xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision 95daf1aedfe521704c601a26ad8011c6e237c38a)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/AttributeMask.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 
40 #include <cmath>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 // Enable conversion of operator new calls with a MemProf hot or cold hint
52 // to an operator new call that takes a hot/cold hint. Off by default since
53 // not all allocators currently support this extension.
54 static cl::opt<bool>
55     OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false),
56                        cl::desc("Enable hot/cold operator new library calls"));
57 static cl::opt<bool> OptimizeExistingHotColdNew(
58     "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false),
59     cl::desc(
60         "Enable optimization of existing hot/cold operator new library calls"));
61 
62 namespace {
63 
64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
66 // option with a specific set of values.
67 struct HotColdHintParser : public cl::parser<unsigned> {
68   HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
69 
70   bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
71     if (Arg.getAsInteger(0, Value))
72       return O.error("'" + Arg + "' value invalid for uint argument!");
73 
74     if (Value > 255)
75       return O.error("'" + Arg + "' value must be in the range [0, 255]!");
76 
77     return false;
78   }
79 };
80 
81 } // end anonymous namespace
82 
83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
85 // hints, so that the compiler hinted allocations are slightly less strong than
86 // manually inserted hints at the two extremes.
87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
88     "cold-new-hint-value", cl::Hidden, cl::init(1),
89     cl::desc("Value to pass to hot/cold operator new for cold allocation"));
90 static cl::opt<unsigned, false, HotColdHintParser>
91     NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128),
92                         cl::desc("Value to pass to hot/cold operator new for "
93                                  "notcold (warm) allocation"));
94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
95     "hot-new-hint-value", cl::Hidden, cl::init(254),
96     cl::desc("Value to pass to hot/cold operator new for hot allocation"));
97 
98 //===----------------------------------------------------------------------===//
99 // Helper Functions
100 //===----------------------------------------------------------------------===//
101 
102 static bool ignoreCallingConv(LibFunc Func) {
103   return Func == LibFunc_abs || Func == LibFunc_labs ||
104          Func == LibFunc_llabs || Func == LibFunc_strlen;
105 }
106 
107 /// Return true if it is only used in equality comparisons with With.
108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
109   for (User *U : V->users()) {
110     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
111       if (IC->isEquality() && IC->getOperand(1) == With)
112         continue;
113     // Unknown instruction.
114     return false;
115   }
116   return true;
117 }
118 
119 static bool callHasFloatingPointArgument(const CallInst *CI) {
120   return any_of(CI->operands(), [](const Use &OI) {
121     return OI->getType()->isFloatingPointTy();
122   });
123 }
124 
125 static bool callHasFP128Argument(const CallInst *CI) {
126   return any_of(CI->operands(), [](const Use &OI) {
127     return OI->getType()->isFP128Ty();
128   });
129 }
130 
131 // Convert the entire string Str representing an integer in Base, up to
132 // the terminating nul if present, to a constant according to the rules
133 // of strtoul[l] or, when AsSigned is set, of strtol[l].  On success
134 // return the result, otherwise null.
135 // The function assumes the string is encoded in ASCII and carefully
136 // avoids converting sequences (including "") that the corresponding
137 // library call might fail and set errno for.
138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
139                               uint64_t Base, bool AsSigned, IRBuilderBase &B) {
140   if (Base < 2 || Base > 36)
141     if (Base != 0)
142       // Fail for an invalid base (required by POSIX).
143       return nullptr;
144 
145   // Current offset into the original string to reflect in EndPtr.
146   size_t Offset = 0;
147   // Strip leading whitespace.
148   for ( ; Offset != Str.size(); ++Offset)
149     if (!isSpace((unsigned char)Str[Offset])) {
150       Str = Str.substr(Offset);
151       break;
152     }
153 
154   if (Str.empty())
155     // Fail for empty subject sequences (POSIX allows but doesn't require
156     // strtol[l]/strtoul[l] to fail with EINVAL).
157     return nullptr;
158 
159   // Strip but remember the sign.
160   bool Negate = Str[0] == '-';
161   if (Str[0] == '-' || Str[0] == '+') {
162     Str = Str.drop_front();
163     if (Str.empty())
164       // Fail for a sign with nothing after it.
165       return nullptr;
166     ++Offset;
167   }
168 
169   // Set Max to the absolute value of the minimum (for signed), or
170   // to the maximum (for unsigned) value representable in the type.
171   Type *RetTy = CI->getType();
172   unsigned NBits = RetTy->getPrimitiveSizeInBits();
173   uint64_t Max = AsSigned && Negate ? 1 : 0;
174   Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
175 
176   // Autodetect Base if it's zero and consume the "0x" prefix.
177   if (Str.size() > 1) {
178     if (Str[0] == '0') {
179       if (toUpper((unsigned char)Str[1]) == 'X') {
180         if (Str.size() == 2 || (Base && Base != 16))
181           // Fail if Base doesn't allow the "0x" prefix or for the prefix
182           // alone that implementations like BSD set errno to EINVAL for.
183           return nullptr;
184 
185         Str = Str.drop_front(2);
186         Offset += 2;
187         Base = 16;
188       }
189       else if (Base == 0)
190         Base = 8;
191     } else if (Base == 0)
192       Base = 10;
193   }
194   else if (Base == 0)
195     Base = 10;
196 
197   // Convert the rest of the subject sequence, not including the sign,
198   // to its uint64_t representation (this assumes the source character
199   // set is ASCII).
200   uint64_t Result = 0;
201   for (unsigned i = 0; i != Str.size(); ++i) {
202     unsigned char DigVal = Str[i];
203     if (isDigit(DigVal))
204       DigVal = DigVal - '0';
205     else {
206       DigVal = toUpper(DigVal);
207       if (isAlpha(DigVal))
208         DigVal = DigVal - 'A' + 10;
209       else
210         return nullptr;
211     }
212 
213     if (DigVal >= Base)
214       // Fail if the digit is not valid in the Base.
215       return nullptr;
216 
217     // Add the digit and fail if the result is not representable in
218     // the (unsigned form of the) destination type.
219     bool VFlow;
220     Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
221     if (VFlow || Result > Max)
222       return nullptr;
223   }
224 
225   if (EndPtr) {
226     // Store the pointer to the end.
227     Value *Off = B.getInt64(Offset + Str.size());
228     Value *StrBeg = CI->getArgOperand(0);
229     Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
230     B.CreateStore(StrEnd, EndPtr);
231   }
232 
233   if (Negate)
234     // Unsigned negation doesn't overflow.
235     Result = -Result;
236 
237   return ConstantInt::get(RetTy, Result);
238 }
239 
240 static bool isOnlyUsedInComparisonWithZero(Value *V) {
241   for (User *U : V->users()) {
242     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
243       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
244         if (C->isNullValue())
245           continue;
246     // Unknown instruction.
247     return false;
248   }
249   return true;
250 }
251 
252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
253                                  const DataLayout &DL) {
254   if (!isOnlyUsedInComparisonWithZero(CI))
255     return false;
256 
257   if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
258     return false;
259 
260   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
261     return false;
262 
263   return true;
264 }
265 
266 static void annotateDereferenceableBytes(CallInst *CI,
267                                          ArrayRef<unsigned> ArgNos,
268                                          uint64_t DereferenceableBytes) {
269   const Function *F = CI->getCaller();
270   if (!F)
271     return;
272   for (unsigned ArgNo : ArgNos) {
273     uint64_t DerefBytes = DereferenceableBytes;
274     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
275     if (!llvm::NullPointerIsDefined(F, AS) ||
276         CI->paramHasAttr(ArgNo, Attribute::NonNull))
277       DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
278                             DereferenceableBytes);
279 
280     if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
281       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
282       if (!llvm::NullPointerIsDefined(F, AS) ||
283           CI->paramHasAttr(ArgNo, Attribute::NonNull))
284         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
285       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
286                                   CI->getContext(), DerefBytes));
287     }
288   }
289 }
290 
291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
292                                          ArrayRef<unsigned> ArgNos) {
293   Function *F = CI->getCaller();
294   if (!F)
295     return;
296 
297   for (unsigned ArgNo : ArgNos) {
298     if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
299       CI->addParamAttr(ArgNo, Attribute::NoUndef);
300 
301     if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
302       unsigned AS =
303           CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
304       if (llvm::NullPointerIsDefined(F, AS))
305         continue;
306       CI->addParamAttr(ArgNo, Attribute::NonNull);
307     }
308 
309     annotateDereferenceableBytes(CI, ArgNo, 1);
310   }
311 }
312 
313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
314                                Value *Size, const DataLayout &DL) {
315   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
316     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
317     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
318   } else if (isKnownNonZero(Size, DL)) {
319     annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
320     const APInt *X, *Y;
321     uint64_t DerefMin = 1;
322     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
323       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
324       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
325     }
326   }
327 }
328 
329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
331 // in this function when New is created to replace Old. Callers should take
332 // care to check Old.isMustTailCall() if they aren't replacing Old directly
333 // with New.
334 static Value *copyFlags(const CallInst &Old, Value *New) {
335   assert(!Old.isMustTailCall() && "do not copy musttail call flags");
336   assert(!Old.isNoTailCall() && "do not copy notail call flags");
337   if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
338     NewCI->setTailCallKind(Old.getTailCallKind());
339   return New;
340 }
341 
342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
343   NewCI->setAttributes(AttributeList::get(
344       NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
345   NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
346   return copyFlags(Old, NewCI);
347 }
348 
349 // Helper to avoid truncating the length if size_t is 32-bits.
350 static StringRef substr(StringRef Str, uint64_t Len) {
351   return Len >= Str.size() ? Str : Str.substr(0, Len);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // String and Memory Library Call Optimizations
356 //===----------------------------------------------------------------------===//
357 
358 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
359   // Extract some information from the instruction
360   Value *Dst = CI->getArgOperand(0);
361   Value *Src = CI->getArgOperand(1);
362   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
363 
364   // See if we can get the length of the input string.
365   uint64_t Len = GetStringLength(Src);
366   if (Len)
367     annotateDereferenceableBytes(CI, 1, Len);
368   else
369     return nullptr;
370   --Len; // Unbias length.
371 
372   // Handle the simple, do-nothing case: strcat(x, "") -> x
373   if (Len == 0)
374     return Dst;
375 
376   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
377 }
378 
379 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
380                                            IRBuilderBase &B) {
381   // We need to find the end of the destination string.  That's where the
382   // memory is to be moved to. We just generate a call to strlen.
383   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
384   if (!DstLen)
385     return nullptr;
386 
387   // Now that we have the destination's length, we must index into the
388   // destination's pointer to get the actual memcpy destination (end of
389   // the string .. we're concatenating).
390   Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
391 
392   // We have enough information to now generate the memcpy call to do the
393   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
394   B.CreateMemCpy(
395       CpyDst, Align(1), Src, Align(1),
396       ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
397   return Dst;
398 }
399 
400 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
401   // Extract some information from the instruction.
402   Value *Dst = CI->getArgOperand(0);
403   Value *Src = CI->getArgOperand(1);
404   Value *Size = CI->getArgOperand(2);
405   uint64_t Len;
406   annotateNonNullNoUndefBasedOnAccess(CI, 0);
407   if (isKnownNonZero(Size, DL))
408     annotateNonNullNoUndefBasedOnAccess(CI, 1);
409 
410   // We don't do anything if length is not constant.
411   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
412   if (LengthArg) {
413     Len = LengthArg->getZExtValue();
414     // strncat(x, c, 0) -> x
415     if (!Len)
416       return Dst;
417   } else {
418     return nullptr;
419   }
420 
421   // See if we can get the length of the input string.
422   uint64_t SrcLen = GetStringLength(Src);
423   if (SrcLen) {
424     annotateDereferenceableBytes(CI, 1, SrcLen);
425     --SrcLen; // Unbias length.
426   } else {
427     return nullptr;
428   }
429 
430   // strncat(x, "", c) -> x
431   if (SrcLen == 0)
432     return Dst;
433 
434   // We don't optimize this case.
435   if (Len < SrcLen)
436     return nullptr;
437 
438   // strncat(x, s, c) -> strcat(x, s)
439   // s is constant so the strcat can be optimized further.
440   return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
441 }
442 
443 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
444 // NBytes is null, strchr(S, C) to *S == C.  A precondition of the function
445 // is that either S is dereferenceable or the value of N is nonzero.
446 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
447                                   IRBuilderBase &B, const DataLayout &DL)
448 {
449   Value *Src = CI->getArgOperand(0);
450   Value *CharVal = CI->getArgOperand(1);
451 
452   // Fold memchr(A, C, N) == A to N && *A == C.
453   Type *CharTy = B.getInt8Ty();
454   Value *Char0 = B.CreateLoad(CharTy, Src);
455   CharVal = B.CreateTrunc(CharVal, CharTy);
456   Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
457 
458   if (NBytes) {
459     Value *Zero = ConstantInt::get(NBytes->getType(), 0);
460     Value *And = B.CreateICmpNE(NBytes, Zero);
461     Cmp = B.CreateLogicalAnd(And, Cmp);
462   }
463 
464   Value *NullPtr = Constant::getNullValue(CI->getType());
465   return B.CreateSelect(Cmp, Src, NullPtr);
466 }
467 
468 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
469   Value *SrcStr = CI->getArgOperand(0);
470   Value *CharVal = CI->getArgOperand(1);
471   annotateNonNullNoUndefBasedOnAccess(CI, 0);
472 
473   if (isOnlyUsedInEqualityComparison(CI, SrcStr))
474     return memChrToCharCompare(CI, nullptr, B, DL);
475 
476   // If the second operand is non-constant, see if we can compute the length
477   // of the input string and turn this into memchr.
478   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
479   if (!CharC) {
480     uint64_t Len = GetStringLength(SrcStr);
481     if (Len)
482       annotateDereferenceableBytes(CI, 0, Len);
483     else
484       return nullptr;
485 
486     Function *Callee = CI->getCalledFunction();
487     FunctionType *FT = Callee->getFunctionType();
488     unsigned IntBits = TLI->getIntSize();
489     if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
490       return nullptr;
491 
492     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
493     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
494     return copyFlags(*CI,
495                      emitMemChr(SrcStr, CharVal, // include nul.
496                                 ConstantInt::get(SizeTTy, Len), B,
497                                 DL, TLI));
498   }
499 
500   if (CharC->isZero()) {
501     Value *NullPtr = Constant::getNullValue(CI->getType());
502     if (isOnlyUsedInEqualityComparison(CI, NullPtr))
503       // Pre-empt the transformation to strlen below and fold
504       // strchr(A, '\0') == null to false.
505       return B.CreateIntToPtr(B.getTrue(), CI->getType());
506   }
507 
508   // Otherwise, the character is a constant, see if the first argument is
509   // a string literal.  If so, we can constant fold.
510   StringRef Str;
511   if (!getConstantStringInfo(SrcStr, Str)) {
512     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
513       if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
514         return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
515     return nullptr;
516   }
517 
518   // Compute the offset, make sure to handle the case when we're searching for
519   // zero (a weird way to spell strlen).
520   size_t I = (0xFF & CharC->getSExtValue()) == 0
521                  ? Str.size()
522                  : Str.find(CharC->getSExtValue());
523   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
524     return Constant::getNullValue(CI->getType());
525 
526   // strchr(s+n,c)  -> gep(s+n+i,c)
527   return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
528 }
529 
530 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
531   Value *SrcStr = CI->getArgOperand(0);
532   Value *CharVal = CI->getArgOperand(1);
533   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
534   annotateNonNullNoUndefBasedOnAccess(CI, 0);
535 
536   StringRef Str;
537   if (!getConstantStringInfo(SrcStr, Str)) {
538     // strrchr(s, 0) -> strchr(s, 0)
539     if (CharC && CharC->isZero())
540       return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
541     return nullptr;
542   }
543 
544   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
545   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
546 
547   // Try to expand strrchr to the memrchr nonstandard extension if it's
548   // available, or simply fail otherwise.
549   uint64_t NBytes = Str.size() + 1;   // Include the terminating nul.
550   Value *Size = ConstantInt::get(SizeTTy, NBytes);
551   return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
552 }
553 
554 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
555   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
556   if (Str1P == Str2P) // strcmp(x,x)  -> 0
557     return ConstantInt::get(CI->getType(), 0);
558 
559   StringRef Str1, Str2;
560   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
561   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
562 
563   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
564   if (HasStr1 && HasStr2)
565     return ConstantInt::get(CI->getType(),
566                             std::clamp(Str1.compare(Str2), -1, 1));
567 
568   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
569     return B.CreateNeg(B.CreateZExt(
570         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
571 
572   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
573     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
574                         CI->getType());
575 
576   // strcmp(P, "x") -> memcmp(P, "x", 2)
577   uint64_t Len1 = GetStringLength(Str1P);
578   if (Len1)
579     annotateDereferenceableBytes(CI, 0, Len1);
580   uint64_t Len2 = GetStringLength(Str2P);
581   if (Len2)
582     annotateDereferenceableBytes(CI, 1, Len2);
583 
584   if (Len1 && Len2) {
585     return copyFlags(
586         *CI, emitMemCmp(Str1P, Str2P,
587                         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
588                                          std::min(Len1, Len2)),
589                         B, DL, TLI));
590   }
591 
592   // strcmp to memcmp
593   if (!HasStr1 && HasStr2) {
594     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
595       return copyFlags(
596           *CI,
597           emitMemCmp(Str1P, Str2P,
598                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
599                      B, DL, TLI));
600   } else if (HasStr1 && !HasStr2) {
601     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
602       return copyFlags(
603           *CI,
604           emitMemCmp(Str1P, Str2P,
605                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
606                      B, DL, TLI));
607   }
608 
609   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
610   return nullptr;
611 }
612 
613 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
614 // arrays LHS and RHS and nonconstant Size.
615 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
616                                     Value *Size, bool StrNCmp,
617                                     IRBuilderBase &B, const DataLayout &DL);
618 
619 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
620   Value *Str1P = CI->getArgOperand(0);
621   Value *Str2P = CI->getArgOperand(1);
622   Value *Size = CI->getArgOperand(2);
623   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
624     return ConstantInt::get(CI->getType(), 0);
625 
626   if (isKnownNonZero(Size, DL))
627     annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
628   // Get the length argument if it is constant.
