue());
1367 
1368   size_t Pos = Str.find_first_not_of(Str[0]);
1369   if (Pos == StringRef::npos
1370       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1371     // If the source array consists of at most two consecutive sequences
1372     // of the same characters, then for any C and N (whether in bounds or
1373     // not), fold memchr(S, C, N) to
1374     //   N != 0 && *S == C ? S : null
1375     // or for the two sequences to:
1376     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1377     //   ^Sel2                   ^Sel1 are denoted above.
1378     // The latter makes it also possible to fold strchr() calls with strings
1379     // of the same characters.
1380     Type *SizeTy = Size->getType();
1381     Type *Int8Ty = B.getInt8Ty();
1382 
1383     // Slice off the sought character's high end bits.
1384     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1385 
1386     Value *Sel1 = NullPtr;
1387     if (Pos != StringRef::npos) {
1388       // Handle two consecutive sequences of the same characters.
1389       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1390       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1391       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1392       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1393       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1394       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1395       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1396     }
1397 
1398     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1399     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1400     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1401     Value *And = B.CreateAnd(NNeZ, CEqS0);
1402     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1403   }
1404 
1405   if (!LenC) {
1406     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1407       // S is dereferenceable so it's safe to load from it and fold
1408       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1409       // TODO: This is safe even for nonconstant S.
1410       return memChrToCharCompare(CI, Size, B, DL);
1411 
1412     // From now on we need a constant length and constant array.
1413     return nullptr;
1414   }
1415 
1416   bool OptForSize = CI->getFunction()->hasOptSize() ||
1417                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
1418                                                 PGSOQueryType::IRPass);
1419 
1420   // If the char is variable but the input str and length are not we can turn
1421   // this memchr call into a simple bit field test. Of course this only works
1422   // when the return value is only checked against null.
1423   //
1424   // It would be really nice to reuse switch lowering here but we can't change
1425   // the CFG at this point.
1426   //
1427   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1428   // != 0
1429   //   after bounds check.
1430   if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1431     return nullptr;
1432 
1433   unsigned char Max =
1434       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1435                         reinterpret_cast<const unsigned char *>(Str.end()));
1436 
1437   // Make sure the bit field we're about to create fits in a register on the
1438   // target.
1439   // FIXME: On a 64 bit architecture this prevents us from using the
1440   // interesting range of alpha ascii chars. We could do better by emitting
1441   // two bitfields or shifting the range by 64 if no lower chars are used.
1442   if (!DL.fitsInLegalInteger(Max + 1)) {
1443     // Build chain of ORs
1444     // Transform:
1445     //    memchr("abcd", C, 4) != nullptr
1446     // to:
1447     //    (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1448     std::string SortedStr = Str.str();
1449     llvm::sort(SortedStr);
1450     // Compute the number of of non-contiguous ranges.
1451     unsigned NonContRanges = 1;
1452     for (size_t i = 1; i < SortedStr.size(); ++i) {
1453       if (SortedStr[i] > SortedStr[i - 1] + 1) {
1454         NonContRanges++;
1455       }
1456     }
1457 
1458     // Restrict this optimization to profitable cases with one or two range
1459     // checks.
1460     if (NonContRanges > 2)
1461       return nullptr;
1462 
1463     // Slice off the character's high end bits.
1464     CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1465 
1466     SmallVector<Value *> CharCompares;
1467     for (unsigned char C : SortedStr)
1468       CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C)));
1469 
1470     return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1471   }
1472 
1473   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1474   // creating unnecessary illegal types.
1475   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1476 
1477   // Now build the bit field.
1478   APInt Bitfield(Width, 0);
1479   for (char C : Str)
1480     Bitfield.setBit((unsigned char)C);
1481   Value *BitfieldC = B.getInt(Bitfield);
1482 
1483   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1484   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1485   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1486 
1487   // First check that the bit field access is within bounds.
1488   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1489                                "memchr.bounds");
1490 
1491   // Create code that checks if the given bit is set in the field.
1492   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1493   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1494 
1495   // Finally merge both checks and cast to pointer type. The inttoptr
1496   // implicitly zexts the i1 to intptr type.
1497   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1498                           CI->getType());
1499 }
1500 
1501 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1502 // arrays LHS and RHS and nonconstant Size.
1503 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1504                                     Value *Size, bool StrNCmp,
1505                                     IRBuilderBase &B, const DataLayout &DL) {
1506   if (LHS == RHS) // memcmp(s,s,x) -> 0
1507     return Constant::getNullValue(CI->getType());
1508 
1509   StringRef LStr, RStr;
1510   if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1511       !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1512     return nullptr;
1513 
1514   // If the contents of both constant arrays are known, fold a call to
1515   // memcmp(A, B, N) to
1516   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1517   // where Pos is the first mismatch between A and B, determined below.
1518 
1519   uint64_t Pos = 0;
1520   Value *Zero = ConstantInt::get(CI->getType(), 0);
1521   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1522     if (Pos == MinSize ||
1523         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1524       // One array is a leading part of the other of equal or greater
1525       // size, or for strncmp, the arrays are equal strings.
1526       // Fold the result to zero.  Size is assumed to be in bounds, since
1527       // otherwise the call would be undefined.
1528       return Zero;
1529     }
1530 
1531     if (LStr[Pos] != RStr[Pos])
1532       break;
1533   }
1534 
1535   // Normalize the result.
1536   typedef unsigned char UChar;
1537   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1538   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1539   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1540   Value *Res = ConstantInt::get(CI->getType(), IRes);
1541   return B.CreateSelect(Cmp, Zero, Res);
1542 }
1543 
1544 // Optimize a memcmp call CI with constant size Len.
1545 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1546                                          uint64_t Len, IRBuilderBase &B,
1547                                          const DataLayout &DL) {
1548   if (Len == 0) // memcmp(s1,s2,0) -> 0
1549     return Constant::getNullValue(CI->getType());
1550 
1551   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1552   if (Len == 1) {
1553     Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1554                                CI->getType(), "lhsv");
1555     Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1556                                CI->getType(), "rhsv");
1557     return B.CreateSub(LHSV, RHSV, "chardiff");
1558   }
1559 
1560   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1561   // TODO: The case where both inputs are constants does not need to be limited
1562   // to legal integers or equality comparison. See block below this.
1563   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1564     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1565     Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1566 
1567     // First, see if we can fold either argument to a constant.
1568     Value *LHSV = nullptr;
1569     if (auto *LHSC = dyn_cast<Constant>(LHS))
1570       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1571 
1572     Value *RHSV = nullptr;
1573     if (auto *RHSC = dyn_cast<Constant>(RHS))
1574       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1575 
1576     // Don't generate unaligned loads. If either source is constant data,
1577     // alignment doesn't matter for that source because there is no load.
1578     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1579         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1580       if (!LHSV)
1581         LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1582       if (!RHSV)
1583         RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1584       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1585     }
1586   }
1587 
1588   return nullptr;
1589 }
1590 
1591 // Most simplifications for memcmp also apply to bcmp.
1592 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1593                                                    IRBuilderBase &B) {
1594   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1595   Value *Size = CI->getArgOperand(2);
1596 
1597   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1598 
1599   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1600     return Res;
1601 
1602   // Handle constant Size.
1603   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1604   if (!LenC)
1605     return nullptr;
1606 
1607   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1608 }
1609 
1610 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1611   Module *M = CI->getModule();
1612   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1613     return V;
1614 
1615   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1616   // bcmp can be more efficient than memcmp because it only has to know that
1617   // there is a difference, not how different one is to the other.
1618   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1619       isOnlyUsedInZeroEqualityComparison(CI)) {
1620     Value *LHS = CI->getArgOperand(0);
1621     Value *RHS = CI->getArgOperand(1);
1622     Value *Size = CI->getArgOperand(2);
1623     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1624   }
1625 
1626   return nullptr;
1627 }
1628 
1629 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1630   return optimizeMemCmpBCmpCommon(CI, B);
1631 }
1632 
1633 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1634   Value *Size = CI->getArgOperand(2);
1635   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1636   if (isa<IntrinsicInst>(CI))
1637     return nullptr;
1638 
1639   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1640   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1641                                    CI->getArgOperand(1), Align(1), Size);
1642   mergeAttributesAndFlags(NewCI, *CI);
1643   return CI->getArgOperand(0);
1644 }
1645 
1646 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1647   Value *Dst = CI->getArgOperand(0);
1648   Value *Src = CI->getArgOperand(1);
1649   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1650   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1651   StringRef SrcStr;
1652   if (CI->use_empty() && Dst == Src)
1653     return Dst;
1654   // memccpy(d, s, c, 0) -> nullptr
1655   if (N) {
1656     if (N->isNullValue())
1657       return Constant::getNullValue(CI->getType());
1658     if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1659         // TODO: Handle zeroinitializer.
1660         !StopChar)
1661       return nullptr;
1662   } else {
1663     return nullptr;
1664   }
1665 
1666   // Wrap arg 'c' of type int to char
1667   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1668   if (Pos == StringRef::npos) {
1669     if (N->getZExtValue() <= SrcStr.size()) {
1670       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1671                                     CI->getArgOperand(3)));
1672       return Constant::getNullValue(CI->getType());
1673     }
1674     return nullptr;
1675   }
1676 
1677   Value *NewN =
1678       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1679   // memccpy -> llvm.memcpy
1680   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1681   return Pos + 1 <= N->getZExtValue()
1682              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1683              : Constant::getNullValue(CI->getType());
1684 }
1685 
1686 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1687   Value *Dst = CI->getArgOperand(0);
1688   Value *N = CI->getArgOperand(2);
1689   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1690   CallInst *NewCI =
1691       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1692   // Propagate attributes, but memcpy has no return value, so make sure that
1693   // any return attributes are compliant.
1694   // TODO: Attach return value attributes to the 1st operand to preserve them?
1695   mergeAttributesAndFlags(NewCI, *CI);
1696   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1697 }
1698 
1699 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1700   Value *Size = CI->getArgOperand(2);
1701   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1702   if (isa<IntrinsicInst>(CI))
1703     return nullptr;
1704 
1705   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1706   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1707                                     CI->getArgOperand(1), Align(1), Size);
1708   mergeAttributesAndFlags(NewCI, *CI);
1709   return CI->getArgOperand(0);
1710 }
1711 
1712 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1713   Value *Size = CI->getArgOperand(2);
1714   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1715   if (isa<IntrinsicInst>(CI))
1716     return nullptr;
1717 
1718   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1719   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1720   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1721   mergeAttributesAndFlags(NewCI, *CI);
1722   return CI->getArgOperand(0);
1723 }
1724 
1725 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1726   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1727     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1728 
1729   return nullptr;
1730 }
1731 
1732 // When enabled, replace operator new() calls marked with a hot or cold memprof
1733 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1734 // Currently this is supported by the open source version of tcmalloc, see:
1735 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1736 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1737                                       LibFunc &Func) {
1738   if (!OptimizeHotColdNew)
1739     return nullptr;
1740 
1741   uint8_t HotCold;
1742   if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1743     HotCold = ColdNewHintValue;
1744   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() ==
1745            "notcold")
1746     HotCold = NotColdNewHintValue;
1747   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1748     HotCold = HotNewHintValue;
1749   else
1750     return nullptr;
1751 
1752   // For calls that already pass a hot/cold hint, only update the hint if
1753   // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint
1754   // if cold or hot, and leave as-is for default handling if "notcold" aka warm.
1755   // Note that in cases where we decide it is "notcold", it might be slightly
1756   // better to replace the hinted call with a non hinted call, to avoid the
1757   // extra parameter and the if condition check of the hint value in the
1758   // allocator. This can be considered in the future.
