xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp (revision 4a0d53a0b0a58a3c6980a7c551357ac71ba3db10)
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements induction variable simplification. It does
10 // not define any actual pass or policy, but provides a single function to
11 // simplify a loop's induction variables based on ScalarEvolution.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 #define DEBUG_TYPE "indvars"
35 
36 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
37 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
38 STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
39 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
40 STATISTIC(
41     NumSimplifiedSDiv,
42     "Number of IV signed division operations converted to unsigned division");
43 STATISTIC(
44     NumSimplifiedSRem,
45     "Number of IV signed remainder operations converted to unsigned remainder");
46 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
47 
48 namespace {
49   /// This is a utility for simplifying induction variables
50   /// based on ScalarEvolution. It is the primary instrument of the
51   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
52   /// other loop passes that preserve SCEV.
53   class SimplifyIndvar {
54     Loop             *L;
55     LoopInfo         *LI;
56     ScalarEvolution  *SE;
57     DominatorTree    *DT;
58     const TargetTransformInfo *TTI;
59     SCEVExpander     &Rewriter;
60     SmallVectorImpl<WeakTrackingVH> &DeadInsts;
61 
62     bool Changed = false;
63     bool RunUnswitching = false;
64 
65   public:
66     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
67                    LoopInfo *LI, const TargetTransformInfo *TTI,
68                    SCEVExpander &Rewriter,
69                    SmallVectorImpl<WeakTrackingVH> &Dead)
70         : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
71           DeadInsts(Dead) {
72       assert(LI && "IV simplification requires LoopInfo");
73     }
74 
75     bool hasChanged() const { return Changed; }
76     bool runUnswitching() const { return RunUnswitching; }
77 
78     /// Iteratively perform simplification on a worklist of users of the
79     /// specified induction variable. This is the top-level driver that applies
80     /// all simplifications to users of an IV.
81     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
82 
83     void pushIVUsers(Instruction *Def,
84                      SmallPtrSet<Instruction *, 16> &Simplified,
85                      SmallVectorImpl<std::pair<Instruction *, Instruction *>>
86                          &SimpleIVUsers);
87 
88     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
89 
90     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
91     bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
92     bool replaceFloatIVWithIntegerIV(Instruction *UseInst);
93 
94     bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
95     bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
96     bool eliminateTrunc(TruncInst *TI);
97     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
98     bool makeIVComparisonInvariant(ICmpInst *ICmp, Instruction *IVOperand);
99     void eliminateIVComparison(ICmpInst *ICmp, Instruction *IVOperand);
100     void simplifyIVRemainder(BinaryOperator *Rem, Instruction *IVOperand,
101                              bool IsSigned);
102     void replaceRemWithNumerator(BinaryOperator *Rem);
103     void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
104     void replaceSRemWithURem(BinaryOperator *Rem);
105     bool eliminateSDiv(BinaryOperator *SDiv);
106     bool strengthenBinaryOp(BinaryOperator *BO, Instruction *IVOperand);
107     bool strengthenOverflowingOperation(BinaryOperator *OBO,
108                                         Instruction *IVOperand);
109     bool strengthenRightShift(BinaryOperator *BO, Instruction *IVOperand);
110   };
111 }
112 
113 /// Find a point in code which dominates all given instructions. We can safely
114 /// assume that, whatever fact we can prove at the found point, this fact is
115 /// also true for each of the given instructions.
116 static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
117                                         DominatorTree &DT) {
118   Instruction *CommonDom = nullptr;
119   for (auto *Insn : Instructions)
120     CommonDom =
121         CommonDom ? DT.findNearestCommonDominator(CommonDom, Insn) : Insn;
122   assert(CommonDom && "Common dominator not found?");
123   return CommonDom;
124 }
125 
126 /// Fold an IV operand into its use.  This removes increments of an
127 /// aligned IV when used by a instruction that ignores the low bits.
128 ///
129 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
130 ///
131 /// Return the operand of IVOperand for this induction variable if IVOperand can
132 /// be folded (in case more folding opportunities have been exposed).
133 /// Otherwise return null.
134 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
135   Value *IVSrc = nullptr;
136   const unsigned OperIdx = 0;
137   const SCEV *FoldedExpr = nullptr;
138   bool MustDropExactFlag = false;
139   switch (UseInst->getOpcode()) {
140   default:
141     return nullptr;
142   case Instruction::UDiv:
143   case Instruction::LShr:
144     // We're only interested in the case where we know something about
145     // the numerator and have a constant denominator.
146     if (IVOperand != UseInst->getOperand(OperIdx) ||
147         !isa<ConstantInt>(UseInst->getOperand(1)))
148       return nullptr;
149 
150     // Attempt to fold a binary operator with constant operand.
151     // e.g. ((I + 1) >> 2) => I >> 2
152     if (!isa<BinaryOperator>(IVOperand)
153         || !isa<ConstantInt>(IVOperand->getOperand(1)))
154       return nullptr;
155 
156     IVSrc = IVOperand->getOperand(0);
157     // IVSrc must be the (SCEVable) IV, since the other operand is const.
158     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
159 
160     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
161     if (UseInst->getOpcode() == Instruction::LShr) {
162       // Get a constant for the divisor. See createSCEV.
163       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
164       if (D->getValue().uge(BitWidth))
165         return nullptr;
166 
167       D = ConstantInt::get(UseInst->getContext(),
168                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
169     }
170     const SCEV *LHS = SE->getSCEV(IVSrc);
171     const SCEV *RHS = SE->getSCEV(D);
172     FoldedExpr = SE->getUDivExpr(LHS, RHS);
173     // We might have 'exact' flag set at this point which will no longer be
174     // correct after we make the replacement.
175     if (UseInst->isExact() && LHS != SE->getMulExpr(FoldedExpr, RHS))
176       MustDropExactFlag = true;
177   }
178   // We have something that might fold it's operand. Compare SCEVs.
179   if (!SE->isSCEVable(UseInst->getType()))
180     return nullptr;
181 
182   // Bypass the operand if SCEV can prove it has no effect.
183   if (SE->getSCEV(UseInst) != FoldedExpr)
184     return nullptr;
185 
186   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
187                     << " -> " << *UseInst << '\n');
188 
189   UseInst->setOperand(OperIdx, IVSrc);
190   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
191 
192   if (MustDropExactFlag)
193     UseInst->dropPoisonGeneratingFlags();
194 
195   ++NumElimOperand;
196   Changed = true;
197   if (IVOperand->use_empty())
198     DeadInsts.emplace_back(IVOperand);
199   return IVSrc;
200 }
201 
202 bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
203                                                Instruction *IVOperand) {
204   auto *Preheader = L->getLoopPreheader();
205   if (!Preheader)
206     return false;
207   unsigned IVOperIdx = 0;
208   ICmpInst::Predicate Pred = ICmp->getPredicate();
209   if (IVOperand != ICmp->getOperand(0)) {
210     // Swapped
211     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
212     IVOperIdx = 1;
213     Pred = ICmpInst::getSwappedPredicate(Pred);
214   }
215 
216   // Get the SCEVs for the ICmp operands (in the specific context of the
217   // current loop)
218   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
219   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
220   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
221   auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L, ICmp);
222   if (!LIP)
223     return false;
224   ICmpInst::Predicate InvariantPredicate = LIP->Pred;
225   const SCEV *InvariantLHS = LIP->LHS;
226   const SCEV *InvariantRHS = LIP->RHS;
227 
228   // Do not generate something ridiculous.
229   auto *PHTerm = Preheader->getTerminator();
230   if (Rewriter.isHighCostExpansion({InvariantLHS, InvariantRHS}, L,
231                                    2 * SCEVCheapExpansionBudget, TTI, PHTerm) ||
232       !Rewriter.isSafeToExpandAt(InvariantLHS, PHTerm) ||
233       !Rewriter.isSafeToExpandAt(InvariantRHS, PHTerm))
234     return false;
235   auto *NewLHS =
236       Rewriter.expandCodeFor(InvariantLHS, IVOperand->getType(), PHTerm);
237   auto *NewRHS =
238       Rewriter.expandCodeFor(InvariantRHS, IVOperand->getType(), PHTerm);
239   LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
240   ICmp->setPredicate(InvariantPredicate);
241   ICmp->setOperand(0, NewLHS);
242   ICmp->setOperand(1, NewRHS);
243   RunUnswitching = true;
244   return true;
245 }
246 
247 /// SimplifyIVUsers helper for eliminating useless
248 /// comparisons against an induction variable.
249 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp,
250                                            Instruction *IVOperand) {
251   unsigned IVOperIdx = 0;
252   ICmpInst::Predicate Pred = ICmp->getPredicate();
253   ICmpInst::Predicate OriginalPred = Pred;
254   if (IVOperand != ICmp->getOperand(0)) {
255     // Swapped
256     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
257     IVOperIdx = 1;
258     Pred = ICmpInst::getSwappedPredicate(Pred);
259   }
260 
261   // Get the SCEVs for the ICmp operands (in the specific context of the
262   // current loop)
263   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
264   const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
265   const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
266 
267   // If the condition is always true or always false in the given context,
268   // replace it with a constant value.
269   SmallVector<Instruction *, 4> Users;
270   for (auto *U : ICmp->users())
271     Users.push_back(cast<Instruction>(U));
272   const Instruction *CtxI = findCommonDominator(Users, *DT);
273   if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
274     SE->forgetValue(ICmp);
275     ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
276     DeadInsts.emplace_back(ICmp);
277     LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
278   } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
279     // fallthrough to end of function
280   } else if (ICmpInst::isSigned(OriginalPred) &&
281              SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
282     // If we were unable to make anything above, all we can is to canonicalize
283     // the comparison hoping that it will open the doors for other
284     // optimizations. If we find out that we compare two non-negative values,
285     // we turn the instruction's predicate to its unsigned version. Note that
286     // we cannot rely on Pred here unless we check if we have swapped it.
287     assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
288     LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
289                       << '\n');
290     ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
291   } else
292     return;
293 
294   ++NumElimCmp;
295   Changed = true;
296 }
297 
298 bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
299   // Get the SCEVs for the ICmp operands.
