1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/Casting.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/KnownBits.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/TargetParser/Triple.h" 35 #include "llvm/Transforms/Utils/BuildLibCalls.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/SizeOpts.h" 38 39 #include <cmath> 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 // Enable conversion of operator new calls with a MemProf hot or cold hint 51 // to an operator new call that takes a hot/cold hint. Off by default since 52 // not all allocators currently support this extension. 53 static cl::opt<bool> 54 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 55 cl::desc("Enable hot/cold operator new library calls")); 56 static cl::opt<bool> OptimizeExistingHotColdNew( 57 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), 58 cl::desc( 59 "Enable optimization of existing hot/cold operator new library calls")); 60 61 namespace { 62 63 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 64 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 65 // option with a specific set of values. 66 struct HotColdHintParser : public cl::parser<unsigned> { 67 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 68 69 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 70 if (Arg.getAsInteger(0, Value)) 71 return O.error("'" + Arg + "' value invalid for uint argument!"); 72 73 if (Value > 255) 74 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 75 76 return false; 77 } 78 }; 79 80 } // end anonymous namespace 81 82 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 83 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 84 // hints, so that the compiler hinted allocations are slightly less strong than 85 // manually inserted hints at the two extremes. 86 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 87 "cold-new-hint-value", cl::Hidden, cl::init(1), 88 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 89 static cl::opt<unsigned, false, HotColdHintParser> 90 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), 91 cl::desc("Value to pass to hot/cold operator new for " 92 "notcold (warm) allocation")); 93 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 94 "hot-new-hint-value", cl::Hidden, cl::init(254), 95 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 96 97 //===----------------------------------------------------------------------===// 98 // Helper Functions 99 //===----------------------------------------------------------------------===// 100 101 static bool ignoreCallingConv(LibFunc Func) { 102 return Func == LibFunc_abs || Func == LibFunc_labs || 103 Func == LibFunc_llabs || Func == LibFunc_strlen; 104 } 105 106 /// Return true if it is only used in equality comparisons with With. 107 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 108 for (User *U : V->users()) { 109 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 110 if (IC->isEquality() && IC->getOperand(1) == With) 111 continue; 112 // Unknown instruction. 113 return false; 114 } 115 return true; 116 } 117 118 static bool callHasFloatingPointArgument(const CallInst *CI) { 119 return any_of(CI->operands(), [](const Use &OI) { 120 return OI->getType()->isFloatingPointTy(); 121 }); 122 } 123 124 static bool callHasFP128Argument(const CallInst *CI) { 125 return any_of(CI->operands(), [](const Use &OI) { 126 return OI->getType()->isFP128Ty(); 127 }); 128 } 129 130 // Convert the entire string Str representing an integer in Base, up to 131 // the terminating nul if present, to a constant according to the rules 132 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 133 // return the result, otherwise null. 134 // The function assumes the string is encoded in ASCII and carefully 135 // avoids converting sequences (including "") that the corresponding 136 // library call might fail and set errno for. 137 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 138 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 139 if (Base < 2 || Base > 36) 140 if (Base != 0) 141 // Fail for an invalid base (required by POSIX). 142 return nullptr; 143 144 // Current offset into the original string to reflect in EndPtr. 145 size_t Offset = 0; 146 // Strip leading whitespace. 147 for ( ; Offset != Str.size(); ++Offset) 148 if (!isSpace((unsigned char)Str[Offset])) { 149 Str = Str.substr(Offset); 150 break; 151 } 152 153 if (Str.empty()) 154 // Fail for empty subject sequences (POSIX allows but doesn't require 155 // strtol[l]/strtoul[l] to fail with EINVAL). 156 return nullptr; 157 158 // Strip but remember the sign. 159 bool Negate = Str[0] == '-'; 160 if (Str[0] == '-' || Str[0] == '+') { 161 Str = Str.drop_front(); 162 if (Str.empty()) 163 // Fail for a sign with nothing after it. 164 return nullptr; 165 ++Offset; 166 } 167 168 // Set Max to the absolute value of the minimum (for signed), or 169 // to the maximum (for unsigned) value representable in the type. 170 Type *RetTy = CI->getType(); 171 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 172 uint64_t Max = AsSigned && Negate ? 1 : 0; 173 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 174 175 // Autodetect Base if it's zero and consume the "0x" prefix. 176 if (Str.size() > 1) { 177 if (Str[0] == '0') { 178 if (toUpper((unsigned char)Str[1]) == 'X') { 179 if (Str.size() == 2 || (Base && Base != 16)) 180 // Fail if Base doesn't allow the "0x" prefix or for the prefix 181 // alone that implementations like BSD set errno to EINVAL for. 182 return nullptr; 183 184 Str = Str.drop_front(2); 185 Offset += 2; 186 Base = 16; 187 } 188 else if (Base == 0) 189 Base = 8; 190 } else if (Base == 0) 191 Base = 10; 192 } 193 else if (Base == 0) 194 Base = 10; 195 196 // Convert the rest of the subject sequence, not including the sign, 197 // to its uint64_t representation (this assumes the source character 198 // set is ASCII). 199 uint64_t Result = 0; 200 for (unsigned i = 0; i != Str.size(); ++i) { 201 unsigned char DigVal = Str[i]; 202 if (isDigit(DigVal)) 203 DigVal = DigVal - '0'; 204 else { 205 DigVal = toUpper(DigVal); 206 if (isAlpha(DigVal)) 207 DigVal = DigVal - 'A' + 10; 208 else 209 return nullptr; 210 } 211 212 if (DigVal >= Base) 213 // Fail if the digit is not valid in the Base. 214 return nullptr; 215 216 // Add the digit and fail if the result is not representable in 217 // the (unsigned form of the) destination type. 218 bool VFlow; 219 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 220 if (VFlow || Result > Max) 221 return nullptr; 222 } 223 224 if (EndPtr) { 225 // Store the pointer to the end. 226 Value *Off = B.getInt64(Offset + Str.size()); 227 Value *StrBeg = CI->getArgOperand(0); 228 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 229 B.CreateStore(StrEnd, EndPtr); 230 } 231 232 if (Negate) 233 // Unsigned negation doesn't overflow. 234 Result = -Result; 235 236 return ConstantInt::get(RetTy, Result); 237 } 238 239 static bool isOnlyUsedInComparisonWithZero(Value *V) { 240 for (User *U : V->users()) { 241 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 242 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 243 if (C->isNullValue()) 244 continue; 245 // Unknown instruction. 246 return false; 247 } 248 return true; 249 } 250 251 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 252 const DataLayout &DL) { 253 if (!isOnlyUsedInComparisonWithZero(CI)) 254 return false; 255 256 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 257 return false; 258 259 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 260 return false; 261 262 return true; 263 } 264 265 static void annotateDereferenceableBytes(CallInst *CI, 266 ArrayRef<unsigned> ArgNos, 267 uint64_t DereferenceableBytes) { 268 const Function *F = CI->getCaller(); 269 if (!F) 270 return; 271 for (unsigned ArgNo : ArgNos) { 272 uint64_t DerefBytes = DereferenceableBytes; 273 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 274 if (!llvm::NullPointerIsDefined(F, AS) || 275 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 276 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 277 DereferenceableBytes); 278 279 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 280 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 281 if (!llvm::NullPointerIsDefined(F, AS) || 282 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 283 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 284 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 285 CI->getContext(), DerefBytes)); 286 } 287 } 288 } 289 290 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 291 ArrayRef<unsigned> ArgNos) { 292 Function *F = CI->getCaller(); 293 if (!F) 294 return; 295 296 for (unsigned ArgNo : ArgNos) { 297 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 298 CI->addParamAttr(ArgNo, Attribute::NoUndef); 299 300 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 301 unsigned AS = 302 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 303 if (llvm::NullPointerIsDefined(F, AS)) 304 continue; 305 CI->addParamAttr(ArgNo, Attribute::NonNull); 306 } 307 308 annotateDereferenceableBytes(CI, ArgNo, 1); 309 } 310 } 311 312 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 313 Value *Size, const DataLayout &DL) { 314 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 315 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 316 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 317 } else if (isKnownNonZero(Size, DL)) { 318 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 319 const APInt *X, *Y; 320 uint64_t DerefMin = 1; 321 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 322 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 323 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 324 } 325 } 326 } 327 328 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 329 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 330 // in this function when New is created to replace Old. Callers should take 331 // care to check Old.isMustTailCall() if they aren't replacing Old directly 332 // with New. 333 static Value *copyFlags(const CallInst &Old, Value *New) { 334 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 335 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 336 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 337 NewCI->setTailCallKind(Old.getTailCallKind()); 338 return New; 339 } 340 341 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 342 NewCI->setAttributes(AttributeList::get( 343 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 344 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 345 return copyFlags(Old, NewCI); 346 } 347 348 // Helper to avoid truncating the length if size_t is 32-bits. 349 static StringRef substr(StringRef Str, uint64_t Len) { 350 return Len >= Str.size() ? Str : Str.substr(0, Len); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // String and Memory Library Call Optimizations 355 //===----------------------------------------------------------------------===// 356 357 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 358 // Extract some information from the instruction 359 Value *Dst = CI->getArgOperand(0); 360 Value *Src = CI->getArgOperand(1); 361 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 362 363 // See if we can get the length of the input string. 364 uint64_t Len = GetStringLength(Src); 365 if (Len) 366 annotateDereferenceableBytes(CI, 1, Len); 367 else 368 return nullptr; 369 --Len; // Unbias length. 370 371 // Handle the simple, do-nothing case: strcat(x, "") -> x 372 if (Len == 0) 373 return Dst; 374 375 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 376 } 377 378 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 379 IRBuilderBase &B) { 380 // We need to find the end of the destination string. That's where the 381 // memory is to be moved to. We just generate a call to strlen. 382 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 383 if (!DstLen) 384 return nullptr; 385 386 // Now that we have the destination's length, we must index into the 387 // destination's pointer to get the actual memcpy destination (end of 388 // the string .. we're concatenating). 389 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 390 391 // We have enough information to now generate the memcpy call to do the 392 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 393 B.CreateMemCpy( 394 CpyDst, Align(1), Src, Align(1), 395 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 396 return Dst; 397 } 398 399 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 400 // Extract some information from the instruction. 401 Value *Dst = CI->getArgOperand(0); 402 Value *Src = CI->getArgOperand(1); 403 Value *Size = CI->getArgOperand(2); 404 uint64_t Len; 405 annotateNonNullNoUndefBasedOnAccess(CI, 0); 406 if (isKnownNonZero(Size, DL)) 407 annotateNonNullNoUndefBasedOnAccess(CI, 1); 408 409 // We don't do anything if length is not constant. 410 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 411 if (LengthArg) { 412 Len = LengthArg->getZExtValue(); 413 // strncat(x, c, 0) -> x 414 if (!Len) 415 return Dst; 416 } else { 417 return nullptr; 418 } 419 420 // See if we can get the length of the input string. 421 uint64_t SrcLen = GetStringLength(Src); 422 if (SrcLen) { 423 annotateDereferenceableBytes(CI, 1, SrcLen); 424 --SrcLen; // Unbias length. 425 } else { 426 return nullptr; 427 } 428 429 // strncat(x, "", c) -> x 430 if (SrcLen == 0) 431 return Dst; 432 433 // We don't optimize this case. 434 if (Len < SrcLen) 435 return nullptr; 436 437 // strncat(x, s, c) -> strcat(x, s) 438 // s is constant so the strcat can be optimized further. 439 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 440 } 441 442 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 443 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 444 // is that either S is dereferenceable or the value of N is nonzero. 445 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 446 IRBuilderBase &B, const DataLayout &DL) 447 { 448 Value *Src = CI->getArgOperand(0); 449 Value *CharVal = CI->getArgOperand(1); 450 451 // Fold memchr(A, C, N) == A to N && *A == C. 452 Type *CharTy = B.getInt8Ty(); 453 Value *Char0 = B.CreateLoad(CharTy, Src); 454 CharVal = B.CreateTrunc(CharVal, CharTy); 455 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 456 457 if (NBytes) { 458 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 459 Value *And = B.CreateICmpNE(NBytes, Zero); 460 Cmp = B.CreateLogicalAnd(And, Cmp); 461 } 462 463 Value *NullPtr = Constant::getNullValue(CI->getType()); 464 return B.CreateSelect(Cmp, Src, NullPtr); 465 } 466 467 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 468 Value *SrcStr = CI->getArgOperand(0); 469 Value *CharVal = CI->getArgOperand(1); 470 annotateNonNullNoUndefBasedOnAccess(CI, 0); 471 472 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 473 return memChrToCharCompare(CI, nullptr, B, DL); 474 475 // If the second operand is non-constant, see if we can compute the length 476 // of the input string and turn this into memchr. 477 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 478 if (!CharC) { 479 uint64_t Len = GetStringLength(SrcStr); 480 if (Len) 481 annotateDereferenceableBytes(CI, 0, Len); 482 else 483 return nullptr; 484 485 Function *Callee = CI->getCalledFunction(); 486 FunctionType *FT = Callee->getFunctionType(); 487 unsigned IntBits = TLI->getIntSize(); 488 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 489 return nullptr; 490 491 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 492 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 493 return copyFlags(*CI, 494 emitMemChr(SrcStr, CharVal, // include nul. 495 ConstantInt::get(SizeTTy, Len), B, 496 DL, TLI)); 497 } 498 499 if (CharC->isZero()) { 500 Value *NullPtr = Constant::getNullValue(CI->getType()); 501 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 502 // Pre-empt the transformation to strlen below and fold 503 // strchr(A, '\0') == null to false. 504 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 505 } 506 507 // Otherwise, the character is a constant, see if the first argument is 508 // a string literal. If so, we can constant fold. 509 StringRef Str; 510 if (!getConstantStringInfo(SrcStr, Str)) { 511 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 512 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 513 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 514 return nullptr; 515 } 516 517 // Compute the offset, make sure to handle the case when we're searching for 518 // zero (a weird way to spell strlen). 519 size_t I = (0xFF & CharC->getSExtValue()) == 0 520 ? Str.size() 521 : Str.find(CharC->getSExtValue()); 522 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 523 return Constant::getNullValue(CI->getType()); 524 525 // strchr(s+n,c) -> gep(s+n+i,c) 526 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 527 } 528 529 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 530 Value *SrcStr = CI->getArgOperand(0); 531 Value *CharVal = CI->getArgOperand(1); 532 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 533 annotateNonNullNoUndefBasedOnAccess(CI, 0); 534 535 StringRef Str; 536 if (!getConstantStringInfo(SrcStr, Str)) { 537 // strrchr(s, 0) -> strchr(s, 0) 538 if (CharC && CharC->isZero()) 539 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 540 return nullptr; 541 } 542 543 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 544 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 545 546 // Try to expand strrchr to the memrchr nonstandard extension if it's 547 // available, or simply fail otherwise. 548 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 549 Value *Size = ConstantInt::get(SizeTTy, NBytes); 550 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 551 } 552 553 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 554 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 555 if (Str1P == Str2P) // strcmp(x,x) -> 0 556 return ConstantInt::get(CI->getType(), 0); 557 558 StringRef Str1, Str2; 559 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 560 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 561 562 // strcmp(x, y) -> cnst (if both x and y are constant strings) 563 if (HasStr1 && HasStr2) 564 return ConstantInt::get(CI->getType(), 565 std::clamp(Str1.compare(Str2), -1, 1)); 566 567 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 568 return B.CreateNeg(B.CreateZExt( 569 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 570 571 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 572 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 573 CI->getType()); 574 575 // strcmp(P, "x") -> memcmp(P, "x", 2) 576 uint64_t Len1 = GetStringLength(Str1P); 577 if (Len1) 578 annotateDereferenceableBytes(CI, 0, Len1); 579 uint64_t Len2 = GetStringLength(Str2P); 580 if (Len2) 581 annotateDereferenceableBytes(CI, 1, Len2); 582 583 if (Len1 && Len2) { 584 return copyFlags( 585 *CI, emitMemCmp(Str1P, Str2P, 586 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 587 std::min(Len1, Len2)), 588 B, DL, TLI)); 589 } 590 591 // strcmp to memcmp 592 if (!HasStr1 && HasStr2) { 593 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 594 return copyFlags( 595 *CI, 596 emitMemCmp(Str1P, Str2P, 597 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 598 B, DL, TLI)); 599 } else if (HasStr1 && !HasStr2) { 600 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 601 return copyFlags( 602 *CI, 603 emitMemCmp(Str1P, Str2P, 604 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 605 B, DL, TLI)); 606 } 607 608 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 609 return nullptr; 610 } 611 612 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 613 // arrays LHS and RHS and nonconstant Size. 614 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 615 Value *Size, bool StrNCmp, 616 IRBuilderBase &B, const DataLayout &DL); 617 618 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 619 Value *Str1P = CI->getArgOperand(0); 620 Value *Str2P = CI->getArgOperand(1); 621 Value *Size = CI->getArgOperand(2); 622 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 623 return ConstantInt::get(CI->getType(), 0); 624 625 if (isKnownNonZero(Size, DL)) 626 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 627 // Get the length argument if it is constant. 