629   uint64_t Length;
630   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
631     Length = LengthArg->getZExtValue();
632   else
633     return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
634 
635   if (Length == 0) // strncmp(x,y,0)   -> 0
636     return ConstantInt::get(CI->getType(), 0);
637 
638   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
639     return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
640 
641   StringRef Str1, Str2;
642   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
643   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
644 
645   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
646   if (HasStr1 && HasStr2) {
647     // Avoid truncating the 64-bit Length to 32 bits in ILP32.
648     StringRef SubStr1 = substr(Str1, Length);
649     StringRef SubStr2 = substr(Str2, Length);
650     return ConstantInt::get(CI->getType(),
651                             std::clamp(SubStr1.compare(SubStr2), -1, 1));
652   }
653 
654   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
655     return B.CreateNeg(B.CreateZExt(
656         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
657 
658   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
659     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
660                         CI->getType());
661 
662   uint64_t Len1 = GetStringLength(Str1P);
663   if (Len1)
664     annotateDereferenceableBytes(CI, 0, Len1);
665   uint64_t Len2 = GetStringLength(Str2P);
666   if (Len2)
667     annotateDereferenceableBytes(CI, 1, Len2);
668 
669   // strncmp to memcmp
670   if (!HasStr1 && HasStr2) {
671     Len2 = std::min(Len2, Length);
672     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
673       return copyFlags(
674           *CI,
675           emitMemCmp(Str1P, Str2P,
676                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
677                      B, DL, TLI));
678   } else if (HasStr1 && !HasStr2) {
679     Len1 = std::min(Len1, Length);
680     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
681       return copyFlags(
682           *CI,
683           emitMemCmp(Str1P, Str2P,
684                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
685                      B, DL, TLI));
686   }
687 
688   return nullptr;
689 }
690 
691 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
692   Value *Src = CI->getArgOperand(0);
693   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
694   uint64_t SrcLen = GetStringLength(Src);
695   if (SrcLen && Size) {
696     annotateDereferenceableBytes(CI, 0, SrcLen);
697     if (SrcLen <= Size->getZExtValue() + 1)
698       return copyFlags(*CI, emitStrDup(Src, B, TLI));
699   }
700 
701   return nullptr;
702 }
703 
704 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
705   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
706   if (Dst == Src) // strcpy(x,x)  -> x
707     return Src;
708 
709   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
710   // See if we can get the length of the input string.
711   uint64_t Len = GetStringLength(Src);
712   if (Len)
713     annotateDereferenceableBytes(CI, 1, Len);
714   else
715     return nullptr;
716 
717   // We have enough information to now generate the memcpy call to do the
718   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
719   CallInst *NewCI =
720       B.CreateMemCpy(Dst, Align(1), Src, Align(1),
721                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
722   mergeAttributesAndFlags(NewCI, *CI);
723   return Dst;
724 }
725 
726 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
727   Function *Callee = CI->getCalledFunction();
728   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
729 
730   // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
731   if (CI->use_empty())
732     return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
733 
734   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
735     Value *StrLen = emitStrLen(Src, B, DL, TLI);
736     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
737   }
738 
739   // See if we can get the length of the input string.
740   uint64_t Len = GetStringLength(Src);
741   if (Len)
742     annotateDereferenceableBytes(CI, 1, Len);
743   else
744     return nullptr;
745 
746   Type *PT = Callee->getFunctionType()->getParamType(0);
747   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
748   Value *DstEnd = B.CreateInBoundsGEP(
749       B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
750 
751   // We have enough information to now generate the memcpy call to do the
752   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
753   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
754   mergeAttributesAndFlags(NewCI, *CI);
755   return DstEnd;
756 }
757 
758 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
759 
760 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
761   Value *Size = CI->getArgOperand(2);
762   if (isKnownNonZero(Size, DL))
763     // Like snprintf, the function stores into the destination only when
764     // the size argument is nonzero.
765     annotateNonNullNoUndefBasedOnAccess(CI, 0);
766   // The function reads the source argument regardless of Size (it returns
767   // its length).
768   annotateNonNullNoUndefBasedOnAccess(CI, 1);
769 
770   uint64_t NBytes;
771   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
772     NBytes = SizeC->getZExtValue();
773   else
774     return nullptr;
775 
776   Value *Dst = CI->getArgOperand(0);
777   Value *Src = CI->getArgOperand(1);
778   if (NBytes <= 1) {
779     if (NBytes == 1)
780       // For a call to strlcpy(D, S, 1) first store a nul in *D.
781       B.CreateStore(B.getInt8(0), Dst);
782 
783     // Transform strlcpy(D, S, 0) to a call to strlen(S).
784     return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
785   }
786 
787   // Try to determine the length of the source, substituting its size
788   // when it's not nul-terminated (as it's required to be) to avoid
789   // reading past its end.
790   StringRef Str;
791   if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
792     return nullptr;
793 
794   uint64_t SrcLen = Str.find('\0');
795   // Set if the terminating nul should be copied by the call to memcpy
796   // below.
797   bool NulTerm = SrcLen < NBytes;
798 
799   if (NulTerm)
800     // Overwrite NBytes with the number of bytes to copy, including
801     // the terminating nul.
802     NBytes = SrcLen + 1;
803   else {
804     // Set the length of the source for the function to return to its
805     // size, and cap NBytes at the same.
806     SrcLen = std::min(SrcLen, uint64_t(Str.size()));
807     NBytes = std::min(NBytes - 1, SrcLen);
808   }
809 
810   if (SrcLen == 0) {
811     // Transform strlcpy(D, "", N) to (*D = '\0, 0).
812     B.CreateStore(B.getInt8(0), Dst);
813     return ConstantInt::get(CI->getType(), 0);
814   }
815 
816   Function *Callee = CI->getCalledFunction();
817   Type *PT = Callee->getFunctionType()->getParamType(0);
818   // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
819   // bound on strlen(S) + 1 and N, optionally followed by a nul store to
820   // D[N' - 1] if necessary.
821   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
822                         ConstantInt::get(DL.getIntPtrType(PT), NBytes));
823   mergeAttributesAndFlags(NewCI, *CI);
824 
825   if (!NulTerm) {
826     Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
827     Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
828     B.CreateStore(B.getInt8(0), EndPtr);
829   }
830 
831   // Like snprintf, strlcpy returns the number of nonzero bytes that would
832   // have been copied if the bound had been sufficiently big (which in this
833   // case is strlen(Src)).
834   return ConstantInt::get(CI->getType(), SrcLen);
835 }
836 
837 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
838 // otherwise.
839 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
840                                              IRBuilderBase &B) {
841   Function *Callee = CI->getCalledFunction();
842   Value *Dst = CI->getArgOperand(0);
843   Value *Src = CI->getArgOperand(1);
844   Value *Size = CI->getArgOperand(2);
845 
846   if (isKnownNonZero(Size, DL)) {
847     // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
848     // only when N is nonzero.
849     annotateNonNullNoUndefBasedOnAccess(CI, 0);
850     annotateNonNullNoUndefBasedOnAccess(CI, 1);
851   }
852 
853   // If the "bound" argument is known set N to it.  Otherwise set it to
854   // UINT64_MAX and handle it later.
855   uint64_t N = UINT64_MAX;
856   if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
857     N = SizeC->getZExtValue();
858 
859   if (N == 0)
860     // Fold st{p,r}ncpy(D, S, 0) to D.
861     return Dst;
862 
863   if (N == 1) {
864     Type *CharTy = B.getInt8Ty();
865     Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
866     B.CreateStore(CharVal, Dst);
867     if (!RetEnd)
868       // Transform strncpy(D, S, 1) to return (*D = *S), D.
869       return Dst;
870 
871     // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
872     Value *ZeroChar = ConstantInt::get(CharTy, 0);
873     Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
874 
875     Value *Off1 = B.getInt32(1);
876     Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
877     return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
878   }
879 
880   // If the length of the input string is known set SrcLen to it.
881   uint64_t SrcLen = GetStringLength(Src);
882   if (SrcLen)
883     annotateDereferenceableBytes(CI, 1, SrcLen);
884   else
885     return nullptr;
886 
887   --SrcLen; // Unbias length.
888 
889   if (SrcLen == 0) {
890     // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
891     Align MemSetAlign =
892       CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
893     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
894     AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
895     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
896         CI->getContext(), 0, ArgAttrs));
897     copyFlags(*CI, NewCI);
898     return Dst;
899   }
900 
901   if (N > SrcLen + 1) {
902     if (N > 128)
903       // Bail if N is large or unknown.
904       return nullptr;
905 
906     // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
907     StringRef Str;
908     if (!getConstantStringInfo(Src, Str))
909       return nullptr;
910     std::string SrcStr = Str.str();
911     // Create a bigger, nul-padded array with the same length, SrcLen,
912     // as the original string.
913     SrcStr.resize(N, '\0');
914     Src = B.CreateGlobalString(SrcStr, "str", /*AddressSpace=*/0,
915                                /*M=*/nullptr, /*AddNull=*/false);
916   }
917 
918   Type *PT = Callee->getFunctionType()->getParamType(0);
919   // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
920   // S and N are constant.
921   CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
922                                    ConstantInt::get(DL.getIntPtrType(PT), N));
923   mergeAttributesAndFlags(NewCI, *CI);
924   if (!RetEnd)
925     return Dst;
926 
927   // stpncpy(D, S, N) returns the address of the first null in D if it writes
928   // one, otherwise D + N.
929   Value *Off = B.getInt64(std::min(SrcLen, N));
930   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
931 }
932 
933 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
934                                                unsigned CharSize,
935                                                Value *Bound) {
936   Value *Src = CI->getArgOperand(0);
937   Type *CharTy = B.getIntNTy(CharSize);
938 
939   if (isOnlyUsedInZeroEqualityComparison(CI) &&
940       (!Bound || isKnownNonZero(Bound, DL))) {
941     // Fold strlen:
942     //   strlen(x) != 0 --> *x != 0
943     //   strlen(x) == 0 --> *x == 0
944     // and likewise strnlen with constant N > 0:
945     //   strnlen(x, N) != 0 --> *x != 0
946     //   strnlen(x, N) == 0 --> *x == 0
947     return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
948                         CI->getType());
949   }
950 
951   if (Bound) {
952     if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
953       if (BoundCst->isZero())
954         // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
955         return ConstantInt::get(CI->getType(), 0);
956 
957       if (BoundCst->isOne()) {
958         // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
959         Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
960         Value *ZeroChar = ConstantInt::get(CharTy, 0);
961         Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
962         return B.CreateZExt(Cmp, CI->getType());
963       }
964     }
965   }
966 
967   if (uint64_t Len = GetStringLength(Src, CharSize)) {
968     Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
969     // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
970     // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
971     if (Bound)
972       return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
973     return LenC;
974   }
975 
976   if (Bound)
977     // Punt for strnlen for now.
978     return nullptr;
979 
980   // If s is a constant pointer pointing to a string literal, we can fold
981   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
982   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
983   // We only try to simplify strlen when the pointer s points to an array
984   // of CharSize elements. Otherwise, we would need to scale the offset x before
985   // doing the subtraction. This will make the optimization more complex, and
986   // it's not very useful because calling strlen for a pointer of other types is
987   // very uncommon.
988   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
989     // TODO: Handle subobjects.
990     if (!isGEPBasedOnPointerToString(GEP, CharSize))
991       return nullptr;
992 
993     ConstantDataArraySlice Slice;
994     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
995       uint64_t NullTermIdx;
996       if (Slice.Array == nullptr) {
997         NullTermIdx = 0;
998       } else {
999         NullTermIdx = ~((uint64_t)0);
1000         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
1001           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
1002             NullTermIdx = I;
1003             break;
1004           }
1005         }
1006         // If the string does not have '\0', leave it to strlen to compute
1007         // its length.
1008         if (NullTermIdx == ~((uint64_t)0))
1009           return nullptr;
1010       }
1011 
1012       Value *Offset = GEP->getOperand(2);
1013       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
1014       uint64_t ArrSize =
1015              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
1016 
1017       // If Offset is not provably in the range [0, NullTermIdx], we can still
1018       // optimize if we can prove that the program has undefined behavior when
1019       // Offset is outside that range. That is the case when GEP->getOperand(0)
1020       // is a pointer to an object whose memory extent is NullTermIdx+1.
1021       if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
1022           (isa<GlobalVariable>(GEP->getOperand(0)) &&
1023            NullTermIdx == ArrSize - 1)) {
1024         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
1025         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1026                            Offset);
1027       }
1028     }
1029   }
1030 
1031   // strlen(x?"foo":"bars") --> x ? 3 : 4
1032   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1033     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
1034     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
1035     if (LenTrue && LenFalse) {
1036       ORE.emit([&]() {
1037         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1038                << "folded strlen(select) to select of constants";
1039       });
1040       return B.CreateSelect(SI->getCondition(),
1041                             ConstantInt::get(CI->getType(), LenTrue - 1),
1042                             ConstantInt::get(CI->getType(), LenFalse - 1));
1043     }
1044   }
1045 
1046   return nullptr;
1047 }
1048 
1049 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1050   if (Value *V = optimizeStringLength(CI, B, 8))
1051     return V;
1052   annotateNonNullNoUndefBasedOnAccess(CI, 0);
1053   return nullptr;
1054 }
1055 
1056 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1057   Value *Bound = CI->getArgOperand(1);
1058   if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1059     return V;
1060 
1061   if (isKnownNonZero(Bound, DL))
1062     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1063   return nullptr;
1064 }
1065 
1066 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1067   Module &M = *CI->getModule();
1068   unsigned WCharSize = TLI->getWCharSize(M) * 8;
1069   // We cannot perform this optimization without wchar_size metadata.
1070   if (WCharSize == 0)
1071     return nullptr;
1072 
1073   return optimizeStringLength(CI, B, WCharSize);
1074 }
1075 
1076 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1077   StringRef S1, S2;
1078   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1079   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1080 
1081   // strpbrk(s, "") -> nullptr
1082   // strpbrk("", s) -> nullptr
1083   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1084     return Constant::getNullValue(CI->getType());
1085 
1086   // Constant folding.
1087   if (HasS1 && HasS2) {
1088     size_t I = S1.find_first_of(S2);
1089     if (I == StringRef::npos) // No match.
1090       return Constant::getNullValue(CI->getType());
1091 
1092     return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1093                                B.getInt64(I), "strpbrk");
1094   }
1095 
1096   // strpbrk(s, "a") -> strchr(s, 'a')
1097   if (HasS2 && S2.size() == 1)
1098     return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1099 
1100   return nullptr;
1101 }
1102 
1103 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1104   Value *EndPtr = CI->getArgOperand(1);
1105   if (isa<ConstantPointerNull>(EndPtr)) {
1106     // With a null EndPtr, this function won't capture the main argument.
1107     // It would be readonly too, except that it still may write to errno.
1108     CI->addParamAttr(0, Attribute::NoCapture);
1109   }
1110 
1111   return nullptr;
1112 }
1113 
1114 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1115   StringRef S1, S2;
1116   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1117   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1118 
1119   // strspn(s, "") -> 0
1120   // strspn("", s) -> 0
1121   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1122     return Constant::getNullValue(CI->getType());
1123 
1124   // Constant folding.
1125   if (HasS1 && HasS2) {
1126     size_t Pos = S1.find_first_not_of(S2);
1127     if (Pos == StringRef::npos)
1128       Pos = S1.size();
1129     return ConstantInt::get(CI->getType(), Pos);
1130   }
1131 
1132   return nullptr;
1133 }
1134 
1135 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1136   StringRef S1, S2;
1137   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1138   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1139 
1140   // strcspn("", s) -> 0
1141   if (HasS1 && S1.empty())
1142     return Constant::getNullValue(CI->getType());
1143 
1144   // Constant folding.
1145   if (HasS1 && HasS2) {
1146     size_t Pos = S1.find_first_of(S2);
1147     if (Pos == StringRef::npos)
1148       Pos = S1.size();
1149     return ConstantInt::get(CI->getType(), Pos);
1150   }
1151 
1152   // strcspn(s, "") -> strlen(s)
1153   if (HasS2 && S2.empty())
1154     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1155 
1156   return nullptr;
1157 }
1158 
1159 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1160   // fold strstr(x, x) -> x.
1161   if (CI->getArgOperand(0) == CI->getArgOperand(1))
1162     return CI->getArgOperand(0);
1163 
1164   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1165   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1166     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1167     if (!StrLen)
1168       return nullptr;
1169     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1170                                  StrLen, B, DL, TLI);
1171     if (!StrNCmp)
1172       return nullptr;
1173     for (User *U : llvm::make_early_inc_range(CI->users())) {
1174       ICmpInst *Old = cast<ICmpInst>(U);
1175       Value *Cmp =
1176           B.CreateICmp(Old->getPredicate(), StrNCmp,
1177                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1178       replaceAllUsesWith(Old, Cmp);
1179     }
1180     return CI;
1181   }
1182 
1183   // See if either input string is a constant string.
1184   StringRef SearchStr, ToFindStr;
1185   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1186   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1187 
1188   // fold strstr(x, "") -> x.
1189   if (HasStr2 && ToFindStr.empty())
1190     return CI->getArgOperand(0);
1191 
1192   // If both strings are known, constant fold it.
1193   if (HasStr1 && HasStr2) {
1194     size_t Offset = SearchStr.find(ToFindStr);
1195 
1196     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1197       return Constant::getNullValue(CI->getType());
1198 
1199     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1200     return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1201                                         Offset, "strstr");
1202   }
1203 
1204   // fold strstr(x, "y") -> strchr(x, 'y').
1205   if (HasStr2 && ToFindStr.size() == 1) {
1206     return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1207   }
1208 
1209   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1210   return nullptr;
1211 }
1212 
1213 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1214   Value *SrcStr = CI->getArgOperand(0);
1215   Value *Size = CI->getArgOperand(2);
1216   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1217   Value *CharVal = CI->getArgOperand(1);
1218   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1219   Value *NullPtr = Constant::getNullValue(CI->getType());
1220 
1221   if (LenC) {
1222     if (LenC->isZero())
1223       // Fold memrchr(x, y, 0) --> null.
1224       return NullPtr;
1225 
1226     if (LenC->isOne()) {
1227       // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1228       // constant or otherwise.
1229       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1230       // Slice off the character's high end bits.
