1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/AttributeMask.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Function.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/KnownBits.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/TargetParser/Triple.h" 36 #include "llvm/Transforms/Utils/BuildLibCalls.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SizeOpts.h" 39 40 #include <cmath> 41 42 using namespace llvm; 43 using namespace PatternMatch; 44 45 static cl::opt<bool> 46 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 47 cl::init(false), 48 cl::desc("Enable unsafe double to float " 49 "shrinking for math lib calls")); 50 51 // Enable conversion of operator new calls with a MemProf hot or cold hint 52 // to an operator new call that takes a hot/cold hint. Off by default since 53 // not all allocators currently support this extension. 54 static cl::opt<bool> 55 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false), 56 cl::desc("Enable hot/cold operator new library calls")); 57 static cl::opt<bool> OptimizeExistingHotColdNew( 58 "optimize-existing-hot-cold-new", cl::Hidden, cl::init(false), 59 cl::desc( 60 "Enable optimization of existing hot/cold operator new library calls")); 61 62 namespace { 63 64 // Specialized parser to ensure the hint is an 8 bit value (we can't specify 65 // uint8_t to opt<> as that is interpreted to mean that we are passing a char 66 // option with a specific set of values. 67 struct HotColdHintParser : public cl::parser<unsigned> { 68 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {} 69 70 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) { 71 if (Arg.getAsInteger(0, Value)) 72 return O.error("'" + Arg + "' value invalid for uint argument!"); 73 74 if (Value > 255) 75 return O.error("'" + Arg + "' value must be in the range [0, 255]!"); 76 77 return false; 78 } 79 }; 80 81 } // end anonymous namespace 82 83 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest 84 // and 255 is the hottest. Default to 1 value away from the coldest and hottest 85 // hints, so that the compiler hinted allocations are slightly less strong than 86 // manually inserted hints at the two extremes. 87 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue( 88 "cold-new-hint-value", cl::Hidden, cl::init(1), 89 cl::desc("Value to pass to hot/cold operator new for cold allocation")); 90 static cl::opt<unsigned, false, HotColdHintParser> 91 NotColdNewHintValue("notcold-new-hint-value", cl::Hidden, cl::init(128), 92 cl::desc("Value to pass to hot/cold operator new for " 93 "notcold (warm) allocation")); 94 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue( 95 "hot-new-hint-value", cl::Hidden, cl::init(254), 96 cl::desc("Value to pass to hot/cold operator new for hot allocation")); 97 98 //===----------------------------------------------------------------------===// 99 // Helper Functions 100 //===----------------------------------------------------------------------===// 101 102 static bool ignoreCallingConv(LibFunc Func) { 103 return Func == LibFunc_abs || Func == LibFunc_labs || 104 Func == LibFunc_llabs || Func == LibFunc_strlen; 105 } 106 107 /// Return true if it is only used in equality comparisons with With. 108 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (IC->isEquality() && IC->getOperand(1) == With) 112 continue; 113 // Unknown instruction. 114 return false; 115 } 116 return true; 117 } 118 119 static bool callHasFloatingPointArgument(const CallInst *CI) { 120 return any_of(CI->operands(), [](const Use &OI) { 121 return OI->getType()->isFloatingPointTy(); 122 }); 123 } 124 125 static bool callHasFP128Argument(const CallInst *CI) { 126 return any_of(CI->operands(), [](const Use &OI) { 127 return OI->getType()->isFP128Ty(); 128 }); 129 } 130 131 // Convert the entire string Str representing an integer in Base, up to 132 // the terminating nul if present, to a constant according to the rules 133 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success 134 // return the result, otherwise null. 135 // The function assumes the string is encoded in ASCII and carefully 136 // avoids converting sequences (including "") that the corresponding 137 // library call might fail and set errno for. 138 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr, 139 uint64_t Base, bool AsSigned, IRBuilderBase &B) { 140 if (Base < 2 || Base > 36) 141 if (Base != 0) 142 // Fail for an invalid base (required by POSIX). 143 return nullptr; 144 145 // Current offset into the original string to reflect in EndPtr. 146 size_t Offset = 0; 147 // Strip leading whitespace. 148 for ( ; Offset != Str.size(); ++Offset) 149 if (!isSpace((unsigned char)Str[Offset])) { 150 Str = Str.substr(Offset); 151 break; 152 } 153 154 if (Str.empty()) 155 // Fail for empty subject sequences (POSIX allows but doesn't require 156 // strtol[l]/strtoul[l] to fail with EINVAL). 157 return nullptr; 158 159 // Strip but remember the sign. 160 bool Negate = Str[0] == '-'; 161 if (Str[0] == '-' || Str[0] == '+') { 162 Str = Str.drop_front(); 163 if (Str.empty()) 164 // Fail for a sign with nothing after it. 165 return nullptr; 166 ++Offset; 167 } 168 169 // Set Max to the absolute value of the minimum (for signed), or 170 // to the maximum (for unsigned) value representable in the type. 171 Type *RetTy = CI->getType(); 172 unsigned NBits = RetTy->getPrimitiveSizeInBits(); 173 uint64_t Max = AsSigned && Negate ? 1 : 0; 174 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits); 175 176 // Autodetect Base if it's zero and consume the "0x" prefix. 177 if (Str.size() > 1) { 178 if (Str[0] == '0') { 179 if (toUpper((unsigned char)Str[1]) == 'X') { 180 if (Str.size() == 2 || (Base && Base != 16)) 181 // Fail if Base doesn't allow the "0x" prefix or for the prefix 182 // alone that implementations like BSD set errno to EINVAL for. 183 return nullptr; 184 185 Str = Str.drop_front(2); 186 Offset += 2; 187 Base = 16; 188 } 189 else if (Base == 0) 190 Base = 8; 191 } else if (Base == 0) 192 Base = 10; 193 } 194 else if (Base == 0) 195 Base = 10; 196 197 // Convert the rest of the subject sequence, not including the sign, 198 // to its uint64_t representation (this assumes the source character 199 // set is ASCII). 200 uint64_t Result = 0; 201 for (unsigned i = 0; i != Str.size(); ++i) { 202 unsigned char DigVal = Str[i]; 203 if (isDigit(DigVal)) 204 DigVal = DigVal - '0'; 205 else { 206 DigVal = toUpper(DigVal); 207 if (isAlpha(DigVal)) 208 DigVal = DigVal - 'A' + 10; 209 else 210 return nullptr; 211 } 212 213 if (DigVal >= Base) 214 // Fail if the digit is not valid in the Base. 215 return nullptr; 216 217 // Add the digit and fail if the result is not representable in 218 // the (unsigned form of the) destination type. 219 bool VFlow; 220 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow); 221 if (VFlow || Result > Max) 222 return nullptr; 223 } 224 225 if (EndPtr) { 226 // Store the pointer to the end. 227 Value *Off = B.getInt64(Offset + Str.size()); 228 Value *StrBeg = CI->getArgOperand(0); 229 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr"); 230 B.CreateStore(StrEnd, EndPtr); 231 } 232 233 if (Negate) 234 // Unsigned negation doesn't overflow. 235 Result = -Result; 236 237 return ConstantInt::get(RetTy, Result); 238 } 239 240 static bool isOnlyUsedInComparisonWithZero(Value *V) { 241 for (User *U : V->users()) { 242 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 243 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 244 if (C->isNullValue()) 245 continue; 246 // Unknown instruction. 247 return false; 248 } 249 return true; 250 } 251 252 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 253 const DataLayout &DL) { 254 if (!isOnlyUsedInComparisonWithZero(CI)) 255 return false; 256 257 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 258 return false; 259 260 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 261 return false; 262 263 return true; 264 } 265 266 static void annotateDereferenceableBytes(CallInst *CI, 267 ArrayRef<unsigned> ArgNos, 268 uint64_t DereferenceableBytes) { 269 const Function *F = CI->getCaller(); 270 if (!F) 271 return; 272 for (unsigned ArgNo : ArgNos) { 273 uint64_t DerefBytes = DereferenceableBytes; 274 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 275 if (!llvm::NullPointerIsDefined(F, AS) || 276 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 277 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 278 DereferenceableBytes); 279 280 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 281 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 282 if (!llvm::NullPointerIsDefined(F, AS) || 283 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 284 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 285 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 286 CI->getContext(), DerefBytes)); 287 } 288 } 289 } 290 291 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 292 ArrayRef<unsigned> ArgNos) { 293 Function *F = CI->getCaller(); 294 if (!F) 295 return; 296 297 for (unsigned ArgNo : ArgNos) { 298 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 299 CI->addParamAttr(ArgNo, Attribute::NoUndef); 300 301 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) { 302 unsigned AS = 303 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 304 if (llvm::NullPointerIsDefined(F, AS)) 305 continue; 306 CI->addParamAttr(ArgNo, Attribute::NonNull); 307 } 308 309 annotateDereferenceableBytes(CI, ArgNo, 1); 310 } 311 } 312 313 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 314 Value *Size, const DataLayout &DL) { 315 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 316 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 317 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 318 } else if (isKnownNonZero(Size, DL)) { 319 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 320 const APInt *X, *Y; 321 uint64_t DerefMin = 1; 322 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 323 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 324 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 325 } 326 } 327 } 328 329 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 330 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 331 // in this function when New is created to replace Old. Callers should take 332 // care to check Old.isMustTailCall() if they aren't replacing Old directly 333 // with New. 334 static Value *copyFlags(const CallInst &Old, Value *New) { 335 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 336 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 337 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 338 NewCI->setTailCallKind(Old.getTailCallKind()); 339 return New; 340 } 341 342 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) { 343 NewCI->setAttributes(AttributeList::get( 344 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()})); 345 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible( 346 NewCI->getType(), NewCI->getRetAttributes())); 347 for (unsigned I = 0; I < NewCI->arg_size(); ++I) 348 NewCI->removeParamAttrs( 349 I, AttributeFuncs::typeIncompatible(NewCI->getArgOperand(I)->getType(), 350 NewCI->getParamAttributes(I))); 351 352 return copyFlags(Old, NewCI); 353 } 354 355 // Helper to avoid truncating the length if size_t is 32-bits. 356 static StringRef substr(StringRef Str, uint64_t Len) { 357 return Len >= Str.size() ? Str : Str.substr(0, Len); 358 } 359 360 //===----------------------------------------------------------------------===// 361 // String and Memory Library Call Optimizations 362 //===----------------------------------------------------------------------===// 363 364 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 365 // Extract some information from the instruction 366 Value *Dst = CI->getArgOperand(0); 367 Value *Src = CI->getArgOperand(1); 368 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 369 370 // See if we can get the length of the input string. 371 uint64_t Len = GetStringLength(Src); 372 if (Len) 373 annotateDereferenceableBytes(CI, 1, Len); 374 else 375 return nullptr; 376 --Len; // Unbias length. 377 378 // Handle the simple, do-nothing case: strcat(x, "") -> x 379 if (Len == 0) 380 return Dst; 381 382 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 383 } 384 385 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 386 IRBuilderBase &B) { 387 // We need to find the end of the destination string. That's where the 388 // memory is to be moved to. We just generate a call to strlen. 389 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 390 if (!DstLen) 391 return nullptr; 392 393 // Now that we have the destination's length, we must index into the 394 // destination's pointer to get the actual memcpy destination (end of 395 // the string .. we're concatenating). 396 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 397 398 // We have enough information to now generate the memcpy call to do the 399 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 400 B.CreateMemCpy(CpyDst, Align(1), Src, Align(1), 401 TLI->getAsSizeT(Len + 1, *B.GetInsertBlock()->getModule())); 402 return Dst; 403 } 404 405 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 406 // Extract some information from the instruction. 407 Value *Dst = CI->getArgOperand(0); 408 Value *Src = CI->getArgOperand(1); 409 Value *Size = CI->getArgOperand(2); 410 uint64_t Len; 411 annotateNonNullNoUndefBasedOnAccess(CI, 0); 412 if (isKnownNonZero(Size, DL)) 413 annotateNonNullNoUndefBasedOnAccess(CI, 1); 414 415 // We don't do anything if length is not constant. 416 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 417 if (LengthArg) { 418 Len = LengthArg->getZExtValue(); 419 // strncat(x, c, 0) -> x 420 if (!Len) 421 return Dst; 422 } else { 423 return nullptr; 424 } 425 426 // See if we can get the length of the input string. 427 uint64_t SrcLen = GetStringLength(Src); 428 if (SrcLen) { 429 annotateDereferenceableBytes(CI, 1, SrcLen); 430 --SrcLen; // Unbias length. 431 } else { 432 return nullptr; 433 } 434 435 // strncat(x, "", c) -> x 436 if (SrcLen == 0) 437 return Dst; 438 439 // We don't optimize this case. 440 if (Len < SrcLen) 441 return nullptr; 442 443 // strncat(x, s, c) -> strcat(x, s) 444 // s is constant so the strcat can be optimized further. 445 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 446 } 447 448 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when 449 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function 450 // is that either S is dereferenceable or the value of N is nonzero. 451 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes, 452 IRBuilderBase &B, const DataLayout &DL) 453 { 454 Value *Src = CI->getArgOperand(0); 455 Value *CharVal = CI->getArgOperand(1); 456 457 // Fold memchr(A, C, N) == A to N && *A == C. 458 Type *CharTy = B.getInt8Ty(); 459 Value *Char0 = B.CreateLoad(CharTy, Src); 460 CharVal = B.CreateTrunc(CharVal, CharTy); 461 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp"); 462 463 if (NBytes) { 464 Value *Zero = ConstantInt::get(NBytes->getType(), 0); 465 Value *And = B.CreateICmpNE(NBytes, Zero); 466 Cmp = B.CreateLogicalAnd(And, Cmp); 467 } 468 469 Value *NullPtr = Constant::getNullValue(CI->getType()); 470 return B.CreateSelect(Cmp, Src, NullPtr); 471 } 472 473 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 474 Value *SrcStr = CI->getArgOperand(0); 475 Value *CharVal = CI->getArgOperand(1); 476 annotateNonNullNoUndefBasedOnAccess(CI, 0); 477 478 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 479 return memChrToCharCompare(CI, nullptr, B, DL); 480 481 // If the second operand is non-constant, see if we can compute the length 482 // of the input string and turn this into memchr. 483 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 484 if (!CharC) { 485 uint64_t Len = GetStringLength(SrcStr); 486 if (Len) 487 annotateDereferenceableBytes(CI, 0, Len); 488 else 489 return nullptr; 490 491 Function *Callee = CI->getCalledFunction(); 492 FunctionType *FT = Callee->getFunctionType(); 493 unsigned IntBits = TLI->getIntSize(); 494 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'. 495 return nullptr; 496 497 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 498 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 499 return copyFlags(*CI, 500 emitMemChr(SrcStr, CharVal, // include nul. 501 ConstantInt::get(SizeTTy, Len), B, 502 DL, TLI)); 503 } 504 505 if (CharC->isZero()) { 506 Value *NullPtr = Constant::getNullValue(CI->getType()); 507 if (isOnlyUsedInEqualityComparison(CI, NullPtr)) 508 // Pre-empt the transformation to strlen below and fold 509 // strchr(A, '\0') == null to false. 510 return B.CreateIntToPtr(B.getTrue(), CI->getType()); 511 } 512 513 // Otherwise, the character is a constant, see if the first argument is 514 // a string literal. If so, we can constant fold. 515 StringRef Str; 516 if (!getConstantStringInfo(SrcStr, Str)) { 517 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 518 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 519 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 520 return nullptr; 521 } 522 523 // Compute the offset, make sure to handle the case when we're searching for 524 // zero (a weird way to spell strlen). 525 size_t I = (0xFF & CharC->getSExtValue()) == 0 526 ? Str.size() 527 : Str.find(CharC->getSExtValue()); 528 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 529 return Constant::getNullValue(CI->getType()); 530 531 // strchr(s+n,c) -> gep(s+n+i,c) 532 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 533 } 534 535 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 536 Value *SrcStr = CI->getArgOperand(0); 537 Value *CharVal = CI->getArgOperand(1); 538 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 539 annotateNonNullNoUndefBasedOnAccess(CI, 0); 540 541 StringRef Str; 542 if (!getConstantStringInfo(SrcStr, Str)) { 543 // strrchr(s, 0) -> strchr(s, 0) 544 if (CharC && CharC->isZero()) 545 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 546 return nullptr; 547 } 548 549 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 550 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 551 552 // Try to expand strrchr to the memrchr nonstandard extension if it's 553 // available, or simply fail otherwise. 554 uint64_t NBytes = Str.size() + 1; // Include the terminating nul. 555 Value *Size = ConstantInt::get(SizeTTy, NBytes); 556 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI)); 557 } 558 559 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 560 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 561 if (Str1P == Str2P) // strcmp(x,x) -> 0 562 return ConstantInt::get(CI->getType(), 0); 563 564 StringRef Str1, Str2; 565 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 566 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 567 568 // strcmp(x, y) -> cnst (if both x and y are constant strings) 569 if (HasStr1 && HasStr2) 570 return ConstantInt::get(CI->getType(), 571 std::clamp(Str1.compare(Str2), -1, 1)); 572 573 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 574 return B.CreateNeg(B.CreateZExt( 575 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 576 577 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 578 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 579 CI->getType()); 580 581 // strcmp(P, "x") -> memcmp(P, "x", 2) 582 uint64_t Len1 = GetStringLength(Str1P); 583 if (Len1) 584 annotateDereferenceableBytes(CI, 0, Len1); 585 uint64_t Len2 = GetStringLength(Str2P); 586 if (Len2) 587 annotateDereferenceableBytes(CI, 1, Len2); 588 589 if (Len1 && Len2) { 590 return copyFlags( 591 *CI, emitMemCmp(Str1P, Str2P, 592 TLI->getAsSizeT(std::min(Len1, Len2), *CI->getModule()), 593 B, DL, TLI)); 594 } 595 596 // strcmp to memcmp 597 if (!HasStr1 && HasStr2) { 598 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 599 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 600 TLI->getAsSizeT(Len2, *CI->getModule()), 601 B, DL, TLI)); 602 } else if (HasStr1 && !HasStr2) { 603 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 604 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 605 TLI->getAsSizeT(Len1, *CI->getModule()), 606 B, DL, TLI)); 607 } 608 609 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 610 return nullptr; 611 } 612 613 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 614 // arrays LHS and RHS and nonconstant Size. 615 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 616 Value *Size, bool StrNCmp, 617 IRBuilderBase &B, const DataLayout &DL); 618 619 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 620 Value *Str1P = CI->getArgOperand(0); 621 Value *Str2P = CI->getArgOperand(1); 622 Value *Size = CI->getArgOperand(2); 623 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 624 return ConstantInt::get(CI->getType(), 0); 625 626 if (isKnownNonZero(Size, DL)) 627 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 628 // Get the length argument if it is constant. 