628 uint64_t Length; 629 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 630 Length = LengthArg->getZExtValue(); 631 else 632 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 633 634 if (Length == 0) // strncmp(x,y,0) -> 0 635 return ConstantInt::get(CI->getType(), 0); 636 637 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 638 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 639 640 StringRef Str1, Str2; 641 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 642 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 643 644 // strncmp(x, y) -> cnst (if both x and y are constant strings) 645 if (HasStr1 && HasStr2) { 646 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 647 StringRef SubStr1 = substr(Str1, Length); 648 StringRef SubStr2 = substr(Str2, Length); 649 return ConstantInt::get(CI->getType(), 650 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 651 } 652 653 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 654 return B.CreateNeg(B.CreateZExt( 655 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 656 657 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 658 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 659 CI->getType()); 660 661 uint64_t Len1 = GetStringLength(Str1P); 662 if (Len1) 663 annotateDereferenceableBytes(CI, 0, Len1); 664 uint64_t Len2 = GetStringLength(Str2P); 665 if (Len2) 666 annotateDereferenceableBytes(CI, 1, Len2); 667 668 // strncmp to memcmp 669 if (!HasStr1 && HasStr2) { 670 Len2 = std::min(Len2, Length); 671 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 672 return copyFlags( 673 *CI, 674 emitMemCmp(Str1P, Str2P, 675 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 676 B, DL, TLI)); 677 } else if (HasStr1 && !HasStr2) { 678 Len1 = std::min(Len1, Length); 679 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 680 return copyFlags( 681 *CI, 682 emitMemCmp(Str1P, Str2P, 683 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 684 B, DL, TLI)); 685 } 686 687 return nullptr; 688 } 689 690 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 691 Value *Src = CI->getArgOperand(0); 692 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 693 uint64_t SrcLen = GetStringLength(Src); 694 if (SrcLen && Size) { 695 annotateDereferenceableBytes(CI, 0, SrcLen); 696 if (SrcLen <= Size->getZExtValue() + 1) 697 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 698 } 699 700 return nullptr; 701 } 702 703 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 704 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 705 if (Dst == Src) // strcpy(x,x) -> x 706 return Src; 707 708 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 709 // See if we can get the length of the input string. 710 uint64_t Len = GetStringLength(Src); 711 if (Len) 712 annotateDereferenceableBytes(CI, 1, Len); 713 else 714 return nullptr; 715 716 // We have enough information to now generate the memcpy call to do the 717 // copy for us. Make a memcpy to copy the nul byte with align = 1. 718 CallInst *NewCI = 719 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 720 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 721 mergeAttributesAndFlags(NewCI, *CI); 722 return Dst; 723 } 724 725 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 726 Function *Callee = CI->getCalledFunction(); 727 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 728 729 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 730 if (CI->use_empty()) 731 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 732 733 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 734 Value *StrLen = emitStrLen(Src, B, DL, TLI); 735 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 736 } 737 738 // See if we can get the length of the input string. 739 uint64_t Len = GetStringLength(Src); 740 if (Len) 741 annotateDereferenceableBytes(CI, 1, Len); 742 else 743 return nullptr; 744 745 Type *PT = Callee->getFunctionType()->getParamType(0); 746 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 747 Value *DstEnd = B.CreateInBoundsGEP( 748 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 749 750 // We have enough information to now generate the memcpy call to do the 751 // copy for us. Make a memcpy to copy the nul byte with align = 1. 752 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 753 mergeAttributesAndFlags(NewCI, *CI); 754 return DstEnd; 755 } 756 757 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 758 759 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 760 Value *Size = CI->getArgOperand(2); 761 if (isKnownNonZero(Size, DL)) 762 // Like snprintf, the function stores into the destination only when 763 // the size argument is nonzero. 764 annotateNonNullNoUndefBasedOnAccess(CI, 0); 765 // The function reads the source argument regardless of Size (it returns 766 // its length). 767 annotateNonNullNoUndefBasedOnAccess(CI, 1); 768 769 uint64_t NBytes; 770 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 771 NBytes = SizeC->getZExtValue(); 772 else 773 return nullptr; 774 775 Value *Dst = CI->getArgOperand(0); 776 Value *Src = CI->getArgOperand(1); 777 if (NBytes <= 1) { 778 if (NBytes == 1) 779 // For a call to strlcpy(D, S, 1) first store a nul in *D. 780 B.CreateStore(B.getInt8(0), Dst); 781 782 // Transform strlcpy(D, S, 0) to a call to strlen(S). 783 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 784 } 785 786 // Try to determine the length of the source, substituting its size 787 // when it's not nul-terminated (as it's required to be) to avoid 788 // reading past its end. 789 StringRef Str; 790 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 791 return nullptr; 792 793 uint64_t SrcLen = Str.find('\0'); 794 // Set if the terminating nul should be copied by the call to memcpy 795 // below. 796 bool NulTerm = SrcLen < NBytes; 797 798 if (NulTerm) 799 // Overwrite NBytes with the number of bytes to copy, including 800 // the terminating nul. 801 NBytes = SrcLen + 1; 802 else { 803 // Set the length of the source for the function to return to its 804 // size, and cap NBytes at the same. 805 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 806 NBytes = std::min(NBytes - 1, SrcLen); 807 } 808 809 if (SrcLen == 0) { 810 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 811 B.CreateStore(B.getInt8(0), Dst); 812 return ConstantInt::get(CI->getType(), 0); 813 } 814 815 Function *Callee = CI->getCalledFunction(); 816 Type *PT = Callee->getFunctionType()->getParamType(0); 817 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 818 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 819 // D[N' - 1] if necessary. 820 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 821 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 822 mergeAttributesAndFlags(NewCI, *CI); 823 824 if (!NulTerm) { 825 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 826 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 827 B.CreateStore(B.getInt8(0), EndPtr); 828 } 829 830 // Like snprintf, strlcpy returns the number of nonzero bytes that would 831 // have been copied if the bound had been sufficiently big (which in this 832 // case is strlen(Src)). 833 return ConstantInt::get(CI->getType(), SrcLen); 834 } 835 836 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 837 // otherwise. 838 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 839 IRBuilderBase &B) { 840 Function *Callee = CI->getCalledFunction(); 841 Value *Dst = CI->getArgOperand(0); 842 Value *Src = CI->getArgOperand(1); 843 Value *Size = CI->getArgOperand(2); 844 845 if (isKnownNonZero(Size, DL)) { 846 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 847 // only when N is nonzero. 848 annotateNonNullNoUndefBasedOnAccess(CI, 0); 849 annotateNonNullNoUndefBasedOnAccess(CI, 1); 850 } 851 852 // If the "bound" argument is known set N to it. Otherwise set it to 853 // UINT64_MAX and handle it later. 854 uint64_t N = UINT64_MAX; 855 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 856 N = SizeC->getZExtValue(); 857 858 if (N == 0) 859 // Fold st{p,r}ncpy(D, S, 0) to D. 860 return Dst; 861 862 if (N == 1) { 863 Type *CharTy = B.getInt8Ty(); 864 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 865 B.CreateStore(CharVal, Dst); 866 if (!RetEnd) 867 // Transform strncpy(D, S, 1) to return (*D = *S), D. 868 return Dst; 869 870 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 871 Value *ZeroChar = ConstantInt::get(CharTy, 0); 872 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 873 874 Value *Off1 = B.getInt32(1); 875 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 876 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 877 } 878 879 // If the length of the input string is known set SrcLen to it. 880 uint64_t SrcLen = GetStringLength(Src); 881 if (SrcLen) 882 annotateDereferenceableBytes(CI, 1, SrcLen); 883 else 884 return nullptr; 885 886 --SrcLen; // Unbias length. 887 888 if (SrcLen == 0) { 889 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 890 Align MemSetAlign = 891 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 892 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 893 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 894 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 895 CI->getContext(), 0, ArgAttrs)); 896 copyFlags(*CI, NewCI); 897 return Dst; 898 } 899 900 if (N > SrcLen + 1) { 901 if (N > 128) 902 // Bail if N is large or unknown. 903 return nullptr; 904 905 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 906 StringRef Str; 907 if (!getConstantStringInfo(Src, Str)) 908 return nullptr; 909 std::string SrcStr = Str.str(); 910 // Create a bigger, nul-padded array with the same length, SrcLen, 911 // as the original string. 912 SrcStr.resize(N, '\0'); 913 Src = B.CreateGlobalString(SrcStr, "str", /*AddressSpace=*/0, 914 /*M=*/nullptr, /*AddNull=*/false); 915 } 916 917 Type *PT = Callee->getFunctionType()->getParamType(0); 918 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 919 // S and N are constant. 920 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 921 ConstantInt::get(DL.getIntPtrType(PT), N)); 922 mergeAttributesAndFlags(NewCI, *CI); 923 if (!RetEnd) 924 return Dst; 925 926 // stpncpy(D, S, N) returns the address of the first null in D if it writes 927 // one, otherwise D + N. 928 Value *Off = B.getInt64(std::min(SrcLen, N)); 929 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 930 } 931 932 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 933 unsigned CharSize, 934 Value *Bound) { 935 Value *Src = CI->getArgOperand(0); 936 Type *CharTy = B.getIntNTy(CharSize); 937 938 if (isOnlyUsedInZeroEqualityComparison(CI) && 939 (!Bound || isKnownNonZero(Bound, DL))) { 940 // Fold strlen: 941 // strlen(x) != 0 --> *x != 0 942 // strlen(x) == 0 --> *x == 0 943 // and likewise strnlen with constant N > 0: 944 // strnlen(x, N) != 0 --> *x != 0 945 // strnlen(x, N) == 0 --> *x == 0 946 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 947 CI->getType()); 948 } 949 950 if (Bound) { 951 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 952 if (BoundCst->isZero()) 953 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 954 return ConstantInt::get(CI->getType(), 0); 955 956 if (BoundCst->isOne()) { 957 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 958 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 959 Value *ZeroChar = ConstantInt::get(CharTy, 0); 960 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 961 return B.CreateZExt(Cmp, CI->getType()); 962 } 963 } 964 } 965 966 if (uint64_t Len = GetStringLength(Src, CharSize)) { 967 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 968 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 969 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 970 if (Bound) 971 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 972 return LenC; 973 } 974 975 if (Bound) 976 // Punt for strnlen for now. 977 return nullptr; 978 979 // If s is a constant pointer pointing to a string literal, we can fold 980 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 981 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 982 // We only try to simplify strlen when the pointer s points to an array 983 // of CharSize elements. Otherwise, we would need to scale the offset x before 984 // doing the subtraction. This will make the optimization more complex, and 985 // it's not very useful because calling strlen for a pointer of other types is 986 // very uncommon. 987 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 988 // TODO: Handle subobjects. 989 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 990 return nullptr; 991 992 ConstantDataArraySlice Slice; 993 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 994 uint64_t NullTermIdx; 995 if (Slice.Array == nullptr) { 996 NullTermIdx = 0; 997 } else { 998 NullTermIdx = ~((uint64_t)0); 999 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 1000 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 1001 NullTermIdx = I; 1002 break; 1003 } 1004 } 1005 // If the string does not have '\0', leave it to strlen to compute 1006 // its length. 1007 if (NullTermIdx == ~((uint64_t)0)) 1008 return nullptr; 1009 } 1010 1011 Value *Offset = GEP->getOperand(2); 1012 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1013 uint64_t ArrSize = 1014 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1015 1016 // If Offset is not provably in the range [0, NullTermIdx], we can still 1017 // optimize if we can prove that the program has undefined behavior when 1018 // Offset is outside that range. That is the case when GEP->getOperand(0) 1019 // is a pointer to an object whose memory extent is NullTermIdx+1. 1020 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1021 (isa<GlobalVariable>(GEP->getOperand(0)) && 1022 NullTermIdx == ArrSize - 1)) { 1023 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1024 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1025 Offset); 1026 } 1027 } 1028 } 1029 1030 // strlen(x?"foo":"bars") --> x ? 3 : 4 1031 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1032 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1033 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1034 if (LenTrue && LenFalse) { 1035 ORE.emit([&]() { 1036 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1037 << "folded strlen(select) to select of constants"; 1038 }); 1039 return B.CreateSelect(SI->getCondition(), 1040 ConstantInt::get(CI->getType(), LenTrue - 1), 1041 ConstantInt::get(CI->getType(), LenFalse - 1)); 1042 } 1043 } 1044 1045 return nullptr; 1046 } 1047 1048 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1049 if (Value *V = optimizeStringLength(CI, B, 8)) 1050 return V; 1051 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1052 return nullptr; 1053 } 1054 1055 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1056 Value *Bound = CI->getArgOperand(1); 1057 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1058 return V; 1059 1060 if (isKnownNonZero(Bound, DL)) 1061 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1062 return nullptr; 1063 } 1064 1065 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1066 Module &M = *CI->getModule(); 1067 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1068 // We cannot perform this optimization without wchar_size metadata. 1069 if (WCharSize == 0) 1070 return nullptr; 1071 1072 return optimizeStringLength(CI, B, WCharSize); 1073 } 1074 1075 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1076 StringRef S1, S2; 1077 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1078 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1079 1080 // strpbrk(s, "") -> nullptr 1081 // strpbrk("", s) -> nullptr 1082 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1083 return Constant::getNullValue(CI->getType()); 1084 1085 // Constant folding. 1086 if (HasS1 && HasS2) { 1087 size_t I = S1.find_first_of(S2); 1088 if (I == StringRef::npos) // No match. 1089 return Constant::getNullValue(CI->getType()); 1090 1091 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1092 B.getInt64(I), "strpbrk"); 1093 } 1094 1095 // strpbrk(s, "a") -> strchr(s, 'a') 1096 if (HasS2 && S2.size() == 1) 1097 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1098 1099 return nullptr; 1100 } 1101 1102 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1103 Value *EndPtr = CI->getArgOperand(1); 1104 if (isa<ConstantPointerNull>(EndPtr)) { 1105 // With a null EndPtr, this function won't capture the main argument. 1106 // It would be readonly too, except that it still may write to errno. 1107 CI->addParamAttr(0, Attribute::NoCapture); 1108 } 1109 1110 return nullptr; 1111 } 1112 1113 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1114 StringRef S1, S2; 1115 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1116 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1117 1118 // strspn(s, "") -> 0 1119 // strspn("", s) -> 0 1120 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1121 return Constant::getNullValue(CI->getType()); 1122 1123 // Constant folding. 1124 if (HasS1 && HasS2) { 1125 size_t Pos = S1.find_first_not_of(S2); 1126 if (Pos == StringRef::npos) 1127 Pos = S1.size(); 1128 return ConstantInt::get(CI->getType(), Pos); 1129 } 1130 1131 return nullptr; 1132 } 1133 1134 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1135 StringRef S1, S2; 1136 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1137 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1138 1139 // strcspn("", s) -> 0 1140 if (HasS1 && S1.empty()) 1141 return Constant::getNullValue(CI->getType()); 1142 1143 // Constant folding. 1144 if (HasS1 && HasS2) { 1145 size_t Pos = S1.find_first_of(S2); 1146 if (Pos == StringRef::npos) 1147 Pos = S1.size(); 1148 return ConstantInt::get(CI->getType(), Pos); 1149 } 1150 1151 // strcspn(s, "") -> strlen(s) 1152 if (HasS2 && S2.empty()) 1153 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1154 1155 return nullptr; 1156 } 1157 1158 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1159 // fold strstr(x, x) -> x. 1160 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1161 return CI->getArgOperand(0); 1162 1163 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1164 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1165 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1166 if (!StrLen) 1167 return nullptr; 1168 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1169 StrLen, B, DL, TLI); 1170 if (!StrNCmp) 1171 return nullptr; 1172 for (User *U : llvm::make_early_inc_range(CI->users())) { 1173 ICmpInst *Old = cast<ICmpInst>(U); 1174 Value *Cmp = 1175 B.CreateICmp(Old->getPredicate(), StrNCmp, 1176 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1177 replaceAllUsesWith(Old, Cmp); 1178 } 1179 return CI; 1180 } 1181 1182 // See if either input string is a constant string. 