1759   switch (Func) {
1760   case LibFunc_Znwm12__hot_cold_t:
1761     if (OptimizeExistingHotColdNew)
1762       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1763                             LibFunc_Znwm12__hot_cold_t, HotCold);
1764     break;
1765   case LibFunc_Znwm:
1766     if (HotCold != NotColdNewHintValue)
1767       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1768                             LibFunc_Znwm12__hot_cold_t, HotCold);
1769     break;
1770   case LibFunc_Znam12__hot_cold_t:
1771     if (OptimizeExistingHotColdNew)
1772       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1773                             LibFunc_Znam12__hot_cold_t, HotCold);
1774     break;
1775   case LibFunc_Znam:
1776     if (HotCold != NotColdNewHintValue)
1777       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1778                             LibFunc_Znam12__hot_cold_t, HotCold);
1779     break;
1780   case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1781     if (OptimizeExistingHotColdNew)
1782       return emitHotColdNewNoThrow(
1783           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1784           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1785     break;
1786   case LibFunc_ZnwmRKSt9nothrow_t:
1787     if (HotCold != NotColdNewHintValue)
1788       return emitHotColdNewNoThrow(
1789           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1790           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1791     break;
1792   case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1793     if (OptimizeExistingHotColdNew)
1794       return emitHotColdNewNoThrow(
1795           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1796           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1797     break;
1798   case LibFunc_ZnamRKSt9nothrow_t:
1799     if (HotCold != NotColdNewHintValue)
1800       return emitHotColdNewNoThrow(
1801           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1802           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1803     break;
1804   case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1805     if (OptimizeExistingHotColdNew)
1806       return emitHotColdNewAligned(
1807           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1808           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1809     break;
1810   case LibFunc_ZnwmSt11align_val_t:
1811     if (HotCold != NotColdNewHintValue)
1812       return emitHotColdNewAligned(
1813           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1814           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1815     break;
1816   case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1817     if (OptimizeExistingHotColdNew)
1818       return emitHotColdNewAligned(
1819           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1820           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1821     break;
1822   case LibFunc_ZnamSt11align_val_t:
1823     if (HotCold != NotColdNewHintValue)
1824       return emitHotColdNewAligned(
1825           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1826           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1827     break;
1828   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1829     if (OptimizeExistingHotColdNew)
1830       return emitHotColdNewAlignedNoThrow(
1831           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1832           TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1833           HotCold);
1834     break;
1835   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1836     if (HotCold != NotColdNewHintValue)
1837       return emitHotColdNewAlignedNoThrow(
1838           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1839           TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1840           HotCold);
1841     break;
1842   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1843     if (OptimizeExistingHotColdNew)
1844       return emitHotColdNewAlignedNoThrow(
1845           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1846           TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1847           HotCold);
1848     break;
1849   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1850     if (HotCold != NotColdNewHintValue)
1851       return emitHotColdNewAlignedNoThrow(
1852           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1853           TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1854           HotCold);
1855     break;
1856   case LibFunc_size_returning_new:
1857     if (HotCold != NotColdNewHintValue)
1858       return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI,
1859                                          LibFunc_size_returning_new_hot_cold,
1860                                          HotCold);
1861     break;
1862   case LibFunc_size_returning_new_hot_cold:
1863     if (OptimizeExistingHotColdNew)
1864       return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI,
1865                                          LibFunc_size_returning_new_hot_cold,
1866                                          HotCold);
1867     break;
1868   case LibFunc_size_returning_new_aligned:
1869     if (HotCold != NotColdNewHintValue)
1870       return emitHotColdSizeReturningNewAligned(
1871           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1872           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1873     break;
1874   case LibFunc_size_returning_new_aligned_hot_cold:
1875     if (OptimizeExistingHotColdNew)
1876       return emitHotColdSizeReturningNewAligned(
1877           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1878           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1879     break;
1880   default:
1881     return nullptr;
1882   }
1883   return nullptr;
1884 }
1885 
1886 //===----------------------------------------------------------------------===//
1887 // Math Library Optimizations
1888 //===----------------------------------------------------------------------===//
1889 
1890 // Replace a libcall \p CI with a call to intrinsic \p IID
1891 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1892                                Intrinsic::ID IID) {
1893   CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI);
1894   NewCall->takeName(CI);
1895   return copyFlags(*CI, NewCall);
1896 }
1897 
1898 /// Return a variant of Val with float type.
1899 /// Currently this works in two cases: If Val is an FPExtension of a float
1900 /// value to something bigger, simply return the operand.
1901 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1902 /// loss of precision do so.
1903 static Value *valueHasFloatPrecision(Value *Val) {
1904   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1905     Value *Op = Cast->getOperand(0);
1906     if (Op->getType()->isFloatTy())
1907       return Op;
1908   }
1909   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1910     APFloat F = Const->getValueAPF();
1911     bool losesInfo;
1912     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1913                     &losesInfo);
1914     if (!losesInfo)
1915       return ConstantFP::get(Const->getContext(), F);
1916   }
1917   return nullptr;
1918 }
1919 
1920 /// Shrink double -> float functions.
1921 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1922                                bool isBinary, const TargetLibraryInfo *TLI,
1923                                bool isPrecise = false) {
1924   Function *CalleeFn = CI->getCalledFunction();
1925   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1926     return nullptr;
1927 
1928   // If not all the uses of the function are converted to float, then bail out.
1929   // This matters if the precision of the result is more important than the
1930   // precision of the arguments.
1931   if (isPrecise)
1932     for (User *U : CI->users()) {
1933       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1934       if (!Cast || !Cast->getType()->isFloatTy())
1935         return nullptr;
1936     }
1937 
1938   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1939   Value *V[2];
1940   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1941   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1942   if (!V[0] || (isBinary && !V[1]))
1943     return nullptr;
1944 
1945   // If call isn't an intrinsic, check that it isn't within a function with the
1946   // same name as the float version of this call, otherwise the result is an
1947   // infinite loop.  For example, from MinGW-w64:
1948   //
1949   // float expf(float val) { return (float) exp((double) val); }
1950   StringRef CalleeName = CalleeFn->getName();
1951   bool IsIntrinsic = CalleeFn->isIntrinsic();
1952   if (!IsIntrinsic) {
1953     StringRef CallerName = CI->getFunction()->getName();
1954     if (!CallerName.empty() && CallerName.back() == 'f' &&
1955         CallerName.size() == (CalleeName.size() + 1) &&
1956         CallerName.starts_with(CalleeName))
1957       return nullptr;
1958   }
1959 
1960   // Propagate the math semantics from the current function to the new function.
1961   IRBuilderBase::FastMathFlagGuard Guard(B);
1962   B.setFastMathFlags(CI->getFastMathFlags());
1963 
1964   // g((double) float) -> (double) gf(float)
1965   Value *R;
1966   if (IsIntrinsic) {
1967     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1968     R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V)
1969                  : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]);
1970   } else {
1971     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1972     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1973                                          CalleeAttrs)
1974                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1975   }
1976   return B.CreateFPExt(R, B.getDoubleTy());
1977 }
1978 
1979 /// Shrink double -> float for unary functions.
1980 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1981                                     const TargetLibraryInfo *TLI,
1982                                     bool isPrecise = false) {
1983   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1984 }
1985 
1986 /// Shrink double -> float for binary functions.
1987 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1988                                      const TargetLibraryInfo *TLI,
1989                                      bool isPrecise = false) {
1990   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1991 }
1992 
1993 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1994 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1995   Value *Real, *Imag;
1996 
1997   if (CI->arg_size() == 1) {
1998 
1999     if (!CI->isFast())
2000       return nullptr;
2001 
2002     Value *Op = CI->getArgOperand(0);
2003     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
2004 
2005     Real = B.CreateExtractValue(Op, 0, "real");
2006     Imag = B.CreateExtractValue(Op, 1, "imag");
2007 
2008   } else {
2009     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
2010 
2011     Real = CI->getArgOperand(0);
2012     Imag = CI->getArgOperand(1);
2013 
2014     // if real or imaginary part is zero, simplify to abs(cimag(z))
2015     // or abs(creal(z))
2016     Value *AbsOp = nullptr;
2017     if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) {
2018       if (ConstReal->isZero())
2019         AbsOp = Imag;
2020 
2021     } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) {
2022       if (ConstImag->isZero())
2023         AbsOp = Real;
2024     }
2025 
2026     if (AbsOp) {
2027       IRBuilderBase::FastMathFlagGuard Guard(B);
2028       B.setFastMathFlags(CI->getFastMathFlags());
2029 
2030       return copyFlags(
2031           *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs"));
2032     }
2033 
2034     if (!CI->isFast())
2035       return nullptr;
2036   }
2037 
2038   // Propagate fast-math flags from the existing call to new instructions.
2039   IRBuilderBase::FastMathFlagGuard Guard(B);
2040   B.setFastMathFlags(CI->getFastMathFlags());
2041 
2042   Value *RealReal = B.CreateFMul(Real, Real);
2043   Value *ImagImag = B.CreateFMul(Imag, Imag);
2044 
2045   return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2046                                                B.CreateFAdd(RealReal, ImagImag),
2047                                                nullptr, "cabs"));
2048 }
2049 
2050 // Return a properly extended integer (DstWidth bits wide) if the operation is
2051 // an itofp.
2052 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
2053   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
2054     Value *Op = cast<Instruction>(I2F)->getOperand(0);
2055     // Make sure that the exponent fits inside an "int" of size DstWidth,
2056     // thus avoiding any range issues that FP has not.
2057     unsigned BitWidth = Op->getType()->getScalarSizeInBits();
2058     if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) {
2059       Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth);
2060       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy)
2061                                   : B.CreateZExt(Op, IntTy);
2062     }
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
2069 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
2070 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
2071 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
2072   Module *M = Pow->getModule();
2073   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2074   Type *Ty = Pow->getType();
2075   bool Ignored;
2076 
2077   // Evaluate special cases related to a nested function as the base.
2078 
2079   // pow(exp(x), y) -> exp(x * y)
2080   // pow(exp2(x), y) -> exp2(x * y)
2081   // If exp{,2}() is used only once, it is better to fold two transcendental
2082   // math functions into one.  If used again, exp{,2}() would still have to be
2083   // called with the original argument, then keep both original transcendental
2084   // functions.  However, this transformation is only safe with fully relaxed
2085   // math semantics, since, besides rounding differences, it changes overflow
2086   // and underflow behavior quite dramatically.  For example:
2087   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
2088   // Whereas:
2089   //   exp(1000 * 0.001) = exp(1)
2090   // TODO: Loosen the requirement for fully relaxed math semantics.
2091   // TODO: Handle exp10() when more targets have it available.
2092   CallInst *BaseFn = dyn_cast<CallInst>(Base);
2093   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
2094     LibFunc LibFn;
2095 
2096     Function *CalleeFn = BaseFn->getCalledFunction();
2097     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
2098         isLibFuncEmittable(M, TLI, LibFn)) {
2099       StringRef ExpName;
2100       Intrinsic::ID ID;
2101       Value *ExpFn;
2102       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2103 
2104       switch (LibFn) {
2105       default:
2106         return nullptr;
2107       case LibFunc_expf:
2108       case LibFunc_exp:
2109       case LibFunc_expl:
2110         ExpName = TLI->getName(LibFunc_exp);
2111         ID = Intrinsic::exp;
2112         LibFnFloat = LibFunc_expf;
2113         LibFnDouble = LibFunc_exp;
2114         LibFnLongDouble = LibFunc_expl;
2115         break;
2116       case LibFunc_exp2f:
2117       case LibFunc_exp2:
2118       case LibFunc_exp2l:
2119         ExpName = TLI->getName(LibFunc_exp2);
2120         ID = Intrinsic::exp2;
2121         LibFnFloat = LibFunc_exp2f;
2122         LibFnDouble = LibFunc_exp2;
2123         LibFnLongDouble = LibFunc_exp2l;
2124         break;
2125       }
2126 
2127       // Create new exp{,2}() with the product as its argument.
2128       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
2129       ExpFn = BaseFn->doesNotAccessMemory()
2130                   ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName)
2131                   : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
2132                                          LibFnLongDouble, B,
2133                                          BaseFn->getAttributes());
2134 
2135       // Since the new exp{,2}() is different from the original one, dead code
2136       // elimination cannot be trusted to remove it, since it may have side
2137       // effects (e.g., errno).  When the only consumer for the original
2138       // exp{,2}() is pow(), then it has to be explicitly erased.
2139       substituteInParent(BaseFn, ExpFn);
2140       return ExpFn;
2141     }
2142   }
2143 
2144   // Evaluate special cases related to a constant base.
2145 
2146   const APFloat *BaseF;
2147   if (!match(Base, m_APFloat(BaseF)))
2148     return nullptr;
2149 
2150   AttributeList NoAttrs; // Attributes are only meaningful on the original call
2151 
2152   const bool UseIntrinsic = Pow->doesNotAccessMemory();
2153 
2154   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2155   if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) &&
2156       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2157       (UseIntrinsic ||
2158        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2159 
2160     // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can
2161     // just directly use the original integer type.
2162     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) {
2163       Constant *One = ConstantFP::get(Ty, 1.0);
2164 
2165       if (UseIntrinsic) {
2166         return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp,
2167                                                  {Ty, ExpoI->getType()},
2168                                                  {One, ExpoI}, Pow, "exp2"));
2169       }
2170 
2171       return copyFlags(*Pow, emitBinaryFloatFnCall(
2172                                  One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2173                                  LibFunc_ldexpl, B, NoAttrs));
2174     }
2175   }
2176 
2177   // pow(2.0 ** n, x) -> exp2(n * x)
2178   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2179     APFloat BaseR = APFloat(1.0);
2180     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
2181     BaseR = BaseR / *BaseF;
2182     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2183     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2184     APSInt NI(64, false);
2185     if ((IsInteger || IsReciprocal) &&
2186         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
2187             APFloat::opOK &&
2188         NI > 1 && NI.isPowerOf2()) {
2189       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2190       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2191       if (Pow->doesNotAccessMemory())
2192         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2193                                                       nullptr, "exp2"));
2194       else
2195         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2196                                                     LibFunc_exp2f,
2197                                                     LibFunc_exp2l, B, NoAttrs));
2198     }
2199   }
2200 
2201   // pow(10.0, x) -> exp10(x)
2202   if (BaseF->isExactlyValue(10.0) &&
2203       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2204 
2205     if (Pow->doesNotAccessMemory()) {
2206       CallInst *NewExp10 =
2207           B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10");
2208       return copyFlags(*Pow, NewExp10);
2209     }
2210 
2211     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
2212                                                 LibFunc_exp10f, LibFunc_exp10l,
2213                                                 B, NoAttrs));
2214   }
2215 
2216   // pow(x, y) -> exp2(log2(x) * y)
2217   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2218       !BaseF->isNegative()) {
2219     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2220     // Luckily optimizePow has already handled the x == 1 case.
