1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/AttributeMask.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/PatternMatch.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/TargetParser/Triple.h" 34 #include "llvm/Transforms/Utils/BuildLibCalls.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 #include "llvm/Transforms/Utils/SizeOpts.h" 37 38 #include <cmath> 39 40 using namespace llvm; 41 using namespace PatternMatch; 42 43 static cl::opt<bool> 44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 45 cl::init(false), 46 cl::desc("Enable unsafe double to float " 47 "shrinking for math lib calls")); 48 49 // Enable conversion of operator new calls with a MemProf hot or cold hint 50 // to an operator new call that takes a hot/cold hint. Off by default since 51 // not all allocators currently support this extension. 52 static cl::opt<bool> 53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 54 cl::desc("Enable hot/cold operator new library calls")); 55 static cl::opt<bool> OptimizeExistingHotColdNew( 56 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), 57 cl::desc( 58 "Enable optimization of existing hot/cold operator new library calls")); 59 60 namespace { 61 62 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 63 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 64 // option with a specific set of values. 65 struct HotColdHintParser : public cl::parser<unsigned> { 66 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 67 68 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 69 if (Arg.getAsInteger(0, Value)) 70 return O.error("'" + Arg + "' value invalid for uint argument!"); 71 72 if (Value > 255) 73 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 74 75 return false; 76 } 77 }; 78 79 } // end anonymous namespace 80 81 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 82 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 83 // hints, so that the compiler hinted allocations are slightly less strong than 84 // manually inserted hints at the two extremes. 85 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 86 "cold-new-hint-value", cl::Hidden, cl::init(1), 87 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 88 static cl::opt<unsigned, false, HotColdHintParser> 89 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), 90 cl::desc("Value to pass to hot/cold operator new for " 91 "notcold (warm) allocation")); 92 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 93 "hot-new-hint-value", cl::Hidden, cl::init(254), 94 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 95 96 //===----------------------------------------------------------------------===// 97 // Helper Functions 98 //===----------------------------------------------------------------------===// 99 100 static bool ignoreCallingConv(LibFunc Func) { 101 return Func == LibFunc_abs || Func == LibFunc_labs || 102 Func == LibFunc_llabs || Func == LibFunc_strlen; 103 } 104 105 /// Return true if it is only used in equality comparisons with With. 106 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 107 for (User *U : V->users()) { 108 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 109 if (IC->isEquality() && IC->getOperand(1) == With) 110 continue; 111 // Unknown instruction. 112 return false; 113 } 114 return true; 115 } 116 117 static bool callHasFloatingPointArgument(const CallInst *CI) { 118 return any_of(CI->operands(), [](const Use &OI) { 119 return OI->getType()->isFloatingPointTy(); 120 }); 121 } 122 123 static bool callHasFP128Argument(const CallInst *CI) { 124 return any_of(CI->operands(), [](const Use &OI) { 125 return OI->getType()->isFP128Ty(); 126 }); 127 } 128 129 // Convert the entire string Str representing an integer in Base, up to 130 // the terminating nul if present, to a constant according to the rules 131 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 132 // return the result, otherwise null. 133 // The function assumes the string is encoded in ASCII and carefully 134 // avoids converting sequences (including "") that the corresponding 135 // library call might fail and set errno for. 136 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 137 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 138 if (Base < 2 || Base > 36) 139 if (Base != 0) 140 // Fail for an invalid base (required by POSIX). 141 return nullptr; 142 143 // Current offset into the original string to reflect in EndPtr. 144 size_t Offset = 0; 145 // Strip leading whitespace. 146 for ( ; Offset != Str.size(); ++Offset) 147 if (!isSpace((unsigned char)Str[Offset])) { 148 Str = Str.substr(Offset); 149 break; 150 } 151 152 if (Str.empty()) 153 // Fail for empty subject sequences (POSIX allows but doesn't require 154 // strtol[l]/strtoul[l] to fail with EINVAL). 155 return nullptr; 156 157 // Strip but remember the sign. 158 bool Negate = Str[0] == '-'; 159 if (Str[0] == '-' || Str[0] == '+') { 160 Str = Str.drop_front(); 161 if (Str.empty()) 162 // Fail for a sign with nothing after it. 163 return nullptr; 164 ++Offset; 165 } 166 167 // Set Max to the absolute value of the minimum (for signed), or 168 // to the maximum (for unsigned) value representable in the type. 169 Type *RetTy = CI->getType(); 170 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 171 uint64_t Max = AsSigned && Negate ? 1 : 0; 172 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 173 174 // Autodetect Base if it's zero and consume the "0x" prefix. 175 if (Str.size() > 1) { 176 if (Str[0] == '0') { 177 if (toUpper((unsigned char)Str[1]) == 'X') { 178 if (Str.size() == 2 || (Base && Base != 16)) 179 // Fail if Base doesn't allow the "0x" prefix or for the prefix 180 // alone that implementations like BSD set errno to EINVAL for. 181 return nullptr; 182 183 Str = Str.drop_front(2); 184 Offset += 2; 185 Base = 16; 186 } 187 else if (Base == 0) 188 Base = 8; 189 } else if (Base == 0) 190 Base = 10; 191 } 192 else if (Base == 0) 193 Base = 10; 194 195 // Convert the rest of the subject sequence, not including the sign, 196 // to its uint64_t representation (this assumes the source character 197 // set is ASCII). 198 uint64_t Result = 0; 199 for (unsigned i = 0; i != Str.size(); ++i) { 200 unsigned char DigVal = Str[i]; 201 if (isDigit(DigVal)) 202 DigVal = DigVal - '0'; 203 else { 204 DigVal = toUpper(DigVal); 205 if (isAlpha(DigVal)) 206 DigVal = DigVal - 'A' + 10; 207 else 208 return nullptr; 209 } 210 211 if (DigVal >= Base) 212 // Fail if the digit is not valid in the Base. 213 return nullptr; 214 215 // Add the digit and fail if the result is not representable in 216 // the (unsigned form of the) destination type. 217 bool VFlow; 218 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 219 if (VFlow || Result > Max) 220 return nullptr; 221 } 222 223 if (EndPtr) { 224 // Store the pointer to the end. 225 Value *Off = B.getInt64(Offset + Str.size()); 226 Value *StrBeg = CI->getArgOperand(0); 227 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 228 B.CreateStore(StrEnd, EndPtr); 229 } 230 231 if (Negate) 232 // Unsigned negation doesn't overflow. 233 Result = -Result; 234 235 return ConstantInt::get(RetTy, Result); 236 } 237 238 static bool isOnlyUsedInComparisonWithZero(Value *V) { 239 for (User *U : V->users()) { 240 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 241 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 242 if (C->isNullValue()) 243 continue; 244 // Unknown instruction. 245 return false; 246 } 247 return true; 248 } 249 250 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 251 const DataLayout &DL) { 252 if (!isOnlyUsedInComparisonWithZero(CI)) 253 return false; 254 255 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 256 return false; 257 258 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 259 return false; 260 261 return true; 262 } 263 264 static void annotateDereferenceableBytes(CallInst *CI, 265 ArrayRef<unsigned> ArgNos, 266 uint64_t DereferenceableBytes) { 267 const Function *F = CI->getCaller(); 268 if (!F) 269 return; 270 for (unsigned ArgNo : ArgNos) { 271 uint64_t DerefBytes = DereferenceableBytes; 272 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 273 if (!llvm::NullPointerIsDefined(F, AS) || 274 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 275 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 276 DereferenceableBytes); 277 278 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 279 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 280 if (!llvm::NullPointerIsDefined(F, AS) || 281 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 282 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 283 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 284 CI->getContext(), DerefBytes)); 285 } 286 } 287 } 288 289 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 290 ArrayRef<unsigned> ArgNos) { 291 Function *F = CI->getCaller(); 292 if (!F) 293 return; 294 295 for (unsigned ArgNo : ArgNos) { 296 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 297 CI->addParamAttr(ArgNo, Attribute::NoUndef); 298 299 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 300 unsigned AS = 301 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 302 if (llvm::NullPointerIsDefined(F, AS)) 303 continue; 304 CI->addParamAttr(ArgNo, Attribute::NonNull); 305 } 306 307 annotateDereferenceableBytes(CI, ArgNo, 1); 308 } 309 } 310 311 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 312 Value *Size, const DataLayout &DL) { 313 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 314 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 315 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 316 } else if (isKnownNonZero(Size, DL)) { 317 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 318 const APInt *X, *Y; 319 uint64_t DerefMin = 1; 320 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 321 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 322 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 323 } 324 } 325 } 326 327 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 328 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 329 // in this function when New is created to replace Old. Callers should take 330 // care to check Old.isMustTailCall() if they aren't replacing Old directly 331 // with New. 332 static Value *copyFlags(const CallInst &Old, Value *New) { 333 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 334 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 335 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 336 NewCI->setTailCallKind(Old.getTailCallKind()); 337 return New; 338 } 339 340 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 341 NewCI->setAttributes(AttributeList::get( 342 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 343 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 344 return copyFlags(Old, NewCI); 345 } 346 347 // Helper to avoid truncating the length if size_t is 32-bits. 348 static StringRef substr(StringRef Str, uint64_t Len) { 349 return Len >= Str.size() ? Str : Str.substr(0, Len); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // String and Memory Library Call Optimizations 354 //===----------------------------------------------------------------------===// 355 356 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 357 // Extract some information from the instruction 358 Value *Dst = CI->getArgOperand(0); 359 Value *Src = CI->getArgOperand(1); 360 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 361 362 // See if we can get the length of the input string. 363 uint64_t Len = GetStringLength(Src); 364 if (Len) 365 annotateDereferenceableBytes(CI, 1, Len); 366 else 367 return nullptr; 368 --Len; // Unbias length. 369 370 // Handle the simple, do-nothing case: strcat(x, "") -> x 371 if (Len == 0) 372 return Dst; 373 374 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 375 } 376 377 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 378 IRBuilderBase &B) { 379 // We need to find the end of the destination string. That's where the 380 // memory is to be moved to. We just generate a call to strlen. 381 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 382 if (!DstLen) 383 return nullptr; 384 385 // Now that we have the destination's length, we must index into the 386 // destination's pointer to get the actual memcpy destination (end of 387 // the string .. we're concatenating). 388 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 389 390 // We have enough information to now generate the memcpy call to do the 391 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 392 B.CreateMemCpy( 393 CpyDst, Align(1), Src, Align(1), 394 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 395 return Dst; 396 } 397 398 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 399 // Extract some information from the instruction. 400 Value *Dst = CI->getArgOperand(0); 401 Value *Src = CI->getArgOperand(1); 402 Value *Size = CI->getArgOperand(2); 403 uint64_t Len; 404 annotateNonNullNoUndefBasedOnAccess(CI, 0); 405 if (isKnownNonZero(Size, DL)) 406 annotateNonNullNoUndefBasedOnAccess(CI, 1); 407 408 // We don't do anything if length is not constant. 409 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 410 if (LengthArg) { 411 Len = LengthArg->getZExtValue(); 412 // strncat(x, c, 0) -> x 413 if (!Len) 414 return Dst; 415 } else { 416 return nullptr; 417 } 418 419 // See if we can get the length of the input string. 420 uint64_t SrcLen = GetStringLength(Src); 421 if (SrcLen) { 422 annotateDereferenceableBytes(CI, 1, SrcLen); 423 --SrcLen; // Unbias length. 424 } else { 425 return nullptr; 426 } 427 428 // strncat(x, "", c) -> x 429 if (SrcLen == 0) 430 return Dst; 431 432 // We don't optimize this case. 433 if (Len < SrcLen) 434 return nullptr; 435 436 // strncat(x, s, c) -> strcat(x, s) 437 // s is constant so the strcat can be optimized further. 438 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 439 } 440 441 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 442 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 443 // is that either S is dereferenceable or the value of N is nonzero. 444 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 445 IRBuilderBase &B, const DataLayout &DL) 446 { 447 Value *Src = CI->getArgOperand(0); 448 Value *CharVal = CI->getArgOperand(1); 449 450 // Fold memchr(A, C, N) == A to N && *A == C. 451 Type *CharTy = B.getInt8Ty(); 452 Value *Char0 = B.CreateLoad(CharTy, Src); 453 CharVal = B.CreateTrunc(CharVal, CharTy); 454 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 455 456 if (NBytes) { 457 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 458 Value *And = B.CreateICmpNE(NBytes, Zero); 459 Cmp = B.CreateLogicalAnd(And, Cmp); 460 } 461 462 Value *NullPtr = Constant::getNullValue(CI->getType()); 463 return B.CreateSelect(Cmp, Src, NullPtr); 464 } 465 466 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 467 Value *SrcStr = CI->getArgOperand(0); 468 Value *CharVal = CI->getArgOperand(1); 469 annotateNonNullNoUndefBasedOnAccess(CI, 0); 470 471 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 472 return memChrToCharCompare(CI, nullptr, B, DL); 473 474 // If the second operand is non-constant, see if we can compute the length 475 // of the input string and turn this into memchr. 476 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 477 if (!CharC) { 478 uint64_t Len = GetStringLength(SrcStr); 479 if (Len) 480 annotateDereferenceableBytes(CI, 0, Len); 481 else 482 return nullptr; 483 484 Function *Callee = CI->getCalledFunction(); 485 FunctionType *FT = Callee->getFunctionType(); 486 unsigned IntBits = TLI->getIntSize(); 487 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 488 return nullptr; 489 490 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 491 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 492 return copyFlags(*CI, 493 emitMemChr(SrcStr, CharVal, // include nul. 494 ConstantInt::get(SizeTTy, Len), B, 495 DL, TLI)); 496 } 497 498 if (CharC->isZero()) { 499 Value *NullPtr = Constant::getNullValue(CI->getType()); 500 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 501 // Pre-empt the transformation to strlen below and fold 502 // strchr(A, '\0') == null to false. 503 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 504 } 505 506 // Otherwise, the character is a constant, see if the first argument is 507 // a string literal. If so, we can constant fold. 508 StringRef Str; 509 if (!getConstantStringInfo(SrcStr, Str)) { 510 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 511 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 512 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 513 return nullptr; 514 } 515 516 // Compute the offset, make sure to handle the case when we're searching for 517 // zero (a weird way to spell strlen). 518 size_t I = (0xFF & CharC->getSExtValue()) == 0 519 ? Str.size() 520 : Str.find(CharC->getSExtValue()); 521 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 522 return Constant::getNullValue(CI->getType()); 523 524 // strchr(s+n,c) -> gep(s+n+i,c) 525 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 526 } 527 528 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 529 Value *SrcStr = CI->getArgOperand(0); 530 Value *CharVal = CI->getArgOperand(1); 531 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 532 annotateNonNullNoUndefBasedOnAccess(CI, 0); 533 534 StringRef Str; 535 if (!getConstantStringInfo(SrcStr, Str)) { 536 // strrchr(s, 0) -> strchr(s, 0) 537 if (CharC && CharC->isZero()) 538 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 539 return nullptr; 540 } 541 542 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 543 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 544 545 // Try to expand strrchr to the memrchr nonstandard extension if it's 546 // available, or simply fail otherwise. 