1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/MemorySSA.h" 32 #include "llvm/Analysis/MemorySSAUpdater.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/IRBuilder.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/NoFolder.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/ProfDataUtils.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Use.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/IR/ValueHandle.h" 66 #include "llvm/Support/BranchProbability.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/KnownBits.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include "llvm/Transforms/Utils/Local.h" 76 #include "llvm/Transforms/Utils/ValueMapper.h" 77 #include <algorithm> 78 #include <cassert> 79 #include <climits> 80 #include <cstddef> 81 #include <cstdint> 82 #include <iterator> 83 #include <map> 84 #include <optional> 85 #include <set> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace PatternMatch; 92 93 #define DEBUG_TYPE "simplifycfg" 94 95 cl::opt<bool> llvm::RequireAndPreserveDomTree( 96 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 97 98 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 99 "into preserving DomTree,")); 100 101 // Chosen as 2 so as to be cheap, but still to have enough power to fold 102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 103 // To catch this, we need to fold a compare and a select, hence '2' being the 104 // minimum reasonable default. 105 static cl::opt<unsigned> PHINodeFoldingThreshold( 106 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 107 cl::desc( 108 "Control the amount of phi node folding to perform (default = 2)")); 109 110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 111 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Control the maximal total instruction cost that we are willing " 113 "to speculatively execute to fold a 2-entry PHI node into a " 114 "select (default = 4)")); 115 116 static cl::opt<bool> 117 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 118 cl::desc("Hoist common instructions up to the parent block")); 119 120 static cl::opt<bool> HoistLoadsStoresWithCondFaulting( 121 "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden, 122 cl::init(true), 123 cl::desc("Hoist loads/stores if the target supports " 124 "conditional faulting")); 125 126 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold( 127 "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6), 128 cl::desc("Control the maximal conditonal load/store that we are willing " 129 "to speculatively execute to eliminate conditional branch " 130 "(default = 6)")); 131 132 static cl::opt<unsigned> 133 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 134 cl::init(20), 135 cl::desc("Allow reordering across at most this many " 136 "instructions when hoisting")); 137 138 static cl::opt<bool> 139 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 140 cl::desc("Sink common instructions down to the end block")); 141 142 static cl::opt<bool> HoistCondStores( 143 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 144 cl::desc("Hoist conditional stores if an unconditional store precedes")); 145 146 static cl::opt<bool> MergeCondStores( 147 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 148 cl::desc("Hoist conditional stores even if an unconditional store does not " 149 "precede - hoist multiple conditional stores into a single " 150 "predicated store")); 151 152 static cl::opt<bool> MergeCondStoresAggressively( 153 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 154 cl::desc("When merging conditional stores, do so even if the resultant " 155 "basic blocks are unlikely to be if-converted as a result")); 156 157 static cl::opt<bool> SpeculateOneExpensiveInst( 158 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 159 cl::desc("Allow exactly one expensive instruction to be speculatively " 160 "executed")); 161 162 static cl::opt<unsigned> MaxSpeculationDepth( 163 "max-speculation-depth", cl::Hidden, cl::init(10), 164 cl::desc("Limit maximum recursion depth when calculating costs of " 165 "speculatively executed instructions")); 166 167 static cl::opt<int> 168 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 169 cl::init(10), 170 cl::desc("Max size of a block which is still considered " 171 "small enough to thread through")); 172 173 // Two is chosen to allow one negation and a logical combine. 174 static cl::opt<unsigned> 175 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 176 cl::init(2), 177 cl::desc("Maximum cost of combining conditions when " 178 "folding branches")); 179 180 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 181 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 182 cl::init(2), 183 cl::desc("Multiplier to apply to threshold when determining whether or not " 184 "to fold branch to common destination when vector operations are " 185 "present")); 186 187 static cl::opt<bool> EnableMergeCompatibleInvokes( 188 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 189 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 190 191 static cl::opt<unsigned> MaxSwitchCasesPerResult( 192 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 193 cl::desc("Limit cases to analyze when converting a switch to select")); 194 195 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 196 STATISTIC(NumLinearMaps, 197 "Number of switch instructions turned into linear mapping"); 198 STATISTIC(NumLookupTables, 199 "Number of switch instructions turned into lookup tables"); 200 STATISTIC( 201 NumLookupTablesHoles, 202 "Number of switch instructions turned into lookup tables (holes checked)"); 203 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 204 STATISTIC(NumFoldValueComparisonIntoPredecessors, 205 "Number of value comparisons folded into predecessor basic blocks"); 206 STATISTIC(NumFoldBranchToCommonDest, 207 "Number of branches folded into predecessor basic block"); 208 STATISTIC( 209 NumHoistCommonCode, 210 "Number of common instruction 'blocks' hoisted up to the begin block"); 211 STATISTIC(NumHoistCommonInstrs, 212 "Number of common instructions hoisted up to the begin block"); 213 STATISTIC(NumSinkCommonCode, 214 "Number of common instruction 'blocks' sunk down to the end block"); 215 STATISTIC(NumSinkCommonInstrs, 216 "Number of common instructions sunk down to the end block"); 217 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 218 STATISTIC(NumInvokes, 219 "Number of invokes with empty resume blocks simplified into calls"); 220 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 221 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 222 223 namespace { 224 225 // The first field contains the value that the switch produces when a certain 226 // case group is selected, and the second field is a vector containing the 227 // cases composing the case group. 228 using SwitchCaseResultVectorTy = 229 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 230 231 // The first field contains the phi node that generates a result of the switch 232 // and the second field contains the value generated for a certain case in the 233 // switch for that PHI. 234 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 235 236 /// ValueEqualityComparisonCase - Represents a case of a switch. 237 struct ValueEqualityComparisonCase { 238 ConstantInt *Value; 239 BasicBlock *Dest; 240 241 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 242 : Value(Value), Dest(Dest) {} 243 244 bool operator<(ValueEqualityComparisonCase RHS) const { 245 // Comparing pointers is ok as we only rely on the order for uniquing. 246 return Value < RHS.Value; 247 } 248 249 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 250 }; 251 252 class SimplifyCFGOpt { 253 const TargetTransformInfo &TTI; 254 DomTreeUpdater *DTU; 255 const DataLayout &DL; 256 ArrayRef<WeakVH> LoopHeaders; 257 const SimplifyCFGOptions &Options; 258 bool Resimplify; 259 260 Value *isValueEqualityComparison(Instruction *TI); 261 BasicBlock *getValueEqualityComparisonCases( 262 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 263 bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 264 BasicBlock *Pred, 265 IRBuilder<> &Builder); 266 bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 267 Instruction *PTI, 268 IRBuilder<> &Builder); 269 bool foldValueComparisonIntoPredecessors(Instruction *TI, 270 IRBuilder<> &Builder); 271 272 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 273 bool simplifySingleResume(ResumeInst *RI); 274 bool simplifyCommonResume(ResumeInst *RI); 275 bool simplifyCleanupReturn(CleanupReturnInst *RI); 276 bool simplifyUnreachable(UnreachableInst *UI); 277 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 278 bool simplifyIndirectBr(IndirectBrInst *IBI); 279 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 280 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 281 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 282 283 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 284 IRBuilder<> &Builder); 285 286 bool hoistCommonCodeFromSuccessors(Instruction *TI, bool EqTermsOnly); 287 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 288 Instruction *TI, Instruction *I1, 289 SmallVectorImpl<Instruction *> &OtherSuccTIs); 290 bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 291 bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 292 BasicBlock *TrueBB, BasicBlock *FalseBB, 293 uint32_t TrueWeight, uint32_t FalseWeight); 294 bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 295 const DataLayout &DL); 296 bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 297 bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 298 bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 299 300 public: 301 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 302 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 303 const SimplifyCFGOptions &Opts) 304 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 305 assert((!DTU || !DTU->hasPostDomTree()) && 306 "SimplifyCFG is not yet capable of maintaining validity of a " 307 "PostDomTree, so don't ask for it."); 308 } 309 310 bool simplifyOnce(BasicBlock *BB); 311 bool run(BasicBlock *BB); 312 313 // Helper to set Resimplify and return change indication. 314 bool requestResimplify() { 315 Resimplify = true; 316 return true; 317 } 318 }; 319 320 } // end anonymous namespace 321 322 /// Return true if all the PHI nodes in the basic block \p BB 323 /// receive compatible (identical) incoming values when coming from 324 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 325 /// 326 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 327 /// is provided, and *both* of the values are present in the set, 328 /// then they are considered equal. 329 static bool incomingValuesAreCompatible( 330 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 331 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 332 assert(IncomingBlocks.size() == 2 && 333 "Only for a pair of incoming blocks at the time!"); 334 335 // FIXME: it is okay if one of the incoming values is an `undef` value, 336 // iff the other incoming value is guaranteed to be a non-poison value. 337 // FIXME: it is okay if one of the incoming values is a `poison` value. 338 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 339 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 340 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 341 if (IV0 == IV1) 342 return true; 343 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 344 EquivalenceSet->contains(IV1)) 345 return true; 346 return false; 347 }); 348 } 349 350 /// Return true if it is safe to merge these two 351 /// terminator instructions together. 352 static bool 353 safeToMergeTerminators(Instruction *SI1, Instruction *SI2, 354 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 355 if (SI1 == SI2) 356 return false; // Can't merge with self! 357 358 // It is not safe to merge these two switch instructions if they have a common 359 // successor, and if that successor has a PHI node, and if *that* PHI node has 360 // conflicting incoming values from the two switch blocks. 361 BasicBlock *SI1BB = SI1->getParent(); 362 BasicBlock *SI2BB = SI2->getParent(); 363 364 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 365 bool Fail = false; 366 for (BasicBlock *Succ : successors(SI2BB)) { 367 if (!SI1Succs.count(Succ)) 368 continue; 369 if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 370 continue; 371 Fail = true; 372 if (FailBlocks) 373 FailBlocks->insert(Succ); 374 else 375 break; 376 } 377 378 return !Fail; 379 } 380 381 /// Update PHI nodes in Succ to indicate that there will now be entries in it 382 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 383 /// will be the same as those coming in from ExistPred, an existing predecessor 384 /// of Succ. 385 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 386 BasicBlock *ExistPred, 387 MemorySSAUpdater *MSSAU = nullptr) { 388 for (PHINode &PN : Succ->phis()) 389 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 390 if (MSSAU) 391 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 392 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 393 } 394 395 /// Compute an abstract "cost" of speculating the given instruction, 396 /// which is assumed to be safe to speculate. TCC_Free means cheap, 397 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 398 /// expensive. 