629 uint64_t Length; 630 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 631 Length = LengthArg->getZExtValue(); 632 else 633 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL); 634 635 if (Length == 0) // strncmp(x,y,0) -> 0 636 return ConstantInt::get(CI->getType(), 0); 637 638 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 639 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 640 641 StringRef Str1, Str2; 642 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 643 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 644 645 // strncmp(x, y) -> cnst (if both x and y are constant strings) 646 if (HasStr1 && HasStr2) { 647 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 648 StringRef SubStr1 = substr(Str1, Length); 649 StringRef SubStr2 = substr(Str2, Length); 650 return ConstantInt::get(CI->getType(), 651 std::clamp(SubStr1.compare(SubStr2), -1, 1)); 652 } 653 654 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 655 return B.CreateNeg(B.CreateZExt( 656 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 657 658 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 659 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 660 CI->getType()); 661 662 uint64_t Len1 = GetStringLength(Str1P); 663 if (Len1) 664 annotateDereferenceableBytes(CI, 0, Len1); 665 uint64_t Len2 = GetStringLength(Str2P); 666 if (Len2) 667 annotateDereferenceableBytes(CI, 1, Len2); 668 669 // strncmp to memcmp 670 if (!HasStr1 && HasStr2) { 671 Len2 = std::min(Len2, Length); 672 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 673 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 674 TLI->getAsSizeT(Len2, *CI->getModule()), 675 B, DL, TLI)); 676 } else if (HasStr1 && !HasStr2) { 677 Len1 = std::min(Len1, Length); 678 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 679 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, 680 TLI->getAsSizeT(Len1, *CI->getModule()), 681 B, DL, TLI)); 682 } 683 684 return nullptr; 685 } 686 687 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 688 Value *Src = CI->getArgOperand(0); 689 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 690 uint64_t SrcLen = GetStringLength(Src); 691 if (SrcLen && Size) { 692 annotateDereferenceableBytes(CI, 0, SrcLen); 693 if (SrcLen <= Size->getZExtValue() + 1) 694 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 695 } 696 697 return nullptr; 698 } 699 700 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 701 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 702 if (Dst == Src) // strcpy(x,x) -> x 703 return Src; 704 705 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 706 // See if we can get the length of the input string. 707 uint64_t Len = GetStringLength(Src); 708 if (Len) 709 annotateDereferenceableBytes(CI, 1, Len); 710 else 711 return nullptr; 712 713 // We have enough information to now generate the memcpy call to do the 714 // copy for us. Make a memcpy to copy the nul byte with align = 1. 715 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 716 TLI->getAsSizeT(Len, *CI->getModule())); 717 mergeAttributesAndFlags(NewCI, *CI); 718 return Dst; 719 } 720 721 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 722 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 723 724 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 725 if (CI->use_empty()) 726 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 727 728 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 729 Value *StrLen = emitStrLen(Src, B, DL, TLI); 730 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 731 } 732 733 // See if we can get the length of the input string. 734 uint64_t Len = GetStringLength(Src); 735 if (Len) 736 annotateDereferenceableBytes(CI, 1, Len); 737 else 738 return nullptr; 739 740 Value *LenV = TLI->getAsSizeT(Len, *CI->getModule()); 741 Value *DstEnd = B.CreateInBoundsGEP( 742 B.getInt8Ty(), Dst, TLI->getAsSizeT(Len - 1, *CI->getModule())); 743 744 // We have enough information to now generate the memcpy call to do the 745 // copy for us. Make a memcpy to copy the nul byte with align = 1. 746 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 747 mergeAttributesAndFlags(NewCI, *CI); 748 return DstEnd; 749 } 750 751 // Optimize a call to size_t strlcpy(char*, const char*, size_t). 752 753 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) { 754 Value *Size = CI->getArgOperand(2); 755 if (isKnownNonZero(Size, DL)) 756 // Like snprintf, the function stores into the destination only when 757 // the size argument is nonzero. 758 annotateNonNullNoUndefBasedOnAccess(CI, 0); 759 // The function reads the source argument regardless of Size (it returns 760 // its length). 761 annotateNonNullNoUndefBasedOnAccess(CI, 1); 762 763 uint64_t NBytes; 764 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 765 NBytes = SizeC->getZExtValue(); 766 else 767 return nullptr; 768 769 Value *Dst = CI->getArgOperand(0); 770 Value *Src = CI->getArgOperand(1); 771 if (NBytes <= 1) { 772 if (NBytes == 1) 773 // For a call to strlcpy(D, S, 1) first store a nul in *D. 774 B.CreateStore(B.getInt8(0), Dst); 775 776 // Transform strlcpy(D, S, 0) to a call to strlen(S). 777 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI)); 778 } 779 780 // Try to determine the length of the source, substituting its size 781 // when it's not nul-terminated (as it's required to be) to avoid 782 // reading past its end. 783 StringRef Str; 784 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false)) 785 return nullptr; 786 787 uint64_t SrcLen = Str.find('\0'); 788 // Set if the terminating nul should be copied by the call to memcpy 789 // below. 790 bool NulTerm = SrcLen < NBytes; 791 792 if (NulTerm) 793 // Overwrite NBytes with the number of bytes to copy, including 794 // the terminating nul. 795 NBytes = SrcLen + 1; 796 else { 797 // Set the length of the source for the function to return to its 798 // size, and cap NBytes at the same. 799 SrcLen = std::min(SrcLen, uint64_t(Str.size())); 800 NBytes = std::min(NBytes - 1, SrcLen); 801 } 802 803 if (SrcLen == 0) { 804 // Transform strlcpy(D, "", N) to (*D = '\0, 0). 805 B.CreateStore(B.getInt8(0), Dst); 806 return ConstantInt::get(CI->getType(), 0); 807 } 808 809 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower 810 // bound on strlen(S) + 1 and N, optionally followed by a nul store to 811 // D[N' - 1] if necessary. 812 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 813 TLI->getAsSizeT(NBytes, *CI->getModule())); 814 mergeAttributesAndFlags(NewCI, *CI); 815 816 if (!NulTerm) { 817 Value *EndOff = ConstantInt::get(CI->getType(), NBytes); 818 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff); 819 B.CreateStore(B.getInt8(0), EndPtr); 820 } 821 822 // Like snprintf, strlcpy returns the number of nonzero bytes that would 823 // have been copied if the bound had been sufficiently big (which in this 824 // case is strlen(Src)). 825 return ConstantInt::get(CI->getType(), SrcLen); 826 } 827 828 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy 829 // otherwise. 830 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd, 831 IRBuilderBase &B) { 832 Value *Dst = CI->getArgOperand(0); 833 Value *Src = CI->getArgOperand(1); 834 Value *Size = CI->getArgOperand(2); 835 836 if (isKnownNonZero(Size, DL)) { 837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays 838 // only when N is nonzero. 839 annotateNonNullNoUndefBasedOnAccess(CI, 0); 840 annotateNonNullNoUndefBasedOnAccess(CI, 1); 841 } 842 843 // If the "bound" argument is known set N to it. Otherwise set it to 844 // UINT64_MAX and handle it later. 845 uint64_t N = UINT64_MAX; 846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size)) 847 N = SizeC->getZExtValue(); 848 849 if (N == 0) 850 // Fold st{p,r}ncpy(D, S, 0) to D. 851 return Dst; 852 853 if (N == 1) { 854 Type *CharTy = B.getInt8Ty(); 855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0"); 856 B.CreateStore(CharVal, Dst); 857 if (!RetEnd) 858 // Transform strncpy(D, S, 1) to return (*D = *S), D. 859 return Dst; 860 861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D. 862 Value *ZeroChar = ConstantInt::get(CharTy, 0); 863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp"); 864 865 Value *Off1 = B.getInt32(1); 866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end"); 867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel"); 868 } 869 870 // If the length of the input string is known set SrcLen to it. 871 uint64_t SrcLen = GetStringLength(Src); 872 if (SrcLen) 873 annotateDereferenceableBytes(CI, 1, SrcLen); 874 else 875 return nullptr; 876 877 --SrcLen; // Unbias length. 878 879 if (SrcLen == 0) { 880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N. 881 Align MemSetAlign = 882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 886 CI->getContext(), 0, ArgAttrs)); 887 copyFlags(*CI, NewCI); 888 return Dst; 889 } 890 891 if (N > SrcLen + 1) { 892 if (N > 128) 893 // Bail if N is large or unknown. 894 return nullptr; 895 896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128. 897 StringRef Str; 898 if (!getConstantStringInfo(Src, Str)) 899 return nullptr; 900 std::string SrcStr = Str.str(); 901 // Create a bigger, nul-padded array with the same length, SrcLen, 902 // as the original string. 903 SrcStr.resize(N, '\0'); 904 Src = B.CreateGlobalString( 905 SrcStr, "str", /*AddressSpace=*/DL.getDefaultGlobalsAddressSpace(), 906 /*M=*/nullptr, /*AddNull=*/false); 907 } 908 909 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both 910 // S and N are constant. 911 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 912 TLI->getAsSizeT(N, *CI->getModule())); 913 mergeAttributesAndFlags(NewCI, *CI); 914 if (!RetEnd) 915 return Dst; 916 917 // stpncpy(D, S, N) returns the address of the first null in D if it writes 918 // one, otherwise D + N. 919 Value *Off = B.getInt64(std::min(SrcLen, N)); 920 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr"); 921 } 922 923 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 924 unsigned CharSize, 925 Value *Bound) { 926 Value *Src = CI->getArgOperand(0); 927 Type *CharTy = B.getIntNTy(CharSize); 928 929 if (isOnlyUsedInZeroEqualityComparison(CI) && 930 (!Bound || isKnownNonZero(Bound, DL))) { 931 // Fold strlen: 932 // strlen(x) != 0 --> *x != 0 933 // strlen(x) == 0 --> *x == 0 934 // and likewise strnlen with constant N > 0: 935 // strnlen(x, N) != 0 --> *x != 0 936 // strnlen(x, N) == 0 --> *x == 0 937 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 938 CI->getType()); 939 } 940 941 if (Bound) { 942 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 943 if (BoundCst->isZero()) 944 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 945 return ConstantInt::get(CI->getType(), 0); 946 947 if (BoundCst->isOne()) { 948 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 949 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 950 Value *ZeroChar = ConstantInt::get(CharTy, 0); 951 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 952 return B.CreateZExt(Cmp, CI->getType()); 953 } 954 } 955 } 956 957 if (uint64_t Len = GetStringLength(Src, CharSize)) { 958 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 959 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 960 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 961 if (Bound) 962 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 963 return LenC; 964 } 965 966 if (Bound) 967 // Punt for strnlen for now. 968 return nullptr; 969 970 // If s is a constant pointer pointing to a string literal, we can fold 971 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 972 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 973 // We only try to simplify strlen when the pointer s points to an array 974 // of CharSize elements. Otherwise, we would need to scale the offset x before 975 // doing the subtraction. This will make the optimization more complex, and 976 // it's not very useful because calling strlen for a pointer of other types is 977 // very uncommon. 978 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 979 // TODO: Handle subobjects. 980 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 981 return nullptr; 982 983 ConstantDataArraySlice Slice; 984 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 985 uint64_t NullTermIdx; 986 if (Slice.Array == nullptr) { 987 NullTermIdx = 0; 988 } else { 989 NullTermIdx = ~((uint64_t)0); 990 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 991 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 992 NullTermIdx = I; 993 break; 994 } 995 } 996 // If the string does not have '\0', leave it to strlen to compute 997 // its length. 998 if (NullTermIdx == ~((uint64_t)0)) 999 return nullptr; 1000 } 1001 1002 Value *Offset = GEP->getOperand(2); 1003 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 1004 uint64_t ArrSize = 1005 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 1006 1007 // If Offset is not provably in the range [0, NullTermIdx], we can still 1008 // optimize if we can prove that the program has undefined behavior when 1009 // Offset is outside that range. That is the case when GEP->getOperand(0) 1010 // is a pointer to an object whose memory extent is NullTermIdx+1. 1011 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 1012 (isa<GlobalVariable>(GEP->getOperand(0)) && 1013 NullTermIdx == ArrSize - 1)) { 1014 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 1015 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 1016 Offset); 1017 } 1018 } 1019 } 1020 1021 // strlen(x?"foo":"bars") --> x ? 3 : 4 1022 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 1023 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 1024 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 1025 if (LenTrue && LenFalse) { 1026 ORE.emit([&]() { 1027 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 1028 << "folded strlen(select) to select of constants"; 1029 }); 1030 return B.CreateSelect(SI->getCondition(), 1031 ConstantInt::get(CI->getType(), LenTrue - 1), 1032 ConstantInt::get(CI->getType(), LenFalse - 1)); 1033 } 1034 } 1035 1036 return nullptr; 1037 } 1038 1039 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 1040 if (Value *V = optimizeStringLength(CI, B, 8)) 1041 return V; 1042 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1043 return nullptr; 1044 } 1045 1046 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 1047 Value *Bound = CI->getArgOperand(1); 1048 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 1049 return V; 1050 1051 if (isKnownNonZero(Bound, DL)) 1052 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1053 return nullptr; 1054 } 1055 1056 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 1057 Module &M = *CI->getModule(); 1058 unsigned WCharSize = TLI->getWCharSize(M) * 8; 1059 // We cannot perform this optimization without wchar_size metadata. 1060 if (WCharSize == 0) 1061 return nullptr; 1062 1063 return optimizeStringLength(CI, B, WCharSize); 1064 } 1065 1066 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 1067 StringRef S1, S2; 1068 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1069 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1070 1071 // strpbrk(s, "") -> nullptr 1072 // strpbrk("", s) -> nullptr 1073 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1074 return Constant::getNullValue(CI->getType()); 1075 1076 // Constant folding. 1077 if (HasS1 && HasS2) { 1078 size_t I = S1.find_first_of(S2); 1079 if (I == StringRef::npos) // No match. 1080 return Constant::getNullValue(CI->getType()); 1081 1082 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0), 1083 B.getInt64(I), "strpbrk"); 1084 } 1085 1086 // strpbrk(s, "a") -> strchr(s, 'a') 1087 if (HasS2 && S2.size() == 1) 1088 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 1089 1090 return nullptr; 1091 } 1092 1093 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 1094 Value *EndPtr = CI->getArgOperand(1); 1095 if (isa<ConstantPointerNull>(EndPtr)) { 1096 // With a null EndPtr, this function won't capture the main argument. 1097 // It would be readonly too, except that it still may write to errno. 1098 CI->addParamAttr(0, Attribute::NoCapture); 1099 } 1100 1101 return nullptr; 1102 } 1103 1104 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 1105 StringRef S1, S2; 1106 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1107 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1108 1109 // strspn(s, "") -> 0 1110 // strspn("", s) -> 0 1111 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 1112 return Constant::getNullValue(CI->getType()); 1113 1114 // Constant folding. 1115 if (HasS1 && HasS2) { 1116 size_t Pos = S1.find_first_not_of(S2); 1117 if (Pos == StringRef::npos) 1118 Pos = S1.size(); 1119 return ConstantInt::get(CI->getType(), Pos); 1120 } 1121 1122 return nullptr; 1123 } 1124 1125 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 1126 StringRef S1, S2; 1127 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 1128 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 1129 1130 // strcspn("", s) -> 0 1131 if (HasS1 && S1.empty()) 1132 return Constant::getNullValue(CI->getType()); 1133 1134 // Constant folding. 1135 if (HasS1 && HasS2) { 1136 size_t Pos = S1.find_first_of(S2); 1137 if (Pos == StringRef::npos) 1138 Pos = S1.size(); 1139 return ConstantInt::get(CI->getType(), Pos); 1140 } 1141 1142 // strcspn(s, "") -> strlen(s) 1143 if (HasS2 && S2.empty()) 1144 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 1145 1146 return nullptr; 1147 } 1148 1149 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 1150 // fold strstr(x, x) -> x. 1151 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 1152 return CI->getArgOperand(0); 1153 1154 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 1155 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 1156 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 1157 if (!StrLen) 1158 return nullptr; 1159 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 1160 StrLen, B, DL, TLI); 1161 if (!StrNCmp) 1162 return nullptr; 1163 for (User *U : llvm::make_early_inc_range(CI->users())) { 1164 ICmpInst *Old = cast<ICmpInst>(U); 1165 Value *Cmp = 1166 B.CreateICmp(Old->getPredicate(), StrNCmp, 1167 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 1168 replaceAllUsesWith(Old, Cmp); 1169 } 1170 return CI; 1171 } 1172 1173 // See if either input string is a constant string. 1174 StringRef SearchStr, ToFindStr; 1175 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 1176 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 1177 1178 // fold strstr(x, "") -> x. 1179 if (HasStr2 && ToFindStr.empty()) 1180 return CI->getArgOperand(0); 1181 1182 // If both strings are known, constant fold it. 1183 if (HasStr1 && HasStr2) { 1184 size_t Offset = SearchStr.find(ToFindStr); 1185 1186 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 1187 return Constant::getNullValue(CI->getType()); 1188 1189 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 1190 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0), 1191 Offset, "strstr"); 1192 } 1193 1194 // fold strstr(x, "y") -> strchr(x, 'y'). 