547 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 548 Value *Size = ConstantInt::get(SizeTTy, NBytes); 549 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 550 } 551 552 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 553 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 554 if (Str1P == Str2P) // strcmp(x,x) -> 0 555 return ConstantInt::get(CI->getType(), 0); 556 557 StringRef Str1, Str2; 558 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 559 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 560 561 // strcmp(x, y) -> cnst (if both x and y are constant strings) 562 if (HasStr1 && HasStr2) 563 return ConstantInt::get(CI->getType(), 564 std::clamp(Str1.compare(Str2), -1, 1)); 565 566 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 567 return B.CreateNeg(B.CreateZExt( 568 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 569 570 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 571 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 572 CI->getType()); 573 574 // strcmp(P, "x") -> memcmp(P, "x", 2) 575 uint64_t Len1 = GetStringLength(Str1P); 576 if (Len1) 577 annotateDereferenceableBytes(CI, 0, Len1); 578 uint64_t Len2 = GetStringLength(Str2P); 579 if (Len2) 580 annotateDereferenceableBytes(CI, 1, Len2); 581 582 if (Len1 && Len2) { 583 return copyFlags( 584 *CI, emitMemCmp(Str1P, Str2P, 585 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 586 std::min(Len1, Len2)), 587 B, DL, TLI)); 588 } 589 590 // strcmp to memcmp 591 if (!HasStr1 && HasStr2) { 592 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 593 return copyFlags( 594 *CI, 595 emitMemCmp(Str1P, Str2P, 596 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 597 B, DL, TLI)); 598 } else if (HasStr1 && !HasStr2) { 599 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 600 return copyFlags( 601 *CI, 602 emitMemCmp(Str1P, Str2P, 603 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 604 B, DL, TLI)); 605 } 606 607 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 608 return nullptr; 609 } 610 611 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 612 // arrays LHS and RHS and nonconstant Size. 613 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 614 Value *Size, bool StrNCmp, 615 IRBuilderBase &B, const DataLayout &DL); 616 617 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 618 Value *Str1P = CI->getArgOperand(0); 619 Value *Str2P = CI->getArgOperand(1); 620 Value *Size = CI->getArgOperand(2); 621 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 622 return ConstantInt::get(CI->getType(), 0); 623 624 if (isKnownNonZero(Size, DL)) 625 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 626 // Get the length argument if it is constant. 627 uint64_t Length; 628 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 629 Length = LengthArg->getZExtValue(); 630 else 631 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 632 633 if (Length == 0) // strncmp(x,y,0) -> 0 634 return ConstantInt::get(CI->getType(), 0); 635 636 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 637 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 638 639 StringRef Str1, Str2; 640 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 641 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 642 643 // strncmp(x, y) -> cnst (if both x and y are constant strings) 644 if (HasStr1 && HasStr2) { 645 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 646 StringRef SubStr1 = substr(Str1, Length); 647 StringRef SubStr2 = substr(Str2, Length); 648 return ConstantInt::get(CI->getType(), 649 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 650 } 651 652 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 653 return B.CreateNeg(B.CreateZExt( 654 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 655 656 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 657 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 658 CI->getType()); 659 660 uint64_t Len1 = GetStringLength(Str1P); 661 if (Len1) 662 annotateDereferenceableBytes(CI, 0, Len1); 663 uint64_t Len2 = GetStringLength(Str2P); 664 if (Len2) 665 annotateDereferenceableBytes(CI, 1, Len2); 666 667 // strncmp to memcmp 668 if (!HasStr1 && HasStr2) { 669 Len2 = std::min(Len2, Length); 670 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 671 return copyFlags( 672 *CI, 673 emitMemCmp(Str1P, Str2P, 674 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 675 B, DL, TLI)); 676 } else if (HasStr1 && !HasStr2) { 677 Len1 = std::min(Len1, Length); 678 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 679 return copyFlags( 680 *CI, 681 emitMemCmp(Str1P, Str2P, 682 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 683 B, DL, TLI)); 684 } 685 686 return nullptr; 687 } 688 689 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 690 Value *Src = CI->getArgOperand(0); 691 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 692 uint64_t SrcLen = GetStringLength(Src); 693 if (SrcLen && Size) { 694 annotateDereferenceableBytes(CI, 0, SrcLen); 695 if (SrcLen <= Size->getZExtValue() + 1) 696 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 697 } 698 699 return nullptr; 700 } 701 702 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 703 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 704 if (Dst == Src) // strcpy(x,x) -> x 705 return Src; 706 707 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 708 // See if we can get the length of the input string. 709 uint64_t Len = GetStringLength(Src); 710 if (Len) 711 annotateDereferenceableBytes(CI, 1, Len); 712 else 713 return nullptr; 714 715 // We have enough information to now generate the memcpy call to do the 716 // copy for us. Make a memcpy to copy the nul byte with align = 1. 717 CallInst *NewCI = 718 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 719 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 720 mergeAttributesAndFlags(NewCI, *CI); 721 return Dst; 722 } 723 724 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 725 Function *Callee = CI->getCalledFunction(); 726 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 727 728 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 729 if (CI->use_empty()) 730 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 731 732 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 733 Value *StrLen = emitStrLen(Src, B, DL, TLI); 734 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 735 } 736 737 // See if we can get the length of the input string. 738 uint64_t Len = GetStringLength(Src); 739 if (Len) 740 annotateDereferenceableBytes(CI, 1, Len); 741 else 742 return nullptr; 743 744 Type *PT = Callee->getFunctionType()->getParamType(0); 745 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 746 Value *DstEnd = B.CreateInBoundsGEP( 747 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 748 749 // We have enough information to now generate the memcpy call to do the 750 // copy for us. Make a memcpy to copy the nul byte with align = 1. 751 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 752 mergeAttributesAndFlags(NewCI, *CI); 753 return DstEnd; 754 } 755 756 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 757 758 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 759 Value *Size = CI->getArgOperand(2); 760 if (isKnownNonZero(Size, DL)) 761 // Like snprintf, the function stores into the destination only when 762 // the size argument is nonzero. 763 annotateNonNullNoUndefBasedOnAccess(CI, 0); 764 // The function reads the source argument regardless of Size (it returns 765 // its length). 766 annotateNonNullNoUndefBasedOnAccess(CI, 1); 767 768 uint64_t NBytes; 769 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 770 NBytes = SizeC->getZExtValue(); 771 else 772 return nullptr; 773 774 Value *Dst = CI->getArgOperand(0); 775 Value *Src = CI->getArgOperand(1); 776 if (NBytes <= 1) { 777 if (NBytes == 1) 778 // For a call to strlcpy(D, S, 1) first store a nul in *D. 779 B.CreateStore(B.getInt8(0), Dst); 780 781 // Transform strlcpy(D, S, 0) to a call to strlen(S). 782 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 783 } 784 785 // Try to determine the length of the source, substituting its size 786 // when it's not nul-terminated (as it's required to be) to avoid 787 // reading past its end. 788 StringRef Str; 789 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 790 return nullptr; 791 792 uint64_t SrcLen = Str.find('\0'); 793 // Set if the terminating nul should be copied by the call to memcpy 794 // below. 795 bool NulTerm = SrcLen < NBytes; 796 797 if (NulTerm) 798 // Overwrite NBytes with the number of bytes to copy, including 799 // the terminating nul. 800 NBytes = SrcLen + 1; 801 else { 802 // Set the length of the source for the function to return to its 803 // size, and cap NBytes at the same. 804 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 805 NBytes = std::min(NBytes - 1, SrcLen); 806 } 807 808 if (SrcLen == 0) { 809 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 810 B.CreateStore(B.getInt8(0), Dst); 811 return ConstantInt::get(CI->getType(), 0); 812 } 813 814 Function *Callee = CI->getCalledFunction(); 815 Type *PT = Callee->getFunctionType()->getParamType(0); 816 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 817 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 818 // D[N' - 1] if necessary. 819 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 820 ConstantInt::get(DL.getIntPtrType(PT), NBytes)); 821 mergeAttributesAndFlags(NewCI, *CI); 822 823 if (!NulTerm) { 824 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 825 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 826 B.CreateStore(B.getInt8(0), EndPtr); 827 } 828 829 // Like snprintf, strlcpy returns the number of nonzero bytes that would 830 // have been copied if the bound had been sufficiently big (which in this 831 // case is strlen(Src)). 832 return ConstantInt::get(CI->getType(), SrcLen); 833 } 834 835 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 836 // otherwise. 837 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 838 IRBuilderBase &B) { 839 Function *Callee = CI->getCalledFunction(); 840 Value *Dst = CI->getArgOperand(0); 841 Value *Src = CI->getArgOperand(1); 842 Value *Size = CI->getArgOperand(2); 843 844 if (isKnownNonZero(Size, DL)) { 845 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 846 // only when N is nonzero. 847 annotateNonNullNoUndefBasedOnAccess(CI, 0); 848 annotateNonNullNoUndefBasedOnAccess(CI, 1); 849 } 850 851 // If the "bound" argument is known set N to it. Otherwise set it to 852 // UINT64_MAX and handle it later. 853 uint64_t N = UINT64_MAX; 854 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 855 N = SizeC->getZExtValue(); 856 857 if (N == 0) 858 // Fold st{p,r}ncpy(D, S, 0) to D. 859 return Dst; 860 861 if (N == 1) { 862 Type *CharTy = B.getInt8Ty(); 863 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 864 B.CreateStore(CharVal, Dst); 865 if (!RetEnd) 866 // Transform strncpy(D, S, 1) to return (*D = *S), D. 867 return Dst; 868 869 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 870 Value *ZeroChar = ConstantInt::get(CharTy, 0); 871 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 872 873 Value *Off1 = B.getInt32(1); 874 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 875 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 876 } 877 878 // If the length of the input string is known set SrcLen to it. 879 uint64_t SrcLen = GetStringLength(Src); 880 if (SrcLen) 881 annotateDereferenceableBytes(CI, 1, SrcLen); 882 else 883 return nullptr; 884 885 --SrcLen; // Unbias length. 886 887 if (SrcLen == 0) { 888 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 889 Align MemSetAlign = 890 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 891 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 892 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 893 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 894 CI->getContext(), 0, ArgAttrs)); 895 copyFlags(*CI, NewCI); 896 return Dst; 897 } 898 899 if (N > SrcLen + 1) { 900 if (N > 128) 901 // Bail if N is large or unknown. 902 return nullptr; 903 904 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 905 StringRef Str; 906 if (!getConstantStringInfo(Src, Str)) 907 return nullptr; 908 std::string SrcStr = Str.str(); 909 // Create a bigger, nul-padded array with the same length, SrcLen, 910 // as the original string. 911 SrcStr.resize(N, '\0'); 912 Src = B.CreateGlobalString(SrcStr, "str"); 913 } 914 915 Type *PT = Callee->getFunctionType()->getParamType(0); 916 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 917 // S and N are constant. 918 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 919 ConstantInt::get(DL.getIntPtrType(PT), N)); 920 mergeAttributesAndFlags(NewCI, *CI); 921 if (!RetEnd) 922 return Dst; 923 924 // stpncpy(D, S, N) returns the address of the first null in D if it writes 925 // one, otherwise D + N. 926 Value *Off = B.getInt64(std::min(SrcLen, N)); 927 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 928 } 929 930 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 931 unsigned CharSize, 932 Value *Bound) { 933 Value *Src = CI->getArgOperand(0); 934 Type *CharTy = B.getIntNTy(CharSize); 935 936 if (isOnlyUsedInZeroEqualityComparison(CI) && 937 (!Bound || isKnownNonZero(Bound, DL))) { 938 // Fold strlen: 939 // strlen(x) != 0 --> *x != 0 940 // strlen(x) == 0 --> *x == 0 941 // and likewise strnlen with constant N > 0: 942 // strnlen(x, N) != 0 --> *x != 0 943 // strnlen(x, N) == 0 --> *x == 0 944 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 945 CI->getType()); 946 } 947 948 if (Bound) { 949 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 950 if (BoundCst->isZero()) 951 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 952 return ConstantInt::get(CI->getType(), 0); 953 954 if (BoundCst->isOne()) { 955 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 956 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 957 Value *ZeroChar = ConstantInt::get(CharTy, 0); 958 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 959 return B.CreateZExt(Cmp, CI->getType()); 960 } 961 } 962 } 963 964 if (uint64_t Len = GetStringLength(Src, CharSize)) { 965 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 966 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 967 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 968 if (Bound) 969 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 970 return LenC; 971 } 972 973 if (Bound) 974 // Punt for strnlen for now. 975 return nullptr; 976 977 // If s is a constant pointer pointing to a string literal, we can fold 978 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 979 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 980 // We only try to simplify strlen when the pointer s points to an array 981 // of CharSize elements. Otherwise, we would need to scale the offset x before 982 // doing the subtraction. This will make the optimization more complex, and 983 // it's not very useful because calling strlen for a pointer of other types is 984 // very uncommon. 985 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 986 // TODO: Handle subobjects. 987 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 988 return nullptr; 989 990 ConstantDataArraySlice Slice; 991 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 992 uint64_t NullTermIdx; 993 if (Slice.Array == nullptr) { 994 NullTermIdx = 0; 995 } else { 996 NullTermIdx = ~((uint64_t)0); 997 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 998 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 999 NullTermIdx = I; 1000 break; 1001 } 1002 } 1003 // If the string does not have '\0', leave it to strlen to compute 1004 // its length. 1005 if (NullTermIdx == ~((uint64_t)0)) 1006 return nullptr; 1007 } 1008 1009 Value *Offset = GEP->getOperand(2); 1010 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1011 uint64_t ArrSize = 1012 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1013 1014 // If Offset is not provably in the range [0, NullTermIdx], we can still 1015 // optimize if we can prove that the program has undefined behavior when 1016 // Offset is outside that range. That is the case when GEP->getOperand(0) 1017 // is a pointer to an object whose memory extent is NullTermIdx+1. 1018 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1019 (isa<GlobalVariable>(GEP->getOperand(0)) && 1020 NullTermIdx == ArrSize - 1)) { 1021 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1022 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1023 Offset); 1024 } 1025 } 1026 } 1027 1028 // strlen(x?"foo":"bars") --> x ? 3 : 4 1029 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1030 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1031 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1032 if (LenTrue && LenFalse) { 1033 ORE.emit([&]() { 1034 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1035 << "folded strlen(select) to select of constants"; 1036 }); 1037 return B.CreateSelect(SI->getCondition(), 1038 ConstantInt::get(CI->getType(), LenTrue - 1), 1039 ConstantInt::get(CI->getType(), LenFalse - 1)); 1040 } 1041 } 1042 1043 return nullptr; 1044 } 1045 1046 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1047 if (Value *V = optimizeStringLength(CI, B, 8)) 1048 return V; 1049 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1050 return nullptr; 1051 } 1052 1053 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1054 Value *Bound = CI->getArgOperand(1); 1055 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1056 return V; 1057 1058 if (isKnownNonZero(Bound, DL)) 1059 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1060 return nullptr; 1061 } 1062 1063 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1064 Module &M = *CI->getModule(); 1065 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1066 // We cannot perform this optimization without wchar_size metadata. 1067 if (WCharSize == 0) 1068 return nullptr; 1069 1070 return optimizeStringLength(CI, B, WCharSize); 1071 } 1072 1073 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1074 StringRef S1, S2; 1075 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1076 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1077 1078 // strpbrk(s, "") -> nullptr 1079 // strpbrk("", s) -> nullptr 1080 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1081 return Constant::getNullValue(CI->getType()); 1082 1083 // Constant folding. 1084 if (HasS1 && HasS2) { 1085 size_t I = S1.find_first_of(S2); 1086 if (I == StringRef::npos) // No match. 1087 return Constant::getNullValue(CI->getType()); 1088 1089 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1090 B.getInt64(I), "strpbrk"); 1091 } 1092 1093 // strpbrk(s, "a") -> strchr(s, 'a') 1094 if (HasS2 && S2.size() == 1) 1095 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1096 1097 return nullptr; 1098 } 1099 1100 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1101 Value *EndPtr = CI->getArgOperand(1); 1102 if (isa<ConstantPointerNull>(EndPtr)) { 1103 // With a null EndPtr, this function won't capture the main argument. 1104 // It would be readonly too, except that it still may write to errno. 1105 CI->addParamAttr(0, Attribute::NoCapture); 1106 } 1107 1108 return nullptr; 1109 } 1110 1111 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1112 StringRef S1, S2; 1113 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1114 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1115 1116 // strspn(s, "") -> 0 1117 // strspn("", s) -> 0 1118 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1119 return Constant::getNullValue(CI->getType()); 1120 1121 // Constant folding. 1122 if (HasS1 && HasS2) { 1123 size_t Pos = S1.find_first_not_of(S2); 1124 if (Pos == StringRef::npos) 1125 Pos = S1.size(); 1126 return ConstantInt::get(CI->getType(), Pos); 1127 } 1128 1129 return nullptr; 1130 } 1131 1132 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1133 StringRef S1, S2; 1134 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1135 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1136 1137 // strcspn("", s) -> 0 1138 if (HasS1 && S1.empty()) 1139 return Constant::getNullValue(CI->getType()); 1140 1141 // Constant folding. 