1183 StringRef SearchStr, ToFindStr; 1184 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1185 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1186 1187 // fold strstr(x, "") -> x. 1188 if (HasStr2 && ToFindStr.empty()) 1189 return CI->getArgOperand(0); 1190 1191 // If both strings are known, constant fold it. 1192 if (HasStr1 && HasStr2) { 1193 size_t Offset = SearchStr.find(ToFindStr); 1194 1195 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1196 return Constant::getNullValue(CI->getType()); 1197 1198 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1199 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1200 Offset, "strstr"); 1201 } 1202 1203 // fold strstr(x, "y") -> strchr(x, 'y'). 1204 if (HasStr2 && ToFindStr.size() == 1) { 1205 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1206 } 1207 1208 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1209 return nullptr; 1210 } 1211 1212 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1213 Value *SrcStr = CI->getArgOperand(0); 1214 Value *Size = CI->getArgOperand(2); 1215 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1216 Value *CharVal = CI->getArgOperand(1); 1217 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1218 Value *NullPtr = Constant::getNullValue(CI->getType()); 1219 1220 if (LenC) { 1221 if (LenC->isZero()) 1222 // Fold memrchr(x, y, 0) --> null. 1223 return NullPtr; 1224 1225 if (LenC->isOne()) { 1226 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1227 // constant or otherwise. 1228 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1229 // Slice off the character's high end bits. 1230 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1231 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1232 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1233 } 1234 } 1235 1236 StringRef Str; 1237 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1238 return nullptr; 1239 1240 if (Str.size() == 0) 1241 // If the array is empty fold memrchr(A, C, N) to null for any value 1242 // of C and N on the basis that the only valid value of N is zero 1243 // (otherwise the call is undefined). 1244 return NullPtr; 1245 1246 uint64_t EndOff = UINT64_MAX; 1247 if (LenC) { 1248 EndOff = LenC->getZExtValue(); 1249 if (Str.size() < EndOff) 1250 // Punt out-of-bounds accesses to sanitizers and/or libc. 1251 return nullptr; 1252 } 1253 1254 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1255 // Fold memrchr(S, C, N) for a constant C. 1256 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1257 if (Pos == StringRef::npos) 1258 // When the character is not in the source array fold the result 1259 // to null regardless of Size. 1260 return NullPtr; 1261 1262 if (LenC) 1263 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1264 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1265 1266 if (Str.find(Str[Pos]) == Pos) { 1267 // When there is just a single occurrence of C in S, i.e., the one 1268 // in Str[Pos], fold 1269 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1270 // for nonconstant N. 1271 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1272 "memrchr.cmp"); 1273 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1274 B.getInt64(Pos), "memrchr.ptr_plus"); 1275 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1276 } 1277 } 1278 1279 // Truncate the string to search at most EndOff characters. 1280 Str = Str.substr(0, EndOff); 1281 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1282 return nullptr; 1283 1284 // If the source array consists of all equal characters, then for any 1285 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1286 // N != 0 && *S == C ? S + N - 1 : null 1287 Type *SizeTy = Size->getType(); 1288 Type *Int8Ty = B.getInt8Ty(); 1289 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1290 // Slice off the sought character's high end bits. 1291 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1292 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1293 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1294 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1295 Value *SrcPlus = 1296 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1297 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1298 } 1299 1300 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1301 Value *SrcStr = CI->getArgOperand(0); 1302 Value *Size = CI->getArgOperand(2); 1303 1304 if (isKnownNonZero(Size, DL)) { 1305 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1306 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1307 return memChrToCharCompare(CI, Size, B, DL); 1308 } 1309 1310 Value *CharVal = CI->getArgOperand(1); 1311 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1312 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1313 Value *NullPtr = Constant::getNullValue(CI->getType()); 1314 1315 // memchr(x, y, 0) -> null 1316 if (LenC) { 1317 if (LenC->isZero()) 1318 return NullPtr; 1319 1320 if (LenC->isOne()) { 1321 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1322 // constant or otherwise. 1323 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1324 // Slice off the character's high end bits. 1325 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1326 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1327 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1328 } 1329 } 1330 1331 StringRef Str; 1332 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1333 return nullptr; 1334 1335 if (CharC) { 1336 size_t Pos = Str.find(CharC->getZExtValue()); 1337 if (Pos == StringRef::npos) 1338 // When the character is not in the source array fold the result 1339 // to null regardless of Size. 1340 return NullPtr; 1341 1342 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1343 // When the constant Size is less than or equal to the character 1344 // position also fold the result to null. 1345 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1346 "memchr.cmp"); 1347 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1348 "memchr.ptr"); 1349 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1350 } 1351 1352 if (Str.size() == 0) 1353 // If the array is empty fold memchr(A, C, N) to null for any value 1354 // of C and N on the basis that the only valid value of N is zero 1355 // (otherwise the call is undefined). 1356 return NullPtr; 1357 1358 if (LenC) 1359 Str = substr(Str, LenC->getZExtValue()); 1360 1361 size_t Pos = Str.find_first_not_of(Str[0]); 1362 if (Pos == StringRef::npos 1363 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1364 // If the source array consists of at most two consecutive sequences 1365 // of the same characters, then for any C and N (whether in bounds or 1366 // not), fold memchr(S, C, N) to 1367 // N != 0 && *S == C ? S : null 1368 // or for the two sequences to: 1369 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1370 // ^Sel2 ^Sel1 are denoted above. 1371 // The latter makes it also possible to fold strchr() calls with strings 1372 // of the same characters. 1373 Type *SizeTy = Size->getType(); 1374 Type *Int8Ty = B.getInt8Ty(); 1375 1376 // Slice off the sought character's high end bits. 1377 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1378 1379 Value *Sel1 = NullPtr; 1380 if (Pos != StringRef::npos) { 1381 // Handle two consecutive sequences of the same characters. 1382 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1383 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1384 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1385 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1386 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1387 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1388 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1389 } 1390 1391 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1392 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1393 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1394 Value *And = B.CreateAnd(NNeZ, CEqS0); 1395 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1396 } 1397 1398 if (!LenC) { 1399 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1400 // S is dereferenceable so it's safe to load from it and fold 1401 // memchr(S, C, N) == S to N && *S == C for any C and N. 1402 // TODO: This is safe even for nonconstant S. 1403 return memChrToCharCompare(CI, Size, B, DL); 1404 1405 // From now on we need a constant length and constant array. 1406 return nullptr; 1407 } 1408 1409 bool OptForSize = CI->getFunction()->hasOptSize() || 1410 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1411 PGSOQueryType::IRPass); 1412 1413 // If the char is variable but the input str and length are not we can turn 1414 // this memchr call into a simple bit field test. Of course this only works 1415 // when the return value is only checked against null. 1416 // 1417 // It would be really nice to reuse switch lowering here but we can't change 1418 // the CFG at this point. 1419 // 1420 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1421 // != 0 1422 // after bounds check. 1423 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1424 return nullptr; 1425 1426 unsigned char Max = 1427 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1428 reinterpret_cast<const unsigned char *>(Str.end())); 1429 1430 // Make sure the bit field we're about to create fits in a register on the 1431 // target. 1432 // FIXME: On a 64 bit architecture this prevents us from using the 1433 // interesting range of alpha ascii chars. We could do better by emitting 1434 // two bitfields or shifting the range by 64 if no lower chars are used. 1435 if (!DL.fitsInLegalInteger(Max + 1)) { 1436 // Build chain of ORs 1437 // Transform: 1438 // memchr("abcd", C, 4) != nullptr 1439 // to: 1440 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1441 std::string SortedStr = Str.str(); 1442 llvm::sort(SortedStr); 1443 // Compute the number of of non-contiguous ranges. 1444 unsigned NonContRanges = 1; 1445 for (size_t i = 1; i < SortedStr.size(); ++i) { 1446 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1447 NonContRanges++; 1448 } 1449 } 1450 1451 // Restrict this optimization to profitable cases with one or two range 1452 // checks. 1453 if (NonContRanges > 2) 1454 return nullptr; 1455 1456 SmallVector<Value *> CharCompares; 1457 for (unsigned char C : SortedStr) 1458 CharCompares.push_back( 1459 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1460 1461 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1462 } 1463 1464 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1465 // creating unnecessary illegal types. 1466 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1467 1468 // Now build the bit field. 1469 APInt Bitfield(Width, 0); 1470 for (char C : Str) 1471 Bitfield.setBit((unsigned char)C); 1472 Value *BitfieldC = B.getInt(Bitfield); 1473 1474 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1475 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1476 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1477 1478 // First check that the bit field access is within bounds. 1479 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1480 "memchr.bounds"); 1481 1482 // Create code that checks if the given bit is set in the field. 1483 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1484 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1485 1486 // Finally merge both checks and cast to pointer type. The inttoptr 1487 // implicitly zexts the i1 to intptr type. 1488 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1489 CI->getType()); 1490 } 1491 1492 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1493 // arrays LHS and RHS and nonconstant Size. 1494 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1495 Value *Size, bool StrNCmp, 1496 IRBuilderBase &B, const DataLayout &DL) { 1497 if (LHS == RHS) // memcmp(s,s,x) -> 0 1498 return Constant::getNullValue(CI->getType()); 1499 1500 StringRef LStr, RStr; 1501 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1502 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1503 return nullptr; 1504 1505 // If the contents of both constant arrays are known, fold a call to 1506 // memcmp(A, B, N) to 1507 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1508 // where Pos is the first mismatch between A and B, determined below. 1509 1510 uint64_t Pos = 0; 1511 Value *Zero = ConstantInt::get(CI->getType(), 0); 1512 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1513 if (Pos == MinSize || 1514 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1515 // One array is a leading part of the other of equal or greater 1516 // size, or for strncmp, the arrays are equal strings. 1517 // Fold the result to zero. Size is assumed to be in bounds, since 1518 // otherwise the call would be undefined. 1519 return Zero; 1520 } 1521 1522 if (LStr[Pos] != RStr[Pos]) 1523 break; 1524 } 1525 1526 // Normalize the result. 1527 typedef unsigned char UChar; 1528 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1529 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1530 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1531 Value *Res = ConstantInt::get(CI->getType(), IRes); 1532 return B.CreateSelect(Cmp, Zero, Res); 1533 } 1534 1535 // Optimize a memcmp call CI with constant size Len. 1536 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1537 uint64_t Len, IRBuilderBase &B, 1538 const DataLayout &DL) { 1539 if (Len == 0) // memcmp(s1,s2,0) -> 0 1540 return Constant::getNullValue(CI->getType()); 1541 1542 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1543 if (Len == 1) { 1544 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1545 CI->getType(), "lhsv"); 1546 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1547 CI->getType(), "rhsv"); 1548 return B.CreateSub(LHSV, RHSV, "chardiff"); 1549 } 1550 1551 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1552 // TODO: The case where both inputs are constants does not need to be limited 1553 // to legal integers or equality comparison. See block below this. 1554 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1555 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1556 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1557 1558 // First, see if we can fold either argument to a constant. 1559 Value *LHSV = nullptr; 1560 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1561 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1562 1563 Value *RHSV = nullptr; 1564 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1565 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1566 1567 // Don't generate unaligned loads. If either source is constant data, 1568 // alignment doesn't matter for that source because there is no load. 1569 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1570 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1571 if (!LHSV) 1572 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1573 if (!RHSV) 1574 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1575 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1576 } 1577 } 1578 1579 return nullptr; 1580 } 1581 1582 // Most simplifications for memcmp also apply to bcmp. 1583 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1584 IRBuilderBase &B) { 1585 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1586 Value *Size = CI->getArgOperand(2); 1587 1588 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1589 1590 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1591 return Res; 1592 1593 // Handle constant Size. 1594 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1595 if (!LenC) 1596 return nullptr; 1597 1598 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1599 } 1600 1601 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1602 Module *M = CI->getModule(); 1603 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1604 return V; 1605 1606 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1607 // bcmp can be more efficient than memcmp because it only has to know that 1608 // there is a difference, not how different one is to the other. 1609 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1610 isOnlyUsedInZeroEqualityComparison(CI)) { 1611 Value *LHS = CI->getArgOperand(0); 1612 Value *RHS = CI->getArgOperand(1); 1613 Value *Size = CI->getArgOperand(2); 1614 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1615 } 1616 1617 return nullptr; 1618 } 1619 1620 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1621 return optimizeMemCmpBCmpCommon(CI, B); 1622 } 1623 1624 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1625 Value *Size = CI->getArgOperand(2); 1626 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1627 if (isa<IntrinsicInst>(CI)) 1628 return nullptr; 1629 1630 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1631 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1632 CI->getArgOperand(1), Align(1), Size); 1633 mergeAttributesAndFlags(NewCI, *CI); 1634 return CI->getArgOperand(0); 1635 } 1636 1637 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1638 Value *Dst = CI->getArgOperand(0); 1639 Value *Src = CI->getArgOperand(1); 1640 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1641 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1642 StringRef SrcStr; 1643 if (CI->use_empty() && Dst == Src) 1644 return Dst; 1645 // memccpy(d, s, c, 0) -> nullptr 1646 if (N) { 1647 if (N->isNullValue()) 1648 return Constant::getNullValue(CI->getType()); 1649 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1650 // TODO: Handle zeroinitializer. 1651 !StopChar) 1652 return nullptr; 1653 } else { 1654 return nullptr; 1655 } 1656 1657 // Wrap arg 'c' of type int to char 1658 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1659 if (Pos == StringRef::npos) { 1660 if (N->getZExtValue() <= SrcStr.size()) { 1661 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1662 CI->getArgOperand(3))); 1663 return Constant::getNullValue(CI->getType()); 1664 } 1665 return nullptr; 1666 } 1667 1668 Value *NewN = 1669 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1670 // memccpy -> llvm.memcpy 1671 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1672 return Pos + 1 <= N->getZExtValue() 1673 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1674 : Constant::getNullValue(CI->getType()); 1675 } 1676 1677 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1678 Value *Dst = CI->getArgOperand(0); 1679 Value *N = CI->getArgOperand(2); 1680 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1681 CallInst *NewCI = 1682 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1683 // Propagate attributes, but memcpy has no return value, so make sure that 1684 // any return attributes are compliant. 