399 static InstructionCost computeSpeculationCost(const User *I, 400 const TargetTransformInfo &TTI) { 401 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 402 } 403 404 /// If we have a merge point of an "if condition" as accepted above, 405 /// return true if the specified value dominates the block. We 406 /// don't handle the true generality of domination here, just a special case 407 /// which works well enough for us. 408 /// 409 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 410 /// see if V (which must be an instruction) and its recursive operands 411 /// that do not dominate BB have a combined cost lower than Budget and 412 /// are non-trapping. If both are true, the instruction is inserted into the 413 /// set and true is returned. 414 /// 415 /// The cost for most non-trapping instructions is defined as 1 except for 416 /// Select whose cost is 2. 417 /// 418 /// After this function returns, Cost is increased by the cost of 419 /// V plus its non-dominating operands. If that cost is greater than 420 /// Budget, false is returned and Cost is undefined. 421 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt, 422 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 423 InstructionCost &Cost, InstructionCost Budget, 424 const TargetTransformInfo &TTI, 425 AssumptionCache *AC, unsigned Depth = 0) { 426 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 427 // so limit the recursion depth. 428 // TODO: While this recursion limit does prevent pathological behavior, it 429 // would be better to track visited instructions to avoid cycles. 430 if (Depth == MaxSpeculationDepth) 431 return false; 432 433 Instruction *I = dyn_cast<Instruction>(V); 434 if (!I) { 435 // Non-instructions dominate all instructions and can be executed 436 // unconditionally. 437 return true; 438 } 439 BasicBlock *PBB = I->getParent(); 440 441 // We don't want to allow weird loops that might have the "if condition" in 442 // the bottom of this block. 443 if (PBB == BB) 444 return false; 445 446 // If this instruction is defined in a block that contains an unconditional 447 // branch to BB, then it must be in the 'conditional' part of the "if 448 // statement". If not, it definitely dominates the region. 449 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 450 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 451 return true; 452 453 // If we have seen this instruction before, don't count it again. 454 if (AggressiveInsts.count(I)) 455 return true; 456 457 // Okay, it looks like the instruction IS in the "condition". Check to 458 // see if it's a cheap instruction to unconditionally compute, and if it 459 // only uses stuff defined outside of the condition. If so, hoist it out. 460 if (!isSafeToSpeculativelyExecute(I, InsertPt, AC)) 461 return false; 462 463 Cost += computeSpeculationCost(I, TTI); 464 465 // Allow exactly one instruction to be speculated regardless of its cost 466 // (as long as it is safe to do so). 467 // This is intended to flatten the CFG even if the instruction is a division 468 // or other expensive operation. The speculation of an expensive instruction 469 // is expected to be undone in CodeGenPrepare if the speculation has not 470 // enabled further IR optimizations. 471 if (Cost > Budget && 472 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 473 !Cost.isValid())) 474 return false; 475 476 // Okay, we can only really hoist these out if their operands do 477 // not take us over the cost threshold. 478 for (Use &Op : I->operands()) 479 if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget, 480 TTI, AC, Depth + 1)) 481 return false; 482 // Okay, it's safe to do this! Remember this instruction. 483 AggressiveInsts.insert(I); 484 return true; 485 } 486 487 /// Extract ConstantInt from value, looking through IntToPtr 488 /// and PointerNullValue. Return NULL if value is not a constant int. 489 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) { 490 // Normal constant int. 491 ConstantInt *CI = dyn_cast<ConstantInt>(V); 492 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 493 DL.isNonIntegralPointerType(V->getType())) 494 return CI; 495 496 // This is some kind of pointer constant. Turn it into a pointer-sized 497 // ConstantInt if possible. 498 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 499 500 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 501 if (isa<ConstantPointerNull>(V)) 502 return ConstantInt::get(PtrTy, 0); 503 504 // IntToPtr const int. 505 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 506 if (CE->getOpcode() == Instruction::IntToPtr) 507 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 508 // The constant is very likely to have the right type already. 509 if (CI->getType() == PtrTy) 510 return CI; 511 else 512 return cast<ConstantInt>( 513 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 514 } 515 return nullptr; 516 } 517 518 namespace { 519 520 /// Given a chain of or (||) or and (&&) comparison of a value against a 521 /// constant, this will try to recover the information required for a switch 522 /// structure. 523 /// It will depth-first traverse the chain of comparison, seeking for patterns 524 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 525 /// representing the different cases for the switch. 526 /// Note that if the chain is composed of '||' it will build the set of elements 527 /// that matches the comparisons (i.e. any of this value validate the chain) 528 /// while for a chain of '&&' it will build the set elements that make the test 529 /// fail. 530 struct ConstantComparesGatherer { 531 const DataLayout &DL; 532 533 /// Value found for the switch comparison 534 Value *CompValue = nullptr; 535 536 /// Extra clause to be checked before the switch 537 Value *Extra = nullptr; 538 539 /// Set of integers to match in switch 540 SmallVector<ConstantInt *, 8> Vals; 541 542 /// Number of comparisons matched in the and/or chain 543 unsigned UsedICmps = 0; 544 545 /// Construct and compute the result for the comparison instruction Cond 546 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 547 gather(Cond); 548 } 549 550 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 551 ConstantComparesGatherer & 552 operator=(const ConstantComparesGatherer &) = delete; 553 554 private: 555 /// Try to set the current value used for the comparison, it succeeds only if 556 /// it wasn't set before or if the new value is the same as the old one 557 bool setValueOnce(Value *NewVal) { 558 if (CompValue && CompValue != NewVal) 559 return false; 560 CompValue = NewVal; 561 return (CompValue != nullptr); 562 } 563 564 /// Try to match Instruction "I" as a comparison against a constant and 565 /// populates the array Vals with the set of values that match (or do not 566 /// match depending on isEQ). 567 /// Return false on failure. On success, the Value the comparison matched 568 /// against is placed in CompValue. 569 /// If CompValue is already set, the function is expected to fail if a match 570 /// is found but the value compared to is different. 571 bool matchInstruction(Instruction *I, bool isEQ) { 572 // If this is an icmp against a constant, handle this as one of the cases. 573 ICmpInst *ICI; 574 ConstantInt *C; 575 if (!((ICI = dyn_cast<ICmpInst>(I)) && 576 (C = getConstantInt(I->getOperand(1), DL)))) { 577 return false; 578 } 579 580 Value *RHSVal; 581 const APInt *RHSC; 582 583 // Pattern match a special case 584 // (x & ~2^z) == y --> x == y || x == y|2^z 585 // This undoes a transformation done by instcombine to fuse 2 compares. 586 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 587 // It's a little bit hard to see why the following transformations are 588 // correct. Here is a CVC3 program to verify them for 64-bit values: 589 590 /* 591 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 592 x : BITVECTOR(64); 593 y : BITVECTOR(64); 594 z : BITVECTOR(64); 595 mask : BITVECTOR(64) = BVSHL(ONE, z); 596 QUERY( (y & ~mask = y) => 597 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 598 ); 599 QUERY( (y | mask = y) => 600 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 601 ); 602 */ 603 604 // Please note that each pattern must be a dual implication (<--> or 605 // iff). One directional implication can create spurious matches. If the 606 // implication is only one-way, an unsatisfiable condition on the left 607 // side can imply a satisfiable condition on the right side. Dual 608 // implication ensures that satisfiable conditions are transformed to 609 // other satisfiable conditions and unsatisfiable conditions are 610 // transformed to other unsatisfiable conditions. 611 612 // Here is a concrete example of a unsatisfiable condition on the left 613 // implying a satisfiable condition on the right: 614 // 615 // mask = (1 << z) 616 // (x & ~mask) == y --> (x == y || x == (y | mask)) 617 // 618 // Substituting y = 3, z = 0 yields: 619 // (x & -2) == 3 --> (x == 3 || x == 2) 620 621 // Pattern match a special case: 622 /* 623 QUERY( (y & ~mask = y) => 624 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 625 ); 626 */ 627 if (match(ICI->getOperand(0), 628 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 629 APInt Mask = ~*RHSC; 630 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 631 // If we already have a value for the switch, it has to match! 632 if (!setValueOnce(RHSVal)) 633 return false; 634 635 Vals.push_back(C); 636 Vals.push_back( 637 ConstantInt::get(C->getContext(), 638 C->getValue() | Mask)); 639 UsedICmps++; 640 return true; 641 } 642 } 643 644 // Pattern match a special case: 645 /* 646 QUERY( (y | mask = y) => 647 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 648 ); 649 */ 650 if (match(ICI->getOperand(0), 651 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 652 APInt Mask = *RHSC; 653 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 654 // If we already have a value for the switch, it has to match! 655 if (!setValueOnce(RHSVal)) 656 return false; 657 658 Vals.push_back(C); 659 Vals.push_back(ConstantInt::get(C->getContext(), 660 C->getValue() & ~Mask)); 661 UsedICmps++; 662 return true; 663 } 664 } 665 666 // If we already have a value for the switch, it has to match! 667 if (!setValueOnce(ICI->getOperand(0))) 668 return false; 669 670 UsedICmps++; 671 Vals.push_back(C); 672 return ICI->getOperand(0); 673 } 674 675 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 676 ConstantRange Span = 677 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 678 679 // Shift the range if the compare is fed by an add. This is the range 680 // compare idiom as emitted by instcombine. 681 Value *CandidateVal = I->getOperand(0); 682 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 683 Span = Span.subtract(*RHSC); 684 CandidateVal = RHSVal; 685 } 686 687 // If this is an and/!= check, then we are looking to build the set of 688 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 689 // x != 0 && x != 1. 690 if (!isEQ) 691 Span = Span.inverse(); 692 693 // If there are a ton of values, we don't want to make a ginormous switch. 694 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 695 return false; 696 } 697 698 // If we already have a value for the switch, it has to match! 699 if (!setValueOnce(CandidateVal)) 700 return false; 701 702 // Add all values from the range to the set 703 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 704 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 705 706 UsedICmps++; 707 return true; 708 } 709 710 /// Given a potentially 'or'd or 'and'd together collection of icmp 711 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 712 /// the value being compared, and stick the list constants into the Vals 713 /// vector. 714 /// One "Extra" case is allowed to differ from the other. 715 void gather(Value *V) { 716 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 717 718 // Keep a stack (SmallVector for efficiency) for depth-first traversal 719 SmallVector<Value *, 8> DFT; 720 SmallPtrSet<Value *, 8> Visited; 721 722 // Initialize 723 Visited.insert(V); 724 DFT.push_back(V); 725 726 while (!DFT.empty()) { 727 V = DFT.pop_back_val(); 728 729 if (Instruction *I = dyn_cast<Instruction>(V)) { 730 // If it is a || (or && depending on isEQ), process the operands. 731 Value *Op0, *Op1; 732 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 733 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 734 if (Visited.insert(Op1).second) 735 DFT.push_back(Op1); 736 if (Visited.insert(Op0).second) 737 DFT.push_back(Op0); 738 739 continue; 740 } 741 742 // Try to match the current instruction 743 if (matchInstruction(I, isEQ)) 744 // Match succeed, continue the loop 745 continue; 746 } 747 748 // One element of the sequence of || (or &&) could not be match as a 749 // comparison against the same value as the others. 