1142 if (HasS1 && HasS2) { 1143 size_t Pos = S1.find_first_of(S2); 1144 if (Pos == StringRef::npos) 1145 Pos = S1.size(); 1146 return ConstantInt::get(CI->getType(), Pos); 1147 } 1148 1149 // strcspn(s, "") -> strlen(s) 1150 if (HasS2 && S2.empty()) 1151 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1152 1153 return nullptr; 1154 } 1155 1156 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1157 // fold strstr(x, x) -> x. 1158 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1159 return CI->getArgOperand(0); 1160 1161 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1162 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1163 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1164 if (!StrLen) 1165 return nullptr; 1166 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1167 StrLen, B, DL, TLI); 1168 if (!StrNCmp) 1169 return nullptr; 1170 for (User *U : llvm::make_early_inc_range(CI->users())) { 1171 ICmpInst *Old = cast<ICmpInst>(U); 1172 Value *Cmp = 1173 B.CreateICmp(Old->getPredicate(), StrNCmp, 1174 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1175 replaceAllUsesWith(Old, Cmp); 1176 } 1177 return CI; 1178 } 1179 1180 // See if either input string is a constant string. 1181 StringRef SearchStr, ToFindStr; 1182 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1183 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1184 1185 // fold strstr(x, "") -> x. 1186 if (HasStr2 && ToFindStr.empty()) 1187 return CI->getArgOperand(0); 1188 1189 // If both strings are known, constant fold it. 1190 if (HasStr1 && HasStr2) { 1191 size_t Offset = SearchStr.find(ToFindStr); 1192 1193 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1194 return Constant::getNullValue(CI->getType()); 1195 1196 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1197 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1198 Offset, "strstr"); 1199 } 1200 1201 // fold strstr(x, "y") -> strchr(x, 'y'). 1202 if (HasStr2 && ToFindStr.size() == 1) { 1203 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1204 } 1205 1206 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1207 return nullptr; 1208 } 1209 1210 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1211 Value *SrcStr = CI->getArgOperand(0); 1212 Value *Size = CI->getArgOperand(2); 1213 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1214 Value *CharVal = CI->getArgOperand(1); 1215 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1216 Value *NullPtr = Constant::getNullValue(CI->getType()); 1217 1218 if (LenC) { 1219 if (LenC->isZero()) 1220 // Fold memrchr(x, y, 0) --> null. 1221 return NullPtr; 1222 1223 if (LenC->isOne()) { 1224 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1225 // constant or otherwise. 1226 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1227 // Slice off the character's high end bits. 1228 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1229 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1230 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1231 } 1232 } 1233 1234 StringRef Str; 1235 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1236 return nullptr; 1237 1238 if (Str.size() == 0) 1239 // If the array is empty fold memrchr(A, C, N) to null for any value 1240 // of C and N on the basis that the only valid value of N is zero 1241 // (otherwise the call is undefined). 1242 return NullPtr; 1243 1244 uint64_t EndOff = UINT64_MAX; 1245 if (LenC) { 1246 EndOff = LenC->getZExtValue(); 1247 if (Str.size() < EndOff) 1248 // Punt out-of-bounds accesses to sanitizers and/or libc. 1249 return nullptr; 1250 } 1251 1252 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1253 // Fold memrchr(S, C, N) for a constant C. 1254 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1255 if (Pos == StringRef::npos) 1256 // When the character is not in the source array fold the result 1257 // to null regardless of Size. 1258 return NullPtr; 1259 1260 if (LenC) 1261 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1262 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1263 1264 if (Str.find(Str[Pos]) == Pos) { 1265 // When there is just a single occurrence of C in S, i.e., the one 1266 // in Str[Pos], fold 1267 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1268 // for nonconstant N. 1269 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1270 "memrchr.cmp"); 1271 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1272 B.getInt64(Pos), "memrchr.ptr_plus"); 1273 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1274 } 1275 } 1276 1277 // Truncate the string to search at most EndOff characters. 1278 Str = Str.substr(0, EndOff); 1279 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1280 return nullptr; 1281 1282 // If the source array consists of all equal characters, then for any 1283 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1284 // N != 0 && *S == C ? S + N - 1 : null 1285 Type *SizeTy = Size->getType(); 1286 Type *Int8Ty = B.getInt8Ty(); 1287 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1288 // Slice off the sought character's high end bits. 1289 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1290 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1291 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1292 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1293 Value *SrcPlus = 1294 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1295 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1296 } 1297 1298 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1299 Value *SrcStr = CI->getArgOperand(0); 1300 Value *Size = CI->getArgOperand(2); 1301 1302 if (isKnownNonZero(Size, DL)) { 1303 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1304 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1305 return memChrToCharCompare(CI, Size, B, DL); 1306 } 1307 1308 Value *CharVal = CI->getArgOperand(1); 1309 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1310 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1311 Value *NullPtr = Constant::getNullValue(CI->getType()); 1312 1313 // memchr(x, y, 0) -> null 1314 if (LenC) { 1315 if (LenC->isZero()) 1316 return NullPtr; 1317 1318 if (LenC->isOne()) { 1319 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1320 // constant or otherwise. 1321 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1322 // Slice off the character's high end bits. 1323 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1324 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1325 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1326 } 1327 } 1328 1329 StringRef Str; 1330 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1331 return nullptr; 1332 1333 if (CharC) { 1334 size_t Pos = Str.find(CharC->getZExtValue()); 1335 if (Pos == StringRef::npos) 1336 // When the character is not in the source array fold the result 1337 // to null regardless of Size. 1338 return NullPtr; 1339 1340 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1341 // When the constant Size is less than or equal to the character 1342 // position also fold the result to null. 1343 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1344 "memchr.cmp"); 1345 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1346 "memchr.ptr"); 1347 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1348 } 1349 1350 if (Str.size() == 0) 1351 // If the array is empty fold memchr(A, C, N) to null for any value 1352 // of C and N on the basis that the only valid value of N is zero 1353 // (otherwise the call is undefined). 1354 return NullPtr; 1355 1356 if (LenC) 1357 Str = substr(Str, LenC->getZExtValue()); 1358 1359 size_t Pos = Str.find_first_not_of(Str[0]); 1360 if (Pos == StringRef::npos 1361 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1362 // If the source array consists of at most two consecutive sequences 1363 // of the same characters, then for any C and N (whether in bounds or 1364 // not), fold memchr(S, C, N) to 1365 // N != 0 && *S == C ? S : null 1366 // or for the two sequences to: 1367 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1368 // ^Sel2 ^Sel1 are denoted above. 1369 // The latter makes it also possible to fold strchr() calls with strings 1370 // of the same characters. 1371 Type *SizeTy = Size->getType(); 1372 Type *Int8Ty = B.getInt8Ty(); 1373 1374 // Slice off the sought character's high end bits. 1375 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1376 1377 Value *Sel1 = NullPtr; 1378 if (Pos != StringRef::npos) { 1379 // Handle two consecutive sequences of the same characters. 1380 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1381 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1382 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1383 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1384 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1385 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1386 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1387 } 1388 1389 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1390 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1391 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1392 Value *And = B.CreateAnd(NNeZ, CEqS0); 1393 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1394 } 1395 1396 if (!LenC) { 1397 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1398 // S is dereferenceable so it's safe to load from it and fold 1399 // memchr(S, C, N) == S to N && *S == C for any C and N. 1400 // TODO: This is safe even for nonconstant S. 1401 return memChrToCharCompare(CI, Size, B, DL); 1402 1403 // From now on we need a constant length and constant array. 1404 return nullptr; 1405 } 1406 1407 bool OptForSize = CI->getFunction()->hasOptSize() || 1408 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1409 PGSOQueryType::IRPass); 1410 1411 // If the char is variable but the input str and length are not we can turn 1412 // this memchr call into a simple bit field test. Of course this only works 1413 // when the return value is only checked against null. 1414 // 1415 // It would be really nice to reuse switch lowering here but we can't change 1416 // the CFG at this point. 1417 // 1418 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1419 // != 0 1420 // after bounds check. 1421 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1422 return nullptr; 1423 1424 unsigned char Max = 1425 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1426 reinterpret_cast<const unsigned char *>(Str.end())); 1427 1428 // Make sure the bit field we're about to create fits in a register on the 1429 // target. 1430 // FIXME: On a 64 bit architecture this prevents us from using the 1431 // interesting range of alpha ascii chars. We could do better by emitting 1432 // two bitfields or shifting the range by 64 if no lower chars are used. 1433 if (!DL.fitsInLegalInteger(Max + 1)) { 1434 // Build chain of ORs 1435 // Transform: 1436 // memchr("abcd", C, 4) != nullptr 1437 // to: 1438 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1439 std::string SortedStr = Str.str(); 1440 llvm::sort(SortedStr); 1441 // Compute the number of of non-contiguous ranges. 1442 unsigned NonContRanges = 1; 1443 for (size_t i = 1; i < SortedStr.size(); ++i) { 1444 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1445 NonContRanges++; 1446 } 1447 } 1448 1449 // Restrict this optimization to profitable cases with one or two range 1450 // checks. 1451 if (NonContRanges > 2) 1452 return nullptr; 1453 1454 SmallVector<Value *> CharCompares; 1455 for (unsigned char C : SortedStr) 1456 CharCompares.push_back( 1457 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C))); 1458 1459 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1460 } 1461 1462 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1463 // creating unnecessary illegal types. 1464 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1465 1466 // Now build the bit field. 1467 APInt Bitfield(Width, 0); 1468 for (char C : Str) 1469 Bitfield.setBit((unsigned char)C); 1470 Value *BitfieldC = B.getInt(Bitfield); 1471 1472 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1473 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1474 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1475 1476 // First check that the bit field access is within bounds. 1477 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1478 "memchr.bounds"); 1479 1480 // Create code that checks if the given bit is set in the field. 1481 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1482 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1483 1484 // Finally merge both checks and cast to pointer type. The inttoptr 1485 // implicitly zexts the i1 to intptr type. 1486 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1487 CI->getType()); 1488 } 1489 1490 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1491 // arrays LHS and RHS and nonconstant Size. 1492 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1493 Value *Size, bool StrNCmp, 1494 IRBuilderBase &B, const DataLayout &DL) { 1495 if (LHS == RHS) // memcmp(s,s,x) -> 0 1496 return Constant::getNullValue(CI->getType()); 1497 1498 StringRef LStr, RStr; 1499 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1500 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1501 return nullptr; 1502 1503 // If the contents of both constant arrays are known, fold a call to 1504 // memcmp(A, B, N) to 1505 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1506 // where Pos is the first mismatch between A and B, determined below. 1507 1508 uint64_t Pos = 0; 1509 Value *Zero = ConstantInt::get(CI->getType(), 0); 1510 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1511 if (Pos == MinSize || 1512 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1513 // One array is a leading part of the other of equal or greater 1514 // size, or for strncmp, the arrays are equal strings. 1515 // Fold the result to zero. Size is assumed to be in bounds, since 1516 // otherwise the call would be undefined. 1517 return Zero; 1518 } 1519 1520 if (LStr[Pos] != RStr[Pos]) 1521 break; 1522 } 1523 1524 // Normalize the result. 1525 typedef unsigned char UChar; 1526 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1527 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1528 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1529 Value *Res = ConstantInt::get(CI->getType(), IRes); 1530 return B.CreateSelect(Cmp, Zero, Res); 1531 } 1532 1533 // Optimize a memcmp call CI with constant size Len. 1534 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1535 uint64_t Len, IRBuilderBase &B, 1536 const DataLayout &DL) { 1537 if (Len == 0) // memcmp(s1,s2,0) -> 0 1538 return Constant::getNullValue(CI->getType()); 1539 1540 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1541 if (Len == 1) { 1542 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1543 CI->getType(), "lhsv"); 1544 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1545 CI->getType(), "rhsv"); 1546 return B.CreateSub(LHSV, RHSV, "chardiff"); 1547 } 1548 1549 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1550 // TODO: The case where both inputs are constants does not need to be limited 1551 // to legal integers or equality comparison. See block below this. 1552 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1553 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1554 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1555 1556 // First, see if we can fold either argument to a constant. 1557 Value *LHSV = nullptr; 1558 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1559 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1560 1561 Value *RHSV = nullptr; 1562 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1563 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1564 1565 // Don't generate unaligned loads. If either source is constant data, 1566 // alignment doesn't matter for that source because there is no load. 1567 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1568 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1569 if (!LHSV) 1570 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1571 if (!RHSV) 1572 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1573 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1574 } 1575 } 1576 1577 return nullptr; 1578 } 1579 1580 // Most simplifications for memcmp also apply to bcmp. 1581 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1582 IRBuilderBase &B) { 1583 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1584 Value *Size = CI->getArgOperand(2); 1585 1586 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1587 1588 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1589 return Res; 1590 1591 // Handle constant Size. 1592 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1593 if (!LenC) 1594 return nullptr; 1595 1596 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1597 } 1598 1599 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1600 Module *M = CI->getModule(); 1601 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1602 return V; 1603 1604 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1605 // bcmp can be more efficient than memcmp because it only has to know that 1606 // there is a difference, not how different one is to the other. 1607 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1608 isOnlyUsedInZeroEqualityComparison(CI)) { 1609 Value *LHS = CI->getArgOperand(0); 1610 Value *RHS = CI->getArgOperand(1); 1611 Value *Size = CI->getArgOperand(2); 1612 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1613 } 1614 1615 return nullptr; 1616 } 1617 1618 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1619 return optimizeMemCmpBCmpCommon(CI, B); 1620 } 1621 1622 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1623 Value *Size = CI->getArgOperand(2); 1624 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1625 if (isa<IntrinsicInst>(CI)) 1626 return nullptr; 1627 1628 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1629 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1630 CI->getArgOperand(1), Align(1), Size); 1631 mergeAttributesAndFlags(NewCI, *CI); 1632 return CI->getArgOperand(0); 1633 } 1634 1635 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1636 Value *Dst = CI->getArgOperand(0); 1637 Value *Src = CI->getArgOperand(1); 1638 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1639 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1640 StringRef SrcStr; 1641 if (CI->use_empty() && Dst == Src) 1642 return Dst; 1643 // memccpy(d, s, c, 0) -> nullptr 1644 if (N) { 1645 if (N->isNullValue()) 1646 return Constant::getNullValue(CI->getType()); 1647 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1648 // TODO: Handle zeroinitializer. 