300   const SCEV *N = SE->getSCEV(SDiv->getOperand(0));
301   const SCEV *D = SE->getSCEV(SDiv->getOperand(1));
302 
303   // Simplify unnecessary loops away.
304   const Loop *L = LI->getLoopFor(SDiv->getParent());
305   N = SE->getSCEVAtScope(N, L);
306   D = SE->getSCEVAtScope(D, L);
307 
308   // Replace sdiv by udiv if both of the operands are non-negative
309   if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
310     auto *UDiv = BinaryOperator::Create(
311         BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
312         SDiv->getName() + ".udiv", SDiv->getIterator());
313     UDiv->setIsExact(SDiv->isExact());
314     SDiv->replaceAllUsesWith(UDiv);
315     UDiv->setDebugLoc(SDiv->getDebugLoc());
316     LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
317     ++NumSimplifiedSDiv;
318     Changed = true;
319     DeadInsts.push_back(SDiv);
320     return true;
321   }
322 
323   return false;
324 }
325 
326 // i %s n -> i %u n if i >= 0 and n >= 0
327 void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
328   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
329   auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
330                                       Rem->getName() + ".urem", Rem->getIterator());
331   Rem->replaceAllUsesWith(URem);
332   URem->setDebugLoc(Rem->getDebugLoc());
333   LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
334   ++NumSimplifiedSRem;
335   Changed = true;
336   DeadInsts.emplace_back(Rem);
337 }
338 
339 // i % n  -->  i  if i is in [0,n).
340 void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
341   Rem->replaceAllUsesWith(Rem->getOperand(0));
342   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
343   ++NumElimRem;
344   Changed = true;
345   DeadInsts.emplace_back(Rem);
346 }
347 
348 // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
349 void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
350   auto *T = Rem->getType();
351   auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
352   ICmpInst *ICmp = new ICmpInst(Rem->getIterator(), ICmpInst::ICMP_EQ, N, D);
353   SelectInst *Sel =
354       SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem->getIterator());
355   Rem->replaceAllUsesWith(Sel);
356   Sel->setDebugLoc(Rem->getDebugLoc());
357   LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
358   ++NumElimRem;
359   Changed = true;
360   DeadInsts.emplace_back(Rem);
361 }
362 
363 /// SimplifyIVUsers helper for eliminating useless remainder operations
364 /// operating on an induction variable or replacing srem by urem.
365 void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem,
366                                          Instruction *IVOperand,
367                                          bool IsSigned) {
368   auto *NValue = Rem->getOperand(0);
369   auto *DValue = Rem->getOperand(1);
370   // We're only interested in the case where we know something about
371   // the numerator, unless it is a srem, because we want to replace srem by urem
372   // in general.
373   bool UsedAsNumerator = IVOperand == NValue;
374   if (!UsedAsNumerator && !IsSigned)
375     return;
376 
377   const SCEV *N = SE->getSCEV(NValue);
378 
379   // Simplify unnecessary loops away.
380   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
381   N = SE->getSCEVAtScope(N, ICmpLoop);
382 
383   bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
384 
385   // Do not proceed if the Numerator may be negative
386   if (!IsNumeratorNonNegative)
387     return;
388 
389   const SCEV *D = SE->getSCEV(DValue);
390   D = SE->getSCEVAtScope(D, ICmpLoop);
391 
392   if (UsedAsNumerator) {
393     auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
394     if (SE->isKnownPredicate(LT, N, D)) {
395       replaceRemWithNumerator(Rem);
396       return;
397     }
398 
399     auto *T = Rem->getType();
400     const SCEV *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
401     if (SE->isKnownPredicate(LT, NLessOne, D)) {
402       replaceRemWithNumeratorOrZero(Rem);
403       return;
404     }
405   }
406 
407   // Try to replace SRem with URem, if both N and D are known non-negative.
408   // Since we had already check N, we only need to check D now
409   if (!IsSigned || !SE->isKnownNonNegative(D))
410     return;
411 
412   replaceSRemWithURem(Rem);
413 }
414 
415 bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
416   const SCEV *LHS = SE->getSCEV(WO->getLHS());
417   const SCEV *RHS = SE->getSCEV(WO->getRHS());
418   if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
419     return false;
420 
421   // Proved no overflow, nuke the overflow check and, if possible, the overflow
422   // intrinsic as well.
423 
424   BinaryOperator *NewResult = BinaryOperator::Create(
425       WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO->getIterator());
426 
427   if (WO->isSigned())
428     NewResult->setHasNoSignedWrap(true);
429   else
430     NewResult->setHasNoUnsignedWrap(true);
431 
432   SmallVector<ExtractValueInst *, 4> ToDelete;
433 
434   for (auto *U : WO->users()) {
435     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
436       if (EVI->getIndices()[0] == 1)
437         EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
438       else {
439         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
440         EVI->replaceAllUsesWith(NewResult);
441         NewResult->setDebugLoc(EVI->getDebugLoc());
442       }
443       ToDelete.push_back(EVI);
444     }
445   }
446 
447   for (auto *EVI : ToDelete)
448     EVI->eraseFromParent();
449 
450   if (WO->use_empty())
451     WO->eraseFromParent();
452 
453   Changed = true;
454   return true;
455 }
456 
457 bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
458   const SCEV *LHS = SE->getSCEV(SI->getLHS());
459   const SCEV *RHS = SE->getSCEV(SI->getRHS());
460   if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
461     return false;
462 
463   BinaryOperator *BO = BinaryOperator::Create(
464       SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator());
465   if (SI->isSigned())
466     BO->setHasNoSignedWrap();
467   else
468     BO->setHasNoUnsignedWrap();
469 
470   SI->replaceAllUsesWith(BO);
471   BO->setDebugLoc(SI->getDebugLoc());
472   DeadInsts.emplace_back(SI);
473   Changed = true;
474   return true;
475 }
476 
477 bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
478   // It is always legal to replace
479   //   icmp <pred> i32 trunc(iv), n
480   // with
481   //   icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
482   // Or with
483   //   icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
484   // Or with either of these if pred is an equality predicate.
485   //
486   // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
487   // every comparison which uses trunc, it means that we can replace each of
488   // them with comparison of iv against sext/zext(n). We no longer need trunc
489   // after that.
490   //
491   // TODO: Should we do this if we can widen *some* comparisons, but not all
492   // of them? Sometimes it is enough to enable other optimizations, but the
493   // trunc instruction will stay in the loop.
494   Value *IV = TI->getOperand(0);
495   Type *IVTy = IV->getType();
496   const SCEV *IVSCEV = SE->getSCEV(IV);
497   const SCEV *TISCEV = SE->getSCEV(TI);
498 
499   // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
500   // get rid of trunc
501   bool DoesSExtCollapse = false;
502   bool DoesZExtCollapse = false;
503   if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
504     DoesSExtCollapse = true;
505   if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
506     DoesZExtCollapse = true;
507 
508   // If neither sext nor zext does collapse, it is not profitable to do any
509   // transform. Bail.
510   if (!DoesSExtCollapse && !DoesZExtCollapse)
511     return false;
512 
513   // Collect users of the trunc that look like comparisons against invariants.
514   // Bail if we find something different.
515   SmallVector<ICmpInst *, 4> ICmpUsers;
516   for (auto *U : TI->users()) {
517     // We don't care about users in unreachable blocks.
518     if (isa<Instruction>(U) &&
519         !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
520       continue;
521     ICmpInst *ICI = dyn_cast<ICmpInst>(U);
522     if (!ICI) return false;
523     assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
524     if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
525         !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
526       return false;
527     // If we cannot get rid of trunc, bail.
528     if (ICI->isSigned() && !DoesSExtCollapse)
529       return false;
530     if (ICI->isUnsigned() && !DoesZExtCollapse)
531       return false;
532     // For equality, either signed or unsigned works.
533     ICmpUsers.push_back(ICI);
534   }
535 
536   auto CanUseZExt = [&](ICmpInst *ICI) {
537     // Unsigned comparison can be widened as unsigned.
538     if (ICI->isUnsigned())
539       return true;
540     // Is it profitable to do zext?
541     if (!DoesZExtCollapse)
542       return false;
543     // For equality, we can safely zext both parts.
544     if (ICI->isEquality())
545       return true;
546     // Otherwise we can only use zext when comparing two non-negative or two
547     // negative values. But in practice, we will never pass DoesZExtCollapse
548     // check for a negative value, because zext(trunc(x)) is non-negative. So
549     // it only make sense to check for non-negativity here.
550     const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
551     const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
552     return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
553   };
554   // Replace all comparisons against trunc with comparisons against IV.
555   for (auto *ICI : ICmpUsers) {
556     bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
557     auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
558     IRBuilder<> Builder(ICI);
559     Value *Ext = nullptr;
560     // For signed/unsigned predicate, replace the old comparison with comparison
561     // of immediate IV against sext/zext of the invariant argument. If we can
562     // use either sext or zext (i.e. we are dealing with equality predicate),
563     // then prefer zext as a more canonical form.
564     // TODO: If we see a signed comparison which can be turned into unsigned,
565     // we can do it here for canonicalization purposes.
566     ICmpInst::Predicate Pred = ICI->getPredicate();
567     if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
568     if (CanUseZExt(ICI)) {
569       assert(DoesZExtCollapse && "Unprofitable zext?");
570       Ext = Builder.CreateZExt(Op1, IVTy, "zext");
571       Pred = ICmpInst::getUnsignedPredicate(Pred);
572     } else {
573       assert(DoesSExtCollapse && "Unprofitable sext?");
574       Ext = Builder.CreateSExt(Op1, IVTy, "sext");
575       assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
576     }
577     bool Changed;
578     L->makeLoopInvariant(Ext, Changed);
579     (void)Changed;
580     auto *NewCmp = Builder.CreateICmp(Pred, IV, Ext);
581     ICI->replaceAllUsesWith(NewCmp);
582     DeadInsts.emplace_back(ICI);
583   }
584 
585   // Trunc no longer needed.
586   TI->replaceAllUsesWith(PoisonValue::get(TI->getType()));
587   DeadInsts.emplace_back(TI);
588   return true;
589 }
590 
591 /// Eliminate an operation that consumes a simple IV and has no observable
592 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
593 /// but UseInst may not be.