1231       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1232       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1233       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1234     }
1235   }
1236 
1237   StringRef Str;
1238   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1239     return nullptr;
1240 
1241   if (Str.size() == 0)
1242     // If the array is empty fold memrchr(A, C, N) to null for any value
1243     // of C and N on the basis that the only valid value of N is zero
1244     // (otherwise the call is undefined).
1245     return NullPtr;
1246 
1247   uint64_t EndOff = UINT64_MAX;
1248   if (LenC) {
1249     EndOff = LenC->getZExtValue();
1250     if (Str.size() < EndOff)
1251       // Punt out-of-bounds accesses to sanitizers and/or libc.
1252       return nullptr;
1253   }
1254 
1255   if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1256     // Fold memrchr(S, C, N) for a constant C.
1257     size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1258     if (Pos == StringRef::npos)
1259       // When the character is not in the source array fold the result
1260       // to null regardless of Size.
1261       return NullPtr;
1262 
1263     if (LenC)
1264       // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1265       return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1266 
1267     if (Str.find(Str[Pos]) == Pos) {
1268       // When there is just a single occurrence of C in S, i.e., the one
1269       // in Str[Pos], fold
1270       //   memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1271       // for nonconstant N.
1272       Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1273                                    "memrchr.cmp");
1274       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1275                                            B.getInt64(Pos), "memrchr.ptr_plus");
1276       return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1277     }
1278   }
1279 
1280   // Truncate the string to search at most EndOff characters.
1281   Str = Str.substr(0, EndOff);
1282   if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1283     return nullptr;
1284 
1285   // If the source array consists of all equal characters, then for any
1286   // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1287   //   N != 0 && *S == C ? S + N - 1 : null
1288   Type *SizeTy = Size->getType();
1289   Type *Int8Ty = B.getInt8Ty();
1290   Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1291   // Slice off the sought character's high end bits.
1292   CharVal = B.CreateTrunc(CharVal, Int8Ty);
1293   Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1294   Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1295   Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1296   Value *SrcPlus =
1297       B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1298   return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1299 }
1300 
1301 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1302   Value *SrcStr = CI->getArgOperand(0);
1303   Value *Size = CI->getArgOperand(2);
1304 
1305   if (isKnownNonZero(Size, DL)) {
1306     annotateNonNullNoUndefBasedOnAccess(CI, 0);
1307     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1308       return memChrToCharCompare(CI, Size, B, DL);
1309   }
1310 
1311   Value *CharVal = CI->getArgOperand(1);
1312   ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1313   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1314   Value *NullPtr = Constant::getNullValue(CI->getType());
1315 
1316   // memchr(x, y, 0) -> null
1317   if (LenC) {
1318     if (LenC->isZero())
1319       return NullPtr;
1320 
1321     if (LenC->isOne()) {
1322       // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1323       // constant or otherwise.
1324       Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1325       // Slice off the character's high end bits.
1326       CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1327       Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1328       return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1329     }
1330   }
1331 
1332   StringRef Str;
1333   if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1334     return nullptr;
1335 
1336   if (CharC) {
1337     size_t Pos = Str.find(CharC->getZExtValue());
1338     if (Pos == StringRef::npos)
1339       // When the character is not in the source array fold the result
1340       // to null regardless of Size.
1341       return NullPtr;
1342 
1343     // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1344     // When the constant Size is less than or equal to the character
1345     // position also fold the result to null.
1346     Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1347                                  "memchr.cmp");
1348     Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1349                                          "memchr.ptr");
1350     return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1351   }
1352 
1353   if (Str.size() == 0)
1354     // If the array is empty fold memchr(A, C, N) to null for any value
1355     // of C and N on the basis that the only valid value of N is zero
1356     // (otherwise the call is undefined).
1357     return NullPtr;
1358 
1359   if (LenC)
1360     Str = substr(Str, LenC->getZExtValue());
1361 
1362   size_t Pos = Str.find_first_not_of(Str[0]);
1363   if (Pos == StringRef::npos
1364       || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1365     // If the source array consists of at most two consecutive sequences
1366     // of the same characters, then for any C and N (whether in bounds or
1367     // not), fold memchr(S, C, N) to
1368     //   N != 0 && *S == C ? S : null
1369     // or for the two sequences to:
1370     //   N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1371     //   ^Sel2                   ^Sel1 are denoted above.
1372     // The latter makes it also possible to fold strchr() calls with strings
1373     // of the same characters.
1374     Type *SizeTy = Size->getType();
1375     Type *Int8Ty = B.getInt8Ty();
1376 
1377     // Slice off the sought character's high end bits.
1378     CharVal = B.CreateTrunc(CharVal, Int8Ty);
1379 
1380     Value *Sel1 = NullPtr;
1381     if (Pos != StringRef::npos) {
1382       // Handle two consecutive sequences of the same characters.
1383       Value *PosVal = ConstantInt::get(SizeTy, Pos);
1384       Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1385       Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1386       Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1387       Value *And = B.CreateAnd(CEqSPos, NGtPos);
1388       Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1389       Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1390     }
1391 
1392     Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1393     Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1394     Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1395     Value *And = B.CreateAnd(NNeZ, CEqS0);
1396     return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1397   }
1398 
1399   if (!LenC) {
1400     if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1401       // S is dereferenceable so it's safe to load from it and fold
1402       //   memchr(S, C, N) == S to N && *S == C for any C and N.
1403       // TODO: This is safe even for nonconstant S.
1404       return memChrToCharCompare(CI, Size, B, DL);
1405 
1406     // From now on we need a constant length and constant array.
1407     return nullptr;
1408   }
1409 
1410   bool OptForSize = CI->getFunction()->hasOptSize() ||
1411                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
1412                                                 PGSOQueryType::IRPass);
1413 
1414   // If the char is variable but the input str and length are not we can turn
1415   // this memchr call into a simple bit field test. Of course this only works
1416   // when the return value is only checked against null.
1417   //
1418   // It would be really nice to reuse switch lowering here but we can't change
1419   // the CFG at this point.
1420   //
1421   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1422   // != 0
1423   //   after bounds check.
1424   if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1425     return nullptr;
1426 
1427   unsigned char Max =
1428       *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1429                         reinterpret_cast<const unsigned char *>(Str.end()));
1430 
1431   // Make sure the bit field we're about to create fits in a register on the
1432   // target.
1433   // FIXME: On a 64 bit architecture this prevents us from using the
1434   // interesting range of alpha ascii chars. We could do better by emitting
1435   // two bitfields or shifting the range by 64 if no lower chars are used.
1436   if (!DL.fitsInLegalInteger(Max + 1)) {
1437     // Build chain of ORs
1438     // Transform:
1439     //    memchr("abcd", C, 4) != nullptr
1440     // to:
1441     //    (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1442     std::string SortedStr = Str.str();
1443     llvm::sort(SortedStr);
1444     // Compute the number of of non-contiguous ranges.
1445     unsigned NonContRanges = 1;
1446     for (size_t i = 1; i < SortedStr.size(); ++i) {
1447       if (SortedStr[i] > SortedStr[i - 1] + 1) {
1448         NonContRanges++;
1449       }
1450     }
1451 
1452     // Restrict this optimization to profitable cases with one or two range
1453     // checks.
1454     if (NonContRanges > 2)
1455       return nullptr;
1456 
1457     SmallVector<Value *> CharCompares;
1458     for (unsigned char C : SortedStr)
1459       CharCompares.push_back(
1460           B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C)));
1461 
1462     return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1463   }
1464 
1465   // For the bit field use a power-of-2 type with at least 8 bits to avoid
1466   // creating unnecessary illegal types.
1467   unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1468 
1469   // Now build the bit field.
1470   APInt Bitfield(Width, 0);
1471   for (char C : Str)
1472     Bitfield.setBit((unsigned char)C);
1473   Value *BitfieldC = B.getInt(Bitfield);
1474 
1475   // Adjust width of "C" to the bitfield width, then mask off the high bits.
1476   Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1477   C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1478 
1479   // First check that the bit field access is within bounds.
1480   Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1481                                "memchr.bounds");
1482 
1483   // Create code that checks if the given bit is set in the field.
1484   Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1485   Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1486 
1487   // Finally merge both checks and cast to pointer type. The inttoptr
1488   // implicitly zexts the i1 to intptr type.
1489   return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1490                           CI->getType());
1491 }
1492 
1493 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1494 // arrays LHS and RHS and nonconstant Size.
1495 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1496                                     Value *Size, bool StrNCmp,
1497                                     IRBuilderBase &B, const DataLayout &DL) {
1498   if (LHS == RHS) // memcmp(s,s,x) -> 0
1499     return Constant::getNullValue(CI->getType());
1500 
1501   StringRef LStr, RStr;
1502   if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1503       !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1504     return nullptr;
1505 
1506   // If the contents of both constant arrays are known, fold a call to
1507   // memcmp(A, B, N) to
1508   //   N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1509   // where Pos is the first mismatch between A and B, determined below.
1510 
1511   uint64_t Pos = 0;
1512   Value *Zero = ConstantInt::get(CI->getType(), 0);
1513   for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1514     if (Pos == MinSize ||
1515         (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1516       // One array is a leading part of the other of equal or greater
1517       // size, or for strncmp, the arrays are equal strings.
1518       // Fold the result to zero.  Size is assumed to be in bounds, since
1519       // otherwise the call would be undefined.
1520       return Zero;
1521     }
1522 
1523     if (LStr[Pos] != RStr[Pos])
1524       break;
1525   }
1526 
1527   // Normalize the result.
1528   typedef unsigned char UChar;
1529   int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1530   Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1531   Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1532   Value *Res = ConstantInt::get(CI->getType(), IRes);
1533   return B.CreateSelect(Cmp, Zero, Res);
1534 }
1535 
1536 // Optimize a memcmp call CI with constant size Len.
1537 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1538                                          uint64_t Len, IRBuilderBase &B,
1539                                          const DataLayout &DL) {
1540   if (Len == 0) // memcmp(s1,s2,0) -> 0
1541     return Constant::getNullValue(CI->getType());
1542 
1543   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1544   if (Len == 1) {
1545     Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1546                                CI->getType(), "lhsv");
1547     Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1548                                CI->getType(), "rhsv");
1549     return B.CreateSub(LHSV, RHSV, "chardiff");
1550   }
1551 
1552   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1553   // TODO: The case where both inputs are constants does not need to be limited
1554   // to legal integers or equality comparison. See block below this.
1555   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1556     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1557     Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1558 
1559     // First, see if we can fold either argument to a constant.
1560     Value *LHSV = nullptr;
1561     if (auto *LHSC = dyn_cast<Constant>(LHS))
1562       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1563 
1564     Value *RHSV = nullptr;
1565     if (auto *RHSC = dyn_cast<Constant>(RHS))
1566       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1567 
1568     // Don't generate unaligned loads. If either source is constant data,
1569     // alignment doesn't matter for that source because there is no load.
1570     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1571         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1572       if (!LHSV)
1573         LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1574       if (!RHSV)
1575         RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1576       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1577     }
1578   }
1579 
1580   return nullptr;
1581 }
1582 
1583 // Most simplifications for memcmp also apply to bcmp.
1584 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1585                                                    IRBuilderBase &B) {
1586   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1587   Value *Size = CI->getArgOperand(2);
1588 
1589   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1590 
1591   if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1592     return Res;
1593 
1594   // Handle constant Size.
1595   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1596   if (!LenC)
1597     return nullptr;
1598 
1599   return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1600 }
1601 
1602 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1603   Module *M = CI->getModule();
1604   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1605     return V;
1606 
1607   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1608   // bcmp can be more efficient than memcmp because it only has to know that
1609   // there is a difference, not how different one is to the other.
1610   if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1611       isOnlyUsedInZeroEqualityComparison(CI)) {
1612     Value *LHS = CI->getArgOperand(0);
1613     Value *RHS = CI->getArgOperand(1);
1614     Value *Size = CI->getArgOperand(2);
1615     return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1616   }
1617 
1618   return nullptr;
1619 }
1620 
1621 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1622   return optimizeMemCmpBCmpCommon(CI, B);
1623 }
1624 
1625 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1626   Value *Size = CI->getArgOperand(2);
1627   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1628   if (isa<IntrinsicInst>(CI))
1629     return nullptr;
1630 
1631   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1632   CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1633                                    CI->getArgOperand(1), Align(1), Size);
1634   mergeAttributesAndFlags(NewCI, *CI);
1635   return CI->getArgOperand(0);
1636 }
1637 
1638 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1639   Value *Dst = CI->getArgOperand(0);
1640   Value *Src = CI->getArgOperand(1);
1641   ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1642   ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1643   StringRef SrcStr;
1644   if (CI->use_empty() && Dst == Src)
1645     return Dst;
1646   // memccpy(d, s, c, 0) -> nullptr
1647   if (N) {
1648     if (N->isNullValue())
1649       return Constant::getNullValue(CI->getType());
1650     if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1651         // TODO: Handle zeroinitializer.
1652         !StopChar)
1653       return nullptr;
1654   } else {
1655     return nullptr;
1656   }
1657 
1658   // Wrap arg 'c' of type int to char
1659   size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1660   if (Pos == StringRef::npos) {
1661     if (N->getZExtValue() <= SrcStr.size()) {
1662       copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1663                                     CI->getArgOperand(3)));
1664       return Constant::getNullValue(CI->getType());
1665     }
1666     return nullptr;
1667   }
1668 
1669   Value *NewN =
1670       ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1671   // memccpy -> llvm.memcpy
1672   copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1673   return Pos + 1 <= N->getZExtValue()
1674              ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1675              : Constant::getNullValue(CI->getType());
1676 }
1677 
1678 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1679   Value *Dst = CI->getArgOperand(0);
1680   Value *N = CI->getArgOperand(2);
1681   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1682   CallInst *NewCI =
1683       B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1684   // Propagate attributes, but memcpy has no return value, so make sure that
1685   // any return attributes are compliant.
1686   // TODO: Attach return value attributes to the 1st operand to preserve them?
1687   mergeAttributesAndFlags(NewCI, *CI);
1688   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1689 }
1690 
1691 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1692   Value *Size = CI->getArgOperand(2);
1693   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1694   if (isa<IntrinsicInst>(CI))
1695     return nullptr;
1696 
1697   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1698   CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1699                                     CI->getArgOperand(1), Align(1), Size);
1700   mergeAttributesAndFlags(NewCI, *CI);
1701   return CI->getArgOperand(0);
1702 }
1703 
1704 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1705   Value *Size = CI->getArgOperand(2);
1706   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1707   if (isa<IntrinsicInst>(CI))
1708     return nullptr;
1709 
1710   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1711   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1712   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1713   mergeAttributesAndFlags(NewCI, *CI);
1714   return CI->getArgOperand(0);
1715 }
1716 
1717 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1718   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1719     return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1720 
1721   return nullptr;
1722 }
1723 
1724 // When enabled, replace operator new() calls marked with a hot or cold memprof
1725 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1726 // Currently this is supported by the open source version of tcmalloc, see:
1727 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1728 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1729                                       LibFunc &Func) {
1730   if (!OptimizeHotColdNew)
1731     return nullptr;
1732 
1733   uint8_t HotCold;
1734   if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1735     HotCold = ColdNewHintValue;
1736   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() ==
1737            "notcold")
1738     HotCold = NotColdNewHintValue;
1739   else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1740     HotCold = HotNewHintValue;
1741   else
1742     return nullptr;
1743 
1744   // For calls that already pass a hot/cold hint, only update the hint if
1745   // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint
1746   // if cold or hot, and leave as-is for default handling if "notcold" aka warm.
1747   // Note that in cases where we decide it is "notcold", it might be slightly
1748   // better to replace the hinted call with a non hinted call, to avoid the
1749   // extra parameter and the if condition check of the hint value in the
1750   // allocator. This can be considered in the future.
1751   switch (Func) {
1752   case LibFunc_Znwm12__hot_cold_t:
1753     if (OptimizeExistingHotColdNew)
1754       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1755                             LibFunc_Znwm12__hot_cold_t, HotCold);
1756     break;
1757   case LibFunc_Znwm:
1758     if (HotCold != NotColdNewHintValue)
1759       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1760                             LibFunc_Znwm12__hot_cold_t, HotCold);
1761     break;
1762   case LibFunc_Znam12__hot_cold_t:
1763     if (OptimizeExistingHotColdNew)
1764       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1765                             LibFunc_Znam12__hot_cold_t, HotCold);
1766     break;
1767   case LibFunc_Znam:
1768     if (HotCold != NotColdNewHintValue)
1769       return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1770                             LibFunc_Znam12__hot_cold_t, HotCold);
1771     break;
1772   case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
1773     if (OptimizeExistingHotColdNew)
1774       return emitHotColdNewNoThrow(
1775           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1776           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1777     break;
1778   case LibFunc_ZnwmRKSt9nothrow_t:
1779     if (HotCold != NotColdNewHintValue)
1780       return emitHotColdNewNoThrow(
1781           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1782           LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold);
1783     break;
1784   case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
1785     if (OptimizeExistingHotColdNew)
1786       return emitHotColdNewNoThrow(
1787           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1788           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1789     break;
1790   case LibFunc_ZnamRKSt9nothrow_t:
1791     if (HotCold != NotColdNewHintValue)
1792       return emitHotColdNewNoThrow(
1793           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1794           LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold);
1795     break;
1796   case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
1797     if (OptimizeExistingHotColdNew)
1798       return emitHotColdNewAligned(
1799           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1800           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1801     break;
1802   case LibFunc_ZnwmSt11align_val_t:
1803     if (HotCold != NotColdNewHintValue)
1804       return emitHotColdNewAligned(
1805           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1806           LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold);
1807     break;
1808   case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
1809     if (OptimizeExistingHotColdNew)
1810       return emitHotColdNewAligned(
1811           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1812           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1813     break;
1814   case LibFunc_ZnamSt11align_val_t:
1815     if (HotCold != NotColdNewHintValue)
1816       return emitHotColdNewAligned(
1817           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1818           LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold);
1819     break;
1820   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1821     if (OptimizeExistingHotColdNew)
1822       return emitHotColdNewAlignedNoThrow(
1823           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1824           TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1825           HotCold);
1826     break;
1827   case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1828     if (HotCold != NotColdNewHintValue)
1829       return emitHotColdNewAlignedNoThrow(
1830           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1831           TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1832           HotCold);
1833     break;
1834   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
1835     if (OptimizeExistingHotColdNew)
1836       return emitHotColdNewAlignedNoThrow(
1837           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1838           TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1839           HotCold);
1840     break;
1841   case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1842     if (HotCold != NotColdNewHintValue)
1843       return emitHotColdNewAlignedNoThrow(
1844           CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1845           TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t,
1846           HotCold);
1847     break;
1848   case LibFunc_size_returning_new:
1849     if (HotCold != NotColdNewHintValue)
1850       return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI,
1851                                          LibFunc_size_returning_new_hot_cold,
1852                                          HotCold);
1853     break;
1854   case LibFunc_size_returning_new_hot_cold:
1855     if (OptimizeExistingHotColdNew)
1856       return emitHotColdSizeReturningNew(CI->getArgOperand(0), B, TLI,
1857                                          LibFunc_size_returning_new_hot_cold,
1858                                          HotCold);
1859     break;
1860   case LibFunc_size_returning_new_aligned:
1861     if (HotCold != NotColdNewHintValue)
1862       return emitHotColdSizeReturningNewAligned(
1863           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1864           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1865     break;
1866   case LibFunc_size_returning_new_aligned_hot_cold:
1867     if (OptimizeExistingHotColdNew)
1868       return emitHotColdSizeReturningNewAligned(
1869           CI->getArgOperand(0), CI->getArgOperand(1), B, TLI,
1870           LibFunc_size_returning_new_aligned_hot_cold, HotCold);
1871     break;
1872   default:
1873     return nullptr;
1874   }
1875   return nullptr;
1876 }
1877 
1878 //===----------------------------------------------------------------------===//
1879 // Math Library Optimizations
1880 //===----------------------------------------------------------------------===//
1881 
1882 // Replace a libcall \p CI with a call to intrinsic \p IID
1883 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1884                                Intrinsic::ID IID) {
1885   CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI);
1886   NewCall->takeName(CI);
1887   return copyFlags(*CI, NewCall);
1888 }
1889 
1890 /// Return a variant of Val with float type.