1685 // TODO: Attach return value attributes to the 1st operand to preserve them? 1686 mergeAttributesAndFlags(NewCI, *CI); 1687 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1688 } 1689 1690 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1691 Value *Size = CI->getArgOperand(2); 1692 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1693 if (isa<IntrinsicInst>(CI)) 1694 return nullptr; 1695 1696 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1697 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1698 CI->getArgOperand(1), Align(1), Size); 1699 mergeAttributesAndFlags(NewCI, *CI); 1700 return CI->getArgOperand(0); 1701 } 1702 1703 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1704 Value *Size = CI->getArgOperand(2); 1705 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1706 if (isa<IntrinsicInst>(CI)) 1707 return nullptr; 1708 1709 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1710 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1711 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1712 mergeAttributesAndFlags(NewCI, *CI); 1713 return CI->getArgOperand(0); 1714 } 1715 1716 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1717 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1718 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1719 1720 return nullptr; 1721 } 1722 1723 // When enabled, replace operator new() calls marked with a hot or cold memprof 1724 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1725 // Currently this is supported by the open source version of tcmalloc, see: 1726 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1727 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1728 LibFunc &Func) { 1729 if (!OptimizeHotColdNew) 1730 return nullptr; 1731 1732 uint8_t HotCold; 1733 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1734 HotCold = ColdNewHintValue; 1735 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == 1736 "notcold") 1737 HotCold = NotColdNewHintValue; 1738 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1739 HotCold = HotNewHintValue; 1740 else 1741 return nullptr; 1742 1743 // For calls that already pass a hot/cold hint, only update the hint if 1744 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint 1745 // if cold or hot, and leave as-is for default handling if "notcold" aka warm. 1746 // Note that in cases where we decide it is "notcold", it might be slightly 1747 // better to replace the hinted call with a non hinted call, to avoid the 1748 // extra paramter and the if condition check of the hint value in the 1749 // allocator. This can be considered in the future. 1750 switch (Func) { 1751 case LibFunc_Znwm12__hot_cold_t: 1752 if (OptimizeExistingHotColdNew) 1753 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1754 LibFunc_Znwm12__hot_cold_t, HotCold); 1755 break; 1756 case LibFunc_Znwm: 1757 if (HotCold != NotColdNewHintValue) 1758 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1759 LibFunc_Znwm12__hot_cold_t, HotCold); 1760 break; 1761 case LibFunc_Znam12__hot_cold_t: 1762 if (OptimizeExistingHotColdNew) 1763 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1764 LibFunc_Znam12__hot_cold_t, HotCold); 1765 break; 1766 case LibFunc_Znam: 1767 if (HotCold != NotColdNewHintValue) 1768 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1769 LibFunc_Znam12__hot_cold_t, HotCold); 1770 break; 1771 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 1772 if (OptimizeExistingHotColdNew) 1773 return emitHotColdNewNoThrow( 1774 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1775 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1776 break; 1777 case LibFunc_ZnwmRKSt9nothrow_t: 1778 if (HotCold != NotColdNewHintValue) 1779 return emitHotColdNewNoThrow( 1780 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1781 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1782 break; 1783 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 1784 if (OptimizeExistingHotColdNew) 1785 return emitHotColdNewNoThrow( 1786 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1787 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1788 break; 1789 case LibFunc_ZnamRKSt9nothrow_t: 1790 if (HotCold != NotColdNewHintValue) 1791 return emitHotColdNewNoThrow( 1792 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1793 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1794 break; 1795 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 1796 if (OptimizeExistingHotColdNew) 1797 return emitHotColdNewAligned( 1798 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1799 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1800 break; 1801 case LibFunc_ZnwmSt11align_val_t: 1802 if (HotCold != NotColdNewHintValue) 1803 return emitHotColdNewAligned( 1804 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1805 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1806 break; 1807 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 1808 if (OptimizeExistingHotColdNew) 1809 return emitHotColdNewAligned( 1810 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1811 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1812 break; 1813 case LibFunc_ZnamSt11align_val_t: 1814 if (HotCold != NotColdNewHintValue) 1815 return emitHotColdNewAligned( 1816 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1817 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1818 break; 1819 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1820 if (OptimizeExistingHotColdNew) 1821 return emitHotColdNewAlignedNoThrow( 1822 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1823 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1824 HotCold); 1825 break; 1826 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1827 if (HotCold != NotColdNewHintValue) 1828 return emitHotColdNewAlignedNoThrow( 1829 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1830 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1831 HotCold); 1832 break; 1833 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1834 if (OptimizeExistingHotColdNew) 1835 return emitHotColdNewAlignedNoThrow( 1836 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1837 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1838 HotCold); 1839 break; 1840 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1841 if (HotCold != NotColdNewHintValue) 1842 return emitHotColdNewAlignedNoThrow( 1843 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1844 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1845 HotCold); 1846 break; 1847 default: 1848 return nullptr; 1849 } 1850 return nullptr; 1851 } 1852 1853 //===----------------------------------------------------------------------===// 1854 // Math Library Optimizations 1855 //===----------------------------------------------------------------------===// 1856 1857 // Replace a libcall \p CI with a call to intrinsic \p IID 1858 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1859 Intrinsic::ID IID) { 1860 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI); 1861 NewCall->takeName(CI); 1862 return copyFlags(*CI, NewCall); 1863 } 1864 1865 /// Return a variant of Val with float type. 1866 /// Currently this works in two cases: If Val is an FPExtension of a float 1867 /// value to something bigger, simply return the operand. 1868 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1869 /// loss of precision do so. 1870 static Value *valueHasFloatPrecision(Value *Val) { 1871 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1872 Value *Op = Cast->getOperand(0); 1873 if (Op->getType()->isFloatTy()) 1874 return Op; 1875 } 1876 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1877 APFloat F = Const->getValueAPF(); 1878 bool losesInfo; 1879 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1880 &losesInfo); 1881 if (!losesInfo) 1882 return ConstantFP::get(Const->getContext(), F); 1883 } 1884 return nullptr; 1885 } 1886 1887 /// Shrink double -> float functions. 1888 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1889 bool isBinary, const TargetLibraryInfo *TLI, 1890 bool isPrecise = false) { 1891 Function *CalleeFn = CI->getCalledFunction(); 1892 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1893 return nullptr; 1894 1895 // If not all the uses of the function are converted to float, then bail out. 1896 // This matters if the precision of the result is more important than the 1897 // precision of the arguments. 1898 if (isPrecise) 1899 for (User *U : CI->users()) { 1900 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1901 if (!Cast || !Cast->getType()->isFloatTy()) 1902 return nullptr; 1903 } 1904 1905 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1906 Value *V[2]; 1907 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1908 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1909 if (!V[0] || (isBinary && !V[1])) 1910 return nullptr; 1911 1912 // If call isn't an intrinsic, check that it isn't within a function with the 1913 // same name as the float version of this call, otherwise the result is an 1914 // infinite loop. For example, from MinGW-w64: 1915 // 1916 // float expf(float val) { return (float) exp((double) val); } 1917 StringRef CalleeName = CalleeFn->getName(); 1918 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1919 if (!IsIntrinsic) { 1920 StringRef CallerName = CI->getFunction()->getName(); 1921 if (!CallerName.empty() && CallerName.back() == 'f' && 1922 CallerName.size() == (CalleeName.size() + 1) && 1923 CallerName.starts_with(CalleeName)) 1924 return nullptr; 1925 } 1926 1927 // Propagate the math semantics from the current function to the new function. 1928 IRBuilderBase::FastMathFlagGuard Guard(B); 1929 B.setFastMathFlags(CI->getFastMathFlags()); 1930 1931 // g((double) float) -> (double) gf(float) 1932 Value *R; 1933 if (IsIntrinsic) { 1934 Module *M = CI->getModule(); 1935 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1936 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1937 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1938 } else { 1939 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1940 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1941 CalleeAttrs) 1942 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1943 } 1944 return B.CreateFPExt(R, B.getDoubleTy()); 1945 } 1946 1947 /// Shrink double -> float for unary functions. 1948 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1949 const TargetLibraryInfo *TLI, 1950 bool isPrecise = false) { 1951 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1952 } 1953 1954 /// Shrink double -> float for binary functions. 1955 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1956 const TargetLibraryInfo *TLI, 1957 bool isPrecise = false) { 1958 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1959 } 1960 1961 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1962 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1963 Value *Real, *Imag; 1964 1965 if (CI->arg_size() == 1) { 1966 1967 if (!CI->isFast()) 1968 return nullptr; 1969 1970 Value *Op = CI->getArgOperand(0); 1971 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1972 1973 Real = B.CreateExtractValue(Op, 0, "real"); 1974 Imag = B.CreateExtractValue(Op, 1, "imag"); 1975 1976 } else { 1977 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1978 1979 Real = CI->getArgOperand(0); 1980 Imag = CI->getArgOperand(1); 1981 1982 // if real or imaginary part is zero, simplify to abs(cimag(z)) 1983 // or abs(creal(z)) 1984 Value *AbsOp = nullptr; 1985 if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) { 1986 if (ConstReal->isZero()) 1987 AbsOp = Imag; 1988 1989 } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) { 1990 if (ConstImag->isZero()) 1991 AbsOp = Real; 1992 } 1993 1994 if (AbsOp) { 1995 IRBuilderBase::FastMathFlagGuard Guard(B); 1996 B.setFastMathFlags(CI->getFastMathFlags()); 1997 1998 return copyFlags( 1999 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs")); 2000 } 2001 2002 if (!CI->isFast()) 2003 return nullptr; 2004 } 2005 2006 // Propagate fast-math flags from the existing call to new instructions. 2007 IRBuilderBase::FastMathFlagGuard Guard(B); 2008 B.setFastMathFlags(CI->getFastMathFlags()); 2009 2010 Value *RealReal = B.CreateFMul(Real, Real); 2011 Value *ImagImag = B.CreateFMul(Imag, Imag); 2012 2013 return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt, 2014 B.CreateFAdd(RealReal, ImagImag), 2015 nullptr, "cabs")); 2016 } 2017 2018 // Return a properly extended integer (DstWidth bits wide) if the operation is 2019 // an itofp. 2020 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 2021 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 2022 Value *Op = cast<Instruction>(I2F)->getOperand(0); 2023 // Make sure that the exponent fits inside an "int" of size DstWidth, 2024 // thus avoiding any range issues that FP has not. 2025 unsigned BitWidth = Op->getType()->getScalarSizeInBits(); 2026 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) { 2027 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth); 2028 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy) 2029 : B.CreateZExt(Op, IntTy); 2030 } 2031 } 2032 2033 return nullptr; 2034 } 2035 2036 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 2037 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 2038 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 2039 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 2040 Module *M = Pow->getModule(); 2041 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2042 Type *Ty = Pow->getType(); 2043 bool Ignored; 2044 2045 // Evaluate special cases related to a nested function as the base. 2046 2047 // pow(exp(x), y) -> exp(x * y) 2048 // pow(exp2(x), y) -> exp2(x * y) 2049 // If exp{,2}() is used only once, it is better to fold two transcendental 2050 // math functions into one. If used again, exp{,2}() would still have to be 2051 // called with the original argument, then keep both original transcendental 2052 // functions. However, this transformation is only safe with fully relaxed 2053 // math semantics, since, besides rounding differences, it changes overflow 2054 // and underflow behavior quite dramatically. For example: 2055 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 2056 // Whereas: 2057 // exp(1000 * 0.001) = exp(1) 2058 // TODO: Loosen the requirement for fully relaxed math semantics. 2059 // TODO: Handle exp10() when more targets have it available. 2060 CallInst *BaseFn = dyn_cast<CallInst>(Base); 2061 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 2062 LibFunc LibFn; 2063 2064 Function *CalleeFn = BaseFn->getCalledFunction(); 2065 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2066 isLibFuncEmittable(M, TLI, LibFn)) { 2067 StringRef ExpName; 2068 Intrinsic::ID ID; 2069 Value *ExpFn; 2070 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2071 2072 switch (LibFn) { 2073 default: 2074 return nullptr; 2075 case LibFunc_expf: 2076 case LibFunc_exp: 2077 case LibFunc_expl: 2078 ExpName = TLI->getName(LibFunc_exp); 2079 ID = Intrinsic::exp; 2080 LibFnFloat = LibFunc_expf; 2081 LibFnDouble = LibFunc_exp; 2082 LibFnLongDouble = LibFunc_expl; 2083 break; 2084 case LibFunc_exp2f: 2085 case LibFunc_exp2: 2086 case LibFunc_exp2l: 2087 ExpName = TLI->getName(LibFunc_exp2); 2088 ID = Intrinsic::exp2; 2089 LibFnFloat = LibFunc_exp2f; 2090 LibFnDouble = LibFunc_exp2; 2091 LibFnLongDouble = LibFunc_exp2l; 2092 break; 2093 } 2094 2095 // Create new exp{,2}() with the product as its argument. 2096 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2097 ExpFn = BaseFn->doesNotAccessMemory() 2098 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName) 2099 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2100 LibFnLongDouble, B, 2101 BaseFn->getAttributes()); 2102 2103 // Since the new exp{,2}() is different from the original one, dead code 2104 // elimination cannot be trusted to remove it, since it may have side 2105 // effects (e.g., errno). When the only consumer for the original 2106 // exp{,2}() is pow(), then it has to be explicitly erased. 2107 substituteInParent(BaseFn, ExpFn); 2108 return ExpFn; 2109 } 2110 } 2111 2112 // Evaluate special cases related to a constant base. 2113 2114 const APFloat *BaseF; 2115 if (!match(Base, m_APFloat(BaseF))) 2116 return nullptr; 2117 2118 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2119 2120 const bool UseIntrinsic = Pow->doesNotAccessMemory(); 2121 2122 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2123 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) && 2124 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2125 (UseIntrinsic || 2126 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2127 2128 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can 2129 // just directly use the original integer type. 2130 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) { 2131 Constant *One = ConstantFP::get(Ty, 1.0); 2132 2133 if (UseIntrinsic) { 2134 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp, 2135 {Ty, ExpoI->getType()}, 2136 {One, ExpoI}, Pow, "exp2")); 2137 } 2138 2139 return copyFlags(*Pow, emitBinaryFloatFnCall( 2140 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2141 LibFunc_ldexpl, B, NoAttrs)); 2142 } 2143 } 2144 2145 // pow(2.0 ** n, x) -> exp2(n * x) 2146 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2147 APFloat BaseR = APFloat(1.0); 2148 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2149 BaseR = BaseR / *BaseF; 2150 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2151 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2152 APSInt NI(64, false); 2153 if ((IsInteger || IsReciprocal) && 2154 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2155 APFloat::opOK && 2156 NI > 1 && NI.isPowerOf2()) { 2157 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2158 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2159 if (Pow->doesNotAccessMemory()) 2160 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2161 nullptr, "exp2")); 2162 else 2163 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2164 LibFunc_exp2f, 2165 LibFunc_exp2l, B, NoAttrs)); 2166 } 2167 } 2168 2169 // pow(10.0, x) -> exp10(x) 2170 if (BaseF->isExactlyValue(10.0) && 2171 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) { 2172 2173 if (Pow->doesNotAccessMemory()) { 2174 CallInst *NewExp10 = 2175 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10"); 2176 return copyFlags(*Pow, NewExp10); 2177 } 2178 2179 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2180 LibFunc_exp10f, LibFunc_exp10l, 2181 B, NoAttrs)); 2182 } 2183 2184 // pow(x, y) -> exp2(log2(x) * y) 2185 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2186 !BaseF->isNegative()) { 2187 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2188 // Luckily optimizePow has already handled the x == 1 case. 2189 assert(!match(Base, m_FPOne()) && 2190 "pow(1.0, y) should have been simplified earlier!"); 2191 2192 Value *Log = nullptr; 2193 if (Ty->isFloatTy()) 2194 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2195 else if (Ty->isDoubleTy()) 2196 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2197 2198 if (Log) { 2199 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2200 if (Pow->doesNotAccessMemory()) 2201 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2202 nullptr, "exp2")); 2203 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2204 LibFunc_exp2l)) 2205 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2206 LibFunc_exp2f, 2207 LibFunc_exp2l, B, NoAttrs)); 2208 } 2209 } 2210 2211 return nullptr; 2212 } 2213 2214 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2215 Module *M, IRBuilderBase &B, 2216 const TargetLibraryInfo *TLI) { 2217 // If errno is never set, then use the intrinsic for sqrt(). 2218 if (NoErrno) 2219 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt"); 2220 2221 // Otherwise, use the libcall for sqrt(). 