1649 !StopChar) 1650 return nullptr; 1651 } else { 1652 return nullptr; 1653 } 1654 1655 // Wrap arg 'c' of type int to char 1656 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1657 if (Pos == StringRef::npos) { 1658 if (N->getZExtValue() <= SrcStr.size()) { 1659 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1660 CI->getArgOperand(3))); 1661 return Constant::getNullValue(CI->getType()); 1662 } 1663 return nullptr; 1664 } 1665 1666 Value *NewN = 1667 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1668 // memccpy -> llvm.memcpy 1669 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1670 return Pos + 1 <= N->getZExtValue() 1671 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1672 : Constant::getNullValue(CI->getType()); 1673 } 1674 1675 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1676 Value *Dst = CI->getArgOperand(0); 1677 Value *N = CI->getArgOperand(2); 1678 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1679 CallInst *NewCI = 1680 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1681 // Propagate attributes, but memcpy has no return value, so make sure that 1682 // any return attributes are compliant. 1683 // TODO: Attach return value attributes to the 1st operand to preserve them? 1684 mergeAttributesAndFlags(NewCI, *CI); 1685 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1686 } 1687 1688 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1689 Value *Size = CI->getArgOperand(2); 1690 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1691 if (isa<IntrinsicInst>(CI)) 1692 return nullptr; 1693 1694 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1695 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1696 CI->getArgOperand(1), Align(1), Size); 1697 mergeAttributesAndFlags(NewCI, *CI); 1698 return CI->getArgOperand(0); 1699 } 1700 1701 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1702 Value *Size = CI->getArgOperand(2); 1703 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1704 if (isa<IntrinsicInst>(CI)) 1705 return nullptr; 1706 1707 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1708 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1709 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1710 mergeAttributesAndFlags(NewCI, *CI); 1711 return CI->getArgOperand(0); 1712 } 1713 1714 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1715 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1716 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1717 1718 return nullptr; 1719 } 1720 1721 // When enabled, replace operator new() calls marked with a hot or cold memprof 1722 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1723 // Currently this is supported by the open source version of tcmalloc, see: 1724 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1725 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1726 LibFunc &Func) { 1727 if (!OptimizeHotColdNew) 1728 return nullptr; 1729 1730 uint8_t HotCold; 1731 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1732 HotCold = ColdNewHintValue; 1733 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == 1734 "notcold") 1735 HotCold = NotColdNewHintValue; 1736 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1737 HotCold = HotNewHintValue; 1738 else 1739 return nullptr; 1740 1741 // For calls that already pass a hot/cold hint, only update the hint if 1742 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint 1743 // if cold or hot, and leave as-is for default handling if "notcold" aka warm. 1744 // Note that in cases where we decide it is "notcold", it might be slightly 1745 // better to replace the hinted call with a non hinted call, to avoid the 1746 // extra paramter and the if condition check of the hint value in the 1747 // allocator. This can be considered in the future. 1748 switch (Func) { 1749 case LibFunc_Znwm12__hot_cold_t: 1750 if (OptimizeExistingHotColdNew) 1751 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1752 LibFunc_Znwm12__hot_cold_t, HotCold); 1753 break; 1754 case LibFunc_Znwm: 1755 if (HotCold != NotColdNewHintValue) 1756 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1757 LibFunc_Znwm12__hot_cold_t, HotCold); 1758 break; 1759 case LibFunc_Znam12__hot_cold_t: 1760 if (OptimizeExistingHotColdNew) 1761 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1762 LibFunc_Znam12__hot_cold_t, HotCold); 1763 break; 1764 case LibFunc_Znam: 1765 if (HotCold != NotColdNewHintValue) 1766 return emitHotColdNew(CI->getArgOperand(0), B, TLI, 1767 LibFunc_Znam12__hot_cold_t, HotCold); 1768 break; 1769 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 1770 if (OptimizeExistingHotColdNew) 1771 return emitHotColdNewNoThrow( 1772 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1773 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1774 break; 1775 case LibFunc_ZnwmRKSt9nothrow_t: 1776 if (HotCold != NotColdNewHintValue) 1777 return emitHotColdNewNoThrow( 1778 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1779 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1780 break; 1781 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 1782 if (OptimizeExistingHotColdNew) 1783 return emitHotColdNewNoThrow( 1784 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1785 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1786 break; 1787 case LibFunc_ZnamRKSt9nothrow_t: 1788 if (HotCold != NotColdNewHintValue) 1789 return emitHotColdNewNoThrow( 1790 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1791 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1792 break; 1793 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 1794 if (OptimizeExistingHotColdNew) 1795 return emitHotColdNewAligned( 1796 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1797 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1798 break; 1799 case LibFunc_ZnwmSt11align_val_t: 1800 if (HotCold != NotColdNewHintValue) 1801 return emitHotColdNewAligned( 1802 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1803 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1804 break; 1805 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 1806 if (OptimizeExistingHotColdNew) 1807 return emitHotColdNewAligned( 1808 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1809 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1810 break; 1811 case LibFunc_ZnamSt11align_val_t: 1812 if (HotCold != NotColdNewHintValue) 1813 return emitHotColdNewAligned( 1814 CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1815 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1816 break; 1817 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1818 if (OptimizeExistingHotColdNew) 1819 return emitHotColdNewAlignedNoThrow( 1820 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1821 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1822 HotCold); 1823 break; 1824 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1825 if (HotCold != NotColdNewHintValue) 1826 return emitHotColdNewAlignedNoThrow( 1827 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1828 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1829 HotCold); 1830 break; 1831 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1832 if (OptimizeExistingHotColdNew) 1833 return emitHotColdNewAlignedNoThrow( 1834 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1835 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1836 HotCold); 1837 break; 1838 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1839 if (HotCold != NotColdNewHintValue) 1840 return emitHotColdNewAlignedNoThrow( 1841 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B, 1842 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, 1843 HotCold); 1844 break; 1845 default: 1846 return nullptr; 1847 } 1848 return nullptr; 1849 } 1850 1851 //===----------------------------------------------------------------------===// 1852 // Math Library Optimizations 1853 //===----------------------------------------------------------------------===// 1854 1855 // Replace a libcall \p CI with a call to intrinsic \p IID 1856 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1857 Intrinsic::ID IID) { 1858 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI); 1859 NewCall->takeName(CI); 1860 return copyFlags(*CI, NewCall); 1861 } 1862 1863 /// Return a variant of Val with float type. 1864 /// Currently this works in two cases: If Val is an FPExtension of a float 1865 /// value to something bigger, simply return the operand. 1866 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1867 /// loss of precision do so. 1868 static Value *valueHasFloatPrecision(Value *Val) { 1869 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1870 Value *Op = Cast->getOperand(0); 1871 if (Op->getType()->isFloatTy()) 1872 return Op; 1873 } 1874 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1875 APFloat F = Const->getValueAPF(); 1876 bool losesInfo; 1877 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1878 &losesInfo); 1879 if (!losesInfo) 1880 return ConstantFP::get(Const->getContext(), F); 1881 } 1882 return nullptr; 1883 } 1884 1885 /// Shrink double -> float functions. 1886 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1887 bool isBinary, const TargetLibraryInfo *TLI, 1888 bool isPrecise = false) { 1889 Function *CalleeFn = CI->getCalledFunction(); 1890 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1891 return nullptr; 1892 1893 // If not all the uses of the function are converted to float, then bail out. 1894 // This matters if the precision of the result is more important than the 1895 // precision of the arguments. 1896 if (isPrecise) 1897 for (User *U : CI->users()) { 1898 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1899 if (!Cast || !Cast->getType()->isFloatTy()) 1900 return nullptr; 1901 } 1902 1903 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1904 Value *V[2]; 1905 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1906 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1907 if (!V[0] || (isBinary && !V[1])) 1908 return nullptr; 1909 1910 // If call isn't an intrinsic, check that it isn't within a function with the 1911 // same name as the float version of this call, otherwise the result is an 1912 // infinite loop. For example, from MinGW-w64: 1913 // 1914 // float expf(float val) { return (float) exp((double) val); } 1915 StringRef CalleeName = CalleeFn->getName(); 1916 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1917 if (!IsIntrinsic) { 1918 StringRef CallerName = CI->getFunction()->getName(); 1919 if (!CallerName.empty() && CallerName.back() == 'f' && 1920 CallerName.size() == (CalleeName.size() + 1) && 1921 CallerName.starts_with(CalleeName)) 1922 return nullptr; 1923 } 1924 1925 // Propagate the math semantics from the current function to the new function. 1926 IRBuilderBase::FastMathFlagGuard Guard(B); 1927 B.setFastMathFlags(CI->getFastMathFlags()); 1928 1929 // g((double) float) -> (double) gf(float) 1930 Value *R; 1931 if (IsIntrinsic) { 1932 Module *M = CI->getModule(); 1933 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1934 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1935 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1936 } else { 1937 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1938 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1939 CalleeAttrs) 1940 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1941 } 1942 return B.CreateFPExt(R, B.getDoubleTy()); 1943 } 1944 1945 /// Shrink double -> float for unary functions. 1946 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1947 const TargetLibraryInfo *TLI, 1948 bool isPrecise = false) { 1949 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1950 } 1951 1952 /// Shrink double -> float for binary functions. 1953 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1954 const TargetLibraryInfo *TLI, 1955 bool isPrecise = false) { 1956 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1957 } 1958 1959 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1960 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1961 if (!CI->isFast()) 1962 return nullptr; 1963 1964 // Propagate fast-math flags from the existing call to new instructions. 1965 IRBuilderBase::FastMathFlagGuard Guard(B); 1966 B.setFastMathFlags(CI->getFastMathFlags()); 1967 1968 Value *Real, *Imag; 1969 if (CI->arg_size() == 1) { 1970 Value *Op = CI->getArgOperand(0); 1971 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1972 Real = B.CreateExtractValue(Op, 0, "real"); 1973 Imag = B.CreateExtractValue(Op, 1, "imag"); 1974 } else { 1975 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1976 Real = CI->getArgOperand(0); 1977 Imag = CI->getArgOperand(1); 1978 } 1979 1980 Value *RealReal = B.CreateFMul(Real, Real); 1981 Value *ImagImag = B.CreateFMul(Imag, Imag); 1982 1983 return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt, 1984 B.CreateFAdd(RealReal, ImagImag), 1985 nullptr, "cabs")); 1986 } 1987 1988 // Return a properly extended integer (DstWidth bits wide) if the operation is 1989 // an itofp. 1990 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1991 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1992 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1993 // Make sure that the exponent fits inside an "int" of size DstWidth, 1994 // thus avoiding any range issues that FP has not. 1995 unsigned BitWidth = Op->getType()->getScalarSizeInBits(); 1996 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) { 1997 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth); 1998 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy) 1999 : B.CreateZExt(Op, IntTy); 2000 } 2001 } 2002 2003 return nullptr; 2004 } 2005 2006 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 2007 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 2008 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 2009 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 2010 Module *M = Pow->getModule(); 2011 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2012 Type *Ty = Pow->getType(); 2013 bool Ignored; 2014 2015 // Evaluate special cases related to a nested function as the base. 2016 2017 // pow(exp(x), y) -> exp(x * y) 2018 // pow(exp2(x), y) -> exp2(x * y) 2019 // If exp{,2}() is used only once, it is better to fold two transcendental 2020 // math functions into one. If used again, exp{,2}() would still have to be 2021 // called with the original argument, then keep both original transcendental 2022 // functions. However, this transformation is only safe with fully relaxed 2023 // math semantics, since, besides rounding differences, it changes overflow 2024 // and underflow behavior quite dramatically. For example: 2025 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 2026 // Whereas: 2027 // exp(1000 * 0.001) = exp(1) 2028 // TODO: Loosen the requirement for fully relaxed math semantics. 2029 // TODO: Handle exp10() when more targets have it available. 2030 CallInst *BaseFn = dyn_cast<CallInst>(Base); 2031 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 2032 LibFunc LibFn; 2033 2034 Function *CalleeFn = BaseFn->getCalledFunction(); 2035 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2036 isLibFuncEmittable(M, TLI, LibFn)) { 2037 StringRef ExpName; 2038 Intrinsic::ID ID; 2039 Value *ExpFn; 2040 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2041 2042 switch (LibFn) { 2043 default: 2044 return nullptr; 2045 case LibFunc_expf: 2046 case LibFunc_exp: 2047 case LibFunc_expl: 2048 ExpName = TLI->getName(LibFunc_exp); 2049 ID = Intrinsic::exp; 2050 LibFnFloat = LibFunc_expf; 2051 LibFnDouble = LibFunc_exp; 2052 LibFnLongDouble = LibFunc_expl; 2053 break; 2054 case LibFunc_exp2f: 2055 case LibFunc_exp2: 2056 case LibFunc_exp2l: 2057 ExpName = TLI->getName(LibFunc_exp2); 2058 ID = Intrinsic::exp2; 2059 LibFnFloat = LibFunc_exp2f; 2060 LibFnDouble = LibFunc_exp2; 2061 LibFnLongDouble = LibFunc_exp2l; 2062 break; 2063 } 2064 2065 // Create new exp{,2}() with the product as its argument. 2066 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2067 ExpFn = BaseFn->doesNotAccessMemory() 2068 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName) 2069 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2070 LibFnLongDouble, B, 2071 BaseFn->getAttributes()); 2072 2073 // Since the new exp{,2}() is different from the original one, dead code 2074 // elimination cannot be trusted to remove it, since it may have side 2075 // effects (e.g., errno). When the only consumer for the original 2076 // exp{,2}() is pow(), then it has to be explicitly erased. 2077 substituteInParent(BaseFn, ExpFn); 2078 return ExpFn; 2079 } 2080 } 2081 2082 // Evaluate special cases related to a constant base. 2083 2084 const APFloat *BaseF; 2085 if (!match(Base, m_APFloat(BaseF))) 2086 return nullptr; 2087 2088 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2089 2090 const bool UseIntrinsic = Pow->doesNotAccessMemory(); 2091 2092 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2093 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) && 2094 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2095 (UseIntrinsic || 2096 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2097 2098 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can 2099 // just directly use the original integer type. 2100 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) { 2101 Constant *One = ConstantFP::get(Ty, 1.0); 2102 2103 if (UseIntrinsic) { 2104 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp, 2105 {Ty, ExpoI->getType()}, 2106 {One, ExpoI}, Pow, "exp2")); 2107 } 2108 2109 return copyFlags(*Pow, emitBinaryFloatFnCall( 2110 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2111 LibFunc_ldexpl, B, NoAttrs)); 2112 } 2113 } 2114 2115 // pow(2.0 ** n, x) -> exp2(n * x) 2116 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2117 APFloat BaseR = APFloat(1.0); 2118 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2119 BaseR = BaseR / *BaseF; 2120 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2121 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2122 APSInt NI(64, false); 2123 if ((IsInteger || IsReciprocal) && 2124 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2125 APFloat::opOK && 2126 NI > 1 && NI.isPowerOf2()) { 2127 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2128 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2129 if (Pow->doesNotAccessMemory()) 2130 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2131 nullptr, "exp2")); 2132 else 2133 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2134 LibFunc_exp2f, 2135 LibFunc_exp2l, B, NoAttrs)); 2136 } 2137 } 2138 2139 // pow(10.0, x) -> exp10(x) 2140 if (BaseF->isExactlyValue(10.0) && 2141 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) { 2142 2143 if (Pow->doesNotAccessMemory()) { 2144 CallInst *NewExp10 = 2145 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10"); 2146 return copyFlags(*Pow, NewExp10); 2147 } 2148 2149 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2150 LibFunc_exp10f, LibFunc_exp10l, 2151 B, NoAttrs)); 2152 } 2153 2154 // pow(x, y) -> exp2(log2(x) * y) 2155 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2156 !BaseF->isNegative()) { 2157 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2158 // Luckily optimizePow has already handled the x == 1 case. 2159 assert(!match(Base, m_FPOne()) && 2160 "pow(1.0, y) should have been simplified earlier!"); 2161 2162 Value *Log = nullptr; 2163 if (Ty->isFloatTy()) 2164 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2165 else if (Ty->isDoubleTy()) 2166 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2167 2168 if (Log) { 2169 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2170 if (Pow->doesNotAccessMemory()) 2171 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2172 nullptr, "exp2")); 2173 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2174 LibFunc_exp2l)) 2175 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2176 LibFunc_exp2f, 2177 LibFunc_exp2l, B, NoAttrs)); 2178 } 2179 } 2180 2181 return nullptr; 2182 } 2183 2184 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2185 Module *M, IRBuilderBase &B, 2186 const TargetLibraryInfo *TLI) { 2187 // If errno is never set, then use the intrinsic for sqrt(). 