1891 /// Currently this works in two cases: If Val is an FPExtension of a float
1892 /// value to something bigger, simply return the operand.
1893 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1894 /// loss of precision do so.
1895 static Value *valueHasFloatPrecision(Value *Val) {
1896   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1897     Value *Op = Cast->getOperand(0);
1898     if (Op->getType()->isFloatTy())
1899       return Op;
1900   }
1901   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1902     APFloat F = Const->getValueAPF();
1903     bool losesInfo;
1904     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1905                     &losesInfo);
1906     if (!losesInfo)
1907       return ConstantFP::get(Const->getContext(), F);
1908   }
1909   return nullptr;
1910 }
1911 
1912 /// Shrink double -> float functions.
1913 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1914                                bool isBinary, const TargetLibraryInfo *TLI,
1915                                bool isPrecise = false) {
1916   Function *CalleeFn = CI->getCalledFunction();
1917   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1918     return nullptr;
1919 
1920   // If not all the uses of the function are converted to float, then bail out.
1921   // This matters if the precision of the result is more important than the
1922   // precision of the arguments.
1923   if (isPrecise)
1924     for (User *U : CI->users()) {
1925       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1926       if (!Cast || !Cast->getType()->isFloatTy())
1927         return nullptr;
1928     }
1929 
1930   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1931   Value *V[2];
1932   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1933   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1934   if (!V[0] || (isBinary && !V[1]))
1935     return nullptr;
1936 
1937   // If call isn't an intrinsic, check that it isn't within a function with the
1938   // same name as the float version of this call, otherwise the result is an
1939   // infinite loop.  For example, from MinGW-w64:
1940   //
1941   // float expf(float val) { return (float) exp((double) val); }
1942   StringRef CalleeName = CalleeFn->getName();
1943   bool IsIntrinsic = CalleeFn->isIntrinsic();
1944   if (!IsIntrinsic) {
1945     StringRef CallerName = CI->getFunction()->getName();
1946     if (!CallerName.empty() && CallerName.back() == 'f' &&
1947         CallerName.size() == (CalleeName.size() + 1) &&
1948         CallerName.starts_with(CalleeName))
1949       return nullptr;
1950   }
1951 
1952   // Propagate the math semantics from the current function to the new function.
1953   IRBuilderBase::FastMathFlagGuard Guard(B);
1954   B.setFastMathFlags(CI->getFastMathFlags());
1955 
1956   // g((double) float) -> (double) gf(float)
1957   Value *R;
1958   if (IsIntrinsic) {
1959     Module *M = CI->getModule();
1960     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1961     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1962     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1963   } else {
1964     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1965     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1966                                          CalleeAttrs)
1967                  : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1968   }
1969   return B.CreateFPExt(R, B.getDoubleTy());
1970 }
1971 
1972 /// Shrink double -> float for unary functions.
1973 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1974                                     const TargetLibraryInfo *TLI,
1975                                     bool isPrecise = false) {
1976   return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1977 }
1978 
1979 /// Shrink double -> float for binary functions.
1980 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1981                                      const TargetLibraryInfo *TLI,
1982                                      bool isPrecise = false) {
1983   return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1984 }
1985 
1986 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1987 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1988   Value *Real, *Imag;
1989 
1990   if (CI->arg_size() == 1) {
1991 
1992     if (!CI->isFast())
1993       return nullptr;
1994 
1995     Value *Op = CI->getArgOperand(0);
1996     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1997 
1998     Real = B.CreateExtractValue(Op, 0, "real");
1999     Imag = B.CreateExtractValue(Op, 1, "imag");
2000 
2001   } else {
2002     assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
2003 
2004     Real = CI->getArgOperand(0);
2005     Imag = CI->getArgOperand(1);
2006 
2007     // if real or imaginary part is zero, simplify to abs(cimag(z))
2008     // or abs(creal(z))
2009     Value *AbsOp = nullptr;
2010     if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) {
2011       if (ConstReal->isZero())
2012         AbsOp = Imag;
2013 
2014     } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) {
2015       if (ConstImag->isZero())
2016         AbsOp = Real;
2017     }
2018 
2019     if (AbsOp) {
2020       IRBuilderBase::FastMathFlagGuard Guard(B);
2021       B.setFastMathFlags(CI->getFastMathFlags());
2022 
2023       return copyFlags(
2024           *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs"));
2025     }
2026 
2027     if (!CI->isFast())
2028       return nullptr;
2029   }
2030 
2031   // Propagate fast-math flags from the existing call to new instructions.
2032   IRBuilderBase::FastMathFlagGuard Guard(B);
2033   B.setFastMathFlags(CI->getFastMathFlags());
2034 
2035   Value *RealReal = B.CreateFMul(Real, Real);
2036   Value *ImagImag = B.CreateFMul(Imag, Imag);
2037 
2038   return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt,
2039                                                B.CreateFAdd(RealReal, ImagImag),
2040                                                nullptr, "cabs"));
2041 }
2042 
2043 // Return a properly extended integer (DstWidth bits wide) if the operation is
2044 // an itofp.
2045 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
2046   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
2047     Value *Op = cast<Instruction>(I2F)->getOperand(0);
2048     // Make sure that the exponent fits inside an "int" of size DstWidth,
2049     // thus avoiding any range issues that FP has not.
2050     unsigned BitWidth = Op->getType()->getScalarSizeInBits();
2051     if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) {
2052       Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth);
2053       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy)
2054                                   : B.CreateZExt(Op, IntTy);
2055     }
2056   }
2057 
2058   return nullptr;
2059 }
2060 
2061 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
2062 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
2063 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
2064 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
2065   Module *M = Pow->getModule();
2066   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2067   Type *Ty = Pow->getType();
2068   bool Ignored;
2069 
2070   // Evaluate special cases related to a nested function as the base.
2071 
2072   // pow(exp(x), y) -> exp(x * y)
2073   // pow(exp2(x), y) -> exp2(x * y)
2074   // If exp{,2}() is used only once, it is better to fold two transcendental
2075   // math functions into one.  If used again, exp{,2}() would still have to be
2076   // called with the original argument, then keep both original transcendental
2077   // functions.  However, this transformation is only safe with fully relaxed
2078   // math semantics, since, besides rounding differences, it changes overflow
2079   // and underflow behavior quite dramatically.  For example:
2080   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
2081   // Whereas:
2082   //   exp(1000 * 0.001) = exp(1)
2083   // TODO: Loosen the requirement for fully relaxed math semantics.
2084   // TODO: Handle exp10() when more targets have it available.
2085   CallInst *BaseFn = dyn_cast<CallInst>(Base);
2086   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
2087     LibFunc LibFn;
2088 
2089     Function *CalleeFn = BaseFn->getCalledFunction();
2090     if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
2091         isLibFuncEmittable(M, TLI, LibFn)) {
2092       StringRef ExpName;
2093       Intrinsic::ID ID;
2094       Value *ExpFn;
2095       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2096 
2097       switch (LibFn) {
2098       default:
2099         return nullptr;
2100       case LibFunc_expf:
2101       case LibFunc_exp:
2102       case LibFunc_expl:
2103         ExpName = TLI->getName(LibFunc_exp);
2104         ID = Intrinsic::exp;
2105         LibFnFloat = LibFunc_expf;
2106         LibFnDouble = LibFunc_exp;
2107         LibFnLongDouble = LibFunc_expl;
2108         break;
2109       case LibFunc_exp2f:
2110       case LibFunc_exp2:
2111       case LibFunc_exp2l:
2112         ExpName = TLI->getName(LibFunc_exp2);
2113         ID = Intrinsic::exp2;
2114         LibFnFloat = LibFunc_exp2f;
2115         LibFnDouble = LibFunc_exp2;
2116         LibFnLongDouble = LibFunc_exp2l;
2117         break;
2118       }
2119 
2120       // Create new exp{,2}() with the product as its argument.
2121       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
2122       ExpFn = BaseFn->doesNotAccessMemory()
2123                   ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName)
2124                   : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
2125                                          LibFnLongDouble, B,
2126                                          BaseFn->getAttributes());
2127 
2128       // Since the new exp{,2}() is different from the original one, dead code
2129       // elimination cannot be trusted to remove it, since it may have side
2130       // effects (e.g., errno).  When the only consumer for the original
2131       // exp{,2}() is pow(), then it has to be explicitly erased.
2132       substituteInParent(BaseFn, ExpFn);
2133       return ExpFn;
2134     }
2135   }
2136 
2137   // Evaluate special cases related to a constant base.
2138 
2139   const APFloat *BaseF;
2140   if (!match(Base, m_APFloat(BaseF)))
2141     return nullptr;
2142 
2143   AttributeList NoAttrs; // Attributes are only meaningful on the original call
2144 
2145   const bool UseIntrinsic = Pow->doesNotAccessMemory();
2146 
2147   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2148   if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) &&
2149       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2150       (UseIntrinsic ||
2151        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2152 
2153     // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can
2154     // just directly use the original integer type.
2155     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) {
2156       Constant *One = ConstantFP::get(Ty, 1.0);
2157 
2158       if (UseIntrinsic) {
2159         return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp,
2160                                                  {Ty, ExpoI->getType()},
2161                                                  {One, ExpoI}, Pow, "exp2"));
2162       }
2163 
2164       return copyFlags(*Pow, emitBinaryFloatFnCall(
2165                                  One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2166                                  LibFunc_ldexpl, B, NoAttrs));
2167     }
2168   }
2169 
2170   // pow(2.0 ** n, x) -> exp2(n * x)
2171   if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2172     APFloat BaseR = APFloat(1.0);
2173     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
2174     BaseR = BaseR / *BaseF;
2175     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2176     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2177     APSInt NI(64, false);
2178     if ((IsInteger || IsReciprocal) &&
2179         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
2180             APFloat::opOK &&
2181         NI > 1 && NI.isPowerOf2()) {
2182       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2183       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2184       if (Pow->doesNotAccessMemory())
2185         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2186                                                       nullptr, "exp2"));
2187       else
2188         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2189                                                     LibFunc_exp2f,
2190                                                     LibFunc_exp2l, B, NoAttrs));
2191     }
2192   }
2193 
2194   // pow(10.0, x) -> exp10(x)
2195   if (BaseF->isExactlyValue(10.0) &&
2196       hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) {
2197 
2198     if (Pow->doesNotAccessMemory()) {
2199       CallInst *NewExp10 =
2200           B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10");
2201       return copyFlags(*Pow, NewExp10);
2202     }
2203 
2204     return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
2205                                                 LibFunc_exp10f, LibFunc_exp10l,
2206                                                 B, NoAttrs));
2207   }
2208 
2209   // pow(x, y) -> exp2(log2(x) * y)
2210   if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2211       !BaseF->isNegative()) {
2212     // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2213     // Luckily optimizePow has already handled the x == 1 case.
2214     assert(!match(Base, m_FPOne()) &&
2215            "pow(1.0, y) should have been simplified earlier!");
2216 
2217     Value *Log = nullptr;
2218     if (Ty->isFloatTy())
2219       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2220     else if (Ty->isDoubleTy())
2221       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2222 
2223     if (Log) {
2224       Value *FMul = B.CreateFMul(Log, Expo, "mul");
2225       if (Pow->doesNotAccessMemory())
2226         return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul,
2227                                                       nullptr, "exp2"));
2228       else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2229                           LibFunc_exp2l))
2230         return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2231                                                     LibFunc_exp2f,
2232                                                     LibFunc_exp2l, B, NoAttrs));
2233     }
2234   }
2235 
2236   return nullptr;
2237 }
2238 
2239 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2240                           Module *M, IRBuilderBase &B,
2241                           const TargetLibraryInfo *TLI) {
2242   // If errno is never set, then use the intrinsic for sqrt().
2243   if (NoErrno)
2244     return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt");
2245 
2246   // Otherwise, use the libcall for sqrt().
2247   if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2248                  LibFunc_sqrtl))
2249     // TODO: We also should check that the target can in fact lower the sqrt()
2250     // libcall. We currently have no way to ask this question, so we ask if
2251     // the target has a sqrt() libcall, which is not exactly the same.
2252     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2253                                 LibFunc_sqrtl, B, Attrs);
2254 
2255   return nullptr;
2256 }
2257 
2258 /// Use square root in place of pow(x, +/-0.5).
2259 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2260   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2261   Module *Mod = Pow->getModule();
2262   Type *Ty = Pow->getType();
2263 
2264   const APFloat *ExpoF;
2265   if (!match(Expo, m_APFloat(ExpoF)) ||
2266       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2267     return nullptr;
2268 
2269   // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2270   // so that requires fast-math-flags (afn or reassoc).
2271   if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2272     return nullptr;
2273 
2274   // If we have a pow() library call (accesses memory) and we can't guarantee
2275   // that the base is not an infinity, give up:
2276   // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2277   // errno), but sqrt(-Inf) is required by various standards to set errno.
2278   if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2279       !isKnownNeverInfinity(Base, 0,
2280                             SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow)))
2281     return nullptr;
2282 
2283   Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2284                      TLI);
2285   if (!Sqrt)
2286     return nullptr;
2287 
2288   // Handle signed zero base by expanding to fabs(sqrt(x)).
2289   if (!Pow->hasNoSignedZeros())
2290     Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs");
2291 
2292   Sqrt = copyFlags(*Pow, Sqrt);
2293 
2294   // Handle non finite base by expanding to
2295   // (x == -infinity ? +infinity : sqrt(x)).
2296   if (!Pow->hasNoInfs()) {
2297     Value *PosInf = ConstantFP::getInfinity(Ty),
2298           *NegInf = ConstantFP::getInfinity(Ty, true);
2299     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2300     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2301   }
2302 
2303   // If the exponent is negative, then get the reciprocal.
2304   if (ExpoF->isNegative())
2305     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2306 
2307   return Sqrt;
2308 }
2309 
2310 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2311                                            IRBuilderBase &B) {
2312   Value *Args[] = {Base, Expo};
2313   Type *Types[] = {Base->getType(), Expo->getType()};
2314   return B.CreateIntrinsic(Intrinsic::powi, Types, Args);
2315 }
2316 
2317 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2318   Value *Base = Pow->getArgOperand(0);
2319   Value *Expo = Pow->getArgOperand(1);
2320   Function *Callee = Pow->getCalledFunction();
2321   StringRef Name = Callee->getName();
2322   Type *Ty = Pow->getType();
2323   Module *M = Pow->getModule();
2324   bool AllowApprox = Pow->hasApproxFunc();
2325   bool Ignored;
2326 
2327   // Propagate the math semantics from the call to any created instructions.
2328   IRBuilderBase::FastMathFlagGuard Guard(B);
2329   B.setFastMathFlags(Pow->getFastMathFlags());
2330   // Evaluate special cases related to the base.
2331 
2332   // pow(1.0, x) -> 1.0
2333   if (match(Base, m_FPOne()))
2334     return Base;
2335 
2336   if (Value *Exp = replacePowWithExp(Pow, B))
2337     return Exp;
2338 
2339   // Evaluate special cases related to the exponent.
2340 
2341   // pow(x, -1.0) -> 1.0 / x
2342   if (match(Expo, m_SpecificFP(-1.0)))
2343     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2344 
2345   // pow(x, +/-0.0) -> 1.0
2346   if (match(Expo, m_AnyZeroFP()))
2347     return ConstantFP::get(Ty, 1.0);
2348 
2349   // pow(x, 1.0) -> x
2350   if (match(Expo, m_FPOne()))
2351     return Base;
2352 
2353   // pow(x, 2.0) -> x * x
2354   if (match(Expo, m_SpecificFP(2.0)))
2355     return B.CreateFMul(Base, Base, "square");
2356 
2357   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2358     return Sqrt;
2359 
2360   // If we can approximate pow:
2361   // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2362   // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2363   const APFloat *ExpoF;
2364   if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2365       !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2366     APFloat ExpoA(abs(*ExpoF));
2367     APFloat ExpoI(*ExpoF);
2368     Value *Sqrt = nullptr;
2369     if (!ExpoA.isInteger()) {
2370       APFloat Expo2 = ExpoA;
2371       // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2372       // is no floating point exception and the result is an integer, then
2373       // ExpoA == integer + 0.5
2374       if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2375         return nullptr;
2376 
2377       if (!Expo2.isInteger())
2378         return nullptr;
2379 
2380       if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2381           APFloat::opInexact)
2382         return nullptr;
2383       if (!ExpoI.isInteger())
2384         return nullptr;
2385       ExpoF = &ExpoI;
2386 
2387       Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2388                          B, TLI);
2389       if (!Sqrt)
2390         return nullptr;
2391     }
2392 
2393     // 0.5 fraction is now optionally handled.