750 // We allow only one "Extra" case to be checked before the switch 751 if (!Extra) { 752 Extra = V; 753 continue; 754 } 755 // Failed to parse a proper sequence, abort now 756 CompValue = nullptr; 757 break; 758 } 759 } 760 }; 761 762 } // end anonymous namespace 763 764 static void eraseTerminatorAndDCECond(Instruction *TI, 765 MemorySSAUpdater *MSSAU = nullptr) { 766 Instruction *Cond = nullptr; 767 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 768 Cond = dyn_cast<Instruction>(SI->getCondition()); 769 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 770 if (BI->isConditional()) 771 Cond = dyn_cast<Instruction>(BI->getCondition()); 772 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 773 Cond = dyn_cast<Instruction>(IBI->getAddress()); 774 } 775 776 TI->eraseFromParent(); 777 if (Cond) 778 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 779 } 780 781 /// Return true if the specified terminator checks 782 /// to see if a value is equal to constant integer value. 783 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 784 Value *CV = nullptr; 785 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 786 // Do not permit merging of large switch instructions into their 787 // predecessors unless there is only one predecessor. 788 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 789 CV = SI->getCondition(); 790 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 791 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 792 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 793 if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL)) 794 CV = ICI->getOperand(0); 795 } 796 797 // Unwrap any lossless ptrtoint cast. 798 if (CV) { 799 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 800 Value *Ptr = PTII->getPointerOperand(); 801 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 802 CV = Ptr; 803 } 804 } 805 return CV; 806 } 807 808 /// Given a value comparison instruction, 809 /// decode all of the 'cases' that it represents and return the 'default' block. 810 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases( 811 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 812 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 813 Cases.reserve(SI->getNumCases()); 814 for (auto Case : SI->cases()) 815 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 816 Case.getCaseSuccessor())); 817 return SI->getDefaultDest(); 818 } 819 820 BranchInst *BI = cast<BranchInst>(TI); 821 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 822 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 823 Cases.push_back(ValueEqualityComparisonCase( 824 getConstantInt(ICI->getOperand(1), DL), Succ)); 825 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 826 } 827 828 /// Given a vector of bb/value pairs, remove any entries 829 /// in the list that match the specified block. 830 static void 831 eliminateBlockCases(BasicBlock *BB, 832 std::vector<ValueEqualityComparisonCase> &Cases) { 833 llvm::erase(Cases, BB); 834 } 835 836 /// Return true if there are any keys in C1 that exist in C2 as well. 837 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 838 std::vector<ValueEqualityComparisonCase> &C2) { 839 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 840 841 // Make V1 be smaller than V2. 842 if (V1->size() > V2->size()) 843 std::swap(V1, V2); 844 845 if (V1->empty()) 846 return false; 847 if (V1->size() == 1) { 848 // Just scan V2. 849 ConstantInt *TheVal = (*V1)[0].Value; 850 for (const ValueEqualityComparisonCase &VECC : *V2) 851 if (TheVal == VECC.Value) 852 return true; 853 } 854 855 // Otherwise, just sort both lists and compare element by element. 856 array_pod_sort(V1->begin(), V1->end()); 857 array_pod_sort(V2->begin(), V2->end()); 858 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 859 while (i1 != e1 && i2 != e2) { 860 if ((*V1)[i1].Value == (*V2)[i2].Value) 861 return true; 862 if ((*V1)[i1].Value < (*V2)[i2].Value) 863 ++i1; 864 else 865 ++i2; 866 } 867 return false; 868 } 869 870 // Set branch weights on SwitchInst. This sets the metadata if there is at 871 // least one non-zero weight. 872 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights, 873 bool IsExpected) { 874 // Check that there is at least one non-zero weight. Otherwise, pass 875 // nullptr to setMetadata which will erase the existing metadata. 876 MDNode *N = nullptr; 877 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 878 N = MDBuilder(SI->getParent()->getContext()) 879 .createBranchWeights(Weights, IsExpected); 880 SI->setMetadata(LLVMContext::MD_prof, N); 881 } 882 883 // Similar to the above, but for branch and select instructions that take 884 // exactly 2 weights. 885 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 886 uint32_t FalseWeight, bool IsExpected) { 887 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 888 // Check that there is at least one non-zero weight. Otherwise, pass 889 // nullptr to setMetadata which will erase the existing metadata. 890 MDNode *N = nullptr; 891 if (TrueWeight || FalseWeight) 892 N = MDBuilder(I->getParent()->getContext()) 893 .createBranchWeights(TrueWeight, FalseWeight, IsExpected); 894 I->setMetadata(LLVMContext::MD_prof, N); 895 } 896 897 /// If TI is known to be a terminator instruction and its block is known to 898 /// only have a single predecessor block, check to see if that predecessor is 899 /// also a value comparison with the same value, and if that comparison 900 /// determines the outcome of this comparison. If so, simplify TI. This does a 901 /// very limited form of jump threading. 902 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor( 903 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 904 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 905 if (!PredVal) 906 return false; // Not a value comparison in predecessor. 907 908 Value *ThisVal = isValueEqualityComparison(TI); 909 assert(ThisVal && "This isn't a value comparison!!"); 910 if (ThisVal != PredVal) 911 return false; // Different predicates. 912 913 // TODO: Preserve branch weight metadata, similarly to how 914 // foldValueComparisonIntoPredecessors preserves it. 915 916 // Find out information about when control will move from Pred to TI's block. 917 std::vector<ValueEqualityComparisonCase> PredCases; 918 BasicBlock *PredDef = 919 getValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 920 eliminateBlockCases(PredDef, PredCases); // Remove default from cases. 921 922 // Find information about how control leaves this block. 923 std::vector<ValueEqualityComparisonCase> ThisCases; 924 BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases); 925 eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 926 927 // If TI's block is the default block from Pred's comparison, potentially 928 // simplify TI based on this knowledge. 929 if (PredDef == TI->getParent()) { 930 // If we are here, we know that the value is none of those cases listed in 931 // PredCases. If there are any cases in ThisCases that are in PredCases, we 932 // can simplify TI. 933 if (!valuesOverlap(PredCases, ThisCases)) 934 return false; 935 936 if (isa<BranchInst>(TI)) { 937 // Okay, one of the successors of this condbr is dead. Convert it to a 938 // uncond br. 939 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 940 // Insert the new branch. 941 Instruction *NI = Builder.CreateBr(ThisDef); 942 (void)NI; 943 944 // Remove PHI node entries for the dead edge. 945 ThisCases[0].Dest->removePredecessor(PredDef); 946 947 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 948 << "Through successor TI: " << *TI << "Leaving: " << *NI 949 << "\n"); 950 951 eraseTerminatorAndDCECond(TI); 952 953 if (DTU) 954 DTU->applyUpdates( 955 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 956 957 return true; 958 } 959 960 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 961 // Okay, TI has cases that are statically dead, prune them away. 962 SmallPtrSet<Constant *, 16> DeadCases; 963 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 964 DeadCases.insert(PredCases[i].Value); 965 966 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 967 << "Through successor TI: " << *TI); 968 969 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 970 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 971 --i; 972 auto *Successor = i->getCaseSuccessor(); 973 if (DTU) 974 ++NumPerSuccessorCases[Successor]; 975 if (DeadCases.count(i->getCaseValue())) { 976 Successor->removePredecessor(PredDef); 977 SI.removeCase(i); 978 if (DTU) 979 --NumPerSuccessorCases[Successor]; 980 } 981 } 982 983 if (DTU) { 984 std::vector<DominatorTree::UpdateType> Updates; 985 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 986 if (I.second == 0) 987 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 988 DTU->applyUpdates(Updates); 989 } 990 991 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 992 return true; 993 } 994 995 // Otherwise, TI's block must correspond to some matched value. Find out 996 // which value (or set of values) this is. 997 ConstantInt *TIV = nullptr; 998 BasicBlock *TIBB = TI->getParent(); 999 for (const auto &[Value, Dest] : PredCases) 1000 if (Dest == TIBB) { 1001 if (TIV) 1002 return false; // Cannot handle multiple values coming to this block. 1003 TIV = Value; 1004 } 1005 assert(TIV && "No edge from pred to succ?"); 1006 1007 // Okay, we found the one constant that our value can be if we get into TI's 1008 // BB. Find out which successor will unconditionally be branched to. 1009 BasicBlock *TheRealDest = nullptr; 1010 for (const auto &[Value, Dest] : ThisCases) 1011 if (Value == TIV) { 1012 TheRealDest = Dest; 1013 break; 1014 } 1015 1016 // If not handled by any explicit cases, it is handled by the default case. 1017 if (!TheRealDest) 1018 TheRealDest = ThisDef; 1019 1020 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1021 1022 // Remove PHI node entries for dead edges. 1023 BasicBlock *CheckEdge = TheRealDest; 1024 for (BasicBlock *Succ : successors(TIBB)) 1025 if (Succ != CheckEdge) { 1026 if (Succ != TheRealDest) 1027 RemovedSuccs.insert(Succ); 1028 Succ->removePredecessor(TIBB); 1029 } else 1030 CheckEdge = nullptr; 1031 1032 // Insert the new branch. 1033 Instruction *NI = Builder.CreateBr(TheRealDest); 1034 (void)NI; 1035 1036 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1037 << "Through successor TI: " << *TI << "Leaving: " << *NI 1038 << "\n"); 1039 1040 eraseTerminatorAndDCECond(TI); 1041 if (DTU) { 1042 SmallVector<DominatorTree::UpdateType, 2> Updates; 1043 Updates.reserve(RemovedSuccs.size()); 1044 for (auto *RemovedSucc : RemovedSuccs) 1045 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1046 DTU->applyUpdates(Updates); 1047 } 1048 return true; 1049 } 1050 1051 namespace { 1052 1053 /// This class implements a stable ordering of constant 1054 /// integers that does not depend on their address. This is important for 1055 /// applications that sort ConstantInt's to ensure uniqueness. 1056 struct ConstantIntOrdering { 1057 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1058 return LHS->getValue().ult(RHS->getValue()); 1059 } 1060 }; 1061 1062 } // end anonymous namespace 1063 1064 static int constantIntSortPredicate(ConstantInt *const *P1, 1065 ConstantInt *const *P2) { 1066 const ConstantInt *LHS = *P1; 1067 const ConstantInt *RHS = *P2; 1068 if (LHS == RHS) 1069 return 0; 1070 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1071 } 1072 1073 /// Get Weights of a given terminator, the default weight is at the front 1074 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1075 /// metadata. 1076 static void getBranchWeights(Instruction *TI, 1077 SmallVectorImpl<uint64_t> &Weights) { 1078 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1079 assert(MD && "Invalid branch-weight metadata"); 1080 extractFromBranchWeightMD64(MD, Weights); 1081 1082 // If TI is a conditional eq, the default case is the false case, 1083 // and the corresponding branch-weight data is at index 2. We swap the 1084 // default weight to be the first entry. 1085 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1086 assert(Weights.size() == 2); 1087 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1088 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1089 std::swap(Weights.front(), Weights.back()); 1090 } 1091 } 1092 1093 /// Keep halving the weights until all can fit in uint32_t. 1094 static void fitWeights(MutableArrayRef<uint64_t> Weights) { 1095 uint64_t Max = *llvm::max_element(Weights); 1096 if (Max > UINT_MAX) { 1097 unsigned Offset = 32 - llvm::countl_zero(Max); 1098 for (uint64_t &I : Weights) 1099 I >>= Offset; 1100 } 1101 } 1102 1103 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1104 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1105 Instruction *PTI = PredBlock->getTerminator(); 1106 1107 // If we have bonus instructions, clone them into the predecessor block. 