1195 if (HasStr2 && ToFindStr.size() == 1) { 1196 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 1197 } 1198 1199 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 1200 return nullptr; 1201 } 1202 1203 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 1204 Value *SrcStr = CI->getArgOperand(0); 1205 Value *Size = CI->getArgOperand(2); 1206 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1207 Value *CharVal = CI->getArgOperand(1); 1208 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1209 Value *NullPtr = Constant::getNullValue(CI->getType()); 1210 1211 if (LenC) { 1212 if (LenC->isZero()) 1213 // Fold memrchr(x, y, 0) --> null. 1214 return NullPtr; 1215 1216 if (LenC->isOne()) { 1217 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 1218 // constant or otherwise. 1219 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 1220 // Slice off the character's high end bits. 1221 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1222 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 1223 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 1224 } 1225 } 1226 1227 StringRef Str; 1228 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1229 return nullptr; 1230 1231 if (Str.size() == 0) 1232 // If the array is empty fold memrchr(A, C, N) to null for any value 1233 // of C and N on the basis that the only valid value of N is zero 1234 // (otherwise the call is undefined). 1235 return NullPtr; 1236 1237 uint64_t EndOff = UINT64_MAX; 1238 if (LenC) { 1239 EndOff = LenC->getZExtValue(); 1240 if (Str.size() < EndOff) 1241 // Punt out-of-bounds accesses to sanitizers and/or libc. 1242 return nullptr; 1243 } 1244 1245 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 1246 // Fold memrchr(S, C, N) for a constant C. 1247 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 1248 if (Pos == StringRef::npos) 1249 // When the character is not in the source array fold the result 1250 // to null regardless of Size. 1251 return NullPtr; 1252 1253 if (LenC) 1254 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 1255 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 1256 1257 if (Str.find(Str[Pos]) == Pos) { 1258 // When there is just a single occurrence of C in S, i.e., the one 1259 // in Str[Pos], fold 1260 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 1261 // for nonconstant N. 1262 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1263 "memrchr.cmp"); 1264 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, 1265 B.getInt64(Pos), "memrchr.ptr_plus"); 1266 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 1267 } 1268 } 1269 1270 // Truncate the string to search at most EndOff characters. 1271 Str = Str.substr(0, EndOff); 1272 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 1273 return nullptr; 1274 1275 // If the source array consists of all equal characters, then for any 1276 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 1277 // N != 0 && *S == C ? S + N - 1 : null 1278 Type *SizeTy = Size->getType(); 1279 Type *Int8Ty = B.getInt8Ty(); 1280 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1281 // Slice off the sought character's high end bits. 1282 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1283 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 1284 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 1285 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 1286 Value *SrcPlus = 1287 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 1288 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 1289 } 1290 1291 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1292 Value *SrcStr = CI->getArgOperand(0); 1293 Value *Size = CI->getArgOperand(2); 1294 1295 if (isKnownNonZero(Size, DL)) { 1296 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1297 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1298 return memChrToCharCompare(CI, Size, B, DL); 1299 } 1300 1301 Value *CharVal = CI->getArgOperand(1); 1302 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1303 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1304 Value *NullPtr = Constant::getNullValue(CI->getType()); 1305 1306 // memchr(x, y, 0) -> null 1307 if (LenC) { 1308 if (LenC->isZero()) 1309 return NullPtr; 1310 1311 if (LenC->isOne()) { 1312 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1313 // constant or otherwise. 1314 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1315 // Slice off the character's high end bits. 1316 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1317 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1318 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1319 } 1320 } 1321 1322 StringRef Str; 1323 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false)) 1324 return nullptr; 1325 1326 if (CharC) { 1327 size_t Pos = Str.find(CharC->getZExtValue()); 1328 if (Pos == StringRef::npos) 1329 // When the character is not in the source array fold the result 1330 // to null regardless of Size. 1331 return NullPtr; 1332 1333 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1334 // When the constant Size is less than or equal to the character 1335 // position also fold the result to null. 1336 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1337 "memchr.cmp"); 1338 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 1339 "memchr.ptr"); 1340 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1341 } 1342 1343 if (Str.size() == 0) 1344 // If the array is empty fold memchr(A, C, N) to null for any value 1345 // of C and N on the basis that the only valid value of N is zero 1346 // (otherwise the call is undefined). 1347 return NullPtr; 1348 1349 if (LenC) 1350 Str = substr(Str, LenC->getZExtValue()); 1351 1352 size_t Pos = Str.find_first_not_of(Str[0]); 1353 if (Pos == StringRef::npos 1354 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1355 // If the source array consists of at most two consecutive sequences 1356 // of the same characters, then for any C and N (whether in bounds or 1357 // not), fold memchr(S, C, N) to 1358 // N != 0 && *S == C ? S : null 1359 // or for the two sequences to: 1360 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1361 // ^Sel2 ^Sel1 are denoted above. 1362 // The latter makes it also possible to fold strchr() calls with strings 1363 // of the same characters. 1364 Type *SizeTy = Size->getType(); 1365 Type *Int8Ty = B.getInt8Ty(); 1366 1367 // Slice off the sought character's high end bits. 1368 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1369 1370 Value *Sel1 = NullPtr; 1371 if (Pos != StringRef::npos) { 1372 // Handle two consecutive sequences of the same characters. 1373 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1374 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1375 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1376 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1377 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1378 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1379 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1380 } 1381 1382 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1383 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1384 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1385 Value *And = B.CreateAnd(NNeZ, CEqS0); 1386 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1387 } 1388 1389 if (!LenC) { 1390 if (isOnlyUsedInEqualityComparison(CI, SrcStr)) 1391 // S is dereferenceable so it's safe to load from it and fold 1392 // memchr(S, C, N) == S to N && *S == C for any C and N. 1393 // TODO: This is safe even for nonconstant S. 1394 return memChrToCharCompare(CI, Size, B, DL); 1395 1396 // From now on we need a constant length and constant array. 1397 return nullptr; 1398 } 1399 1400 bool OptForSize = llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 1401 PGSOQueryType::IRPass); 1402 1403 // If the char is variable but the input str and length are not we can turn 1404 // this memchr call into a simple bit field test. Of course this only works 1405 // when the return value is only checked against null. 1406 // 1407 // It would be really nice to reuse switch lowering here but we can't change 1408 // the CFG at this point. 1409 // 1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1411 // != 0 1412 // after bounds check. 1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1414 return nullptr; 1415 1416 unsigned char Max = 1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1418 reinterpret_cast<const unsigned char *>(Str.end())); 1419 1420 // Make sure the bit field we're about to create fits in a register on the 1421 // target. 1422 // FIXME: On a 64 bit architecture this prevents us from using the 1423 // interesting range of alpha ascii chars. We could do better by emitting 1424 // two bitfields or shifting the range by 64 if no lower chars are used. 1425 if (!DL.fitsInLegalInteger(Max + 1)) { 1426 // Build chain of ORs 1427 // Transform: 1428 // memchr("abcd", C, 4) != nullptr 1429 // to: 1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0 1431 std::string SortedStr = Str.str(); 1432 llvm::sort(SortedStr); 1433 // Compute the number of of non-contiguous ranges. 1434 unsigned NonContRanges = 1; 1435 for (size_t i = 1; i < SortedStr.size(); ++i) { 1436 if (SortedStr[i] > SortedStr[i - 1] + 1) { 1437 NonContRanges++; 1438 } 1439 } 1440 1441 // Restrict this optimization to profitable cases with one or two range 1442 // checks. 1443 if (NonContRanges > 2) 1444 return nullptr; 1445 1446 // Slice off the character's high end bits. 1447 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1448 1449 SmallVector<Value *> CharCompares; 1450 for (unsigned char C : SortedStr) 1451 CharCompares.push_back(B.CreateICmpEQ(CharVal, B.getInt8(C))); 1452 1453 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType()); 1454 } 1455 1456 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1457 // creating unnecessary illegal types. 1458 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1459 1460 // Now build the bit field. 1461 APInt Bitfield(Width, 0); 1462 for (char C : Str) 1463 Bitfield.setBit((unsigned char)C); 1464 Value *BitfieldC = B.getInt(Bitfield); 1465 1466 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1467 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1468 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1469 1470 // First check that the bit field access is within bounds. 1471 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1472 "memchr.bounds"); 1473 1474 // Create code that checks if the given bit is set in the field. 1475 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1476 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1477 1478 // Finally merge both checks and cast to pointer type. The inttoptr 1479 // implicitly zexts the i1 to intptr type. 1480 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1481 CI->getType()); 1482 } 1483 1484 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant 1485 // arrays LHS and RHS and nonconstant Size. 1486 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS, 1487 Value *Size, bool StrNCmp, 1488 IRBuilderBase &B, const DataLayout &DL) { 1489 if (LHS == RHS) // memcmp(s,s,x) -> 0 1490 return Constant::getNullValue(CI->getType()); 1491 1492 StringRef LStr, RStr; 1493 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) || 1494 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false)) 1495 return nullptr; 1496 1497 // If the contents of both constant arrays are known, fold a call to 1498 // memcmp(A, B, N) to 1499 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0) 1500 // where Pos is the first mismatch between A and B, determined below. 1501 1502 uint64_t Pos = 0; 1503 Value *Zero = ConstantInt::get(CI->getType(), 0); 1504 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) { 1505 if (Pos == MinSize || 1506 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) { 1507 // One array is a leading part of the other of equal or greater 1508 // size, or for strncmp, the arrays are equal strings. 1509 // Fold the result to zero. Size is assumed to be in bounds, since 1510 // otherwise the call would be undefined. 1511 return Zero; 1512 } 1513 1514 if (LStr[Pos] != RStr[Pos]) 1515 break; 1516 } 1517 1518 // Normalize the result. 1519 typedef unsigned char UChar; 1520 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1; 1521 Value *MaxSize = ConstantInt::get(Size->getType(), Pos); 1522 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize); 1523 Value *Res = ConstantInt::get(CI->getType(), IRes); 1524 return B.CreateSelect(Cmp, Zero, Res); 1525 } 1526 1527 // Optimize a memcmp call CI with constant size Len. 1528 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1529 uint64_t Len, IRBuilderBase &B, 1530 const DataLayout &DL) { 1531 if (Len == 0) // memcmp(s1,s2,0) -> 0 1532 return Constant::getNullValue(CI->getType()); 1533 1534 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1535 if (Len == 1) { 1536 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"), 1537 CI->getType(), "lhsv"); 1538 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"), 1539 CI->getType(), "rhsv"); 1540 return B.CreateSub(LHSV, RHSV, "chardiff"); 1541 } 1542 1543 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1544 // TODO: The case where both inputs are constants does not need to be limited 1545 // to legal integers or equality comparison. See block below this. 1546 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1547 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1548 Align PrefAlignment = DL.getPrefTypeAlign(IntType); 1549 1550 // First, see if we can fold either argument to a constant. 1551 Value *LHSV = nullptr; 1552 if (auto *LHSC = dyn_cast<Constant>(LHS)) 1553 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1554 1555 Value *RHSV = nullptr; 1556 if (auto *RHSC = dyn_cast<Constant>(RHS)) 1557 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1558 1559 // Don't generate unaligned loads. If either source is constant data, 1560 // alignment doesn't matter for that source because there is no load. 1561 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1562 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1563 if (!LHSV) 1564 LHSV = B.CreateLoad(IntType, LHS, "lhsv"); 1565 if (!RHSV) 1566 RHSV = B.CreateLoad(IntType, RHS, "rhsv"); 1567 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1568 } 1569 } 1570 1571 return nullptr; 1572 } 1573 1574 // Most simplifications for memcmp also apply to bcmp. 1575 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1576 IRBuilderBase &B) { 1577 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1578 Value *Size = CI->getArgOperand(2); 1579 1580 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1581 1582 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL)) 1583 return Res; 1584 1585 // Handle constant Size. 1586 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1587 if (!LenC) 1588 return nullptr; 1589 1590 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL); 1591 } 1592 1593 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1594 Module *M = CI->getModule(); 1595 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1596 return V; 1597 1598 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1599 // bcmp can be more efficient than memcmp because it only has to know that 1600 // there is a difference, not how different one is to the other. 1601 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1602 isOnlyUsedInZeroEqualityComparison(CI)) { 1603 Value *LHS = CI->getArgOperand(0); 1604 Value *RHS = CI->getArgOperand(1); 1605 Value *Size = CI->getArgOperand(2); 1606 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1607 } 1608 1609 return nullptr; 1610 } 1611 1612 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1613 return optimizeMemCmpBCmpCommon(CI, B); 1614 } 1615 1616 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1617 Value *Size = CI->getArgOperand(2); 1618 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1619 if (isa<IntrinsicInst>(CI)) 1620 return nullptr; 1621 1622 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1623 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1624 CI->getArgOperand(1), Align(1), Size); 1625 mergeAttributesAndFlags(NewCI, *CI); 1626 return CI->getArgOperand(0); 1627 } 1628 1629 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1630 Value *Dst = CI->getArgOperand(0); 1631 Value *Src = CI->getArgOperand(1); 1632 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1633 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1634 StringRef SrcStr; 1635 if (CI->use_empty() && Dst == Src) 1636 return Dst; 1637 // memccpy(d, s, c, 0) -> nullptr 1638 if (N) { 1639 if (N->isNullValue()) 1640 return Constant::getNullValue(CI->getType()); 1641 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) || 1642 // TODO: Handle zeroinitializer. 1643 !StopChar) 1644 return nullptr; 1645 } else { 1646 return nullptr; 1647 } 1648 1649 // Wrap arg 'c' of type int to char 1650 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1651 if (Pos == StringRef::npos) { 1652 if (N->getZExtValue() <= SrcStr.size()) { 1653 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1654 CI->getArgOperand(3))); 1655 return Constant::getNullValue(CI->getType()); 1656 } 1657 return nullptr; 1658 } 1659 1660 Value *NewN = 1661 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1662 // memccpy -> llvm.memcpy 1663 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1664 return Pos + 1 <= N->getZExtValue() 1665 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1666 : Constant::getNullValue(CI->getType()); 1667 } 1668 1669 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1670 Value *Dst = CI->getArgOperand(0); 1671 Value *N = CI->getArgOperand(2); 1672 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1673 CallInst *NewCI = 1674 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1675 // Propagate attributes, but memcpy has no return value, so make sure that 1676 // any return attributes are compliant. 1677 // TODO: Attach return value attributes to the 1st operand to preserve them? 1678 mergeAttributesAndFlags(NewCI, *CI); 1679 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1680 } 1681 1682 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1683 Value *Size = CI->getArgOperand(2); 1684 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1685 if (isa<IntrinsicInst>(CI)) 1686 return nullptr; 1687 1688 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1689 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1690 CI->getArgOperand(1), Align(1), Size); 1691 mergeAttributesAndFlags(NewCI, *CI); 1692 return CI->getArgOperand(0); 1693 } 1694 1695 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1696 Value *Size = CI->getArgOperand(2); 1697 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1698 if (isa<IntrinsicInst>(CI)) 1699 return nullptr; 1700 1701 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1702 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1703 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1704 mergeAttributesAndFlags(NewCI, *CI); 1705 return CI->getArgOperand(0); 1706 } 1707 1708 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1709 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1710 return copyFlags(*CI, emitMalloc(CI->getArgOperand(0)->getType(), 1711 CI->getArgOperand(1), B, DL, TLI)); 1712 1713 return nullptr; 1714 } 1715 1716 // When enabled, replace operator new() calls marked with a hot or cold memprof 1717 // attribute with an operator new() call that takes a __hot_cold_t parameter. 1718 // Currently this is supported by the open source version of tcmalloc, see: 1719 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h 1720 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B, 1721 LibFunc &Func) { 1722 if (!OptimizeHotColdNew) 1723 return nullptr; 1724 1725 uint8_t HotCold; 1726 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold") 1727 HotCold = ColdNewHintValue; 1728 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == 1729 "notcold") 1730 HotCold = NotColdNewHintValue; 1731 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot") 1732 HotCold = HotNewHintValue; 1733 else 1734 return nullptr; 1735 1736 // For calls that already pass a hot/cold hint, only update the hint if 1737 // directed by OptimizeExistingHotColdNew. For other calls to new, add a hint 1738 // if cold or hot, and leave as-is for default handling if "notcold" aka warm. 1739 // Note that in cases where we decide it is "notcold", it might be slightly 1740 // better to replace the hinted call with a non hinted call, to avoid the 1741 // extra parameter and the if condition check of the hint value in the 1742 // allocator. This can be considered in the future. 