594 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
595                                      Instruction *IVOperand) {
596   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
597     eliminateIVComparison(ICmp, IVOperand);
598     return true;
599   }
600   if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
601     bool IsSRem = Bin->getOpcode() == Instruction::SRem;
602     if (IsSRem || Bin->getOpcode() == Instruction::URem) {
603       simplifyIVRemainder(Bin, IVOperand, IsSRem);
604       return true;
605     }
606 
607     if (Bin->getOpcode() == Instruction::SDiv)
608       return eliminateSDiv(Bin);
609   }
610 
611   if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
612     if (eliminateOverflowIntrinsic(WO))
613       return true;
614 
615   if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
616     if (eliminateSaturatingIntrinsic(SI))
617       return true;
618 
619   if (auto *TI = dyn_cast<TruncInst>(UseInst))
620     if (eliminateTrunc(TI))
621       return true;
622 
623   if (eliminateIdentitySCEV(UseInst, IVOperand))
624     return true;
625 
626   return false;
627 }
628 
629 static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
630   if (auto *BB = L->getLoopPreheader())
631     return BB->getTerminator();
632 
633   return Hint;
634 }
635 
636 /// Replace the UseInst with a loop invariant expression if it is safe.
637 bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
638   if (!SE->isSCEVable(I->getType()))
639     return false;
640 
641   // Get the symbolic expression for this instruction.
642   const SCEV *S = SE->getSCEV(I);
643 
644   if (!SE->isLoopInvariant(S, L))
645     return false;
646 
647   // Do not generate something ridiculous even if S is loop invariant.
648   if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
649     return false;
650 
651   auto *IP = GetLoopInvariantInsertPosition(L, I);
652 
653   if (!Rewriter.isSafeToExpandAt(S, IP)) {
654     LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
655                       << " with non-speculable loop invariant: " << *S << '\n');
656     return false;
657   }
658 
659   auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
660   bool NeedToEmitLCSSAPhis = false;
661   if (!LI->replacementPreservesLCSSAForm(I, Invariant))
662     NeedToEmitLCSSAPhis = true;
663 
664   I->replaceAllUsesWith(Invariant);
665   LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
666                     << " with loop invariant: " << *S << '\n');
667 
668   if (NeedToEmitLCSSAPhis) {
669     SmallVector<Instruction *, 1> NeedsLCSSAPhis;
670     NeedsLCSSAPhis.push_back(cast<Instruction>(Invariant));
671     formLCSSAForInstructions(NeedsLCSSAPhis, *DT, *LI, SE);
672     LLVM_DEBUG(dbgs() << " INDVARS: Replacement breaks LCSSA form"
673                       << " inserting LCSSA Phis" << '\n');
674   }
675   ++NumFoldedUser;
676   Changed = true;
677   DeadInsts.emplace_back(I);
678   return true;
679 }
680 
681 /// Eliminate redundant type cast between integer and float.
682 bool SimplifyIndvar::replaceFloatIVWithIntegerIV(Instruction *UseInst) {
683   if (UseInst->getOpcode() != CastInst::SIToFP &&
684       UseInst->getOpcode() != CastInst::UIToFP)
685     return false;
686 
687   Instruction *IVOperand = cast<Instruction>(UseInst->getOperand(0));
688   // Get the symbolic expression for this instruction.
689   const SCEV *IV = SE->getSCEV(IVOperand);
690   int MaskBits;
691   if (UseInst->getOpcode() == CastInst::SIToFP)
692     MaskBits = (int)SE->getSignedRange(IV).getMinSignedBits();
693   else
694     MaskBits = (int)SE->getUnsignedRange(IV).getActiveBits();
695   int DestNumSigBits = UseInst->getType()->getFPMantissaWidth();
696   if (MaskBits <= DestNumSigBits) {
697     for (User *U : UseInst->users()) {
698       // Match for fptosi/fptoui of sitofp and with same type.
699       auto *CI = dyn_cast<CastInst>(U);
700       if (!CI)
701         continue;
702 
703       CastInst::CastOps Opcode = CI->getOpcode();
704       if (Opcode != CastInst::FPToSI && Opcode != CastInst::FPToUI)
705         continue;
706 
707       Value *Conv = nullptr;
708       if (IVOperand->getType() != CI->getType()) {
709         IRBuilder<> Builder(CI);
710         StringRef Name = IVOperand->getName();
711         // To match InstCombine logic, we only need sext if both fptosi and
712         // sitofp are used. If one of them is unsigned, then we can use zext.
713         if (SE->getTypeSizeInBits(IVOperand->getType()) >
714             SE->getTypeSizeInBits(CI->getType())) {
715           Conv = Builder.CreateTrunc(IVOperand, CI->getType(), Name + ".trunc");
716         } else if (Opcode == CastInst::FPToUI ||
717                    UseInst->getOpcode() == CastInst::UIToFP) {
718           Conv = Builder.CreateZExt(IVOperand, CI->getType(), Name + ".zext");
719         } else {
720           Conv = Builder.CreateSExt(IVOperand, CI->getType(), Name + ".sext");
721         }
722       } else
723         Conv = IVOperand;
724 
725       CI->replaceAllUsesWith(Conv);
726       DeadInsts.push_back(CI);
727       LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *CI
728                         << " with: " << *Conv << '\n');
729 
730       ++NumFoldedUser;
731       Changed = true;
732     }
733   }
734 
735   return Changed;
736 }
737 
738 /// Eliminate any operation that SCEV can prove is an identity function.
739 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
740                                            Instruction *IVOperand) {
741   if (!SE->isSCEVable(UseInst->getType()) ||
742       UseInst->getType() != IVOperand->getType())
743     return false;
744 
745   const SCEV *UseSCEV = SE->getSCEV(UseInst);
746   if (UseSCEV != SE->getSCEV(IVOperand))
747     return false;
748 
749   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
750   // dominator tree, even if X is an operand to Y.  For instance, in
751   //
752   //     %iv = phi i32 {0,+,1}
753   //     br %cond, label %left, label %merge
754   //
755   //   left:
756   //     %X = add i32 %iv, 0
757   //     br label %merge
758   //
759   //   merge:
760   //     %M = phi (%X, %iv)
761   //
762   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
763   // %M.replaceAllUsesWith(%X) would be incorrect.
764 
765   if (isa<PHINode>(UseInst))
766     // If UseInst is not a PHI node then we know that IVOperand dominates
767     // UseInst directly from the legality of SSA.
768     if (!DT || !DT->dominates(IVOperand, UseInst))
769       return false;
770 
771   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
772     return false;
773 
774   // Make sure the operand is not more poisonous than the instruction.
775   if (!impliesPoison(IVOperand, UseInst)) {
776     SmallVector<Instruction *> DropPoisonGeneratingInsts;
777     if (!SE->canReuseInstruction(UseSCEV, IVOperand, DropPoisonGeneratingInsts))
778       return false;
779 
780     for (Instruction *I : DropPoisonGeneratingInsts)
781       I->dropPoisonGeneratingAnnotations();
782   }
783 
784   LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
785 
786   SE->forgetValue(UseInst);
787   UseInst->replaceAllUsesWith(IVOperand);
788   ++NumElimIdentity;
789   Changed = true;
790   DeadInsts.emplace_back(UseInst);
791   return true;
792 }
793 
794 bool SimplifyIndvar::strengthenBinaryOp(BinaryOperator *BO,
795                                         Instruction *IVOperand) {
796   return (isa<OverflowingBinaryOperator>(BO) &&
797           strengthenOverflowingOperation(BO, IVOperand)) ||
798          (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand));
799 }
800 
801 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
802 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
803 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
804                                                     Instruction *IVOperand) {
805   auto Flags = SE->getStrengthenedNoWrapFlagsFromBinOp(
806       cast<OverflowingBinaryOperator>(BO));
807 
808   if (!Flags)
809     return false;
810 
811   BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) ==
812                            SCEV::FlagNUW);
813   BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) ==
814                          SCEV::FlagNSW);
815 
816   // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
817   // flags on addrecs while performing zero/sign extensions. We could call
818   // forgetValue() here to make sure those flags also propagate to any other
819   // SCEV expressions based on the addrec. However, this can have pathological
820   // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
821   return true;
822 }
823 
824 /// Annotate the Shr in (X << IVOperand) >> C as exact using the
825 /// information from the IV's range. Returns true if anything changed, false
826 /// otherwise.
827 bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
828                                           Instruction *IVOperand) {
829   if (BO->getOpcode() == Instruction::Shl) {
830     bool Changed = false;
831     ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
832     for (auto *U : BO->users()) {
833       const APInt *C;
834       if (match(U,
835                 m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
836           match(U,
837                 m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
838         BinaryOperator *Shr = cast<BinaryOperator>(U);
839         if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
840           Shr->setIsExact(true);
841           Changed = true;
842         }
843       }
844     }
845     return Changed;
846   }
847 
848   return false;
849 }
850 
851 /// Add all uses of Def to the current IV's worklist.
852 void SimplifyIndvar::pushIVUsers(
853     Instruction *Def, SmallPtrSet<Instruction *, 16> &Simplified,
854     SmallVectorImpl<std::pair<Instruction *, Instruction *>> &SimpleIVUsers) {
855   for (User *U : Def->users()) {
856     Instruction *UI = cast<Instruction>(U);
857 
858     // Avoid infinite or exponential worklist processing.
859     // Also ensure unique worklist users.
860     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
861     // self edges first.
862     if (UI == Def)
863       continue;
864 
865     // Only change the current Loop, do not change the other parts (e.g. other
866     // Loops).
867     if (!L->contains(UI))
868       continue;
869 
870     // Do not push the same instruction more than once.
871     if (!Simplified.insert(UI).second)
872       continue;
873 
874     SimpleIVUsers.push_back(std::make_pair(UI, Def));
875   }
876 }
877 
878 /// Return true if this instruction generates a simple SCEV
879 /// expression in terms of that IV.
880 ///
881 /// This is similar to IVUsers' isInteresting() but processes each instruction
882 /// non-recursively when the operand is already known to be a simpleIVUser.