2394     // Do pow -> powi for remaining integer exponent
2395     APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2396     if (ExpoF->isInteger() &&
2397         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2398             APFloat::opOK) {
2399       Value *PowI = copyFlags(
2400           *Pow,
2401           createPowWithIntegerExponent(
2402               Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2403               M, B));
2404 
2405       if (PowI && Sqrt)
2406         return B.CreateFMul(PowI, Sqrt);
2407 
2408       return PowI;
2409     }
2410   }
2411 
2412   // powf(x, itofp(y)) -> powi(x, y)
2413   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2414     if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2415       return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2416   }
2417 
2418   // Shrink pow() to powf() if the arguments are single precision,
2419   // unless the result is expected to be double precision.
2420   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2421       hasFloatVersion(M, Name)) {
2422     if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2423       return Shrunk;
2424   }
2425 
2426   return nullptr;
2427 }
2428 
2429 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2430   Module *M = CI->getModule();
2431   Function *Callee = CI->getCalledFunction();
2432   StringRef Name = Callee->getName();
2433   Value *Ret = nullptr;
2434   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2435       hasFloatVersion(M, Name))
2436     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2437 
2438   // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we
2439   // have the libcall, emit the libcall.
2440   //
2441   // TODO: In principle we should be able to just always use the intrinsic for
2442   // any doesNotAccessMemory callsite.
2443 
2444   const bool UseIntrinsic = Callee->isIntrinsic();
2445   // Bail out for vectors because the code below only expects scalars.
2446   Type *Ty = CI->getType();
2447   if (!UseIntrinsic && Ty->isVectorTy())
2448     return Ret;
2449 
2450   // exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= IntSize
2451   // exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < IntSize
2452   Value *Op = CI->getArgOperand(0);
2453   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2454       (UseIntrinsic ||
2455        hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) {
2456     if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) {
2457       Constant *One = ConstantFP::get(Ty, 1.0);
2458 
2459       if (UseIntrinsic) {
2460         return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp,
2461                                                 {Ty, Exp->getType()},
2462                                                 {One, Exp}, CI));
2463       }
2464 
2465       IRBuilderBase::FastMathFlagGuard Guard(B);
2466       B.setFastMathFlags(CI->getFastMathFlags());
2467       return copyFlags(*CI, emitBinaryFloatFnCall(
2468                                 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf,
2469                                 LibFunc_ldexpl, B, AttributeList()));
2470     }
2471   }
2472 
2473   return Ret;
2474 }
2475 
2476 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2477   Module *M = CI->getModule();
2478 
2479   // If we can shrink the call to a float function rather than a double
2480   // function, do that first.
2481   Function *Callee = CI->getCalledFunction();
2482   StringRef Name = Callee->getName();
2483   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2484     if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2485       return Ret;
2486 
2487   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2488   // the intrinsics for improved optimization (for example, vectorization).
2489   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2490   // From the C standard draft WG14/N1256:
2491   // "Ideally, fmax would be sensitive to the sign of zero, for example
2492   // fmax(-0.0, +0.0) would return +0; however, implementation in software
2493   // might be impractical."
2494   IRBuilderBase::FastMathFlagGuard Guard(B);
2495   FastMathFlags FMF = CI->getFastMathFlags();
2496   FMF.setNoSignedZeros();
2497   B.setFastMathFlags(FMF);
2498 
2499   Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2500                                                             : Intrinsic::maxnum;
2501   return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0),
2502                                                 CI->getArgOperand(1)));
2503 }
2504 
2505 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2506   Function *LogFn = Log->getCalledFunction();
2507   StringRef LogNm = LogFn->getName();
2508   Intrinsic::ID LogID = LogFn->getIntrinsicID();
2509   Module *Mod = Log->getModule();
2510   Type *Ty = Log->getType();
2511   Value *Ret = nullptr;
2512 
2513   if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2514     Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2515 
2516   // The earlier call must also be 'fast' in order to do these transforms.
2517   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2518   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2519     return Ret;
2520 
2521   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2522 
2523   // This is only applicable to log(), log2(), log10().
2524   if (TLI->getLibFunc(LogNm, LogLb))
2525     switch (LogLb) {
2526     case LibFunc_logf:
2527       LogID = Intrinsic::log;
2528       ExpLb = LibFunc_expf;
2529       Exp2Lb = LibFunc_exp2f;
2530       Exp10Lb = LibFunc_exp10f;
2531       PowLb = LibFunc_powf;
2532       break;
2533     case LibFunc_log:
2534       LogID = Intrinsic::log;
2535       ExpLb = LibFunc_exp;
2536       Exp2Lb = LibFunc_exp2;
2537       Exp10Lb = LibFunc_exp10;
2538       PowLb = LibFunc_pow;
2539       break;
2540     case LibFunc_logl:
2541       LogID = Intrinsic::log;
2542       ExpLb = LibFunc_expl;
2543       Exp2Lb = LibFunc_exp2l;
2544       Exp10Lb = LibFunc_exp10l;
2545       PowLb = LibFunc_powl;
2546       break;
2547     case LibFunc_log2f:
2548       LogID = Intrinsic::log2;
2549       ExpLb = LibFunc_expf;
2550       Exp2Lb = LibFunc_exp2f;
2551       Exp10Lb = LibFunc_exp10f;
2552       PowLb = LibFunc_powf;
2553       break;
2554     case LibFunc_log2:
2555       LogID = Intrinsic::log2;
2556       ExpLb = LibFunc_exp;
2557       Exp2Lb = LibFunc_exp2;
2558       Exp10Lb = LibFunc_exp10;
2559       PowLb = LibFunc_pow;
2560       break;
2561     case LibFunc_log2l:
2562       LogID = Intrinsic::log2;
2563       ExpLb = LibFunc_expl;
2564       Exp2Lb = LibFunc_exp2l;
2565       Exp10Lb = LibFunc_exp10l;
2566       PowLb = LibFunc_powl;
2567       break;
2568     case LibFunc_log10f:
2569       LogID = Intrinsic::log10;
2570       ExpLb = LibFunc_expf;
2571       Exp2Lb = LibFunc_exp2f;
2572       Exp10Lb = LibFunc_exp10f;
2573       PowLb = LibFunc_powf;
2574       break;
2575     case LibFunc_log10:
2576       LogID = Intrinsic::log10;
2577       ExpLb = LibFunc_exp;
2578       Exp2Lb = LibFunc_exp2;
2579       Exp10Lb = LibFunc_exp10;
2580       PowLb = LibFunc_pow;
2581       break;
2582     case LibFunc_log10l:
2583       LogID = Intrinsic::log10;
2584       ExpLb = LibFunc_expl;
2585       Exp2Lb = LibFunc_exp2l;
2586       Exp10Lb = LibFunc_exp10l;
2587       PowLb = LibFunc_powl;
2588       break;
2589     default:
2590       return Ret;
2591     }
2592   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2593            LogID == Intrinsic::log10) {
2594     if (Ty->getScalarType()->isFloatTy()) {
2595       ExpLb = LibFunc_expf;
2596       Exp2Lb = LibFunc_exp2f;
2597       Exp10Lb = LibFunc_exp10f;
2598       PowLb = LibFunc_powf;
2599     } else if (Ty->getScalarType()->isDoubleTy()) {
2600       ExpLb = LibFunc_exp;
2601       Exp2Lb = LibFunc_exp2;
2602       Exp10Lb = LibFunc_exp10;
2603       PowLb = LibFunc_pow;
2604     } else
2605       return Ret;
2606   } else
2607     return Ret;
2608 
2609   IRBuilderBase::FastMathFlagGuard Guard(B);
2610   B.setFastMathFlags(FastMathFlags::getFast());
2611 
2612   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2613   LibFunc ArgLb = NotLibFunc;
2614   TLI->getLibFunc(*Arg, ArgLb);
2615 
2616   // log(pow(x,y)) -> y*log(x)
2617   AttributeList NoAttrs;
2618   if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2619     Value *LogX =
2620         Log->doesNotAccessMemory()
2621             ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log")
2622             : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2623     Value *Y = Arg->getArgOperand(1);
2624     // Cast exponent to FP if integer.
2625     if (ArgID == Intrinsic::powi)
2626       Y = B.CreateSIToFP(Y, Ty, "cast");
2627     Value *MulY = B.CreateFMul(Y, LogX, "mul");
2628     // Since pow() may have side effects, e.g. errno,
2629     // dead code elimination may not be trusted to remove it.
2630     substituteInParent(Arg, MulY);
2631     return MulY;
2632   }
2633 
2634   // log(exp{,2,10}(y)) -> y*log({e,2,10})
2635   // TODO: There is no exp10() intrinsic yet.
2636   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2637            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2638     Constant *Eul;
2639     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2640       // FIXME: Add more precise value of e for long double.
2641       Eul = ConstantFP::get(Log->getType(), numbers::e);
2642     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2643       Eul = ConstantFP::get(Log->getType(), 2.0);
2644     else
2645       Eul = ConstantFP::get(Log->getType(), 10.0);
2646     Value *LogE = Log->doesNotAccessMemory()
2647                       ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log")
2648                       : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2649     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2650     // Since exp() may have side effects, e.g. errno,
2651     // dead code elimination may not be trusted to remove it.
2652     substituteInParent(Arg, MulY);
2653     return MulY;
2654   }
2655 
2656   return Ret;
2657 }
2658 
2659 // sqrt(exp(X)) -> exp(X * 0.5)
2660 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) {
2661   if (!CI->hasAllowReassoc())
2662     return nullptr;
2663 
2664   Function *SqrtFn = CI->getCalledFunction();
2665   CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0));
2666   if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse())
2667     return nullptr;
2668   Intrinsic::ID ArgID = Arg->getIntrinsicID();
2669   LibFunc ArgLb = NotLibFunc;
2670   TLI->getLibFunc(*Arg, ArgLb);
2671 
2672   LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb;
2673 
2674   if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb))
2675     switch (SqrtLb) {
2676     case LibFunc_sqrtf:
2677       ExpLb = LibFunc_expf;
2678       Exp2Lb = LibFunc_exp2f;
2679       Exp10Lb = LibFunc_exp10f;
2680       break;
2681     case LibFunc_sqrt:
2682       ExpLb = LibFunc_exp;
2683       Exp2Lb = LibFunc_exp2;
2684       Exp10Lb = LibFunc_exp10;
2685       break;
2686     case LibFunc_sqrtl:
2687       ExpLb = LibFunc_expl;
2688       Exp2Lb = LibFunc_exp2l;
2689       Exp10Lb = LibFunc_exp10l;
2690       break;
2691     default:
2692       return nullptr;
2693     }
2694   else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) {
2695     if (CI->getType()->getScalarType()->isFloatTy()) {
2696       ExpLb = LibFunc_expf;
2697       Exp2Lb = LibFunc_exp2f;
2698       Exp10Lb = LibFunc_exp10f;
2699     } else if (CI->getType()->getScalarType()->isDoubleTy()) {
2700       ExpLb = LibFunc_exp;
2701       Exp2Lb = LibFunc_exp2;
2702       Exp10Lb = LibFunc_exp10;
2703     } else
2704       return nullptr;
2705   } else
2706     return nullptr;
2707 
2708   if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb &&
2709       ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2)
2710     return nullptr;
2711 
2712   IRBuilderBase::InsertPointGuard Guard(B);
2713   B.SetInsertPoint(Arg);
2714   auto *ExpOperand = Arg->getOperand(0);
2715   auto *FMul =
2716       B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5),
2717                       CI, "merged.sqrt");
2718 
2719   Arg->setOperand(0, FMul);
2720   return Arg;
2721 }
2722 
2723 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2724   Module *M = CI->getModule();
2725   Function *Callee = CI->getCalledFunction();
2726   Value *Ret = nullptr;
2727   // TODO: Once we have a way (other than checking for the existince of the
2728   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2729   // condition below.
2730   if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2731       (Callee->getName() == "sqrt" ||
2732        Callee->getIntrinsicID() == Intrinsic::sqrt))
2733     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2734 
2735   if (Value *Opt = mergeSqrtToExp(CI, B))
2736     return Opt;
2737 
2738   if (!CI->isFast())
2739     return Ret;
2740 
2741   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2742   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2743     return Ret;
2744 
2745   // We're looking for a repeated factor in a multiplication tree,
2746   // so we can do this fold: sqrt(x * x) -> fabs(x);
2747   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2748   Value *Op0 = I->getOperand(0);
2749   Value *Op1 = I->getOperand(1);
2750   Value *RepeatOp = nullptr;
2751   Value *OtherOp = nullptr;
2752   if (Op0 == Op1) {
2753     // Simple match: the operands of the multiply are identical.
2754     RepeatOp = Op0;
2755   } else {
2756     // Look for a more complicated pattern: one of the operands is itself
2757     // a multiply, so search for a common factor in that multiply.
2758     // Note: We don't bother looking any deeper than this first level or for
2759     // variations of this pattern because instcombine's visitFMUL and/or the
2760     // reassociation pass should give us this form.
2761     Value *OtherMul0, *OtherMul1;
2762     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2763       // Pattern: sqrt((x * y) * z)
2764       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2765         // Matched: sqrt((x * x) * z)
2766         RepeatOp = OtherMul0;
2767         OtherOp = Op1;
2768       }
2769     }
2770   }
2771   if (!RepeatOp)
2772     return Ret;
2773 
2774   // Fast math flags for any created instructions should match the sqrt
2775   // and multiply.
2776   IRBuilderBase::FastMathFlagGuard Guard(B);
2777   B.setFastMathFlags(I->getFastMathFlags());
2778 
2779   // If we found a repeated factor, hoist it out of the square root and
2780   // replace it with the fabs of that factor.
2781   Value *FabsCall =
2782       B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs");
2783   if (OtherOp) {
2784     // If we found a non-repeated factor, we still need to get its square
2785     // root. We then multiply that by the value that was simplified out
2786     // of the square root calculation.
2787     Value *SqrtCall =
2788         B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt");
2789     return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2790   }
2791   return copyFlags(*CI, FabsCall);
2792 }
2793 
2794 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI,
2795                                                      IRBuilderBase &B) {
2796   Module *M = CI->getModule();
2797   Function *Callee = CI->getCalledFunction();
2798   Value *Ret = nullptr;
2799   StringRef Name = Callee->getName();
2800   if (UnsafeFPShrink &&
2801       (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" ||
2802        Name == "asinh") &&
2803       hasFloatVersion(M, Name))
2804     Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2805 
2806   Value *Op1 = CI->getArgOperand(0);
2807   auto *OpC = dyn_cast<CallInst>(Op1);
2808   if (!OpC)
2809     return Ret;
2810 
2811   // Both calls must be 'fast' in order to remove them.
2812   if (!CI->isFast() || !OpC->isFast())
2813     return Ret;
2814 
2815   // tan(atan(x)) -> x
2816   // atanh(tanh(x)) -> x
2817   // sinh(asinh(x)) -> x
2818   // asinh(sinh(x)) -> x
2819   // cosh(acosh(x)) -> x
2820   LibFunc Func;
2821   Function *F = OpC->getCalledFunction();
2822   if (F && TLI->getLibFunc(F->getName(), Func) &&
2823       isLibFuncEmittable(M, TLI, Func)) {
2824     LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName())
2825                               .Case("tan", LibFunc_atan)
2826                               .Case("atanh", LibFunc_tanh)
2827                               .Case("sinh", LibFunc_asinh)
2828                               .Case("cosh", LibFunc_acosh)
2829                               .Case("tanf", LibFunc_atanf)
2830                               .Case("atanhf", LibFunc_tanhf)
2831                               .Case("sinhf", LibFunc_asinhf)
2832                               .Case("coshf", LibFunc_acoshf)
2833                               .Case("tanl", LibFunc_atanl)
2834                               .Case("atanhl", LibFunc_tanhl)
2835                               .Case("sinhl", LibFunc_asinhl)
2836                               .Case("coshl", LibFunc_acoshl)
2837                               .Case("asinh", LibFunc_sinh)
2838                               .Case("asinhf", LibFunc_sinhf)
2839                               .Case("asinhl", LibFunc_sinhl)
2840                               .Default(NumLibFuncs); // Used as error value
2841     if (Func == inverseFunc)
2842       Ret = OpC->getArgOperand(0);
2843   }
2844   return Ret;
2845 }
2846 
2847 static bool isTrigLibCall(CallInst *CI) {
2848   // We can only hope to do anything useful if we can ignore things like errno
2849   // and floating-point exceptions.
2850   // We already checked the prototype.
2851   return CI->doesNotThrow() && CI->doesNotAccessMemory();
2852 }
2853 
2854 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2855                              bool UseFloat, Value *&Sin, Value *&Cos,
2856                              Value *&SinCos, const TargetLibraryInfo *TLI) {
2857   Module *M = OrigCallee->getParent();
2858   Type *ArgTy = Arg->getType();
2859   Type *ResTy;
2860   StringRef Name;
2861 
2862   Triple T(OrigCallee->getParent()->getTargetTriple());
2863   if (UseFloat) {
2864     Name = "__sincospif_stret";
2865 
2866     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2867     // x86_64 can't use {float, float} since that would be returned in both
2868     // xmm0 and xmm1, which isn't what a real struct would do.
2869     ResTy = T.getArch() == Triple::x86_64
2870                 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2871                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2872   } else {
2873     Name = "__sincospi_stret";
2874     ResTy = StructType::get(ArgTy, ArgTy);
2875   }
2876 
2877   if (!isLibFuncEmittable(M, TLI, Name))
2878     return false;
2879   LibFunc TheLibFunc;
2880   TLI->getLibFunc(Name, TheLibFunc);
2881   FunctionCallee Callee = getOrInsertLibFunc(
2882       M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2883 
2884   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2885     // If the argument is an instruction, it must dominate all uses so put our
2886     // sincos call there.