1108 // Note that there may be multiple predecessor blocks, so we cannot move 1109 // bonus instructions to a predecessor block. 1110 for (Instruction &BonusInst : *BB) { 1111 if (BonusInst.isTerminator()) 1112 continue; 1113 1114 Instruction *NewBonusInst = BonusInst.clone(); 1115 1116 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1117 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1118 // Unless the instruction has the same !dbg location as the original 1119 // branch, drop it. When we fold the bonus instructions we want to make 1120 // sure we reset their debug locations in order to avoid stepping on 1121 // dead code caused by folding dead branches. 1122 NewBonusInst->setDebugLoc(DebugLoc()); 1123 } 1124 1125 RemapInstruction(NewBonusInst, VMap, 1126 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1127 1128 // If we speculated an instruction, we need to drop any metadata that may 1129 // result in undefined behavior, as the metadata might have been valid 1130 // only given the branch precondition. 1131 // Similarly strip attributes on call parameters that may cause UB in 1132 // location the call is moved to. 1133 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1134 1135 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1136 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1137 RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap, 1138 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1139 1140 if (isa<DbgInfoIntrinsic>(BonusInst)) 1141 continue; 1142 1143 NewBonusInst->takeName(&BonusInst); 1144 BonusInst.setName(NewBonusInst->getName() + ".old"); 1145 VMap[&BonusInst] = NewBonusInst; 1146 1147 // Update (liveout) uses of bonus instructions, 1148 // now that the bonus instruction has been cloned into predecessor. 1149 // Note that we expect to be in a block-closed SSA form for this to work! 1150 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1151 auto *UI = cast<Instruction>(U.getUser()); 1152 auto *PN = dyn_cast<PHINode>(UI); 1153 if (!PN) { 1154 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1155 "If the user is not a PHI node, then it should be in the same " 1156 "block as, and come after, the original bonus instruction."); 1157 continue; // Keep using the original bonus instruction. 1158 } 1159 // Is this the block-closed SSA form PHI node? 1160 if (PN->getIncomingBlock(U) == BB) 1161 continue; // Great, keep using the original bonus instruction. 1162 // The only other alternative is an "use" when coming from 1163 // the predecessor block - here we should refer to the cloned bonus instr. 1164 assert(PN->getIncomingBlock(U) == PredBlock && 1165 "Not in block-closed SSA form?"); 1166 U.set(NewBonusInst); 1167 } 1168 } 1169 } 1170 1171 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding( 1172 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1173 BasicBlock *BB = TI->getParent(); 1174 BasicBlock *Pred = PTI->getParent(); 1175 1176 SmallVector<DominatorTree::UpdateType, 32> Updates; 1177 1178 // Figure out which 'cases' to copy from SI to PSI. 1179 std::vector<ValueEqualityComparisonCase> BBCases; 1180 BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases); 1181 1182 std::vector<ValueEqualityComparisonCase> PredCases; 1183 BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases); 1184 1185 // Based on whether the default edge from PTI goes to BB or not, fill in 1186 // PredCases and PredDefault with the new switch cases we would like to 1187 // build. 1188 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1189 1190 // Update the branch weight metadata along the way 1191 SmallVector<uint64_t, 8> Weights; 1192 bool PredHasWeights = hasBranchWeightMD(*PTI); 1193 bool SuccHasWeights = hasBranchWeightMD(*TI); 1194 1195 if (PredHasWeights) { 1196 getBranchWeights(PTI, Weights); 1197 // branch-weight metadata is inconsistent here. 1198 if (Weights.size() != 1 + PredCases.size()) 1199 PredHasWeights = SuccHasWeights = false; 1200 } else if (SuccHasWeights) 1201 // If there are no predecessor weights but there are successor weights, 1202 // populate Weights with 1, which will later be scaled to the sum of 1203 // successor's weights 1204 Weights.assign(1 + PredCases.size(), 1); 1205 1206 SmallVector<uint64_t, 8> SuccWeights; 1207 if (SuccHasWeights) { 1208 getBranchWeights(TI, SuccWeights); 1209 // branch-weight metadata is inconsistent here. 1210 if (SuccWeights.size() != 1 + BBCases.size()) 1211 PredHasWeights = SuccHasWeights = false; 1212 } else if (PredHasWeights) 1213 SuccWeights.assign(1 + BBCases.size(), 1); 1214 1215 if (PredDefault == BB) { 1216 // If this is the default destination from PTI, only the edges in TI 1217 // that don't occur in PTI, or that branch to BB will be activated. 1218 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1219 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1220 if (PredCases[i].Dest != BB) 1221 PTIHandled.insert(PredCases[i].Value); 1222 else { 1223 // The default destination is BB, we don't need explicit targets. 1224 std::swap(PredCases[i], PredCases.back()); 1225 1226 if (PredHasWeights || SuccHasWeights) { 1227 // Increase weight for the default case. 1228 Weights[0] += Weights[i + 1]; 1229 std::swap(Weights[i + 1], Weights.back()); 1230 Weights.pop_back(); 1231 } 1232 1233 PredCases.pop_back(); 1234 --i; 1235 --e; 1236 } 1237 1238 // Reconstruct the new switch statement we will be building. 1239 if (PredDefault != BBDefault) { 1240 PredDefault->removePredecessor(Pred); 1241 if (DTU && PredDefault != BB) 1242 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1243 PredDefault = BBDefault; 1244 ++NewSuccessors[BBDefault]; 1245 } 1246 1247 unsigned CasesFromPred = Weights.size(); 1248 uint64_t ValidTotalSuccWeight = 0; 1249 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1250 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1251 PredCases.push_back(BBCases[i]); 1252 ++NewSuccessors[BBCases[i].Dest]; 1253 if (SuccHasWeights || PredHasWeights) { 1254 // The default weight is at index 0, so weight for the ith case 1255 // should be at index i+1. Scale the cases from successor by 1256 // PredDefaultWeight (Weights[0]). 1257 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1258 ValidTotalSuccWeight += SuccWeights[i + 1]; 1259 } 1260 } 1261 1262 if (SuccHasWeights || PredHasWeights) { 1263 ValidTotalSuccWeight += SuccWeights[0]; 1264 // Scale the cases from predecessor by ValidTotalSuccWeight. 1265 for (unsigned i = 1; i < CasesFromPred; ++i) 1266 Weights[i] *= ValidTotalSuccWeight; 1267 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1268 Weights[0] *= SuccWeights[0]; 1269 } 1270 } else { 1271 // If this is not the default destination from PSI, only the edges 1272 // in SI that occur in PSI with a destination of BB will be 1273 // activated. 1274 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1275 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1276 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1277 if (PredCases[i].Dest == BB) { 1278 PTIHandled.insert(PredCases[i].Value); 1279 1280 if (PredHasWeights || SuccHasWeights) { 1281 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1282 std::swap(Weights[i + 1], Weights.back()); 1283 Weights.pop_back(); 1284 } 1285 1286 std::swap(PredCases[i], PredCases.back()); 1287 PredCases.pop_back(); 1288 --i; 1289 --e; 1290 } 1291 1292 // Okay, now we know which constants were sent to BB from the 1293 // predecessor. Figure out where they will all go now. 1294 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1295 if (PTIHandled.count(BBCases[i].Value)) { 1296 // If this is one we are capable of getting... 1297 if (PredHasWeights || SuccHasWeights) 1298 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1299 PredCases.push_back(BBCases[i]); 1300 ++NewSuccessors[BBCases[i].Dest]; 1301 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1302 } 1303 1304 // If there are any constants vectored to BB that TI doesn't handle, 1305 // they must go to the default destination of TI. 1306 for (ConstantInt *I : PTIHandled) { 1307 if (PredHasWeights || SuccHasWeights) 1308 Weights.push_back(WeightsForHandled[I]); 1309 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1310 ++NewSuccessors[BBDefault]; 1311 } 1312 } 1313 1314 // Okay, at this point, we know which new successor Pred will get. Make 1315 // sure we update the number of entries in the PHI nodes for these 1316 // successors. 1317 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1318 if (DTU) { 1319 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1320 Updates.reserve(Updates.size() + NewSuccessors.size()); 1321 } 1322 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1323 NewSuccessors) { 1324 for (auto I : seq(NewSuccessor.second)) { 1325 (void)I; 1326 addPredecessorToBlock(NewSuccessor.first, Pred, BB); 1327 } 1328 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1329 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1330 } 1331 1332 Builder.SetInsertPoint(PTI); 1333 // Convert pointer to int before we switch. 1334 if (CV->getType()->isPointerTy()) { 1335 CV = 1336 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1337 } 1338 1339 // Now that the successors are updated, create the new Switch instruction. 1340 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1341 NewSI->setDebugLoc(PTI->getDebugLoc()); 1342 for (ValueEqualityComparisonCase &V : PredCases) 1343 NewSI->addCase(V.Value, V.Dest); 1344 1345 if (PredHasWeights || SuccHasWeights) { 1346 // Halve the weights if any of them cannot fit in an uint32_t 1347 fitWeights(Weights); 1348 1349 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1350 1351 setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false); 1352 } 1353 1354 eraseTerminatorAndDCECond(PTI); 1355 1356 // Okay, last check. If BB is still a successor of PSI, then we must 1357 // have an infinite loop case. If so, add an infinitely looping block 1358 // to handle the case to preserve the behavior of the code. 1359 BasicBlock *InfLoopBlock = nullptr; 1360 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1361 if (NewSI->getSuccessor(i) == BB) { 1362 if (!InfLoopBlock) { 1363 // Insert it at the end of the function, because it's either code, 1364 // or it won't matter if it's hot. :) 1365 InfLoopBlock = 1366 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1367 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1368 if (DTU) 1369 Updates.push_back( 1370 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1371 } 1372 NewSI->setSuccessor(i, InfLoopBlock); 1373 } 1374 1375 if (DTU) { 1376 if (InfLoopBlock) 1377 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1378 1379 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1380 1381 DTU->applyUpdates(Updates); 1382 } 1383 1384 ++NumFoldValueComparisonIntoPredecessors; 1385 return true; 1386 } 1387 1388 /// The specified terminator is a value equality comparison instruction 1389 /// (either a switch or a branch on "X == c"). 1390 /// See if any of the predecessors of the terminator block are value comparisons 1391 /// on the same value. If so, and if safe to do so, fold them together. 1392 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI, 1393 IRBuilder<> &Builder) { 1394 BasicBlock *BB = TI->getParent(); 1395 Value *CV = isValueEqualityComparison(TI); // CondVal 1396 assert(CV && "Not a comparison?"); 1397 1398 bool Changed = false; 1399 1400 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1401 while (!Preds.empty()) { 1402 BasicBlock *Pred = Preds.pop_back_val(); 1403 Instruction *PTI = Pred->getTerminator(); 1404 1405 // Don't try to fold into itself. 1406 if (Pred == BB) 1407 continue; 1408 1409 // See if the predecessor is a comparison with the same value. 1410 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1411 if (PCV != CV) 1412 continue; 1413 1414 SmallSetVector<BasicBlock *, 4> FailBlocks; 1415 if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) { 1416 for (auto *Succ : FailBlocks) { 1417 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1418 return false; 1419 } 1420 } 1421 1422 performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1423 Changed = true; 1424 } 1425 return Changed; 1426 } 1427 1428 // If we would need to insert a select that uses the value of this invoke 1429 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1430 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1431 // select in this case. 1432 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1433 Instruction *I1, Instruction *I2) { 1434 for (BasicBlock *Succ : successors(BB1)) { 1435 for (const PHINode &PN : Succ->phis()) { 1436 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1437 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1438 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1439 return false; 1440 } 1441 } 1442 } 1443 return true; 1444 } 1445 1446 // Get interesting characteristics of instructions that 1447 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1448 // instructions can be reordered across. 