2188 if (NoErrno) 2189 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt"); 2190 2191 // Otherwise, use the libcall for sqrt(). 2192 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2193 LibFunc_sqrtl)) 2194 // TODO: We also should check that the target can in fact lower the sqrt() 2195 // libcall. We currently have no way to ask this question, so we ask if 2196 // the target has a sqrt() libcall, which is not exactly the same. 2197 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2198 LibFunc_sqrtl, B, Attrs); 2199 2200 return nullptr; 2201 } 2202 2203 /// Use square root in place of pow(x, +/-0.5). 2204 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2205 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2206 Module *Mod = Pow->getModule(); 2207 Type *Ty = Pow->getType(); 2208 2209 const APFloat *ExpoF; 2210 if (!match(Expo, m_APFloat(ExpoF)) || 2211 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2212 return nullptr; 2213 2214 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2215 // so that requires fast-math-flags (afn or reassoc). 2216 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2217 return nullptr; 2218 2219 // If we have a pow() library call (accesses memory) and we can't guarantee 2220 // that the base is not an infinity, give up: 2221 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2222 // errno), but sqrt(-Inf) is required by various standards to set errno. 2223 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2224 !isKnownNeverInfinity(Base, 0, 2225 SimplifyQuery(DL, TLI, /*DT=*/nullptr, AC, Pow))) 2226 return nullptr; 2227 2228 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2229 TLI); 2230 if (!Sqrt) 2231 return nullptr; 2232 2233 // Handle signed zero base by expanding to fabs(sqrt(x)). 2234 if (!Pow->hasNoSignedZeros()) 2235 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs"); 2236 2237 Sqrt = copyFlags(*Pow, Sqrt); 2238 2239 // Handle non finite base by expanding to 2240 // (x == -infinity ? +infinity : sqrt(x)). 2241 if (!Pow->hasNoInfs()) { 2242 Value *PosInf = ConstantFP::getInfinity(Ty), 2243 *NegInf = ConstantFP::getInfinity(Ty, true); 2244 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2245 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2246 } 2247 2248 // If the exponent is negative, then get the reciprocal. 2249 if (ExpoF->isNegative()) 2250 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2251 2252 return Sqrt; 2253 } 2254 2255 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2256 IRBuilderBase &B) { 2257 Value *Args[] = {Base, Expo}; 2258 Type *Types[] = {Base->getType(), Expo->getType()}; 2259 return B.CreateIntrinsic(Intrinsic::powi, Types, Args); 2260 } 2261 2262 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2263 Value *Base = Pow->getArgOperand(0); 2264 Value *Expo = Pow->getArgOperand(1); 2265 Function *Callee = Pow->getCalledFunction(); 2266 StringRef Name = Callee->getName(); 2267 Type *Ty = Pow->getType(); 2268 Module *M = Pow->getModule(); 2269 bool AllowApprox = Pow->hasApproxFunc(); 2270 bool Ignored; 2271 2272 // Propagate the math semantics from the call to any created instructions. 2273 IRBuilderBase::FastMathFlagGuard Guard(B); 2274 B.setFastMathFlags(Pow->getFastMathFlags()); 2275 // Evaluate special cases related to the base. 2276 2277 // pow(1.0, x) -> 1.0 2278 if (match(Base, m_FPOne())) 2279 return Base; 2280 2281 if (Value *Exp = replacePowWithExp(Pow, B)) 2282 return Exp; 2283 2284 // Evaluate special cases related to the exponent. 2285 2286 // pow(x, -1.0) -> 1.0 / x 2287 if (match(Expo, m_SpecificFP(-1.0))) 2288 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2289 2290 // pow(x, +/-0.0) -> 1.0 2291 if (match(Expo, m_AnyZeroFP())) 2292 return ConstantFP::get(Ty, 1.0); 2293 2294 // pow(x, 1.0) -> x 2295 if (match(Expo, m_FPOne())) 2296 return Base; 2297 2298 // pow(x, 2.0) -> x * x 2299 if (match(Expo, m_SpecificFP(2.0))) 2300 return B.CreateFMul(Base, Base, "square"); 2301 2302 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2303 return Sqrt; 2304 2305 // If we can approximate pow: 2306 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2307 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2308 const APFloat *ExpoF; 2309 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2310 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2311 APFloat ExpoA(abs(*ExpoF)); 2312 APFloat ExpoI(*ExpoF); 2313 Value *Sqrt = nullptr; 2314 if (!ExpoA.isInteger()) { 2315 APFloat Expo2 = ExpoA; 2316 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2317 // is no floating point exception and the result is an integer, then 2318 // ExpoA == integer + 0.5 2319 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2320 return nullptr; 2321 2322 if (!Expo2.isInteger()) 2323 return nullptr; 2324 2325 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2326 APFloat::opInexact) 2327 return nullptr; 2328 if (!ExpoI.isInteger()) 2329 return nullptr; 2330 ExpoF = &ExpoI; 2331 2332 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2333 B, TLI); 2334 if (!Sqrt) 2335 return nullptr; 2336 } 2337 2338 // 0.5 fraction is now optionally handled. 2339 // Do pow -> powi for remaining integer exponent 2340 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2341 if (ExpoF->isInteger() && 2342 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2343 APFloat::opOK) { 2344 Value *PowI = copyFlags( 2345 *Pow, 2346 createPowWithIntegerExponent( 2347 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2348 M, B)); 2349 2350 if (PowI && Sqrt) 2351 return B.CreateFMul(PowI, Sqrt); 2352 2353 return PowI; 2354 } 2355 } 2356 2357 // powf(x, itofp(y)) -> powi(x, y) 2358 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2359 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2360 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2361 } 2362 2363 // Shrink pow() to powf() if the arguments are single precision, 2364 // unless the result is expected to be double precision. 2365 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2366 hasFloatVersion(M, Name)) { 2367 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2368 return Shrunk; 2369 } 2370 2371 return nullptr; 2372 } 2373 2374 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2375 Module *M = CI->getModule(); 2376 Function *Callee = CI->getCalledFunction(); 2377 StringRef Name = Callee->getName(); 2378 Value *Ret = nullptr; 2379 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2380 hasFloatVersion(M, Name)) 2381 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2382 2383 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we 2384 // have the libcall, emit the libcall. 2385 // 2386 // TODO: In principle we should be able to just always use the intrinsic for 2387 // any doesNotAccessMemory callsite. 2388 2389 const bool UseIntrinsic = Callee->isIntrinsic(); 2390 // Bail out for vectors because the code below only expects scalars. 2391 Type *Ty = CI->getType(); 2392 if (!UseIntrinsic && Ty->isVectorTy()) 2393 return Ret; 2394 2395 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2396 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2397 Value *Op = CI->getArgOperand(0); 2398 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2399 (UseIntrinsic || 2400 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2401 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2402 Constant *One = ConstantFP::get(Ty, 1.0); 2403 2404 if (UseIntrinsic) { 2405 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp, 2406 {Ty, Exp->getType()}, 2407 {One, Exp}, CI)); 2408 } 2409 2410 IRBuilderBase::FastMathFlagGuard Guard(B); 2411 B.setFastMathFlags(CI->getFastMathFlags()); 2412 return copyFlags(*CI, emitBinaryFloatFnCall( 2413 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2414 LibFunc_ldexpl, B, AttributeList())); 2415 } 2416 } 2417 2418 return Ret; 2419 } 2420 2421 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2422 Module *M = CI->getModule(); 2423 2424 // If we can shrink the call to a float function rather than a double 2425 // function, do that first. 2426 Function *Callee = CI->getCalledFunction(); 2427 StringRef Name = Callee->getName(); 2428 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2429 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2430 return Ret; 2431 2432 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2433 // the intrinsics for improved optimization (for example, vectorization). 2434 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2435 // From the C standard draft WG14/N1256: 2436 // "Ideally, fmax would be sensitive to the sign of zero, for example 2437 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2438 // might be impractical." 2439 IRBuilderBase::FastMathFlagGuard Guard(B); 2440 FastMathFlags FMF = CI->getFastMathFlags(); 2441 FMF.setNoSignedZeros(); 2442 B.setFastMathFlags(FMF); 2443 2444 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2445 : Intrinsic::maxnum; 2446 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0), 2447 CI->getArgOperand(1))); 2448 } 2449 2450 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2451 Function *LogFn = Log->getCalledFunction(); 2452 StringRef LogNm = LogFn->getName(); 2453 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2454 Module *Mod = Log->getModule(); 2455 Type *Ty = Log->getType(); 2456 Value *Ret = nullptr; 2457 2458 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2459 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2460 2461 // The earlier call must also be 'fast' in order to do these transforms. 2462 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2463 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2464 return Ret; 2465 2466 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2467 2468 // This is only applicable to log(), log2(), log10(). 2469 if (TLI->getLibFunc(LogNm, LogLb)) 2470 switch (LogLb) { 2471 case LibFunc_logf: 2472 LogID = Intrinsic::log; 2473 ExpLb = LibFunc_expf; 2474 Exp2Lb = LibFunc_exp2f; 2475 Exp10Lb = LibFunc_exp10f; 2476 PowLb = LibFunc_powf; 2477 break; 2478 case LibFunc_log: 2479 LogID = Intrinsic::log; 2480 ExpLb = LibFunc_exp; 2481 Exp2Lb = LibFunc_exp2; 2482 Exp10Lb = LibFunc_exp10; 2483 PowLb = LibFunc_pow; 2484 break; 2485 case LibFunc_logl: 2486 LogID = Intrinsic::log; 2487 ExpLb = LibFunc_expl; 2488 Exp2Lb = LibFunc_exp2l; 2489 Exp10Lb = LibFunc_exp10l; 2490 PowLb = LibFunc_powl; 2491 break; 2492 case LibFunc_log2f: 2493 LogID = Intrinsic::log2; 2494 ExpLb = LibFunc_expf; 2495 Exp2Lb = LibFunc_exp2f; 2496 Exp10Lb = LibFunc_exp10f; 2497 PowLb = LibFunc_powf; 2498 break; 2499 case LibFunc_log2: 2500 LogID = Intrinsic::log2; 2501 ExpLb = LibFunc_exp; 2502 Exp2Lb = LibFunc_exp2; 2503 Exp10Lb = LibFunc_exp10; 2504 PowLb = LibFunc_pow; 2505 break; 2506 case LibFunc_log2l: 2507 LogID = Intrinsic::log2; 2508 ExpLb = LibFunc_expl; 2509 Exp2Lb = LibFunc_exp2l; 2510 Exp10Lb = LibFunc_exp10l; 2511 PowLb = LibFunc_powl; 2512 break; 2513 case LibFunc_log10f: 2514 LogID = Intrinsic::log10; 2515 ExpLb = LibFunc_expf; 2516 Exp2Lb = LibFunc_exp2f; 2517 Exp10Lb = LibFunc_exp10f; 2518 PowLb = LibFunc_powf; 2519 break; 2520 case LibFunc_log10: 2521 LogID = Intrinsic::log10; 2522 ExpLb = LibFunc_exp; 2523 Exp2Lb = LibFunc_exp2; 2524 Exp10Lb = LibFunc_exp10; 2525 PowLb = LibFunc_pow; 2526 break; 2527 case LibFunc_log10l: 2528 LogID = Intrinsic::log10; 2529 ExpLb = LibFunc_expl; 2530 Exp2Lb = LibFunc_exp2l; 2531 Exp10Lb = LibFunc_exp10l; 2532 PowLb = LibFunc_powl; 2533 break; 2534 default: 2535 return Ret; 2536 } 2537 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2538 LogID == Intrinsic::log10) { 2539 if (Ty->getScalarType()->isFloatTy()) { 2540 ExpLb = LibFunc_expf; 2541 Exp2Lb = LibFunc_exp2f; 2542 Exp10Lb = LibFunc_exp10f; 2543 PowLb = LibFunc_powf; 2544 } else if (Ty->getScalarType()->isDoubleTy()) { 2545 ExpLb = LibFunc_exp; 2546 Exp2Lb = LibFunc_exp2; 2547 Exp10Lb = LibFunc_exp10; 2548 PowLb = LibFunc_pow; 2549 } else 2550 return Ret; 2551 } else 2552 return Ret; 2553 2554 IRBuilderBase::FastMathFlagGuard Guard(B); 2555 B.setFastMathFlags(FastMathFlags::getFast()); 2556 2557 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2558 LibFunc ArgLb = NotLibFunc; 2559 TLI->getLibFunc(*Arg, ArgLb); 2560 2561 // log(pow(x,y)) -> y*log(x) 2562 AttributeList NoAttrs; 2563 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2564 Value *LogX = 2565 Log->doesNotAccessMemory() 2566 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log") 2567 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2568 Value *Y = Arg->getArgOperand(1); 2569 // Cast exponent to FP if integer. 2570 if (ArgID == Intrinsic::powi) 2571 Y = B.CreateSIToFP(Y, Ty, "cast"); 2572 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2573 // Since pow() may have side effects, e.g. errno, 2574 // dead code elimination may not be trusted to remove it. 2575 substituteInParent(Arg, MulY); 2576 return MulY; 2577 } 2578 2579 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2580 // TODO: There is no exp10() intrinsic yet. 2581 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2582 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2583 Constant *Eul; 2584 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2585 // FIXME: Add more precise value of e for long double. 2586 Eul = ConstantFP::get(Log->getType(), numbers::e); 2587 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2588 Eul = ConstantFP::get(Log->getType(), 2.0); 2589 else 2590 Eul = ConstantFP::get(Log->getType(), 10.0); 2591 Value *LogE = Log->doesNotAccessMemory() 2592 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log") 2593 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2594 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2595 // Since exp() may have side effects, e.g. errno, 2596 // dead code elimination may not be trusted to remove it. 2597 substituteInParent(Arg, MulY); 2598 return MulY; 2599 } 2600 2601 return Ret; 2602 } 2603 2604 // sqrt(exp(X)) -> exp(X * 0.5) 2605 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { 2606 if (!CI->hasAllowReassoc()) 2607 return nullptr; 2608 2609 Function *SqrtFn = CI->getCalledFunction(); 2610 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0)); 2611 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) 2612 return nullptr; 2613 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2614 LibFunc ArgLb = NotLibFunc; 2615 TLI->getLibFunc(*Arg, ArgLb); 2616 2617 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; 2618 2619 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb)) 2620 switch (SqrtLb) { 2621 case LibFunc_sqrtf: 2622 ExpLb = LibFunc_expf; 2623 Exp2Lb = LibFunc_exp2f; 2624 Exp10Lb = LibFunc_exp10f; 2625 break; 2626 case LibFunc_sqrt: 2627 ExpLb = LibFunc_exp; 2628 Exp2Lb = LibFunc_exp2; 2629 Exp10Lb = LibFunc_exp10; 2630 break; 2631 case LibFunc_sqrtl: 2632 ExpLb = LibFunc_expl; 2633 Exp2Lb = LibFunc_exp2l; 2634 Exp10Lb = LibFunc_exp10l; 2635 break; 2636 default: 2637 return nullptr; 2638 } 2639 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { 2640 if (CI->getType()->getScalarType()->isFloatTy()) { 2641 ExpLb = LibFunc_expf; 2642 Exp2Lb = LibFunc_exp2f; 2643 Exp10Lb = LibFunc_exp10f; 2644 } else if (CI->getType()->getScalarType()->isDoubleTy()) { 2645 ExpLb = LibFunc_exp; 2646 Exp2Lb = LibFunc_exp2; 2647 Exp10Lb = LibFunc_exp10; 2648 } else 2649 return nullptr; 2650 } else 2651 return nullptr; 2652 2653 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && 2654 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) 2655 return nullptr; 2656 2657 IRBuilderBase::InsertPointGuard Guard(B); 2658 B.SetInsertPoint(Arg); 2659 auto *ExpOperand = Arg->getOperand(0); 2660 auto *FMul = 2661 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5), 2662 CI, "merged.sqrt"); 2663 2664 Arg->setOperand(0, FMul); 2665 return Arg; 2666 } 2667 2668 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2669 Module *M = CI->getModule(); 2670 Function *Callee = CI->getCalledFunction(); 2671 Value *Ret = nullptr; 2672 // TODO: Once we have a way (other than checking for the existince of the 2673 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2674 // condition below. 2675 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2676 (Callee->getName() == "sqrt" || 2677 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2678 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2679 2680 if (Value *Opt = mergeSqrtToExp(CI, B)) 2681 return Opt; 2682 2683 if (!CI->isFast()) 2684 return Ret; 2685 2686 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2687 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2688 return Ret; 2689 2690 // We're looking for a repeated factor in a multiplication tree, 2691 // so we can do this fold: sqrt(x * x) -> fabs(x); 2692 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2693 Value *Op0 = I->getOperand(0); 2694 Value *Op1 = I->getOperand(1); 2695 Value *RepeatOp = nullptr; 2696 Value *OtherOp = nullptr; 2697 if (Op0 == Op1) { 2698 // Simple match: the operands of the multiply are identical. 2699 RepeatOp = Op0; 2700 } else { 2701 // Look for a more complicated pattern: one of the operands is itself 2702 // a multiply, so search for a common factor in that multiply. 2703 // Note: We don't bother looking any deeper than this first level or for 2704 // variations of this pattern because instcombine's visitFMUL and/or the 2705 // reassociation pass should give us this form. 2706 Value *OtherMul0, *OtherMul1; 2707 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2708 // Pattern: sqrt((x * y) * z) 2709 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2710 // Matched: sqrt((x * x) * z) 2711 RepeatOp = OtherMul0; 2712 OtherOp = Op1; 2713 } 2714 } 2715 } 2716 if (!RepeatOp) 2717 return Ret; 2718 2719 // Fast math flags for any created instructions should match the sqrt 2720 // and multiply. 2721 IRBuilderBase::FastMathFlagGuard Guard(B); 2722 B.setFastMathFlags(I->getFastMathFlags()); 2723 2724 // If we found a repeated factor, hoist it out of the square root and 2725 // replace it with the fabs of that factor. 2726 Value *FabsCall = 2727 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs"); 2728 if (OtherOp) { 2729 // If we found a non-repeated factor, we still need to get its square 2730 // root. We then multiply that by the value that was simplified out 2731 // of the square root calculation. 