2887     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2888   } else {
2889     // Otherwise (e.g. for a constant) the beginning of the function is as
2890     // good a place as any.
2891     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2892     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2893   }
2894 
2895   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2896 
2897   if (SinCos->getType()->isStructTy()) {
2898     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2899     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2900   } else {
2901     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2902                                  "sinpi");
2903     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2904                                  "cospi");
2905   }
2906 
2907   return true;
2908 }
2909 
2910 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven,
2911                                     IRBuilderBase &B) {
2912   Value *X;
2913   Value *Src = CI->getArgOperand(0);
2914 
2915   if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) {
2916     IRBuilderBase::FastMathFlagGuard Guard(B);
2917     B.setFastMathFlags(CI->getFastMathFlags());
2918 
2919     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2920     if (IsEven) {
2921       // Even function: f(-x) = f(x)
2922       return CallInst;
2923     }
2924     // Odd function: f(-x) = -f(x)
2925     return B.CreateFNeg(CallInst);
2926   }
2927 
2928   // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x)
2929   if (IsEven && (match(Src, m_FAbs(m_Value(X))) ||
2930                  match(Src, m_CopySign(m_Value(X), m_Value())))) {
2931     IRBuilderBase::FastMathFlagGuard Guard(B);
2932     B.setFastMathFlags(CI->getFastMathFlags());
2933 
2934     auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X}));
2935     return CallInst;
2936   }
2937 
2938   return nullptr;
2939 }
2940 
2941 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func,
2942                                             IRBuilderBase &B) {
2943   switch (Func) {
2944   case LibFunc_cos:
2945   case LibFunc_cosf:
2946   case LibFunc_cosl:
2947     return optimizeSymmetricCall(CI, /*IsEven*/ true, B);
2948 
2949   case LibFunc_sin:
2950   case LibFunc_sinf:
2951   case LibFunc_sinl:
2952 
2953   case LibFunc_tan:
2954   case LibFunc_tanf:
2955   case LibFunc_tanl:
2956 
2957   case LibFunc_erf:
2958   case LibFunc_erff:
2959   case LibFunc_erfl:
2960     return optimizeSymmetricCall(CI, /*IsEven*/ false, B);
2961 
2962   default:
2963     return nullptr;
2964   }
2965 }
2966 
2967 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
2968   // Make sure the prototype is as expected, otherwise the rest of the
2969   // function is probably invalid and likely to abort.
2970   if (!isTrigLibCall(CI))
2971     return nullptr;
2972 
2973   Value *Arg = CI->getArgOperand(0);
2974   SmallVector<CallInst *, 1> SinCalls;
2975   SmallVector<CallInst *, 1> CosCalls;
2976   SmallVector<CallInst *, 1> SinCosCalls;
2977 
2978   bool IsFloat = Arg->getType()->isFloatTy();
2979 
2980   // Look for all compatible sinpi, cospi and sincospi calls with the same
2981   // argument. If there are enough (in some sense) we can make the
2982   // substitution.
2983   Function *F = CI->getFunction();
2984   for (User *U : Arg->users())
2985     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2986 
2987   // It's only worthwhile if both sinpi and cospi are actually used.
2988   if (SinCalls.empty() || CosCalls.empty())
2989     return nullptr;
2990 
2991   Value *Sin, *Cos, *SinCos;
2992   if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2993                         SinCos, TLI))
2994     return nullptr;
2995 
2996   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2997                                  Value *Res) {
2998     for (CallInst *C : Calls)
2999       replaceAllUsesWith(C, Res);
3000   };
3001 
3002   replaceTrigInsts(SinCalls, Sin);
3003   replaceTrigInsts(CosCalls, Cos);
3004   replaceTrigInsts(SinCosCalls, SinCos);
3005 
3006   return IsSin ? Sin : Cos;
3007 }
3008 
3009 void LibCallSimplifier::classifyArgUse(
3010     Value *Val, Function *F, bool IsFloat,
3011     SmallVectorImpl<CallInst *> &SinCalls,
3012     SmallVectorImpl<CallInst *> &CosCalls,
3013     SmallVectorImpl<CallInst *> &SinCosCalls) {
3014   auto *CI = dyn_cast<CallInst>(Val);
3015   if (!CI || CI->use_empty())
3016     return;
3017 
3018   // Don't consider calls in other functions.
3019   if (CI->getFunction() != F)
3020     return;
3021 
3022   Module *M = CI->getModule();
3023   Function *Callee = CI->getCalledFunction();
3024   LibFunc Func;
3025   if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
3026       !isLibFuncEmittable(M, TLI, Func) ||
3027       !isTrigLibCall(CI))
3028     return;
3029 
3030   if (IsFloat) {
3031     if (Func == LibFunc_sinpif)
3032       SinCalls.push_back(CI);
3033     else if (Func == LibFunc_cospif)
3034       CosCalls.push_back(CI);
3035     else if (Func == LibFunc_sincospif_stret)
3036       SinCosCalls.push_back(CI);
3037   } else {
3038     if (Func == LibFunc_sinpi)
3039       SinCalls.push_back(CI);
3040     else if (Func == LibFunc_cospi)
3041       CosCalls.push_back(CI);
3042     else if (Func == LibFunc_sincospi_stret)
3043       SinCosCalls.push_back(CI);
3044   }
3045 }
3046 
3047 /// Constant folds remquo
3048 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) {
3049   const APFloat *X, *Y;
3050   if (!match(CI->getArgOperand(0), m_APFloat(X)) ||
3051       !match(CI->getArgOperand(1), m_APFloat(Y)))
3052     return nullptr;
3053 
3054   APFloat::opStatus Status;
3055   APFloat Quot = *X;
3056   Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven);
3057   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3058     return nullptr;
3059   APFloat Rem = *X;
3060   if (Rem.remainder(*Y) != APFloat::opOK)
3061     return nullptr;
3062 
3063   // TODO: We can only keep at least the three of the last bits of x/y
3064   unsigned IntBW = TLI->getIntSize();
3065   APSInt QuotInt(IntBW, /*isUnsigned=*/false);
3066   bool IsExact;
3067   Status =
3068       Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact);
3069   if (Status != APFloat::opOK && Status != APFloat::opInexact)
3070     return nullptr;
3071 
3072   B.CreateAlignedStore(
3073       ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()),
3074       CI->getArgOperand(2), CI->getParamAlign(2));
3075   return ConstantFP::get(CI->getType(), Rem);
3076 }
3077 
3078 //===----------------------------------------------------------------------===//
3079 // Integer Library Call Optimizations
3080 //===----------------------------------------------------------------------===//
3081 
3082 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
3083   // All variants of ffs return int which need not be 32 bits wide.
3084   // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
3085   Type *RetType = CI->getType();
3086   Value *Op = CI->getArgOperand(0);
3087   Type *ArgType = Op->getType();
3088   Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()},
3089                                nullptr, "cttz");
3090   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
3091   V = B.CreateIntCast(V, RetType, false);
3092 
3093   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
3094   return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
3095 }
3096 
3097 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
3098   // All variants of fls return int which need not be 32 bits wide.
3099   // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
3100   Value *Op = CI->getArgOperand(0);
3101   Type *ArgType = Op->getType();
3102   Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()},
3103                                nullptr, "ctlz");
3104   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
3105                   V);
3106   return B.CreateIntCast(V, CI->getType(), false);
3107 }
3108 
3109 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
3110   // abs(x) -> x <s 0 ? -x : x
3111   // The negation has 'nsw' because abs of INT_MIN is undefined.
3112   Value *X = CI->getArgOperand(0);
3113   Value *IsNeg = B.CreateIsNeg(X);
3114   Value *NegX = B.CreateNSWNeg(X, "neg");
3115   return B.CreateSelect(IsNeg, NegX, X);
3116 }
3117 
3118 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
3119   // isdigit(c) -> (c-'0') <u 10
3120   Value *Op = CI->getArgOperand(0);
3121   Type *ArgType = Op->getType();
3122   Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
3123   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
3124   return B.CreateZExt(Op, CI->getType());
3125 }
3126 
3127 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
3128   // isascii(c) -> c <u 128
3129   Value *Op = CI->getArgOperand(0);
3130   Type *ArgType = Op->getType();
3131   Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
3132   return B.CreateZExt(Op, CI->getType());
3133 }
3134 
3135 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
3136   // toascii(c) -> c & 0x7f
3137   return B.CreateAnd(CI->getArgOperand(0),
3138                      ConstantInt::get(CI->getType(), 0x7F));
3139 }
3140 
3141 // Fold calls to atoi, atol, and atoll.
3142 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
3143   CI->addParamAttr(0, Attribute::NoCapture);
3144 
3145   StringRef Str;
3146   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3147     return nullptr;
3148 
3149   return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
3150 }
3151 
3152 // Fold calls to strtol, strtoll, strtoul, and strtoull.
3153 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
3154                                            bool AsSigned) {
3155   Value *EndPtr = CI->getArgOperand(1);
3156   if (isa<ConstantPointerNull>(EndPtr)) {
3157     // With a null EndPtr, this function won't capture the main argument.
3158     // It would be readonly too, except that it still may write to errno.
3159     CI->addParamAttr(0, Attribute::NoCapture);
3160     EndPtr = nullptr;
3161   } else if (!isKnownNonZero(EndPtr, DL))
3162     return nullptr;
3163 
3164   StringRef Str;
3165   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
3166     return nullptr;
3167 
3168   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
3169     return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
3170   }
3171 
3172   return nullptr;
3173 }
3174 
3175 //===----------------------------------------------------------------------===//
3176 // Formatting and IO Library Call Optimizations
3177 //===----------------------------------------------------------------------===//
3178 
3179 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
3180 
3181 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
3182                                                  int StreamArg) {
3183   Function *Callee = CI->getCalledFunction();
3184   // Error reporting calls should be cold, mark them as such.
3185   // This applies even to non-builtin calls: it is only a hint and applies to
3186   // functions that the frontend might not understand as builtins.
3187 
3188   // This heuristic was suggested in:
3189   // Improving Static Branch Prediction in a Compiler
3190   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
3191   // Proceedings of PACT'98, Oct. 1998, IEEE
3192   if (!CI->hasFnAttr(Attribute::Cold) &&
3193       isReportingError(Callee, CI, StreamArg)) {
3194     CI->addFnAttr(Attribute::Cold);
3195   }
3196 
3197   return nullptr;
3198 }
3199 
3200 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
3201   if (!Callee || !Callee->isDeclaration())
3202     return false;
3203 
3204   if (StreamArg < 0)
3205     return true;
3206 
3207   // These functions might be considered cold, but only if their stream
3208   // argument is stderr.
3209 
3210   if (StreamArg >= (int)CI->arg_size())
3211     return false;
3212   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
3213   if (!LI)
3214     return false;
3215   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
3216   if (!GV || !GV->isDeclaration())
3217     return false;
3218   return GV->getName() == "stderr";
3219 }
3220 
3221 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
3222   // Check for a fixed format string.
3223   StringRef FormatStr;
3224   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
3225     return nullptr;
3226 
3227   // Empty format string -> noop.
3228   if (FormatStr.empty()) // Tolerate printf's declared void.
3229     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
3230 
3231   // Do not do any of the following transformations if the printf return value
3232   // is used, in general the printf return value is not compatible with either
3233   // putchar() or puts().
3234   if (!CI->use_empty())
3235     return nullptr;
3236 
3237   Type *IntTy = CI->getType();
3238   // printf("x") -> putchar('x'), even for "%" and "%%".
3239   if (FormatStr.size() == 1 || FormatStr == "%%") {
3240     // Convert the character to unsigned char before passing it to putchar
3241     // to avoid host-specific sign extension in the IR.  Putchar converts
3242     // it to unsigned char regardless.
3243     Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
3244     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3245   }
3246 
3247   // Try to remove call or emit putchar/puts.
3248   if (FormatStr == "%s" && CI->arg_size() > 1) {
3249     StringRef OperandStr;
3250     if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
3251       return nullptr;
3252     // printf("%s", "") --> NOP
3253     if (OperandStr.empty())
3254       return (Value *)CI;
3255     // printf("%s", "a") --> putchar('a')
3256     if (OperandStr.size() == 1) {
3257       // Convert the character to unsigned char before passing it to putchar
3258       // to avoid host-specific sign extension in the IR.  Putchar converts
3259       // it to unsigned char regardless.
3260       Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
3261       return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3262     }
3263     // printf("%s", str"\n") --> puts(str)
3264     if (OperandStr.back() == '\n') {
3265       OperandStr = OperandStr.drop_back();
3266       Value *GV = B.CreateGlobalString(OperandStr, "str");
3267       return copyFlags(*CI, emitPutS(GV, B, TLI));
3268     }
3269     return nullptr;
3270   }
3271 
3272   // printf("foo\n") --> puts("foo")
3273   if (FormatStr.back() == '\n' &&
3274       !FormatStr.contains('%')) { // No format characters.
3275     // Create a string literal with no \n on it.  We expect the constant merge
3276     // pass to be run after this pass, to merge duplicate strings.
3277     FormatStr = FormatStr.drop_back();
3278     Value *GV = B.CreateGlobalString(FormatStr, "str");
3279     return copyFlags(*CI, emitPutS(GV, B, TLI));
3280   }
3281 
3282   // Optimize specific format strings.
3283   // printf("%c", chr) --> putchar(chr)
3284   if (FormatStr == "%c" && CI->arg_size() > 1 &&
3285       CI->getArgOperand(1)->getType()->isIntegerTy()) {
3286     // Convert the argument to the type expected by putchar, i.e., int, which
3287     // need not be 32 bits wide but which is the same as printf's return type.
3288     Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
3289     return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3290   }
3291 
3292   // printf("%s\n", str) --> puts(str)
3293   if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3294       CI->getArgOperand(1)->getType()->isPointerTy())
3295     return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
3296   return nullptr;
3297 }
3298 
3299 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3300 
3301   Module *M = CI->getModule();
3302   Function *Callee = CI->getCalledFunction();
3303   FunctionType *FT = Callee->getFunctionType();
3304   if (Value *V = optimizePrintFString(CI, B)) {
3305     return V;
3306   }
3307 
3308   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3309 
3310   // printf(format, ...) -> iprintf(format, ...) if no floating point
3311   // arguments.
3312   if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
3313       !callHasFloatingPointArgument(CI)) {
3314     FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
3315                                                   Callee->getAttributes());
3316     CallInst *New = cast<CallInst>(CI->clone());
3317     New->setCalledFunction(IPrintFFn);
3318     B.Insert(New);
3319     return New;
3320   }
3321 
3322   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3323   // arguments.
3324   if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
3325       !callHasFP128Argument(CI)) {
3326     auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3327                                             Callee->getAttributes());
3328     CallInst *New = cast<CallInst>(CI->clone());
3329     New->setCalledFunction(SmallPrintFFn);
3330     B.Insert(New);
3331     return New;
3332   }
3333 
3334   return nullptr;
3335 }
3336 
3337 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3338                                                 IRBuilderBase &B) {
3339   // Check for a fixed format string.
3340   StringRef FormatStr;
3341   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3342     return nullptr;
3343 
3344   // If we just have a format string (nothing else crazy) transform it.
3345   Value *Dest = CI->getArgOperand(0);
3346   if (CI->arg_size() == 2) {
3347     // Make sure there's no % in the constant array.  We could try to handle
3348     // %% -> % in the future if we cared.
3349     if (FormatStr.contains('%'))
3350       return nullptr; // we found a format specifier, bail out.
3351 
3352     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3353     B.CreateMemCpy(
3354         Dest, Align(1), CI->getArgOperand(1), Align(1),
3355         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
3356                          FormatStr.size() + 1)); // Copy the null byte.
3357     return ConstantInt::get(CI->getType(), FormatStr.size());
3358   }
3359 
3360   // The remaining optimizations require the format string to be "%s" or "%c"
3361   // and have an extra operand.
3362   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3363     return nullptr;
3364 
3365   // Decode the second character of the format string.
3366   if (FormatStr[1] == 'c') {
3367     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3368     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3369       return nullptr;
3370     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
3371     Value *Ptr = Dest;
3372     B.CreateStore(V, Ptr);
3373     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3374     B.CreateStore(B.getInt8(0), Ptr);
3375 
3376     return ConstantInt::get(CI->getType(), 1);
3377   }
3378 
3379   if (FormatStr[1] == 's') {
3380     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3381     // strlen(str)+1)
3382     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3383       return nullptr;
3384 
3385     if (CI->use_empty())
3386       // sprintf(dest, "%s", str) -> strcpy(dest, str)
3387       return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
3388 
3389     uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
3390     if (SrcLen) {
3391       B.CreateMemCpy(
3392           Dest, Align(1), CI->getArgOperand(2), Align(1),
3393           ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
3394       // Returns total number of characters written without null-character.
3395       return ConstantInt::get(CI->getType(), SrcLen - 1);
3396     } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
3397       // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3398       Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3399       return B.CreateIntCast(PtrDiff, CI->getType(), false);
3400     }
3401 
3402     bool OptForSize = CI->getFunction()->hasOptSize() ||
3403                       llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3404                                                   PGSOQueryType::IRPass);
3405     if (OptForSize)
3406       return nullptr;
3407 
3408     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
3409     if (!Len)
3410       return nullptr;
3411     Value *IncLen =
3412         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3413     B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3414 
3415     // The sprintf result is the unincremented number of bytes in the string.
3416     return B.CreateIntCast(Len, CI->getType(), false);
3417   }
3418   return nullptr;
3419 }
3420 
3421 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3422   Module *M = CI->getModule();
3423   Function *Callee = CI->getCalledFunction();
3424   FunctionType *FT = Callee->getFunctionType();
3425   if (Value *V = optimizeSPrintFString(CI, B)) {
3426     return V;
3427   }
3428 
3429   annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3430 
3431   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3432   // point arguments.
3433   if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3434       !callHasFloatingPointArgument(CI)) {
3435     FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3436                                                    FT, Callee->getAttributes());
3437     CallInst *New = cast<CallInst>(CI->clone());
3438     New->setCalledFunction(SIPrintFFn);
3439     B.Insert(New);
3440     return New;
3441   }
3442 
3443   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3444   // floating point arguments.