1743 switch (Func) { 1744 case LibFunc_Znwm12__hot_cold_t: 1745 if (OptimizeExistingHotColdNew) 1746 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI, 1747 LibFunc_Znwm12__hot_cold_t, HotCold); 1748 break; 1749 case LibFunc_Znwm: 1750 if (HotCold != NotColdNewHintValue) 1751 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI, 1752 LibFunc_Znwm12__hot_cold_t, HotCold); 1753 break; 1754 case LibFunc_Znam12__hot_cold_t: 1755 if (OptimizeExistingHotColdNew) 1756 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI, 1757 LibFunc_Znam12__hot_cold_t, HotCold); 1758 break; 1759 case LibFunc_Znam: 1760 if (HotCold != NotColdNewHintValue) 1761 return emitHotColdNew(CI->getType(), CI->getArgOperand(0), B, TLI, 1762 LibFunc_Znam12__hot_cold_t, HotCold); 1763 break; 1764 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 1765 if (OptimizeExistingHotColdNew) 1766 return emitHotColdNewNoThrow( 1767 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1768 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1769 break; 1770 case LibFunc_ZnwmRKSt9nothrow_t: 1771 if (HotCold != NotColdNewHintValue) 1772 return emitHotColdNewNoThrow( 1773 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1774 LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, HotCold); 1775 break; 1776 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 1777 if (OptimizeExistingHotColdNew) 1778 return emitHotColdNewNoThrow( 1779 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1780 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1781 break; 1782 case LibFunc_ZnamRKSt9nothrow_t: 1783 if (HotCold != NotColdNewHintValue) 1784 return emitHotColdNewNoThrow( 1785 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1786 LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, HotCold); 1787 break; 1788 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 1789 if (OptimizeExistingHotColdNew) 1790 return emitHotColdNewAligned( 1791 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1792 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1793 break; 1794 case LibFunc_ZnwmSt11align_val_t: 1795 if (HotCold != NotColdNewHintValue) 1796 return emitHotColdNewAligned( 1797 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1798 LibFunc_ZnwmSt11align_val_t12__hot_cold_t, HotCold); 1799 break; 1800 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 1801 if (OptimizeExistingHotColdNew) 1802 return emitHotColdNewAligned( 1803 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1804 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1805 break; 1806 case LibFunc_ZnamSt11align_val_t: 1807 if (HotCold != NotColdNewHintValue) 1808 return emitHotColdNewAligned( 1809 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), B, TLI, 1810 LibFunc_ZnamSt11align_val_t12__hot_cold_t, HotCold); 1811 break; 1812 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1813 if (OptimizeExistingHotColdNew) 1814 return emitHotColdNewAlignedNoThrow( 1815 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), 1816 CI->getArgOperand(2), B, TLI, 1817 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1818 break; 1819 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 1820 if (HotCold != NotColdNewHintValue) 1821 return emitHotColdNewAlignedNoThrow( 1822 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), 1823 CI->getArgOperand(2), B, TLI, 1824 LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1825 break; 1826 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 1827 if (OptimizeExistingHotColdNew) 1828 return emitHotColdNewAlignedNoThrow( 1829 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), 1830 CI->getArgOperand(2), B, TLI, 1831 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1832 break; 1833 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 1834 if (HotCold != NotColdNewHintValue) 1835 return emitHotColdNewAlignedNoThrow( 1836 CI->getType(), CI->getArgOperand(0), CI->getArgOperand(1), 1837 CI->getArgOperand(2), B, TLI, 1838 LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold); 1839 break; 1840 case LibFunc_size_returning_new: 1841 if (HotCold != NotColdNewHintValue) 1842 return emitHotColdSizeReturningNew( 1843 CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI, 1844 LibFunc_size_returning_new_hot_cold, HotCold); 1845 break; 1846 case LibFunc_size_returning_new_hot_cold: 1847 if (OptimizeExistingHotColdNew) 1848 return emitHotColdSizeReturningNew( 1849 CI->getType()->getStructElementType(0), CI->getArgOperand(0), B, TLI, 1850 LibFunc_size_returning_new_hot_cold, HotCold); 1851 break; 1852 case LibFunc_size_returning_new_aligned: 1853 if (HotCold != NotColdNewHintValue) 1854 return emitHotColdSizeReturningNewAligned( 1855 CI->getType()->getStructElementType(0), CI->getArgOperand(0), 1856 CI->getArgOperand(1), B, TLI, 1857 LibFunc_size_returning_new_aligned_hot_cold, HotCold); 1858 break; 1859 case LibFunc_size_returning_new_aligned_hot_cold: 1860 if (OptimizeExistingHotColdNew) 1861 return emitHotColdSizeReturningNewAligned( 1862 CI->getType()->getStructElementType(0), CI->getArgOperand(0), 1863 CI->getArgOperand(1), B, TLI, 1864 LibFunc_size_returning_new_aligned_hot_cold, HotCold); 1865 break; 1866 default: 1867 return nullptr; 1868 } 1869 return nullptr; 1870 } 1871 1872 //===----------------------------------------------------------------------===// 1873 // Math Library Optimizations 1874 //===----------------------------------------------------------------------===// 1875 1876 // Replace a libcall \p CI with a call to intrinsic \p IID 1877 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1878 Intrinsic::ID IID) { 1879 CallInst *NewCall = B.CreateUnaryIntrinsic(IID, CI->getArgOperand(0), CI); 1880 NewCall->takeName(CI); 1881 return copyFlags(*CI, NewCall); 1882 } 1883 1884 /// Return a variant of Val with float type. 1885 /// Currently this works in two cases: If Val is an FPExtension of a float 1886 /// value to something bigger, simply return the operand. 1887 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1888 /// loss of precision do so. 1889 static Value *valueHasFloatPrecision(Value *Val) { 1890 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1891 Value *Op = Cast->getOperand(0); 1892 if (Op->getType()->isFloatTy()) 1893 return Op; 1894 } 1895 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1896 APFloat F = Const->getValueAPF(); 1897 bool losesInfo; 1898 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1899 &losesInfo); 1900 if (!losesInfo) 1901 return ConstantFP::get(Const->getContext(), F); 1902 } 1903 return nullptr; 1904 } 1905 1906 /// Shrink double -> float functions. 1907 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1908 bool isBinary, const TargetLibraryInfo *TLI, 1909 bool isPrecise = false) { 1910 Function *CalleeFn = CI->getCalledFunction(); 1911 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1912 return nullptr; 1913 1914 // If not all the uses of the function are converted to float, then bail out. 1915 // This matters if the precision of the result is more important than the 1916 // precision of the arguments. 1917 if (isPrecise) 1918 for (User *U : CI->users()) { 1919 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1920 if (!Cast || !Cast->getType()->isFloatTy()) 1921 return nullptr; 1922 } 1923 1924 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1925 Value *V[2]; 1926 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1927 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1928 if (!V[0] || (isBinary && !V[1])) 1929 return nullptr; 1930 1931 // If call isn't an intrinsic, check that it isn't within a function with the 1932 // same name as the float version of this call, otherwise the result is an 1933 // infinite loop. For example, from MinGW-w64: 1934 // 1935 // float expf(float val) { return (float) exp((double) val); } 1936 StringRef CalleeName = CalleeFn->getName(); 1937 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1938 if (!IsIntrinsic) { 1939 StringRef CallerName = CI->getFunction()->getName(); 1940 if (!CallerName.empty() && CallerName.back() == 'f' && 1941 CallerName.size() == (CalleeName.size() + 1) && 1942 CallerName.starts_with(CalleeName)) 1943 return nullptr; 1944 } 1945 1946 // Propagate the math semantics from the current function to the new function. 1947 IRBuilderBase::FastMathFlagGuard Guard(B); 1948 B.setFastMathFlags(CI->getFastMathFlags()); 1949 1950 // g((double) float) -> (double) gf(float) 1951 Value *R; 1952 if (IsIntrinsic) { 1953 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1954 R = isBinary ? B.CreateIntrinsic(IID, B.getFloatTy(), V) 1955 : B.CreateIntrinsic(IID, B.getFloatTy(), V[0]); 1956 } else { 1957 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1958 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1959 CalleeAttrs) 1960 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1961 } 1962 return B.CreateFPExt(R, B.getDoubleTy()); 1963 } 1964 1965 /// Shrink double -> float for unary functions. 1966 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1967 const TargetLibraryInfo *TLI, 1968 bool isPrecise = false) { 1969 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1970 } 1971 1972 /// Shrink double -> float for binary functions. 1973 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1974 const TargetLibraryInfo *TLI, 1975 bool isPrecise = false) { 1976 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1977 } 1978 1979 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1980 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1981 Value *Real, *Imag; 1982 1983 if (CI->arg_size() == 1) { 1984 1985 if (!CI->isFast()) 1986 return nullptr; 1987 1988 Value *Op = CI->getArgOperand(0); 1989 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1990 1991 Real = B.CreateExtractValue(Op, 0, "real"); 1992 Imag = B.CreateExtractValue(Op, 1, "imag"); 1993 1994 } else { 1995 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1996 1997 Real = CI->getArgOperand(0); 1998 Imag = CI->getArgOperand(1); 1999 2000 // if real or imaginary part is zero, simplify to abs(cimag(z)) 2001 // or abs(creal(z)) 2002 Value *AbsOp = nullptr; 2003 if (ConstantFP *ConstReal = dyn_cast<ConstantFP>(Real)) { 2004 if (ConstReal->isZero()) 2005 AbsOp = Imag; 2006 2007 } else if (ConstantFP *ConstImag = dyn_cast<ConstantFP>(Imag)) { 2008 if (ConstImag->isZero()) 2009 AbsOp = Real; 2010 } 2011 2012 if (AbsOp) { 2013 IRBuilderBase::FastMathFlagGuard Guard(B); 2014 B.setFastMathFlags(CI->getFastMathFlags()); 2015 2016 return copyFlags( 2017 *CI, B.CreateUnaryIntrinsic(Intrinsic::fabs, AbsOp, nullptr, "cabs")); 2018 } 2019 2020 if (!CI->isFast()) 2021 return nullptr; 2022 } 2023 2024 // Propagate fast-math flags from the existing call to new instructions. 2025 IRBuilderBase::FastMathFlagGuard Guard(B); 2026 B.setFastMathFlags(CI->getFastMathFlags()); 2027 2028 Value *RealReal = B.CreateFMul(Real, Real); 2029 Value *ImagImag = B.CreateFMul(Imag, Imag); 2030 2031 return copyFlags(*CI, B.CreateUnaryIntrinsic(Intrinsic::sqrt, 2032 B.CreateFAdd(RealReal, ImagImag), 2033 nullptr, "cabs")); 2034 } 2035 2036 // Return a properly extended integer (DstWidth bits wide) if the operation is 2037 // an itofp. 2038 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 2039 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 2040 Value *Op = cast<Instruction>(I2F)->getOperand(0); 2041 // Make sure that the exponent fits inside an "int" of size DstWidth, 2042 // thus avoiding any range issues that FP has not. 2043 unsigned BitWidth = Op->getType()->getScalarSizeInBits(); 2044 if (BitWidth < DstWidth || (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) { 2045 Type *IntTy = Op->getType()->getWithNewBitWidth(DstWidth); 2046 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, IntTy) 2047 : B.CreateZExt(Op, IntTy); 2048 } 2049 } 2050 2051 return nullptr; 2052 } 2053 2054 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 2055 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 2056 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 2057 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 2058 Module *M = Pow->getModule(); 2059 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2060 Type *Ty = Pow->getType(); 2061 bool Ignored; 2062 2063 // Evaluate special cases related to a nested function as the base. 2064 2065 // pow(exp(x), y) -> exp(x * y) 2066 // pow(exp2(x), y) -> exp2(x * y) 2067 // If exp{,2}() is used only once, it is better to fold two transcendental 2068 // math functions into one. If used again, exp{,2}() would still have to be 2069 // called with the original argument, then keep both original transcendental 2070 // functions. However, this transformation is only safe with fully relaxed 2071 // math semantics, since, besides rounding differences, it changes overflow 2072 // and underflow behavior quite dramatically. For example: 2073 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 2074 // Whereas: 2075 // exp(1000 * 0.001) = exp(1) 2076 // TODO: Loosen the requirement for fully relaxed math semantics. 2077 // TODO: Handle exp10() when more targets have it available. 2078 CallInst *BaseFn = dyn_cast<CallInst>(Base); 2079 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 2080 LibFunc LibFn; 2081 2082 Function *CalleeFn = BaseFn->getCalledFunction(); 2083 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) && 2084 isLibFuncEmittable(M, TLI, LibFn)) { 2085 StringRef ExpName; 2086 Intrinsic::ID ID; 2087 Value *ExpFn; 2088 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 2089 2090 switch (LibFn) { 2091 default: 2092 return nullptr; 2093 case LibFunc_expf: 2094 case LibFunc_exp: 2095 case LibFunc_expl: 2096 ExpName = TLI->getName(LibFunc_exp); 2097 ID = Intrinsic::exp; 2098 LibFnFloat = LibFunc_expf; 2099 LibFnDouble = LibFunc_exp; 2100 LibFnLongDouble = LibFunc_expl; 2101 break; 2102 case LibFunc_exp2f: 2103 case LibFunc_exp2: 2104 case LibFunc_exp2l: 2105 ExpName = TLI->getName(LibFunc_exp2); 2106 ID = Intrinsic::exp2; 2107 LibFnFloat = LibFunc_exp2f; 2108 LibFnDouble = LibFunc_exp2; 2109 LibFnLongDouble = LibFunc_exp2l; 2110 break; 2111 } 2112 2113 // Create new exp{,2}() with the product as its argument. 2114 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 2115 ExpFn = BaseFn->doesNotAccessMemory() 2116 ? B.CreateUnaryIntrinsic(ID, FMul, nullptr, ExpName) 2117 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 2118 LibFnLongDouble, B, 2119 BaseFn->getAttributes()); 2120 2121 // Since the new exp{,2}() is different from the original one, dead code 2122 // elimination cannot be trusted to remove it, since it may have side 2123 // effects (e.g., errno). When the only consumer for the original 2124 // exp{,2}() is pow(), then it has to be explicitly erased. 2125 substituteInParent(BaseFn, ExpFn); 2126 return ExpFn; 2127 } 2128 } 2129 2130 // Evaluate special cases related to a constant base. 2131 2132 const APFloat *BaseF; 2133 if (!match(Base, m_APFloat(BaseF))) 2134 return nullptr; 2135 2136 AttributeList NoAttrs; // Attributes are only meaningful on the original call 2137 2138 const bool UseIntrinsic = Pow->doesNotAccessMemory(); 2139 2140 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 2141 if ((UseIntrinsic || !Ty->isVectorTy()) && BaseF->isExactlyValue(2.0) && 2142 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 2143 (UseIntrinsic || 2144 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2145 2146 // TODO: Shouldn't really need to depend on getIntToFPVal for intrinsic. Can 2147 // just directly use the original integer type. 2148 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) { 2149 Constant *One = ConstantFP::get(Ty, 1.0); 2150 2151 if (UseIntrinsic) { 2152 return copyFlags(*Pow, B.CreateIntrinsic(Intrinsic::ldexp, 2153 {Ty, ExpoI->getType()}, 2154 {One, ExpoI}, Pow, "exp2")); 2155 } 2156 2157 return copyFlags(*Pow, emitBinaryFloatFnCall( 2158 One, ExpoI, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2159 LibFunc_ldexpl, B, NoAttrs)); 2160 } 2161 } 2162 2163 // pow(2.0 ** n, x) -> exp2(n * x) 2164 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 2165 APFloat BaseR = APFloat(1.0); 2166 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 2167 BaseR = BaseR / *BaseF; 2168 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 2169 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 2170 APSInt NI(64, false); 2171 if ((IsInteger || IsReciprocal) && 2172 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 2173 APFloat::opOK && 2174 NI > 1 && NI.isPowerOf2()) { 2175 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 2176 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 2177 if (Pow->doesNotAccessMemory()) 2178 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2179 nullptr, "exp2")); 2180 else 2181 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2182 LibFunc_exp2f, 2183 LibFunc_exp2l, B, NoAttrs)); 2184 } 2185 } 2186 2187 // pow(10.0, x) -> exp10(x) 2188 if (BaseF->isExactlyValue(10.0) && 2189 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) { 2190 2191 if (Pow->doesNotAccessMemory()) { 2192 CallInst *NewExp10 = 2193 B.CreateIntrinsic(Intrinsic::exp10, {Ty}, {Expo}, Pow, "exp10"); 2194 return copyFlags(*Pow, NewExp10); 2195 } 2196 2197 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 2198 LibFunc_exp10f, LibFunc_exp10l, 2199 B, NoAttrs)); 2200 } 2201 2202 // pow(x, y) -> exp2(log2(x) * y) 2203 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 2204 !BaseF->isNegative()) { 2205 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 2206 // Luckily optimizePow has already handled the x == 1 case. 2207 assert(!match(Base, m_FPOne()) && 2208 "pow(1.0, y) should have been simplified earlier!"); 2209 2210 Value *Log = nullptr; 2211 if (Ty->isFloatTy()) 2212 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 2213 else if (Ty->isDoubleTy()) 2214 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 2215 2216 if (Log) { 2217 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 2218 if (Pow->doesNotAccessMemory()) 2219 return copyFlags(*Pow, B.CreateUnaryIntrinsic(Intrinsic::exp2, FMul, 2220 nullptr, "exp2")); 2221 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 2222 LibFunc_exp2l)) 2223 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 2224 LibFunc_exp2f, 2225 LibFunc_exp2l, B, NoAttrs)); 2226 } 2227 } 2228 2229 return nullptr; 2230 } 2231 2232 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 2233 Module *M, IRBuilderBase &B, 2234 const TargetLibraryInfo *TLI) { 2235 // If errno is never set, then use the intrinsic for sqrt(). 2236 if (NoErrno) 2237 return B.CreateUnaryIntrinsic(Intrinsic::sqrt, V, nullptr, "sqrt"); 2238 2239 // Otherwise, use the libcall for sqrt(). 2240 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 2241 LibFunc_sqrtl)) 2242 // TODO: We also should check that the target can in fact lower the sqrt() 2243 // libcall. We currently have no way to ask this question, so we ask if 2244 // the target has a sqrt() libcall, which is not exactly the same. 2245 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 2246 LibFunc_sqrtl, B, Attrs); 2247 2248 return nullptr; 2249 } 2250 2251 /// Use square root in place of pow(x, +/-0.5). 2252 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 2253 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 2254 Module *Mod = Pow->getModule(); 2255 Type *Ty = Pow->getType(); 2256 2257 const APFloat *ExpoF; 2258 if (!match(Expo, m_APFloat(ExpoF)) || 2259 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 2260 return nullptr; 2261 2262 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 2263 // so that requires fast-math-flags (afn or reassoc). 