2732 Value *SqrtCall = 2733 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt"); 2734 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2735 } 2736 return copyFlags(*CI, FabsCall); 2737 } 2738 2739 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, 2740 IRBuilderBase &B) { 2741 Module *M = CI->getModule(); 2742 Function *Callee = CI->getCalledFunction(); 2743 Value *Ret = nullptr; 2744 StringRef Name = Callee->getName(); 2745 if (UnsafeFPShrink && 2746 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || 2747 Name == "asinh") && 2748 hasFloatVersion(M, Name)) 2749 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2750 2751 Value *Op1 = CI->getArgOperand(0); 2752 auto *OpC = dyn_cast<CallInst>(Op1); 2753 if (!OpC) 2754 return Ret; 2755 2756 // Both calls must be 'fast' in order to remove them. 2757 if (!CI->isFast() || !OpC->isFast()) 2758 return Ret; 2759 2760 // tan(atan(x)) -> x 2761 // atanh(tanh(x)) -> x 2762 // sinh(asinh(x)) -> x 2763 // asinh(sinh(x)) -> x 2764 // cosh(acosh(x)) -> x 2765 LibFunc Func; 2766 Function *F = OpC->getCalledFunction(); 2767 if (F && TLI->getLibFunc(F->getName(), Func) && 2768 isLibFuncEmittable(M, TLI, Func)) { 2769 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) 2770 .Case("tan", LibFunc_atan) 2771 .Case("atanh", LibFunc_tanh) 2772 .Case("sinh", LibFunc_asinh) 2773 .Case("cosh", LibFunc_acosh) 2774 .Case("tanf", LibFunc_atanf) 2775 .Case("atanhf", LibFunc_tanhf) 2776 .Case("sinhf", LibFunc_asinhf) 2777 .Case("coshf", LibFunc_acoshf) 2778 .Case("tanl", LibFunc_atanl) 2779 .Case("atanhl", LibFunc_tanhl) 2780 .Case("sinhl", LibFunc_asinhl) 2781 .Case("coshl", LibFunc_acoshl) 2782 .Case("asinh", LibFunc_sinh) 2783 .Case("asinhf", LibFunc_sinhf) 2784 .Case("asinhl", LibFunc_sinhl) 2785 .Default(NumLibFuncs); // Used as error value 2786 if (Func == inverseFunc) 2787 Ret = OpC->getArgOperand(0); 2788 } 2789 return Ret; 2790 } 2791 2792 static bool isTrigLibCall(CallInst *CI) { 2793 // We can only hope to do anything useful if we can ignore things like errno 2794 // and floating-point exceptions. 2795 // We already checked the prototype. 2796 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2797 } 2798 2799 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2800 bool UseFloat, Value *&Sin, Value *&Cos, 2801 Value *&SinCos, const TargetLibraryInfo *TLI) { 2802 Module *M = OrigCallee->getParent(); 2803 Type *ArgTy = Arg->getType(); 2804 Type *ResTy; 2805 StringRef Name; 2806 2807 Triple T(OrigCallee->getParent()->getTargetTriple()); 2808 if (UseFloat) { 2809 Name = "__sincospif_stret"; 2810 2811 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2812 // x86_64 can't use {float, float} since that would be returned in both 2813 // xmm0 and xmm1, which isn't what a real struct would do. 2814 ResTy = T.getArch() == Triple::x86_64 2815 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2816 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2817 } else { 2818 Name = "__sincospi_stret"; 2819 ResTy = StructType::get(ArgTy, ArgTy); 2820 } 2821 2822 if (!isLibFuncEmittable(M, TLI, Name)) 2823 return false; 2824 LibFunc TheLibFunc; 2825 TLI->getLibFunc(Name, TheLibFunc); 2826 FunctionCallee Callee = getOrInsertLibFunc( 2827 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2828 2829 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2830 // If the argument is an instruction, it must dominate all uses so put our 2831 // sincos call there. 2832 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2833 } else { 2834 // Otherwise (e.g. for a constant) the beginning of the function is as 2835 // good a place as any. 2836 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2837 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2838 } 2839 2840 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2841 2842 if (SinCos->getType()->isStructTy()) { 2843 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2844 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2845 } else { 2846 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2847 "sinpi"); 2848 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2849 "cospi"); 2850 } 2851 2852 return true; 2853 } 2854 2855 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, 2856 IRBuilderBase &B) { 2857 Value *X; 2858 Value *Src = CI->getArgOperand(0); 2859 2860 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) { 2861 IRBuilderBase::FastMathFlagGuard Guard(B); 2862 B.setFastMathFlags(CI->getFastMathFlags()); 2863 2864 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2865 if (IsEven) { 2866 // Even function: f(-x) = f(x) 2867 return CallInst; 2868 } 2869 // Odd function: f(-x) = -f(x) 2870 return B.CreateFNeg(CallInst); 2871 } 2872 2873 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) 2874 if (IsEven && (match(Src, m_FAbs(m_Value(X))) || 2875 match(Src, m_CopySign(m_Value(X), m_Value())))) { 2876 IRBuilderBase::FastMathFlagGuard Guard(B); 2877 B.setFastMathFlags(CI->getFastMathFlags()); 2878 2879 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2880 return CallInst; 2881 } 2882 2883 return nullptr; 2884 } 2885 2886 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, 2887 IRBuilderBase &B) { 2888 switch (Func) { 2889 case LibFunc_cos: 2890 case LibFunc_cosf: 2891 case LibFunc_cosl: 2892 return optimizeSymmetricCall(CI, /*IsEven*/ true, B); 2893 2894 case LibFunc_sin: 2895 case LibFunc_sinf: 2896 case LibFunc_sinl: 2897 2898 case LibFunc_tan: 2899 case LibFunc_tanf: 2900 case LibFunc_tanl: 2901 2902 case LibFunc_erf: 2903 case LibFunc_erff: 2904 case LibFunc_erfl: 2905 return optimizeSymmetricCall(CI, /*IsEven*/ false, B); 2906 2907 default: 2908 return nullptr; 2909 } 2910 } 2911 2912 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 2913 // Make sure the prototype is as expected, otherwise the rest of the 2914 // function is probably invalid and likely to abort. 2915 if (!isTrigLibCall(CI)) 2916 return nullptr; 2917 2918 Value *Arg = CI->getArgOperand(0); 2919 SmallVector<CallInst *, 1> SinCalls; 2920 SmallVector<CallInst *, 1> CosCalls; 2921 SmallVector<CallInst *, 1> SinCosCalls; 2922 2923 bool IsFloat = Arg->getType()->isFloatTy(); 2924 2925 // Look for all compatible sinpi, cospi and sincospi calls with the same 2926 // argument. If there are enough (in some sense) we can make the 2927 // substitution. 2928 Function *F = CI->getFunction(); 2929 for (User *U : Arg->users()) 2930 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2931 2932 // It's only worthwhile if both sinpi and cospi are actually used. 2933 if (SinCalls.empty() || CosCalls.empty()) 2934 return nullptr; 2935 2936 Value *Sin, *Cos, *SinCos; 2937 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2938 SinCos, TLI)) 2939 return nullptr; 2940 2941 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2942 Value *Res) { 2943 for (CallInst *C : Calls) 2944 replaceAllUsesWith(C, Res); 2945 }; 2946 2947 replaceTrigInsts(SinCalls, Sin); 2948 replaceTrigInsts(CosCalls, Cos); 2949 replaceTrigInsts(SinCosCalls, SinCos); 2950 2951 return IsSin ? Sin : Cos; 2952 } 2953 2954 void LibCallSimplifier::classifyArgUse( 2955 Value *Val, Function *F, bool IsFloat, 2956 SmallVectorImpl<CallInst *> &SinCalls, 2957 SmallVectorImpl<CallInst *> &CosCalls, 2958 SmallVectorImpl<CallInst *> &SinCosCalls) { 2959 auto *CI = dyn_cast<CallInst>(Val); 2960 if (!CI || CI->use_empty()) 2961 return; 2962 2963 // Don't consider calls in other functions. 2964 if (CI->getFunction() != F) 2965 return; 2966 2967 Module *M = CI->getModule(); 2968 Function *Callee = CI->getCalledFunction(); 2969 LibFunc Func; 2970 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2971 !isLibFuncEmittable(M, TLI, Func) || 2972 !isTrigLibCall(CI)) 2973 return; 2974 2975 if (IsFloat) { 2976 if (Func == LibFunc_sinpif) 2977 SinCalls.push_back(CI); 2978 else if (Func == LibFunc_cospif) 2979 CosCalls.push_back(CI); 2980 else if (Func == LibFunc_sincospif_stret) 2981 SinCosCalls.push_back(CI); 2982 } else { 2983 if (Func == LibFunc_sinpi) 2984 SinCalls.push_back(CI); 2985 else if (Func == LibFunc_cospi) 2986 CosCalls.push_back(CI); 2987 else if (Func == LibFunc_sincospi_stret) 2988 SinCosCalls.push_back(CI); 2989 } 2990 } 2991 2992 //===----------------------------------------------------------------------===// 2993 // Integer Library Call Optimizations 2994 //===----------------------------------------------------------------------===// 2995 2996 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2997 // All variants of ffs return int which need not be 32 bits wide. 2998 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 2999 Type *RetType = CI->getType(); 3000 Value *Op = CI->getArgOperand(0); 3001 Type *ArgType = Op->getType(); 3002 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()}, 3003 nullptr, "cttz"); 3004 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 3005 V = B.CreateIntCast(V, RetType, false); 3006 3007 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 3008 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 3009 } 3010 3011 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 3012 // All variants of fls return int which need not be 32 bits wide. 3013 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 3014 Value *Op = CI->getArgOperand(0); 3015 Type *ArgType = Op->getType(); 3016 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()}, 3017 nullptr, "ctlz"); 3018 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 3019 V); 3020 return B.CreateIntCast(V, CI->getType(), false); 3021 } 3022 3023 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 3024 // abs(x) -> x <s 0 ? -x : x 3025 // The negation has 'nsw' because abs of INT_MIN is undefined. 3026 Value *X = CI->getArgOperand(0); 3027 Value *IsNeg = B.CreateIsNeg(X); 3028 Value *NegX = B.CreateNSWNeg(X, "neg"); 3029 return B.CreateSelect(IsNeg, NegX, X); 3030 } 3031 3032 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 3033 // isdigit(c) -> (c-'0') <u 10 3034 Value *Op = CI->getArgOperand(0); 3035 Type *ArgType = Op->getType(); 3036 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 3037 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 3038 return B.CreateZExt(Op, CI->getType()); 3039 } 3040 3041 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 3042 // isascii(c) -> c <u 128 3043 Value *Op = CI->getArgOperand(0); 3044 Type *ArgType = Op->getType(); 3045 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 3046 return B.CreateZExt(Op, CI->getType()); 3047 } 3048 3049 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 3050 // toascii(c) -> c & 0x7f 3051 return B.CreateAnd(CI->getArgOperand(0), 3052 ConstantInt::get(CI->getType(), 0x7F)); 3053 } 3054 3055 // Fold calls to atoi, atol, and atoll. 3056 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 3057 CI->addParamAttr(0, Attribute::NoCapture); 3058 3059 StringRef Str; 3060 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3061 return nullptr; 3062 3063 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 3064 } 3065 3066 // Fold calls to strtol, strtoll, strtoul, and strtoull. 3067 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 3068 bool AsSigned) { 3069 Value *EndPtr = CI->getArgOperand(1); 3070 if (isa<ConstantPointerNull>(EndPtr)) { 3071 // With a null EndPtr, this function won't capture the main argument. 3072 // It would be readonly too, except that it still may write to errno. 3073 CI->addParamAttr(0, Attribute::NoCapture); 3074 EndPtr = nullptr; 3075 } else if (!isKnownNonZero(EndPtr, DL)) 3076 return nullptr; 3077 3078 StringRef Str; 3079 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3080 return nullptr; 3081 3082 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 3083 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 3084 } 3085 3086 return nullptr; 3087 } 3088 3089 //===----------------------------------------------------------------------===// 3090 // Formatting and IO Library Call Optimizations 3091 //===----------------------------------------------------------------------===// 3092 3093 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 3094 3095 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 3096 int StreamArg) { 3097 Function *Callee = CI->getCalledFunction(); 3098 // Error reporting calls should be cold, mark them as such. 3099 // This applies even to non-builtin calls: it is only a hint and applies to 3100 // functions that the frontend might not understand as builtins. 3101 3102 // This heuristic was suggested in: 3103 // Improving Static Branch Prediction in a Compiler 3104 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 3105 // Proceedings of PACT'98, Oct. 1998, IEEE 3106 if (!CI->hasFnAttr(Attribute::Cold) && 3107 isReportingError(Callee, CI, StreamArg)) { 3108 CI->addFnAttr(Attribute::Cold); 3109 } 3110 3111 return nullptr; 3112 } 3113 3114 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 3115 if (!Callee || !Callee->isDeclaration()) 3116 return false; 3117 3118 if (StreamArg < 0) 3119 return true; 3120 3121 // These functions might be considered cold, but only if their stream 3122 // argument is stderr. 3123 3124 if (StreamArg >= (int)CI->arg_size()) 3125 return false; 3126 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 3127 if (!LI) 3128 return false; 3129 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 3130 if (!GV || !GV->isDeclaration()) 3131 return false; 3132 return GV->getName() == "stderr"; 3133 } 3134 3135 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 3136 // Check for a fixed format string. 3137 StringRef FormatStr; 3138 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 3139 return nullptr; 3140 3141 // Empty format string -> noop. 3142 if (FormatStr.empty()) // Tolerate printf's declared void. 3143 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 3144 3145 // Do not do any of the following transformations if the printf return value 3146 // is used, in general the printf return value is not compatible with either 3147 // putchar() or puts(). 3148 if (!CI->use_empty()) 3149 return nullptr; 3150 3151 Type *IntTy = CI->getType(); 3152 // printf("x") -> putchar('x'), even for "%" and "%%". 3153 if (FormatStr.size() == 1 || FormatStr == "%%") { 3154 // Convert the character to unsigned char before passing it to putchar 3155 // to avoid host-specific sign extension in the IR. Putchar converts 3156 // it to unsigned char regardless. 3157 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 3158 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3159 } 3160 3161 // Try to remove call or emit putchar/puts. 3162 if (FormatStr == "%s" && CI->arg_size() > 1) { 3163 StringRef OperandStr; 3164 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 3165 return nullptr; 3166 // printf("%s", "") --> NOP 3167 if (OperandStr.empty()) 3168 return (Value *)CI; 3169 // printf("%s", "a") --> putchar('a') 3170 if (OperandStr.size() == 1) { 3171 // Convert the character to unsigned char before passing it to putchar 3172 // to avoid host-specific sign extension in the IR. Putchar converts 3173 // it to unsigned char regardless. 3174 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 3175 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3176 } 3177 // printf("%s", str"\n") --> puts(str) 3178 if (OperandStr.back() == '\n') { 3179 OperandStr = OperandStr.drop_back(); 3180 Value *GV = B.CreateGlobalString(OperandStr, "str"); 3181 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3182 } 3183 return nullptr; 3184 } 3185 3186 // printf("foo\n") --> puts("foo") 3187 if (FormatStr.back() == '\n' && 3188 !FormatStr.contains('%')) { // No format characters. 3189 // Create a string literal with no \n on it. We expect the constant merge 3190 // pass to be run after this pass, to merge duplicate strings. 3191 FormatStr = FormatStr.drop_back(); 3192 Value *GV = B.CreateGlobalString(FormatStr, "str"); 3193 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3194 } 3195 3196 // Optimize specific format strings. 3197 // printf("%c", chr) --> putchar(chr) 3198 if (FormatStr == "%c" && CI->arg_size() > 1 && 3199 CI->getArgOperand(1)->getType()->isIntegerTy()) { 3200 // Convert the argument to the type expected by putchar, i.e., int, which 3201 // need not be 32 bits wide but which is the same as printf's return type. 3202 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 3203 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3204 } 3205 3206 // printf("%s\n", str) --> puts(str) 3207 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3208 CI->getArgOperand(1)->getType()->isPointerTy()) 3209 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3210 return nullptr; 3211 } 3212 3213 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3214 3215 Module *M = CI->getModule(); 3216 Function *Callee = CI->getCalledFunction(); 3217 FunctionType *FT = Callee->getFunctionType(); 3218 if (Value *V = optimizePrintFString(CI, B)) { 3219 return V; 3220 } 3221 3222 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3223 3224 // printf(format, ...) -> iprintf(format, ...) if no floating point 3225 // arguments. 3226 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3227 !callHasFloatingPointArgument(CI)) { 3228 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3229 Callee->getAttributes()); 3230 CallInst *New = cast<CallInst>(CI->clone()); 3231 New->setCalledFunction(IPrintFFn); 3232 B.Insert(New); 3233 return New; 3234 } 3235 3236 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3237 // arguments. 3238 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3239 !callHasFP128Argument(CI)) { 3240 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3241 Callee->getAttributes()); 3242 CallInst *New = cast<CallInst>(CI->clone()); 3243 New->setCalledFunction(SmallPrintFFn); 3244 B.Insert(New); 3245 return New; 3246 } 3247 3248 return nullptr; 3249 } 3250 3251 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3252 IRBuilderBase &B) { 3253 // Check for a fixed format string. 3254 StringRef FormatStr; 3255 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3256 return nullptr; 3257 3258 // If we just have a format string (nothing else crazy) transform it. 3259 Value *Dest = CI->getArgOperand(0); 3260 if (CI->arg_size() == 2) { 3261 // Make sure there's no % in the constant array. We could try to handle 3262 // %% -> % in the future if we cared. 3263 if (FormatStr.contains('%')) 3264 return nullptr; // we found a format specifier, bail out. 3265 3266 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3267 B.CreateMemCpy( 3268 Dest, Align(1), CI->getArgOperand(1), Align(1), 3269 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 3270 FormatStr.size() + 1)); // Copy the null byte. 3271 return ConstantInt::get(CI->getType(), FormatStr.size()); 3272 } 3273 3274 // The remaining optimizations require the format string to be "%s" or "%c" 3275 // and have an extra operand. 3276 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3277 return nullptr; 3278 3279 // Decode the second character of the format string. 