883 ///
884 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
885   if (!SE->isSCEVable(I->getType()))
886     return false;
887 
888   // Get the symbolic expression for this instruction.
889   const SCEV *S = SE->getSCEV(I);
890 
891   // Only consider affine recurrences.
892   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
893   if (AR && AR->getLoop() == L)
894     return true;
895 
896   return false;
897 }
898 
899 /// Iteratively perform simplification on a worklist of users
900 /// of the specified induction variable. Each successive simplification may push
901 /// more users which may themselves be candidates for simplification.
902 ///
903 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
904 /// instructions in-place during analysis. Rather than rewriting induction
905 /// variables bottom-up from their users, it transforms a chain of IVUsers
906 /// top-down, updating the IR only when it encounters a clear optimization
907 /// opportunity.
908 ///
909 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
910 ///
911 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
912   if (!SE->isSCEVable(CurrIV->getType()))
913     return;
914 
915   // Instructions processed by SimplifyIndvar for CurrIV.
916   SmallPtrSet<Instruction*,16> Simplified;
917 
918   // Use-def pairs if IV users waiting to be processed for CurrIV.
919   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
920 
921   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
922   // called multiple times for the same LoopPhi. This is the proper thing to
923   // do for loop header phis that use each other.
924   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
925 
926   while (!SimpleIVUsers.empty()) {
927     std::pair<Instruction*, Instruction*> UseOper =
928       SimpleIVUsers.pop_back_val();
929     Instruction *UseInst = UseOper.first;
930 
931     // If a user of the IndVar is trivially dead, we prefer just to mark it dead
932     // rather than try to do some complex analysis or transformation (such as
933     // widening) basing on it.
934     // TODO: Propagate TLI and pass it here to handle more cases.
935     if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
936       DeadInsts.emplace_back(UseInst);
937       continue;
938     }
939 
940     // Bypass back edges to avoid extra work.
941     if (UseInst == CurrIV) continue;
942 
943     // Try to replace UseInst with a loop invariant before any other
944     // simplifications.
945     if (replaceIVUserWithLoopInvariant(UseInst))
946       continue;
947 
948     // Go further for the bitcast 'prtoint ptr to i64' or if the cast is done
949     // by truncation
950     if ((isa<PtrToIntInst>(UseInst)) || (isa<TruncInst>(UseInst)))
951       for (Use &U : UseInst->uses()) {
952         Instruction *User = cast<Instruction>(U.getUser());
953         if (replaceIVUserWithLoopInvariant(User))
954           break; // done replacing
955       }
956 
957     Instruction *IVOperand = UseOper.second;
958     for (unsigned N = 0; IVOperand; ++N) {
959       assert(N <= Simplified.size() && "runaway iteration");
960       (void) N;
961 
962       Value *NewOper = foldIVUser(UseInst, IVOperand);
963       if (!NewOper)
964         break; // done folding
965       IVOperand = dyn_cast<Instruction>(NewOper);
966     }
967     if (!IVOperand)
968       continue;
969 
970     if (eliminateIVUser(UseInst, IVOperand)) {
971       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
972       continue;
973     }
974 
975     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
976       if (strengthenBinaryOp(BO, IVOperand)) {
977         // re-queue uses of the now modified binary operator and fall
978         // through to the checks that remain.
979         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
980       }
981     }
982 
983     // Try to use integer induction for FPToSI of float induction directly.
984     if (replaceFloatIVWithIntegerIV(UseInst)) {
985       // Re-queue the potentially new direct uses of IVOperand.
986       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
987       continue;
988     }
989 
990     CastInst *Cast = dyn_cast<CastInst>(UseInst);
991     if (V && Cast) {
992       V->visitCast(Cast);
993       continue;
994     }
995     if (isSimpleIVUser(UseInst, L, SE)) {
996       pushIVUsers(UseInst, Simplified, SimpleIVUsers);
997     }
998   }
999 }
1000 
1001 namespace llvm {
1002 
1003 void IVVisitor::anchor() { }
1004 
1005 /// Simplify instructions that use this induction variable
1006 /// by using ScalarEvolution to analyze the IV's recurrence.
1007 ///  Returns a pair where the first entry indicates that the function makes
1008 ///  changes and the second entry indicates that it introduced new opportunities
1009 ///  for loop unswitching.
1010 std::pair<bool, bool> simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE,
1011                                         DominatorTree *DT, LoopInfo *LI,
1012                                         const TargetTransformInfo *TTI,
1013                                         SmallVectorImpl<WeakTrackingVH> &Dead,
1014                                         SCEVExpander &Rewriter, IVVisitor *V) {
1015   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
1016                      Rewriter, Dead);
1017   SIV.simplifyUsers(CurrIV, V);
1018   return {SIV.hasChanged(), SIV.runUnswitching()};
1019 }
1020 
1021 /// Simplify users of induction variables within this
1022 /// loop. This does not actually change or add IVs.
1023 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
1024                      LoopInfo *LI, const TargetTransformInfo *TTI,
1025                      SmallVectorImpl<WeakTrackingVH> &Dead) {
1026   SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
1027 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
1028   Rewriter.setDebugType(DEBUG_TYPE);
1029 #endif
1030   bool Changed = false;
1031   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1032     const auto &[C, _] =
1033         simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
1034     Changed |= C;
1035   }
1036   return Changed;
1037 }
1038 
1039 } // namespace llvm
1040 
1041 namespace {
1042 //===----------------------------------------------------------------------===//
1043 // Widen Induction Variables - Extend the width of an IV to cover its
1044 // widest uses.
1045 //===----------------------------------------------------------------------===//
1046 
1047 class WidenIV {
1048   // Parameters
1049   PHINode *OrigPhi;
1050   Type *WideType;
1051 
1052   // Context
1053   LoopInfo        *LI;
1054   Loop            *L;
1055   ScalarEvolution *SE;
1056   DominatorTree   *DT;
1057 
1058   // Does the module have any calls to the llvm.experimental.guard intrinsic
1059   // at all? If not we can avoid scanning instructions looking for guards.
1060   bool HasGuards;
1061 
1062   bool UsePostIncrementRanges;
1063 
1064   // Statistics
1065   unsigned NumElimExt = 0;
1066   unsigned NumWidened = 0;
1067 
1068   // Result
1069   PHINode *WidePhi = nullptr;
1070   Instruction *WideInc = nullptr;
1071   const SCEV *WideIncExpr = nullptr;
1072   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
1073 
1074   SmallPtrSet<Instruction *,16> Widened;
1075 
1076   enum class ExtendKind { Zero, Sign, Unknown };
1077 
1078   // A map tracking the kind of extension used to widen each narrow IV
1079   // and narrow IV user.
1080   // Key: pointer to a narrow IV or IV user.
1081   // Value: the kind of extension used to widen this Instruction.
1082   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
1083 
1084   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
1085 
1086   // A map with control-dependent ranges for post increment IV uses. The key is
1087   // a pair of IV def and a use of this def denoting the context. The value is
1088   // a ConstantRange representing possible values of the def at the given
1089   // context.
1090   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
1091 
1092   std::optional<ConstantRange> getPostIncRangeInfo(Value *Def,
1093                                                    Instruction *UseI) {
1094     DefUserPair Key(Def, UseI);
1095     auto It = PostIncRangeInfos.find(Key);
1096     return It == PostIncRangeInfos.end()
1097                ? std::optional<ConstantRange>(std::nullopt)
1098                : std::optional<ConstantRange>(It->second);
1099   }
1100 
1101   void calculatePostIncRanges(PHINode *OrigPhi);
1102   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1103 
1104   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1105     DefUserPair Key(Def, UseI);
1106     auto [It, Inserted] = PostIncRangeInfos.try_emplace(Key, R);
1107     if (!Inserted)
1108       It->second = R.intersectWith(It->second);
1109   }
1110 
1111 public:
1112   /// Record a link in the Narrow IV def-use chain along with the WideIV that
1113   /// computes the same value as the Narrow IV def.  This avoids caching Use*
1114   /// pointers.
1115   struct NarrowIVDefUse {
1116     Instruction *NarrowDef = nullptr;
1117     Instruction *NarrowUse = nullptr;
1118     Instruction *WideDef = nullptr;
1119 
1120     // True if the narrow def is never negative.  Tracking this information lets
1121     // us use a sign extension instead of a zero extension or vice versa, when
1122     // profitable and legal.
1123     bool NeverNegative = false;
1124 
1125     NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
1126                    bool NeverNegative)
1127         : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
1128           NeverNegative(NeverNegative) {}
1129   };
1130 
1131   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1132           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1133           bool HasGuards, bool UsePostIncrementRanges = true);
1134 
1135   PHINode *createWideIV(SCEVExpander &Rewriter);
1136 
1137   unsigned getNumElimExt() { return NumElimExt; };
1138   unsigned getNumWidened() { return NumWidened; };
1139 
1140 protected:
1141   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1142                           Instruction *Use);
1143 
1144   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1145   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1146                                      const SCEVAddRecExpr *WideAR);
1147   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1148 
1149   ExtendKind getExtendKind(Instruction *I);
1150 
1151   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1152 
1153   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1154 
1155   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1156 
1157   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1158                               unsigned OpCode) const;
1159 
1160   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter,
1161                           PHINode *OrigPhi, PHINode *WidePhi);
1162   void truncateIVUse(NarrowIVDefUse DU);
1163 
1164   bool widenLoopCompare(NarrowIVDefUse DU);
1165   bool widenWithVariantUse(NarrowIVDefUse DU);
1166 
1167   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1168 
1169 private:
1170   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
1171 };
1172 } // namespace
1173 
1174 /// Determine the insertion point for this user. By default, insert immediately
1175 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
1176 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
1177 /// common dominator for the incoming blocks. A nullptr can be returned if no
1178 /// viable location is found: it may happen if User is a PHI and Def only comes
1179 /// to this PHI from unreachable blocks.