2221     assert(!match(Base, m_FPOne()) &&
2222            "pow(1.0, y) should have been simplified earlier!");
2223 
2224     Value *Log = nullptr;
2225     if (Ty->isFloatTy())
2226       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2227     else if (Ty->isDoubleTy())
2228       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2229 
2230     if (Log) {
2231       Value *FMul = B.CreateFMul(Log, Expo, "mul");
2232       if (Pow->doesNotAccessMemory())
2233         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2234                                                       nullptr, "exp2"));
2235       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2236                           LibFunc_exp2l))
2237         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2238                                                     LibFunc_exp2f,
2239                                                     LibFunc_exp2l, B, NoAttrs));
2240     }
2241   }
2242 
2243   return nullptr;
2244 }
2245 
2246 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2247                           Module *M, IRBuilderBase &B,
2248                           const TargetLibraryInfo *TLI) {
2249   // If errno is never set, then use the intrinsic for sqrt().
2250   if (NoErrno)
2251     return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt");
2252 
2253   // Otherwise, use the libcall for sqrt().
2254   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2255                  LibFunc_sqrtl))
2256     // TODO: We also should check that the target can in fact lower the sqrt()
2257     // libcall. We currently have no way to ask this question, so we ask if
2258     // the target has a sqrt() libcall, which is not exactly the same.
2259     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2260                                 LibFunc_sqrtl, B, Attrs);
2261 
2262   return nullptr;
2263 }
2264 
2265 /// Use square root in place of pow(x, +/-0.5).
2266 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2267   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2268   Module *Mod = Pow->getModule();
2269   Type *Ty = Pow->getType();
2270 
2271   const APFloat *ExpoF;
2272   if (!match(Expo, m_APFloat(ExpoF)) ||
2273       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2274     return nullptr;
2275 
2276   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2277   // so that requires fast-math-flags (afn or reassoc).
2278   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2279     return nullptr;
2280 
2281   // If we have a pow() library call (accesses memory) and we can't guarantee
2282   // that the base is not an infinity, give up:
2283   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2284   // errno), but sqrt(-Inf) is required by various standards to set errno.
2285   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2286       !isKnownNeverInfinity(
2287           Base, 0, SimplifyQuery(DL, TLI, DT, AC, Pow, true, true, DC)))
2288     return nullptr;
2289 
2290   Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2291                      TLI);
2292   if (!Sqrt)
2293     return nullptr;
2294 
2295   // Handle signed zero base by expanding to fabs(sqrt(x)).
2296   if (!Pow->hasNoSignedZeros())
2297     Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs");
2298 
2299   Sqrt = copyFlags(*Pow, Sqrt);
2300 
2301   // Handle non finite base by expanding to
2302   // (x == -infinity ? +infinity : sqrt(x)).
2303   if (!Pow->hasNoInfs()) {
2304     Value *PosInf = ConstantFP::getInfinity(Ty),
2305           *NegInf = ConstantFP::getInfinity(Ty, true);
2306     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2307     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2308   }
2309 
2310   // If the exponent is negative, then get the reciprocal.
2311   if (ExpoF->isNegative())
2312     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2313 
2314   return Sqrt;
2315 }
2316 
2317 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2318                                            IRBuilderBase &B) {
2319   Value *Args[] = {Base, Expo};
2320   Type *Types[] = {Base->getType(), Expo->getType()};
2321   return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2322 }
2323 
2324 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2325   Value *Base = Pow->getArgOperand(0);
2326   Value *Expo = Pow->getArgOperand(1);
2327   Function *Callee = Pow->getCalledFunction();
2328   StringRef Name = Callee->getName();
2329   Type *Ty = Pow->getType();
2330   Module *M = Pow->getModule();
2331   bool AllowApprox = Pow->hasApproxFunc();
2332   bool Ignored;
2333 
2334   // Propagate the math semantics from the call to any created instructions.
2335   IRBuilderBase::FastMathFlagGuard Guard(B);
2336   B.setFastMathFlags(Pow->getFastMathFlags());
2337   // Evaluate special cases related to the base.
2338 
2339   // pow(1.0, x) -> 1.0
2340   if (match(Base, m_FPOne()))
2341     return Base;
2342 
2343   if (Value *Exp = replacePowWithExp(Pow, B))
2344     return Exp;
2345 
2346   // Evaluate special cases related to the exponent.
2347 
2348   // pow(x, -1.0) -> 1.0 / x
2349   if (match(Expo, m_SpecificFP(-1.0)))
2350     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2351 
2352   // pow(x, +/-0.0) -> 1.0
2353   if (match(Expo, m_AnyZeroFP()))
2354     return ConstantFP::get(Ty, 1.0);
2355 
2356   // pow(x, 1.0) -> x
2357   if (match(Expo, m_FPOne()))
2358     return Base;
2359 
2360   // pow(x, 2.0) -> x * x
2361   if (match(Expo, m_SpecificFP(2.0)))
2362     return B.CreateFMul(Base, Base, "square");
2363 
2364   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2365     return Sqrt;
2366 
2367   // If we can approximate pow:
2368   // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2369   // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2370   const APFloat *ExpoF;
2371   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2372       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2373     APFloat ExpoA(abs(*ExpoF));
2374     APFloat ExpoI(*ExpoF);
2375     Value *Sqrt = nullptr;
2376     if (!ExpoA.isInteger()) {
2377       APFloat Expo2 = ExpoA;
2378       // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2379       // is no floating point exception and the result is an integer, then
2380       // ExpoA == integer + 0.5
2381       if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2382         return nullptr;
2383 
2384       if (!Expo2.isInteger())
2385         return nullptr;
2386 
2387       if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2388           APFloat::opInexact)
2389         return nullptr;
2390       if (!ExpoI.isInteger())
2391         return nullptr;
2392       ExpoF = &ExpoI;
2393 
2394       Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2395                          B, TLI);
2396       if (!Sqrt)
2397         return nullptr;
2398     }
2399 
2400     // 0.5 fraction is now optionally handled.
2401     // Do pow -> powi for remaining integer exponent
2402     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2403     if (ExpoF->isInteger() &&
2404         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2405             APFloat::opOK) {
2406       Value *PowI = copyFlags(
2407           *Pow,
2408           createPowWithIntegerExponent(
2409               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2410               M, B));
2411 
2412       if (PowI && Sqrt)
2413         return B.CreateFMul(PowI, Sqrt);
2414 
2415       return PowI;
2416     }
2417   }
2418 
2419   // powf(x, itofp(y)) -> powi(x, y)
2420   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2421     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2422       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2423   }
2424 
2425   // Shrink pow() to powf() if the arguments are single precision,
2426   // unless the result is expected to be double precision.
2427   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2428       hasFloatVersion(M, Name)) {
2429     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2430       return Shrunk;
2431   }
2432 
2433   return nullptr;
2434 }
2435 
2436 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2437   Module *M = CI->getModule();
2438   Function *Callee = CI->getCalledFunction();
2439   StringRef Name = Callee->getName();
2440   Value *Ret = nullptr;
2441   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2442       hasFloatVersion(M, Name))
2443     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2444 
2445   // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we
2446   // have the libcall, emit the libcall.
2447   //
2448   // TODO: In principle we should be able to just always use the intrinsic for
2449   // any doesNotAccessMemory callsite.
2450 
2451   const bool UseIntrinsic = Callee->isIntrinsic();
2452   // Bail out for vectors because the code below only expects scalars.
2453   Type *Ty = CI->getType();
2454   if (!UseIntrinsic && Ty->isVectorTy())
2455     return Ret;
2456 
2457   // exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2458   // exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2459   Value *Op = CI->getArgOperand(0);
2460   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2461       (UseIntrinsic ||
2462        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2463     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) {
2464       Constant *One = ConstantFP::get(Ty, 1.0);
2465 
2466       if (UseIntrinsic) {
2467         return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp,
2468                                                 {Ty, Exp->getType()},
2469                                                 {One, Exp}, CI));
2470       }
2471 
2472       IRBuilderBase::FastMathFlagGuard Guard(B);
2473       B.setFastMathFlags(CI->getFastMathFlags());
2474       return copyFlags(*CI, emitBinaryFloatFnCall(
2475                                 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2476                                 LibFunc_ldexpl, B, AttributeList()));
2477     }
2478   }
2479 
2480   return Ret;
2481 }
2482 
2483 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2484   Module *M = CI->getModule();
2485 
2486   // If we can shrink the call to a float function rather than a double
2487   // function, do that first.
2488   Function *Callee = CI->getCalledFunction();
2489   StringRef Name = Callee->getName();
2490   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2491     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2492       return Ret;
2493 
2494   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2495   // the intrinsics for improved optimization (for example, vectorization).
2496   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2497   // From the C standard draft WG14/N1256:
2498   // "Ideally, fmax would be sensitive to the sign of zero, for example
2499   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2500   // might be impractical."
2501   IRBuilderBase::FastMathFlagGuard Guard(B);
2502   FastMathFlags FMF = CI->getFastMathFlags();
2503   FMF.setNoSignedZeros();
2504   B.setFastMathFlags(FMF);
2505 
2506   Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2507                                                             : Intrinsic::maxnum;
2508   return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0),
2509                                                 CI->getArgOperand(1)));
2510 }
2511 
2512 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2513   Function *LogFn = Log->getCalledFunction();
2514   StringRef LogNm = LogFn->getName();
2515   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2516   Module *Mod = Log->getModule();
2517   Type *Ty = Log->getType();
2518 
2519   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2520     if (Value *Ret = optimizeUnaryDoubleFP(Log, B, TLI, true))
2521       return Ret;
2522 
2523   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2524 
2525   // This is only applicable to log(), log2(), log10().
2526   if (TLI->getLibFunc(LogNm, LogLb)) {
2527     switch (LogLb) {
2528     case LibFunc_logf:
2529       LogID = Intrinsic::log;
2530       ExpLb = LibFunc_expf;
2531       Exp2Lb = LibFunc_exp2f;
2532       Exp10Lb = LibFunc_exp10f;
2533       PowLb = LibFunc_powf;
2534       break;
2535     case LibFunc_log:
2536       LogID = Intrinsic::log;
2537       ExpLb = LibFunc_exp;
2538       Exp2Lb = LibFunc_exp2;
2539       Exp10Lb = LibFunc_exp10;
2540       PowLb = LibFunc_pow;
2541       break;
2542     case LibFunc_logl:
2543       LogID = Intrinsic::log;
2544       ExpLb = LibFunc_expl;
2545       Exp2Lb = LibFunc_exp2l;
2546       Exp10Lb = LibFunc_exp10l;
2547       PowLb = LibFunc_powl;
2548       break;
2549     case LibFunc_log2f:
2550       LogID = Intrinsic::log2;
2551       ExpLb = LibFunc_expf;
2552       Exp2Lb = LibFunc_exp2f;
2553       Exp10Lb = LibFunc_exp10f;
2554       PowLb = LibFunc_powf;
2555       break;
2556     case LibFunc_log2:
2557       LogID = Intrinsic::log2;
2558       ExpLb = LibFunc_exp;
2559       Exp2Lb = LibFunc_exp2;
2560       Exp10Lb = LibFunc_exp10;
2561       PowLb = LibFunc_pow;
2562       break;
2563     case LibFunc_log2l:
2564       LogID = Intrinsic::log2;
2565       ExpLb = LibFunc_expl;
2566       Exp2Lb = LibFunc_exp2l;
2567       Exp10Lb = LibFunc_exp10l;
2568       PowLb = LibFunc_powl;
2569       break;
2570     case LibFunc_log10f:
2571       LogID = Intrinsic::log10;
2572       ExpLb = LibFunc_expf;
2573       Exp2Lb = LibFunc_exp2f;
2574       Exp10Lb = LibFunc_exp10f;
2575       PowLb = LibFunc_powf;
2576       break;
2577     case LibFunc_log10:
2578       LogID = Intrinsic::log10;
2579       ExpLb = LibFunc_exp;
2580       Exp2Lb = LibFunc_exp2;
2581       Exp10Lb = LibFunc_exp10;
2582       PowLb = LibFunc_pow;
2583       break;
2584     case LibFunc_log10l:
2585       LogID = Intrinsic::log10;
2586       ExpLb = LibFunc_expl;
2587       Exp2Lb = LibFunc_exp2l;
2588       Exp10Lb = LibFunc_exp10l;
2589       PowLb = LibFunc_powl;
2590       break;
2591     default:
2592       return nullptr;
2593     }
2594 
2595     // Convert libcall to intrinsic if the value is known > 0.
2596     bool IsKnownNoErrno = Log->hasNoNaNs() && Log->hasNoInfs();
2597     if (!IsKnownNoErrno) {
2598       SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC);
2599       KnownFPClass Known = computeKnownFPClass(
2600           Log->getOperand(0),
2601           KnownFPClass::OrderedLessThanZeroMask | fcSubnormal,
2602           /*Depth=*/0, SQ);
2603       Function *F = Log->getParent()->getParent();
2604       IsKnownNoErrno = Known.cannotBeOrderedLessThanZero() &&
2605                        Known.isKnownNeverLogicalZero(*F, Ty);
2606     }
2607     if (IsKnownNoErrno) {
2608       auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log);
2609       NewLog->copyMetadata(*Log);
2610       return copyFlags(*Log, NewLog);
2611     }
2612   } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2613              LogID == Intrinsic::log10) {
2614     if (Ty->getScalarType()->isFloatTy()) {
2615       ExpLb = LibFunc_expf;
2616       Exp2Lb = LibFunc_exp2f;
2617       Exp10Lb = LibFunc_exp10f;
2618       PowLb = LibFunc_powf;
2619     } else if (Ty->getScalarType()->isDoubleTy()) {
2620       ExpLb = LibFunc_exp;
2621       Exp2Lb = LibFunc_exp2;
2622       Exp10Lb = LibFunc_exp10;
2623       PowLb = LibFunc_pow;
2624     } else
2625       return nullptr;
2626   } else
2627     return nullptr;
2628 
2629   // The earlier call must also be 'fast' in order to do these transforms.