3445   if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3446       !callHasFP128Argument(CI)) {
3447     auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3448                                              Callee->getAttributes());
3449     CallInst *New = cast<CallInst>(CI->clone());
3450     New->setCalledFunction(SmallSPrintFFn);
3451     B.Insert(New);
3452     return New;
3453   }
3454 
3455   return nullptr;
3456 }
3457 
3458 // Transform an snprintf call CI with the bound N to format the string Str
3459 // either to a call to memcpy, or to single character a store, or to nothing,
3460 // and fold the result to a constant.  A nonnull StrArg refers to the string
3461 // argument being formatted.  Otherwise the call is one with N < 2 and
3462 // the "%c" directive to format a single character.
3463 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3464                                              StringRef Str, uint64_t N,
3465                                              IRBuilderBase &B) {
3466   assert(StrArg || (N < 2 && Str.size() == 1));
3467 
3468   unsigned IntBits = TLI->getIntSize();
3469   uint64_t IntMax = maxIntN(IntBits);
3470   if (Str.size() > IntMax)
3471     // Bail if the string is longer than INT_MAX.  POSIX requires
3472     // implementations to set errno to EOVERFLOW in this case, in
3473     // addition to when N is larger than that (checked by the caller).
3474     return nullptr;
3475 
3476   Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3477   if (N == 0)
3478     return StrLen;
3479 
3480   // Set to the number of bytes to copy fron StrArg which is also
3481   // the offset of the terinating nul.
3482   uint64_t NCopy;
3483   if (N > Str.size())
3484     // Copy the full string, including the terminating nul (which must
3485     // be present regardless of the bound).
3486     NCopy = Str.size() + 1;
3487   else
3488     NCopy = N - 1;
3489 
3490   Value *DstArg = CI->getArgOperand(0);
3491   if (NCopy && StrArg)
3492     // Transform the call to lvm.memcpy(dst, fmt, N).
3493     copyFlags(
3494          *CI,
3495           B.CreateMemCpy(
3496                          DstArg, Align(1), StrArg, Align(1),
3497               ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3498 
3499   if (N > Str.size())
3500     // Return early when the whole format string, including the final nul,
3501     // has been copied.
3502     return StrLen;
3503 
3504   // Otherwise, when truncating the string append a terminating nul.
3505   Type *Int8Ty = B.getInt8Ty();
3506   Value *NulOff = B.getIntN(IntBits, NCopy);
3507   Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3508   B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3509   return StrLen;
3510 }
3511 
3512 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3513                                                  IRBuilderBase &B) {
3514   // Check for size
3515   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3516   if (!Size)
3517     return nullptr;
3518 
3519   uint64_t N = Size->getZExtValue();
3520   uint64_t IntMax = maxIntN(TLI->getIntSize());
3521   if (N > IntMax)
3522     // Bail if the bound exceeds INT_MAX.  POSIX requires implementations
3523     // to set errno to EOVERFLOW in this case.
3524     return nullptr;
3525 
3526   Value *DstArg = CI->getArgOperand(0);
3527   Value *FmtArg = CI->getArgOperand(2);
3528 
3529   // Check for a fixed format string.
3530   StringRef FormatStr;
3531   if (!getConstantStringInfo(FmtArg, FormatStr))
3532     return nullptr;
3533 
3534   // If we just have a format string (nothing else crazy) transform it.
3535   if (CI->arg_size() == 3) {
3536     if (FormatStr.contains('%'))
3537       // Bail if the format string contains a directive and there are
3538       // no arguments.  We could handle "%%" in the future.
3539       return nullptr;
3540 
3541     return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3542   }
3543 
3544   // The remaining optimizations require the format string to be "%s" or "%c"
3545   // and have an extra operand.
3546   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3547     return nullptr;
3548 
3549   // Decode the second character of the format string.
3550   if (FormatStr[1] == 'c') {
3551     if (N <= 1) {
3552       // Use an arbitary string of length 1 to transform the call into
3553       // either a nul store (N == 1) or a no-op (N == 0) and fold it
3554       // to one.
3555       StringRef CharStr("*");
3556       return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3557     }
3558 
3559     // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3560     if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3561       return nullptr;
3562     Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3563     Value *Ptr = DstArg;
3564     B.CreateStore(V, Ptr);
3565     Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3566     B.CreateStore(B.getInt8(0), Ptr);
3567     return ConstantInt::get(CI->getType(), 1);
3568   }
3569 
3570   if (FormatStr[1] != 's')
3571     return nullptr;
3572 
3573   Value *StrArg = CI->getArgOperand(3);
3574   // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3575   StringRef Str;
3576   if (!getConstantStringInfo(StrArg, Str))
3577     return nullptr;
3578 
3579   return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3580 }
3581 
3582 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3583   if (Value *V = optimizeSnPrintFString(CI, B)) {
3584     return V;
3585   }
3586 
3587   if (isKnownNonZero(CI->getOperand(1), DL))
3588     annotateNonNullNoUndefBasedOnAccess(CI, 0);
3589   return nullptr;
3590 }
3591 
3592 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3593                                                 IRBuilderBase &B) {
3594   optimizeErrorReporting(CI, B, 0);
3595 
3596   // All the optimizations depend on the format string.
3597   StringRef FormatStr;
3598   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3599     return nullptr;
3600 
3601   // Do not do any of the following transformations if the fprintf return
3602   // value is used, in general the fprintf return value is not compatible
3603   // with fwrite(), fputc() or fputs().
3604   if (!CI->use_empty())
3605     return nullptr;
3606 
3607   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3608   if (CI->arg_size() == 2) {
3609     // Could handle %% -> % if we cared.
3610     if (FormatStr.contains('%'))
3611       return nullptr; // We found a format specifier.
3612 
3613     unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3614     Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3615     return copyFlags(
3616         *CI, emitFWrite(CI->getArgOperand(1),
3617                         ConstantInt::get(SizeTTy, FormatStr.size()),
3618                         CI->getArgOperand(0), B, DL, TLI));
3619   }
3620 
3621   // The remaining optimizations require the format string to be "%s" or "%c"
3622   // and have an extra operand.
3623   if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3624     return nullptr;
3625 
3626   // Decode the second character of the format string.
3627   if (FormatStr[1] == 'c') {
3628     // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3629     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3630       return nullptr;
3631     Type *IntTy = B.getIntNTy(TLI->getIntSize());
3632     Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3633                                "chari");
3634     return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3635   }
3636 
3637   if (FormatStr[1] == 's') {
3638     // fprintf(F, "%s", str) --> fputs(str, F)
3639     if (!CI->getArgOperand(2)->getType()->isPointerTy())
3640       return nullptr;
3641     return copyFlags(
3642         *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3643   }
3644   return nullptr;
3645 }
3646 
3647 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3648   Module *M = CI->getModule();
3649   Function *Callee = CI->getCalledFunction();
3650   FunctionType *FT = Callee->getFunctionType();
3651   if (Value *V = optimizeFPrintFString(CI, B)) {
3652     return V;
3653   }
3654 
3655   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3656   // floating point arguments.
3657   if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3658       !callHasFloatingPointArgument(CI)) {
3659     FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3660                                                    FT, Callee->getAttributes());
3661     CallInst *New = cast<CallInst>(CI->clone());
3662     New->setCalledFunction(FIPrintFFn);
3663     B.Insert(New);
3664     return New;
3665   }
3666 
3667   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3668   // 128-bit floating point arguments.
3669   if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3670       !callHasFP128Argument(CI)) {
3671     auto SmallFPrintFFn =
3672         getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3673                            Callee->getAttributes());
3674     CallInst *New = cast<CallInst>(CI->clone());
3675     New->setCalledFunction(SmallFPrintFFn);
3676     B.Insert(New);
3677     return New;
3678   }
3679 
3680   return nullptr;
3681 }
3682 
3683 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3684   optimizeErrorReporting(CI, B, 3);
3685 
3686   // Get the element size and count.
3687   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3688   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3689   if (SizeC && CountC) {
3690     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3691 
3692     // If this is writing zero records, remove the call (it's a noop).
3693     if (Bytes == 0)
3694       return ConstantInt::get(CI->getType(), 0);
3695 
3696     // If this is writing one byte, turn it into fputc.
3697     // This optimisation is only valid, if the return value is unused.
3698     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3699       Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char");
3700       Type *IntTy = B.getIntNTy(TLI->getIntSize());
3701       Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3702       Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3703       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3704     }
3705   }
3706 
3707   return nullptr;
3708 }
3709 
3710 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3711   optimizeErrorReporting(CI, B, 1);
3712 
3713   // Don't rewrite fputs to fwrite when optimising for size because fwrite
3714   // requires more arguments and thus extra MOVs are required.
3715   bool OptForSize = CI->getFunction()->hasOptSize() ||
3716                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3717                                                 PGSOQueryType::IRPass);
3718   if (OptForSize)
3719     return nullptr;
3720 
3721   // We can't optimize if return value is used.
3722   if (!CI->use_empty())
3723     return nullptr;
3724 
3725   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3726   uint64_t Len = GetStringLength(CI->getArgOperand(0));
3727   if (!Len)
3728     return nullptr;
3729 
3730   // Known to have no uses (see above).
3731   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3732   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3733   return copyFlags(
3734       *CI,
3735       emitFWrite(CI->getArgOperand(0),
3736                  ConstantInt::get(SizeTTy, Len - 1),
3737                  CI->getArgOperand(1), B, DL, TLI));
3738 }
3739 
3740 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3741   annotateNonNullNoUndefBasedOnAccess(CI, 0);
3742   if (!CI->use_empty())
3743     return nullptr;
3744 
3745   // Check for a constant string.
3746   // puts("") -> putchar('\n')
3747   StringRef Str;
3748   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3749     // putchar takes an argument of the same type as puts returns, i.e.,
3750     // int, which need not be 32 bits wide.
3751     Type *IntTy = CI->getType();
3752     return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3753   }
3754 
3755   return nullptr;
3756 }
3757 
3758 Value *LibCallSimplifier::optimizeExit(CallInst *CI) {
3759 
3760   // Mark 'exit' as cold if its not exit(0) (success).
3761   const APInt *C;
3762   if (!CI->hasFnAttr(Attribute::Cold) &&
3763       match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) {
3764     CI->addFnAttr(Attribute::Cold);
3765   }
3766   return nullptr;
3767 }
3768 
3769 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3770   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3771   return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3772                                         CI->getArgOperand(0), Align(1),
3773                                         CI->getArgOperand(2)));
3774 }
3775 
3776 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3777   SmallString<20> FloatFuncName = FuncName;
3778   FloatFuncName += 'f';
3779   return isLibFuncEmittable(M, TLI, FloatFuncName);
3780 }
3781 
3782 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3783                                                       IRBuilderBase &Builder) {
3784   Module *M = CI->getModule();
3785   LibFunc Func;
3786   Function *Callee = CI->getCalledFunction();
3787 
3788   // Check for string/memory library functions.
3789   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3790     // Make sure we never change the calling convention.
3791     assert(
3792         (ignoreCallingConv(Func) ||
3793          TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3794         "Optimizing string/memory libcall would change the calling convention");
3795     switch (Func) {
3796     case LibFunc_strcat:
3797       return optimizeStrCat(CI, Builder);
3798     case LibFunc_strncat:
3799       return optimizeStrNCat(CI, Builder);
3800     case LibFunc_strchr:
3801       return optimizeStrChr(CI, Builder);
3802     case LibFunc_strrchr:
3803       return optimizeStrRChr(CI, Builder);
3804     case LibFunc_strcmp:
3805       return optimizeStrCmp(CI, Builder);
3806     case LibFunc_strncmp:
3807       return optimizeStrNCmp(CI, Builder);
3808     case LibFunc_strcpy:
3809       return optimizeStrCpy(CI, Builder);
3810     case LibFunc_stpcpy:
3811       return optimizeStpCpy(CI, Builder);
3812     case LibFunc_strlcpy:
3813       return optimizeStrLCpy(CI, Builder);
3814     case LibFunc_stpncpy:
3815       return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3816     case LibFunc_strncpy:
3817       return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3818     case LibFunc_strlen:
3819       return optimizeStrLen(CI, Builder);
3820     case LibFunc_strnlen:
3821       return optimizeStrNLen(CI, Builder);
3822     case LibFunc_strpbrk:
3823       return optimizeStrPBrk(CI, Builder);
3824     case LibFunc_strndup:
3825       return optimizeStrNDup(CI, Builder);
3826     case LibFunc_strtol:
3827     case LibFunc_strtod:
3828     case LibFunc_strtof:
3829     case LibFunc_strtoul:
3830     case LibFunc_strtoll:
3831     case LibFunc_strtold:
3832     case LibFunc_strtoull:
3833       return optimizeStrTo(CI, Builder);
3834     case LibFunc_strspn:
3835       return optimizeStrSpn(CI, Builder);
3836     case LibFunc_strcspn:
3837       return optimizeStrCSpn(CI, Builder);
3838     case LibFunc_strstr:
3839       return optimizeStrStr(CI, Builder);
3840     case LibFunc_memchr:
3841       return optimizeMemChr(CI, Builder);
3842     case LibFunc_memrchr:
3843       return optimizeMemRChr(CI, Builder);
3844     case LibFunc_bcmp:
3845       return optimizeBCmp(CI, Builder);
3846     case LibFunc_memcmp:
3847       return optimizeMemCmp(CI, Builder);
3848     case LibFunc_memcpy:
3849       return optimizeMemCpy(CI, Builder);
3850     case LibFunc_memccpy:
3851       return optimizeMemCCpy(CI, Builder);
3852     case LibFunc_mempcpy:
3853       return optimizeMemPCpy(CI, Builder);
3854     case LibFunc_memmove:
3855       return optimizeMemMove(CI, Builder);
3856     case LibFunc_memset:
3857       return optimizeMemSet(CI, Builder);
3858     case LibFunc_realloc:
3859       return optimizeRealloc(CI, Builder);
3860     case LibFunc_wcslen:
3861       return optimizeWcslen(CI, Builder);
3862     case LibFunc_bcopy:
3863       return optimizeBCopy(CI, Builder);
3864     case LibFunc_Znwm:
3865     case LibFunc_ZnwmRKSt9nothrow_t:
3866     case LibFunc_ZnwmSt11align_val_t:
3867     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3868     case LibFunc_Znam:
3869     case LibFunc_ZnamRKSt9nothrow_t:
3870     case LibFunc_ZnamSt11align_val_t:
3871     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3872     case LibFunc_Znwm12__hot_cold_t:
3873     case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
3874     case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
3875     case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3876     case LibFunc_Znam12__hot_cold_t:
3877     case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
3878     case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
3879     case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
3880     case LibFunc_size_returning_new:
3881     case LibFunc_size_returning_new_hot_cold:
3882     case LibFunc_size_returning_new_aligned:
3883     case LibFunc_size_returning_new_aligned_hot_cold:
3884       return optimizeNew(CI, Builder, Func);
3885     default:
3886       break;
3887     }
3888   }
3889   return nullptr;
3890 }
3891 
3892 /// Constant folding nan/nanf/nanl.
3893 static Value *optimizeNaN(CallInst *CI) {
3894   StringRef CharSeq;
3895   if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq))
3896     return nullptr;
3897 
3898   APInt Fill;
3899   // Treat empty strings as if they were zero.
3900   if (CharSeq.empty())
3901     Fill = APInt(32, 0);
3902   else if (CharSeq.getAsInteger(0, Fill))
3903     return nullptr;
3904 
3905   return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill);
3906 }
3907 
3908 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3909                                                        LibFunc Func,
3910                                                        IRBuilderBase &Builder) {
3911   const Module *M = CI->getModule();
3912 
3913   // Don't optimize calls that require strict floating point semantics.
3914   if (CI->isStrictFP())
3915     return nullptr;
3916 
3917   if (Value *V = optimizeSymmetric(CI, Func, Builder))
3918     return V;
3919 
3920   switch (Func) {
3921   case LibFunc_sinpif:
3922   case LibFunc_sinpi:
3923     return optimizeSinCosPi(CI, /*IsSin*/true, Builder);
3924   case LibFunc_cospif:
3925   case LibFunc_cospi:
3926     return optimizeSinCosPi(CI, /*IsSin*/false, Builder);
3927   case LibFunc_powf:
3928   case LibFunc_pow:
3929   case LibFunc_powl:
3930     return optimizePow(CI, Builder);
3931   case LibFunc_exp2l:
3932   case LibFunc_exp2:
3933   case LibFunc_exp2f:
3934     return optimizeExp2(CI, Builder);
3935   case LibFunc_fabsf:
3936   case LibFunc_fabs:
3937   case LibFunc_fabsl:
3938     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3939   case LibFunc_sqrtf:
3940   case LibFunc_sqrt:
3941   case LibFunc_sqrtl:
3942     return optimizeSqrt(CI, Builder);
3943   case LibFunc_logf:
3944   case LibFunc_log:
3945   case LibFunc_logl:
3946   case LibFunc_log10f:
3947   case LibFunc_log10:
3948   case LibFunc_log10l:
3949   case LibFunc_log1pf:
3950   case LibFunc_log1p:
3951   case LibFunc_log1pl:
3952   case LibFunc_log2f:
3953   case LibFunc_log2:
3954   case LibFunc_log2l:
3955   case LibFunc_logbf:
3956   case LibFunc_logb:
3957   case LibFunc_logbl:
3958     return optimizeLog(CI, Builder);
3959   case LibFunc_tan:
3960   case LibFunc_tanf:
3961   case LibFunc_tanl:
3962   case LibFunc_sinh:
3963   case LibFunc_sinhf:
3964   case LibFunc_sinhl:
3965   case LibFunc_asinh:
3966   case LibFunc_asinhf:
3967   case LibFunc_asinhl:
3968   case LibFunc_cosh:
3969   case LibFunc_coshf:
3970   case LibFunc_coshl:
3971   case LibFunc_atanh:
3972   case LibFunc_atanhf:
3973   case LibFunc_atanhl:
3974     return optimizeTrigInversionPairs(CI, Builder);
3975   case LibFunc_ceil:
3976     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3977   case LibFunc_floor:
3978     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3979   case LibFunc_round:
3980     return replaceUnaryCall(CI, Builder, Intrinsic::round);
3981   case LibFunc_roundeven:
3982     return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3983   case LibFunc_nearbyint:
3984     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3985   case LibFunc_rint:
3986     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3987   case LibFunc_trunc:
3988     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3989   case LibFunc_acos:
3990   case LibFunc_acosh:
3991   case LibFunc_asin:
3992   case LibFunc_atan:
3993   case LibFunc_cbrt:
3994   case LibFunc_exp:
3995   case LibFunc_exp10:
3996   case LibFunc_expm1:
3997   case LibFunc_cos:
3998   case LibFunc_sin:
3999   case LibFunc_tanh:
4000     if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
4001       return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
4002     return nullptr;
4003   case LibFunc_copysign:
4004     if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
4005       return optimizeBinaryDoubleFP(CI, Builder, TLI);
4006     return nullptr;
4007   case LibFunc_fminf:
4008   case LibFunc_fmin:
4009   case LibFunc_fminl:
4010   case LibFunc_fmaxf:
4011   case LibFunc_fmax:
4012   case LibFunc_fmaxl:
4013     return optimizeFMinFMax(CI, Builder);
4014   case LibFunc_cabs:
4015   case LibFunc_cabsf:
4016   case LibFunc_cabsl:
4017     return optimizeCAbs(CI, Builder);
4018   case LibFunc_remquo:
4019   case LibFunc_remquof:
4020   case LibFunc_remquol:
4021     return optimizeRemquo(CI, Builder);
4022   case LibFunc_nan:
4023   case LibFunc_nanf:
4024   case LibFunc_nanl:
4025     return optimizeNaN(CI);
4026   default:
4027     return nullptr;
4028   }
4029 }
4030 
4031 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
4032   Module *M = CI->getModule();
4033   assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
4034 
4035   // TODO: Split out the code below that operates on FP calls so that
4036   //       we can all non-FP calls with the StrictFP attribute to be
4037   //       optimized.