2264 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 2265 return nullptr; 2266 2267 // If we have a pow() library call (accesses memory) and we can't guarantee 2268 // that the base is not an infinity, give up: 2269 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 2270 // errno), but sqrt(-Inf) is required by various standards to set errno. 2271 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 2272 !isKnownNeverInfinity( 2273 Base, 0, SimplifyQuery(DL, TLI, DT, AC, Pow, true, true, DC))) 2274 return nullptr; 2275 2276 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B, 2277 TLI); 2278 if (!Sqrt) 2279 return nullptr; 2280 2281 // Handle signed zero base by expanding to fabs(sqrt(x)). 2282 if (!Pow->hasNoSignedZeros()) 2283 Sqrt = B.CreateUnaryIntrinsic(Intrinsic::fabs, Sqrt, nullptr, "abs"); 2284 2285 Sqrt = copyFlags(*Pow, Sqrt); 2286 2287 // Handle non finite base by expanding to 2288 // (x == -infinity ? +infinity : sqrt(x)). 2289 if (!Pow->hasNoInfs()) { 2290 Value *PosInf = ConstantFP::getInfinity(Ty), 2291 *NegInf = ConstantFP::getInfinity(Ty, true); 2292 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 2293 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 2294 } 2295 2296 // If the exponent is negative, then get the reciprocal. 2297 if (ExpoF->isNegative()) 2298 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 2299 2300 return Sqrt; 2301 } 2302 2303 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 2304 IRBuilderBase &B) { 2305 Value *Args[] = {Base, Expo}; 2306 Type *Types[] = {Base->getType(), Expo->getType()}; 2307 return B.CreateIntrinsic(Intrinsic::powi, Types, Args); 2308 } 2309 2310 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 2311 Value *Base = Pow->getArgOperand(0); 2312 Value *Expo = Pow->getArgOperand(1); 2313 Function *Callee = Pow->getCalledFunction(); 2314 StringRef Name = Callee->getName(); 2315 Type *Ty = Pow->getType(); 2316 Module *M = Pow->getModule(); 2317 bool AllowApprox = Pow->hasApproxFunc(); 2318 bool Ignored; 2319 2320 // Propagate the math semantics from the call to any created instructions. 2321 IRBuilderBase::FastMathFlagGuard Guard(B); 2322 B.setFastMathFlags(Pow->getFastMathFlags()); 2323 // Evaluate special cases related to the base. 2324 2325 // pow(1.0, x) -> 1.0 2326 if (match(Base, m_FPOne())) 2327 return Base; 2328 2329 if (Value *Exp = replacePowWithExp(Pow, B)) 2330 return Exp; 2331 2332 // Evaluate special cases related to the exponent. 2333 2334 // pow(x, -1.0) -> 1.0 / x 2335 if (match(Expo, m_SpecificFP(-1.0))) 2336 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 2337 2338 // pow(x, +/-0.0) -> 1.0 2339 if (match(Expo, m_AnyZeroFP())) 2340 return ConstantFP::get(Ty, 1.0); 2341 2342 // pow(x, 1.0) -> x 2343 if (match(Expo, m_FPOne())) 2344 return Base; 2345 2346 // pow(x, 2.0) -> x * x 2347 if (match(Expo, m_SpecificFP(2.0))) 2348 return B.CreateFMul(Base, Base, "square"); 2349 2350 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 2351 return Sqrt; 2352 2353 // If we can approximate pow: 2354 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction 2355 // pow(x, n) -> powi(x, n) if n is a constant signed integer value 2356 const APFloat *ExpoF; 2357 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 2358 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 2359 APFloat ExpoA(abs(*ExpoF)); 2360 APFloat ExpoI(*ExpoF); 2361 Value *Sqrt = nullptr; 2362 if (!ExpoA.isInteger()) { 2363 APFloat Expo2 = ExpoA; 2364 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 2365 // is no floating point exception and the result is an integer, then 2366 // ExpoA == integer + 0.5 2367 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 2368 return nullptr; 2369 2370 if (!Expo2.isInteger()) 2371 return nullptr; 2372 2373 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) != 2374 APFloat::opInexact) 2375 return nullptr; 2376 if (!ExpoI.isInteger()) 2377 return nullptr; 2378 ExpoF = &ExpoI; 2379 2380 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M, 2381 B, TLI); 2382 if (!Sqrt) 2383 return nullptr; 2384 } 2385 2386 // 0.5 fraction is now optionally handled. 2387 // Do pow -> powi for remaining integer exponent 2388 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 2389 if (ExpoF->isInteger() && 2390 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 2391 APFloat::opOK) { 2392 Value *PowI = copyFlags( 2393 *Pow, 2394 createPowWithIntegerExponent( 2395 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 2396 M, B)); 2397 2398 if (PowI && Sqrt) 2399 return B.CreateFMul(PowI, Sqrt); 2400 2401 return PowI; 2402 } 2403 } 2404 2405 // powf(x, itofp(y)) -> powi(x, y) 2406 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 2407 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 2408 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 2409 } 2410 2411 // Shrink pow() to powf() if the arguments are single precision, 2412 // unless the result is expected to be double precision. 2413 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 2414 hasFloatVersion(M, Name)) { 2415 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 2416 return Shrunk; 2417 } 2418 2419 return nullptr; 2420 } 2421 2422 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 2423 Module *M = CI->getModule(); 2424 Function *Callee = CI->getCalledFunction(); 2425 StringRef Name = Callee->getName(); 2426 Value *Ret = nullptr; 2427 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 2428 hasFloatVersion(M, Name)) 2429 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2430 2431 // If we have an llvm.exp2 intrinsic, emit the llvm.ldexp intrinsic. If we 2432 // have the libcall, emit the libcall. 2433 // 2434 // TODO: In principle we should be able to just always use the intrinsic for 2435 // any doesNotAccessMemory callsite. 2436 2437 const bool UseIntrinsic = Callee->isIntrinsic(); 2438 // Bail out for vectors because the code below only expects scalars. 2439 Type *Ty = CI->getType(); 2440 if (!UseIntrinsic && Ty->isVectorTy()) 2441 return Ret; 2442 2443 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 2444 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 2445 Value *Op = CI->getArgOperand(0); 2446 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 2447 (UseIntrinsic || 2448 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl))) { 2449 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) { 2450 Constant *One = ConstantFP::get(Ty, 1.0); 2451 2452 if (UseIntrinsic) { 2453 return copyFlags(*CI, B.CreateIntrinsic(Intrinsic::ldexp, 2454 {Ty, Exp->getType()}, 2455 {One, Exp}, CI)); 2456 } 2457 2458 IRBuilderBase::FastMathFlagGuard Guard(B); 2459 B.setFastMathFlags(CI->getFastMathFlags()); 2460 return copyFlags(*CI, emitBinaryFloatFnCall( 2461 One, Exp, TLI, LibFunc_ldexp, LibFunc_ldexpf, 2462 LibFunc_ldexpl, B, AttributeList())); 2463 } 2464 } 2465 2466 return Ret; 2467 } 2468 2469 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 2470 Module *M = CI->getModule(); 2471 2472 // If we can shrink the call to a float function rather than a double 2473 // function, do that first. 2474 Function *Callee = CI->getCalledFunction(); 2475 StringRef Name = Callee->getName(); 2476 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2477 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2478 return Ret; 2479 2480 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2481 // the intrinsics for improved optimization (for example, vectorization). 2482 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2483 // From the C standard draft WG14/N1256: 2484 // "Ideally, fmax would be sensitive to the sign of zero, for example 2485 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2486 // might be impractical." 2487 IRBuilderBase::FastMathFlagGuard Guard(B); 2488 FastMathFlags FMF = CI->getFastMathFlags(); 2489 FMF.setNoSignedZeros(); 2490 B.setFastMathFlags(FMF); 2491 2492 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum 2493 : Intrinsic::maxnum; 2494 return copyFlags(*CI, B.CreateBinaryIntrinsic(IID, CI->getArgOperand(0), 2495 CI->getArgOperand(1))); 2496 } 2497 2498 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2499 Function *LogFn = Log->getCalledFunction(); 2500 StringRef LogNm = LogFn->getName(); 2501 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2502 Module *Mod = Log->getModule(); 2503 Type *Ty = Log->getType(); 2504 2505 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2506 if (Value *Ret = optimizeUnaryDoubleFP(Log, B, TLI, true)) 2507 return Ret; 2508 2509 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2510 2511 // This is only applicable to log(), log2(), log10(). 2512 if (TLI->getLibFunc(LogNm, LogLb)) { 2513 switch (LogLb) { 2514 case LibFunc_logf: 2515 LogID = Intrinsic::log; 2516 ExpLb = LibFunc_expf; 2517 Exp2Lb = LibFunc_exp2f; 2518 Exp10Lb = LibFunc_exp10f; 2519 PowLb = LibFunc_powf; 2520 break; 2521 case LibFunc_log: 2522 LogID = Intrinsic::log; 2523 ExpLb = LibFunc_exp; 2524 Exp2Lb = LibFunc_exp2; 2525 Exp10Lb = LibFunc_exp10; 2526 PowLb = LibFunc_pow; 2527 break; 2528 case LibFunc_logl: 2529 LogID = Intrinsic::log; 2530 ExpLb = LibFunc_expl; 2531 Exp2Lb = LibFunc_exp2l; 2532 Exp10Lb = LibFunc_exp10l; 2533 PowLb = LibFunc_powl; 2534 break; 2535 case LibFunc_log2f: 2536 LogID = Intrinsic::log2; 2537 ExpLb = LibFunc_expf; 2538 Exp2Lb = LibFunc_exp2f; 2539 Exp10Lb = LibFunc_exp10f; 2540 PowLb = LibFunc_powf; 2541 break; 2542 case LibFunc_log2: 2543 LogID = Intrinsic::log2; 2544 ExpLb = LibFunc_exp; 2545 Exp2Lb = LibFunc_exp2; 2546 Exp10Lb = LibFunc_exp10; 2547 PowLb = LibFunc_pow; 2548 break; 2549 case LibFunc_log2l: 2550 LogID = Intrinsic::log2; 2551 ExpLb = LibFunc_expl; 2552 Exp2Lb = LibFunc_exp2l; 2553 Exp10Lb = LibFunc_exp10l; 2554 PowLb = LibFunc_powl; 2555 break; 2556 case LibFunc_log10f: 2557 LogID = Intrinsic::log10; 2558 ExpLb = LibFunc_expf; 2559 Exp2Lb = LibFunc_exp2f; 2560 Exp10Lb = LibFunc_exp10f; 2561 PowLb = LibFunc_powf; 2562 break; 2563 case LibFunc_log10: 2564 LogID = Intrinsic::log10; 2565 ExpLb = LibFunc_exp; 2566 Exp2Lb = LibFunc_exp2; 2567 Exp10Lb = LibFunc_exp10; 2568 PowLb = LibFunc_pow; 2569 break; 2570 case LibFunc_log10l: 2571 LogID = Intrinsic::log10; 2572 ExpLb = LibFunc_expl; 2573 Exp2Lb = LibFunc_exp2l; 2574 Exp10Lb = LibFunc_exp10l; 2575 PowLb = LibFunc_powl; 2576 break; 2577 default: 2578 return nullptr; 2579 } 2580 2581 // Convert libcall to intrinsic if the value is known > 0. 2582 bool IsKnownNoErrno = Log->hasNoNaNs() && Log->hasNoInfs(); 2583 if (!IsKnownNoErrno) { 2584 SimplifyQuery SQ(DL, TLI, DT, AC, Log, true, true, DC); 2585 KnownFPClass Known = computeKnownFPClass( 2586 Log->getOperand(0), 2587 KnownFPClass::OrderedLessThanZeroMask | fcSubnormal, 2588 /*Depth=*/0, SQ); 2589 Function *F = Log->getParent()->getParent(); 2590 IsKnownNoErrno = Known.cannotBeOrderedLessThanZero() && 2591 Known.isKnownNeverLogicalZero(*F, Ty); 2592 } 2593 if (IsKnownNoErrno) { 2594 auto *NewLog = B.CreateUnaryIntrinsic(LogID, Log->getArgOperand(0), Log); 2595 NewLog->copyMetadata(*Log); 2596 return copyFlags(*Log, NewLog); 2597 } 2598 } else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2599 LogID == Intrinsic::log10) { 2600 if (Ty->getScalarType()->isFloatTy()) { 2601 ExpLb = LibFunc_expf; 2602 Exp2Lb = LibFunc_exp2f; 2603 Exp10Lb = LibFunc_exp10f; 2604 PowLb = LibFunc_powf; 2605 } else if (Ty->getScalarType()->isDoubleTy()) { 2606 ExpLb = LibFunc_exp; 2607 Exp2Lb = LibFunc_exp2; 2608 Exp10Lb = LibFunc_exp10; 2609 PowLb = LibFunc_pow; 2610 } else 2611 return nullptr; 2612 } else 2613 return nullptr; 2614 2615 // The earlier call must also be 'fast' in order to do these transforms. 2616 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2617 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2618 return nullptr; 2619 2620 IRBuilderBase::FastMathFlagGuard Guard(B); 2621 B.setFastMathFlags(FastMathFlags::getFast()); 2622 2623 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2624 LibFunc ArgLb = NotLibFunc; 2625 TLI->getLibFunc(*Arg, ArgLb); 2626 2627 // log(pow(x,y)) -> y*log(x) 2628 AttributeList NoAttrs; 2629 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) { 2630 Value *LogX = 2631 Log->doesNotAccessMemory() 2632 ? B.CreateUnaryIntrinsic(LogID, Arg->getOperand(0), nullptr, "log") 2633 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs); 2634 Value *Y = Arg->getArgOperand(1); 2635 // Cast exponent to FP if integer. 2636 if (ArgID == Intrinsic::powi) 2637 Y = B.CreateSIToFP(Y, Ty, "cast"); 2638 Value *MulY = B.CreateFMul(Y, LogX, "mul"); 2639 // Since pow() may have side effects, e.g. errno, 2640 // dead code elimination may not be trusted to remove it. 2641 substituteInParent(Arg, MulY); 2642 return MulY; 2643 } 2644 2645 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2646 // TODO: There is no exp10() intrinsic yet. 2647 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2648 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2649 Constant *Eul; 2650 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2651 // FIXME: Add more precise value of e for long double. 2652 Eul = ConstantFP::get(Log->getType(), numbers::e); 2653 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2654 Eul = ConstantFP::get(Log->getType(), 2.0); 2655 else 2656 Eul = ConstantFP::get(Log->getType(), 10.0); 2657 Value *LogE = Log->doesNotAccessMemory() 2658 ? B.CreateUnaryIntrinsic(LogID, Eul, nullptr, "log") 2659 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs); 2660 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2661 // Since exp() may have side effects, e.g. errno, 2662 // dead code elimination may not be trusted to remove it. 2663 substituteInParent(Arg, MulY); 2664 return MulY; 2665 } 2666 2667 return nullptr; 2668 } 2669 2670 // sqrt(exp(X)) -> exp(X * 0.5) 2671 Value *LibCallSimplifier::mergeSqrtToExp(CallInst *CI, IRBuilderBase &B) { 2672 if (!CI->hasAllowReassoc()) 2673 return nullptr; 2674 2675 Function *SqrtFn = CI->getCalledFunction(); 2676 CallInst *Arg = dyn_cast<CallInst>(CI->getArgOperand(0)); 2677 if (!Arg || !Arg->hasAllowReassoc() || !Arg->hasOneUse()) 2678 return nullptr; 2679 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2680 LibFunc ArgLb = NotLibFunc; 2681 TLI->getLibFunc(*Arg, ArgLb); 2682 2683 LibFunc SqrtLb, ExpLb, Exp2Lb, Exp10Lb; 2684 2685 if (TLI->getLibFunc(SqrtFn->getName(), SqrtLb)) 2686 switch (SqrtLb) { 2687 case LibFunc_sqrtf: 2688 ExpLb = LibFunc_expf; 2689 Exp2Lb = LibFunc_exp2f; 2690 Exp10Lb = LibFunc_exp10f; 2691 break; 2692 case LibFunc_sqrt: 2693 ExpLb = LibFunc_exp; 2694 Exp2Lb = LibFunc_exp2; 2695 Exp10Lb = LibFunc_exp10; 2696 break; 2697 case LibFunc_sqrtl: 2698 ExpLb = LibFunc_expl; 2699 Exp2Lb = LibFunc_exp2l; 2700 Exp10Lb = LibFunc_exp10l; 2701 break; 2702 default: 2703 return nullptr; 2704 } 2705 else if (SqrtFn->getIntrinsicID() == Intrinsic::sqrt) { 2706 if (CI->getType()->getScalarType()->isFloatTy()) { 2707 ExpLb = LibFunc_expf; 2708 Exp2Lb = LibFunc_exp2f; 2709 Exp10Lb = LibFunc_exp10f; 2710 } else if (CI->getType()->getScalarType()->isDoubleTy()) { 2711 ExpLb = LibFunc_exp; 2712 Exp2Lb = LibFunc_exp2; 2713 Exp10Lb = LibFunc_exp10; 2714 } else 2715 return nullptr; 2716 } else 2717 return nullptr; 2718 2719 if (ArgLb != ExpLb && ArgLb != Exp2Lb && ArgLb != Exp10Lb && 2720 ArgID != Intrinsic::exp && ArgID != Intrinsic::exp2) 2721 return nullptr; 2722 2723 IRBuilderBase::InsertPointGuard Guard(B); 2724 B.SetInsertPoint(Arg); 2725 auto *ExpOperand = Arg->getOperand(0); 2726 auto *FMul = 2727 B.CreateFMulFMF(ExpOperand, ConstantFP::get(ExpOperand->getType(), 0.5), 2728 CI, "merged.sqrt"); 2729 2730 Arg->setOperand(0, FMul); 2731 return Arg; 2732 } 2733 2734 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2735 Module *M = CI->getModule(); 2736 Function *Callee = CI->getCalledFunction(); 2737 Value *Ret = nullptr; 2738 // TODO: Once we have a way (other than checking for the existince of the 2739 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2740 // condition below. 2741 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2742 (Callee->getName() == "sqrt" || 2743 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2744 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2745 2746 if (Value *Opt = mergeSqrtToExp(CI, B)) 2747 return Opt; 2748 2749 if (!CI->isFast()) 2750 return Ret; 2751 2752 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2753 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2754 return Ret; 2755 2756 // We're looking for a repeated factor in a multiplication tree, 2757 // so we can do this fold: sqrt(x * x) -> fabs(x); 2758 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2759 Value *Op0 = I->getOperand(0); 2760 Value *Op1 = I->getOperand(1); 2761 Value *RepeatOp = nullptr; 2762 Value *OtherOp = nullptr; 2763 if (Op0 == Op1) { 2764 // Simple match: the operands of the multiply are identical. 2765 RepeatOp = Op0; 2766 } else { 2767 // Look for a more complicated pattern: one of the operands is itself 2768 // a multiply, so search for a common factor in that multiply. 2769 // Note: We don't bother looking any deeper than this first level or for 2770 // variations of this pattern because instcombine's visitFMUL and/or the 2771 // reassociation pass should give us this form. 2772 Value *MulOp; 2773 if (match(Op0, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) && 2774 cast<Instruction>(Op0)->isFast()) { 2775 // Pattern: sqrt((x * x) * z) 2776 RepeatOp = MulOp; 2777 OtherOp = Op1; 2778 } else if (match(Op1, m_FMul(m_Value(MulOp), m_Deferred(MulOp))) && 2779 cast<Instruction>(Op1)->isFast()) { 2780 // Pattern: sqrt(z * (x * x)) 2781 RepeatOp = MulOp; 2782 OtherOp = Op0; 2783 } 2784 } 2785 if (!RepeatOp) 2786 return Ret; 2787 2788 // Fast math flags for any created instructions should match the sqrt 2789 // and multiply. 2790 IRBuilderBase::FastMathFlagGuard Guard(B); 2791 B.setFastMathFlags(I->getFastMathFlags()); 2792 2793 // If we found a repeated factor, hoist it out of the square root and 2794 // replace it with the fabs of that factor. 2795 Value *FabsCall = 2796 B.CreateUnaryIntrinsic(Intrinsic::fabs, RepeatOp, nullptr, "fabs"); 2797 if (OtherOp) { 2798 // If we found a non-repeated factor, we still need to get its square 2799 // root. We then multiply that by the value that was simplified out 2800 // of the square root calculation. 2801 Value *SqrtCall = 2802 B.CreateUnaryIntrinsic(Intrinsic::sqrt, OtherOp, nullptr, "sqrt"); 2803 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2804 } 2805 return copyFlags(*CI, FabsCall); 2806 } 2807 2808 Value *LibCallSimplifier::optimizeFMod(CallInst *CI, IRBuilderBase &B) { 2809 2810 // fmod(x,y) can set errno if y == 0 or x == +/-inf, and returns Nan in those 2811 // case. If we know those do not happen, then we can convert the fmod into 2812 // frem. 2813 bool IsNoNan = CI->hasNoNaNs(); 2814 if (!IsNoNan) { 2815 SimplifyQuery SQ(DL, TLI, DT, AC, CI, true, true, DC); 2816 KnownFPClass Known0 = computeKnownFPClass(CI->getOperand(0), fcInf, 2817 /*Depth=*/0, SQ); 2818 if (Known0.isKnownNeverInfinity()) { 2819 KnownFPClass Known1 = 2820 computeKnownFPClass(CI->getOperand(1), fcZero | fcSubnormal, 2821 /*Depth=*/0, SQ); 2822 Function *F = CI->getParent()->getParent(); 2823 IsNoNan = Known1.isKnownNeverLogicalZero(*F, CI->getType()); 2824 } 2825 } 2826 2827 if (IsNoNan) { 2828 Value *FRem = B.CreateFRemFMF(CI->getOperand(0), CI->getOperand(1), CI); 2829 if (auto *FRemI = dyn_cast<Instruction>(FRem)) 2830 FRemI->setHasNoNaNs(true); 2831 return FRem; 2832 } 2833 return nullptr; 2834 } 2835 2836 Value *LibCallSimplifier::optimizeTrigInversionPairs(CallInst *CI, 2837 IRBuilderBase &B) { 2838 Module *M = CI->getModule(); 2839 Function *Callee = CI->getCalledFunction(); 2840 Value *Ret = nullptr; 2841 StringRef Name = Callee->getName(); 2842 if (UnsafeFPShrink && 2843 (Name == "tan" || Name == "atanh" || Name == "sinh" || Name == "cosh" || 2844 Name == "asinh") && 2845 hasFloatVersion(M, Name)) 2846 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2847 2848 Value *Op1 = CI->getArgOperand(0); 2849 auto *OpC = dyn_cast<CallInst>(Op1); 2850 if (!OpC) 2851 return Ret; 2852 2853 // Both calls must be 'fast' in order to remove them. 2854 if (!CI->isFast() || !OpC->isFast()) 2855 return Ret; 2856 2857 // tan(atan(x)) -> x 2858 // atanh(tanh(x)) -> x 2859 // sinh(asinh(x)) -> x 2860 // asinh(sinh(x)) -> x 2861 // cosh(acosh(x)) -> x 2862 LibFunc Func; 2863 Function *F = OpC->getCalledFunction(); 2864 if (F && TLI->getLibFunc(F->getName(), Func) && 2865 isLibFuncEmittable(M, TLI, Func)) { 2866 LibFunc inverseFunc = llvm::StringSwitch<LibFunc>(Callee->getName()) 2867 .Case("tan", LibFunc_atan) 2868 .Case("atanh", LibFunc_tanh) 2869 .Case("sinh", LibFunc_asinh) 2870 .Case("cosh", LibFunc_acosh) 2871 .Case("tanf", LibFunc_atanf) 2872 .Case("atanhf", LibFunc_tanhf) 2873 .Case("sinhf", LibFunc_asinhf) 2874 .Case("coshf", LibFunc_acoshf) 2875 .Case("tanl", LibFunc_atanl) 2876 .Case("atanhl", LibFunc_tanhl) 2877 .Case("sinhl", LibFunc_asinhl) 2878 .Case("coshl", LibFunc_acoshl) 2879 .Case("asinh", LibFunc_sinh) 2880 .Case("asinhf", LibFunc_sinhf) 2881 .Case("asinhl", LibFunc_sinhl) 2882 .Default(NumLibFuncs); // Used as error value 2883 if (Func == inverseFunc) 2884 Ret = OpC->getArgOperand(0); 2885 } 2886 return Ret; 2887 } 2888 2889 static bool isTrigLibCall(CallInst *CI) { 2890 // We can only hope to do anything useful if we can ignore things like errno 2891 // and floating-point exceptions. 