3280 if (FormatStr[1] == 'c') { 3281 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3282 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3283 return nullptr; 3284 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3285 Value *Ptr = Dest; 3286 B.CreateStore(V, Ptr); 3287 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3288 B.CreateStore(B.getInt8(0), Ptr); 3289 3290 return ConstantInt::get(CI->getType(), 1); 3291 } 3292 3293 if (FormatStr[1] == 's') { 3294 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3295 // strlen(str)+1) 3296 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3297 return nullptr; 3298 3299 if (CI->use_empty()) 3300 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3301 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3302 3303 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3304 if (SrcLen) { 3305 B.CreateMemCpy( 3306 Dest, Align(1), CI->getArgOperand(2), Align(1), 3307 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 3308 // Returns total number of characters written without null-character. 3309 return ConstantInt::get(CI->getType(), SrcLen - 1); 3310 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3311 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3312 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3313 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3314 } 3315 3316 bool OptForSize = CI->getFunction()->hasOptSize() || 3317 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3318 PGSOQueryType::IRPass); 3319 if (OptForSize) 3320 return nullptr; 3321 3322 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3323 if (!Len) 3324 return nullptr; 3325 Value *IncLen = 3326 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3327 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3328 3329 // The sprintf result is the unincremented number of bytes in the string. 3330 return B.CreateIntCast(Len, CI->getType(), false); 3331 } 3332 return nullptr; 3333 } 3334 3335 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3336 Module *M = CI->getModule(); 3337 Function *Callee = CI->getCalledFunction(); 3338 FunctionType *FT = Callee->getFunctionType(); 3339 if (Value *V = optimizeSPrintFString(CI, B)) { 3340 return V; 3341 } 3342 3343 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3344 3345 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3346 // point arguments. 3347 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3348 !callHasFloatingPointArgument(CI)) { 3349 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3350 FT, Callee->getAttributes()); 3351 CallInst *New = cast<CallInst>(CI->clone()); 3352 New->setCalledFunction(SIPrintFFn); 3353 B.Insert(New); 3354 return New; 3355 } 3356 3357 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3358 // floating point arguments. 3359 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3360 !callHasFP128Argument(CI)) { 3361 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3362 Callee->getAttributes()); 3363 CallInst *New = cast<CallInst>(CI->clone()); 3364 New->setCalledFunction(SmallSPrintFFn); 3365 B.Insert(New); 3366 return New; 3367 } 3368 3369 return nullptr; 3370 } 3371 3372 // Transform an snprintf call CI with the bound N to format the string Str 3373 // either to a call to memcpy, or to single character a store, or to nothing, 3374 // and fold the result to a constant. A nonnull StrArg refers to the string 3375 // argument being formatted. Otherwise the call is one with N < 2 and 3376 // the "%c" directive to format a single character. 3377 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3378 StringRef Str, uint64_t N, 3379 IRBuilderBase &B) { 3380 assert(StrArg || (N < 2 && Str.size() == 1)); 3381 3382 unsigned IntBits = TLI->getIntSize(); 3383 uint64_t IntMax = maxIntN(IntBits); 3384 if (Str.size() > IntMax) 3385 // Bail if the string is longer than INT_MAX. POSIX requires 3386 // implementations to set errno to EOVERFLOW in this case, in 3387 // addition to when N is larger than that (checked by the caller). 3388 return nullptr; 3389 3390 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3391 if (N == 0) 3392 return StrLen; 3393 3394 // Set to the number of bytes to copy fron StrArg which is also 3395 // the offset of the terinating nul. 3396 uint64_t NCopy; 3397 if (N > Str.size()) 3398 // Copy the full string, including the terminating nul (which must 3399 // be present regardless of the bound). 3400 NCopy = Str.size() + 1; 3401 else 3402 NCopy = N - 1; 3403 3404 Value *DstArg = CI->getArgOperand(0); 3405 if (NCopy && StrArg) 3406 // Transform the call to lvm.memcpy(dst, fmt, N). 3407 copyFlags( 3408 *CI, 3409 B.CreateMemCpy( 3410 DstArg, Align(1), StrArg, Align(1), 3411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy))); 3412 3413 if (N > Str.size()) 3414 // Return early when the whole format string, including the final nul, 3415 // has been copied. 3416 return StrLen; 3417 3418 // Otherwise, when truncating the string append a terminating nul. 3419 Type *Int8Ty = B.getInt8Ty(); 3420 Value *NulOff = B.getIntN(IntBits, NCopy); 3421 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3422 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3423 return StrLen; 3424 } 3425 3426 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3427 IRBuilderBase &B) { 3428 // Check for size 3429 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3430 if (!Size) 3431 return nullptr; 3432 3433 uint64_t N = Size->getZExtValue(); 3434 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3435 if (N > IntMax) 3436 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3437 // to set errno to EOVERFLOW in this case. 3438 return nullptr; 3439 3440 Value *DstArg = CI->getArgOperand(0); 3441 Value *FmtArg = CI->getArgOperand(2); 3442 3443 // Check for a fixed format string. 3444 StringRef FormatStr; 3445 if (!getConstantStringInfo(FmtArg, FormatStr)) 3446 return nullptr; 3447 3448 // If we just have a format string (nothing else crazy) transform it. 3449 if (CI->arg_size() == 3) { 3450 if (FormatStr.contains('%')) 3451 // Bail if the format string contains a directive and there are 3452 // no arguments. We could handle "%%" in the future. 3453 return nullptr; 3454 3455 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3456 } 3457 3458 // The remaining optimizations require the format string to be "%s" or "%c" 3459 // and have an extra operand. 3460 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3461 return nullptr; 3462 3463 // Decode the second character of the format string. 3464 if (FormatStr[1] == 'c') { 3465 if (N <= 1) { 3466 // Use an arbitary string of length 1 to transform the call into 3467 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3468 // to one. 3469 StringRef CharStr("*"); 3470 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3471 } 3472 3473 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3474 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3475 return nullptr; 3476 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3477 Value *Ptr = DstArg; 3478 B.CreateStore(V, Ptr); 3479 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3480 B.CreateStore(B.getInt8(0), Ptr); 3481 return ConstantInt::get(CI->getType(), 1); 3482 } 3483 3484 if (FormatStr[1] != 's') 3485 return nullptr; 3486 3487 Value *StrArg = CI->getArgOperand(3); 3488 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3489 StringRef Str; 3490 if (!getConstantStringInfo(StrArg, Str)) 3491 return nullptr; 3492 3493 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3494 } 3495 3496 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3497 if (Value *V = optimizeSnPrintFString(CI, B)) { 3498 return V; 3499 } 3500 3501 if (isKnownNonZero(CI->getOperand(1), DL)) 3502 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3503 return nullptr; 3504 } 3505 3506 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3507 IRBuilderBase &B) { 3508 optimizeErrorReporting(CI, B, 0); 3509 3510 // All the optimizations depend on the format string. 3511 StringRef FormatStr; 3512 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3513 return nullptr; 3514 3515 // Do not do any of the following transformations if the fprintf return 3516 // value is used, in general the fprintf return value is not compatible 3517 // with fwrite(), fputc() or fputs(). 3518 if (!CI->use_empty()) 3519 return nullptr; 3520 3521 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3522 if (CI->arg_size() == 2) { 3523 // Could handle %% -> % if we cared. 3524 if (FormatStr.contains('%')) 3525 return nullptr; // We found a format specifier. 3526 3527 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3528 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3529 return copyFlags( 3530 *CI, emitFWrite(CI->getArgOperand(1), 3531 ConstantInt::get(SizeTTy, FormatStr.size()), 3532 CI->getArgOperand(0), B, DL, TLI)); 3533 } 3534 3535 // The remaining optimizations require the format string to be "%s" or "%c" 3536 // and have an extra operand. 3537 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3538 return nullptr; 3539 3540 // Decode the second character of the format string. 3541 if (FormatStr[1] == 'c') { 3542 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3543 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3544 return nullptr; 3545 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3546 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3547 "chari"); 3548 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3549 } 3550 3551 if (FormatStr[1] == 's') { 3552 // fprintf(F, "%s", str) --> fputs(str, F) 3553 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3554 return nullptr; 3555 return copyFlags( 3556 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3557 } 3558 return nullptr; 3559 } 3560 3561 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3562 Module *M = CI->getModule(); 3563 Function *Callee = CI->getCalledFunction(); 3564 FunctionType *FT = Callee->getFunctionType(); 3565 if (Value *V = optimizeFPrintFString(CI, B)) { 3566 return V; 3567 } 3568 3569 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3570 // floating point arguments. 3571 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3572 !callHasFloatingPointArgument(CI)) { 3573 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3574 FT, Callee->getAttributes()); 3575 CallInst *New = cast<CallInst>(CI->clone()); 3576 New->setCalledFunction(FIPrintFFn); 3577 B.Insert(New); 3578 return New; 3579 } 3580 3581 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3582 // 128-bit floating point arguments. 3583 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3584 !callHasFP128Argument(CI)) { 3585 auto SmallFPrintFFn = 3586 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3587 Callee->getAttributes()); 3588 CallInst *New = cast<CallInst>(CI->clone()); 3589 New->setCalledFunction(SmallFPrintFFn); 3590 B.Insert(New); 3591 return New; 3592 } 3593 3594 return nullptr; 3595 } 3596 3597 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3598 optimizeErrorReporting(CI, B, 3); 3599 3600 // Get the element size and count. 3601 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3602 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3603 if (SizeC && CountC) { 3604 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3605 3606 // If this is writing zero records, remove the call (it's a noop). 3607 if (Bytes == 0) 3608 return ConstantInt::get(CI->getType(), 0); 3609 3610 // If this is writing one byte, turn it into fputc. 3611 // This optimisation is only valid, if the return value is unused. 3612 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3613 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3614 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3615 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3616 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3617 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3618 } 3619 } 3620 3621 return nullptr; 3622 } 3623 3624 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3625 optimizeErrorReporting(CI, B, 1); 3626 3627 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3628 // requires more arguments and thus extra MOVs are required. 3629 bool OptForSize = CI->getFunction()->hasOptSize() || 3630 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3631 PGSOQueryType::IRPass); 3632 if (OptForSize) 3633 return nullptr; 3634 3635 // We can't optimize if return value is used. 3636 if (!CI->use_empty()) 3637 return nullptr; 3638 3639 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3640 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3641 if (!Len) 3642 return nullptr; 3643 3644 // Known to have no uses (see above). 3645 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3646 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3647 return copyFlags( 3648 *CI, 3649 emitFWrite(CI->getArgOperand(0), 3650 ConstantInt::get(SizeTTy, Len - 1), 3651 CI->getArgOperand(1), B, DL, TLI)); 3652 } 3653 3654 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3655 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3656 if (!CI->use_empty()) 3657 return nullptr; 3658 3659 // Check for a constant string. 3660 // puts("") -> putchar('\n') 3661 StringRef Str; 3662 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3663 // putchar takes an argument of the same type as puts returns, i.e., 3664 // int, which need not be 32 bits wide. 3665 Type *IntTy = CI->getType(); 3666 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3667 } 3668 3669 return nullptr; 3670 } 3671 3672 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3673 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3674 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3675 CI->getArgOperand(0), Align(1), 3676 CI->getArgOperand(2))); 3677 } 3678 3679 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3680 SmallString<20> FloatFuncName = FuncName; 3681 FloatFuncName += 'f'; 3682 return isLibFuncEmittable(M, TLI, FloatFuncName); 3683 } 3684 3685 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3686 IRBuilderBase &Builder) { 3687 Module *M = CI->getModule(); 3688 LibFunc Func; 3689 Function *Callee = CI->getCalledFunction(); 3690 // Check for string/memory library functions. 3691 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3692 // Make sure we never change the calling convention. 3693 assert( 3694 (ignoreCallingConv(Func) || 3695 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3696 "Optimizing string/memory libcall would change the calling convention"); 3697 switch (Func) { 3698 case LibFunc_strcat: 3699 return optimizeStrCat(CI, Builder); 3700 case LibFunc_strncat: 3701 return optimizeStrNCat(CI, Builder); 3702 case LibFunc_strchr: 3703 return optimizeStrChr(CI, Builder); 3704 case LibFunc_strrchr: 3705 return optimizeStrRChr(CI, Builder); 3706 case LibFunc_strcmp: 3707 return optimizeStrCmp(CI, Builder); 3708 case LibFunc_strncmp: 3709 return optimizeStrNCmp(CI, Builder); 3710 case LibFunc_strcpy: 3711 return optimizeStrCpy(CI, Builder); 3712 case LibFunc_stpcpy: 3713 return optimizeStpCpy(CI, Builder); 3714 case LibFunc_strlcpy: 3715 return optimizeStrLCpy(CI, Builder); 3716 case LibFunc_stpncpy: 3717 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3718 case LibFunc_strncpy: 3719 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3720 case LibFunc_strlen: 3721 return optimizeStrLen(CI, Builder); 3722 case LibFunc_strnlen: 3723 return optimizeStrNLen(CI, Builder); 3724 case LibFunc_strpbrk: 3725 return optimizeStrPBrk(CI, Builder); 3726 case LibFunc_strndup: 3727 return optimizeStrNDup(CI, Builder); 3728 case LibFunc_strtol: 3729 case LibFunc_strtod: 3730 case LibFunc_strtof: 3731 case LibFunc_strtoul: 3732 case LibFunc_strtoll: 3733 case LibFunc_strtold: 3734 case LibFunc_strtoull: 3735 return optimizeStrTo(CI, Builder); 3736 case LibFunc_strspn: 3737 return optimizeStrSpn(CI, Builder); 3738 case LibFunc_strcspn: 3739 return optimizeStrCSpn(CI, Builder); 3740 case LibFunc_strstr: 3741 return optimizeStrStr(CI, Builder); 3742 case LibFunc_memchr: 3743 return optimizeMemChr(CI, Builder); 3744 case LibFunc_memrchr: 3745 return optimizeMemRChr(CI, Builder); 3746 case LibFunc_bcmp: 3747 return optimizeBCmp(CI, Builder); 3748 case LibFunc_memcmp: 3749 return optimizeMemCmp(CI, Builder); 3750 case LibFunc_memcpy: 3751 return optimizeMemCpy(CI, Builder); 3752 case LibFunc_memccpy: 3753 return optimizeMemCCpy(CI, Builder); 3754 case LibFunc_mempcpy: 3755 return optimizeMemPCpy(CI, Builder); 3756 case LibFunc_memmove: 3757 return optimizeMemMove(CI, Builder); 3758 case LibFunc_memset: 3759 return optimizeMemSet(CI, Builder); 3760 case LibFunc_realloc: 3761 return optimizeRealloc(CI, Builder); 3762 case LibFunc_wcslen: 3763 return optimizeWcslen(CI, Builder); 3764 case LibFunc_bcopy: 3765 return optimizeBCopy(CI, Builder); 3766 case LibFunc_Znwm: 3767 case LibFunc_ZnwmRKSt9nothrow_t: 3768 case LibFunc_ZnwmSt11align_val_t: 3769 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3770 case LibFunc_Znam: 3771 case LibFunc_ZnamRKSt9nothrow_t: 3772 case LibFunc_ZnamSt11align_val_t: 3773 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3774 case LibFunc_Znwm12__hot_cold_t: 3775 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 3776 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 3777 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3778 case LibFunc_Znam12__hot_cold_t: 3779 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 3780 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 3781 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3782 return optimizeNew(CI, Builder, Func); 3783 default: 3784 break; 3785 } 3786 } 3787 return nullptr; 3788 } 3789 3790 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3791 LibFunc Func, 3792 IRBuilderBase &Builder) { 3793 const Module *M = CI->getModule(); 3794 3795 // Don't optimize calls that require strict floating point semantics. 