1449 enum SkipFlags { 1450 SkipReadMem = 1, 1451 SkipSideEffect = 2, 1452 SkipImplicitControlFlow = 4 1453 }; 1454 1455 static unsigned skippedInstrFlags(Instruction *I) { 1456 unsigned Flags = 0; 1457 if (I->mayReadFromMemory()) 1458 Flags |= SkipReadMem; 1459 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1460 // inalloca) across stacksave/stackrestore boundaries. 1461 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1462 Flags |= SkipSideEffect; 1463 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1464 Flags |= SkipImplicitControlFlow; 1465 return Flags; 1466 } 1467 1468 // Returns true if it is safe to reorder an instruction across preceding 1469 // instructions in a basic block. 1470 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1471 // Don't reorder a store over a load. 1472 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1473 return false; 1474 1475 // If we have seen an instruction with side effects, it's unsafe to reorder an 1476 // instruction which reads memory or itself has side effects. 1477 if ((Flags & SkipSideEffect) && 1478 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1479 return false; 1480 1481 // Reordering across an instruction which does not necessarily transfer 1482 // control to the next instruction is speculation. 1483 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1484 return false; 1485 1486 // Hoisting of llvm.deoptimize is only legal together with the next return 1487 // instruction, which this pass is not always able to do. 1488 if (auto *CB = dyn_cast<CallBase>(I)) 1489 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1490 return false; 1491 1492 // It's also unsafe/illegal to hoist an instruction above its instruction 1493 // operands 1494 BasicBlock *BB = I->getParent(); 1495 for (Value *Op : I->operands()) { 1496 if (auto *J = dyn_cast<Instruction>(Op)) 1497 if (J->getParent() == BB) 1498 return false; 1499 } 1500 1501 return true; 1502 } 1503 1504 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1505 1506 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1507 /// instructions \p I1 and \p I2 can and should be hoisted. 1508 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1509 const TargetTransformInfo &TTI) { 1510 // If we're going to hoist a call, make sure that the two instructions 1511 // we're commoning/hoisting are both marked with musttail, or neither of 1512 // them is marked as such. Otherwise, we might end up in a situation where 1513 // we hoist from a block where the terminator is a `ret` to a block where 1514 // the terminator is a `br`, and `musttail` calls expect to be followed by 1515 // a return. 1516 auto *C1 = dyn_cast<CallInst>(I1); 1517 auto *C2 = dyn_cast<CallInst>(I2); 1518 if (C1 && C2) 1519 if (C1->isMustTailCall() != C2->isMustTailCall()) 1520 return false; 1521 1522 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1523 return false; 1524 1525 // If any of the two call sites has nomerge or convergent attribute, stop 1526 // hoisting. 1527 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1528 if (CB1->cannotMerge() || CB1->isConvergent()) 1529 return false; 1530 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1531 if (CB2->cannotMerge() || CB2->isConvergent()) 1532 return false; 1533 1534 return true; 1535 } 1536 1537 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical 1538 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in 1539 /// hoistCommonCodeFromSuccessors. e.g. The input: 1540 /// I1 DVRs: { x, z }, 1541 /// OtherInsts: { I2 DVRs: { x, y, z } } 1542 /// would result in hoisting only DbgVariableRecord x. 1543 static void hoistLockstepIdenticalDbgVariableRecords( 1544 Instruction *TI, Instruction *I1, 1545 SmallVectorImpl<Instruction *> &OtherInsts) { 1546 if (!I1->hasDbgRecords()) 1547 return; 1548 using CurrentAndEndIt = 1549 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>; 1550 // Vector of {Current, End} iterators. 1551 SmallVector<CurrentAndEndIt> Itrs; 1552 Itrs.reserve(OtherInsts.size() + 1); 1553 // Helper lambdas for lock-step checks: 1554 // Return true if this Current == End. 1555 auto atEnd = [](const CurrentAndEndIt &Pair) { 1556 return Pair.first == Pair.second; 1557 }; 1558 // Return true if all Current are identical. 1559 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) { 1560 return all_of(make_first_range(ArrayRef(Itrs).drop_front()), 1561 [&](DbgRecord::self_iterator I) { 1562 return Itrs[0].first->isIdenticalToWhenDefined(*I); 1563 }); 1564 }; 1565 1566 // Collect the iterators. 1567 Itrs.push_back( 1568 {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()}); 1569 for (Instruction *Other : OtherInsts) { 1570 if (!Other->hasDbgRecords()) 1571 return; 1572 Itrs.push_back( 1573 {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()}); 1574 } 1575 1576 // Iterate in lock-step until any of the DbgRecord lists are exausted. If 1577 // the lock-step DbgRecord are identical, hoist all of them to TI. 1578 // This replicates the dbg.* intrinsic behaviour in 1579 // hoistCommonCodeFromSuccessors. 1580 while (none_of(Itrs, atEnd)) { 1581 bool HoistDVRs = allIdentical(Itrs); 1582 for (CurrentAndEndIt &Pair : Itrs) { 1583 // Increment Current iterator now as we may be about to move the 1584 // DbgRecord. 1585 DbgRecord &DR = *Pair.first++; 1586 if (HoistDVRs) { 1587 DR.removeFromParent(); 1588 TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator()); 1589 } 1590 } 1591 } 1592 } 1593 1594 static bool areIdenticalUpToCommutativity(const Instruction *I1, 1595 const Instruction *I2) { 1596 if (I1->isIdenticalToWhenDefined(I2)) 1597 return true; 1598 1599 if (auto *Cmp1 = dyn_cast<CmpInst>(I1)) 1600 if (auto *Cmp2 = dyn_cast<CmpInst>(I2)) 1601 return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() && 1602 Cmp1->getOperand(0) == Cmp2->getOperand(1) && 1603 Cmp1->getOperand(1) == Cmp2->getOperand(0); 1604 1605 if (I1->isCommutative() && I1->isSameOperationAs(I2)) { 1606 return I1->getOperand(0) == I2->getOperand(1) && 1607 I1->getOperand(1) == I2->getOperand(0) && 1608 equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2)); 1609 } 1610 1611 return false; 1612 } 1613 1614 /// If the target supports conditional faulting, 1615 /// we look for the following pattern: 1616 /// \code 1617 /// BB: 1618 /// ... 1619 /// %cond = icmp ult %x, %y 1620 /// br i1 %cond, label %TrueBB, label %FalseBB 1621 /// FalseBB: 1622 /// store i32 1, ptr %q, align 4 1623 /// ... 1624 /// TrueBB: 1625 /// %maskedloadstore = load i32, ptr %b, align 4 1626 /// store i32 %maskedloadstore, ptr %p, align 4 1627 /// ... 1628 /// \endcode 1629 /// 1630 /// and transform it into: 1631 /// 1632 /// \code 1633 /// BB: 1634 /// ... 1635 /// %cond = icmp ult %x, %y 1636 /// %maskedloadstore = cload i32, ptr %b, %cond 1637 /// cstore i32 %maskedloadstore, ptr %p, %cond 1638 /// cstore i32 1, ptr %q, ~%cond 1639 /// br i1 %cond, label %TrueBB, label %FalseBB 1640 /// FalseBB: 1641 /// ... 1642 /// TrueBB: 1643 /// ... 1644 /// \endcode 1645 /// 1646 /// where cload/cstore are represented by llvm.masked.load/store intrinsics, 1647 /// e.g. 1648 /// 1649 /// \code 1650 /// %vcond = bitcast i1 %cond to <1 x i1> 1651 /// %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0 1652 /// (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison) 1653 /// %maskedloadstore = bitcast <1 x i32> %v0 to i32 1654 /// call void @llvm.masked.store.v1i32.p0 1655 /// (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond) 1656 /// %cond.not = xor i1 %cond, true 1657 /// %vcond.not = bitcast i1 %cond.not to <1 x i> 1658 /// call void @llvm.masked.store.v1i32.p0 1659 /// (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not) 1660 /// \endcode 1661 /// 1662 /// So we need to turn hoisted load/store into cload/cstore. 1663 static void hoistConditionalLoadsStores( 1664 BranchInst *BI, 1665 SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores, 1666 bool Invert) { 1667 auto &Context = BI->getParent()->getContext(); 1668 auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1); 1669 auto *Cond = BI->getOperand(0); 1670 // Construct the condition if needed. 1671 BasicBlock *BB = BI->getParent(); 1672 IRBuilder<> Builder(SpeculatedConditionalLoadsStores.back()); 1673 Value *Mask = Builder.CreateBitCast( 1674 Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond, 1675 VCondTy); 1676 for (auto *I : SpeculatedConditionalLoadsStores) { 1677 IRBuilder<> Builder(I); 1678 // We currently assume conditional faulting load/store is supported for 1679 // scalar types only when creating new instructions. This can be easily 1680 // extended for vector types in the future. 1681 assert(!getLoadStoreType(I)->isVectorTy() && "not implemented"); 1682 auto *Op0 = I->getOperand(0); 1683 CallInst *MaskedLoadStore = nullptr; 1684 if (auto *LI = dyn_cast<LoadInst>(I)) { 1685 // Handle Load. 1686 auto *Ty = I->getType(); 1687 PHINode *PN = nullptr; 1688 Value *PassThru = nullptr; 1689 for (User *U : I->users()) 1690 if ((PN = dyn_cast<PHINode>(U))) { 1691 PassThru = Builder.CreateBitCast(PN->getIncomingValueForBlock(BB), 1692 FixedVectorType::get(Ty, 1)); 1693 break; 1694 } 1695 MaskedLoadStore = Builder.CreateMaskedLoad( 1696 FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru); 1697 Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty); 1698 if (PN) 1699 PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore); 1700 I->replaceAllUsesWith(NewLoadStore); 1701 } else { 1702 // Handle Store. 1703 auto *StoredVal = 1704 Builder.CreateBitCast(Op0, FixedVectorType::get(Op0->getType(), 1)); 1705 MaskedLoadStore = Builder.CreateMaskedStore( 1706 StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask); 1707 } 1708 // For non-debug metadata, only !annotation, !range, !nonnull and !align are 1709 // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata). 1710 // 1711 // !nonnull, !align : Not support pointer type, no need to keep. 1712 // !range: Load type is changed from scalar to vector, but the metadata on 1713 // vector specifies a per-element range, so the semantics stay the 1714 // same. Keep it. 1715 // !annotation: Not impact semantics. Keep it. 1716 if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1717 MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges)); 1718 I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation}); 1719 // FIXME: DIAssignID is not supported for masked store yet. 1720 // (Verifier::visitDIAssignIDMetadata) 1721 at::deleteAssignmentMarkers(I); 1722 I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) { 1723 return Node->getMetadataID() == Metadata::DIAssignIDKind; 1724 }); 1725 MaskedLoadStore->copyMetadata(*I); 1726 I->eraseFromParent(); 1727 } 1728 } 1729 1730 static bool isSafeCheapLoadStore(const Instruction *I, 1731 const TargetTransformInfo &TTI) { 1732 // Not handle volatile or atomic. 1733 if (auto *L = dyn_cast<LoadInst>(I)) { 1734 if (!L->isSimple()) 1735 return false; 1736 } else if (auto *S = dyn_cast<StoreInst>(I)) { 1737 if (!S->isSimple()) 1738 return false; 1739 } else 1740 return false; 1741 1742 // llvm.masked.load/store use i32 for alignment while load/store use i64. 1743 // That's why we have the alignment limitation. 1744 // FIXME: Update the prototype of the intrinsics? 1745 return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) && 1746 getLoadStoreAlignment(I) < Value::MaximumAlignment; 1747 } 1748 1749 /// Hoist any common code in the successor blocks up into the block. This 1750 /// function guarantees that BB dominates all successors. If EqTermsOnly is 1751 /// given, only perform hoisting in case both blocks only contain a terminator. 1752 /// In that case, only the original BI will be replaced and selects for PHIs are 1753 /// added. 1754 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI, 1755 bool EqTermsOnly) { 1756 // This does very trivial matching, with limited scanning, to find identical 1757 // instructions in the two blocks. In particular, we don't want to get into 1758 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1759 // such, we currently just scan for obviously identical instructions in an 1760 // identical order, possibly separated by the same number of non-identical 1761 // instructions. 1762 BasicBlock *BB = TI->getParent(); 1763 unsigned int SuccSize = succ_size(BB); 1764 if (SuccSize < 2) 1765 return false; 1766 1767 // If either of the blocks has it's address taken, then we can't do this fold, 1768 // because the code we'd hoist would no longer run when we jump into the block 1769 // by it's address. 1770 for (auto *Succ : successors(BB)) 1771 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1772 return false; 1773 1774 // The second of pair is a SkipFlags bitmask. 1775 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1776 SmallVector<SuccIterPair, 8> SuccIterPairs; 1777 for (auto *Succ : successors(BB)) { 1778 BasicBlock::iterator SuccItr = Succ->begin(); 1779 if (isa<PHINode>(*SuccItr)) 1780 return false; 1781 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1782 } 1783 1784 // Check if only hoisting terminators is allowed. This does not add new 1785 // instructions to the hoist location. 