2892 // We already checked the prototype. 2893 return CI->doesNotThrow() && CI->doesNotAccessMemory(); 2894 } 2895 2896 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2897 bool UseFloat, Value *&Sin, Value *&Cos, 2898 Value *&SinCos, const TargetLibraryInfo *TLI) { 2899 Module *M = OrigCallee->getParent(); 2900 Type *ArgTy = Arg->getType(); 2901 Type *ResTy; 2902 StringRef Name; 2903 2904 Triple T(OrigCallee->getParent()->getTargetTriple()); 2905 if (UseFloat) { 2906 Name = "__sincospif_stret"; 2907 2908 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2909 // x86_64 can't use {float, float} since that would be returned in both 2910 // xmm0 and xmm1, which isn't what a real struct would do. 2911 ResTy = T.getArch() == Triple::x86_64 2912 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2913 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2914 } else { 2915 Name = "__sincospi_stret"; 2916 ResTy = StructType::get(ArgTy, ArgTy); 2917 } 2918 2919 if (!isLibFuncEmittable(M, TLI, Name)) 2920 return false; 2921 LibFunc TheLibFunc; 2922 TLI->getLibFunc(Name, TheLibFunc); 2923 FunctionCallee Callee = getOrInsertLibFunc( 2924 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2925 2926 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2927 // If the argument is an instruction, it must dominate all uses so put our 2928 // sincos call there. 2929 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2930 } else { 2931 // Otherwise (e.g. for a constant) the beginning of the function is as 2932 // good a place as any. 2933 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2934 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2935 } 2936 2937 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2938 2939 if (SinCos->getType()->isStructTy()) { 2940 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2941 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2942 } else { 2943 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2944 "sinpi"); 2945 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2946 "cospi"); 2947 } 2948 2949 return true; 2950 } 2951 2952 static Value *optimizeSymmetricCall(CallInst *CI, bool IsEven, 2953 IRBuilderBase &B) { 2954 Value *X; 2955 Value *Src = CI->getArgOperand(0); 2956 2957 if (match(Src, m_OneUse(m_FNeg(m_Value(X))))) { 2958 IRBuilderBase::FastMathFlagGuard Guard(B); 2959 B.setFastMathFlags(CI->getFastMathFlags()); 2960 2961 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2962 if (IsEven) { 2963 // Even function: f(-x) = f(x) 2964 return CallInst; 2965 } 2966 // Odd function: f(-x) = -f(x) 2967 return B.CreateFNeg(CallInst); 2968 } 2969 2970 // Even function: f(abs(x)) = f(x), f(copysign(x, y)) = f(x) 2971 if (IsEven && (match(Src, m_FAbs(m_Value(X))) || 2972 match(Src, m_CopySign(m_Value(X), m_Value())))) { 2973 IRBuilderBase::FastMathFlagGuard Guard(B); 2974 B.setFastMathFlags(CI->getFastMathFlags()); 2975 2976 auto *CallInst = copyFlags(*CI, B.CreateCall(CI->getCalledFunction(), {X})); 2977 return CallInst; 2978 } 2979 2980 return nullptr; 2981 } 2982 2983 Value *LibCallSimplifier::optimizeSymmetric(CallInst *CI, LibFunc Func, 2984 IRBuilderBase &B) { 2985 switch (Func) { 2986 case LibFunc_cos: 2987 case LibFunc_cosf: 2988 case LibFunc_cosl: 2989 return optimizeSymmetricCall(CI, /*IsEven*/ true, B); 2990 2991 case LibFunc_sin: 2992 case LibFunc_sinf: 2993 case LibFunc_sinl: 2994 2995 case LibFunc_tan: 2996 case LibFunc_tanf: 2997 case LibFunc_tanl: 2998 2999 case LibFunc_erf: 3000 case LibFunc_erff: 3001 case LibFunc_erfl: 3002 return optimizeSymmetricCall(CI, /*IsEven*/ false, B); 3003 3004 default: 3005 return nullptr; 3006 } 3007 } 3008 3009 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) { 3010 // Make sure the prototype is as expected, otherwise the rest of the 3011 // function is probably invalid and likely to abort. 3012 if (!isTrigLibCall(CI)) 3013 return nullptr; 3014 3015 Value *Arg = CI->getArgOperand(0); 3016 SmallVector<CallInst *, 1> SinCalls; 3017 SmallVector<CallInst *, 1> CosCalls; 3018 SmallVector<CallInst *, 1> SinCosCalls; 3019 3020 bool IsFloat = Arg->getType()->isFloatTy(); 3021 3022 // Look for all compatible sinpi, cospi and sincospi calls with the same 3023 // argument. If there are enough (in some sense) we can make the 3024 // substitution. 3025 Function *F = CI->getFunction(); 3026 for (User *U : Arg->users()) 3027 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 3028 3029 // It's only worthwhile if both sinpi and cospi are actually used. 3030 if (SinCalls.empty() || CosCalls.empty()) 3031 return nullptr; 3032 3033 Value *Sin, *Cos, *SinCos; 3034 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 3035 SinCos, TLI)) 3036 return nullptr; 3037 3038 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 3039 Value *Res) { 3040 for (CallInst *C : Calls) 3041 replaceAllUsesWith(C, Res); 3042 }; 3043 3044 replaceTrigInsts(SinCalls, Sin); 3045 replaceTrigInsts(CosCalls, Cos); 3046 replaceTrigInsts(SinCosCalls, SinCos); 3047 3048 return IsSin ? Sin : Cos; 3049 } 3050 3051 void LibCallSimplifier::classifyArgUse( 3052 Value *Val, Function *F, bool IsFloat, 3053 SmallVectorImpl<CallInst *> &SinCalls, 3054 SmallVectorImpl<CallInst *> &CosCalls, 3055 SmallVectorImpl<CallInst *> &SinCosCalls) { 3056 auto *CI = dyn_cast<CallInst>(Val); 3057 if (!CI || CI->use_empty()) 3058 return; 3059 3060 // Don't consider calls in other functions. 3061 if (CI->getFunction() != F) 3062 return; 3063 3064 Module *M = CI->getModule(); 3065 Function *Callee = CI->getCalledFunction(); 3066 LibFunc Func; 3067 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 3068 !isLibFuncEmittable(M, TLI, Func) || 3069 !isTrigLibCall(CI)) 3070 return; 3071 3072 if (IsFloat) { 3073 if (Func == LibFunc_sinpif) 3074 SinCalls.push_back(CI); 3075 else if (Func == LibFunc_cospif) 3076 CosCalls.push_back(CI); 3077 else if (Func == LibFunc_sincospif_stret) 3078 SinCosCalls.push_back(CI); 3079 } else { 3080 if (Func == LibFunc_sinpi) 3081 SinCalls.push_back(CI); 3082 else if (Func == LibFunc_cospi) 3083 CosCalls.push_back(CI); 3084 else if (Func == LibFunc_sincospi_stret) 3085 SinCosCalls.push_back(CI); 3086 } 3087 } 3088 3089 /// Constant folds remquo 3090 Value *LibCallSimplifier::optimizeRemquo(CallInst *CI, IRBuilderBase &B) { 3091 const APFloat *X, *Y; 3092 if (!match(CI->getArgOperand(0), m_APFloat(X)) || 3093 !match(CI->getArgOperand(1), m_APFloat(Y))) 3094 return nullptr; 3095 3096 APFloat::opStatus Status; 3097 APFloat Quot = *X; 3098 Status = Quot.divide(*Y, APFloat::rmNearestTiesToEven); 3099 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3100 return nullptr; 3101 APFloat Rem = *X; 3102 if (Rem.remainder(*Y) != APFloat::opOK) 3103 return nullptr; 3104 3105 // TODO: We can only keep at least the three of the last bits of x/y 3106 unsigned IntBW = TLI->getIntSize(); 3107 APSInt QuotInt(IntBW, /*isUnsigned=*/false); 3108 bool IsExact; 3109 Status = 3110 Quot.convertToInteger(QuotInt, APFloat::rmNearestTiesToEven, &IsExact); 3111 if (Status != APFloat::opOK && Status != APFloat::opInexact) 3112 return nullptr; 3113 3114 B.CreateAlignedStore( 3115 ConstantInt::get(B.getIntNTy(IntBW), QuotInt.getExtValue()), 3116 CI->getArgOperand(2), CI->getParamAlign(2)); 3117 return ConstantFP::get(CI->getType(), Rem); 3118 } 3119 3120 /// Constant folds fdim 3121 Value *LibCallSimplifier::optimizeFdim(CallInst *CI, IRBuilderBase &B) { 3122 // Cannot perform the fold unless the call has attribute memory(none) 3123 if (!CI->doesNotAccessMemory()) 3124 return nullptr; 3125 3126 // TODO : Handle undef values 3127 // Propagate poison if any 3128 if (isa<PoisonValue>(CI->getArgOperand(0))) 3129 return CI->getArgOperand(0); 3130 if (isa<PoisonValue>(CI->getArgOperand(1))) 3131 return CI->getArgOperand(1); 3132 3133 const APFloat *X, *Y; 3134 // Check if both values are constants 3135 if (!match(CI->getArgOperand(0), m_APFloat(X)) || 3136 !match(CI->getArgOperand(1), m_APFloat(Y))) 3137 return nullptr; 3138 3139 APFloat Difference = *X; 3140 Difference.subtract(*Y, RoundingMode::NearestTiesToEven); 3141 3142 APFloat MaxVal = 3143 maximum(Difference, APFloat::getZero(CI->getType()->getFltSemantics())); 3144 return ConstantFP::get(CI->getType(), MaxVal); 3145 } 3146 3147 //===----------------------------------------------------------------------===// 3148 // Integer Library Call Optimizations 3149 //===----------------------------------------------------------------------===// 3150 3151 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 3152 // All variants of ffs return int which need not be 32 bits wide. 3153 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0 3154 Type *RetType = CI->getType(); 3155 Value *Op = CI->getArgOperand(0); 3156 Type *ArgType = Op->getType(); 3157 Value *V = B.CreateIntrinsic(Intrinsic::cttz, {ArgType}, {Op, B.getTrue()}, 3158 nullptr, "cttz"); 3159 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 3160 V = B.CreateIntCast(V, RetType, false); 3161 3162 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 3163 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0)); 3164 } 3165 3166 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 3167 // All variants of fls return int which need not be 32 bits wide. 3168 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false)) 3169 Value *Op = CI->getArgOperand(0); 3170 Type *ArgType = Op->getType(); 3171 Value *V = B.CreateIntrinsic(Intrinsic::ctlz, {ArgType}, {Op, B.getFalse()}, 3172 nullptr, "ctlz"); 3173 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 3174 V); 3175 return B.CreateIntCast(V, CI->getType(), false); 3176 } 3177 3178 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 3179 // abs(x) -> x <s 0 ? -x : x 3180 // The negation has 'nsw' because abs of INT_MIN is undefined. 3181 Value *X = CI->getArgOperand(0); 3182 Value *IsNeg = B.CreateIsNeg(X); 3183 Value *NegX = B.CreateNSWNeg(X, "neg"); 3184 return B.CreateSelect(IsNeg, NegX, X); 3185 } 3186 3187 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 3188 // isdigit(c) -> (c-'0') <u 10 3189 Value *Op = CI->getArgOperand(0); 3190 Type *ArgType = Op->getType(); 3191 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp"); 3192 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit"); 3193 return B.CreateZExt(Op, CI->getType()); 3194 } 3195 3196 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 3197 // isascii(c) -> c <u 128 3198 Value *Op = CI->getArgOperand(0); 3199 Type *ArgType = Op->getType(); 3200 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii"); 3201 return B.CreateZExt(Op, CI->getType()); 3202 } 3203 3204 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 3205 // toascii(c) -> c & 0x7f 3206 return B.CreateAnd(CI->getArgOperand(0), 3207 ConstantInt::get(CI->getType(), 0x7F)); 3208 } 3209 3210 // Fold calls to atoi, atol, and atoll. 3211 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 3212 CI->addParamAttr(0, Attribute::NoCapture); 3213 3214 StringRef Str; 3215 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3216 return nullptr; 3217 3218 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B); 3219 } 3220 3221 // Fold calls to strtol, strtoll, strtoul, and strtoull. 3222 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B, 3223 bool AsSigned) { 3224 Value *EndPtr = CI->getArgOperand(1); 3225 if (isa<ConstantPointerNull>(EndPtr)) { 3226 // With a null EndPtr, this function won't capture the main argument. 3227 // It would be readonly too, except that it still may write to errno. 3228 CI->addParamAttr(0, Attribute::NoCapture); 3229 EndPtr = nullptr; 3230 } else if (!isKnownNonZero(EndPtr, DL)) 3231 return nullptr; 3232 3233 StringRef Str; 3234 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 3235 return nullptr; 3236 3237 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 3238 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B); 3239 } 3240 3241 return nullptr; 3242 } 3243 3244 //===----------------------------------------------------------------------===// 3245 // Formatting and IO Library Call Optimizations 3246 //===----------------------------------------------------------------------===// 3247 3248 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 3249 3250 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 3251 int StreamArg) { 3252 Function *Callee = CI->getCalledFunction(); 3253 // Error reporting calls should be cold, mark them as such. 3254 // This applies even to non-builtin calls: it is only a hint and applies to 3255 // functions that the frontend might not understand as builtins. 3256 3257 // This heuristic was suggested in: 3258 // Improving Static Branch Prediction in a Compiler 3259 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 3260 // Proceedings of PACT'98, Oct. 1998, IEEE 3261 if (!CI->hasFnAttr(Attribute::Cold) && 3262 isReportingError(Callee, CI, StreamArg)) { 3263 CI->addFnAttr(Attribute::Cold); 3264 } 3265 3266 return nullptr; 3267 } 3268 3269 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 3270 if (!Callee || !Callee->isDeclaration()) 3271 return false; 3272 3273 if (StreamArg < 0) 3274 return true; 3275 3276 // These functions might be considered cold, but only if their stream 3277 // argument is stderr. 3278 3279 if (StreamArg >= (int)CI->arg_size()) 3280 return false; 3281 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 3282 if (!LI) 3283 return false; 3284 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 3285 if (!GV || !GV->isDeclaration()) 3286 return false; 3287 return GV->getName() == "stderr"; 3288 } 3289 3290 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 3291 // Check for a fixed format string. 3292 StringRef FormatStr; 3293 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 3294 return nullptr; 3295 3296 // Empty format string -> noop. 3297 if (FormatStr.empty()) // Tolerate printf's declared void. 3298 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 3299 3300 // Do not do any of the following transformations if the printf return value 3301 // is used, in general the printf return value is not compatible with either 3302 // putchar() or puts(). 3303 if (!CI->use_empty()) 3304 return nullptr; 3305 3306 Type *IntTy = CI->getType(); 3307 // printf("x") -> putchar('x'), even for "%" and "%%". 3308 if (FormatStr.size() == 1 || FormatStr == "%%") { 3309 // Convert the character to unsigned char before passing it to putchar 3310 // to avoid host-specific sign extension in the IR. Putchar converts 3311 // it to unsigned char regardless. 3312 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]); 3313 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3314 } 3315 3316 // Try to remove call or emit putchar/puts. 3317 if (FormatStr == "%s" && CI->arg_size() > 1) { 3318 StringRef OperandStr; 3319 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 3320 return nullptr; 3321 // printf("%s", "") --> NOP 3322 if (OperandStr.empty()) 3323 return (Value *)CI; 3324 // printf("%s", "a") --> putchar('a') 3325 if (OperandStr.size() == 1) { 3326 // Convert the character to unsigned char before passing it to putchar 3327 // to avoid host-specific sign extension in the IR. Putchar converts 3328 // it to unsigned char regardless. 3329 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]); 3330 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3331 } 3332 // printf("%s", str"\n") --> puts(str) 3333 if (OperandStr.back() == '\n') { 3334 OperandStr = OperandStr.drop_back(); 3335 Value *GV = B.CreateGlobalString(OperandStr, "str", 3336 DL.getDefaultGlobalsAddressSpace()); 3337 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3338 } 3339 return nullptr; 3340 } 3341 3342 // printf("foo\n") --> puts("foo") 3343 if (FormatStr.back() == '\n' && 3344 !FormatStr.contains('%')) { // No format characters. 3345 // Create a string literal with no \n on it. We expect the constant merge 3346 // pass to be run after this pass, to merge duplicate strings. 3347 FormatStr = FormatStr.drop_back(); 3348 Value *GV = B.CreateGlobalString(FormatStr, "str", 3349 DL.getDefaultGlobalsAddressSpace()); 3350 return copyFlags(*CI, emitPutS(GV, B, TLI)); 3351 } 3352 3353 // Optimize specific format strings. 3354 // printf("%c", chr) --> putchar(chr) 3355 if (FormatStr == "%c" && CI->arg_size() > 1 && 3356 CI->getArgOperand(1)->getType()->isIntegerTy()) { 3357 // Convert the argument to the type expected by putchar, i.e., int, which 3358 // need not be 32 bits wide but which is the same as printf's return type. 3359 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false); 3360 return copyFlags(*CI, emitPutChar(IntChar, B, TLI)); 3361 } 3362 3363 // printf("%s\n", str) --> puts(str) 3364 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 3365 CI->getArgOperand(1)->getType()->isPointerTy()) 3366 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 3367 return nullptr; 3368 } 3369 3370 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 3371 3372 Module *M = CI->getModule(); 3373 Function *Callee = CI->getCalledFunction(); 3374 FunctionType *FT = Callee->getFunctionType(); 3375 if (Value *V = optimizePrintFString(CI, B)) { 3376 return V; 3377 } 3378 3379 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3380 3381 // printf(format, ...) -> iprintf(format, ...) if no floating point 3382 // arguments. 3383 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 3384 !callHasFloatingPointArgument(CI)) { 3385 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 3386 Callee->getAttributes()); 3387 CallInst *New = cast<CallInst>(CI->clone()); 3388 New->setCalledFunction(IPrintFFn); 3389 B.Insert(New); 3390 return New; 3391 } 3392 3393 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 3394 // arguments. 3395 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 3396 !callHasFP128Argument(CI)) { 3397 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 3398 Callee->getAttributes()); 3399 CallInst *New = cast<CallInst>(CI->clone()); 3400 New->setCalledFunction(SmallPrintFFn); 3401 B.Insert(New); 3402 return New; 3403 } 3404 3405 return nullptr; 3406 } 3407 3408 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 3409 IRBuilderBase &B) { 3410 // Check for a fixed format string. 3411 StringRef FormatStr; 3412 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3413 return nullptr; 3414 3415 // If we just have a format string (nothing else crazy) transform it. 3416 Value *Dest = CI->getArgOperand(0); 3417 if (CI->arg_size() == 2) { 3418 // Make sure there's no % in the constant array. We could try to handle 3419 // %% -> % in the future if we cared. 