1180 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
1181                                           DominatorTree *DT, LoopInfo *LI) {
1182   PHINode *PHI = dyn_cast<PHINode>(User);
1183   if (!PHI)
1184     return User;
1185 
1186   Instruction *InsertPt = nullptr;
1187   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
1188     if (PHI->getIncomingValue(i) != Def)
1189       continue;
1190 
1191     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
1192 
1193     if (!DT->isReachableFromEntry(InsertBB))
1194       continue;
1195 
1196     if (!InsertPt) {
1197       InsertPt = InsertBB->getTerminator();
1198       continue;
1199     }
1200     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
1201     InsertPt = InsertBB->getTerminator();
1202   }
1203 
1204   // If we have skipped all inputs, it means that Def only comes to Phi from
1205   // unreachable blocks.
1206   if (!InsertPt)
1207     return nullptr;
1208 
1209   auto *DefI = dyn_cast<Instruction>(Def);
1210   if (!DefI)
1211     return InsertPt;
1212 
1213   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
1214 
1215   auto *L = LI->getLoopFor(DefI->getParent());
1216   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
1217 
1218   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
1219     if (LI->getLoopFor(DTN->getBlock()) == L)
1220       return DTN->getBlock()->getTerminator();
1221 
1222   llvm_unreachable("DefI dominates InsertPt!");
1223 }
1224 
1225 WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1226           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1227           bool HasGuards, bool UsePostIncrementRanges)
1228       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1229         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1230         HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
1231         DeadInsts(DI) {
1232     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1233     ExtendKindMap[OrigPhi] = WI.IsSigned ? ExtendKind::Sign : ExtendKind::Zero;
1234 }
1235 
1236 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1237                                  bool IsSigned, Instruction *Use) {
1238   // Set the debug location and conservative insertion point.
1239   IRBuilder<> Builder(Use);
1240   // Hoist the insertion point into loop preheaders as far as possible.
1241   for (const Loop *L = LI->getLoopFor(Use->getParent());
1242        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1243        L = L->getParentLoop())
1244     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1245 
1246   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1247                     Builder.CreateZExt(NarrowOper, WideType);
1248 }
1249 
1250 /// Instantiate a wide operation to replace a narrow operation. This only needs
1251 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1252 /// 0 for any operation we decide not to clone.
1253 Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
1254                                   const SCEVAddRecExpr *WideAR) {
1255   unsigned Opcode = DU.NarrowUse->getOpcode();
1256   switch (Opcode) {
1257   default:
1258     return nullptr;
1259   case Instruction::Add:
1260   case Instruction::Mul:
1261   case Instruction::UDiv:
1262   case Instruction::Sub:
1263     return cloneArithmeticIVUser(DU, WideAR);
1264 
1265   case Instruction::And:
1266   case Instruction::Or:
1267   case Instruction::Xor:
1268   case Instruction::Shl:
1269   case Instruction::LShr:
1270   case Instruction::AShr:
1271     return cloneBitwiseIVUser(DU);
1272   }
1273 }
1274 
1275 Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
1276   Instruction *NarrowUse = DU.NarrowUse;
1277   Instruction *NarrowDef = DU.NarrowDef;
1278   Instruction *WideDef = DU.WideDef;
1279 
1280   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1281 
1282   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1283   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1284   // invariant and will be folded or hoisted. If it actually comes from a
1285   // widened IV, it should be removed during a future call to widenIVUse.
1286   bool IsSigned = getExtendKind(NarrowDef) == ExtendKind::Sign;
1287   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1288                    ? WideDef
1289                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1290                                       IsSigned, NarrowUse);
1291   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1292                    ? WideDef
1293                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1294                                       IsSigned, NarrowUse);
1295 
1296   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1297   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1298                                         NarrowBO->getName());
1299   IRBuilder<> Builder(NarrowUse);
1300   Builder.Insert(WideBO);
1301   WideBO->copyIRFlags(NarrowBO);
1302   return WideBO;
1303 }
1304 
1305 Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
1306                                             const SCEVAddRecExpr *WideAR) {
1307   Instruction *NarrowUse = DU.NarrowUse;
1308   Instruction *NarrowDef = DU.NarrowDef;
1309   Instruction *WideDef = DU.WideDef;
1310 
1311   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1312 
1313   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1314 
1315   // We're trying to find X such that
1316   //
1317   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1318   //
1319   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1320   // and check using SCEV if any of them are correct.
1321 
1322   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1323   // correct solution to X.
1324   auto GuessNonIVOperand = [&](bool SignExt) {
1325     const SCEV *WideLHS;
1326     const SCEV *WideRHS;
1327 
1328     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1329       if (SignExt)
1330         return SE->getSignExtendExpr(S, Ty);
1331       return SE->getZeroExtendExpr(S, Ty);
1332     };
1333 
1334     if (IVOpIdx == 0) {
1335       WideLHS = SE->getSCEV(WideDef);
1336       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1337       WideRHS = GetExtend(NarrowRHS, WideType);
1338     } else {
1339       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1340       WideLHS = GetExtend(NarrowLHS, WideType);
1341       WideRHS = SE->getSCEV(WideDef);
1342     }
1343 
1344     // WideUse is "WideDef `op.wide` X" as described in the comment.
1345     const SCEV *WideUse =
1346       getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
1347 
1348     return WideUse == WideAR;
1349   };
1350 
1351   bool SignExtend = getExtendKind(NarrowDef) == ExtendKind::Sign;
1352   if (!GuessNonIVOperand(SignExtend)) {
1353     SignExtend = !SignExtend;
1354     if (!GuessNonIVOperand(SignExtend))
1355       return nullptr;
1356   }
1357 
1358   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1359                    ? WideDef
1360                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1361                                       SignExtend, NarrowUse);
1362   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1363                    ? WideDef
1364                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1365                                       SignExtend, NarrowUse);
1366 
1367   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1368   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1369                                         NarrowBO->getName());
1370 
1371   IRBuilder<> Builder(NarrowUse);
1372   Builder.Insert(WideBO);
1373   WideBO->copyIRFlags(NarrowBO);
1374   return WideBO;
1375 }
1376 
1377 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1378   auto It = ExtendKindMap.find(I);
1379   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1380   return It->second;
1381 }
1382 
1383 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1384                                      unsigned OpCode) const {
1385   switch (OpCode) {
1386   case Instruction::Add:
1387     return SE->getAddExpr(LHS, RHS);
1388   case Instruction::Sub:
1389     return SE->getMinusSCEV(LHS, RHS);
1390   case Instruction::Mul:
1391     return SE->getMulExpr(LHS, RHS);
1392   case Instruction::UDiv:
1393     return SE->getUDivExpr(LHS, RHS);
1394   default:
1395     llvm_unreachable("Unsupported opcode.");
1396   };
1397 }
1398 
1399 namespace {
1400 
1401 // Represents a interesting integer binary operation for
1402 // getExtendedOperandRecurrence. This may be a shl that is being treated as a
1403 // multiply or a 'or disjoint' that is being treated as 'add nsw nuw'.
1404 struct BinaryOp {
1405   unsigned Opcode;
1406   std::array<Value *, 2> Operands;
1407   bool IsNSW = false;
1408   bool IsNUW = false;
1409 
1410   explicit BinaryOp(Instruction *Op)
1411       : Opcode(Op->getOpcode()),
1412         Operands({Op->getOperand(0), Op->getOperand(1)}) {
1413     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
1414       IsNSW = OBO->hasNoSignedWrap();
1415       IsNUW = OBO->hasNoUnsignedWrap();
1416     }
1417   }
1418 
1419   explicit BinaryOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
1420                     bool IsNSW = false, bool IsNUW = false)
1421       : Opcode(Opcode), Operands({LHS, RHS}), IsNSW(IsNSW), IsNUW(IsNUW) {}
1422 };
1423 
1424 } // end anonymous namespace
1425 
1426 static std::optional<BinaryOp> matchBinaryOp(Instruction *Op) {
1427   switch (Op->getOpcode()) {
1428   case Instruction::Add:
1429   case Instruction::Sub:
1430   case Instruction::Mul:
1431     return BinaryOp(Op);
1432   case Instruction::Or: {
1433     // Convert or disjoint into add nuw nsw.
1434     if (cast<PossiblyDisjointInst>(Op)->isDisjoint())
1435       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
1436                       /*IsNSW=*/true, /*IsNUW=*/true);
1437     break;
1438   }
1439   case Instruction::Shl: {
1440     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
1441       unsigned BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
1442 
1443       // If the shift count is not less than the bitwidth, the result of
1444       // the shift is undefined. Don't try to analyze it, because the
1445       // resolution chosen here may differ from the resolution chosen in
1446       // other parts of the compiler.
1447       if (SA->getValue().ult(BitWidth)) {
1448         // We can safely preserve the nuw flag in all cases. It's also safe to
1449         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
1450         // requires special handling. It can be preserved as long as we're not
1451         // left shifting by bitwidth - 1.
1452         bool IsNUW = Op->hasNoUnsignedWrap();
1453         bool IsNSW = Op->hasNoSignedWrap() &&
1454                      (IsNUW || SA->getValue().ult(BitWidth - 1));
1455 
1456         ConstantInt *X =
1457             ConstantInt::get(Op->getContext(),
1458                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
1459         return BinaryOp(Instruction::Mul, Op->getOperand(0), X, IsNSW, IsNUW);
1460       }
1461     }
1462 
1463     break;
1464   }
1465   }
1466 
1467   return std::nullopt;
1468 }
1469 
1470 /// No-wrap operations can transfer sign extension of their result to their
1471 /// operands. Generate the SCEV value for the widened operation without
1472 /// actually modifying the IR yet. If the expression after extending the
1473 /// operands is an AddRec for this loop, return the AddRec and the kind of
1474 /// extension used.
1475 WidenIV::WidenedRecTy
1476 WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
1477   auto Op = matchBinaryOp(DU.NarrowUse);
1478   if (!Op)
1479     return {nullptr, ExtendKind::Unknown};
1480 
1481   assert((Op->Opcode == Instruction::Add || Op->Opcode == Instruction::Sub ||
1482           Op->Opcode == Instruction::Mul) &&
1483          "Unexpected opcode");
1484 
1485   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1486   // if extending the other will lead to a recurrence.