2630   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2631   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2632     return nullptr;
2633 
2634   IRBuilderBase::FastMathFlagGuard Guard(B);
2635   B.setFastMathFlags(FastMathFlags::getFast());
2636 
2637   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2638   LibFunc ArgLb = NotLibFunc;
2639   TLI->getLibFunc(*Arg, ArgLb);
2640 
2641   // log(pow(x,y)) -> y*log(x)
2642   AttributeList NoAttrs;
2643   if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2644     Value *LogX =
2645         Log->doesNotAccessMemory()
2646             ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log")
2647             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2648     Value *Y = Arg->getArgOperand(1);
2649     // Cast exponent to FP if integer.
2650     if (ArgID == Intrinsic::powi)
2651       Y = B.CreateSIToFP(Y, Ty, "cast");
2652     Value *MulY = B.CreateFMul(Y, LogX, "mul");
2653     // Since pow() may have side effects, e.g. errno,
2654     // dead code elimination may not be trusted to remove it.
2655     substituteInParent(Arg, MulY);
2656     return MulY;
2657   }
2658 
2659   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2660   // TODO: There is no exp10() intrinsic yet.
2661   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2662            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2663     Constant *Eul;
2664     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2665       // FIXME: Add more precise value of e for long double.
2666       Eul = ConstantFP::get(Log->getType(), numbers::e);
2667     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2668       Eul = ConstantFP::get(Log->getType(), 2.0);
2669     else
2670       Eul = ConstantFP::get(Log->getType(), 10.0);
2671     Value *LogE = Log->doesNotAccessMemory()
2672                       ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log")
2673                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2674     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2675     // Since exp() may have side effects, e.g. errno,
2676     // dead code elimination may not be trusted to remove it.
2677     substituteInParent(Arg, MulY);
2678     return MulY;
2679   }
2680 
2681   return nullptr;
2682 }
2683 
2684 // sqrt(exp(X)) -> exp(X * 0.5)
2685 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) {
2686   if (!CI->hasAllowReassoc())
2687     return nullptr;
2688 
2689   Function *SqrtFn = CI->getCalledFunction();
2690   CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0));
2691   if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse())
2692     return nullptr;
2693   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2694   LibFunc ArgLb = NotLibFunc;
2695   TLI->getLibFunc(*Arg, ArgLb);
2696 
2697   LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2698 
2699   if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb))
2700     switch (SqrtLb) {
2701     case LibFunc_sqrtf:
2702       ExpLb = LibFunc_expf;
2703       Exp2Lb = LibFunc_exp2f;
2704       Exp10Lb = LibFunc_exp10f;
2705       break;
2706     case LibFunc_sqrt:
2707       ExpLb = LibFunc_exp;
2708       Exp2Lb = LibFunc_exp2;
2709       Exp10Lb = LibFunc_exp10;
2710       break;
2711     case LibFunc_sqrtl:
2712       ExpLb = LibFunc_expl;
2713       Exp2Lb = LibFunc_exp2l;
2714       Exp10Lb = LibFunc_exp10l;
2715       break;
2716     default:
2717       return nullptr;
2718     }
2719   else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2720     if (CI->getType()->getScalarType()->isFloatTy()) {
2721       ExpLb = LibFunc_expf;
2722       Exp2Lb = LibFunc_exp2f;
2723       Exp10Lb = LibFunc_exp10f;
2724     } else if (CI->getType()->getScalarType()->isDoubleTy()) {
2725       ExpLb = LibFunc_exp;
2726       Exp2Lb = LibFunc_exp2;
2727       Exp10Lb = LibFunc_exp10;
2728     } else
2729       return nullptr;
2730   } else
2731     return nullptr;
2732 
2733   if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2734       ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2735     return nullptr;
2736 
2737   IRBuilderBase::InsertPointGuard Guard(B);
2738   B.SetInsertPoint(Arg);
2739   auto *ExpOperand = Arg->getOperand(0);
2740   auto *FMul =
2741       B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2742                       CI, "merged.sqrt");
2743 
2744   Arg->setOperand(0, FMul);
2745   return Arg;
2746 }
2747 
2748 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2749   Module *M = CI->getModule();
2750   Function *Callee = CI->getCalledFunction();
2751   Value *Ret = nullptr;
2752   // TODO: Once we have a way (other than checking for the existince of the
2753   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2754   // condition below.
2755   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2756       (Callee->getName() == "sqrt" ||
2757        Callee->getIntrinsicID() == Intrinsic::sqrt))
2758     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2759 
2760   if (Value *Opt = mergeSqrtToExp(CI, B))
2761     return Opt;
2762 
2763   if (!CI->isFast())
2764     return Ret;
2765 
2766   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2767   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2768     return Ret;
2769 
2770   // We're looking for a repeated factor in a multiplication tree,
2771   // so we can do this fold: sqrt(x * x) -> fabs(x);
2772   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2773   Value *Op0 = I->getOperand(0);
2774   Value *Op1 = I->getOperand(1);
2775   Value *RepeatOp = nullptr;
2776   Value *OtherOp = nullptr;
2777   if (Op0 == Op1) {
2778     // Simple match: the operands of the multiply are identical.
2779     RepeatOp = Op0;
2780   } else {
2781     // Look for a more complicated pattern: one of the operands is itself
2782     // a multiply, so search for a common factor in that multiply.
2783     // Note: We don't bother looking any deeper than this first level or for
2784     // variations of this pattern because instcombine's visitFMUL and/or the
2785     // reassociation pass should give us this form.
2786     Value *MulOp;
2787     if (match(Op0, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2788         cast<Instruction>(Op0)->isFast()) {
2789       // Pattern: sqrt((x * x) * z)
2790       RepeatOp = MulOp;
2791       OtherOp = Op1;
2792     } else if (match(Op1, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) &&
2793                cast<Instruction>(Op1)->isFast()) {
2794       // Pattern: sqrt(z * (x * x))
2795       RepeatOp = MulOp;
2796       OtherOp = Op0;
2797     }
2798   }
2799   if (!RepeatOp)
2800     return Ret;
2801 
2802   // Fast math flags for any created instructions should match the sqrt
2803   // and multiply.
2804   IRBuilderBase::FastMathFlagGuard Guard(B);
2805   B.setFastMathFlags(I->getFastMathFlags());
2806 
2807   // If we found a repeated factor, hoist it out of the square root and
2808   // replace it with the fabs of that factor.
2809   Value *FabsCall =
2810       B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs");
2811   if (OtherOp) {
2812     // If we found a non-repeated factor, we still need to get its square
2813     // root. We then multiply that by the value that was simplified out
2814     // of the square root calculation.
2815     Value *SqrtCall =
2816         B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt");
2817     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2818   }
2819   return copyFlags(*CI, FabsCall);
2820 }
2821 
2822 Value *LibCallSimplifier::optimizeFMod(CallInst *CI, IRBuilderBase &B) {
2823 
2824   // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those
2825   // case. If we know those do not happen, then we can convert the fmod into
2826   // frem.
2827   bool IsNoNan = CI->hasNoNaNs();
2828   if (!IsNoNan) {
2829     SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC);
2830     KnownFPClass Known0 = computeKnownFPClass(CI->getOperand(0), fcInf,
2831                                               /*Depth=*/0, SQ);
2832     if (Known0.isKnownNeverInfinity()) {
2833       KnownFPClass Known1 =
2834           computeKnownFPClass(CI->getOperand(1), fcZero | fcSubnormal,
2835                               /*Depth=*/0, SQ);
2836       Function *F = CI->getParent()->getParent();
2837       IsNoNan = Known1.isKnownNeverLogicalZero(*F, CI->getType());
2838     }
2839   }
2840 
2841   if (IsNoNan) {
2842     Value *FRem = B.CreateFRemFMF(CI->getOperand(0), CI->getOperand(1), CI);
2843     if (auto *FRemI = dyn_cast<Instruction>(FRem))
2844       FRemI->setHasNoNaNs(true);
2845     return FRem;
2846   }
2847   return nullptr;
2848 }
2849 
2850 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2851                                                      IRBuilderBase &B) {
2852   Module *M = CI->getModule();
2853   Function *Callee = CI->getCalledFunction();
2854   Value *Ret = nullptr;
2855   StringRef Name = Callee->getName();
2856   if (UnsafeFPShrink &&
2857       (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2858        Name == "asinh") &&
2859       hasFloatVersion(M, Name))
2860     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2861 
2862   Value *Op1 = CI->getArgOperand(0);
2863   auto *OpC = dyn_cast<CallInst>(Op1);
2864   if (!OpC)
2865     return Ret;
2866 
2867   // Both calls must be 'fast' in order to remove them.
2868   if (!CI->isFast() || !OpC->isFast())
2869     return Ret;
2870 
2871   // tan(atan(x)) -> x
2872   // atanh(tanh(x)) -> x
2873   // sinh(asinh(x)) -> x
2874   // asinh(sinh(x)) -> x
2875   // cosh(acosh(x)) -> x
2876   LibFunc Func;
2877   Function *F = OpC->getCalledFunction();
2878   if (F && TLI->getLibFunc(F->getName(), Func) &&
2879       isLibFuncEmittable(M, TLI, Func)) {
2880     LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName())
2881                               .Case("tan", LibFunc_atan)
2882                               .Case("atanh", LibFunc_tanh)
2883                               .Case("sinh", LibFunc_asinh)
2884                               .Case("cosh", LibFunc_acosh)
2885                               .Case("tanf", LibFunc_atanf)
2886                               .Case("atanhf", LibFunc_tanhf)
2887                               .Case("sinhf", LibFunc_asinhf)
2888                               .Case("coshf", LibFunc_acoshf)
2889                               .Case("tanl", LibFunc_atanl)
2890                               .Case("atanhl", LibFunc_tanhl)
2891                               .Case("sinhl", LibFunc_asinhl)
2892                               .Case("coshl", LibFunc_acoshl)
2893                               .Case("asinh", LibFunc_sinh)
2894                               .Case("asinhf", LibFunc_sinhf)
2895                               .Case("asinhl", LibFunc_sinhl)
2896                               .Default(NumLibFuncs); // Used as error value
2897     if (Func == inverseFunc)
2898       Ret = OpC->getArgOperand(0);
2899   }
2900   return Ret;
2901 }
2902 
2903 static bool isTrigLibCall(CallInst *CI) {
2904   // We can only hope to do anything useful if we can ignore things like errno
2905   // and floating-point exceptions.
2906   // We already checked the prototype.
2907   return CI->doesNotThrow() && CI->doesNotAccessMemory();
2908 }
2909 
2910 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2911                              bool UseFloat, Value *&Sin, Value *&Cos,
2912                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2913   Module *M = OrigCallee->getParent();
2914   Type *ArgTy = Arg->getType();
2915   Type *ResTy;
2916   StringRef Name;
2917 
2918   Triple T(OrigCallee->getParent()->getTargetTriple());
2919   if (UseFloat) {
2920     Name = "__sincospif_stret";
2921 
2922     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2923     // x86_64 can't use {float, float} since that would be returned in both
2924     // xmm0 and xmm1, which isn't what a real struct would do.
2925     ResTy = T.getArch() == Triple::x86_64
2926                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2927                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2928   } else {
2929     Name = "__sincospi_stret";
2930     ResTy = StructType::get(ArgTy, ArgTy);
2931   }
2932 
2933   if (!isLibFuncEmittable(M, TLI, Name))
2934     return false;
2935   LibFunc TheLibFunc;
2936   TLI->getLibFunc(Name, TheLibFunc);
2937   FunctionCallee Callee = getOrInsertLibFunc(
2938       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2939 
2940   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2941     // If the argument is an instruction, it must dominate all uses so put our
2942     // sincos call there.
2943     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2944   } else {
2945     // Otherwise (e.g. for a constant) the beginning of the function is as
2946     // good a place as any.
2947     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2948     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2949   }
2950 
2951   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2952 
2953   if (SinCos->getType()->isStructTy()) {
2954     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2955     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2956   } else {
2957     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2958                                  "sinpi");
2959     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2960                                  "cospi");
2961   }
2962 
2963   return true;
2964 }
2965 
2966 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven,
2967                                     IRBuilderBase &B) {
2968   Value *X;
2969   Value *Src = CI->getArgOperand(0);
2970 
2971   if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) {
2972     IRBuilderBase::FastMathFlagGuard Guard(B);
2973     B.setFastMathFlags(CI->getFastMathFlags());
2974 
2975     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2976     if (IsEven) {
2977       // Even function: f(-x) = f(x)
2978       return CallInst;
2979     }
2980     // Odd function: f(-x) = -f(x)
2981     return B.CreateFNeg(CallInst);
2982   }
2983 
2984   // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2985   if (IsEven && (match(Src, m_FAbs(m_Value(X))) ||
2986                  match(Src, m_CopySign(m_Value(X), m_Value())))) {
2987     IRBuilderBase::FastMathFlagGuard Guard(B);
2988     B.setFastMathFlags(CI->getFastMathFlags());
2989 
2990     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2991     return CallInst;
2992   }
2993 
2994   return nullptr;
2995 }
2996 
2997 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func,
2998                                             IRBuilderBase &B) {
2999   switch (Func) {
3000   case LibFunc_cos:
3001   case LibFunc_cosf:
3002   case LibFunc_cosl:
3003     return optimizeSymmetricCall(CI, /*IsEven*/ true, B);
3004 
3005   case LibFunc_sin:
3006   case LibFunc_sinf:
3007   case LibFunc_sinl:
3008 
3009   case LibFunc_tan:
3010   case LibFunc_tanf:
3011   case LibFunc_tanl:
3012 
3013   case LibFunc_erf:
3014   case LibFunc_erff:
3015   case LibFunc_erfl:
3016     return optimizeSymmetricCall(CI, /*IsEven*/ false, B);
3017 
3018   default:
3019     return nullptr;
3020   }
3021 }
3022 
3023 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
3024   // Make sure the prototype is as expected, otherwise the rest of the
3025   // function is probably invalid and likely to abort.