3420 if (FormatStr.contains('%')) 3421 return nullptr; // we found a format specifier, bail out. 3422 3423 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 3424 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(1), Align(1), 3425 // Copy the null byte. 3426 TLI->getAsSizeT(FormatStr.size() + 1, *CI->getModule())); 3427 return ConstantInt::get(CI->getType(), FormatStr.size()); 3428 } 3429 3430 // The remaining optimizations require the format string to be "%s" or "%c" 3431 // and have an extra operand. 3432 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3433 return nullptr; 3434 3435 // Decode the second character of the format string. 3436 if (FormatStr[1] == 'c') { 3437 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3438 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3439 return nullptr; 3440 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 3441 Value *Ptr = Dest; 3442 B.CreateStore(V, Ptr); 3443 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3444 B.CreateStore(B.getInt8(0), Ptr); 3445 3446 return ConstantInt::get(CI->getType(), 1); 3447 } 3448 3449 if (FormatStr[1] == 's') { 3450 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 3451 // strlen(str)+1) 3452 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3453 return nullptr; 3454 3455 if (CI->use_empty()) 3456 // sprintf(dest, "%s", str) -> strcpy(dest, str) 3457 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 3458 3459 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 3460 if (SrcLen) { 3461 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), 3462 TLI->getAsSizeT(SrcLen, *CI->getModule())); 3463 // Returns total number of characters written without null-character. 3464 return ConstantInt::get(CI->getType(), SrcLen - 1); 3465 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 3466 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 3467 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 3468 return B.CreateIntCast(PtrDiff, CI->getType(), false); 3469 } 3470 3471 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3472 PGSOQueryType::IRPass)) 3473 return nullptr; 3474 3475 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 3476 if (!Len) 3477 return nullptr; 3478 Value *IncLen = 3479 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 3480 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 3481 3482 // The sprintf result is the unincremented number of bytes in the string. 3483 return B.CreateIntCast(Len, CI->getType(), false); 3484 } 3485 return nullptr; 3486 } 3487 3488 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 3489 Module *M = CI->getModule(); 3490 Function *Callee = CI->getCalledFunction(); 3491 FunctionType *FT = Callee->getFunctionType(); 3492 if (Value *V = optimizeSPrintFString(CI, B)) { 3493 return V; 3494 } 3495 3496 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 3497 3498 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 3499 // point arguments. 3500 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 3501 !callHasFloatingPointArgument(CI)) { 3502 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 3503 FT, Callee->getAttributes()); 3504 CallInst *New = cast<CallInst>(CI->clone()); 3505 New->setCalledFunction(SIPrintFFn); 3506 B.Insert(New); 3507 return New; 3508 } 3509 3510 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 3511 // floating point arguments. 3512 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 3513 !callHasFP128Argument(CI)) { 3514 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 3515 Callee->getAttributes()); 3516 CallInst *New = cast<CallInst>(CI->clone()); 3517 New->setCalledFunction(SmallSPrintFFn); 3518 B.Insert(New); 3519 return New; 3520 } 3521 3522 return nullptr; 3523 } 3524 3525 // Transform an snprintf call CI with the bound N to format the string Str 3526 // either to a call to memcpy, or to single character a store, or to nothing, 3527 // and fold the result to a constant. A nonnull StrArg refers to the string 3528 // argument being formatted. Otherwise the call is one with N < 2 and 3529 // the "%c" directive to format a single character. 3530 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg, 3531 StringRef Str, uint64_t N, 3532 IRBuilderBase &B) { 3533 assert(StrArg || (N < 2 && Str.size() == 1)); 3534 3535 unsigned IntBits = TLI->getIntSize(); 3536 uint64_t IntMax = maxIntN(IntBits); 3537 if (Str.size() > IntMax) 3538 // Bail if the string is longer than INT_MAX. POSIX requires 3539 // implementations to set errno to EOVERFLOW in this case, in 3540 // addition to when N is larger than that (checked by the caller). 3541 return nullptr; 3542 3543 Value *StrLen = ConstantInt::get(CI->getType(), Str.size()); 3544 if (N == 0) 3545 return StrLen; 3546 3547 // Set to the number of bytes to copy fron StrArg which is also 3548 // the offset of the terinating nul. 3549 uint64_t NCopy; 3550 if (N > Str.size()) 3551 // Copy the full string, including the terminating nul (which must 3552 // be present regardless of the bound). 3553 NCopy = Str.size() + 1; 3554 else 3555 NCopy = N - 1; 3556 3557 Value *DstArg = CI->getArgOperand(0); 3558 if (NCopy && StrArg) 3559 // Transform the call to lvm.memcpy(dst, fmt, N). 3560 copyFlags(*CI, B.CreateMemCpy(DstArg, Align(1), StrArg, Align(1), 3561 TLI->getAsSizeT(NCopy, *CI->getModule()))); 3562 3563 if (N > Str.size()) 3564 // Return early when the whole format string, including the final nul, 3565 // has been copied. 3566 return StrLen; 3567 3568 // Otherwise, when truncating the string append a terminating nul. 3569 Type *Int8Ty = B.getInt8Ty(); 3570 Value *NulOff = B.getIntN(IntBits, NCopy); 3571 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr"); 3572 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd); 3573 return StrLen; 3574 } 3575 3576 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 3577 IRBuilderBase &B) { 3578 // Check for size 3579 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3580 if (!Size) 3581 return nullptr; 3582 3583 uint64_t N = Size->getZExtValue(); 3584 uint64_t IntMax = maxIntN(TLI->getIntSize()); 3585 if (N > IntMax) 3586 // Bail if the bound exceeds INT_MAX. POSIX requires implementations 3587 // to set errno to EOVERFLOW in this case. 3588 return nullptr; 3589 3590 Value *DstArg = CI->getArgOperand(0); 3591 Value *FmtArg = CI->getArgOperand(2); 3592 3593 // Check for a fixed format string. 3594 StringRef FormatStr; 3595 if (!getConstantStringInfo(FmtArg, FormatStr)) 3596 return nullptr; 3597 3598 // If we just have a format string (nothing else crazy) transform it. 3599 if (CI->arg_size() == 3) { 3600 if (FormatStr.contains('%')) 3601 // Bail if the format string contains a directive and there are 3602 // no arguments. We could handle "%%" in the future. 3603 return nullptr; 3604 3605 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B); 3606 } 3607 3608 // The remaining optimizations require the format string to be "%s" or "%c" 3609 // and have an extra operand. 3610 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4) 3611 return nullptr; 3612 3613 // Decode the second character of the format string. 3614 if (FormatStr[1] == 'c') { 3615 if (N <= 1) { 3616 // Use an arbitary string of length 1 to transform the call into 3617 // either a nul store (N == 1) or a no-op (N == 0) and fold it 3618 // to one. 3619 StringRef CharStr("*"); 3620 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B); 3621 } 3622 3623 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 3624 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 3625 return nullptr; 3626 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 3627 Value *Ptr = DstArg; 3628 B.CreateStore(V, Ptr); 3629 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 3630 B.CreateStore(B.getInt8(0), Ptr); 3631 return ConstantInt::get(CI->getType(), 1); 3632 } 3633 3634 if (FormatStr[1] != 's') 3635 return nullptr; 3636 3637 Value *StrArg = CI->getArgOperand(3); 3638 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 3639 StringRef Str; 3640 if (!getConstantStringInfo(StrArg, Str)) 3641 return nullptr; 3642 3643 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B); 3644 } 3645 3646 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 3647 if (Value *V = optimizeSnPrintFString(CI, B)) { 3648 return V; 3649 } 3650 3651 if (isKnownNonZero(CI->getOperand(1), DL)) 3652 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3653 return nullptr; 3654 } 3655 3656 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 3657 IRBuilderBase &B) { 3658 optimizeErrorReporting(CI, B, 0); 3659 3660 // All the optimizations depend on the format string. 3661 StringRef FormatStr; 3662 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 3663 return nullptr; 3664 3665 // Do not do any of the following transformations if the fprintf return 3666 // value is used, in general the fprintf return value is not compatible 3667 // with fwrite(), fputc() or fputs(). 3668 if (!CI->use_empty()) 3669 return nullptr; 3670 3671 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 3672 if (CI->arg_size() == 2) { 3673 // Could handle %% -> % if we cared. 3674 if (FormatStr.contains('%')) 3675 return nullptr; // We found a format specifier. 3676 3677 return copyFlags( 3678 *CI, emitFWrite(CI->getArgOperand(1), 3679 TLI->getAsSizeT(FormatStr.size(), *CI->getModule()), 3680 CI->getArgOperand(0), B, DL, TLI)); 3681 } 3682 3683 // The remaining optimizations require the format string to be "%s" or "%c" 3684 // and have an extra operand. 3685 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 3686 return nullptr; 3687 3688 // Decode the second character of the format string. 3689 if (FormatStr[1] == 'c') { 3690 // fprintf(F, "%c", chr) --> fputc((int)chr, F) 3691 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 3692 return nullptr; 3693 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3694 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true, 3695 "chari"); 3696 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI)); 3697 } 3698 3699 if (FormatStr[1] == 's') { 3700 // fprintf(F, "%s", str) --> fputs(str, F) 3701 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 3702 return nullptr; 3703 return copyFlags( 3704 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 3705 } 3706 return nullptr; 3707 } 3708 3709 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 3710 Module *M = CI->getModule(); 3711 Function *Callee = CI->getCalledFunction(); 3712 FunctionType *FT = Callee->getFunctionType(); 3713 if (Value *V = optimizeFPrintFString(CI, B)) { 3714 return V; 3715 } 3716 3717 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 3718 // floating point arguments. 3719 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 3720 !callHasFloatingPointArgument(CI)) { 3721 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 3722 FT, Callee->getAttributes()); 3723 CallInst *New = cast<CallInst>(CI->clone()); 3724 New->setCalledFunction(FIPrintFFn); 3725 B.Insert(New); 3726 return New; 3727 } 3728 3729 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 3730 // 128-bit floating point arguments. 3731 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 3732 !callHasFP128Argument(CI)) { 3733 auto SmallFPrintFFn = 3734 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 3735 Callee->getAttributes()); 3736 CallInst *New = cast<CallInst>(CI->clone()); 3737 New->setCalledFunction(SmallFPrintFFn); 3738 B.Insert(New); 3739 return New; 3740 } 3741 3742 return nullptr; 3743 } 3744 3745 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 3746 optimizeErrorReporting(CI, B, 3); 3747 3748 // Get the element size and count. 3749 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 3750 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 3751 if (SizeC && CountC) { 3752 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 3753 3754 // If this is writing zero records, remove the call (it's a noop). 3755 if (Bytes == 0) 3756 return ConstantInt::get(CI->getType(), 0); 3757 3758 // If this is writing one byte, turn it into fputc. 3759 // This optimisation is only valid, if the return value is unused. 3760 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 3761 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char"); 3762 Type *IntTy = B.getIntNTy(TLI->getIntSize()); 3763 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari"); 3764 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI); 3765 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 3766 } 3767 } 3768 3769 return nullptr; 3770 } 3771 3772 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 3773 optimizeErrorReporting(CI, B, 1); 3774 3775 // Don't rewrite fputs to fwrite when optimising for size because fwrite 3776 // requires more arguments and thus extra MOVs are required. 3777 if (llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 3778 PGSOQueryType::IRPass)) 3779 return nullptr; 3780 3781 // We can't optimize if return value is used. 3782 if (!CI->use_empty()) 3783 return nullptr; 3784 3785 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 3786 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 3787 if (!Len) 3788 return nullptr; 3789 3790 // Known to have no uses (see above). 3791 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 3792 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 3793 return copyFlags( 3794 *CI, 3795 emitFWrite(CI->getArgOperand(0), 3796 ConstantInt::get(SizeTTy, Len - 1), 3797 CI->getArgOperand(1), B, DL, TLI)); 3798 } 3799 3800 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3801 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3802 if (!CI->use_empty()) 3803 return nullptr; 3804 3805 // Check for a constant string. 3806 // puts("") -> putchar('\n') 3807 StringRef Str; 3808 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) { 3809 // putchar takes an argument of the same type as puts returns, i.e., 3810 // int, which need not be 32 bits wide. 3811 Type *IntTy = CI->getType(); 3812 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI)); 3813 } 3814 3815 return nullptr; 3816 } 3817 3818 Value *LibCallSimplifier::optimizeExit(CallInst *CI) { 3819 3820 // Mark 'exit' as cold if its not exit(0) (success). 3821 const APInt *C; 3822 if (!CI->hasFnAttr(Attribute::Cold) && 3823 match(CI->getArgOperand(0), m_APInt(C)) && !C->isZero()) { 3824 CI->addFnAttr(Attribute::Cold); 3825 } 3826 return nullptr; 3827 } 3828 3829 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3830 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3831 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3832 CI->getArgOperand(0), Align(1), 3833 CI->getArgOperand(2))); 3834 } 3835 3836 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3837 SmallString<20> FloatFuncName = FuncName; 3838 FloatFuncName += 'f'; 3839 return isLibFuncEmittable(M, TLI, FloatFuncName); 3840 } 3841 3842 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3843 IRBuilderBase &Builder) { 3844 Module *M = CI->getModule(); 3845 LibFunc Func; 3846 Function *Callee = CI->getCalledFunction(); 3847 3848 // Check for string/memory library functions. 3849 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3850 // Make sure we never change the calling convention. 3851 assert( 3852 (ignoreCallingConv(Func) || 3853 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3854 "Optimizing string/memory libcall would change the calling convention"); 3855 switch (Func) { 3856 case LibFunc_strcat: 3857 return optimizeStrCat(CI, Builder); 3858 case LibFunc_strncat: 3859 return optimizeStrNCat(CI, Builder); 3860 case LibFunc_strchr: 3861 return optimizeStrChr(CI, Builder); 3862 case LibFunc_strrchr: 3863 return optimizeStrRChr(CI, Builder); 3864 case LibFunc_strcmp: 3865 return optimizeStrCmp(CI, Builder); 3866 case LibFunc_strncmp: 3867 return optimizeStrNCmp(CI, Builder); 3868 case LibFunc_strcpy: 3869 return optimizeStrCpy(CI, Builder); 3870 case LibFunc_stpcpy: 3871 return optimizeStpCpy(CI, Builder); 3872 case LibFunc_strlcpy: 3873 return optimizeStrLCpy(CI, Builder); 3874 case LibFunc_stpncpy: 3875 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder); 3876 case LibFunc_strncpy: 3877 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder); 3878 case LibFunc_strlen: 3879 return optimizeStrLen(CI, Builder); 3880 case LibFunc_strnlen: 3881 return optimizeStrNLen(CI, Builder); 3882 case LibFunc_strpbrk: 3883 return optimizeStrPBrk(CI, Builder); 3884 case LibFunc_strndup: 3885 return optimizeStrNDup(CI, Builder); 3886 case LibFunc_strtol: 3887 case LibFunc_strtod: 3888 case LibFunc_strtof: 3889 case LibFunc_strtoul: 3890 case LibFunc_strtoll: 3891 case LibFunc_strtold: 3892 case LibFunc_strtoull: 3893 return optimizeStrTo(CI, Builder); 3894 case LibFunc_strspn: 3895 return optimizeStrSpn(CI, Builder); 3896 case LibFunc_strcspn: 3897 return optimizeStrCSpn(CI, Builder); 3898 case LibFunc_strstr: 3899 return optimizeStrStr(CI, Builder); 3900 case LibFunc_memchr: 3901 return optimizeMemChr(CI, Builder); 3902 case LibFunc_memrchr: 3903 return optimizeMemRChr(CI, Builder); 3904 case LibFunc_bcmp: 3905 return optimizeBCmp(CI, Builder); 3906 case LibFunc_memcmp: 3907 return optimizeMemCmp(CI, Builder); 3908 case LibFunc_memcpy: 3909 return optimizeMemCpy(CI, Builder); 3910 case LibFunc_memccpy: 3911 return optimizeMemCCpy(CI, Builder); 3912 case LibFunc_mempcpy: 3913 return optimizeMemPCpy(CI, Builder); 3914 case LibFunc_memmove: 3915 return optimizeMemMove(CI, Builder); 3916 case LibFunc_memset: 3917 return optimizeMemSet(CI, Builder); 3918 case LibFunc_realloc: 3919 return optimizeRealloc(CI, Builder); 3920 case LibFunc_wcslen: 3921 return optimizeWcslen(CI, Builder); 3922 case LibFunc_bcopy: 3923 return optimizeBCopy(CI, Builder); 3924 case LibFunc_Znwm: 3925 case LibFunc_ZnwmRKSt9nothrow_t: 3926 case LibFunc_ZnwmSt11align_val_t: 3927 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t: 3928 case LibFunc_Znam: 3929 case LibFunc_ZnamRKSt9nothrow_t: 3930 case LibFunc_ZnamSt11align_val_t: 3931 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t: 3932 case LibFunc_Znwm12__hot_cold_t: 3933 case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t: 3934 case LibFunc_ZnwmSt11align_val_t12__hot_cold_t: 3935 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3936 case LibFunc_Znam12__hot_cold_t: 3937 case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t: 3938 case LibFunc_ZnamSt11align_val_t12__hot_cold_t: 3939 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t: 3940 case LibFunc_size_returning_new: 3941 case LibFunc_size_returning_new_hot_cold: 3942 case LibFunc_size_returning_new_aligned: 3943 case LibFunc_size_returning_new_aligned_hot_cold: 3944 return optimizeNew(CI, Builder, Func); 3945 default: 3946 break; 3947 } 3948 } 3949 return nullptr; 3950 } 3951 3952 /// Constant folding nan/nanf/nanl. 3953 static Value *optimizeNaN(CallInst *CI) { 3954 StringRef CharSeq; 3955 if (!getConstantStringInfo(CI->getArgOperand(0), CharSeq)) 3956 return nullptr; 3957 3958 APInt Fill; 3959 // Treat empty strings as if they were zero. 3960 if (CharSeq.empty()) 3961 Fill = APInt(32, 0); 3962 else if (CharSeq.getAsInteger(0, Fill)) 3963 return nullptr; 3964 3965 return ConstantFP::getQNaN(CI->getType(), /*Negative=*/false, &Fill); 3966 } 3967 3968 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3969 LibFunc Func, 3970 IRBuilderBase &Builder) { 3971 const Module *M = CI->getModule(); 3972 3973 // Don't optimize calls that require strict floating point semantics. 