4038   if (CI->isNoBuiltin())
4039     return nullptr;
4040 
4041   LibFunc Func;
4042   Function *Callee = CI->getCalledFunction();
4043   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4044 
4045   SmallVector<OperandBundleDef, 2> OpBundles;
4046   CI->getOperandBundlesAsDefs(OpBundles);
4047 
4048   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4049   Builder.setDefaultOperandBundles(OpBundles);
4050 
4051   // Command-line parameter overrides instruction attribute.
4052   // This can't be moved to optimizeFloatingPointLibCall() because it may be
4053   // used by the intrinsic optimizations.
4054   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
4055     UnsafeFPShrink = EnableUnsafeFPShrink;
4056   else if (isa<FPMathOperator>(CI) && CI->isFast())
4057     UnsafeFPShrink = true;
4058 
4059   // First, check for intrinsics.
4060   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
4061     if (!IsCallingConvC)
4062       return nullptr;
4063     // The FP intrinsics have corresponding constrained versions so we don't
4064     // need to check for the StrictFP attribute here.
4065     switch (II->getIntrinsicID()) {
4066     case Intrinsic::pow:
4067       return optimizePow(CI, Builder);
4068     case Intrinsic::exp2:
4069       return optimizeExp2(CI, Builder);
4070     case Intrinsic::log:
4071     case Intrinsic::log2:
4072     case Intrinsic::log10:
4073       return optimizeLog(CI, Builder);
4074     case Intrinsic::sqrt:
4075       return optimizeSqrt(CI, Builder);
4076     case Intrinsic::memset:
4077       return optimizeMemSet(CI, Builder);
4078     case Intrinsic::memcpy:
4079       return optimizeMemCpy(CI, Builder);
4080     case Intrinsic::memmove:
4081       return optimizeMemMove(CI, Builder);
4082     default:
4083       return nullptr;
4084     }
4085   }
4086 
4087   // Also try to simplify calls to fortified library functions.
4088   if (Value *SimplifiedFortifiedCI =
4089           FortifiedSimplifier.optimizeCall(CI, Builder))
4090     return SimplifiedFortifiedCI;
4091 
4092   // Then check for known library functions.
4093   if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
4094     // We never change the calling convention.
4095     if (!ignoreCallingConv(Func) && !IsCallingConvC)
4096       return nullptr;
4097     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
4098       return V;
4099     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
4100       return V;
4101     switch (Func) {
4102     case LibFunc_ffs:
4103     case LibFunc_ffsl:
4104     case LibFunc_ffsll:
4105       return optimizeFFS(CI, Builder);
4106     case LibFunc_fls:
4107     case LibFunc_flsl:
4108     case LibFunc_flsll:
4109       return optimizeFls(CI, Builder);
4110     case LibFunc_abs:
4111     case LibFunc_labs:
4112     case LibFunc_llabs:
4113       return optimizeAbs(CI, Builder);
4114     case LibFunc_isdigit:
4115       return optimizeIsDigit(CI, Builder);
4116     case LibFunc_isascii:
4117       return optimizeIsAscii(CI, Builder);
4118     case LibFunc_toascii:
4119       return optimizeToAscii(CI, Builder);
4120     case LibFunc_atoi:
4121     case LibFunc_atol:
4122     case LibFunc_atoll:
4123       return optimizeAtoi(CI, Builder);
4124     case LibFunc_strtol:
4125     case LibFunc_strtoll:
4126       return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
4127     case LibFunc_strtoul:
4128     case LibFunc_strtoull:
4129       return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
4130     case LibFunc_printf:
4131       return optimizePrintF(CI, Builder);
4132     case LibFunc_sprintf:
4133       return optimizeSPrintF(CI, Builder);
4134     case LibFunc_snprintf:
4135       return optimizeSnPrintF(CI, Builder);
4136     case LibFunc_fprintf:
4137       return optimizeFPrintF(CI, Builder);
4138     case LibFunc_fwrite:
4139       return optimizeFWrite(CI, Builder);
4140     case LibFunc_fputs:
4141       return optimizeFPuts(CI, Builder);
4142     case LibFunc_puts:
4143       return optimizePuts(CI, Builder);
4144     case LibFunc_perror:
4145       return optimizeErrorReporting(CI, Builder);
4146     case LibFunc_vfprintf:
4147     case LibFunc_fiprintf:
4148       return optimizeErrorReporting(CI, Builder, 0);
4149     case LibFunc_exit:
4150     case LibFunc_Exit:
4151       return optimizeExit(CI);
4152     default:
4153       return nullptr;
4154     }
4155   }
4156   return nullptr;
4157 }
4158 
4159 LibCallSimplifier::LibCallSimplifier(
4160     const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC,
4161     OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4162     ProfileSummaryInfo *PSI,
4163     function_ref<void(Instruction *, Value *)> Replacer,
4164     function_ref<void(Instruction *)> Eraser)
4165     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI),
4166       PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
4167 
4168 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
4169   // Indirect through the replacer used in this instance.
4170   Replacer(I, With);
4171 }
4172 
4173 void LibCallSimplifier::eraseFromParent(Instruction *I) {
4174   Eraser(I);
4175 }
4176 
4177 // TODO:
4178 //   Additional cases that we need to add to this file:
4179 //
4180 // cbrt:
4181 //   * cbrt(expN(X))  -> expN(x/3)
4182 //   * cbrt(sqrt(x))  -> pow(x,1/6)
4183 //   * cbrt(cbrt(x))  -> pow(x,1/9)
4184 //
4185 // exp, expf, expl:
4186 //   * exp(log(x))  -> x
4187 //
4188 // log, logf, logl:
4189 //   * log(exp(x))   -> x
4190 //   * log(exp(y))   -> y*log(e)
4191 //   * log(exp10(y)) -> y*log(10)
4192 //   * log(sqrt(x))  -> 0.5*log(x)
4193 //
4194 // pow, powf, powl:
4195 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
4196 //   * pow(pow(x,y),z)-> pow(x,y*z)
4197 //
4198 // signbit:
4199 //   * signbit(cnst) -> cnst'
4200 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
4201 //
4202 // sqrt, sqrtf, sqrtl:
4203 //   * sqrt(expN(x))  -> expN(x*0.5)
4204 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
4205 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
4206 //
4207 
4208 //===----------------------------------------------------------------------===//
4209 // Fortified Library Call Optimizations
4210 //===----------------------------------------------------------------------===//
4211 
4212 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
4213     CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
4214     std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
4215   // If this function takes a flag argument, the implementation may use it to
4216   // perform extra checks. Don't fold into the non-checking variant.
4217   if (FlagOp) {
4218     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
4219     if (!Flag || !Flag->isZero())
4220       return false;
4221   }
4222 
4223   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
4224     return true;
4225 
4226   if (ConstantInt *ObjSizeCI =
4227           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
4228     if (ObjSizeCI->isMinusOne())
4229       return true;
4230     // If the object size wasn't -1 (unknown), bail out if we were asked to.
4231     if (OnlyLowerUnknownSize)
4232       return false;
4233     if (StrOp) {
4234       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
4235       // If the length is 0 we don't know how long it is and so we can't
4236       // remove the check.
4237       if (Len)
4238         annotateDereferenceableBytes(CI, *StrOp, Len);
4239       else
4240         return false;
4241       return ObjSizeCI->getZExtValue() >= Len;
4242     }
4243 
4244     if (SizeOp) {
4245       if (ConstantInt *SizeCI =
4246               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
4247         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
4248     }
4249   }
4250   return false;
4251 }
4252 
4253 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
4254                                                      IRBuilderBase &B) {
4255   if (isFortifiedCallFoldable(CI, 3, 2)) {
4256     CallInst *NewCI =
4257         B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4258                        Align(1), CI->getArgOperand(2));
4259     mergeAttributesAndFlags(NewCI, *CI);
4260     return CI->getArgOperand(0);
4261   }
4262   return nullptr;
4263 }
4264 
4265 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
4266                                                       IRBuilderBase &B) {
4267   if (isFortifiedCallFoldable(CI, 3, 2)) {
4268     CallInst *NewCI =
4269         B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
4270                         Align(1), CI->getArgOperand(2));
4271     mergeAttributesAndFlags(NewCI, *CI);
4272     return CI->getArgOperand(0);
4273   }
4274   return nullptr;
4275 }
4276 
4277 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
4278                                                      IRBuilderBase &B) {
4279   if (isFortifiedCallFoldable(CI, 3, 2)) {
4280     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
4281     CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
4282                                      CI->getArgOperand(2), Align(1));
4283     mergeAttributesAndFlags(NewCI, *CI);
4284     return CI->getArgOperand(0);
4285   }
4286   return nullptr;
4287 }
4288 
4289 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
4290                                                       IRBuilderBase &B) {
4291   const DataLayout &DL = CI->getDataLayout();
4292   if (isFortifiedCallFoldable(CI, 3, 2))
4293     if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4294                                   CI->getArgOperand(2), B, DL, TLI)) {
4295       return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
4296     }
4297   return nullptr;
4298 }
4299 
4300 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
4301                                                       IRBuilderBase &B,
4302                                                       LibFunc Func) {
4303   const DataLayout &DL = CI->getDataLayout();
4304   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
4305         *ObjSize = CI->getArgOperand(2);
4306 
4307   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
4308   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
4309     Value *StrLen = emitStrLen(Src, B, DL, TLI);
4310     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
4311   }
4312 
4313   // If a) we don't have any length information, or b) we know this will
4314   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
4315   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
4316   // TODO: It might be nice to get a maximum length out of the possible
4317   // string lengths for varying.
4318   if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
4319     if (Func == LibFunc_strcpy_chk)
4320       return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
4321     else
4322       return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
4323   }
4324 
4325   if (OnlyLowerUnknownSize)
4326     return nullptr;
4327 
4328   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
4329   uint64_t Len = GetStringLength(Src);
4330   if (Len)
4331     annotateDereferenceableBytes(CI, 1, Len);
4332   else
4333     return nullptr;
4334 
4335   unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
4336   Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
4337   Value *LenV = ConstantInt::get(SizeTTy, Len);
4338   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
4339   // If the function was an __stpcpy_chk, and we were able to fold it into
4340   // a __memcpy_chk, we still need to return the correct end pointer.
4341   if (Ret && Func == LibFunc_stpcpy_chk)
4342     return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
4343                                ConstantInt::get(SizeTTy, Len - 1));
4344   return copyFlags(*CI, cast<CallInst>(Ret));
4345 }
4346 
4347 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
4348                                                      IRBuilderBase &B) {
4349   if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4350     return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
4351                                      CI->getDataLayout(), TLI));
4352   return nullptr;
4353 }
4354 
4355 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4356                                                        IRBuilderBase &B,
4357                                                        LibFunc Func) {
4358   if (isFortifiedCallFoldable(CI, 3, 2)) {
4359     if (Func == LibFunc_strncpy_chk)
4360       return copyFlags(*CI,
4361                        emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4362                                    CI->getArgOperand(2), B, TLI));
4363     else
4364       return copyFlags(*CI,
4365                        emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4366                                    CI->getArgOperand(2), B, TLI));
4367   }
4368 
4369   return nullptr;
4370 }
4371 
4372 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4373                                                       IRBuilderBase &B) {
4374   if (isFortifiedCallFoldable(CI, 4, 3))
4375     return copyFlags(
4376         *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4377                          CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
4378 
4379   return nullptr;
4380 }
4381 
4382 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4383                                                        IRBuilderBase &B) {
4384   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4385     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
4386     return copyFlags(*CI,
4387                      emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4388                                   CI->getArgOperand(4), VariadicArgs, B, TLI));
4389   }
4390 
4391   return nullptr;
4392 }
4393 
4394 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4395                                                       IRBuilderBase &B) {
4396   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4397     SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
4398     return copyFlags(*CI,
4399                      emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4400                                  VariadicArgs, B, TLI));
4401   }
4402 
4403   return nullptr;
4404 }
4405 
4406 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4407                                                      IRBuilderBase &B) {
4408   if (isFortifiedCallFoldable(CI, 2))
4409     return copyFlags(
4410         *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
4411 
4412   return nullptr;
4413 }
4414 
4415 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4416                                                    IRBuilderBase &B) {
4417   if (isFortifiedCallFoldable(CI, 3))
4418     return copyFlags(*CI,
4419                      emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
4420                                  CI->getArgOperand(2), B, TLI));
4421 
4422   return nullptr;
4423 }
4424 
4425 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4426                                                       IRBuilderBase &B) {
4427   if (isFortifiedCallFoldable(CI, 3))
4428     return copyFlags(*CI,
4429                      emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
4430                                  CI->getArgOperand(2), B, TLI));
4431 
4432   return nullptr;
4433 }
4434 
4435 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4436                                                       IRBuilderBase &B) {
4437   if (isFortifiedCallFoldable(CI, 3))
4438     return copyFlags(*CI,
4439                      emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4440                                  CI->getArgOperand(2), B, TLI));
4441 
4442   return nullptr;
4443 }
4444 
4445 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4446                                                         IRBuilderBase &B) {
4447   if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4448     return copyFlags(
4449         *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4450                            CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
4451 
4452   return nullptr;
4453 }
4454 
4455 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4456                                                        IRBuilderBase &B) {
4457   if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4458     return copyFlags(*CI,
4459                      emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4460                                   CI->getArgOperand(4), B, TLI));
4461 
4462   return nullptr;
4463 }
4464 
4465 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4466                                                 IRBuilderBase &Builder) {
4467   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4468   // Some clang users checked for _chk libcall availability using:
4469   //   __has_builtin(__builtin___memcpy_chk)
4470   // When compiling with -fno-builtin, this is always true.
4471   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4472   // end up with fortified libcalls, which isn't acceptable in a freestanding
4473   // environment which only provides their non-fortified counterparts.
4474   //
4475   // Until we change clang and/or teach external users to check for availability
4476   // differently, disregard the "nobuiltin" attribute and TLI::has.
4477   //
4478   // PR23093.
4479 
4480   LibFunc Func;
4481   Function *Callee = CI->getCalledFunction();
4482   bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4483 
4484   SmallVector<OperandBundleDef, 2> OpBundles;
4485   CI->getOperandBundlesAsDefs(OpBundles);
4486 
4487   IRBuilderBase::OperandBundlesGuard Guard(Builder);
4488   Builder.setDefaultOperandBundles(OpBundles);
4489 
4490   // First, check that this is a known library functions and that the prototype
4491   // is correct.
4492   if (!TLI->getLibFunc(*Callee, Func))
4493     return nullptr;
4494 
4495   // We never change the calling convention.
4496   if (!ignoreCallingConv(Func) && !IsCallingConvC)
4497     return nullptr;
4498 
4499   switch (Func) {
4500   case LibFunc_memcpy_chk:
4501     return optimizeMemCpyChk(CI, Builder);
4502   case LibFunc_mempcpy_chk:
4503     return optimizeMemPCpyChk(CI, Builder);
4504   case LibFunc_memmove_chk:
4505     return optimizeMemMoveChk(CI, Builder);
4506   case LibFunc_memset_chk:
4507     return optimizeMemSetChk(CI, Builder);
4508   case LibFunc_stpcpy_chk:
4509   case LibFunc_strcpy_chk:
4510     return optimizeStrpCpyChk(CI, Builder, Func);
4511   case LibFunc_strlen_chk:
4512     return optimizeStrLenChk(CI, Builder);
4513   case LibFunc_stpncpy_chk:
4514   case LibFunc_strncpy_chk:
4515     return optimizeStrpNCpyChk(CI, Builder, Func);
4516   case LibFunc_memccpy_chk:
4517     return optimizeMemCCpyChk(CI, Builder);
4518   case LibFunc_snprintf_chk:
4519     return optimizeSNPrintfChk(CI, Builder);
4520   case LibFunc_sprintf_chk:
4521     return optimizeSPrintfChk(CI, Builder);
4522   case LibFunc_strcat_chk:
4523     return optimizeStrCatChk(CI, Builder);
4524   case LibFunc_strlcat_chk:
4525     return optimizeStrLCat(CI, Builder);
4526   case LibFunc_strncat_chk:
4527     return optimizeStrNCatChk(CI, Builder);
4528   case LibFunc_strlcpy_chk:
4529     return optimizeStrLCpyChk(CI, Builder);
4530   case LibFunc_vsnprintf_chk:
4531     return optimizeVSNPrintfChk(CI, Builder);
4532   case LibFunc_vsprintf_chk:
4533     return optimizeVSPrintfChk(CI, Builder);
4534   default:
4535     break;
4536   }
4537   return nullptr;
4538 }
4539 
4540 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4541     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4542     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
4543