3026   if (!isTrigLibCall(CI))
3027     return nullptr;
3028 
3029   Value *Arg = CI->getArgOperand(0);
3030   SmallVector<CallInst *, 1> SinCalls;
3031   SmallVector<CallInst *, 1> CosCalls;
3032   SmallVector<CallInst *, 1> SinCosCalls;
3033 
3034   bool IsFloat = Arg->getType()->isFloatTy();
3035 
3036   // Look for all compatible sinpi, cospi and sincospi calls with the same
3037   // argument. If there are enough (in some sense) we can make the
3038   // substitution.
3039   Function *F = CI->getFunction();
3040   for (User *U : Arg->users())
3041     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
3042 
3043   // It's only worthwhile if both sinpi and cospi are actually used.
3044   if (SinCalls.empty() || CosCalls.empty())
3045     return nullptr;
3046 
3047   Value *Sin, *Cos, *SinCos;
3048   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
3049                         SinCos, TLI))
3050     return nullptr;
3051 
3052   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
3053                                  Value *Res) {
3054     for (CallInst *C : Calls)
3055       replaceAllUsesWith(C, Res);
3056   };
3057 
3058   replaceTrigInsts(SinCalls, Sin);
3059   replaceTrigInsts(CosCalls, Cos);
3060   replaceTrigInsts(SinCosCalls, SinCos);
3061 
3062   return IsSin ? Sin : Cos;
3063 }
3064 
3065 void LibCallSimplifier::classifyArgUse(
3066     Value *Val, Function *F, bool IsFloat,
3067     SmallVectorImpl<CallInst *> &SinCalls,
3068     SmallVectorImpl<CallInst *> &CosCalls,
3069     SmallVectorImpl<CallInst *> &SinCosCalls) {
3070   auto *CI = dyn_cast<CallInst>(Val);
3071   if (!CI || CI->use_empty())
3072     return;
3073 
3074   // Don't consider calls in other functions.
3075   if (CI->getFunction() != F)
3076     return;
3077 
3078   Module *M = CI->getModule();
3079   Function *Callee = CI->getCalledFunction();
3080   LibFunc Func;
3081   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
3082       !isLibFuncEmittable(M, TLI, Func) ||
3083       !isTrigLibCall(CI))
3084     return;
3085 
3086   if (IsFloat) {
3087     if (Func == LibFunc_sinpif)
3088       SinCalls.push_back(CI);
3089     else if (Func == LibFunc_cospif)
3090       CosCalls.push_back(CI);
3091     else if (Func == LibFunc_sincospif_stret)
3092       SinCosCalls.push_back(CI);
3093   } else {
3094     if (Func == LibFunc_sinpi)
3095       SinCalls.push_back(CI);
3096     else if (Func == LibFunc_cospi)
3097       CosCalls.push_back(CI);
3098     else if (Func == LibFunc_sincospi_stret)
3099       SinCosCalls.push_back(CI);
3100   }
3101 }
3102 
3103 /// Constant folds remquo
3104 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) {
3105   const APFloat *X, *Y;
3106   if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3107       !match(CI->getArgOperand(1), m_APFloat(Y)))
3108     return nullptr;
3109 
3110   APFloat::opStatus Status;
3111   APFloat Quot = *X;
3112   Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven);
3113   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3114     return nullptr;
3115   APFloat Rem = *X;
3116   if (Rem.remainder(*Y) != APFloat::opOK)
3117     return nullptr;
3118 
3119   // TODO: We can only keep at least the three of the last bits of x/y
3120   unsigned IntBW = TLI->getIntSize();
3121   APSInt QuotInt(IntBW, /*isUnsigned=*/false);
3122   bool IsExact;
3123   Status =
3124       Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact);
3125   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3126     return nullptr;
3127 
3128   B.CreateAlignedStore(
3129       ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()),
3130       CI->getArgOperand(2), CI->getParamAlign(2));
3131   return ConstantFP::get(CI->getType(), Rem);
3132 }
3133 
3134 /// Constant folds fdim
3135 Value *LibCallSimplifier::optimizeFdim(CallInst *CI, IRBuilderBase &B) {
3136   // Cannot perform the fold unless the call has attribute memory(none)
3137   if (!CI->doesNotAccessMemory())
3138     return nullptr;
3139 
3140   // TODO : Handle undef values
3141   // Propagate poison if any
3142   if (isa<PoisonValue>(CI->getArgOperand(0)))
3143     return CI->getArgOperand(0);
3144   if (isa<PoisonValue>(CI->getArgOperand(1)))
3145     return CI->getArgOperand(1);
3146 
3147   const APFloat *X, *Y;
3148   // Check if both values are constants
3149   if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3150       !match(CI->getArgOperand(1), m_APFloat(Y)))
3151     return nullptr;
3152 
3153   APFloat Difference = *X;
3154   Difference.subtract(*Y, RoundingMode::NearestTiesToEven);
3155 
3156   APFloat MaxVal =
3157       maximum(Difference, APFloat::getZero(CI->getType()->getFltSemantics()));
3158   return ConstantFP::get(CI->getType(), MaxVal);
3159 }
3160 
3161 //===----------------------------------------------------------------------===//
3162 // Integer Library Call Optimizations
3163 //===----------------------------------------------------------------------===//
3164 
3165 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
3166   // All variants of ffs return int which need not be 32 bits wide.
3167   // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
3168   Type *RetType = CI->getType();
3169   Value *Op = CI->getArgOperand(0);
3170   Type *ArgType = Op->getType();
3171   Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()},
3172                                nullptr, "cttz");
3173   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
3174   V = B.CreateIntCast(V, RetType, false);
3175 
3176   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
3177   return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
3178 }
3179 
3180 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
3181   // All variants of fls return int which need not be 32 bits wide.
3182   // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
3183   Value *Op = CI->getArgOperand(0);
3184   Type *ArgType = Op->getType();
3185   Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()},
3186                                nullptr, "ctlz");
3187   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
3188                   V);
3189   return B.CreateIntCast(V, CI->getType(), false);
3190 }
3191 
3192 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
3193   // abs(x) -> x <s 0 ? -x : x
3194   // The negation has 'nsw' because abs of INT_MIN is undefined.
3195   Value *X = CI->getArgOperand(0);
3196   Value *IsNeg = B.CreateIsNeg(X);
3197   Value *NegX = B.CreateNSWNeg(X, "neg");
3198   return B.CreateSelect(IsNeg, NegX, X);
3199 }
3200 
3201 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
3202   // isdigit(c) -> (c-'0') <u 10
3203   Value *Op = CI->getArgOperand(0);
3204   Type *ArgType = Op->getType();
3205   Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
3206   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
3207   return B.CreateZExt(Op, CI->getType());
3208 }
3209 
3210 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
3211   // isascii(c) -> c <u 128
3212   Value *Op = CI->getArgOperand(0);
3213   Type *ArgType = Op->getType();
3214   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
3215   return B.CreateZExt(Op, CI->getType());
3216 }
3217 
3218 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
3219   // toascii(c) -> c & 0x7f
3220   return B.CreateAnd(CI->getArgOperand(0),
3221                      ConstantInt::get(CI->getType(), 0x7F));
3222 }
3223 
3224 // Fold calls to atoi, atol, and atoll.
3225 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
3226   CI->addParamAttr(0, Attribute::NoCapture);
3227 
3228   StringRef Str;
3229   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3230     return nullptr;
3231 
3232   return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
3233 }
3234 
3235 // Fold calls to strtol, strtoll, strtoul, and strtoull.
3236 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
3237                                            bool AsSigned) {
3238   Value *EndPtr = CI->getArgOperand(1);
3239   if (isa<ConstantPointerNull>(EndPtr)) {
3240     // With a null EndPtr, this function won't capture the main argument.
3241     // It would be readonly too, except that it still may write to errno.
3242     CI->addParamAttr(0, Attribute::NoCapture);
3243     EndPtr = nullptr;
3244   } else if (!isKnownNonZero(EndPtr, DL))
3245     return nullptr;
3246 
3247   StringRef Str;
3248   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3249     return nullptr;
3250 
3251   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
3252     return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
3253   }
3254 
3255   return nullptr;
3256 }
3257 
3258 //===----------------------------------------------------------------------===//
3259 // Formatting and IO Library Call Optimizations
3260 //===----------------------------------------------------------------------===//
3261 
3262 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
3263 
3264 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
3265                                                  int StreamArg) {
3266   Function *Callee = CI->getCalledFunction();
3267   // Error reporting calls should be cold, mark them as such.
3268   // This applies even to non-builtin calls: it is only a hint and applies to
3269   // functions that the frontend might not understand as builtins.
3270 
3271   // This heuristic was suggested in:
3272   // Improving Static Branch Prediction in a Compiler
3273   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3274   // Proceedings of PACT'98, Oct. 1998, IEEE
3275   if (!CI->hasFnAttr(Attribute::Cold) &&
3276       isReportingError(Callee, CI, StreamArg)) {
3277     CI->addFnAttr(Attribute::Cold);
3278   }
3279 
3280   return nullptr;
3281 }
3282 
3283 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
3284   if (!Callee || !Callee->isDeclaration())
3285     return false;
3286 
3287   if (StreamArg < 0)
3288     return true;
3289 
3290   // These functions might be considered cold, but only if their stream
3291   // argument is stderr.
3292 
3293   if (StreamArg >= (int)CI->arg_size())
3294     return false;
3295   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
3296   if (!LI)
3297     return false;
3298   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
3299   if (!GV || !GV->isDeclaration())
3300     return false;
3301   return GV->getName() == "stderr";
3302 }
3303 
3304 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
3305   // Check for a fixed format string.
3306   StringRef FormatStr;
3307   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
3308     return nullptr;
3309 
3310   // Empty format string -> noop.
3311   if (FormatStr.empty()) // Tolerate printf's declared void.
3312     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
3313 
3314   // Do not do any of the following transformations if the printf return value
3315   // is used, in general the printf return value is not compatible with either
3316   // putchar() or puts().
3317   if (!CI->use_empty())
3318     return nullptr;
3319 
3320   Type *IntTy = CI->getType();
3321   // printf("x") -> putchar('x'), even for "%" and "%%".
3322   if (FormatStr.size() == 1 || FormatStr == "%%") {
3323     // Convert the character to unsigned char before passing it to putchar
3324     // to avoid host-specific sign extension in the IR.  Putchar converts
3325     // it to unsigned char regardless.
3326     Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
3327     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3328   }
3329 
3330   // Try to remove call or emit putchar/puts.
3331   if (FormatStr == "%s" && CI->arg_size() > 1) {
3332     StringRef OperandStr;
3333     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
3334       return nullptr;
3335     // printf("%s", "") --> NOP
3336     if (OperandStr.empty())
3337       return (Value *)CI;
3338     // printf("%s", "a") --> putchar('a')
3339     if (OperandStr.size() == 1) {
3340       // Convert the character to unsigned char before passing it to putchar
3341       // to avoid host-specific sign extension in the IR.  Putchar converts
3342       // it to unsigned char regardless.
3343       Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
3344       return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3345     }
3346     // printf("%s", str"\n") --> puts(str)
3347     if (OperandStr.back() == '\n') {
3348       OperandStr = OperandStr.drop_back();
3349       Value *GV = B.CreateGlobalString(OperandStr, "str");
3350       return copyFlags(*CI, emitPutS(GV, B, TLI));
3351     }
3352     return nullptr;
3353   }
3354 
3355   // printf("foo\n") --> puts("foo")
3356   if (FormatStr.back() == '\n' &&
3357       !FormatStr.contains('%')) { // No format characters.
3358     // Create a string literal with no \n on it.  We expect the constant merge
3359     // pass to be run after this pass, to merge duplicate strings.
3360     FormatStr = FormatStr.drop_back();
3361     Value *GV = B.CreateGlobalString(FormatStr, "str");
3362     return copyFlags(*CI, emitPutS(GV, B, TLI));
3363   }
3364 
3365   // Optimize specific format strings.
3366   // printf("%c", chr) --> putchar(chr)
3367   if (FormatStr == "%c" && CI->arg_size() > 1 &&
3368       CI->getArgOperand(1)->getType()->isIntegerTy()) {
3369     // Convert the argument to the type expected by putchar, i.e., int, which
3370     // need not be 32 bits wide but which is the same as printf's return type.
3371     Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
3372     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3373   }
3374 
3375   // printf("%s\n", str) --> puts(str)
3376   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3377       CI->getArgOperand(1)->getType()->isPointerTy())
3378     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
3379   return nullptr;
3380 }
3381 
3382 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3383 
3384   Module *M = CI->getModule();
3385   Function *Callee = CI->getCalledFunction();
3386   FunctionType *FT = Callee->getFunctionType();
3387   if (Value *V = optimizePrintFString(CI, B)) {
3388     return V;
3389   }
3390 
3391   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3392 
3393   // printf(format, ...) -> iprintf(format, ...) if no floating point
3394   // arguments.