3974 if (CI->isStrictFP()) 3975 return nullptr; 3976 3977 if (Value *V = optimizeSymmetric(CI, Func, Builder)) 3978 return V; 3979 3980 switch (Func) { 3981 case LibFunc_sinpif: 3982 case LibFunc_sinpi: 3983 return optimizeSinCosPi(CI, /*IsSin*/true, Builder); 3984 case LibFunc_cospif: 3985 case LibFunc_cospi: 3986 return optimizeSinCosPi(CI, /*IsSin*/false, Builder); 3987 case LibFunc_powf: 3988 case LibFunc_pow: 3989 case LibFunc_powl: 3990 return optimizePow(CI, Builder); 3991 case LibFunc_exp2l: 3992 case LibFunc_exp2: 3993 case LibFunc_exp2f: 3994 return optimizeExp2(CI, Builder); 3995 case LibFunc_fabsf: 3996 case LibFunc_fabs: 3997 case LibFunc_fabsl: 3998 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3999 case LibFunc_sqrtf: 4000 case LibFunc_sqrt: 4001 case LibFunc_sqrtl: 4002 return optimizeSqrt(CI, Builder); 4003 case LibFunc_fmod: 4004 case LibFunc_fmodf: 4005 case LibFunc_fmodl: 4006 return optimizeFMod(CI, Builder); 4007 case LibFunc_logf: 4008 case LibFunc_log: 4009 case LibFunc_logl: 4010 case LibFunc_log10f: 4011 case LibFunc_log10: 4012 case LibFunc_log10l: 4013 case LibFunc_log1pf: 4014 case LibFunc_log1p: 4015 case LibFunc_log1pl: 4016 case LibFunc_log2f: 4017 case LibFunc_log2: 4018 case LibFunc_log2l: 4019 case LibFunc_logbf: 4020 case LibFunc_logb: 4021 case LibFunc_logbl: 4022 return optimizeLog(CI, Builder); 4023 case LibFunc_tan: 4024 case LibFunc_tanf: 4025 case LibFunc_tanl: 4026 case LibFunc_sinh: 4027 case LibFunc_sinhf: 4028 case LibFunc_sinhl: 4029 case LibFunc_asinh: 4030 case LibFunc_asinhf: 4031 case LibFunc_asinhl: 4032 case LibFunc_cosh: 4033 case LibFunc_coshf: 4034 case LibFunc_coshl: 4035 case LibFunc_atanh: 4036 case LibFunc_atanhf: 4037 case LibFunc_atanhl: 4038 return optimizeTrigInversionPairs(CI, Builder); 4039 case LibFunc_ceil: 4040 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 4041 case LibFunc_floor: 4042 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 4043 case LibFunc_round: 4044 return replaceUnaryCall(CI, Builder, Intrinsic::round); 4045 case LibFunc_roundeven: 4046 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 4047 case LibFunc_nearbyint: 4048 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 4049 case LibFunc_rint: 4050 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 4051 case LibFunc_trunc: 4052 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 4053 case LibFunc_acos: 4054 case LibFunc_acosh: 4055 case LibFunc_asin: 4056 case LibFunc_atan: 4057 case LibFunc_cbrt: 4058 case LibFunc_exp: 4059 case LibFunc_exp10: 4060 case LibFunc_expm1: 4061 case LibFunc_cos: 4062 case LibFunc_sin: 4063 case LibFunc_tanh: 4064 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 4065 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 4066 return nullptr; 4067 case LibFunc_copysign: 4068 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 4069 return optimizeBinaryDoubleFP(CI, Builder, TLI); 4070 return nullptr; 4071 case LibFunc_fdim: 4072 case LibFunc_fdimf: 4073 case LibFunc_fdiml: 4074 return optimizeFdim(CI, Builder); 4075 case LibFunc_fminf: 4076 case LibFunc_fmin: 4077 case LibFunc_fminl: 4078 case LibFunc_fmaxf: 4079 case LibFunc_fmax: 4080 case LibFunc_fmaxl: 4081 return optimizeFMinFMax(CI, Builder); 4082 case LibFunc_cabs: 4083 case LibFunc_cabsf: 4084 case LibFunc_cabsl: 4085 return optimizeCAbs(CI, Builder); 4086 case LibFunc_remquo: 4087 case LibFunc_remquof: 4088 case LibFunc_remquol: 4089 return optimizeRemquo(CI, Builder); 4090 case LibFunc_nan: 4091 case LibFunc_nanf: 4092 case LibFunc_nanl: 4093 return optimizeNaN(CI); 4094 default: 4095 return nullptr; 4096 } 4097 } 4098 4099 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 4100 Module *M = CI->getModule(); 4101 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 4102 4103 // TODO: Split out the code below that operates on FP calls so that 4104 // we can all non-FP calls with the StrictFP attribute to be 4105 // optimized. 4106 if (CI->isNoBuiltin()) 4107 return nullptr; 4108 4109 LibFunc Func; 4110 Function *Callee = CI->getCalledFunction(); 4111 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4112 4113 SmallVector<OperandBundleDef, 2> OpBundles; 4114 CI->getOperandBundlesAsDefs(OpBundles); 4115 4116 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4117 Builder.setDefaultOperandBundles(OpBundles); 4118 4119 // Command-line parameter overrides instruction attribute. 4120 // This can't be moved to optimizeFloatingPointLibCall() because it may be 4121 // used by the intrinsic optimizations. 4122 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 4123 UnsafeFPShrink = EnableUnsafeFPShrink; 4124 else if (isa<FPMathOperator>(CI) && CI->isFast()) 4125 UnsafeFPShrink = true; 4126 4127 // First, check for intrinsics. 4128 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 4129 if (!IsCallingConvC) 4130 return nullptr; 4131 // The FP intrinsics have corresponding constrained versions so we don't 4132 // need to check for the StrictFP attribute here. 4133 switch (II->getIntrinsicID()) { 4134 case Intrinsic::pow: 4135 return optimizePow(CI, Builder); 4136 case Intrinsic::exp2: 4137 return optimizeExp2(CI, Builder); 4138 case Intrinsic::log: 4139 case Intrinsic::log2: 4140 case Intrinsic::log10: 4141 return optimizeLog(CI, Builder); 4142 case Intrinsic::sqrt: 4143 return optimizeSqrt(CI, Builder); 4144 case Intrinsic::memset: 4145 return optimizeMemSet(CI, Builder); 4146 case Intrinsic::memcpy: 4147 return optimizeMemCpy(CI, Builder); 4148 case Intrinsic::memmove: 4149 return optimizeMemMove(CI, Builder); 4150 default: 4151 return nullptr; 4152 } 4153 } 4154 4155 // Also try to simplify calls to fortified library functions. 4156 if (Value *SimplifiedFortifiedCI = 4157 FortifiedSimplifier.optimizeCall(CI, Builder)) 4158 return SimplifiedFortifiedCI; 4159 4160 // Then check for known library functions. 4161 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 4162 // We never change the calling convention. 4163 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4164 return nullptr; 4165 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 4166 return V; 4167 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 4168 return V; 4169 switch (Func) { 4170 case LibFunc_ffs: 4171 case LibFunc_ffsl: 4172 case LibFunc_ffsll: 4173 return optimizeFFS(CI, Builder); 4174 case LibFunc_fls: 4175 case LibFunc_flsl: 4176 case LibFunc_flsll: 4177 return optimizeFls(CI, Builder); 4178 case LibFunc_abs: 4179 case LibFunc_labs: 4180 case LibFunc_llabs: 4181 return optimizeAbs(CI, Builder); 4182 case LibFunc_isdigit: 4183 return optimizeIsDigit(CI, Builder); 4184 case LibFunc_isascii: 4185 return optimizeIsAscii(CI, Builder); 4186 case LibFunc_toascii: 4187 return optimizeToAscii(CI, Builder); 4188 case LibFunc_atoi: 4189 case LibFunc_atol: 4190 case LibFunc_atoll: 4191 return optimizeAtoi(CI, Builder); 4192 case LibFunc_strtol: 4193 case LibFunc_strtoll: 4194 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true); 4195 case LibFunc_strtoul: 4196 case LibFunc_strtoull: 4197 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false); 4198 case LibFunc_printf: 4199 return optimizePrintF(CI, Builder); 4200 case LibFunc_sprintf: 4201 return optimizeSPrintF(CI, Builder); 4202 case LibFunc_snprintf: 4203 return optimizeSnPrintF(CI, Builder); 4204 case LibFunc_fprintf: 4205 return optimizeFPrintF(CI, Builder); 4206 case LibFunc_fwrite: 4207 return optimizeFWrite(CI, Builder); 4208 case LibFunc_fputs: 4209 return optimizeFPuts(CI, Builder); 4210 case LibFunc_puts: 4211 return optimizePuts(CI, Builder); 4212 case LibFunc_perror: 4213 return optimizeErrorReporting(CI, Builder); 4214 case LibFunc_vfprintf: 4215 case LibFunc_fiprintf: 4216 return optimizeErrorReporting(CI, Builder, 0); 4217 case LibFunc_exit: 4218 case LibFunc_Exit: 4219 return optimizeExit(CI); 4220 default: 4221 return nullptr; 4222 } 4223 } 4224 return nullptr; 4225 } 4226 4227 LibCallSimplifier::LibCallSimplifier( 4228 const DataLayout &DL, const TargetLibraryInfo *TLI, DominatorTree *DT, 4229 DomConditionCache *DC, AssumptionCache *AC, OptimizationRemarkEmitter &ORE, 4230 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 4231 function_ref<void(Instruction *, Value *)> Replacer, 4232 function_ref<void(Instruction *)> Eraser) 4233 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), DT(DT), DC(DC), AC(AC), 4234 ORE(ORE), BFI(BFI), PSI(PSI), Replacer(Replacer), Eraser(Eraser) {} 4235 4236 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 4237 // Indirect through the replacer used in this instance. 4238 Replacer(I, With); 4239 } 4240 4241 void LibCallSimplifier::eraseFromParent(Instruction *I) { 4242 Eraser(I); 4243 } 4244 4245 // TODO: 4246 // Additional cases that we need to add to this file: 4247 // 4248 // cbrt: 4249 // * cbrt(expN(X)) -> expN(x/3) 4250 // * cbrt(sqrt(x)) -> pow(x,1/6) 4251 // * cbrt(cbrt(x)) -> pow(x,1/9) 4252 // 4253 // exp, expf, expl: 4254 // * exp(log(x)) -> x 4255 // 4256 // log, logf, logl: 4257 // * log(exp(x)) -> x 4258 // * log(exp(y)) -> y*log(e) 4259 // * log(exp10(y)) -> y*log(10) 4260 // * log(sqrt(x)) -> 0.5*log(x) 4261 // 4262 // pow, powf, powl: 4263 // * pow(sqrt(x),y) -> pow(x,y*0.5) 4264 // * pow(pow(x,y),z)-> pow(x,y*z) 4265 // 4266 // signbit: 4267 // * signbit(cnst) -> cnst' 4268 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 4269 // 4270 // sqrt, sqrtf, sqrtl: 4271 // * sqrt(expN(x)) -> expN(x*0.5) 4272 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 4273 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 4274 // 4275 4276 //===----------------------------------------------------------------------===// 4277 // Fortified Library Call Optimizations 4278 //===----------------------------------------------------------------------===// 4279 4280 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable( 4281 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp, 4282 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) { 4283 // If this function takes a flag argument, the implementation may use it to 4284 // perform extra checks. Don't fold into the non-checking variant. 4285 if (FlagOp) { 4286 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 4287 if (!Flag || !Flag->isZero()) 4288 return false; 4289 } 4290 4291 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 4292 return true; 4293 4294 if (ConstantInt *ObjSizeCI = 4295 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 4296 if (ObjSizeCI->isMinusOne()) 4297 return true; 4298 // If the object size wasn't -1 (unknown), bail out if we were asked to. 4299 if (OnlyLowerUnknownSize) 4300 return false; 4301 if (StrOp) { 4302 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 4303 // If the length is 0 we don't know how long it is and so we can't 4304 // remove the check. 4305 if (Len) 4306 annotateDereferenceableBytes(CI, *StrOp, Len); 4307 else 4308 return false; 4309 return ObjSizeCI->getZExtValue() >= Len; 4310 } 4311 4312 if (SizeOp) { 4313 if (ConstantInt *SizeCI = 4314 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 4315 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 4316 } 4317 } 4318 return false; 4319 } 4320 4321 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 4322 IRBuilderBase &B) { 4323 if (isFortifiedCallFoldable(CI, 3, 2)) { 4324 CallInst *NewCI = 4325 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4326 Align(1), CI->getArgOperand(2)); 4327 mergeAttributesAndFlags(NewCI, *CI); 4328 return CI->getArgOperand(0); 4329 } 4330 return nullptr; 4331 } 4332 4333 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 4334 IRBuilderBase &B) { 4335 if (isFortifiedCallFoldable(CI, 3, 2)) { 4336 CallInst *NewCI = 4337 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 4338 Align(1), CI->getArgOperand(2)); 4339 mergeAttributesAndFlags(NewCI, *CI); 4340 return CI->getArgOperand(0); 4341 } 4342 return nullptr; 4343 } 4344 4345 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 4346 IRBuilderBase &B) { 4347 if (isFortifiedCallFoldable(CI, 3, 2)) { 4348 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 4349 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 4350 CI->getArgOperand(2), Align(1)); 4351 mergeAttributesAndFlags(NewCI, *CI); 4352 return CI->getArgOperand(0); 4353 } 4354 return nullptr; 4355 } 4356 4357 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 4358 IRBuilderBase &B) { 4359 const DataLayout &DL = CI->getDataLayout(); 4360 if (isFortifiedCallFoldable(CI, 3, 2)) 4361 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4362 CI->getArgOperand(2), B, DL, TLI)) { 4363 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI); 4364 } 4365 return nullptr; 4366 } 4367 4368 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 4369 IRBuilderBase &B, 4370 LibFunc Func) { 4371 const DataLayout &DL = CI->getDataLayout(); 4372 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 4373 *ObjSize = CI->getArgOperand(2); 4374 4375 // __stpcpy_chk(x,x,...) -> x+strlen(x) 4376 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 4377 Value *StrLen = emitStrLen(Src, B, DL, TLI); 4378 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 4379 } 4380 4381 // If a) we don't have any length information, or b) we know this will 4382 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 4383 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 4384 // TODO: It might be nice to get a maximum length out of the possible 4385 // string lengths for varying. 4386 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) { 4387 if (Func == LibFunc_strcpy_chk) 4388 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 4389 else 4390 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 4391 } 4392 4393 if (OnlyLowerUnknownSize) 4394 return nullptr; 4395 4396 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 4397 uint64_t Len = GetStringLength(Src); 4398 if (Len) 4399 annotateDereferenceableBytes(CI, 1, Len); 4400 else 4401 return nullptr; 4402 4403 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule()); 4404 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits); 4405 Value *LenV = ConstantInt::get(SizeTTy, Len); 4406 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 4407 // If the function was an __stpcpy_chk, and we were able to fold it into 4408 // a __memcpy_chk, we still need to return the correct end pointer. 4409 if (Ret && Func == LibFunc_stpcpy_chk) 4410 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, 4411 ConstantInt::get(SizeTTy, Len - 1)); 4412 return copyFlags(*CI, cast<CallInst>(Ret)); 4413 } 4414 4415 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 4416 IRBuilderBase &B) { 4417 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0)) 4418 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 4419 CI->getDataLayout(), TLI)); 4420 return nullptr; 4421 } 4422 4423 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 4424 IRBuilderBase &B, 4425 LibFunc Func) { 4426 if (isFortifiedCallFoldable(CI, 3, 2)) { 4427 if (Func == LibFunc_strncpy_chk) 4428 return copyFlags(*CI, 4429 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4430 CI->getArgOperand(2), B, TLI)); 4431 else 4432 return copyFlags(*CI, 4433 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4434 CI->getArgOperand(2), B, TLI)); 4435 } 4436 4437 return nullptr; 4438 } 4439 4440 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 4441 IRBuilderBase &B) { 4442 if (isFortifiedCallFoldable(CI, 4, 3)) 4443 return copyFlags( 4444 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4445 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 4446 4447 return nullptr; 4448 } 4449 4450 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 4451 IRBuilderBase &B) { 4452 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) { 4453 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 4454 return copyFlags(*CI, 4455 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4456 CI->getArgOperand(4), VariadicArgs, B, TLI)); 4457 } 4458 4459 return nullptr; 4460 } 4461 4462 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 4463 IRBuilderBase &B) { 4464 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) { 4465 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 4466 return copyFlags(*CI, 4467 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4468 VariadicArgs, B, TLI)); 4469 } 4470 4471 return nullptr; 4472 } 4473 4474 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 4475 IRBuilderBase &B) { 4476 if (isFortifiedCallFoldable(CI, 2)) 4477 return copyFlags( 4478 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 4479 4480 return nullptr; 4481 } 4482 4483 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 4484 IRBuilderBase &B) { 4485 if (isFortifiedCallFoldable(CI, 3)) 4486 return copyFlags(*CI, 4487 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 4488 CI->getArgOperand(2), B, TLI)); 4489 4490 return nullptr; 4491 } 4492 4493 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 4494 IRBuilderBase &B) { 4495 if (isFortifiedCallFoldable(CI, 3)) 4496 return copyFlags(*CI, 4497 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 4498 CI->getArgOperand(2), B, TLI)); 4499 4500 return nullptr; 4501 } 4502 4503 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 4504 IRBuilderBase &B) { 4505 if (isFortifiedCallFoldable(CI, 3)) 4506 return copyFlags(*CI, 4507 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 4508 CI->getArgOperand(2), B, TLI)); 4509 4510 return nullptr; 4511 } 4512 4513 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 4514 IRBuilderBase &B) { 4515 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) 4516 return copyFlags( 4517 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 4518 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 4519 4520 return nullptr; 4521 } 4522 4523 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 4524 IRBuilderBase &B) { 4525 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) 4526 return copyFlags(*CI, 4527 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 4528 CI->getArgOperand(4), B, TLI)); 4529 4530 return nullptr; 4531 } 4532 4533 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 4534 IRBuilderBase &Builder) { 4535 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 4536 // Some clang users checked for _chk libcall availability using: 4537 // __has_builtin(__builtin___memcpy_chk) 4538 // When compiling with -fno-builtin, this is always true. 4539 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 4540 // end up with fortified libcalls, which isn't acceptable in a freestanding 4541 // environment which only provides their non-fortified counterparts. 4542 // 4543 // Until we change clang and/or teach external users to check for availability 4544 // differently, disregard the "nobuiltin" attribute and TLI::has. 4545 // 4546 // PR23093. 4547 4548 LibFunc Func; 4549 Function *Callee = CI->getCalledFunction(); 4550 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 4551 4552 SmallVector<OperandBundleDef, 2> OpBundles; 4553 CI->getOperandBundlesAsDefs(OpBundles); 4554 4555 IRBuilderBase::OperandBundlesGuard Guard(Builder); 4556 Builder.setDefaultOperandBundles(OpBundles); 4557 4558 // First, check that this is a known library functions and that the prototype 4559 // is correct. 4560 if (!TLI->getLibFunc(*Callee, Func)) 4561 return nullptr; 4562 4563 // We never change the calling convention. 4564 if (!ignoreCallingConv(Func) && !IsCallingConvC) 4565 return nullptr; 4566 4567 switch (Func) { 4568 case LibFunc_memcpy_chk: 4569 return optimizeMemCpyChk(CI, Builder); 4570 case LibFunc_mempcpy_chk: 4571 return optimizeMemPCpyChk(CI, Builder); 4572 case LibFunc_memmove_chk: 4573 return optimizeMemMoveChk(CI, Builder); 4574 case LibFunc_memset_chk: 4575 return optimizeMemSetChk(CI, Builder); 4576 case LibFunc_stpcpy_chk: 4577 case LibFunc_strcpy_chk: 4578 return optimizeStrpCpyChk(CI, Builder, Func); 4579 case LibFunc_strlen_chk: 4580 return optimizeStrLenChk(CI, Builder); 4581 case LibFunc_stpncpy_chk: 4582 case LibFunc_strncpy_chk: 4583 return optimizeStrpNCpyChk(CI, Builder, Func); 4584 case LibFunc_memccpy_chk: 4585 return optimizeMemCCpyChk(CI, Builder); 4586 case LibFunc_snprintf_chk: 4587 return optimizeSNPrintfChk(CI, Builder); 4588 case LibFunc_sprintf_chk: 4589 return optimizeSPrintfChk(CI, Builder); 4590 case LibFunc_strcat_chk: 4591 return optimizeStrCatChk(CI, Builder); 4592 case LibFunc_strlcat_chk: 4593 return optimizeStrLCat(CI, Builder); 4594 case LibFunc_strncat_chk: 4595 return optimizeStrNCatChk(CI, Builder); 4596 case LibFunc_strlcpy_chk: 4597 return optimizeStrLCpyChk(CI, Builder); 4598 case LibFunc_vsnprintf_chk: 4599 return optimizeVSNPrintfChk(CI, Builder); 4600 case LibFunc_vsprintf_chk: 4601 return optimizeVSPrintfChk(CI, Builder); 4602 default: 4603 break; 4604 } 4605 return nullptr; 4606 } 4607 4608 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 4609 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 4610 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 4611