2222 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2223 LibFunc_sqrtl)) 2224 // TODO: We also should check that the target can in fact lower the sqrt() 2225 // libcall. We currently have no way to ask this question, so we ask if 2226 // the target has a sqrt() libcall, which is not exactly the same. 2227 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2228 LibFunc_sqrtl, B, Attrs); 2229 2230 return nullptr; 2231 } 2232 2233 /// Use square root in place of pow(x, +/-0.5). 2234 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2235 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2236 Module *Mod = Pow->getModule(); 2237 Type *Ty = Pow->getType(); 2238 2239 const APFloat *ExpoF; 2240 if (!match(Expo, m_APFloat(ExpoF)) || 2241 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2242 return nullptr; 2243 2244 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2245 // so that requires fast-math-flags (afn or reassoc). 2246 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2247 return nullptr; 2248 2249 // If we have a pow() library call (accesses memory) and we can't guarantee 2250 // that the base is not an infinity, give up: 2251 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2252 // errno), but sqrt(-Inf) is required by various standards to set errno. 2253 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2254 !isKnownNeverInfinity(Base, 0, 2255 SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow))) 2256 return nullptr; 2257 2258 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2259 TLI); 2260 if (!Sqrt) 2261 return nullptr; 2262 2263 // Handle signed zero base by expanding to fabs(sqrt(x)). 2264 if (!Pow->hasNoSignedZeros()) 2265 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs"); 2266 2267 Sqrt = copyFlags(*Pow, Sqrt); 2268 2269 // Handle non finite base by expanding to 2270 // (x == -infinity ? +infinity : sqrt(x)). 2271 if (!Pow->hasNoInfs()) { 2272 Value *PosInf = ConstantFP::getInfinity(Ty), 2273 *NegInf = ConstantFP::getInfinity(Ty, true); 2274 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2275 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2276 } 2277 2278 // If the exponent is negative, then get the reciprocal. 2279 if (ExpoF->isNegative()) 2280 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2281 2282 return Sqrt; 2283 } 2284 2285 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2286 IRBuilderBase &B) { 2287 Value *Args[] = {Base, Expo}; 2288 Type *Types[] = {Base->getType(), Expo->getType()}; 2289 return B.CreateIntrinsic(Intrinsic::powi, Types, Args); 2290 } 2291 2292 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2293 Value *Base = Pow->getArgOperand(0); 2294 Value *Expo = Pow->getArgOperand(1); 2295 Function *Callee = Pow->getCalledFunction(); 2296 StringRef Name = Callee->getName(); 2297 Type *Ty = Pow->getType(); 2298 Module *M = Pow->getModule(); 2299 bool AllowApprox = Pow->hasApproxFunc(); 2300 bool Ignored; 2301 2302 // Propagate the math semantics from the call to any created instructions. 2303 IRBuilderBase::FastMathFlagGuard Guard(B); 2304 B.setFastMathFlags(Pow->getFastMathFlags()); 2305 // Evaluate special cases related to the base. 2306 2307 // pow(1.0, x) -> 1.0 2308 if (match(Base, m_FPOne())) 2309 return Base; 2310 2311 if (Value *Exp = replacePowWithExp(Pow, B)) 2312 return Exp; 2313 2314 // Evaluate special cases related to the exponent. 2315 2316 // pow(x, -1.0) -> 1.0 / x 2317 if (match(Expo, m_SpecificFP(-1.0))) 2318 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2319 2320 // pow(x, +/-0.0) -> 1.0 2321 if (match(Expo, m_AnyZeroFP())) 2322 return ConstantFP::get(Ty, 1.0); 2323 2324 // pow(x, 1.0) -> x 2325 if (match(Expo, m_FPOne())) 2326 return Base; 2327 2328 // pow(x, 2.0) -> x * x 2329 if (match(Expo, m_SpecificFP(2.0))) 2330 return B.CreateFMul(Base, Base, "square"); 2331 2332 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2333 return Sqrt; 2334 2335 // If we can approximate pow: 2336 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2337 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2338 const APFloat *ExpoF; 2339 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2340 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2341 APFloat ExpoA(abs(*ExpoF)); 2342 APFloat ExpoI(*ExpoF); 2343 Value *Sqrt = nullptr; 2344 if (!ExpoA.isInteger()) { 2345 APFloat Expo2 = ExpoA; 2346 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2347 // is no floating point exception and the result is an integer, then 2348 // ExpoA == integer + 0.5 2349 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2350 return nullptr; 2351 2352 if (!Expo2.isInteger()) 2353 return nullptr; 2354 2355 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2356 APFloat::opInexact) 2357 return nullptr; 2358 if (!ExpoI.isInteger()) 2359 return nullptr; 2360 ExpoF = &ExpoI; 2361 2362 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2363 B, TLI); 2364 if (!Sqrt) 2365 return nullptr; 2366 } 2367 2368 // 0.5 fraction is now optionally handled. 2369 // Do pow -> powi for remaining integer exponent 2370 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2371 if (ExpoF->isInteger() && 2372 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2373 APFloat::opOK) { 2374 Value *PowI = copyFlags( 2375 *Pow, 2376 createPowWithIntegerExponent( 2377 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2378 M, B)); 2379 2380 if (PowI && Sqrt) 2381 return B.CreateFMul(PowI, Sqrt); 2382 2383 return PowI; 2384 } 2385 } 2386 2387 // powf(x, itofp(y)) -> powi(x, y) 2388 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2389 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2390 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2391 } 2392 2393 // Shrink pow() to powf() if the arguments are single precision, 2394 // unless the result is expected to be double precision. 2395 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2396 hasFloatVersion(M, Name)) { 2397 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2398 return Shrunk; 2399 } 2400 2401 return nullptr; 2402 } 2403 2404 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2405 Module *M = CI->getModule(); 2406 Function *Callee = CI->getCalledFunction(); 2407 StringRef Name = Callee->getName(); 2408 Value *Ret = nullptr; 2409 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2410 hasFloatVersion(M, Name)) 2411 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2412 2413 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we 2414 // have the libcall, emit the libcall. 2415 // 2416 // TODO: In principle we should be able to just always use the intrinsic for 2417 // any doesNotAccessMemory callsite. 2418 2419 const bool UseIntrinsic = Callee->isIntrinsic(); 2420 // Bail out for vectors because the code below only expects scalars. 2421 Type *Ty = CI->getType(); 2422 if (!UseIntrinsic && Ty->isVectorTy()) 2423 return Ret; 2424 2425 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2426 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2427 Value *Op = CI->getArgOperand(0); 2428 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2429 (UseIntrinsic || 2430 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2431 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2432 Constant *One = ConstantFP::get(Ty, 1.0); 2433 2434 if (UseIntrinsic) { 2435 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp, 2436 {Ty, Exp->getType()}, 2437 {One, Exp}, CI)); 2438 } 2439 2440 IRBuilderBase::FastMathFlagGuard Guard(B); 2441 B.setFastMathFlags(CI->getFastMathFlags()); 2442 return copyFlags(*CI, emitBinaryFloatFnCall( 2443 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2444 LibFunc_ldexpl, B, AttributeList())); 2445 } 2446 } 2447 2448 return Ret; 2449 } 2450 2451 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2452 Module *M = CI->getModule(); 2453 2454 // If we can shrink the call to a float function rather than a double 2455 // function, do that first. 2456 Function *Callee = CI->getCalledFunction(); 2457 StringRef Name = Callee->getName(); 2458 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2459 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2460 return Ret; 2461 2462 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2463 // the intrinsics for improved optimization (for example, vectorization). 2464 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2465 // From the C standard draft WG14/N1256: 2466 // "Ideally, fmax would be sensitive to the sign of zero, for example 2467 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2468 // might be impractical." 2469 IRBuilderBase::FastMathFlagGuard Guard(B); 2470 FastMathFlags FMF = CI->getFastMathFlags(); 2471 FMF.setNoSignedZeros(); 2472 B.setFastMathFlags(FMF); 2473 2474 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2475 : Intrinsic::maxnum; 2476 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0), 2477 CI->getArgOperand(1))); 2478 } 2479 2480 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2481 Function *LogFn = Log->getCalledFunction(); 2482 StringRef LogNm = LogFn->getName(); 2483 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2484 Module *Mod = Log->getModule(); 2485 Type *Ty = Log->getType(); 2486 Value *Ret = nullptr; 2487 2488 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2489 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2490 2491 // The earlier call must also be 'fast' in order to do these transforms. 2492 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2493 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2494 return Ret; 2495 2496 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2497 2498 // This is only applicable to log(), log2(), log10(). 2499 if (TLI->getLibFunc(LogNm, LogLb)) 2500 switch (LogLb) { 2501 case LibFunc_logf: 2502 LogID = Intrinsic::log; 2503 ExpLb = LibFunc_expf; 2504 Exp2Lb = LibFunc_exp2f; 2505 Exp10Lb = LibFunc_exp10f; 2506 PowLb = LibFunc_powf; 2507 break; 2508 case LibFunc_log: 2509 LogID = Intrinsic::log; 2510 ExpLb = LibFunc_exp; 2511 Exp2Lb = LibFunc_exp2; 2512 Exp10Lb = LibFunc_exp10; 2513 PowLb = LibFunc_pow; 2514 break; 2515 case LibFunc_logl: 2516 LogID = Intrinsic::log; 2517 ExpLb = LibFunc_expl; 2518 Exp2Lb = LibFunc_exp2l; 2519 Exp10Lb = LibFunc_exp10l; 2520 PowLb = LibFunc_powl; 2521 break; 2522 case LibFunc_log2f: 2523 LogID = Intrinsic::log2; 2524 ExpLb = LibFunc_expf; 2525 Exp2Lb = LibFunc_exp2f; 2526 Exp10Lb = LibFunc_exp10f; 2527 PowLb = LibFunc_powf; 2528 break; 2529 case LibFunc_log2: 2530 LogID = Intrinsic::log2; 2531 ExpLb = LibFunc_exp; 2532 Exp2Lb = LibFunc_exp2; 2533 Exp10Lb = LibFunc_exp10; 2534 PowLb = LibFunc_pow; 2535 break; 2536 case LibFunc_log2l: 2537 LogID = Intrinsic::log2; 2538 ExpLb = LibFunc_expl; 2539 Exp2Lb = LibFunc_exp2l; 2540 Exp10Lb = LibFunc_exp10l; 2541 PowLb = LibFunc_powl; 2542 break; 2543 case LibFunc_log10f: 2544 LogID = Intrinsic::log10; 2545 ExpLb = LibFunc_expf; 2546 Exp2Lb = LibFunc_exp2f; 2547 Exp10Lb = LibFunc_exp10f; 2548 PowLb = LibFunc_powf; 2549 break; 2550 case LibFunc_log10: 2551 LogID = Intrinsic::log10; 2552 ExpLb = LibFunc_exp; 2553 Exp2Lb = LibFunc_exp2; 2554 Exp10Lb = LibFunc_exp10; 2555 PowLb = LibFunc_pow; 2556 break; 2557 case LibFunc_log10l: 2558 LogID = Intrinsic::log10; 2559 ExpLb = LibFunc_expl; 2560 Exp2Lb = LibFunc_exp2l; 2561 Exp10Lb = LibFunc_exp10l; 2562 PowLb = LibFunc_powl; 2563 break; 2564 default: 2565 return Ret; 2566 } 2567 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2568 LogID == Intrinsic::log10) { 2569 if (Ty->getScalarType()->isFloatTy()) { 2570 ExpLb = LibFunc_expf; 2571 Exp2Lb = LibFunc_exp2f; 2572 Exp10Lb = LibFunc_exp10f; 2573 PowLb = LibFunc_powf; 2574 } else if (Ty->getScalarType()->isDoubleTy()) { 2575 ExpLb = LibFunc_exp; 2576 Exp2Lb = LibFunc_exp2; 2577 Exp10Lb = LibFunc_exp10; 2578 PowLb = LibFunc_pow; 2579 } else 2580 return Ret; 2581 } else 2582 return Ret; 2583 2584 IRBuilderBase::FastMathFlagGuard Guard(B); 2585 B.setFastMathFlags(FastMathFlags::getFast()); 2586 2587 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2588 LibFunc ArgLb = NotLibFunc; 2589 TLI->getLibFunc(*Arg, ArgLb); 2590 2591 // log(pow(x,y)) -> y*log(x) 2592 AttributeList NoAttrs; 2593 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2594 Value *LogX = 2595 Log->doesNotAccessMemory() 2596 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log") 2597 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2598 Value *Y = Arg->getArgOperand(1); 2599 // Cast exponent to FP if integer. 2600 if (ArgID == Intrinsic::powi) 2601 Y = B.CreateSIToFP(Y, Ty, "cast"); 2602 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2603 // Since pow() may have side effects, e.g. errno, 2604 // dead code elimination may not be trusted to remove it. 2605 substituteInParent(Arg, MulY); 2606 return MulY; 2607 } 2608 2609 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2610 // TODO: There is no exp10() intrinsic yet. 2611 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2612 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2613 Constant *Eul; 2614 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2615 // FIXME: Add more precise value of e for long double. 2616 Eul = ConstantFP::get(Log->getType(), numbers::e); 2617 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2618 Eul = ConstantFP::get(Log->getType(), 2.0); 2619 else 2620 Eul = ConstantFP::get(Log->getType(), 10.0); 2621 Value *LogE = Log->doesNotAccessMemory() 2622 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log") 2623 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2624 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2625 // Since exp() may have side effects, e.g. errno, 2626 // dead code elimination may not be trusted to remove it. 2627 substituteInParent(Arg, MulY); 2628 return MulY; 2629 } 2630 2631 return Ret; 2632 } 2633 2634 // sqrt(exp(X)) -> exp(X * 0.5) 2635 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { 2636 if (!CI->hasAllowReassoc()) 2637 return nullptr; 2638 2639 Function *SqrtFn = CI->getCalledFunction(); 2640 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0)); 2641 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) 2642 return nullptr; 2643 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2644 LibFunc ArgLb = NotLibFunc; 2645 TLI->getLibFunc(*Arg, ArgLb); 2646 2647 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; 2648 2649 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb)) 2650 switch (SqrtLb) { 2651 case LibFunc_sqrtf: 2652 ExpLb = LibFunc_expf; 2653 Exp2Lb = LibFunc_exp2f; 2654 Exp10Lb = LibFunc_exp10f; 2655 break; 2656 case LibFunc_sqrt: 2657 ExpLb = LibFunc_exp; 2658 Exp2Lb = LibFunc_exp2; 2659 Exp10Lb = LibFunc_exp10; 2660 break; 2661 case LibFunc_sqrtl: 2662 ExpLb = LibFunc_expl; 2663 Exp2Lb = LibFunc_exp2l; 2664 Exp10Lb = LibFunc_exp10l; 2665 break; 2666 default: 2667 return nullptr; 2668 } 2669 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { 2670 if (CI->getType()->getScalarType()->isFloatTy()) { 2671 ExpLb = LibFunc_expf; 2672 Exp2Lb = LibFunc_exp2f; 2673 Exp10Lb = LibFunc_exp10f; 2674 } else if (CI->getType()->getScalarType()->isDoubleTy()) { 2675 ExpLb = LibFunc_exp; 2676 Exp2Lb = LibFunc_exp2; 2677 Exp10Lb = LibFunc_exp10; 2678 } else 2679 return nullptr; 2680 } else 2681 return nullptr; 2682 2683 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && 2684 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) 2685 return nullptr; 2686 2687 IRBuilderBase::InsertPointGuard Guard(B); 2688 B.SetInsertPoint(Arg); 2689 auto *ExpOperand = Arg->getOperand(0); 2690 auto *FMul = 2691 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5), 2692 CI, "merged.sqrt"); 2693 2694 Arg->setOperand(0, FMul); 2695 return Arg; 2696 } 2697 2698 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2699 Module *M = CI->getModule(); 2700 Function *Callee = CI->getCalledFunction(); 2701 Value *Ret = nullptr; 2702 // TODO: Once we have a way (other than checking for the existince of the 2703 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2704 // condition below. 2705 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2706 (Callee->getName() == "sqrt" || 2707 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2708 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2709 2710 if (Value *Opt = mergeSqrtToExp(CI, B)) 2711 return Opt; 2712 2713 if (!CI->isFast()) 2714 return Ret; 2715 2716 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2717 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2718 return Ret; 2719 2720 // We're looking for a repeated factor in a multiplication tree, 2721 // so we can do this fold: sqrt(x * x) -> fabs(x); 2722 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2723 Value *Op0 = I->getOperand(0); 2724 Value *Op1 = I->getOperand(1); 2725 Value *RepeatOp = nullptr; 2726 Value *OtherOp = nullptr; 2727 if (Op0 == Op1) { 2728 // Simple match: the operands of the multiply are identical. 2729 RepeatOp = Op0; 2730 } else { 2731 // Look for a more complicated pattern: one of the operands is itself 2732 // a multiply, so search for a common factor in that multiply. 2733 // Note: We don't bother looking any deeper than this first level or for 2734 // variations of this pattern because instcombine's visitFMUL and/or the 2735 // reassociation pass should give us this form. 2736 Value *OtherMul0, *OtherMul1; 2737 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2738 // Pattern: sqrt((x * y) * z) 2739 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2740 // Matched: sqrt((x * x) * z) 2741 RepeatOp = OtherMul0; 2742 OtherOp = Op1; 2743 } 2744 } 2745 } 2746 if (!RepeatOp) 2747 return Ret; 2748 2749 // Fast math flags for any created instructions should match the sqrt 2750 // and multiply. 2751 IRBuilderBase::FastMathFlagGuard Guard(B); 2752 B.setFastMathFlags(I->getFastMathFlags()); 2753 2754 // If we found a repeated factor, hoist it out of the square root and 2755 // replace it with the fabs of that factor. 2756 Value *FabsCall = 2757 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs"); 2758 if (OtherOp) { 2759 // If we found a non-repeated factor, we still need to get its square 2760 // root. We then multiply that by the value that was simplified out 2761 // of the square root calculation. 2762 Value *SqrtCall = 2763 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt"); 2764 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2765 } 2766 return copyFlags(*CI, FabsCall); 2767 } 2768 2769 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, 2770 IRBuilderBase &B) { 2771 Module *M = CI->getModule(); 2772 Function *Callee = CI->getCalledFunction(); 2773 Value *Ret = nullptr; 2774 StringRef Name = Callee->getName(); 2775 if (UnsafeFPShrink && 2776 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || 2777 Name == "asinh") && 2778 hasFloatVersion(M, Name)) 2779 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2780 2781 Value *Op1 = CI->getArgOperand(0); 2782 auto *OpC = dyn_cast<CallInst>(Op1); 2783 if (!OpC) 2784 return Ret; 2785 2786 // Both calls must be 'fast' in order to remove them. 2787 if (!CI->isFast() || !OpC->isFast()) 2788 return Ret; 2789 2790 // tan(atan(x)) -> x 2791 // atanh(tanh(x)) -> x 2792 // sinh(asinh(x)) -> x 2793 // asinh(sinh(x)) -> x 2794 // cosh(acosh(x)) -> x 2795 LibFunc Func; 2796 Function *F = OpC->getCalledFunction(); 2797 if (F && TLI->getLibFunc(F->getName(), Func) && 2798 isLibFuncEmittable(M, TLI, Func)) { 2799 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) 2800 .Case("tan", LibFunc_atan) 2801 .Case("atanh", LibFunc_tanh) 2802 .Case("sinh", LibFunc_asinh) 2803 .Case("cosh", LibFunc_acosh) 2804 .Case("tanf", LibFunc_atanf) 2805 .Case("atanhf", LibFunc_tanhf) 2806 .Case("sinhf", LibFunc_asinhf) 2807 .Case("coshf", LibFunc_acoshf) 2808 .Case("tanl", LibFunc_atanl) 2809 .Case("atanhl", LibFunc_tanhl) 2810 .Case("sinhl", LibFunc_asinhl) 2811 .Case("coshl", LibFunc_acoshl) 2812 .Case("asinh", LibFunc_sinh) 2813 .Case("asinhf", LibFunc_sinhf) 2814 .Case("asinhl", LibFunc_sinhl) 2815 .Default(NumLibFuncs); // Used as error value 2816 if (Func == inverseFunc) 2817 Ret = OpC->getArgOperand(0); 2818 } 2819 return Ret; 2820 } 2821 2822 static bool isTrigLibCall(CallInst *CI) { 2823 // We can only hope to do anything useful if we can ignore things like errno 2824 // and floating-point exceptions. 