3395   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
3396       !callHasFloatingPointArgument(CI)) {
3397     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
3398                                                   Callee->getAttributes());
3399     CallInst *New = cast<CallInst>(CI->clone());
3400     New->setCalledFunction(IPrintFFn);
3401     B.Insert(New);
3402     return New;
3403   }
3404 
3405   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3406   // arguments.
3407   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
3408       !callHasFP128Argument(CI)) {
3409     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3410                                             Callee->getAttributes());
3411     CallInst *New = cast<CallInst>(CI->clone());
3412     New->setCalledFunction(SmallPrintFFn);
3413     B.Insert(New);
3414     return New;
3415   }
3416 
3417   return nullptr;
3418 }
3419 
3420 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3421                                                 IRBuilderBase &B) {
3422   // Check for a fixed format string.
3423   StringRef FormatStr;
3424   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3425     return nullptr;
3426 
3427   // If we just have a format string (nothing else crazy) transform it.
3428   Value *Dest = CI->getArgOperand(0);
3429   if (CI->arg_size() == 2) {
3430     // Make sure there's no % in the constant array.  We could try to handle
3431     // %% -> % in the future if we cared.
3432     if (FormatStr.contains('%'))
3433       return nullptr; // we found a format specifier, bail out.
3434 
3435     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3436     B.CreateMemCpy(
3437         Dest, Align(1), CI->getArgOperand(1), Align(1),
3438         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
3439                          FormatStr.size() + 1)); // Copy the null byte.
3440     return ConstantInt::get(CI->getType(), FormatStr.size());
3441   }
3442 
3443   // The remaining optimizations require the format string to be "%s" or "%c"
3444   // and have an extra operand.
3445   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3446     return nullptr;
3447 
3448   // Decode the second character of the format string.
3449   if (FormatStr[1] == 'c') {
3450     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3451     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3452       return nullptr;
3453     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
3454     Value *Ptr = Dest;
3455     B.CreateStore(V, Ptr);
3456     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3457     B.CreateStore(B.getInt8(0), Ptr);
3458 
3459     return ConstantInt::get(CI->getType(), 1);
3460   }
3461 
3462   if (FormatStr[1] == 's') {
3463     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3464     // strlen(str)+1)
3465     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3466       return nullptr;
3467 
3468     if (CI->use_empty())
3469       // sprintf(dest, "%s", str) -> strcpy(dest, str)
3470       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
3471 
3472     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
3473     if (SrcLen) {
3474       B.CreateMemCpy(
3475           Dest, Align(1), CI->getArgOperand(2), Align(1),
3476           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
3477       // Returns total number of characters written without null-character.
3478       return ConstantInt::get(CI->getType(), SrcLen - 1);
3479     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
3480       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3481       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3482       return B.CreateIntCast(PtrDiff, CI->getType(), false);
3483     }
3484 
3485     bool OptForSize = CI->getFunction()->hasOptSize() ||
3486                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3487                                                   PGSOQueryType::IRPass);
3488     if (OptForSize)
3489       return nullptr;
3490 
3491     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
3492     if (!Len)
3493       return nullptr;
3494     Value *IncLen =
3495         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3496     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3497 
3498     // The sprintf result is the unincremented number of bytes in the string.
3499     return B.CreateIntCast(Len, CI->getType(), false);
3500   }
3501   return nullptr;
3502 }
3503 
3504 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3505   Module *M = CI->getModule();
3506   Function *Callee = CI->getCalledFunction();
3507   FunctionType *FT = Callee->getFunctionType();
3508   if (Value *V = optimizeSPrintFString(CI, B)) {
3509     return V;
3510   }
3511 
3512   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3513 
3514   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3515   // point arguments.
3516   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3517       !callHasFloatingPointArgument(CI)) {
3518     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3519                                                    FT, Callee->getAttributes());
3520     CallInst *New = cast<CallInst>(CI->clone());
3521     New->setCalledFunction(SIPrintFFn);
3522     B.Insert(New);
3523     return New;
3524   }
3525 
3526   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3527   // floating point arguments.
3528   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3529       !callHasFP128Argument(CI)) {
3530     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3531                                              Callee->getAttributes());
3532     CallInst *New = cast<CallInst>(CI->clone());
3533     New->setCalledFunction(SmallSPrintFFn);
3534     B.Insert(New);
3535     return New;
3536   }
3537 
3538   return nullptr;
3539 }
3540 
3541 // Transform an snprintf call CI with the bound N to format the string Str
3542 // either to a call to memcpy, or to single character a store, or to nothing,
3543 // and fold the result to a constant.  A nonnull StrArg refers to the string
3544 // argument being formatted.  Otherwise the call is one with N < 2 and
3545 // the "%c" directive to format a single character.
3546 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3547                                              StringRef Str, uint64_t N,
3548                                              IRBuilderBase &B) {
3549   assert(StrArg || (N < 2 && Str.size() == 1));
3550 
3551   unsigned IntBits = TLI->getIntSize();
3552   uint64_t IntMax = maxIntN(IntBits);
3553   if (Str.size() > IntMax)
3554     // Bail if the string is longer than INT_MAX.  POSIX requires
3555     // implementations to set errno to EOVERFLOW in this case, in
3556     // addition to when N is larger than that (checked by the caller).
3557     return nullptr;
3558 
3559   Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3560   if (N == 0)
3561     return StrLen;
3562 
3563   // Set to the number of bytes to copy fron StrArg which is also
3564   // the offset of the terinating nul.
3565   uint64_t NCopy;
3566   if (N > Str.size())
3567     // Copy the full string, including the terminating nul (which must
3568     // be present regardless of the bound).
3569     NCopy = Str.size() + 1;
3570   else
3571     NCopy = N - 1;
3572 
3573   Value *DstArg = CI->getArgOperand(0);
3574   if (NCopy && StrArg)
3575     // Transform the call to lvm.memcpy(dst, fmt, N).
3576     copyFlags(
3577          *CI,
3578           B.CreateMemCpy(
3579                          DstArg, Align(1), StrArg, Align(1),
3580               ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3581 
3582   if (N > Str.size())
3583     // Return early when the whole format string, including the final nul,
3584     // has been copied.
3585     return StrLen;
3586 
3587   // Otherwise, when truncating the string append a terminating nul.
3588   Type *Int8Ty = B.getInt8Ty();
3589   Value *NulOff = B.getIntN(IntBits, NCopy);
3590   Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3591   B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3592   return StrLen;
3593 }
3594 
3595 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3596                                                  IRBuilderBase &B) {
3597   // Check for size
3598   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3599   if (!Size)
3600     return nullptr;
3601 
3602   uint64_t N = Size->getZExtValue();
3603   uint64_t IntMax = maxIntN(TLI->getIntSize());
3604   if (N > IntMax)
3605     // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
3606     // to set errno to EOVERFLOW in this case.
3607     return nullptr;
3608 
3609   Value *DstArg = CI->getArgOperand(0);
3610   Value *FmtArg = CI->getArgOperand(2);
3611 
3612   // Check for a fixed format string.
3613   StringRef FormatStr;
3614   if (!getConstantStringInfo(FmtArg, FormatStr))
3615     return nullptr;
3616 
3617   // If we just have a format string (nothing else crazy) transform it.
3618   if (CI->arg_size() == 3) {
3619     if (FormatStr.contains('%'))
3620       // Bail if the format string contains a directive and there are
3621       // no arguments.  We could handle "%%" in the future.
3622       return nullptr;
3623 
3624     return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3625   }
3626 
3627   // The remaining optimizations require the format string to be "%s" or "%c"
3628   // and have an extra operand.
3629   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3630     return nullptr;
3631 
3632   // Decode the second character of the format string.
3633   if (FormatStr[1] == 'c') {
3634     if (N <= 1) {
3635       // Use an arbitary string of length 1 to transform the call into
3636       // either a nul store (N == 1) or a no-op (N == 0) and fold it
3637       // to one.
3638       StringRef CharStr("*");
3639       return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3640     }
3641 
3642     // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3643     if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3644       return nullptr;
3645     Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3646     Value *Ptr = DstArg;
3647     B.CreateStore(V, Ptr);
3648     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3649     B.CreateStore(B.getInt8(0), Ptr);
3650     return ConstantInt::get(CI->getType(), 1);
3651   }
3652 
3653   if (FormatStr[1] != 's')
3654     return nullptr;
3655 
3656   Value *StrArg = CI->getArgOperand(3);
3657   // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3658   StringRef Str;
3659   if (!getConstantStringInfo(StrArg, Str))
3660     return nullptr;
3661 
3662   return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3663 }
3664 
3665 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3666   if (Value *V = optimizeSnPrintFString(CI, B)) {
3667     return V;
3668   }
3669 
3670   if (isKnownNonZero(CI->getOperand(1), DL))
3671     annotateNonNullNoUndefBasedOnAccess(CI, 0);
3672   return nullptr;
3673 }
3674 
3675 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3676                                                 IRBuilderBase &B) {
3677   optimizeErrorReporting(CI, B, 0);
3678 
3679   // All the optimizations depend on the format string.
3680   StringRef FormatStr;
3681   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3682     return nullptr;
3683 
3684   // Do not do any of the following transformations if the fprintf return
3685   // value is used, in general the fprintf return value is not compatible
3686   // with fwrite(), fputc() or fputs().
3687   if (!CI->use_empty())
3688     return nullptr;
3689 
3690   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3691   if (CI->arg_size() == 2) {
3692     // Could handle %% -> % if we cared.
3693     if (FormatStr.contains('%'))
3694       return nullptr; // We found a format specifier.
3695 
3696     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3697     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3698     return copyFlags(
3699         *CI, emitFWrite(CI->getArgOperand(1),
3700                         ConstantInt::get(SizeTTy, FormatStr.size()),
3701                         CI->getArgOperand(0), B, DL, TLI));
3702   }
3703 
3704   // The remaining optimizations require the format string to be "%s" or "%c"
3705   // and have an extra operand.
3706   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3707     return nullptr;
3708 
3709   // Decode the second character of the format string.
3710   if (FormatStr[1] == 'c') {
3711     // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3712     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3713       return nullptr;
3714     Type *IntTy = B.getIntNTy(TLI->getIntSize());
3715     Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3716                                "chari");
3717     return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3718   }
3719 
3720   if (FormatStr[1] == 's') {
3721     // fprintf(F, "%s", str) --> fputs(str, F)
3722     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3723       return nullptr;
3724     return copyFlags(
3725         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3726   }
3727   return nullptr;
3728 }
3729 
3730 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3731   Module *M = CI->getModule();
3732   Function *Callee = CI->getCalledFunction();
3733   FunctionType *FT = Callee->getFunctionType();
3734   if (Value *V = optimizeFPrintFString(CI, B)) {
3735     return V;
3736   }
3737 
3738   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3739   // floating point arguments.
3740   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3741       !callHasFloatingPointArgument(CI)) {
3742     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3743                                                    FT, Callee->getAttributes());
3744     CallInst *New = cast<CallInst>(CI->clone());
3745     New->setCalledFunction(FIPrintFFn);
3746     B.Insert(New);
3747     return New;
3748   }
3749 
3750   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3751   // 128-bit floating point arguments.
3752   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3753       !callHasFP128Argument(CI)) {
3754     auto SmallFPrintFFn =
3755         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3756                            Callee->getAttributes());
3757     CallInst *New = cast<CallInst>(CI->clone());
3758     New->setCalledFunction(SmallFPrintFFn);
3759     B.Insert(New);
3760     return New;
3761   }
3762 
3763   return nullptr;
3764 }
3765 
3766 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3767   optimizeErrorReporting(CI, B, 3);
3768 
3769   // Get the element size and count.
3770   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3771   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3772   if (SizeC && CountC) {
3773     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3774 
3775     // If this is writing zero records, remove the call (it's a noop).
3776     if (Bytes == 0)
3777       return ConstantInt::get(CI->getType(), 0);
3778 
3779     // If this is writing one byte, turn it into fputc.
3780     // This optimisation is only valid, if the return value is unused.
3781     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3782       Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char");
3783       Type *IntTy = B.getIntNTy(TLI->getIntSize());
3784       Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3785       Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3786       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3787     }
3788   }
3789 
3790   return nullptr;
3791 }
3792 
3793 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3794   optimizeErrorReporting(CI, B, 1);
3795 
3796   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3797   // requires more arguments and thus extra MOVs are required.
3798   bool OptForSize = CI->getFunction()->hasOptSize() ||
3799                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3800                                                 PGSOQueryType::IRPass);
3801   if (OptForSize)
3802     return nullptr;
3803 
3804   // We can't optimize if return value is used.
3805   if (!CI->use_empty())
3806     return nullptr;
3807 
3808   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3809   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3810   if (!Len)
3811     return nullptr;
3812 
3813   // Known to have no uses (see above).
3814   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3815   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3816   return copyFlags(
3817       *CI,
3818       emitFWrite(CI->getArgOperand(0),
3819                  ConstantInt::get(SizeTTy, Len - 1),
3820                  CI->getArgOperand(1), B, DL, TLI));
3821 }
3822 
3823 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3824   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3825   if (!CI->use_empty())
3826     return nullptr;
3827 
3828   // Check for a constant string.
3829   // puts("") -> putchar('\n')
3830   StringRef Str;
3831   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3832     // putchar takes an argument of the same type as puts returns, i.e.,
3833     // int, which need not be 32 bits wide.