1786 if (EqTermsOnly) { 1787 // Skip any debug intrinsics, as they are free to hoist. 1788 for (auto &SuccIter : make_first_range(SuccIterPairs)) { 1789 auto *INonDbg = &*skipDebugIntrinsics(SuccIter); 1790 if (!INonDbg->isTerminator()) 1791 return false; 1792 } 1793 // Now we know that we only need to hoist debug intrinsics and the 1794 // terminator. Let the loop below handle those 2 cases. 1795 } 1796 1797 // Count how many instructions were not hoisted so far. There's a limit on how 1798 // many instructions we skip, serving as a compilation time control as well as 1799 // preventing excessive increase of life ranges. 1800 unsigned NumSkipped = 0; 1801 // If we find an unreachable instruction at the beginning of a basic block, we 1802 // can still hoist instructions from the rest of the basic blocks. 1803 if (SuccIterPairs.size() > 2) { 1804 erase_if(SuccIterPairs, 1805 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1806 if (SuccIterPairs.size() < 2) 1807 return false; 1808 } 1809 1810 bool Changed = false; 1811 1812 for (;;) { 1813 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1814 auto &BB1ItrPair = *SuccIterPairBegin++; 1815 auto OtherSuccIterPairRange = 1816 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1817 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1818 1819 Instruction *I1 = &*BB1ItrPair.first; 1820 1821 // Skip debug info if it is not identical. 1822 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1823 Instruction *I2 = &*Iter; 1824 return I1->isIdenticalToWhenDefined(I2); 1825 }); 1826 if (!AllDbgInstsAreIdentical) { 1827 while (isa<DbgInfoIntrinsic>(I1)) 1828 I1 = &*++BB1ItrPair.first; 1829 for (auto &SuccIter : OtherSuccIterRange) { 1830 Instruction *I2 = &*SuccIter; 1831 while (isa<DbgInfoIntrinsic>(I2)) 1832 I2 = &*++SuccIter; 1833 } 1834 } 1835 1836 bool AllInstsAreIdentical = true; 1837 bool HasTerminator = I1->isTerminator(); 1838 for (auto &SuccIter : OtherSuccIterRange) { 1839 Instruction *I2 = &*SuccIter; 1840 HasTerminator |= I2->isTerminator(); 1841 if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) || 1842 MMRAMetadata(*I1) != MMRAMetadata(*I2))) 1843 AllInstsAreIdentical = false; 1844 } 1845 1846 SmallVector<Instruction *, 8> OtherInsts; 1847 for (auto &SuccIter : OtherSuccIterRange) 1848 OtherInsts.push_back(&*SuccIter); 1849 1850 // If we are hoisting the terminator instruction, don't move one (making a 1851 // broken BB), instead clone it, and remove BI. 1852 if (HasTerminator) { 1853 // Even if BB, which contains only one unreachable instruction, is ignored 1854 // at the beginning of the loop, we can hoist the terminator instruction. 1855 // If any instructions remain in the block, we cannot hoist terminators. 1856 if (NumSkipped || !AllInstsAreIdentical) { 1857 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1858 return Changed; 1859 } 1860 1861 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) || 1862 Changed; 1863 } 1864 1865 if (AllInstsAreIdentical) { 1866 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1867 AllInstsAreIdentical = 1868 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1869 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1870 Instruction *I2 = &*Pair.first; 1871 unsigned SkipFlagsBB2 = Pair.second; 1872 // Even if the instructions are identical, it may not 1873 // be safe to hoist them if we have skipped over 1874 // instructions with side effects or their operands 1875 // weren't hoisted. 1876 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1877 shouldHoistCommonInstructions(I1, I2, TTI); 1878 }); 1879 } 1880 1881 if (AllInstsAreIdentical) { 1882 BB1ItrPair.first++; 1883 if (isa<DbgInfoIntrinsic>(I1)) { 1884 // The debug location is an integral part of a debug info intrinsic 1885 // and can't be separated from it or replaced. Instead of attempting 1886 // to merge locations, simply hoist both copies of the intrinsic. 1887 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1888 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1889 // and leave any that were not hoisted behind (by calling moveBefore 1890 // rather than moveBeforePreserving). 1891 I1->moveBefore(TI); 1892 for (auto &SuccIter : OtherSuccIterRange) { 1893 auto *I2 = &*SuccIter++; 1894 assert(isa<DbgInfoIntrinsic>(I2)); 1895 I2->moveBefore(TI); 1896 } 1897 } else { 1898 // For a normal instruction, we just move one to right before the 1899 // branch, then replace all uses of the other with the first. Finally, 1900 // we remove the now redundant second instruction. 1901 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1902 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1903 // and leave any that were not hoisted behind (by calling moveBefore 1904 // rather than moveBeforePreserving). 1905 I1->moveBefore(TI); 1906 for (auto &SuccIter : OtherSuccIterRange) { 1907 Instruction *I2 = &*SuccIter++; 1908 assert(I2 != I1); 1909 if (!I2->use_empty()) 1910 I2->replaceAllUsesWith(I1); 1911 I1->andIRFlags(I2); 1912 combineMetadataForCSE(I1, I2, true); 1913 // I1 and I2 are being combined into a single instruction. Its debug 1914 // location is the merged locations of the original instructions. 1915 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1916 I2->eraseFromParent(); 1917 } 1918 } 1919 if (!Changed) 1920 NumHoistCommonCode += SuccIterPairs.size(); 1921 Changed = true; 1922 NumHoistCommonInstrs += SuccIterPairs.size(); 1923 } else { 1924 if (NumSkipped >= HoistCommonSkipLimit) { 1925 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1926 return Changed; 1927 } 1928 // We are about to skip over a pair of non-identical instructions. Record 1929 // if any have characteristics that would prevent reordering instructions 1930 // across them. 1931 for (auto &SuccIterPair : SuccIterPairs) { 1932 Instruction *I = &*SuccIterPair.first++; 1933 SuccIterPair.second |= skippedInstrFlags(I); 1934 } 1935 ++NumSkipped; 1936 } 1937 } 1938 } 1939 1940 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 1941 Instruction *TI, Instruction *I1, 1942 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 1943 1944 auto *BI = dyn_cast<BranchInst>(TI); 1945 1946 bool Changed = false; 1947 BasicBlock *TIParent = TI->getParent(); 1948 BasicBlock *BB1 = I1->getParent(); 1949 1950 // Use only for an if statement. 1951 auto *I2 = *OtherSuccTIs.begin(); 1952 auto *BB2 = I2->getParent(); 1953 if (BI) { 1954 assert(OtherSuccTIs.size() == 1); 1955 assert(BI->getSuccessor(0) == I1->getParent()); 1956 assert(BI->getSuccessor(1) == I2->getParent()); 1957 } 1958 1959 // In the case of an if statement, we try to hoist an invoke. 1960 // FIXME: Can we define a safety predicate for CallBr? 1961 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 1962 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 1963 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1964 return false; 1965 1966 // TODO: callbr hoisting currently disabled pending further study. 1967 if (isa<CallBrInst>(I1)) 1968 return false; 1969 1970 for (BasicBlock *Succ : successors(BB1)) { 1971 for (PHINode &PN : Succ->phis()) { 1972 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1973 for (Instruction *OtherSuccTI : OtherSuccTIs) { 1974 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 1975 if (BB1V == BB2V) 1976 continue; 1977 1978 // In the case of an if statement, check for 1979 // passingValueIsAlwaysUndefined here because we would rather eliminate 1980 // undefined control flow then converting it to a select. 1981 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 1982 passingValueIsAlwaysUndefined(BB2V, &PN)) 1983 return false; 1984 } 1985 } 1986 } 1987 1988 // Hoist DbgVariableRecords attached to the terminator to match dbg.* 1989 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors. 1990 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs); 1991 // Clone the terminator and hoist it into the pred, without any debug info. 1992 Instruction *NT = I1->clone(); 1993 NT->insertInto(TIParent, TI->getIterator()); 1994 if (!NT->getType()->isVoidTy()) { 1995 I1->replaceAllUsesWith(NT); 1996 for (Instruction *OtherSuccTI : OtherSuccTIs) 1997 OtherSuccTI->replaceAllUsesWith(NT); 1998 NT->takeName(I1); 1999 } 2000 Changed = true; 2001 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 2002 2003 // Ensure terminator gets a debug location, even an unknown one, in case 2004 // it involves inlinable calls. 2005 SmallVector<DILocation *, 4> Locs; 2006 Locs.push_back(I1->getDebugLoc()); 2007 for (auto *OtherSuccTI : OtherSuccTIs) 2008 Locs.push_back(OtherSuccTI->getDebugLoc()); 2009 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 2010 2011 // PHIs created below will adopt NT's merged DebugLoc. 2012 IRBuilder<NoFolder> Builder(NT); 2013 2014 // In the case of an if statement, hoisting one of the terminators from our 2015 // successor is a great thing. Unfortunately, the successors of the if/else 2016 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 2017 // must agree for all PHI nodes, so we insert select instruction to compute 2018 // the final result. 2019 if (BI) { 2020 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 2021 for (BasicBlock *Succ : successors(BB1)) { 2022 for (PHINode &PN : Succ->phis()) { 2023 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2024 Value *BB2V = PN.getIncomingValueForBlock(BB2); 2025 if (BB1V == BB2V) 2026 continue; 2027 2028 // These values do not agree. Insert a select instruction before NT 2029 // that determines the right value. 2030 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 2031 if (!SI) { 2032 // Propagate fast-math-flags from phi node to its replacement select. 2033 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2034 if (isa<FPMathOperator>(PN)) 2035 Builder.setFastMathFlags(PN.getFastMathFlags()); 2036 2037 SI = cast<SelectInst>(Builder.CreateSelect( 2038 BI->getCondition(), BB1V, BB2V, 2039 BB1V->getName() + "." + BB2V->getName(), BI)); 2040 } 2041 2042 // Make the PHI node use the select for all incoming values for BB1/BB2 2043 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2044 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 2045 PN.setIncomingValue(i, SI); 2046 } 2047 } 2048 } 2049 2050 SmallVector<DominatorTree::UpdateType, 4> Updates; 2051 2052 // Update any PHI nodes in our new successors. 2053 for (BasicBlock *Succ : successors(BB1)) { 2054 addPredecessorToBlock(Succ, TIParent, BB1); 2055 if (DTU) 2056 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 2057 } 2058 2059 if (DTU) 2060 for (BasicBlock *Succ : successors(TI)) 2061 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 2062 2063 eraseTerminatorAndDCECond(TI); 2064 if (DTU) 2065 DTU->applyUpdates(Updates); 2066 return Changed; 2067 } 2068 2069 // Check lifetime markers. 2070 static bool isLifeTimeMarker(const Instruction *I) { 2071 if (auto II = dyn_cast<IntrinsicInst>(I)) { 2072 switch (II->getIntrinsicID()) { 2073 default: 2074 break; 2075 case Intrinsic::lifetime_start: 2076 case Intrinsic::lifetime_end: 2077 return true; 2078 } 2079 } 2080 return false; 2081 } 2082 2083 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 2084 // into variables. 2085 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 2086 int OpIdx) { 2087 // Divide/Remainder by constant is typically much cheaper than by variable. 2088 if (I->isIntDivRem()) 2089 return OpIdx != 1; 2090 return !isa<IntrinsicInst>(I); 2091 } 2092 2093 // All instructions in Insts belong to different blocks that all unconditionally 2094 // branch to a common successor. Analyze each instruction and return true if it 2095 // would be possible to sink them into their successor, creating one common 2096 // instruction instead. For every value that would be required to be provided by 2097 // PHI node (because an operand varies in each input block), add to PHIOperands. 2098 static bool canSinkInstructions( 2099 ArrayRef<Instruction *> Insts, 2100 DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) { 2101 // Prune out obviously bad instructions to move. Each instruction must have 2102 // the same number of uses, and we check later that the uses are consistent. 2103 std::optional<unsigned> NumUses; 2104 for (auto *I : Insts) { 2105 // These instructions may change or break semantics if moved. 2106 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 2107 I->getType()->isTokenTy()) 2108 return false; 2109 2110 // Do not try to sink an instruction in an infinite loop - it can cause 2111 // this algorithm to infinite loop. 2112 if (I->getParent()->getSingleSuccessor() == I->getParent()) 2113 return false; 2114 2115 // Conservatively return false if I is an inline-asm instruction. Sinking 2116 // and merging inline-asm instructions can potentially create arguments 2117 // that cannot satisfy the inline-asm constraints. 2118 // If the instruction has nomerge or convergent attribute, return false. 