1487   const unsigned ExtendOperIdx = Op->Operands[0] == DU.NarrowDef ? 1 : 0;
1488   assert(Op->Operands[1 - ExtendOperIdx] == DU.NarrowDef && "bad DU");
1489 
1490   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1491   if (!(ExtKind == ExtendKind::Sign && Op->IsNSW) &&
1492       !(ExtKind == ExtendKind::Zero && Op->IsNUW)) {
1493     ExtKind = ExtendKind::Unknown;
1494 
1495     // For a non-negative NarrowDef, we can choose either type of
1496     // extension.  We want to use the current extend kind if legal
1497     // (see above), and we only hit this code if we need to check
1498     // the opposite case.
1499     if (DU.NeverNegative) {
1500       if (Op->IsNSW) {
1501         ExtKind = ExtendKind::Sign;
1502       } else if (Op->IsNUW) {
1503         ExtKind = ExtendKind::Zero;
1504       }
1505     }
1506   }
1507 
1508   const SCEV *ExtendOperExpr = SE->getSCEV(Op->Operands[ExtendOperIdx]);
1509   if (ExtKind == ExtendKind::Sign)
1510     ExtendOperExpr = SE->getSignExtendExpr(ExtendOperExpr, WideType);
1511   else if (ExtKind == ExtendKind::Zero)
1512     ExtendOperExpr = SE->getZeroExtendExpr(ExtendOperExpr, WideType);
1513   else
1514     return {nullptr, ExtendKind::Unknown};
1515 
1516   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1517   // flags. This instruction may be guarded by control flow that the no-wrap
1518   // behavior depends on. Non-control-equivalent instructions can be mapped to
1519   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1520   // semantics to those operations.
1521   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1522   const SCEV *rhs = ExtendOperExpr;
1523 
1524   // Let's swap operands to the initial order for the case of non-commutative
1525   // operations, like SUB. See PR21014.
1526   if (ExtendOperIdx == 0)
1527     std::swap(lhs, rhs);
1528   const SCEVAddRecExpr *AddRec =
1529       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, Op->Opcode));
1530 
1531   if (!AddRec || AddRec->getLoop() != L)
1532     return {nullptr, ExtendKind::Unknown};
1533 
1534   return {AddRec, ExtKind};
1535 }
1536 
1537 /// Is this instruction potentially interesting for further simplification after
1538 /// widening it's type? In other words, can the extend be safely hoisted out of
1539 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1540 /// so, return the extended recurrence and the kind of extension used. Otherwise
1541 /// return {nullptr, ExtendKind::Unknown}.
1542 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
1543   if (!DU.NarrowUse->getType()->isIntegerTy())
1544     return {nullptr, ExtendKind::Unknown};
1545 
1546   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1547   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1548       SE->getTypeSizeInBits(WideType)) {
1549     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1550     // index. So don't follow this use.
1551     return {nullptr, ExtendKind::Unknown};
1552   }
1553 
1554   const SCEV *WideExpr;
1555   ExtendKind ExtKind;
1556   if (DU.NeverNegative) {
1557     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1558     if (isa<SCEVAddRecExpr>(WideExpr))
1559       ExtKind = ExtendKind::Sign;
1560     else {
1561       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1562       ExtKind = ExtendKind::Zero;
1563     }
1564   } else if (getExtendKind(DU.NarrowDef) == ExtendKind::Sign) {
1565     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1566     ExtKind = ExtendKind::Sign;
1567   } else {
1568     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1569     ExtKind = ExtendKind::Zero;
1570   }
1571   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1572   if (!AddRec || AddRec->getLoop() != L)
1573     return {nullptr, ExtendKind::Unknown};
1574   return {AddRec, ExtKind};
1575 }
1576 
1577 /// This IV user cannot be widened. Replace this use of the original narrow IV
1578 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1579 void WidenIV::truncateIVUse(NarrowIVDefUse DU) {
1580   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1581   if (!InsertPt)
1582     return;
1583   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1584                     << *DU.NarrowUse << "\n");
1585   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1586   IRBuilder<> Builder(InsertPt);
1587   Value *Trunc =
1588       Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType(), "",
1589                           DU.NeverNegative || ExtKind == ExtendKind::Zero,
1590                           DU.NeverNegative || ExtKind == ExtendKind::Sign);
1591   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1592 }
1593 
1594 /// If the narrow use is a compare instruction, then widen the compare
1595 //  (and possibly the other operand).  The extend operation is hoisted into the
1596 // loop preheader as far as possible.
1597 bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
1598   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1599   if (!Cmp)
1600     return false;
1601 
1602   // We can legally widen the comparison in the following two cases:
1603   //
1604   //  - The signedness of the IV extension and comparison match
1605   //
1606   //  - The narrow IV is always positive (and thus its sign extension is equal
1607   //    to its zero extension).  For instance, let's say we're zero extending
1608   //    %narrow for the following use
1609   //
1610   //      icmp slt i32 %narrow, %val   ... (A)
1611   //
1612   //    and %narrow is always positive.  Then
1613   //
1614   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1615   //          == icmp slt i32 zext(%narrow), sext(%val)
1616   bool IsSigned = getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1617   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1618     return false;
1619 
1620   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1621   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1622   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1623   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1624 
1625   // Widen the compare instruction.
1626   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1627 
1628   // Widen the other operand of the compare, if necessary.
1629   if (CastWidth < IVWidth) {
1630     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1631     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1632   }
1633   return true;
1634 }
1635 
1636 // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
1637 // will not work when:
1638 //    1) SCEV traces back to an instruction inside the loop that SCEV can not
1639 // expand, eg. add %indvar, (load %addr)
1640 //    2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
1641 // While SCEV fails to avoid trunc, we can still try to use instruction
1642 // combining approach to prove trunc is not required. This can be further
1643 // extended with other instruction combining checks, but for now we handle the
1644 // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
1645 //
1646 // Src:
1647 //   %c = sub nsw %b, %indvar
1648 //   %d = sext %c to i64
1649 // Dst:
1650 //   %indvar.ext1 = sext %indvar to i64
1651 //   %m = sext %b to i64
1652 //   %d = sub nsw i64 %m, %indvar.ext1
1653 // Therefore, as long as the result of add/sub/mul is extended to wide type, no
1654 // trunc is required regardless of how %b is generated. This pattern is common
1655 // when calculating address in 64 bit architecture
1656 bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
1657   Instruction *NarrowUse = DU.NarrowUse;
1658   Instruction *NarrowDef = DU.NarrowDef;
1659   Instruction *WideDef = DU.WideDef;
1660 
1661   // Handle the common case of add<nsw/nuw>
1662   const unsigned OpCode = NarrowUse->getOpcode();
1663   // Only Add/Sub/Mul instructions are supported.
1664   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1665       OpCode != Instruction::Mul)
1666     return false;
1667 
1668   // The operand that is not defined by NarrowDef of DU. Let's call it the
1669   // other operand.
1670   assert((NarrowUse->getOperand(0) == NarrowDef ||
1671           NarrowUse->getOperand(1) == NarrowDef) &&
1672          "bad DU");
1673 
1674   const OverflowingBinaryOperator *OBO =
1675     cast<OverflowingBinaryOperator>(NarrowUse);
1676   ExtendKind ExtKind = getExtendKind(NarrowDef);
1677   bool CanSignExtend = ExtKind == ExtendKind::Sign && OBO->hasNoSignedWrap();
1678   bool CanZeroExtend = ExtKind == ExtendKind::Zero && OBO->hasNoUnsignedWrap();
1679   auto AnotherOpExtKind = ExtKind;
1680 
1681   // Check that all uses are either:
1682   // - narrow def (in case of we are widening the IV increment);
1683   // - single-input LCSSA Phis;
1684   // - comparison of the chosen type;
1685   // - extend of the chosen type (raison d'etre).
1686   SmallVector<Instruction *, 4> ExtUsers;
1687   SmallVector<PHINode *, 4> LCSSAPhiUsers;
1688   SmallVector<ICmpInst *, 4> ICmpUsers;
1689   for (Use &U : NarrowUse->uses()) {
1690     Instruction *User = cast<Instruction>(U.getUser());
1691     if (User == NarrowDef)
1692       continue;
1693     if (!L->contains(User)) {
1694       auto *LCSSAPhi = cast<PHINode>(User);
1695       // Make sure there is only 1 input, so that we don't have to split
1696       // critical edges.
1697       if (LCSSAPhi->getNumOperands() != 1)
1698         return false;
1699       LCSSAPhiUsers.push_back(LCSSAPhi);
1700       continue;
1701     }
1702     if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
1703       auto Pred = ICmp->getPredicate();
1704       // We have 3 types of predicates: signed, unsigned and equality
1705       // predicates. For equality, it's legal to widen icmp for either sign and
1706       // zero extend. For sign extend, we can also do so for signed predicates,
1707       // likeweise for zero extend we can widen icmp for unsigned predicates.
1708       if (ExtKind == ExtendKind::Zero && ICmpInst::isSigned(Pred))
1709         return false;
1710       if (ExtKind == ExtendKind::Sign && ICmpInst::isUnsigned(Pred))
1711         return false;
1712       ICmpUsers.push_back(ICmp);
1713       continue;
1714     }
1715     if (ExtKind == ExtendKind::Sign)
1716       User = dyn_cast<SExtInst>(User);
1717     else
1718       User = dyn_cast<ZExtInst>(User);
1719     if (!User || User->getType() != WideType)
1720       return false;
1721     ExtUsers.push_back(User);
1722   }
1723   if (ExtUsers.empty()) {
1724     DeadInsts.emplace_back(NarrowUse);
1725     return true;
1726   }
1727 
1728   // We'll prove some facts that should be true in the context of ext users. If
1729   // there is no users, we are done now. If there are some, pick their common
1730   // dominator as context.
1731   const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
1732 
1733   if (!CanSignExtend && !CanZeroExtend) {
1734     // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
1735     // will most likely not see it. Let's try to prove it.
1736     if (OpCode != Instruction::Add)
1737       return false;
1738     if (ExtKind != ExtendKind::Zero)
1739       return false;
1740     const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
1741     const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
1742     // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
1743     if (NarrowUse->getOperand(0) != NarrowDef)
1744       return false;
1745     if (!SE->isKnownNegative(RHS))
1746       return false;
1747     bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
1748                                                SE->getNegativeSCEV(RHS), CtxI);
1749     if (!ProvedSubNUW)
1750       return false;
1751     // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
1752     // neg(zext(neg(op))), which is basically sext(op).