3834     Type *IntTy = CI->getType();
3835     return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3836   }
3837 
3838   return nullptr;
3839 }
3840 
3841 Value *LibCallSimplifier::optimizeExit(CallInst *CI) {
3842 
3843   // Mark 'exit' as cold if its not exit(0) (success).
3844   const APInt *C;
3845   if (!CI->hasFnAttr(Attribute::Cold) &&
3846       match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) {
3847     CI->addFnAttr(Attribute::Cold);
3848   }
3849   return nullptr;
3850 }
3851 
3852 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3853   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3854   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3855                                         CI->getArgOperand(0), Align(1),
3856                                         CI->getArgOperand(2)));
3857 }
3858 
3859 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3860   SmallString<20> FloatFuncName = FuncName;
3861   FloatFuncName += 'f';
3862   return isLibFuncEmittable(M, TLI, FloatFuncName);
3863 }
3864 
3865 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3866                                                       IRBuilderBase &Builder) {
3867   Module *M = CI->getModule();
3868   LibFunc Func;
3869   Function *Callee = CI->getCalledFunction();
3870 
3871   // Check for string/memory library functions.
3872   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3873     // Make sure we never change the calling convention.
3874     assert(
3875         (ignoreCallingConv(Func) ||
3876          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3877         "Optimizing string/memory libcall would change the calling convention");
3878     switch (Func) {
3879     case LibFunc_strcat:
3880       return optimizeStrCat(CI, Builder);
3881     case LibFunc_strncat:
3882       return optimizeStrNCat(CI, Builder);
3883     case LibFunc_strchr:
3884       return optimizeStrChr(CI, Builder);
3885     case LibFunc_strrchr:
3886       return optimizeStrRChr(CI, Builder);
3887     case LibFunc_strcmp:
3888       return optimizeStrCmp(CI, Builder);
3889     case LibFunc_strncmp:
3890       return optimizeStrNCmp(CI, Builder);
3891     case LibFunc_strcpy:
3892       return optimizeStrCpy(CI, Builder);
3893     case LibFunc_stpcpy:
3894       return optimizeStpCpy(CI, Builder);
3895     case LibFunc_strlcpy:
3896       return optimizeStrLCpy(CI, Builder);
3897     case LibFunc_stpncpy:
3898       return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3899     case LibFunc_strncpy:
3900       return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3901     case LibFunc_strlen:
3902       return optimizeStrLen(CI, Builder);
3903     case LibFunc_strnlen:
3904       return optimizeStrNLen(CI, Builder);
3905     case LibFunc_strpbrk:
3906       return optimizeStrPBrk(CI, Builder);
3907     case LibFunc_strndup:
3908       return optimizeStrNDup(CI, Builder);
3909     case LibFunc_strtol:
3910     case LibFunc_strtod:
3911     case LibFunc_strtof:
3912     case LibFunc_strtoul:
3913     case LibFunc_strtoll:
3914     case LibFunc_strtold:
3915     case LibFunc_strtoull:
3916       return optimizeStrTo(CI, Builder);
3917     case LibFunc_strspn:
3918       return optimizeStrSpn(CI, Builder);
3919     case LibFunc_strcspn:
3920       return optimizeStrCSpn(CI, Builder);
3921     case LibFunc_strstr:
3922       return optimizeStrStr(CI, Builder);
3923     case LibFunc_memchr:
3924       return optimizeMemChr(CI, Builder);
3925     case LibFunc_memrchr:
3926       return optimizeMemRChr(CI, Builder);
3927     case LibFunc_bcmp:
3928       return optimizeBCmp(CI, Builder);
3929     case LibFunc_memcmp:
3930       return optimizeMemCmp(CI, Builder);
3931     case LibFunc_memcpy:
3932       return optimizeMemCpy(CI, Builder);
3933     case LibFunc_memccpy:
3934       return optimizeMemCCpy(CI, Builder);
3935     case LibFunc_mempcpy:
3936       return optimizeMemPCpy(CI, Builder);
3937     case LibFunc_memmove:
3938       return optimizeMemMove(CI, Builder);
3939     case LibFunc_memset:
3940       return optimizeMemSet(CI, Builder);
3941     case LibFunc_realloc:
3942       return optimizeRealloc(CI, Builder);
3943     case LibFunc_wcslen:
3944       return optimizeWcslen(CI, Builder);
3945     case LibFunc_bcopy:
3946       return optimizeBCopy(CI, Builder);
3947     case LibFunc_Znwm:
3948     case LibFunc_ZnwmRKSt9nothrow_t:
3949     case LibFunc_ZnwmSt11align_val_t:
3950     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3951     case LibFunc_Znam:
3952     case LibFunc_ZnamRKSt9nothrow_t:
3953     case LibFunc_ZnamSt11align_val_t:
3954     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3955     case LibFunc_Znwm12__hot_cold_t:
3956     case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3957     case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3958     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3959     case LibFunc_Znam12__hot_cold_t:
3960     case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3961     case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3962     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3963     case LibFunc_size_returning_new:
3964     case LibFunc_size_returning_new_hot_cold:
3965     case LibFunc_size_returning_new_aligned:
3966     case LibFunc_size_returning_new_aligned_hot_cold:
3967       return optimizeNew(CI, Builder, Func);
3968     default:
3969       break;
3970     }
3971   }
3972   return nullptr;
3973 }
3974 
3975 /// Constant folding nan/nanf/nanl.
3976 static Value *optimizeNaN(CallInst *CI) {
3977   StringRef CharSeq;
3978   if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq))
3979     return nullptr;
3980 
3981   APInt Fill;
3982   // Treat empty strings as if they were zero.
3983   if (CharSeq.empty())
3984     Fill = APInt(32, 0);
3985   else if (CharSeq.getAsInteger(0, Fill))
3986     return nullptr;
3987 
3988   return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill);
3989 }
3990 
3991 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3992                                                        LibFunc Func,
3993                                                        IRBuilderBase &Builder) {
3994   const Module *M = CI->getModule();
3995 
3996   // Don't optimize calls that require strict floating point semantics.
3997   if (CI->isStrictFP())
3998     return nullptr;
3999 
4000   if (Value *V = optimizeSymmetric(CI, Func, Builder))
4001     return V;
4002 
4003   switch (Func) {
4004   case LibFunc_sinpif:
4005   case LibFunc_sinpi:
4006     return optimizeSinCosPi(CI, /*IsSin*/true, Builder);
4007   case LibFunc_cospif:
4008   case LibFunc_cospi:
4009     return optimizeSinCosPi(CI, /*IsSin*/false, Builder);
4010   case LibFunc_powf:
4011   case LibFunc_pow:
4012   case LibFunc_powl:
4013     return optimizePow(CI, Builder);
4014   case LibFunc_exp2l:
4015   case LibFunc_exp2:
4016   case LibFunc_exp2f:
4017     return optimizeExp2(CI, Builder);
4018   case LibFunc_fabsf:
4019   case LibFunc_fabs:
4020   case LibFunc_fabsl:
4021     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
4022   case LibFunc_sqrtf:
4023   case LibFunc_sqrt:
4024   case LibFunc_sqrtl:
4025     return optimizeSqrt(CI, Builder);
4026   case LibFunc_fmod:
4027   case LibFunc_fmodf:
4028   case LibFunc_fmodl:
4029     return optimizeFMod(CI, Builder);
4030   case LibFunc_logf:
4031   case LibFunc_log:
4032   case LibFunc_logl:
4033   case LibFunc_log10f:
4034   case LibFunc_log10:
4035   case LibFunc_log10l:
4036   case LibFunc_log1pf:
4037   case LibFunc_log1p:
4038   case LibFunc_log1pl:
4039   case LibFunc_log2f:
4040   case LibFunc_log2:
4041   case LibFunc_log2l:
4042   case LibFunc_logbf:
4043   case LibFunc_logb:
4044   case LibFunc_logbl:
4045     return optimizeLog(CI, Builder);
4046   case LibFunc_tan:
4047   case LibFunc_tanf:
4048   case LibFunc_tanl:
4049   case LibFunc_sinh:
4050   case LibFunc_sinhf:
4051   case LibFunc_sinhl:
4052   case LibFunc_asinh:
4053   case LibFunc_asinhf:
4054   case LibFunc_asinhl:
4055   case LibFunc_cosh:
4056   case LibFunc_coshf:
4057   case LibFunc_coshl:
4058   case LibFunc_atanh:
4059   case LibFunc_atanhf:
4060   case LibFunc_atanhl:
4061     return optimizeTrigInversionPairs(CI, Builder);
4062   case LibFunc_ceil:
4063     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
4064   case LibFunc_floor:
4065     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
4066   case LibFunc_round:
4067     return replaceUnaryCall(CI, Builder, Intrinsic::round);
4068   case LibFunc_roundeven:
4069     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
4070   case LibFunc_nearbyint:
4071     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
4072   case LibFunc_rint:
4073     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
4074   case LibFunc_trunc:
4075     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
4076   case LibFunc_acos:
4077   case LibFunc_acosh:
4078   case LibFunc_asin:
4079   case LibFunc_atan:
4080   case LibFunc_cbrt:
4081   case LibFunc_exp:
4082   case LibFunc_exp10:
4083   case LibFunc_expm1:
4084   case LibFunc_cos:
4085   case LibFunc_sin:
4086   case LibFunc_tanh:
4087     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
4088       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
4089     return nullptr;
4090   case LibFunc_copysign:
4091     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
4092       return optimizeBinaryDoubleFP(CI, Builder, TLI);
4093     return nullptr;
4094   case LibFunc_fdim:
4095   case LibFunc_fdimf:
4096   case LibFunc_fdiml:
4097     return optimizeFdim(CI, Builder);
4098   case LibFunc_fminf:
4099   case LibFunc_fmin:
4100   case LibFunc_fminl:
4101   case LibFunc_fmaxf:
4102   case LibFunc_fmax:
4103   case LibFunc_fmaxl:
4104     return optimizeFMinFMax(CI, Builder);
4105   case LibFunc_cabs:
4106   case LibFunc_cabsf:
4107   case LibFunc_cabsl:
4108     return optimizeCAbs(CI, Builder);
4109   case LibFunc_remquo:
4110   case LibFunc_remquof:
4111   case LibFunc_remquol:
4112     return optimizeRemquo(CI, Builder);
4113   case LibFunc_nan:
4114   case LibFunc_nanf:
4115   case LibFunc_nanl:
4116     return optimizeNaN(CI);
4117   default:
4118     return nullptr;
4119   }
4120 }
4121 
4122 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
4123   Module *M = CI->getModule();
4124   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
4125 
4126   // TODO: Split out the code below that operates on FP calls so that
4127   //       we can all non-FP calls with the StrictFP attribute to be
4128   //       optimized.
4129   if (CI->isNoBuiltin())
4130     return nullptr;
4131 
4132   LibFunc Func;
4133   Function *Callee = CI->getCalledFunction();
4134   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4135 
4136   SmallVector<OperandBundleDef, 2> OpBundles;
4137   CI->getOperandBundlesAsDefs(OpBundles);
4138 
4139   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4140   Builder.setDefaultOperandBundles(OpBundles);
4141 
4142   // Command-line parameter overrides instruction attribute.
4143   // This can't be moved to optimizeFloatingPointLibCall() because it may be
4144   // used by the intrinsic optimizations.
4145   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
4146     UnsafeFPShrink = EnableUnsafeFPShrink;
4147   else if (isa<FPMathOperator>(CI) && CI->isFast())
4148     UnsafeFPShrink = true;
4149 
4150   // First, check for intrinsics.
4151   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
4152     if (!IsCallingConvC)
4153       return nullptr;
4154     // The FP intrinsics have corresponding constrained versions so we don't
4155     // need to check for the StrictFP attribute here.
4156     switch (II->getIntrinsicID()) {
4157     case Intrinsic::pow:
4158       return optimizePow(CI, Builder);
4159     case Intrinsic::exp2:
4160       return optimizeExp2(CI, Builder);
4161     case Intrinsic::log:
4162     case Intrinsic::log2:
4163     case Intrinsic::log10:
4164       return optimizeLog(CI, Builder);
4165     case Intrinsic::sqrt:
4166       return optimizeSqrt(CI, Builder);
4167     case Intrinsic::memset:
4168       return optimizeMemSet(CI, Builder);
4169     case Intrinsic::memcpy:
4170       return optimizeMemCpy(CI, Builder);
4171     case Intrinsic::memmove:
4172       return optimizeMemMove(CI, Builder);
4173     default:
4174       return nullptr;
4175     }
4176   }
4177 
4178   // Also try to simplify calls to fortified library functions.
4179   if (Value *SimplifiedFortifiedCI =
4180           FortifiedSimplifier.optimizeCall(CI, Builder))
4181     return SimplifiedFortifiedCI;
4182 
4183   // Then check for known library functions.
4184   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
4185     // We never change the calling convention.