2119 if (const auto *C = dyn_cast<CallBase>(I)) 2120 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 2121 return false; 2122 2123 if (!NumUses) 2124 NumUses = I->getNumUses(); 2125 else if (NumUses != I->getNumUses()) 2126 return false; 2127 } 2128 2129 const Instruction *I0 = Insts.front(); 2130 const auto I0MMRA = MMRAMetadata(*I0); 2131 for (auto *I : Insts) { 2132 if (!I->isSameOperationAs(I0)) 2133 return false; 2134 2135 // swifterror pointers can only be used by a load or store; sinking a load 2136 // or store would require introducing a select for the pointer operand, 2137 // which isn't allowed for swifterror pointers. 2138 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 2139 return false; 2140 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 2141 return false; 2142 2143 // Treat MMRAs conservatively. This pass can be quite aggressive and 2144 // could drop a lot of MMRAs otherwise. 2145 if (MMRAMetadata(*I) != I0MMRA) 2146 return false; 2147 } 2148 2149 // Uses must be consistent: If I0 is used in a phi node in the sink target, 2150 // then the other phi operands must match the instructions from Insts. This 2151 // also has to hold true for any phi nodes that would be created as a result 2152 // of sinking. Both of these cases are represented by PhiOperands. 2153 for (const Use &U : I0->uses()) { 2154 auto It = PHIOperands.find(&U); 2155 if (It == PHIOperands.end()) 2156 // There may be uses in other blocks when sinking into a loop header. 2157 return false; 2158 if (!equal(Insts, It->second)) 2159 return false; 2160 } 2161 2162 // For calls to be sinkable, they must all be indirect, or have same callee. 2163 // I.e. if we have two direct calls to different callees, we don't want to 2164 // turn that into an indirect call. Likewise, if we have an indirect call, 2165 // and a direct call, we don't actually want to have a single indirect call. 2166 if (isa<CallBase>(I0)) { 2167 auto IsIndirectCall = [](const Instruction *I) { 2168 return cast<CallBase>(I)->isIndirectCall(); 2169 }; 2170 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 2171 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 2172 if (HaveIndirectCalls) { 2173 if (!AllCallsAreIndirect) 2174 return false; 2175 } else { 2176 // All callees must be identical. 2177 Value *Callee = nullptr; 2178 for (const Instruction *I : Insts) { 2179 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 2180 if (!Callee) 2181 Callee = CurrCallee; 2182 else if (Callee != CurrCallee) 2183 return false; 2184 } 2185 } 2186 } 2187 2188 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 2189 Value *Op = I0->getOperand(OI); 2190 if (Op->getType()->isTokenTy()) 2191 // Don't touch any operand of token type. 2192 return false; 2193 2194 auto SameAsI0 = [&I0, OI](const Instruction *I) { 2195 assert(I->getNumOperands() == I0->getNumOperands()); 2196 return I->getOperand(OI) == I0->getOperand(OI); 2197 }; 2198 if (!all_of(Insts, SameAsI0)) { 2199 // SROA can't speculate lifetime markers of selects/phis, and the 2200 // backend may handle such lifetimes incorrectly as well (#104776). 2201 // Don't sink lifetimes if it would introduce a phi on the pointer 2202 // argument. 2203 if (isLifeTimeMarker(I0) && OI == 1 && 2204 any_of(Insts, [](const Instruction *I) { 2205 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2206 })) 2207 return false; 2208 2209 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 2210 !canReplaceOperandWithVariable(I0, OI)) 2211 // We can't create a PHI from this GEP. 2212 return false; 2213 auto &Ops = PHIOperands[&I0->getOperandUse(OI)]; 2214 for (auto *I : Insts) 2215 Ops.push_back(I->getOperand(OI)); 2216 } 2217 } 2218 return true; 2219 } 2220 2221 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 2222 // instruction of every block in Blocks to their common successor, commoning 2223 // into one instruction. 2224 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2225 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2226 2227 // canSinkInstructions returning true guarantees that every block has at 2228 // least one non-terminator instruction. 2229 SmallVector<Instruction*,4> Insts; 2230 for (auto *BB : Blocks) { 2231 Instruction *I = BB->getTerminator(); 2232 do { 2233 I = I->getPrevNode(); 2234 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2235 if (!isa<DbgInfoIntrinsic>(I)) 2236 Insts.push_back(I); 2237 } 2238 2239 // We don't need to do any more checking here; canSinkInstructions should 2240 // have done it all for us. 2241 SmallVector<Value*, 4> NewOperands; 2242 Instruction *I0 = Insts.front(); 2243 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2244 // This check is different to that in canSinkInstructions. There, we 2245 // cared about the global view once simplifycfg (and instcombine) have 2246 // completed - it takes into account PHIs that become trivially 2247 // simplifiable. However here we need a more local view; if an operand 2248 // differs we create a PHI and rely on instcombine to clean up the very 2249 // small mess we may make. 2250 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2251 return I->getOperand(O) != I0->getOperand(O); 2252 }); 2253 if (!NeedPHI) { 2254 NewOperands.push_back(I0->getOperand(O)); 2255 continue; 2256 } 2257 2258 // Create a new PHI in the successor block and populate it. 2259 auto *Op = I0->getOperand(O); 2260 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2261 auto *PN = 2262 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2263 PN->insertBefore(BBEnd->begin()); 2264 for (auto *I : Insts) 2265 PN->addIncoming(I->getOperand(O), I->getParent()); 2266 NewOperands.push_back(PN); 2267 } 2268 2269 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2270 // and move it to the start of the successor block. 2271 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2272 I0->getOperandUse(O).set(NewOperands[O]); 2273 2274 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2275 2276 // Update metadata and IR flags, and merge debug locations. 2277 for (auto *I : Insts) 2278 if (I != I0) { 2279 // The debug location for the "common" instruction is the merged locations 2280 // of all the commoned instructions. We start with the original location 2281 // of the "common" instruction and iteratively merge each location in the 2282 // loop below. 2283 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2284 // However, as N-way merge for CallInst is rare, so we use simplified API 2285 // instead of using complex API for N-way merge. 2286 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2287 combineMetadataForCSE(I0, I, true); 2288 I0->andIRFlags(I); 2289 } 2290 2291 for (User *U : make_early_inc_range(I0->users())) { 2292 // canSinkLastInstruction checked that all instructions are only used by 2293 // phi nodes in a way that allows replacing the phi node with the common 2294 // instruction. 2295 auto *PN = cast<PHINode>(U); 2296 PN->replaceAllUsesWith(I0); 2297 PN->eraseFromParent(); 2298 } 2299 2300 // Finally nuke all instructions apart from the common instruction. 2301 for (auto *I : Insts) { 2302 if (I == I0) 2303 continue; 2304 // The remaining uses are debug users, replace those with the common inst. 2305 // In most (all?) cases this just introduces a use-before-def. 2306 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2307 I->replaceAllUsesWith(I0); 2308 I->eraseFromParent(); 2309 } 2310 } 2311 2312 namespace { 2313 2314 // LockstepReverseIterator - Iterates through instructions 2315 // in a set of blocks in reverse order from the first non-terminator. 2316 // For example (assume all blocks have size n): 2317 // LockstepReverseIterator I([B1, B2, B3]); 2318 // *I-- = [B1[n], B2[n], B3[n]]; 2319 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 2320 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 2321 // ... 2322 class LockstepReverseIterator { 2323 ArrayRef<BasicBlock*> Blocks; 2324 SmallVector<Instruction*,4> Insts; 2325 bool Fail; 2326 2327 public: 2328 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 2329 reset(); 2330 } 2331 2332 void reset() { 2333 Fail = false; 2334 Insts.clear(); 2335 for (auto *BB : Blocks) { 2336 Instruction *Inst = BB->getTerminator(); 2337 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2338 Inst = Inst->getPrevNode(); 2339 if (!Inst) { 2340 // Block wasn't big enough. 2341 Fail = true; 2342 return; 2343 } 2344 Insts.push_back(Inst); 2345 } 2346 } 2347 2348 bool isValid() const { 2349 return !Fail; 2350 } 2351 2352 void operator--() { 2353 if (Fail) 2354 return; 2355 for (auto *&Inst : Insts) { 2356 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2357 Inst = Inst->getPrevNode(); 2358 // Already at beginning of block. 2359 if (!Inst) { 2360 Fail = true; 2361 return; 2362 } 2363 } 2364 } 2365 2366 void operator++() { 2367 if (Fail) 2368 return; 2369 for (auto *&Inst : Insts) { 2370 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2371 Inst = Inst->getNextNode(); 2372 // Already at end of block. 2373 if (!Inst) { 2374 Fail = true; 2375 return; 2376 } 2377 } 2378 } 2379 2380 ArrayRef<Instruction*> operator * () const { 2381 return Insts; 2382 } 2383 }; 2384 2385 } // end anonymous namespace 2386 2387 /// Check whether BB's predecessors end with unconditional branches. If it is 2388 /// true, sink any common code from the predecessors to BB. 2389 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB, 2390 DomTreeUpdater *DTU) { 2391 // We support two situations: 2392 // (1) all incoming arcs are unconditional 2393 // (2) there are non-unconditional incoming arcs 2394 // 2395 // (2) is very common in switch defaults and 2396 // else-if patterns; 2397 // 2398 // if (a) f(1); 2399 // else if (b) f(2); 2400 // 2401 // produces: 2402 // 2403 // [if] 2404 // / \ 2405 // [f(1)] [if] 2406 // | | \ 2407 // | | | 2408 // | [f(2)]| 2409 // \ | / 2410 // [ end ] 2411 // 2412 // [end] has two unconditional predecessor arcs and one conditional. The 2413 // conditional refers to the implicit empty 'else' arc. This conditional 2414 // arc can also be caused by an empty default block in a switch. 2415 // 2416 // In this case, we attempt to sink code from all *unconditional* arcs. 2417 // If we can sink instructions from these arcs (determined during the scan 2418 // phase below) we insert a common successor for all unconditional arcs and 2419 // connect that to [end], to enable sinking: 2420 // 2421 // [if] 2422 // / \ 2423 // [x(1)] [if] 2424 // | | \ 2425 // | | \ 2426 // | [x(2)] | 2427 // \ / | 2428 // [sink.split] | 2429 // \ / 2430 // [ end ] 2431 // 2432 SmallVector<BasicBlock*,4> UnconditionalPreds; 2433 bool HaveNonUnconditionalPredecessors = false; 2434 for (auto *PredBB : predecessors(BB)) { 2435 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2436 if (PredBr && PredBr->isUnconditional()) 2437 UnconditionalPreds.push_back(PredBB); 2438 else 2439 HaveNonUnconditionalPredecessors = true; 2440 } 2441 if (UnconditionalPreds.size() < 2) 2442 return false; 2443 2444 // We take a two-step approach to tail sinking. First we scan from the end of 2445 // each block upwards in lockstep. If the n'th instruction from the end of each 2446 // block can be sunk, those instructions are added to ValuesToSink and we 2447 // carry on. If we can sink an instruction but need to PHI-merge some operands 2448 // (because they're not identical in each instruction) we add these to 2449 // PHIOperands. 2450 // We prepopulate PHIOperands with the phis that already exist in BB. 2451 DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands; 2452 for (PHINode &PN : BB->phis()) { 2453 SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals; 2454 for (const Use &U : PN.incoming_values()) 2455 IncomingVals.insert({PN.getIncomingBlock(U), &U}); 2456 auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]]; 2457 for (BasicBlock *Pred : UnconditionalPreds) 2458 Ops.push_back(*IncomingVals[Pred]); 2459 } 2460 2461 int ScanIdx = 0; 2462 SmallPtrSet<Value*,4> InstructionsToSink; 2463 LockstepReverseIterator LRI(UnconditionalPreds); 2464 while (LRI.isValid() && 2465 canSinkInstructions(*LRI, PHIOperands)) { 2466 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2467 << "\n"); 2468 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2469 ++ScanIdx; 2470 --LRI; 2471 } 2472 2473 // If no instructions can be sunk, early-return. 2474 if (ScanIdx == 0) 2475 return false; 2476 2477 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2478 2479 if (!followedByDeoptOrUnreachable) { 2480 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2481 // actually sink before encountering instruction that is unprofitable to 2482 // sink? 2483 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2484 unsigned NumPHIInsts = 0; 2485 for (Use &U : (*LRI)[0]->operands()) { 2486 auto It = PHIOperands.find(&U); 2487 if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) { 2488 return InstructionsToSink.contains(V); 2489 })) { 2490 ++NumPHIInsts; 2491 // FIXME: this check is overly optimistic. We may end up not sinking 2492 // said instruction, due to the very same profitability check. 