3796 if (CI->isStrictFP()) 3797 return nullptr; 3798 3799 if (Value *V = optimizeSymmetric(CI, Func, Builder)) 3800 return V; 3801 3802 switch (Func) { 3803 case LibFunc_sinpif: 3804 case LibFunc_sinpi: 3805 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3806 case LibFunc_cospif: 3807 case LibFunc_cospi: 3808 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3809 case LibFunc_powf: 3810 case LibFunc_pow: 3811 case LibFunc_powl: 3812 return optimizePow(CI, Builder); 3813 case LibFunc_exp2l: 3814 case LibFunc_exp2: 3815 case LibFunc_exp2f: 3816 return optimizeExp2(CI, Builder); 3817 case LibFunc_fabsf: 3818 case LibFunc_fabs: 3819 case LibFunc_fabsl: 3820 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3821 case LibFunc_sqrtf: 3822 case LibFunc_sqrt: 3823 case LibFunc_sqrtl: 3824 return optimizeSqrt(CI, Builder); 3825 case LibFunc_logf: 3826 case LibFunc_log: 3827 case LibFunc_logl: 3828 case LibFunc_log10f: 3829 case LibFunc_log10: 3830 case LibFunc_log10l: 3831 case LibFunc_log1pf: 3832 case LibFunc_log1p: 3833 case LibFunc_log1pl: 3834 case LibFunc_log2f: 3835 case LibFunc_log2: 3836 case LibFunc_log2l: 3837 case LibFunc_logbf: 3838 case LibFunc_logb: 3839 case LibFunc_logbl: 3840 return optimizeLog(CI, Builder); 3841 case LibFunc_tan: 3842 case LibFunc_tanf: 3843 case LibFunc_tanl: 3844 case LibFunc_sinh: 3845 case LibFunc_sinhf: 3846 case LibFunc_sinhl: 3847 case LibFunc_asinh: 3848 case LibFunc_asinhf: 3849 case LibFunc_asinhl: 3850 case LibFunc_cosh: 3851 case LibFunc_coshf: 3852 case LibFunc_coshl: 3853 case LibFunc_atanh: 3854 case LibFunc_atanhf: 3855 case LibFunc_atanhl: 3856 return optimizeTrigInversionPairs(CI, Builder); 3857 case LibFunc_ceil: 3858 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3859 case LibFunc_floor: 3860 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3861 case LibFunc_round: 3862 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3863 case LibFunc_roundeven: 3864 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3865 case LibFunc_nearbyint: 3866 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3867 case LibFunc_rint: 3868 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3869 case LibFunc_trunc: 3870 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3871 case LibFunc_acos: 3872 case LibFunc_acosh: 3873 case LibFunc_asin: 3874 case LibFunc_atan: 3875 case LibFunc_cbrt: 3876 case LibFunc_exp: 3877 case LibFunc_exp10: 3878 case LibFunc_expm1: 3879 case LibFunc_cos: 3880 case LibFunc_sin: 3881 case LibFunc_tanh: 3882 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3883 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3884 return nullptr; 3885 case LibFunc_copysign: 3886 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3887 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3888 return nullptr; 3889 case LibFunc_fminf: 3890 case LibFunc_fmin: 3891 case LibFunc_fminl: 3892 case LibFunc_fmaxf: 3893 case LibFunc_fmax: 3894 case LibFunc_fmaxl: 3895 return optimizeFMinFMax(CI, Builder); 3896 case LibFunc_cabs: 3897 case LibFunc_cabsf: 3898 case LibFunc_cabsl: 3899 return optimizeCAbs(CI, Builder); 3900 default: 3901 return nullptr; 3902 } 3903 } 3904 3905 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3906 Module *M = CI->getModule(); 3907 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3908 3909 // TODO: Split out the code below that operates on FP calls so that 3910 // we can all non-FP calls with the StrictFP attribute to be 3911 // optimized. 3912 if (CI->isNoBuiltin()) 3913 return nullptr; 3914 3915 LibFunc Func; 3916 Function *Callee = CI->getCalledFunction(); 3917 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3918 3919 SmallVector<OperandBundleDef, 2> OpBundles; 3920 CI->getOperandBundlesAsDefs(OpBundles); 3921 3922 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3923 Builder.setDefaultOperandBundles(OpBundles); 3924 3925 // Command-line parameter overrides instruction attribute. 3926 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3927 // used by the intrinsic optimizations. 3928 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3929 UnsafeFPShrink = EnableUnsafeFPShrink; 3930 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3931 UnsafeFPShrink = true; 3932 3933 // First, check for intrinsics. 3934 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3935 if (!IsCallingConvC) 3936 return nullptr; 3937 // The FP intrinsics have corresponding constrained versions so we don't 3938 // need to check for the StrictFP attribute here. 3939 switch (II->getIntrinsicID()) { 3940 case Intrinsic::pow: 3941 return optimizePow(CI, Builder); 3942 case Intrinsic::exp2: 3943 return optimizeExp2(CI, Builder); 3944 case Intrinsic::log: 3945 case Intrinsic::log2: 3946 case Intrinsic::log10: 3947 return optimizeLog(CI, Builder); 3948 case Intrinsic::sqrt: 3949 return optimizeSqrt(CI, Builder); 3950 case Intrinsic::memset: 3951 return optimizeMemSet(CI, Builder); 3952 case Intrinsic::memcpy: 3953 return optimizeMemCpy(CI, Builder); 3954 case Intrinsic::memmove: 3955 return optimizeMemMove(CI, Builder); 3956 default: 3957 return nullptr; 3958 } 3959 } 3960 3961 // Also try to simplify calls to fortified library functions. 3962 if (Value *SimplifiedFortifiedCI = 3963 FortifiedSimplifier.optimizeCall(CI, Builder)) 3964 return SimplifiedFortifiedCI; 3965 3966 // Then check for known library functions. 3967 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3968 // We never change the calling convention. 3969 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3970 return nullptr; 3971 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3972 return V; 3973 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3974 return V; 3975 switch (Func) { 3976 case LibFunc_ffs: 3977 case LibFunc_ffsl: 3978 case LibFunc_ffsll: 3979 return optimizeFFS(CI, Builder); 3980 case LibFunc_fls: 3981 case LibFunc_flsl: 3982 case LibFunc_flsll: 3983 return optimizeFls(CI, Builder); 3984 case LibFunc_abs: 3985 case LibFunc_labs: 3986 case LibFunc_llabs: 3987 return optimizeAbs(CI, Builder); 3988 case LibFunc_isdigit: 3989 return optimizeIsDigit(CI, Builder); 3990 case LibFunc_isascii: 3991 return optimizeIsAscii(CI, Builder); 3992 case LibFunc_toascii: 3993 return optimizeToAscii(CI, Builder); 3994 case LibFunc_atoi: 3995 case LibFunc_atol: 3996 case LibFunc_atoll: 3997 return optimizeAtoi(CI, Builder); 3998 case LibFunc_strtol: 3999 case LibFunc_strtoll: 4000 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 4001 case LibFunc_strtoul: 4002 case LibFunc_strtoull: 4003 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 4004 case LibFunc_printf: 4005 return optimizePrintF(CI, Builder); 4006 case LibFunc_sprintf: 4007 return optimizeSPrintF(CI, Builder); 4008 case LibFunc_snprintf: 4009 return optimizeSnPrintF(CI, Builder); 4010 case LibFunc_fprintf: 4011 return optimizeFPrintF(CI, Builder); 4012 case LibFunc_fwrite: 4013 return optimizeFWrite(CI, Builder); 4014 case LibFunc_fputs: 4015 return optimizeFPuts(CI, Builder); 4016 case LibFunc_puts: 4017 return optimizePuts(CI, Builder); 4018 case LibFunc_perror: 4019 return optimizeErrorReporting(CI, Builder); 4020 case LibFunc_vfprintf: 4021 case LibFunc_fiprintf: 4022 return optimizeErrorReporting(CI, Builder, 0); 4023 default: 4024 return nullptr; 4025 } 4026 } 4027 return nullptr; 4028 } 4029 4030 LibCallSimplifier::LibCallSimplifier( 4031 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC, 4032 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4033 ProfileSummaryInfo *PSI, 4034 function_ref<void(Instruction *, Value *)> Replacer, 4035 function_ref<void(Instruction *)> Eraser) 4036 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI), 4037 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 4038 4039 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 4040 // Indirect through the replacer used in this instance. 4041 Replacer(I, With); 4042 } 4043 4044 void LibCallSimplifier::eraseFromParent(Instruction *I) { 4045 Eraser(I); 4046 } 4047 4048 // TODO: 4049 // Additional cases that we need to add to this file: 4050 // 4051 // cbrt: 4052 // * cbrt(expN(X)) -> expN(x/3) 4053 // * cbrt(sqrt(x)) -> pow(x,1/6) 4054 // * cbrt(cbrt(x)) -> pow(x,1/9) 4055 // 4056 // exp, expf, expl: 4057 // * exp(log(x)) -> x 4058 // 4059 // log, logf, logl: 4060 // * log(exp(x)) -> x 4061 // * log(exp(y)) -> y*log(e) 4062 // * log(exp10(y)) -> y*log(10) 4063 // * log(sqrt(x)) -> 0.5*log(x) 4064 // 4065 // pow, powf, powl: 4066 // * pow(sqrt(x),y) -> pow(x,y*0.5) 4067 // * pow(pow(x,y),z)-> pow(x,y*z) 4068 // 4069 // signbit: 4070 // * signbit(cnst) -> cnst' 4071 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 4072 // 4073 // sqrt, sqrtf, sqrtl: 4074 // * sqrt(expN(x)) -> expN(x*0.5) 4075 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 4076 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 4077 // 4078 4079 //===----------------------------------------------------------------------===// 4080 // Fortified Library Call Optimizations 4081 //===----------------------------------------------------------------------===// 4082 4083 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 4084 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 4085 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 4086 // If this function takes a flag argument, the implementation may use it to 4087 // perform extra checks. Don't fold into the non-checking variant. 4088 if (FlagOp) { 4089 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 4090 if (!Flag || !Flag->isZero()) 4091 return false; 4092 } 4093 4094 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 4095 return true; 4096 4097 if (ConstantInt *ObjSizeCI = 4098 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 4099 if (ObjSizeCI->isMinusOne()) 4100 return true; 4101 // If the object size wasn't -1 (unknown), bail out if we were asked to. 4102 if (OnlyLowerUnknownSize) 4103 return false; 4104 if (StrOp) { 4105 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 4106 // If the length is 0 we don't know how long it is and so we can't 4107 // remove the check. 4108 if (Len) 4109 annotateDereferenceableBytes(CI, *StrOp, Len); 4110 else 4111 return false; 4112 return ObjSizeCI->getZExtValue() >= Len; 4113 } 4114 4115 if (SizeOp) { 4116 if (ConstantInt *SizeCI = 4117 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 4118 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 4119 } 4120 } 4121 return false; 4122 } 4123 4124 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 4125 IRBuilderBase &B) { 4126 if (isFortifiedCallFoldable(CI, 3, 2)) { 4127 CallInst *NewCI = 4128 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4129 Align(1), CI->getArgOperand(2)); 4130 mergeAttributesAndFlags(NewCI, *CI); 4131 return CI->getArgOperand(0); 4132 } 4133 return nullptr; 4134 } 4135 4136 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 4137 IRBuilderBase &B) { 4138 if (isFortifiedCallFoldable(CI, 3, 2)) { 4139 CallInst *NewCI = 4140 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4141 Align(1), CI->getArgOperand(2)); 4142 mergeAttributesAndFlags(NewCI, *CI); 4143 return CI->getArgOperand(0); 4144 } 4145 return nullptr; 4146 } 4147 4148 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 4149 IRBuilderBase &B) { 4150 if (isFortifiedCallFoldable(CI, 3, 2)) { 4151 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 4152 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 4153 CI->getArgOperand(2), Align(1)); 4154 mergeAttributesAndFlags(NewCI, *CI); 4155 return CI->getArgOperand(0); 4156 } 4157 return nullptr; 4158 } 4159 4160 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 4161 IRBuilderBase &B) { 4162 const DataLayout &DL = CI->getDataLayout(); 4163 if (isFortifiedCallFoldable(CI, 3, 2)) 4164 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4165 CI->getArgOperand(2), B, DL, TLI)) { 4166 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 4167 } 4168 return nullptr; 4169 } 4170 4171 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 4172 IRBuilderBase &B, 4173 LibFunc Func) { 4174 const DataLayout &DL = CI->getDataLayout(); 4175 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 4176 *ObjSize = CI->getArgOperand(2); 4177 4178 // __stpcpy_chk(x,x,...) -> x+strlen(x) 4179 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 4180 Value *StrLen = emitStrLen(Src, B, DL, TLI); 4181 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 4182 } 4183 4184 // If a) we don't have any length information, or b) we know this will 4185 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 4186 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 4187 // TODO: It might be nice to get a maximum length out of the possible 4188 // string lengths for varying. 4189 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 4190 if (Func == LibFunc_strcpy_chk) 4191 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 4192 else 4193 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 4194 } 4195 4196 if (OnlyLowerUnknownSize) 4197 return nullptr; 4198 4199 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4200 uint64_t Len = GetStringLength(Src); 4201 if (Len) 4202 annotateDereferenceableBytes(CI, 1, Len); 4203 else 4204 return nullptr; 4205 4206 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4207 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4208 Value *LenV = ConstantInt::get(SizeTTy, Len); 4209 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4210 // If the function was an __stpcpy_chk, and we were able to fold it into 4211 // a __memcpy_chk, we still need to return the correct end pointer. 4212 if (Ret && Func == LibFunc_stpcpy_chk) 4213 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4214 ConstantInt::get(SizeTTy, Len - 1)); 4215 return copyFlags(*CI, cast<CallInst>(Ret)); 4216 } 4217 4218 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4219 IRBuilderBase &B) { 4220 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4221 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4222 CI->getDataLayout(), TLI)); 4223 return nullptr; 4224 } 4225 4226 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4227 IRBuilderBase &B, 4228 LibFunc Func) { 4229 if (isFortifiedCallFoldable(CI, 3, 2)) { 4230 if (Func == LibFunc_strncpy_chk) 4231 return copyFlags(*CI, 4232 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4233 CI->getArgOperand(2), B, TLI)); 4234 else 4235 return copyFlags(*CI, 4236 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4237 CI->getArgOperand(2), B, TLI)); 4238 } 4239 4240 return nullptr; 4241 } 4242 4243 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4244 IRBuilderBase &B) { 4245 if (isFortifiedCallFoldable(CI, 4, 3)) 4246 return copyFlags( 4247 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4248 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4249 4250 return nullptr; 4251 } 4252 4253 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4254 IRBuilderBase &B) { 4255 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4256 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4257 return copyFlags(*CI, 4258 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4259 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4260 } 4261 4262 return nullptr; 4263 } 4264 4265 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4266 IRBuilderBase &B) { 4267 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4268 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4269 return copyFlags(*CI, 4270 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4271 VariadicArgs, B, TLI)); 4272 } 4273 4274 return nullptr; 4275 } 4276 4277 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4278 IRBuilderBase &B) { 4279 if (isFortifiedCallFoldable(CI, 2)) 4280 return copyFlags( 4281 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4282 4283 return nullptr; 4284 } 4285 4286 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4287 IRBuilderBase &B) { 4288 if (isFortifiedCallFoldable(CI, 3)) 4289 return copyFlags(*CI, 4290 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4291 CI->getArgOperand(2), B, TLI)); 4292 4293 return nullptr; 4294 } 4295 4296 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4297 IRBuilderBase &B) { 4298 if (isFortifiedCallFoldable(CI, 3)) 4299 return copyFlags(*CI, 4300 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4301 CI->getArgOperand(2), B, TLI)); 4302 4303 return nullptr; 4304 } 4305 4306 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4307 IRBuilderBase &B) { 4308 if (isFortifiedCallFoldable(CI, 3)) 4309 return copyFlags(*CI, 4310 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4311 CI->getArgOperand(2), B, TLI)); 4312 4313 return nullptr; 4314 } 4315 4316 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4317 IRBuilderBase &B) { 4318 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4319 return copyFlags( 4320 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4321 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4322 4323 return nullptr; 4324 } 4325 4326 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4327 IRBuilderBase &B) { 4328 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4329 return copyFlags(*CI, 4330 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4331 CI->getArgOperand(4), B, TLI)); 4332 4333 return nullptr; 4334 } 4335 4336 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4337 IRBuilderBase &Builder) { 4338 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4339 // Some clang users checked for _chk libcall availability using: 4340 // __has_builtin(__builtin___memcpy_chk) 4341 // When compiling with -fno-builtin, this is always true. 4342 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4343 // end up with fortified libcalls, which isn't acceptable in a freestanding 4344 // environment which only provides their non-fortified counterparts. 4345 // 4346 // Until we change clang and/or teach external users to check for availability 4347 // differently, disregard the "nobuiltin" attribute and TLI::has. 4348 // 4349 // PR23093. 4350 4351 LibFunc Func; 4352 Function *Callee = CI->getCalledFunction(); 4353 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4354 4355 SmallVector<OperandBundleDef, 2> OpBundles; 4356 CI->getOperandBundlesAsDefs(OpBundles); 4357 4358 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4359 Builder.setDefaultOperandBundles(OpBundles); 4360 4361 // First, check that this is a known library functions and that the prototype 4362 // is correct. 4363 if (!TLI->getLibFunc(*Callee, Func)) 4364 return nullptr; 4365 4366 // We never change the calling convention. 4367 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4368 return nullptr; 4369 4370 switch (Func) { 4371 case LibFunc_memcpy_chk: 4372 return optimizeMemCpyChk(CI, Builder); 4373 case LibFunc_mempcpy_chk: 4374 return optimizeMemPCpyChk(CI, Builder); 4375 case LibFunc_memmove_chk: 4376 return optimizeMemMoveChk(CI, Builder); 4377 case LibFunc_memset_chk: 4378 return optimizeMemSetChk(CI, Builder); 4379 case LibFunc_stpcpy_chk: 4380 case LibFunc_strcpy_chk: 4381 return optimizeStrpCpyChk(CI, Builder, Func); 4382 case LibFunc_strlen_chk: 4383 return optimizeStrLenChk(CI, Builder); 4384 case LibFunc_stpncpy_chk: 4385 case LibFunc_strncpy_chk: 4386 return optimizeStrpNCpyChk(CI, Builder, Func); 4387 case LibFunc_memccpy_chk: 4388 return optimizeMemCCpyChk(CI, Builder); 4389 case LibFunc_snprintf_chk: 4390 return optimizeSNPrintfChk(CI, Builder); 4391 case LibFunc_sprintf_chk: 4392 return optimizeSPrintfChk(CI, Builder); 4393 case LibFunc_strcat_chk: 4394 return optimizeStrCatChk(CI, Builder); 4395 case LibFunc_strlcat_chk: 4396 return optimizeStrLCat(CI, Builder); 4397 case LibFunc_strncat_chk: 4398 return optimizeStrNCatChk(CI, Builder); 4399 case LibFunc_strlcpy_chk: 4400 return optimizeStrLCpyChk(CI, Builder); 4401 case LibFunc_vsnprintf_chk: 4402 return optimizeVSNPrintfChk(CI, Builder); 4403 case LibFunc_vsprintf_chk: 4404 return optimizeVSPrintfChk(CI, Builder); 4405 default: 4406 break; 4407 } 4408 return nullptr; 4409 } 4410 4411 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4412 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4413 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4414