1753     AnotherOpExtKind = ExtendKind::Sign;
1754   }
1755 
1756   // Verifying that Defining operand is an AddRec
1757   const SCEV *Op1 = SE->getSCEV(WideDef);
1758   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1759   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1760     return false;
1761 
1762   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1763 
1764   // Generating a widening use instruction.
1765   Value *LHS =
1766       (NarrowUse->getOperand(0) == NarrowDef)
1767           ? WideDef
1768           : createExtendInst(NarrowUse->getOperand(0), WideType,
1769                              AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1770   Value *RHS =
1771       (NarrowUse->getOperand(1) == NarrowDef)
1772           ? WideDef
1773           : createExtendInst(NarrowUse->getOperand(1), WideType,
1774                              AnotherOpExtKind == ExtendKind::Sign, NarrowUse);
1775 
1776   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1777   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1778                                         NarrowBO->getName());
1779   IRBuilder<> Builder(NarrowUse);
1780   Builder.Insert(WideBO);
1781   WideBO->copyIRFlags(NarrowBO);
1782   ExtendKindMap[NarrowUse] = ExtKind;
1783 
1784   for (Instruction *User : ExtUsers) {
1785     assert(User->getType() == WideType && "Checked before!");
1786     LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1787                       << *WideBO << "\n");
1788     ++NumElimExt;
1789     User->replaceAllUsesWith(WideBO);
1790     DeadInsts.emplace_back(User);
1791   }
1792 
1793   for (PHINode *User : LCSSAPhiUsers) {
1794     assert(User->getNumOperands() == 1 && "Checked before!");
1795     Builder.SetInsertPoint(User);
1796     auto *WidePN =
1797         Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
1798     BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
1799     assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
1800            "Not a LCSSA Phi?");
1801     WidePN->addIncoming(WideBO, LoopExitingBlock);
1802     Builder.SetInsertPoint(User->getParent(),
1803                            User->getParent()->getFirstInsertionPt());
1804     auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
1805     User->replaceAllUsesWith(TruncPN);
1806     DeadInsts.emplace_back(User);
1807   }
1808 
1809   for (ICmpInst *User : ICmpUsers) {
1810     Builder.SetInsertPoint(User);
1811     auto ExtendedOp = [&](Value * V)->Value * {
1812       if (V == NarrowUse)
1813         return WideBO;
1814       if (ExtKind == ExtendKind::Zero)
1815         return Builder.CreateZExt(V, WideBO->getType());
1816       else
1817         return Builder.CreateSExt(V, WideBO->getType());
1818     };
1819     auto Pred = User->getPredicate();
1820     auto *LHS = ExtendedOp(User->getOperand(0));
1821     auto *RHS = ExtendedOp(User->getOperand(1));
1822     auto *WideCmp =
1823         Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
1824     User->replaceAllUsesWith(WideCmp);
1825     DeadInsts.emplace_back(User);
1826   }
1827 
1828   return true;
1829 }
1830 
1831 /// Determine whether an individual user of the narrow IV can be widened. If so,
1832 /// return the wide clone of the user.
1833 Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU,
1834                                  SCEVExpander &Rewriter, PHINode *OrigPhi,
1835                                  PHINode *WidePhi) {
1836   assert(ExtendKindMap.count(DU.NarrowDef) &&
1837          "Should already know the kind of extension used to widen NarrowDef");
1838 
1839   // This narrow use can be widened by a sext if it's non-negative or its narrow
1840   // def was widened by a sext. Same for zext.
1841   bool CanWidenBySExt =
1842       DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Sign;
1843   bool CanWidenByZExt =
1844       DU.NeverNegative || getExtendKind(DU.NarrowDef) == ExtendKind::Zero;
1845 
1846   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1847   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1848     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1849       // For LCSSA phis, sink the truncate outside the loop.
1850       // After SimplifyCFG most loop exit targets have a single predecessor.
1851       // Otherwise fall back to a truncate within the loop.
1852       if (UsePhi->getNumOperands() != 1)
1853         truncateIVUse(DU);
1854       else {
1855         // Widening the PHI requires us to insert a trunc.  The logical place
1856         // for this trunc is in the same BB as the PHI.  This is not possible if
1857         // the BB is terminated by a catchswitch.
1858         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1859           return nullptr;
1860 
1861         PHINode *WidePhi =
1862           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1863                           UsePhi->getIterator());
1864         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1865         BasicBlock *WidePhiBB = WidePhi->getParent();
1866         IRBuilder<> Builder(WidePhiBB, WidePhiBB->getFirstInsertionPt());
1867         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType(), "",
1868                                            CanWidenByZExt, CanWidenBySExt);
1869         UsePhi->replaceAllUsesWith(Trunc);
1870         DeadInsts.emplace_back(UsePhi);
1871         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1872                           << *WidePhi << "\n");
1873       }
1874       return nullptr;
1875     }
1876   }
1877 
1878   // Our raison d'etre! Eliminate sign and zero extension.
1879   if ((match(DU.NarrowUse, m_SExtLike(m_Value())) && CanWidenBySExt) ||
1880       (isa<ZExtInst>(DU.NarrowUse) && CanWidenByZExt)) {
1881     Value *NewDef = DU.WideDef;
1882     if (DU.NarrowUse->getType() != WideType) {
1883       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1884       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1885       if (CastWidth < IVWidth) {
1886         // The cast isn't as wide as the IV, so insert a Trunc.
1887         IRBuilder<> Builder(DU.NarrowUse);
1888         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType(), "",
1889                                      CanWidenByZExt, CanWidenBySExt);
1890       }
1891       else {
1892         // A wider extend was hidden behind a narrower one. This may induce
1893         // another round of IV widening in which the intermediate IV becomes
1894         // dead. It should be very rare.
1895         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1896                           << " not wide enough to subsume " << *DU.NarrowUse
1897                           << "\n");
1898         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1899         NewDef = DU.NarrowUse;
1900       }
1901     }
1902     if (NewDef != DU.NarrowUse) {
1903       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1904                         << " replaced by " << *DU.WideDef << "\n");
1905       ++NumElimExt;
1906       DU.NarrowUse->replaceAllUsesWith(NewDef);
1907       DeadInsts.emplace_back(DU.NarrowUse);
1908     }
1909     // Now that the extend is gone, we want to expose it's uses for potential
1910     // further simplification. We don't need to directly inform SimplifyIVUsers
1911     // of the new users, because their parent IV will be processed later as a
1912     // new loop phi. If we preserved IVUsers analysis, we would also want to
1913     // push the uses of WideDef here.
1914 
1915     // No further widening is needed. The deceased [sz]ext had done it for us.
1916     return nullptr;
1917   }
1918 
1919   auto tryAddRecExpansion = [&]() -> Instruction* {
1920     // Does this user itself evaluate to a recurrence after widening?
1921     WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1922     if (!WideAddRec.first)
1923       WideAddRec = getWideRecurrence(DU);
1924     assert((WideAddRec.first == nullptr) ==
1925            (WideAddRec.second == ExtendKind::Unknown));
1926     if (!WideAddRec.first)
1927       return nullptr;
1928 
1929     auto CanUseWideInc = [&]() {
1930       if (!WideInc)
1931         return false;
1932       // Reuse the IV increment that SCEVExpander created. Recompute flags,
1933       // unless the flags for both increments agree and it is safe to use the
1934       // ones from the original inc. In that case, the new use of the wide
1935       // increment won't be more poisonous.
1936       bool NeedToRecomputeFlags =
1937           !SCEVExpander::canReuseFlagsFromOriginalIVInc(
1938               OrigPhi, WidePhi, DU.NarrowUse, WideInc) ||
1939           DU.NarrowUse->hasNoUnsignedWrap() != WideInc->hasNoUnsignedWrap() ||
1940           DU.NarrowUse->hasNoSignedWrap() != WideInc->hasNoSignedWrap();
1941       return WideAddRec.first == WideIncExpr &&
1942              Rewriter.hoistIVInc(WideInc, DU.NarrowUse, NeedToRecomputeFlags);
1943     };
1944 
1945     Instruction *WideUse = nullptr;
1946     if (CanUseWideInc())
1947       WideUse = WideInc;
1948     else {
1949       WideUse = cloneIVUser(DU, WideAddRec.first);
1950       if (!WideUse)
1951         return nullptr;
1952     }
1953     // Evaluation of WideAddRec ensured that the narrow expression could be
1954     // extended outside the loop without overflow. This suggests that the wide use
1955     // evaluates to the same expression as the extended narrow use, but doesn't
1956     // absolutely guarantee it. Hence the following failsafe check. In rare cases
1957     // where it fails, we simply throw away the newly created wide use.
1958     if (WideAddRec.first != SE->getSCEV(WideUse)) {
1959       LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1960                  << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1961                  << "\n");
1962       DeadInsts.emplace_back(WideUse);
1963       return nullptr;
1964     };
1965 
1966     // if we reached this point then we are going to replace
1967     // DU.NarrowUse with WideUse. Reattach DbgValue then.
1968     replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
1969 
1970     ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1971     // Returning WideUse pushes it on the worklist.
1972     return WideUse;
1973   };
1974 
1975   if (auto *I = tryAddRecExpansion())
1976     return I;
1977 
1978   // If use is a loop condition, try to promote the condition instead of
1979   // truncating the IV first.
1980   if (widenLoopCompare(DU))
1981     return nullptr;
1982 
1983   // We are here about to generate a truncate instruction that may hurt
1984   // performance because the scalar evolution expression computed earlier
1985   // in WideAddRec.first does not indicate a polynomial induction expression.
1986   // In that case, look at the operands of the use instruction to determine
1987   // if we can still widen the use instead of truncating its operand.
1988   if (widenWithVariantUse(DU))
1989     return nullptr;
1990 
1991   // This user does not evaluate to a recurrence after widening, so don't
1992   // follow it. Instead insert a Trunc to kill off the original use,
1993   // eventually isolating the original narrow IV so it can be removed.