2825 // We already checked the prototype. 2826 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2827 } 2828 2829 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2830 bool UseFloat, Value *&Sin, Value *&Cos, 2831 Value *&SinCos, const TargetLibraryInfo *TLI) { 2832 Module *M = OrigCallee->getParent(); 2833 Type *ArgTy = Arg->getType(); 2834 Type *ResTy; 2835 StringRef Name; 2836 2837 Triple T(OrigCallee->getParent()->getTargetTriple()); 2838 if (UseFloat) { 2839 Name = "__sincospif_stret"; 2840 2841 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2842 // x86_64 can't use {float, float} since that would be returned in both 2843 // xmm0 and xmm1, which isn't what a real struct would do. 2844 ResTy = T.getArch() == Triple::x86_64 2845 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2846 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2847 } else { 2848 Name = "__sincospi_stret"; 2849 ResTy = StructType::get(ArgTy, ArgTy); 2850 } 2851 2852 if (!isLibFuncEmittable(M, TLI, Name)) 2853 return false; 2854 LibFunc TheLibFunc; 2855 TLI->getLibFunc(Name, TheLibFunc); 2856 FunctionCallee Callee = getOrInsertLibFunc( 2857 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2858 2859 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2860 // If the argument is an instruction, it must dominate all uses so put our 2861 // sincos call there. 2862 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2863 } else { 2864 // Otherwise (e.g. for a constant) the beginning of the function is as 2865 // good a place as any. 2866 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2867 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2868 } 2869 2870 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2871 2872 if (SinCos->getType()->isStructTy()) { 2873 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2874 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2875 } else { 2876 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2877 "sinpi"); 2878 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2879 "cospi"); 2880 } 2881 2882 return true; 2883 } 2884 2885 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, 2886 IRBuilderBase &B) { 2887 Value *X; 2888 Value *Src = CI->getArgOperand(0); 2889 2890 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) { 2891 IRBuilderBase::FastMathFlagGuard Guard(B); 2892 B.setFastMathFlags(CI->getFastMathFlags()); 2893 2894 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2895 if (IsEven) { 2896 // Even function: f(-x) = f(x) 2897 return CallInst; 2898 } 2899 // Odd function: f(-x) = -f(x) 2900 return B.CreateFNeg(CallInst); 2901 } 2902 2903 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) 2904 if (IsEven && (match(Src, m_FAbs(m_Value(X))) || 2905 match(Src, m_CopySign(m_Value(X), m_Value())))) { 2906 IRBuilderBase::FastMathFlagGuard Guard(B); 2907 B.setFastMathFlags(CI->getFastMathFlags()); 2908 2909 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2910 return CallInst; 2911 } 2912 2913 return nullptr; 2914 } 2915 2916 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, 2917 IRBuilderBase &B) { 2918 switch (Func) { 2919 case LibFunc_cos: 2920 case LibFunc_cosf: 2921 case LibFunc_cosl: 2922 return optimizeSymmetricCall(CI, /*IsEven*/ true, B); 2923 2924 case LibFunc_sin: 2925 case LibFunc_sinf: 2926 case LibFunc_sinl: 2927 2928 case LibFunc_tan: 2929 case LibFunc_tanf: 2930 case LibFunc_tanl: 2931 2932 case LibFunc_erf: 2933 case LibFunc_erff: 2934 case LibFunc_erfl: 2935 return optimizeSymmetricCall(CI, /*IsEven*/ false, B); 2936 2937 default: 2938 return nullptr; 2939 } 2940 } 2941 2942 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2943 // Make sure the prototype is as expected, otherwise the rest of the 2944 // function is probably invalid and likely to abort. 2945 if (!isTrigLibCall(CI)) 2946 return nullptr; 2947 2948 Value *Arg = CI->getArgOperand(0); 2949 SmallVector<CallInst *, 1> SinCalls; 2950 SmallVector<CallInst *, 1> CosCalls; 2951 SmallVector<CallInst *, 1> SinCosCalls; 2952 2953 bool IsFloat = Arg->getType()->isFloatTy(); 2954 2955 // Look for all compatible sinpi, cospi and sincospi calls with the same 2956 // argument. If there are enough (in some sense) we can make the 2957 // substitution. 2958 Function *F = CI->getFunction(); 2959 for (User *U : Arg->users()) 2960 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2961 2962 // It's only worthwhile if both sinpi and cospi are actually used. 2963 if (SinCalls.empty() || CosCalls.empty()) 2964 return nullptr; 2965 2966 Value *Sin, *Cos, *SinCos; 2967 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2968 SinCos, TLI)) 2969 return nullptr; 2970 2971 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2972 Value *Res) { 2973 for (CallInst *C : Calls) 2974 replaceAllUsesWith(C, Res); 2975 }; 2976 2977 replaceTrigInsts(SinCalls, Sin); 2978 replaceTrigInsts(CosCalls, Cos); 2979 replaceTrigInsts(SinCosCalls, SinCos); 2980 2981 return IsSin ? Sin : Cos; 2982 } 2983 2984 void LibCallSimplifier::classifyArgUse( 2985 Value *Val, Function *F, bool IsFloat, 2986 SmallVectorImpl<CallInst *> &SinCalls, 2987 SmallVectorImpl<CallInst *> &CosCalls, 2988 SmallVectorImpl<CallInst *> &SinCosCalls) { 2989 auto *CI = dyn_cast<CallInst>(Val); 2990 if (!CI || CI->use_empty()) 2991 return; 2992 2993 // Don't consider calls in other functions. 2994 if (CI->getFunction() != F) 2995 return; 2996 2997 Module *M = CI->getModule(); 2998 Function *Callee = CI->getCalledFunction(); 2999 LibFunc Func; 3000 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 3001 !isLibFuncEmittable(M, TLI, Func) || 3002 !isTrigLibCall(CI)) 3003 return; 3004 3005 if (IsFloat) { 3006 if (Func == LibFunc_sinpif) 3007 SinCalls.push_back(CI); 3008 else if (Func == LibFunc_cospif) 3009 CosCalls.push_back(CI); 3010 else if (Func == LibFunc_sincospif_stret) 3011 SinCosCalls.push_back(CI); 3012 } else { 3013 if (Func == LibFunc_sinpi) 3014 SinCalls.push_back(CI); 3015 else if (Func == LibFunc_cospi) 3016 CosCalls.push_back(CI); 3017 else if (Func == LibFunc_sincospi_stret) 3018 SinCosCalls.push_back(CI); 3019 } 3020 } 3021 3022 /// Constant folds remquo 3023 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) { 3024 const APFloat *X, *Y; 3025 if (!match(CI->getArgOperand(0), m_APFloat(X)) || 3026 !match(CI->getArgOperand(1), m_APFloat(Y))) 3027 return nullptr; 3028 3029 APFloat::opStatus Status; 3030 APFloat Quot = *X; 3031 Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven); 3032 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3033 return nullptr; 3034 APFloat Rem = *X; 3035 if (Rem.remainder(*Y) != APFloat::opOK) 3036 return nullptr; 3037 3038 // TODO: We can only keep at least the three of the last bits of x/y 3039 unsigned IntBW = TLI->getIntSize(); 3040 APSInt QuotInt(IntBW, /*isUnsigned=*/false); 3041 bool IsExact; 3042 Status = 3043 Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact); 3044 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3045 return nullptr; 3046 3047 B.CreateAlignedStore( 3048 ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()), 3049 CI->getArgOperand(2), CI->getParamAlign(2)); 3050 return ConstantFP::get(CI->getType(), Rem); 3051 } 3052 3053 //===----------------------------------------------------------------------===// 3054 // Integer Library Call Optimizations 3055 //===----------------------------------------------------------------------===// 3056 3057 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 3058 // All variants of ffs return int which need not be 32 bits wide. 3059 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 3060 Type *RetType = CI->getType(); 3061 Value *Op = CI->getArgOperand(0); 3062 Type *ArgType = Op->getType(); 3063 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()}, 3064 nullptr, "cttz"); 3065 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 3066 V = B.CreateIntCast(V, RetType, false); 3067 3068 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 3069 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 3070 } 3071 3072 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 3073 // All variants of fls return int which need not be 32 bits wide. 3074 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 3075 Value *Op = CI->getArgOperand(0); 3076 Type *ArgType = Op->getType(); 3077 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()}, 3078 nullptr, "ctlz"); 3079 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 3080 V); 3081 return B.CreateIntCast(V, CI->getType(), false); 3082 } 3083 3084 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 3085 // abs(x) -> x <s 0 ? -x : x 3086 // The negation has 'nsw' because abs of INT_MIN is undefined. 3087 Value *X = CI->getArgOperand(0); 3088 Value *IsNeg = B.CreateIsNeg(X); 3089 Value *NegX = B.CreateNSWNeg(X, "neg"); 3090 return B.CreateSelect(IsNeg, NegX, X); 3091 } 3092 3093 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 3094 // isdigit(c) -> (c-'0') <u 10 3095 Value *Op = CI->getArgOperand(0); 3096 Type *ArgType = Op->getType(); 3097 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 3098 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 3099 return B.CreateZExt(Op, CI->getType()); 3100 } 3101 3102 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 3103 // isascii(c) -> c <u 128 3104 Value *Op = CI->getArgOperand(0); 3105 Type *ArgType = Op->getType(); 3106 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 3107 return B.CreateZExt(Op, CI->getType()); 3108 } 3109 3110 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 3111 // toascii(c) -> c & 0x7f 3112 return B.CreateAnd(CI->getArgOperand(0), 3113 ConstantInt::get(CI->getType(), 0x7F)); 3114 } 3115 3116 // Fold calls to atoi, atol, and atoll. 3117 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 3118 CI->addParamAttr(0, Attribute::NoCapture); 3119 3120 StringRef Str; 3121 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3122 return nullptr; 3123 3124 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 3125 } 3126 3127 // Fold calls to strtol, strtoll, strtoul, and strtoull. 3128 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 3129 bool AsSigned) { 3130 Value *EndPtr = CI->getArgOperand(1); 3131 if (isa<ConstantPointerNull>(EndPtr)) { 3132 // With a null EndPtr, this function won't capture the main argument. 3133 // It would be readonly too, except that it still may write to errno. 3134 CI->addParamAttr(0, Attribute::NoCapture); 3135 EndPtr = nullptr; 3136 } else if (!isKnownNonZero(EndPtr, DL)) 3137 return nullptr; 3138 3139 StringRef Str; 3140 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3141 return nullptr; 3142 3143 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 3144 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 3145 } 3146 3147 return nullptr; 3148 } 3149 3150 //===----------------------------------------------------------------------===// 3151 // Formatting and IO Library Call Optimizations 3152 //===----------------------------------------------------------------------===// 3153 3154 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 3155 3156 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 3157 int StreamArg) { 3158 Function *Callee = CI->getCalledFunction(); 3159 // Error reporting calls should be cold, mark them as such. 3160 // This applies even to non-builtin calls: it is only a hint and applies to 3161 // functions that the frontend might not understand as builtins. 3162 3163 // This heuristic was suggested in: 3164 // Improving Static Branch Prediction in a Compiler 3165 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 3166 // Proceedings of PACT'98, Oct. 1998, IEEE 3167 if (!CI->hasFnAttr(Attribute::Cold) && 3168 isReportingError(Callee, CI, StreamArg)) { 3169 CI->addFnAttr(Attribute::Cold); 3170 } 3171 3172 return nullptr; 3173 } 3174 3175 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 3176 if (!Callee || !Callee->isDeclaration()) 3177 return false; 3178 3179 if (StreamArg < 0) 3180 return true; 3181 3182 // These functions might be considered cold, but only if their stream 3183 // argument is stderr. 3184 3185 if (StreamArg >= (int)CI->arg_size()) 3186 return false; 3187 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 3188 if (!LI) 3189 return false; 3190 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 3191 if (!GV || !GV->isDeclaration()) 3192 return false; 3193 return GV->getName() == "stderr"; 3194 } 3195 3196 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 3197 // Check for a fixed format string. 3198 StringRef FormatStr; 3199 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 3200 return nullptr; 3201 3202 // Empty format string -> noop. 3203 if (FormatStr.empty()) // Tolerate printf's declared void. 3204 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 3205 3206 // Do not do any of the following transformations if the printf return value 3207 // is used, in general the printf return value is not compatible with either 3208 // putchar() or puts(). 3209 if (!CI->use_empty()) 3210 return nullptr; 3211 3212 Type *IntTy = CI->getType(); 3213 // printf("x") -> putchar('x'), even for "%" and "%%". 3214 if (FormatStr.size() == 1 || FormatStr == "%%") { 3215 // Convert the character to unsigned char before passing it to putchar 3216 // to avoid host-specific sign extension in the IR. Putchar converts 3217 // it to unsigned char regardless. 3218 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 3219 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3220 } 3221 3222 // Try to remove call or emit putchar/puts. 3223 if (FormatStr == "%s" && CI->arg_size() > 1) { 3224 StringRef OperandStr; 3225 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 3226 return nullptr; 3227 // printf("%s", "") --> NOP 3228 if (OperandStr.empty()) 3229 return (Value *)CI; 3230 // printf("%s", "a") --> putchar('a') 3231 if (OperandStr.size() == 1) { 3232 // Convert the character to unsigned char before passing it to putchar 3233 // to avoid host-specific sign extension in the IR. Putchar converts 3234 // it to unsigned char regardless. 3235 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 3236 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3237 } 3238 // printf("%s", str"\n") --> puts(str) 3239 if (OperandStr.back() == '\n') { 3240 OperandStr = OperandStr.drop_back(); 3241 Value *GV = B.CreateGlobalString(OperandStr, "str"); 3242 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3243 } 3244 return nullptr; 3245 } 3246 3247 // printf("foo\n") --> puts("foo") 3248 if (FormatStr.back() == '\n' && 3249 !FormatStr.contains('%')) { // No format characters. 3250 // Create a string literal with no \n on it. We expect the constant merge 3251 // pass to be run after this pass, to merge duplicate strings. 3252 FormatStr = FormatStr.drop_back(); 3253 Value *GV = B.CreateGlobalString(FormatStr, "str"); 3254 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3255 } 3256 3257 // Optimize specific format strings. 3258 // printf("%c", chr) --> putchar(chr) 3259 if (FormatStr == "%c" && CI->arg_size() > 1 && 3260 CI->getArgOperand(1)->getType()->isIntegerTy()) { 3261 // Convert the argument to the type expected by putchar, i.e., int, which 3262 // need not be 32 bits wide but which is the same as printf's return type. 3263 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 3264 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3265 } 3266 3267 // printf("%s\n", str) --> puts(str) 3268 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3269 CI->getArgOperand(1)->getType()->isPointerTy()) 3270 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3271 return nullptr; 3272 } 3273 3274 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3275 3276 Module *M = CI->getModule(); 3277 Function *Callee = CI->getCalledFunction(); 3278 FunctionType *FT = Callee->getFunctionType(); 3279 if (Value *V = optimizePrintFString(CI, B)) { 3280 return V; 3281 } 3282 3283 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3284 3285 // printf(format, ...) -> iprintf(format, ...) if no floating point 3286 // arguments. 3287 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3288 !callHasFloatingPointArgument(CI)) { 3289 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3290 Callee->getAttributes()); 3291 CallInst *New = cast<CallInst>(CI->clone()); 3292 New->setCalledFunction(IPrintFFn); 3293 B.Insert(New); 3294 return New; 3295 } 3296 3297 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3298 // arguments. 3299 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3300 !callHasFP128Argument(CI)) { 3301 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3302 Callee->getAttributes()); 3303 CallInst *New = cast<CallInst>(CI->clone()); 3304 New->setCalledFunction(SmallPrintFFn); 3305 B.Insert(New); 3306 return New; 3307 } 3308 3309 return nullptr; 3310 } 3311 3312 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3313 IRBuilderBase &B) { 3314 // Check for a fixed format string. 3315 StringRef FormatStr; 3316 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3317 return nullptr; 3318 3319 // If we just have a format string (nothing else crazy) transform it. 3320 Value *Dest = CI->getArgOperand(0); 3321 if (CI->arg_size() == 2) { 3322 // Make sure there's no % in the constant array. We could try to handle 3323 // %% -> % in the future if we cared. 3324 if (FormatStr.contains('%')) 3325 return nullptr; // we found a format specifier, bail out. 3326 3327 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3328 B.CreateMemCpy( 3329 Dest, Align(1), CI->getArgOperand(1), Align(1), 3330 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3331 FormatStr.size() + 1)); // Copy the null byte. 3332 return ConstantInt::get(CI->getType(), FormatStr.size()); 3333 } 3334 3335 // The remaining optimizations require the format string to be "%s" or "%c" 3336 // and have an extra operand. 3337 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3338 return nullptr; 3339 3340 // Decode the second character of the format string. 