4186     if (!ignoreCallingConv(Func) && !IsCallingConvC)
4187       return nullptr;
4188     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
4189       return V;
4190     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4191       return V;
4192     switch (Func) {
4193     case LibFunc_ffs:
4194     case LibFunc_ffsl:
4195     case LibFunc_ffsll:
4196       return optimizeFFS(CI, Builder);
4197     case LibFunc_fls:
4198     case LibFunc_flsl:
4199     case LibFunc_flsll:
4200       return optimizeFls(CI, Builder);
4201     case LibFunc_abs:
4202     case LibFunc_labs:
4203     case LibFunc_llabs:
4204       return optimizeAbs(CI, Builder);
4205     case LibFunc_isdigit:
4206       return optimizeIsDigit(CI, Builder);
4207     case LibFunc_isascii:
4208       return optimizeIsAscii(CI, Builder);
4209     case LibFunc_toascii:
4210       return optimizeToAscii(CI, Builder);
4211     case LibFunc_atoi:
4212     case LibFunc_atol:
4213     case LibFunc_atoll:
4214       return optimizeAtoi(CI, Builder);
4215     case LibFunc_strtol:
4216     case LibFunc_strtoll:
4217       return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
4218     case LibFunc_strtoul:
4219     case LibFunc_strtoull:
4220       return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
4221     case LibFunc_printf:
4222       return optimizePrintF(CI, Builder);
4223     case LibFunc_sprintf:
4224       return optimizeSPrintF(CI, Builder);
4225     case LibFunc_snprintf:
4226       return optimizeSnPrintF(CI, Builder);
4227     case LibFunc_fprintf:
4228       return optimizeFPrintF(CI, Builder);
4229     case LibFunc_fwrite:
4230       return optimizeFWrite(CI, Builder);
4231     case LibFunc_fputs:
4232       return optimizeFPuts(CI, Builder);
4233     case LibFunc_puts:
4234       return optimizePuts(CI, Builder);
4235     case LibFunc_perror:
4236       return optimizeErrorReporting(CI, Builder);
4237     case LibFunc_vfprintf:
4238     case LibFunc_fiprintf:
4239       return optimizeErrorReporting(CI, Builder, 0);
4240     case LibFunc_exit:
4241     case LibFunc_Exit:
4242       return optimizeExit(CI);
4243     default:
4244       return nullptr;
4245     }
4246   }
4247   return nullptr;
4248 }
4249 
4250 LibCallSimplifier::LibCallSimplifier(
4251     const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT,
4252     DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE,
4253     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
4254     function_ref<void(Instruction *, Value *)> Replacer,
4255     function_ref<void(Instruction *)> Eraser)
4256     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC),
4257       ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4258 
4259 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
4260   // Indirect through the replacer used in this instance.
4261   Replacer(I, With);
4262 }
4263 
4264 void LibCallSimplifier::eraseFromParent(Instruction *I) {
4265   Eraser(I);
4266 }
4267 
4268 // TODO:
4269 //   Additional cases that we need to add to this file:
4270 //
4271 // cbrt:
4272 //   * cbrt(expN(X))  -> expN(x/3)
4273 //   * cbrt(sqrt(x))  -> pow(x,1/6)
4274 //   * cbrt(cbrt(x))  -> pow(x,1/9)
4275 //
4276 // exp, expf, expl:
4277 //   * exp(log(x))  -> x
4278 //
4279 // log, logf, logl:
4280 //   * log(exp(x))   -> x
4281 //   * log(exp(y))   -> y*log(e)
4282 //   * log(exp10(y)) -> y*log(10)
4283 //   * log(sqrt(x))  -> 0.5*log(x)
4284 //
4285 // pow, powf, powl:
4286 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
4287 //   * pow(pow(x,y),z)-> pow(x,y*z)
4288 //
4289 // signbit:
4290 //   * signbit(cnst) -> cnst'
4291 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
4292 //
4293 // sqrt, sqrtf, sqrtl:
4294 //   * sqrt(expN(x))  -> expN(x*0.5)
4295 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
4296 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
4297 //
4298 
4299 //===----------------------------------------------------------------------===//
4300 // Fortified Library Call Optimizations
4301 //===----------------------------------------------------------------------===//
4302 
4303 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4304     CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
4305     std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
4306   // If this function takes a flag argument, the implementation may use it to
4307   // perform extra checks. Don't fold into the non-checking variant.
4308   if (FlagOp) {
4309     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
4310     if (!Flag || !Flag->isZero())
4311       return false;
4312   }
4313 
4314   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
4315     return true;
4316 
4317   if (ConstantInt *ObjSizeCI =
4318           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
4319     if (ObjSizeCI->isMinusOne())
4320       return true;
4321     // If the object size wasn't -1 (unknown), bail out if we were asked to.
4322     if (OnlyLowerUnknownSize)
4323       return false;
4324     if (StrOp) {
4325       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
4326       // If the length is 0 we don't know how long it is and so we can't
4327       // remove the check.
4328       if (Len)
4329         annotateDereferenceableBytes(CI, *StrOp, Len);
4330       else
4331         return false;
4332       return ObjSizeCI->getZExtValue() >= Len;
4333     }
4334 
4335     if (SizeOp) {
4336       if (ConstantInt *SizeCI =
4337               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
4338         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4339     }
4340   }
4341   return false;
4342 }
4343 
4344 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4345                                                      IRBuilderBase &B) {
4346   if (isFortifiedCallFoldable(CI, 3, 2)) {
4347     CallInst *NewCI =
4348         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4349                        Align(1), CI->getArgOperand(2));
4350     mergeAttributesAndFlags(NewCI, *CI);
4351     return CI->getArgOperand(0);
4352   }
4353   return nullptr;
4354 }
4355 
4356 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4357                                                       IRBuilderBase &B) {
4358   if (isFortifiedCallFoldable(CI, 3, 2)) {
4359     CallInst *NewCI =
4360         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4361                         Align(1), CI->getArgOperand(2));
4362     mergeAttributesAndFlags(NewCI, *CI);
4363     return CI->getArgOperand(0);
4364   }
4365   return nullptr;
4366 }
4367 
4368 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4369                                                      IRBuilderBase &B) {
4370   if (isFortifiedCallFoldable(CI, 3, 2)) {
4371     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
4372     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
4373                                      CI->getArgOperand(2), Align(1));
4374     mergeAttributesAndFlags(NewCI, *CI);
4375     return CI->getArgOperand(0);
4376   }
4377   return nullptr;
4378 }
4379 
4380 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4381                                                       IRBuilderBase &B) {
4382   const DataLayout &DL = CI->getDataLayout();
4383   if (isFortifiedCallFoldable(CI, 3, 2))
4384     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4385                                   CI->getArgOperand(2), B, DL, TLI)) {
4386       return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
4387     }
4388   return nullptr;
4389 }
4390 
4391 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4392                                                       IRBuilderBase &B,
4393                                                       LibFunc Func) {
4394   const DataLayout &DL = CI->getDataLayout();
4395   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
4396         *ObjSize = CI->getArgOperand(2);
4397 
4398   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
4399   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4400     Value *StrLen = emitStrLen(Src, B, DL, TLI);
4401     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
4402   }
4403 
4404   // If a) we don't have any length information, or b) we know this will
4405   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4406   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4407   // TODO: It might be nice to get a maximum length out of the possible
4408   // string lengths for varying.
4409   if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4410     if (Func == LibFunc_strcpy_chk)
4411       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
4412     else
4413       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
4414   }
4415 
4416   if (OnlyLowerUnknownSize)
4417     return nullptr;
4418 
4419   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4420   uint64_t Len = GetStringLength(Src);
4421   if (Len)
4422     annotateDereferenceableBytes(CI, 1, Len);
4423   else
4424     return nullptr;
4425 
4426   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
4427   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
4428   Value *LenV = ConstantInt::get(SizeTTy, Len);
4429   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
4430   // If the function was an __stpcpy_chk, and we were able to fold it into
4431   // a __memcpy_chk, we still need to return the correct end pointer.
4432   if (Ret && Func == LibFunc_stpcpy_chk)
4433     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
4434                                ConstantInt::get(SizeTTy, Len - 1));
4435   return copyFlags(*CI, cast<CallInst>(Ret));
4436 }
4437 
4438 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4439                                                      IRBuilderBase &B) {
4440   if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4441     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
4442                                      CI->getDataLayout(), TLI));
4443   return nullptr;
4444 }
4445 
4446 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4447                                                        IRBuilderBase &B,
4448                                                        LibFunc Func) {
4449   if (isFortifiedCallFoldable(CI, 3, 2)) {
4450     if (Func == LibFunc_strncpy_chk)
4451       return copyFlags(*CI,
4452                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4453                                    CI->getArgOperand(2), B, TLI));
4454     else
4455       return copyFlags(*CI,
4456                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4457                                    CI->getArgOperand(2), B, TLI));
4458   }
4459 
4460   return nullptr;
4461 }
4462 
4463 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4464                                                       IRBuilderBase &B) {
4465   if (isFortifiedCallFoldable(CI, 4, 3))
4466     return copyFlags(
4467         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4468                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
4469 
4470   return nullptr;
4471 }
4472 
4473 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4474                                                        IRBuilderBase &B) {
4475   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4476     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
4477     return copyFlags(*CI,
4478                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4479                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
4480   }
4481 
4482   return nullptr;
4483 }
4484 
4485 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4486                                                       IRBuilderBase &B) {
4487   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4488     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
4489     return copyFlags(*CI,
4490                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4491                                  VariadicArgs, B, TLI));
4492   }
4493 
4494   return nullptr;
4495 }
4496 
4497 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4498                                                      IRBuilderBase &B) {
4499   if (isFortifiedCallFoldable(CI, 2))
4500     return copyFlags(
4501         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
4502 
4503   return nullptr;
4504 }
4505 
4506 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4507                                                    IRBuilderBase &B) {
4508   if (isFortifiedCallFoldable(CI, 3))
4509     return copyFlags(*CI,
4510                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
4511                                  CI->getArgOperand(2), B, TLI));
4512 
4513   return nullptr;
4514 }
4515 
4516 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4517                                                       IRBuilderBase &B) {
4518   if (isFortifiedCallFoldable(CI, 3))
4519     return copyFlags(*CI,
4520                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
4521                                  CI->getArgOperand(2), B, TLI));
4522 
4523   return nullptr;
4524 }
4525 
4526 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4527                                                       IRBuilderBase &B) {
4528   if (isFortifiedCallFoldable(CI, 3))
4529     return copyFlags(*CI,
4530                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4531                                  CI->getArgOperand(2), B, TLI));
4532 
4533   return nullptr;
4534 }
4535 
4536 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4537                                                         IRBuilderBase &B) {
4538   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4539     return copyFlags(
4540         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4541                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
4542 
4543   return nullptr;
4544 }
4545 
4546 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4547                                                        IRBuilderBase &B) {
4548   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4549     return copyFlags(*CI,
4550                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4551                                   CI->getArgOperand(4), B, TLI));
4552 
4553   return nullptr;
4554 }
4555 
4556 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4557                                                 IRBuilderBase &Builder) {
4558   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4559   // Some clang users checked for _chk libcall availability using:
4560   //   __has_builtin(__builtin___memcpy_chk)
4561   // When compiling with -fno-builtin, this is always true.
4562   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4563   // end up with fortified libcalls, which isn't acceptable in a freestanding
4564   // environment which only provides their non-fortified counterparts.
4565   //
4566   // Until we change clang and/or teach external users to check for availability
4567   // differently, disregard the "nobuiltin" attribute and TLI::has.
4568   //
4569   // PR23093.
4570 
4571   LibFunc Func;
4572   Function *Callee = CI->getCalledFunction();
4573   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4574 
4575   SmallVector<OperandBundleDef, 2> OpBundles;
4576   CI->getOperandBundlesAsDefs(OpBundles);
4577 
4578   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4579   Builder.setDefaultOperandBundles(OpBundles);
4580 
4581   // First, check that this is a known library functions and that the prototype
4582   // is correct.
4583   if (!TLI->getLibFunc(*Callee, Func))
4584     return nullptr;
4585 
4586   // We never change the calling convention.
4587   if (!ignoreCallingConv(Func) && !IsCallingConvC)
4588     return nullptr;
4589 
4590   switch (Func) {
4591   case LibFunc_memcpy_chk:
4592     return optimizeMemCpyChk(CI, Builder);
4593   case LibFunc_mempcpy_chk:
4594     return optimizeMemPCpyChk(CI, Builder);
4595   case LibFunc_memmove_chk:
4596     return optimizeMemMoveChk(CI, Builder);
4597   case LibFunc_memset_chk:
4598     return optimizeMemSetChk(CI, Builder);
4599   case LibFunc_stpcpy_chk:
4600   case LibFunc_strcpy_chk:
4601     return optimizeStrpCpyChk(CI, Builder, Func);
4602   case LibFunc_strlen_chk:
4603     return optimizeStrLenChk(CI, Builder);
4604   case LibFunc_stpncpy_chk:
4605   case LibFunc_strncpy_chk:
4606     return optimizeStrpNCpyChk(CI, Builder, Func);
4607   case LibFunc_memccpy_chk:
4608     return optimizeMemCCpyChk(CI, Builder);
4609   case LibFunc_snprintf_chk:
4610     return optimizeSNPrintfChk(CI, Builder);
4611   case LibFunc_sprintf_chk:
4612     return optimizeSPrintfChk(CI, Builder);
4613   case LibFunc_strcat_chk:
4614     return optimizeStrCatChk(CI, Builder);
4615   case LibFunc_strlcat_chk:
4616     return optimizeStrLCat(CI, Builder);
4617   case LibFunc_strncat_chk:
4618     return optimizeStrNCatChk(CI, Builder);
4619   case LibFunc_strlcpy_chk:
4620     return optimizeStrLCpyChk(CI, Builder);
4621   case LibFunc_vsnprintf_chk:
4622     return optimizeVSNPrintfChk(CI, Builder);
4623   case LibFunc_vsprintf_chk:
4624     return optimizeVSPrintfChk(CI, Builder);
4625   default:
4626     break;
4627   }
4628   return nullptr;
4629 }
4630 
4631 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4632     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4633     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4634