1994   truncateIVUse(DU);
1995   return nullptr;
1996 }
1997 
1998 /// Add eligible users of NarrowDef to NarrowIVUsers.
1999 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
2000   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
2001   bool NonNegativeDef =
2002       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
2003                            SE->getZero(NarrowSCEV->getType()));
2004   for (User *U : NarrowDef->users()) {
2005     Instruction *NarrowUser = cast<Instruction>(U);
2006 
2007     // Handle data flow merges and bizarre phi cycles.
2008     if (!Widened.insert(NarrowUser).second)
2009       continue;
2010 
2011     bool NonNegativeUse = false;
2012     if (!NonNegativeDef) {
2013       // We might have a control-dependent range information for this context.
2014       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
2015         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
2016     }
2017 
2018     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
2019                                NonNegativeDef || NonNegativeUse);
2020   }
2021 }
2022 
2023 /// Process a single induction variable. First use the SCEVExpander to create a
2024 /// wide induction variable that evaluates to the same recurrence as the
2025 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
2026 /// def-use chain. After widenIVUse has processed all interesting IV users, the
2027 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
2028 ///
2029 /// It would be simpler to delete uses as they are processed, but we must avoid
2030 /// invalidating SCEV expressions.
2031 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
2032   // Is this phi an induction variable?
2033   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
2034   if (!AddRec)
2035     return nullptr;
2036 
2037   // Widen the induction variable expression.
2038   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == ExtendKind::Sign
2039                                ? SE->getSignExtendExpr(AddRec, WideType)
2040                                : SE->getZeroExtendExpr(AddRec, WideType);
2041 
2042   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
2043          "Expect the new IV expression to preserve its type");
2044 
2045   // Can the IV be extended outside the loop without overflow?
2046   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
2047   if (!AddRec || AddRec->getLoop() != L)
2048     return nullptr;
2049 
2050   // An AddRec must have loop-invariant operands. Since this AddRec is
2051   // materialized by a loop header phi, the expression cannot have any post-loop
2052   // operands, so they must dominate the loop header.
2053   assert(
2054       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
2055       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
2056       "Loop header phi recurrence inputs do not dominate the loop");
2057 
2058   // Iterate over IV uses (including transitive ones) looking for IV increments
2059   // of the form 'add nsw %iv, <const>'. For each increment and each use of
2060   // the increment calculate control-dependent range information basing on
2061   // dominating conditions inside of the loop (e.g. a range check inside of the
2062   // loop). Calculated ranges are stored in PostIncRangeInfos map.
2063   //
2064   // Control-dependent range information is later used to prove that a narrow
2065   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
2066   // this on demand because when pushNarrowIVUsers needs this information some
2067   // of the dominating conditions might be already widened.
2068   if (UsePostIncrementRanges)
2069     calculatePostIncRanges(OrigPhi);
2070 
2071   // The rewriter provides a value for the desired IV expression. This may
2072   // either find an existing phi or materialize a new one. Either way, we
2073   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
2074   // of the phi-SCC dominates the loop entry.
2075   Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
2076   Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
2077   // If the wide phi is not a phi node, for example a cast node, like bitcast,
2078   // inttoptr, ptrtoint, just skip for now.
2079   if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
2080     // if the cast node is an inserted instruction without any user, we should
2081     // remove it to make sure the pass don't touch the function as we can not
2082     // wide the phi.
2083     if (ExpandInst->hasNUses(0) &&
2084         Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
2085       DeadInsts.emplace_back(ExpandInst);
2086     return nullptr;
2087   }
2088 
2089   // Remembering the WideIV increment generated by SCEVExpander allows
2090   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
2091   // employ a general reuse mechanism because the call above is the only call to
2092   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
2093   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2094     WideInc =
2095         dyn_cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
2096     if (WideInc) {
2097       WideIncExpr = SE->getSCEV(WideInc);
2098       // Propagate the debug location associated with the original loop
2099       // increment to the new (widened) increment.
2100       auto *OrigInc =
2101           cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
2102 
2103       WideInc->setDebugLoc(OrigInc->getDebugLoc());
2104       // We are replacing a narrow IV increment with a wider IV increment. If
2105       // the original (narrow) increment did not wrap, the wider increment one
2106       // should not wrap either. Set the flags to be the union of both wide
2107       // increment and original increment; this ensures we preserve flags SCEV
2108       // could infer for the wider increment. Limit this only to cases where
2109       // both increments directly increment the corresponding PHI nodes and have
2110       // the same opcode. It is not safe to re-use the flags from the original
2111       // increment, if it is more complex and SCEV expansion may have yielded a
2112       // more simplified wider increment.
2113       if (SCEVExpander::canReuseFlagsFromOriginalIVInc(OrigPhi, WidePhi,
2114                                                        OrigInc, WideInc) &&
2115           isa<OverflowingBinaryOperator>(OrigInc) &&
2116           isa<OverflowingBinaryOperator>(WideInc)) {
2117         WideInc->setHasNoUnsignedWrap(WideInc->hasNoUnsignedWrap() ||
2118                                       OrigInc->hasNoUnsignedWrap());
2119         WideInc->setHasNoSignedWrap(WideInc->hasNoSignedWrap() ||
2120                                     OrigInc->hasNoSignedWrap());
2121       }
2122     }
2123   }
2124 
2125   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
2126   ++NumWidened;
2127 
2128   // Traverse the def-use chain using a worklist starting at the original IV.
2129   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
2130 
2131   Widened.insert(OrigPhi);
2132   pushNarrowIVUsers(OrigPhi, WidePhi);
2133 
2134   while (!NarrowIVUsers.empty()) {
2135     WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
2136 
2137     // Process a def-use edge. This may replace the use, so don't hold a
2138     // use_iterator across it.
2139     Instruction *WideUse = widenIVUse(DU, Rewriter, OrigPhi, WidePhi);
2140 
2141     // Follow all def-use edges from the previous narrow use.
2142     if (WideUse)
2143       pushNarrowIVUsers(DU.NarrowUse, WideUse);
2144 
2145     // widenIVUse may have removed the def-use edge.
2146     if (DU.NarrowDef->use_empty())
2147       DeadInsts.emplace_back(DU.NarrowDef);
2148   }
2149 
2150   // Attach any debug information to the new PHI.
2151   replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
2152 
2153   return WidePhi;
2154 }
2155 
2156 /// Calculates control-dependent range for the given def at the given context
2157 /// by looking at dominating conditions inside of the loop
2158 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
2159                                     Instruction *NarrowUser) {
2160   Value *NarrowDefLHS;
2161   const APInt *NarrowDefRHS;
2162   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
2163                                  m_APInt(NarrowDefRHS))) ||
2164       !NarrowDefRHS->isNonNegative())
2165     return;
2166 
2167   auto UpdateRangeFromCondition = [&](Value *Condition, bool TrueDest) {
2168     CmpPredicate Pred;
2169     Value *CmpRHS;
2170     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
2171                                  m_Value(CmpRHS))))
2172       return;
2173 
2174     CmpPredicate P = TrueDest ? Pred : ICmpInst::getInverseCmpPredicate(Pred);
2175 
2176     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
2177     auto CmpConstrainedLHSRange =
2178             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
2179     auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
2180         *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
2181 
2182     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
2183   };
2184 
2185   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
2186     if (!HasGuards)
2187       return;
2188 
2189     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
2190                                      Ctx->getParent()->rend())) {
2191       Value *C = nullptr;
2192       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
2193         UpdateRangeFromCondition(C, /*TrueDest=*/true);
2194     }
2195   };
2196 
2197   UpdateRangeFromGuards(NarrowUser);
2198 
2199   BasicBlock *NarrowUserBB = NarrowUser->getParent();
2200   // If NarrowUserBB is statically unreachable asking dominator queries may
2201   // yield surprising results. (e.g. the block may not have a dom tree node)
2202   if (!DT->isReachableFromEntry(NarrowUserBB))
2203     return;
2204 
2205   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
2206        L->contains(DTB->getBlock());
2207        DTB = DTB->getIDom()) {
2208     auto *BB = DTB->getBlock();
2209     auto *TI = BB->getTerminator();
2210     UpdateRangeFromGuards(TI);
2211 
2212     auto *BI = dyn_cast<BranchInst>(TI);
2213     if (!BI || !BI->isConditional())
2214       continue;
2215 
2216     auto *TrueSuccessor = BI->getSuccessor(0);
2217     auto *FalseSuccessor = BI->getSuccessor(1);
2218 
2219     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
2220       return BBE.isSingleEdge() &&
2221              DT->dominates(BBE, NarrowUser->getParent());
2222     };
2223 
2224     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
2225       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
2226 
2227     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
2228       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
2229   }
2230 }
2231 
2232 /// Calculates PostIncRangeInfos map for the given IV
2233 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
2234   SmallPtrSet<Instruction *, 16> Visited;
2235   SmallVector<Instruction *, 6> Worklist;
2236   Worklist.push_back(OrigPhi);
2237   Visited.insert(OrigPhi);
2238 
2239   while (!Worklist.empty()) {
2240     Instruction *NarrowDef = Worklist.pop_back_val();
2241 
2242     for (Use &U : NarrowDef->uses()) {
2243       auto *NarrowUser = cast<Instruction>(U.getUser());
2244 
2245       // Don't go looking outside the current loop.
2246       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
2247       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
2248         continue;
2249 
2250       if (!Visited.insert(NarrowUser).second)
2251         continue;
2252 
2253       Worklist.push_back(NarrowUser);
2254 
2255       calculatePostIncRange(NarrowDef, NarrowUser);
2256     }
2257   }
2258 }
2259 
2260 PHINode *llvm::createWideIV(const WideIVInfo &WI,
2261     LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
2262     DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2263     unsigned &NumElimExt, unsigned &NumWidened,
2264     bool HasGuards, bool UsePostIncrementRanges) {
2265   WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
2266   PHINode *WidePHI = Widener.createWideIV(Rewriter);
2267   NumElimExt = Widener.getNumElimExt();
2268   NumWidened = Widener.getNumWidened();
2269   return WidePHI;
2270 }
2271