3341 if (FormatStr[1] == 'c') { 3342 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3343 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3344 return nullptr; 3345 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3346 Value *Ptr = Dest; 3347 B.CreateStore(V, Ptr); 3348 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3349 B.CreateStore(B.getInt8(0), Ptr); 3350 3351 return ConstantInt::get(CI->getType(), 1); 3352 } 3353 3354 if (FormatStr[1] == 's') { 3355 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3356 // strlen(str)+1) 3357 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3358 return nullptr; 3359 3360 if (CI->use_empty()) 3361 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3362 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3363 3364 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3365 if (SrcLen) { 3366 B.CreateMemCpy( 3367 Dest, Align(1), CI->getArgOperand(2), Align(1), 3368 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3369 // Returns total number of characters written without null-character. 3370 return ConstantInt::get(CI->getType(), SrcLen - 1); 3371 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3372 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3373 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3374 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3375 } 3376 3377 bool OptForSize = CI->getFunction()->hasOptSize() || 3378 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3379 PGSOQueryType::IRPass); 3380 if (OptForSize) 3381 return nullptr; 3382 3383 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3384 if (!Len) 3385 return nullptr; 3386 Value *IncLen = 3387 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3388 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3389 3390 // The sprintf result is the unincremented number of bytes in the string. 3391 return B.CreateIntCast(Len, CI->getType(), false); 3392 } 3393 return nullptr; 3394 } 3395 3396 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3397 Module *M = CI->getModule(); 3398 Function *Callee = CI->getCalledFunction(); 3399 FunctionType *FT = Callee->getFunctionType(); 3400 if (Value *V = optimizeSPrintFString(CI, B)) { 3401 return V; 3402 } 3403 3404 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3405 3406 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3407 // point arguments. 3408 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3409 !callHasFloatingPointArgument(CI)) { 3410 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3411 FT, Callee->getAttributes()); 3412 CallInst *New = cast<CallInst>(CI->clone()); 3413 New->setCalledFunction(SIPrintFFn); 3414 B.Insert(New); 3415 return New; 3416 } 3417 3418 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3419 // floating point arguments. 3420 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3421 !callHasFP128Argument(CI)) { 3422 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3423 Callee->getAttributes()); 3424 CallInst *New = cast<CallInst>(CI->clone()); 3425 New->setCalledFunction(SmallSPrintFFn); 3426 B.Insert(New); 3427 return New; 3428 } 3429 3430 return nullptr; 3431 } 3432 3433 // Transform an snprintf call CI with the bound N to format the string Str 3434 // either to a call to memcpy, or to single character a store, or to nothing, 3435 // and fold the result to a constant. A nonnull StrArg refers to the string 3436 // argument being formatted. Otherwise the call is one with N < 2 and 3437 // the "%c" directive to format a single character. 3438 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3439 StringRef Str, uint64_t N, 3440 IRBuilderBase &B) { 3441 assert(StrArg || (N < 2 && Str.size() == 1)); 3442 3443 unsigned IntBits = TLI->getIntSize(); 3444 uint64_t IntMax = maxIntN(IntBits); 3445 if (Str.size() > IntMax) 3446 // Bail if the string is longer than INT_MAX. POSIX requires 3447 // implementations to set errno to EOVERFLOW in this case, in 3448 // addition to when N is larger than that (checked by the caller). 3449 return nullptr; 3450 3451 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3452 if (N == 0) 3453 return StrLen; 3454 3455 // Set to the number of bytes to copy fron StrArg which is also 3456 // the offset of the terinating nul. 3457 uint64_t NCopy; 3458 if (N > Str.size()) 3459 // Copy the full string, including the terminating nul (which must 3460 // be present regardless of the bound). 3461 NCopy = Str.size() + 1; 3462 else 3463 NCopy = N - 1; 3464 3465 Value *DstArg = CI->getArgOperand(0); 3466 if (NCopy && StrArg) 3467 // Transform the call to lvm.memcpy(dst, fmt, N). 3468 copyFlags( 3469 *CI, 3470 B.CreateMemCpy( 3471 DstArg, Align(1), StrArg, Align(1), 3472 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3473 3474 if (N > Str.size()) 3475 // Return early when the whole format string, including the final nul, 3476 // has been copied. 3477 return StrLen; 3478 3479 // Otherwise, when truncating the string append a terminating nul. 3480 Type *Int8Ty = B.getInt8Ty(); 3481 Value *NulOff = B.getIntN(IntBits, NCopy); 3482 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3483 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3484 return StrLen; 3485 } 3486 3487 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3488 IRBuilderBase &B) { 3489 // Check for size 3490 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3491 if (!Size) 3492 return nullptr; 3493 3494 uint64_t N = Size->getZExtValue(); 3495 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3496 if (N > IntMax) 3497 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3498 // to set errno to EOVERFLOW in this case. 3499 return nullptr; 3500 3501 Value *DstArg = CI->getArgOperand(0); 3502 Value *FmtArg = CI->getArgOperand(2); 3503 3504 // Check for a fixed format string. 3505 StringRef FormatStr; 3506 if (!getConstantStringInfo(FmtArg, FormatStr)) 3507 return nullptr; 3508 3509 // If we just have a format string (nothing else crazy) transform it. 3510 if (CI->arg_size() == 3) { 3511 if (FormatStr.contains('%')) 3512 // Bail if the format string contains a directive and there are 3513 // no arguments. We could handle "%%" in the future. 3514 return nullptr; 3515 3516 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3517 } 3518 3519 // The remaining optimizations require the format string to be "%s" or "%c" 3520 // and have an extra operand. 3521 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3522 return nullptr; 3523 3524 // Decode the second character of the format string. 3525 if (FormatStr[1] == 'c') { 3526 if (N <= 1) { 3527 // Use an arbitary string of length 1 to transform the call into 3528 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3529 // to one. 3530 StringRef CharStr("*"); 3531 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3532 } 3533 3534 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3535 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3536 return nullptr; 3537 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3538 Value *Ptr = DstArg; 3539 B.CreateStore(V, Ptr); 3540 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3541 B.CreateStore(B.getInt8(0), Ptr); 3542 return ConstantInt::get(CI->getType(), 1); 3543 } 3544 3545 if (FormatStr[1] != 's') 3546 return nullptr; 3547 3548 Value *StrArg = CI->getArgOperand(3); 3549 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3550 StringRef Str; 3551 if (!getConstantStringInfo(StrArg, Str)) 3552 return nullptr; 3553 3554 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3555 } 3556 3557 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3558 if (Value *V = optimizeSnPrintFString(CI, B)) { 3559 return V; 3560 } 3561 3562 if (isKnownNonZero(CI->getOperand(1), DL)) 3563 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3564 return nullptr; 3565 } 3566 3567 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3568 IRBuilderBase &B) { 3569 optimizeErrorReporting(CI, B, 0); 3570 3571 // All the optimizations depend on the format string. 3572 StringRef FormatStr; 3573 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3574 return nullptr; 3575 3576 // Do not do any of the following transformations if the fprintf return 3577 // value is used, in general the fprintf return value is not compatible 3578 // with fwrite(), fputc() or fputs(). 3579 if (!CI->use_empty()) 3580 return nullptr; 3581 3582 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3583 if (CI->arg_size() == 2) { 3584 // Could handle %% -> % if we cared. 3585 if (FormatStr.contains('%')) 3586 return nullptr; // We found a format specifier. 3587 3588 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3589 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3590 return copyFlags( 3591 *CI, emitFWrite(CI->getArgOperand(1), 3592 ConstantInt::get(SizeTTy, FormatStr.size()), 3593 CI->getArgOperand(0), B, DL, TLI)); 3594 } 3595 3596 // The remaining optimizations require the format string to be "%s" or "%c" 3597 // and have an extra operand. 3598 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3599 return nullptr; 3600 3601 // Decode the second character of the format string. 3602 if (FormatStr[1] == 'c') { 3603 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3604 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3605 return nullptr; 3606 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3607 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3608 "chari"); 3609 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3610 } 3611 3612 if (FormatStr[1] == 's') { 3613 // fprintf(F, "%s", str) --> fputs(str, F) 3614 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3615 return nullptr; 3616 return copyFlags( 3617 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3618 } 3619 return nullptr; 3620 } 3621 3622 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3623 Module *M = CI->getModule(); 3624 Function *Callee = CI->getCalledFunction(); 3625 FunctionType *FT = Callee->getFunctionType(); 3626 if (Value *V = optimizeFPrintFString(CI, B)) { 3627 return V; 3628 } 3629 3630 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3631 // floating point arguments. 3632 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3633 !callHasFloatingPointArgument(CI)) { 3634 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3635 FT, Callee->getAttributes()); 3636 CallInst *New = cast<CallInst>(CI->clone()); 3637 New->setCalledFunction(FIPrintFFn); 3638 B.Insert(New); 3639 return New; 3640 } 3641 3642 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3643 // 128-bit floating point arguments. 3644 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3645 !callHasFP128Argument(CI)) { 3646 auto SmallFPrintFFn = 3647 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3648 Callee->getAttributes()); 3649 CallInst *New = cast<CallInst>(CI->clone()); 3650 New->setCalledFunction(SmallFPrintFFn); 3651 B.Insert(New); 3652 return New; 3653 } 3654 3655 return nullptr; 3656 } 3657 3658 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3659 optimizeErrorReporting(CI, B, 3); 3660 3661 // Get the element size and count. 3662 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3663 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3664 if (SizeC && CountC) { 3665 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3666 3667 // If this is writing zero records, remove the call (it's a noop). 3668 if (Bytes == 0) 3669 return ConstantInt::get(CI->getType(), 0); 3670 3671 // If this is writing one byte, turn it into fputc. 3672 // This optimisation is only valid, if the return value is unused. 3673 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3674 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3675 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3676 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3677 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3678 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3679 } 3680 } 3681 3682 return nullptr; 3683 } 3684 3685 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3686 optimizeErrorReporting(CI, B, 1); 3687 3688 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3689 // requires more arguments and thus extra MOVs are required. 3690 bool OptForSize = CI->getFunction()->hasOptSize() || 3691 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3692 PGSOQueryType::IRPass); 3693 if (OptForSize) 3694 return nullptr; 3695 3696 // We can't optimize if return value is used. 3697 if (!CI->use_empty()) 3698 return nullptr; 3699 3700 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3701 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3702 if (!Len) 3703 return nullptr; 3704 3705 // Known to have no uses (see above). 3706 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3707 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3708 return copyFlags( 3709 *CI, 3710 emitFWrite(CI->getArgOperand(0), 3711 ConstantInt::get(SizeTTy, Len - 1), 3712 CI->getArgOperand(1), B, DL, TLI)); 3713 } 3714 3715 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3716 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3717 if (!CI->use_empty()) 3718 return nullptr; 3719 3720 // Check for a constant string. 3721 // puts("") -> putchar('\n') 3722 StringRef Str; 3723 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3724 // putchar takes an argument of the same type as puts returns, i.e., 3725 // int, which need not be 32 bits wide. 3726 Type *IntTy = CI->getType(); 3727 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3728 } 3729 3730 return nullptr; 3731 } 3732 3733 Value *LibCallSimplifier::optimizeExit(CallInst *CI) { 3734 3735 // Mark 'exit' as cold if its not exit(0) (success). 3736 const APInt *C; 3737 if (!CI->hasFnAttr(Attribute::Cold) && 3738 match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) { 3739 CI->addFnAttr(Attribute::Cold); 3740 } 3741 return nullptr; 3742 } 3743 3744 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3745 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3746 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3747 CI->getArgOperand(0), Align(1), 3748 CI->getArgOperand(2))); 3749 } 3750 3751 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3752 SmallString<20> FloatFuncName = FuncName; 3753 FloatFuncName += 'f'; 3754 return isLibFuncEmittable(M, TLI, FloatFuncName); 3755 } 3756 3757 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3758 IRBuilderBase &Builder) { 3759 Module *M = CI->getModule(); 3760 LibFunc Func; 3761 Function *Callee = CI->getCalledFunction(); 3762 // Check for string/memory library functions. 3763 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3764 // Make sure we never change the calling convention. 3765 assert( 3766 (ignoreCallingConv(Func) || 3767 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3768 "Optimizing string/memory libcall would change the calling convention"); 3769 switch (Func) { 3770 case LibFunc_strcat: 3771 return optimizeStrCat(CI, Builder); 3772 case LibFunc_strncat: 3773 return optimizeStrNCat(CI, Builder); 3774 case LibFunc_strchr: 3775 return optimizeStrChr(CI, Builder); 3776 case LibFunc_strrchr: 3777 return optimizeStrRChr(CI, Builder); 3778 case LibFunc_strcmp: 3779 return optimizeStrCmp(CI, Builder); 3780 case LibFunc_strncmp: 3781 return optimizeStrNCmp(CI, Builder); 3782 case LibFunc_strcpy: 3783 return optimizeStrCpy(CI, Builder); 3784 case LibFunc_stpcpy: 3785 return optimizeStpCpy(CI, Builder); 3786 case LibFunc_strlcpy: 3787 return optimizeStrLCpy(CI, Builder); 3788 case LibFunc_stpncpy: 3789 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3790 case LibFunc_strncpy: 3791 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3792 case LibFunc_strlen: 3793 return optimizeStrLen(CI, Builder); 3794 case LibFunc_strnlen: 3795 return optimizeStrNLen(CI, Builder); 3796 case LibFunc_strpbrk: 3797 return optimizeStrPBrk(CI, Builder); 3798 case LibFunc_strndup: 3799 return optimizeStrNDup(CI, Builder); 3800 case LibFunc_strtol: 3801 case LibFunc_strtod: 3802 case LibFunc_strtof: 3803 case LibFunc_strtoul: 3804 case LibFunc_strtoll: 3805 case LibFunc_strtold: 3806 case LibFunc_strtoull: 3807 return optimizeStrTo(CI, Builder); 3808 case LibFunc_strspn: 3809 return optimizeStrSpn(CI, Builder); 3810 case LibFunc_strcspn: 3811 return optimizeStrCSpn(CI, Builder); 3812 case LibFunc_strstr: 3813 return optimizeStrStr(CI, Builder); 3814 case LibFunc_memchr: 3815 return optimizeMemChr(CI, Builder); 3816 case LibFunc_memrchr: 3817 return optimizeMemRChr(CI, Builder); 3818 case LibFunc_bcmp: 3819 return optimizeBCmp(CI, Builder); 3820 case LibFunc_memcmp: 3821 return optimizeMemCmp(CI, Builder); 3822 case LibFunc_memcpy: 3823 return optimizeMemCpy(CI, Builder); 3824 case LibFunc_memccpy: 3825 return optimizeMemCCpy(CI, Builder); 3826 case LibFunc_mempcpy: 3827 return optimizeMemPCpy(CI, Builder); 3828 case LibFunc_memmove: 3829 return optimizeMemMove(CI, Builder); 3830 case LibFunc_memset: 3831 return optimizeMemSet(CI, Builder); 3832 case LibFunc_realloc: 3833 return optimizeRealloc(CI, Builder); 3834 case LibFunc_wcslen: 3835 return optimizeWcslen(CI, Builder); 3836 case LibFunc_bcopy: 3837 return optimizeBCopy(CI, Builder); 3838 case LibFunc_Znwm: 3839 case LibFunc_ZnwmRKSt9nothrow_t: 3840 case LibFunc_ZnwmSt11align_val_t: 3841 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3842 case LibFunc_Znam: 3843 case LibFunc_ZnamRKSt9nothrow_t: 3844 case LibFunc_ZnamSt11align_val_t: 3845 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3846 case LibFunc_Znwm12__hot_cold_t: 3847 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 3848 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 3849 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3850 case LibFunc_Znam12__hot_cold_t: 3851 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 3852 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 3853 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3854 return optimizeNew(CI, Builder, Func); 3855 default: 3856 break; 3857 } 3858 } 3859 return nullptr; 3860 } 3861 3862 /// Constant folding nan/nanf/nanl. 3863 static Value *optimizeNaN(CallInst *CI) { 3864 StringRef CharSeq; 3865 if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq)) 3866 return nullptr; 3867 3868 APInt Fill; 3869 // Treat empty strings as if they were zero. 3870 if (CharSeq.empty()) 3871 Fill = APInt(32, 0); 3872 else if (CharSeq.getAsInteger(0, Fill)) 3873 return nullptr; 3874 3875 return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill); 3876 } 3877 3878 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3879 LibFunc Func, 3880 IRBuilderBase &Builder) { 3881 const Module *M = CI->getModule(); 3882 3883 // Don't optimize calls that require strict floating point semantics. 3884 if (CI->isStrictFP()) 3885 return nullptr; 3886 3887 if (Value *V = optimizeSymmetric(CI, Func, Builder)) 3888 return V; 3889 3890 switch (Func) { 3891 case LibFunc_sinpif: 3892 case LibFunc_sinpi: 3893 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3894 case LibFunc_cospif: 3895 case LibFunc_cospi: 3896 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3897 case LibFunc_powf: 3898 case LibFunc_pow: 3899 case LibFunc_powl: 3900 return optimizePow(CI, Builder); 3901 case LibFunc_exp2l: 3902 case LibFunc_exp2: 3903 case LibFunc_exp2f: 3904 return optimizeExp2(CI, Builder); 3905 case LibFunc_fabsf: 3906 case LibFunc_fabs: 3907 case LibFunc_fabsl: 3908 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3909 case LibFunc_sqrtf: 3910 case LibFunc_sqrt: 3911 case LibFunc_sqrtl: 3912 return optimizeSqrt(CI, Builder); 3913 case LibFunc_logf: 3914 case LibFunc_log: 3915 case LibFunc_logl: 3916 case LibFunc_log10f: 3917 case LibFunc_log10: 3918 case LibFunc_log10l: 3919 case LibFunc_log1pf: 3920 case LibFunc_log1p: 3921 case LibFunc_log1pl: 3922 case LibFunc_log2f: 3923 case LibFunc_log2: 3924 case LibFunc_log2l: 3925 case LibFunc_logbf: 3926 case LibFunc_logb: 3927 case LibFunc_logbl: 3928 return optimizeLog(CI, Builder); 3929 case LibFunc_tan: 3930 case LibFunc_tanf: 3931 case LibFunc_tanl: 3932 case LibFunc_sinh: 3933 case LibFunc_sinhf: 3934 case LibFunc_sinhl: 3935 case LibFunc_asinh: 3936 case LibFunc_asinhf: 3937 case LibFunc_asinhl: 3938 case LibFunc_cosh: 3939 case LibFunc_coshf: 3940 case LibFunc_coshl: 3941 case LibFunc_atanh: 3942 case LibFunc_atanhf: 3943 case LibFunc_atanhl: 3944 return optimizeTrigInversionPairs(CI, Builder); 3945 case LibFunc_ceil: 3946 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3947 case LibFunc_floor: 3948 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3949 case LibFunc_round: 3950 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3951 case LibFunc_roundeven: 3952 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3953 case LibFunc_nearbyint: 3954 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3955 case LibFunc_rint: 3956 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3957 case LibFunc_trunc: 3958 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3959 case LibFunc_acos: 3960 case LibFunc_acosh: 3961 case LibFunc_asin: 3962 case LibFunc_atan: 3963 case LibFunc_cbrt: 3964 case LibFunc_exp: 3965 case LibFunc_exp10: 3966 case LibFunc_expm1: 3967 case LibFunc_cos: 3968 case LibFunc_sin: 3969 case LibFunc_tanh: 3970 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3971 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3972 return nullptr; 3973 case LibFunc_copysign: 3974 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3975 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3976 return nullptr; 3977 case LibFunc_fminf: 3978 case LibFunc_fmin: 3979 case LibFunc_fminl: 3980 case LibFunc_fmaxf: 3981 case LibFunc_fmax: 3982 case LibFunc_fmaxl: 3983 return optimizeFMinFMax(CI, Builder); 3984 case LibFunc_cabs: 3985 case LibFunc_cabsf: 3986 case LibFunc_cabsl: 3987 return optimizeCAbs(CI, Builder); 3988 case LibFunc_remquo: 3989 case LibFunc_remquof: 3990 case LibFunc_remquol: 3991 return optimizeRemquo(CI, Builder); 3992 case LibFunc_nan: 3993 case LibFunc_nanf: 3994 case LibFunc_nanl: 3995 return optimizeNaN(CI); 3996 default: 3997 return nullptr; 3998 } 3999 } 4000 4001 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 4002 Module *M = CI->getModule(); 4003 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 4004 4005 // TODO: Split out the code below that operates on FP calls so that 4006 // we can all non-FP calls with the StrictFP attribute to be 4007 // optimized. 4008 if (CI->isNoBuiltin()) 4009 return nullptr; 4010 4011 LibFunc Func; 4012 Function *Callee = CI->getCalledFunction(); 4013 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4014 4015 SmallVector<OperandBundleDef, 2> OpBundles; 4016 CI->getOperandBundlesAsDefs(OpBundles); 4017 4018 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4019 Builder.setDefaultOperandBundles(OpBundles); 4020 4021 // Command-line parameter overrides instruction attribute. 4022 // This can't be moved to optimizeFloatingPointLibCall() because it may be 4023 // used by the intrinsic optimizations. 4024 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 4025 UnsafeFPShrink = EnableUnsafeFPShrink; 4026 else if (isa<FPMathOperator>(CI) && CI->isFast()) 4027 UnsafeFPShrink = true; 4028 4029 // First, check for intrinsics. 4030 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 4031 if (!IsCallingConvC) 4032 return nullptr; 4033 // The FP intrinsics have corresponding constrained versions so we don't 4034 // need to check for the StrictFP attribute here. 4035 switch (II->getIntrinsicID()) { 4036 case Intrinsic::pow: 4037 return optimizePow(CI, Builder); 4038 case Intrinsic::exp2: 4039 return optimizeExp2(CI, Builder); 4040 case Intrinsic::log: 4041 case Intrinsic::log2: 4042 case Intrinsic::log10: 4043 return optimizeLog(CI, Builder); 4044 case Intrinsic::sqrt: 4045 return optimizeSqrt(CI, Builder); 4046 case Intrinsic::memset: 4047 return optimizeMemSet(CI, Builder); 4048 case Intrinsic::memcpy: 4049 return optimizeMemCpy(CI, Builder); 4050 case Intrinsic::memmove: 4051 return optimizeMemMove(CI, Builder); 4052 default: 4053 return nullptr; 4054 } 4055 } 4056 4057 // Also try to simplify calls to fortified library functions. 4058 if (Value *SimplifiedFortifiedCI = 4059 FortifiedSimplifier.optimizeCall(CI, Builder)) 4060 return SimplifiedFortifiedCI; 4061 4062 // Then check for known library functions. 4063 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 4064 // We never change the calling convention. 4065 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4066 return nullptr; 4067 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 4068 return V; 4069 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 4070 return V; 4071 switch (Func) { 4072 case LibFunc_ffs: 4073 case LibFunc_ffsl: 4074 case LibFunc_ffsll: 4075 return optimizeFFS(CI, Builder); 4076 case LibFunc_fls: 4077 case LibFunc_flsl: 4078 case LibFunc_flsll: 4079 return optimizeFls(CI, Builder); 4080 case LibFunc_abs: 4081 case LibFunc_labs: 4082 case LibFunc_llabs: 4083 return optimizeAbs(CI, Builder); 4084 case LibFunc_isdigit: 4085 return optimizeIsDigit(CI, Builder); 4086 case LibFunc_isascii: 4087 return optimizeIsAscii(CI, Builder); 4088 case LibFunc_toascii: 4089 return optimizeToAscii(CI, Builder); 4090 case LibFunc_atoi: 4091 case LibFunc_atol: 4092 case LibFunc_atoll: 4093 return optimizeAtoi(CI, Builder); 4094 case LibFunc_strtol: 4095 case LibFunc_strtoll: 4096 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 4097 case LibFunc_strtoul: 4098 case LibFunc_strtoull: 4099 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 4100 case LibFunc_printf: 4101 return optimizePrintF(CI, Builder); 4102 case LibFunc_sprintf: 4103 return optimizeSPrintF(CI, Builder); 4104 case LibFunc_snprintf: 4105 return optimizeSnPrintF(CI, Builder); 4106 case LibFunc_fprintf: 4107 return optimizeFPrintF(CI, Builder); 4108 case LibFunc_fwrite: 4109 return optimizeFWrite(CI, Builder); 4110 case LibFunc_fputs: 4111 return optimizeFPuts(CI, Builder); 4112 case LibFunc_puts: 4113 return optimizePuts(CI, Builder); 4114 case LibFunc_perror: 4115 return optimizeErrorReporting(CI, Builder); 4116 case LibFunc_vfprintf: 4117 case LibFunc_fiprintf: 4118 return optimizeErrorReporting(CI, Builder, 0); 4119 case LibFunc_exit: 4120 case LibFunc_Exit: 4121 return optimizeExit(CI); 4122 default: 4123 return nullptr; 4124 } 4125 } 4126 return nullptr; 4127 } 4128 4129 LibCallSimplifier::LibCallSimplifier( 4130 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 4131 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4132 ProfileSummaryInfo *PSI, 4133 function_ref<void(Instruction *, Value *)> Replacer, 4134 function_ref<void(Instruction *)> Eraser) 4135 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 4136 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 4137 4138 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 4139 // Indirect through the replacer used in this instance. 4140 Replacer(I, With); 4141 } 4142 4143 void LibCallSimplifier::eraseFromParent(Instruction *I) { 4144 Eraser(I); 4145 } 4146 4147 // TODO: 4148 // Additional cases that we need to add to this file: 4149 // 4150 // cbrt: 4151 // * cbrt(expN(X)) -> expN(x/3) 4152 // * cbrt(sqrt(x)) -> pow(x,1/6) 4153 // * cbrt(cbrt(x)) -> pow(x,1/9) 4154 // 4155 // exp, expf, expl: 4156 // * exp(log(x)) -> x 4157 // 4158 // log, logf, logl: 4159 // * log(exp(x)) -> x 4160 // * log(exp(y)) -> y*log(e) 4161 // * log(exp10(y)) -> y*log(10) 4162 // * log(sqrt(x)) -> 0.5*log(x) 4163 // 4164 // pow, powf, powl: 4165 // * pow(sqrt(x),y) -> pow(x,y*0.5) 4166 // * pow(pow(x,y),z)-> pow(x,y*z) 4167 // 4168 // signbit: 4169 // * signbit(cnst) -> cnst' 4170 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 4171 // 4172 // sqrt, sqrtf, sqrtl: 4173 // * sqrt(expN(x)) -> expN(x*0.5) 4174 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 4175 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 4176 // 4177 4178 //===----------------------------------------------------------------------===// 4179 // Fortified Library Call Optimizations 4180 //===----------------------------------------------------------------------===// 4181 4182 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 4183 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 4184 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 4185 // If this function takes a flag argument, the implementation may use it to 4186 // perform extra checks. Don't fold into the non-checking variant. 4187 if (FlagOp) { 4188 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 4189 if (!Flag || !Flag->isZero()) 4190 return false; 4191 } 4192 4193 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 4194 return true; 4195 4196 if (ConstantInt *ObjSizeCI = 4197 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 4198 if (ObjSizeCI->isMinusOne()) 4199 return true; 4200 // If the object size wasn't -1 (unknown), bail out if we were asked to. 4201 if (OnlyLowerUnknownSize) 4202 return false; 4203 if (StrOp) { 4204 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 4205 // If the length is 0 we don't know how long it is and so we can't 4206 // remove the check. 4207 if (Len) 4208 annotateDereferenceableBytes(CI, *StrOp, Len); 4209 else 4210 return false; 4211 return ObjSizeCI->getZExtValue() >= Len; 4212 } 4213 4214 if (SizeOp) { 4215 if (ConstantInt *SizeCI = 4216 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 4217 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 4218 } 4219 } 4220 return false; 4221 } 4222 4223 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 4224 IRBuilderBase &B) { 4225 if (isFortifiedCallFoldable(CI, 3, 2)) { 4226 CallInst *NewCI = 4227 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4228 Align(1), CI->getArgOperand(2)); 4229 mergeAttributesAndFlags(NewCI, *CI); 4230 return CI->getArgOperand(0); 4231 } 4232 return nullptr; 4233 } 4234 4235 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 4236 IRBuilderBase &B) { 4237 if (isFortifiedCallFoldable(CI, 3, 2)) { 4238 CallInst *NewCI = 4239 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4240 Align(1), CI->getArgOperand(2)); 4241 mergeAttributesAndFlags(NewCI, *CI); 4242 return CI->getArgOperand(0); 4243 } 4244 return nullptr; 4245 } 4246 4247 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 4248 IRBuilderBase &B) { 4249 if (isFortifiedCallFoldable(CI, 3, 2)) { 4250 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 4251 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 4252 CI->getArgOperand(2), Align(1)); 4253 mergeAttributesAndFlags(NewCI, *CI); 4254 return CI->getArgOperand(0); 4255 } 4256 return nullptr; 4257 } 4258 4259 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 4260 IRBuilderBase &B) { 4261 const DataLayout &DL = CI->getDataLayout(); 4262 if (isFortifiedCallFoldable(CI, 3, 2)) 4263 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4264 CI->getArgOperand(2), B, DL, TLI)) { 4265 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 4266 } 4267 return nullptr; 4268 } 4269 4270 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 4271 IRBuilderBase &B, 4272 LibFunc Func) { 4273 const DataLayout &DL = CI->getDataLayout(); 4274 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 4275 *ObjSize = CI->getArgOperand(2); 4276 4277 // __stpcpy_chk(x,x,...) -> x+strlen(x) 4278 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 4279 Value *StrLen = emitStrLen(Src, B, DL, TLI); 4280 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 4281 } 4282 4283 // If a) we don't have any length information, or b) we know this will 4284 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 4285 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 4286 // TODO: It might be nice to get a maximum length out of the possible 4287 // string lengths for varying. 4288 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 4289 if (Func == LibFunc_strcpy_chk) 4290 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 4291 else 4292 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 4293 } 4294 4295 if (OnlyLowerUnknownSize) 4296 return nullptr; 4297 4298 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4299 uint64_t Len = GetStringLength(Src); 4300 if (Len) 4301 annotateDereferenceableBytes(CI, 1, Len); 4302 else 4303 return nullptr; 4304 4305 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4306 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4307 Value *LenV = ConstantInt::get(SizeTTy, Len); 4308 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4309 // If the function was an __stpcpy_chk, and we were able to fold it into 4310 // a __memcpy_chk, we still need to return the correct end pointer. 4311 if (Ret && Func == LibFunc_stpcpy_chk) 4312 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4313 ConstantInt::get(SizeTTy, Len - 1)); 4314 return copyFlags(*CI, cast<CallInst>(Ret)); 4315 } 4316 4317 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4318 IRBuilderBase &B) { 4319 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4320 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4321 CI->getDataLayout(), TLI)); 4322 return nullptr; 4323 } 4324 4325 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4326 IRBuilderBase &B, 4327 LibFunc Func) { 4328 if (isFortifiedCallFoldable(CI, 3, 2)) { 4329 if (Func == LibFunc_strncpy_chk) 4330 return copyFlags(*CI, 4331 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4332 CI->getArgOperand(2), B, TLI)); 4333 else 4334 return copyFlags(*CI, 4335 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4336 CI->getArgOperand(2), B, TLI)); 4337 } 4338 4339 return nullptr; 4340 } 4341 4342 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4343 IRBuilderBase &B) { 4344 if (isFortifiedCallFoldable(CI, 4, 3)) 4345 return copyFlags( 4346 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4347 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4348 4349 return nullptr; 4350 } 4351 4352 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4353 IRBuilderBase &B) { 4354 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4355 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4356 return copyFlags(*CI, 4357 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4358 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4359 } 4360 4361 return nullptr; 4362 } 4363 4364 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4365 IRBuilderBase &B) { 4366 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4367 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4368 return copyFlags(*CI, 4369 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4370 VariadicArgs, B, TLI)); 4371 } 4372 4373 return nullptr; 4374 } 4375 4376 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4377 IRBuilderBase &B) { 4378 if (isFortifiedCallFoldable(CI, 2)) 4379 return copyFlags( 4380 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4381 4382 return nullptr; 4383 } 4384 4385 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4386 IRBuilderBase &B) { 4387 if (isFortifiedCallFoldable(CI, 3)) 4388 return copyFlags(*CI, 4389 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4390 CI->getArgOperand(2), B, TLI)); 4391 4392 return nullptr; 4393 } 4394 4395 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4396 IRBuilderBase &B) { 4397 if (isFortifiedCallFoldable(CI, 3)) 4398 return copyFlags(*CI, 4399 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4400 CI->getArgOperand(2), B, TLI)); 4401 4402 return nullptr; 4403 } 4404 4405 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4406 IRBuilderBase &B) { 4407 if (isFortifiedCallFoldable(CI, 3)) 4408 return copyFlags(*CI, 4409 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4410 CI->getArgOperand(2), B, TLI)); 4411 4412 return nullptr; 4413 } 4414 4415 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4416 IRBuilderBase &B) { 4417 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4418 return copyFlags( 4419 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4420 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4421 4422 return nullptr; 4423 } 4424 4425 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4426 IRBuilderBase &B) { 4427 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4428 return copyFlags(*CI, 4429 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4430 CI->getArgOperand(4), B, TLI)); 4431 4432 return nullptr; 4433 } 4434 4435 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4436 IRBuilderBase &Builder) { 4437 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4438 // Some clang users checked for _chk libcall availability using: 4439 // __has_builtin(__builtin___memcpy_chk) 4440 // When compiling with -fno-builtin, this is always true. 4441 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4442 // end up with fortified libcalls, which isn't acceptable in a freestanding 4443 // environment which only provides their non-fortified counterparts. 4444 // 4445 // Until we change clang and/or teach external users to check for availability 4446 // differently, disregard the "nobuiltin" attribute and TLI::has. 4447 // 4448 // PR23093. 4449 4450 LibFunc Func; 4451 Function *Callee = CI->getCalledFunction(); 4452 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4453 4454 SmallVector<OperandBundleDef, 2> OpBundles; 4455 CI->getOperandBundlesAsDefs(OpBundles); 4456 4457 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4458 Builder.setDefaultOperandBundles(OpBundles); 4459 4460 // First, check that this is a known library functions and that the prototype 4461 // is correct. 4462 if (!TLI->getLibFunc(*Callee, Func)) 4463 return nullptr; 4464 4465 // We never change the calling convention. 4466 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4467 return nullptr; 4468 4469 switch (Func) { 4470 case LibFunc_memcpy_chk: 4471 return optimizeMemCpyChk(CI, Builder); 4472 case LibFunc_mempcpy_chk: 4473 return optimizeMemPCpyChk(CI, Builder); 4474 case LibFunc_memmove_chk: 4475 return optimizeMemMoveChk(CI, Builder); 4476 case LibFunc_memset_chk: 4477 return optimizeMemSetChk(CI, Builder); 4478 case LibFunc_stpcpy_chk: 4479 case LibFunc_strcpy_chk: 4480 return optimizeStrpCpyChk(CI, Builder, Func); 4481 case LibFunc_strlen_chk: 4482 return optimizeStrLenChk(CI, Builder); 4483 case LibFunc_stpncpy_chk: 4484 case LibFunc_strncpy_chk: 4485 return optimizeStrpNCpyChk(CI, Builder, Func); 4486 case LibFunc_memccpy_chk: 4487 return optimizeMemCCpyChk(CI, Builder); 4488 case LibFunc_snprintf_chk: 4489 return optimizeSNPrintfChk(CI, Builder); 4490 case LibFunc_sprintf_chk: 4491 return optimizeSPrintfChk(CI, Builder); 4492 case LibFunc_strcat_chk: 4493 return optimizeStrCatChk(CI, Builder); 4494 case LibFunc_strlcat_chk: 4495 return optimizeStrLCat(CI, Builder); 4496 case LibFunc_strncat_chk: 4497 return optimizeStrNCatChk(CI, Builder); 4498 case LibFunc_strlcpy_chk: 4499 return optimizeStrLCpyChk(CI, Builder); 4500 case LibFunc_vsnprintf_chk: 4501 return optimizeVSNPrintfChk(CI, Builder); 4502 case LibFunc_vsprintf_chk: 4503 return optimizeVSPrintfChk(CI, Builder); 4504 default: 4505 break; 4506 } 4507 return nullptr; 4508 } 4509 4510 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4511 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4512 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4513