2493 // See @creating_too_many_phis in sink-common-code.ll. 2494 } 2495 } 2496 LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n"); 2497 return NumPHIInsts <= 1; 2498 }; 2499 2500 // We've determined that we are going to sink last ScanIdx instructions, 2501 // and recorded them in InstructionsToSink. Now, some instructions may be 2502 // unprofitable to sink. But that determination depends on the instructions 2503 // that we are going to sink. 2504 2505 // First, forward scan: find the first instruction unprofitable to sink, 2506 // recording all the ones that are profitable to sink. 2507 // FIXME: would it be better, after we detect that not all are profitable. 2508 // to either record the profitable ones, or erase the unprofitable ones? 2509 // Maybe we need to choose (at runtime) the one that will touch least 2510 // instrs? 2511 LRI.reset(); 2512 int Idx = 0; 2513 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2514 while (Idx < ScanIdx) { 2515 if (!ProfitableToSinkInstruction(LRI)) { 2516 // Too many PHIs would be created. 2517 LLVM_DEBUG( 2518 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2519 break; 2520 } 2521 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2522 --LRI; 2523 ++Idx; 2524 } 2525 2526 // If no instructions can be sunk, early-return. 2527 if (Idx == 0) 2528 return false; 2529 2530 // Did we determine that (only) some instructions are unprofitable to sink? 2531 if (Idx < ScanIdx) { 2532 // Okay, some instructions are unprofitable. 2533 ScanIdx = Idx; 2534 InstructionsToSink = InstructionsProfitableToSink; 2535 2536 // But, that may make other instructions unprofitable, too. 2537 // So, do a backward scan, do any earlier instructions become 2538 // unprofitable? 2539 assert( 2540 !ProfitableToSinkInstruction(LRI) && 2541 "We already know that the last instruction is unprofitable to sink"); 2542 ++LRI; 2543 --Idx; 2544 while (Idx >= 0) { 2545 // If we detect that an instruction becomes unprofitable to sink, 2546 // all earlier instructions won't be sunk either, 2547 // so preemptively keep InstructionsProfitableToSink in sync. 2548 // FIXME: is this the most performant approach? 2549 for (auto *I : *LRI) 2550 InstructionsProfitableToSink.erase(I); 2551 if (!ProfitableToSinkInstruction(LRI)) { 2552 // Everything starting with this instruction won't be sunk. 2553 ScanIdx = Idx; 2554 InstructionsToSink = InstructionsProfitableToSink; 2555 } 2556 ++LRI; 2557 --Idx; 2558 } 2559 } 2560 2561 // If no instructions can be sunk, early-return. 2562 if (ScanIdx == 0) 2563 return false; 2564 } 2565 2566 bool Changed = false; 2567 2568 if (HaveNonUnconditionalPredecessors) { 2569 if (!followedByDeoptOrUnreachable) { 2570 // It is always legal to sink common instructions from unconditional 2571 // predecessors. However, if not all predecessors are unconditional, 2572 // this transformation might be pessimizing. So as a rule of thumb, 2573 // don't do it unless we'd sink at least one non-speculatable instruction. 2574 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2575 LRI.reset(); 2576 int Idx = 0; 2577 bool Profitable = false; 2578 while (Idx < ScanIdx) { 2579 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2580 Profitable = true; 2581 break; 2582 } 2583 --LRI; 2584 ++Idx; 2585 } 2586 if (!Profitable) 2587 return false; 2588 } 2589 2590 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2591 // We have a conditional edge and we're going to sink some instructions. 2592 // Insert a new block postdominating all blocks we're going to sink from. 2593 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2594 // Edges couldn't be split. 2595 return false; 2596 Changed = true; 2597 } 2598 2599 // Now that we've analyzed all potential sinking candidates, perform the 2600 // actual sink. We iteratively sink the last non-terminator of the source 2601 // blocks into their common successor unless doing so would require too 2602 // many PHI instructions to be generated (currently only one PHI is allowed 2603 // per sunk instruction). 2604 // 2605 // We can use InstructionsToSink to discount values needing PHI-merging that will 2606 // actually be sunk in a later iteration. This allows us to be more 2607 // aggressive in what we sink. This does allow a false positive where we 2608 // sink presuming a later value will also be sunk, but stop half way through 2609 // and never actually sink it which means we produce more PHIs than intended. 2610 // This is unlikely in practice though. 2611 int SinkIdx = 0; 2612 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2613 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2614 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2615 << "\n"); 2616 2617 // Because we've sunk every instruction in turn, the current instruction to 2618 // sink is always at index 0. 2619 LRI.reset(); 2620 2621 sinkLastInstruction(UnconditionalPreds); 2622 NumSinkCommonInstrs++; 2623 Changed = true; 2624 } 2625 if (SinkIdx != 0) 2626 ++NumSinkCommonCode; 2627 return Changed; 2628 } 2629 2630 namespace { 2631 2632 struct CompatibleSets { 2633 using SetTy = SmallVector<InvokeInst *, 2>; 2634 2635 SmallVector<SetTy, 1> Sets; 2636 2637 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2638 2639 SetTy &getCompatibleSet(InvokeInst *II); 2640 2641 void insert(InvokeInst *II); 2642 }; 2643 2644 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2645 // Perform a linear scan over all the existing sets, see if the new `invoke` 2646 // is compatible with any particular set. Since we know that all the `invokes` 2647 // within a set are compatible, only check the first `invoke` in each set. 2648 // WARNING: at worst, this has quadratic complexity. 2649 for (CompatibleSets::SetTy &Set : Sets) { 2650 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2651 return Set; 2652 } 2653 2654 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2655 return Sets.emplace_back(); 2656 } 2657 2658 void CompatibleSets::insert(InvokeInst *II) { 2659 getCompatibleSet(II).emplace_back(II); 2660 } 2661 2662 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2663 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2664 2665 // Can we theoretically merge these `invoke`s? 2666 auto IsIllegalToMerge = [](InvokeInst *II) { 2667 return II->cannotMerge() || II->isInlineAsm(); 2668 }; 2669 if (any_of(Invokes, IsIllegalToMerge)) 2670 return false; 2671 2672 // Either both `invoke`s must be direct, 2673 // or both `invoke`s must be indirect. 2674 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2675 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2676 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2677 if (HaveIndirectCalls) { 2678 if (!AllCallsAreIndirect) 2679 return false; 2680 } else { 2681 // All callees must be identical. 2682 Value *Callee = nullptr; 2683 for (InvokeInst *II : Invokes) { 2684 Value *CurrCallee = II->getCalledOperand(); 2685 assert(CurrCallee && "There is always a called operand."); 2686 if (!Callee) 2687 Callee = CurrCallee; 2688 else if (Callee != CurrCallee) 2689 return false; 2690 } 2691 } 2692 2693 // Either both `invoke`s must not have a normal destination, 2694 // or both `invoke`s must have a normal destination, 2695 auto HasNormalDest = [](InvokeInst *II) { 2696 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2697 }; 2698 if (any_of(Invokes, HasNormalDest)) { 2699 // Do not merge `invoke` that does not have a normal destination with one 2700 // that does have a normal destination, even though doing so would be legal. 2701 if (!all_of(Invokes, HasNormalDest)) 2702 return false; 2703 2704 // All normal destinations must be identical. 2705 BasicBlock *NormalBB = nullptr; 2706 for (InvokeInst *II : Invokes) { 2707 BasicBlock *CurrNormalBB = II->getNormalDest(); 2708 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2709 if (!NormalBB) 2710 NormalBB = CurrNormalBB; 2711 else if (NormalBB != CurrNormalBB) 2712 return false; 2713 } 2714 2715 // In the normal destination, the incoming values for these two `invoke`s 2716 // must be compatible. 2717 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2718 if (!incomingValuesAreCompatible( 2719 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2720 &EquivalenceSet)) 2721 return false; 2722 } 2723 2724 #ifndef NDEBUG 2725 // All unwind destinations must be identical. 2726 // We know that because we have started from said unwind destination. 2727 BasicBlock *UnwindBB = nullptr; 2728 for (InvokeInst *II : Invokes) { 2729 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2730 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2731 if (!UnwindBB) 2732 UnwindBB = CurrUnwindBB; 2733 else 2734 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2735 } 2736 #endif 2737 2738 // In the unwind destination, the incoming values for these two `invoke`s 2739 // must be compatible. 2740 if (!incomingValuesAreCompatible( 2741 Invokes.front()->getUnwindDest(), 2742 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2743 return false; 2744 2745 // Ignoring arguments, these `invoke`s must be identical, 2746 // including operand bundles. 2747 const InvokeInst *II0 = Invokes.front(); 2748 for (auto *II : Invokes.drop_front()) 2749 if (!II->isSameOperationAs(II0)) 2750 return false; 2751 2752 // Can we theoretically form the data operands for the merged `invoke`? 2753 auto IsIllegalToMergeArguments = [](auto Ops) { 2754 Use &U0 = std::get<0>(Ops); 2755 Use &U1 = std::get<1>(Ops); 2756 if (U0 == U1) 2757 return false; 2758 return U0->getType()->isTokenTy() || 2759 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2760 U0.getOperandNo()); 2761 }; 2762 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2763 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2764 IsIllegalToMergeArguments)) 2765 return false; 2766 2767 return true; 2768 } 2769 2770 } // namespace 2771 2772 // Merge all invokes in the provided set, all of which are compatible 2773 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2774 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2775 DomTreeUpdater *DTU) { 2776 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2777 2778 SmallVector<DominatorTree::UpdateType, 8> Updates; 2779 if (DTU) 2780 Updates.reserve(2 + 3 * Invokes.size()); 2781 2782 bool HasNormalDest = 2783 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2784 2785 // Clone one of the invokes into a new basic block. 2786 // Since they are all compatible, it doesn't matter which invoke is cloned. 2787 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2788 InvokeInst *II0 = Invokes.front(); 2789 BasicBlock *II0BB = II0->getParent(); 2790 BasicBlock *InsertBeforeBlock = 2791 II0->getParent()->getIterator()->getNextNode(); 2792 Function *Func = II0BB->getParent(); 2793 LLVMContext &Ctx = II0->getContext(); 2794 2795 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2796 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2797 2798 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2799 // NOTE: all invokes have the same attributes, so no handling needed. 2800 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2801 2802 if (!HasNormalDest) { 2803 // This set does not have a normal destination, 2804 // so just form a new block with unreachable terminator. 2805 BasicBlock *MergedNormalDest = BasicBlock::Create( 2806 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2807 new UnreachableInst(Ctx, MergedNormalDest); 2808 MergedInvoke->setNormalDest(MergedNormalDest); 2809 } 2810 2811 // The unwind destination, however, remainds identical for all invokes here. 2812 2813 return MergedInvoke; 2814 }(); 2815 2816 if (DTU) { 2817 // Predecessor blocks that contained these invokes will now branch to 2818 // the new block that contains the merged invoke, ... 2819 for (InvokeInst *II : Invokes) 2820 Updates.push_back( 2821 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2822 2823 // ... which has the new `unreachable` block as normal destination, 2824 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2825 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2826 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2827 SuccBBOfMergedInvoke}); 2828 2829 // Since predecessor blocks now unconditionally branch to a new block, 2830 // they no longer branch to their original successors. 2831 for (InvokeInst *II : Invokes) 2832 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2833 Updates.push_back( 2834 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2835 } 2836 2837 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2838 2839 // Form the merged operands for the merged invoke. 2840 for (Use &U : MergedInvoke->operands()) { 2841 // Only PHI together the indirect callees and data operands. 2842 if (MergedInvoke->isCallee(&U)) { 2843 if (!IsIndirectCall) 2844 continue; 2845 } else if (!MergedInvoke->isDataOperand(&U)) 2846 continue; 2847 2848 // Don't create trivial PHI's with all-identical incoming values. 2849 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2850 return II->getOperand(U.getOperandNo()) != U.get(); 2851 }); 2852 if (!NeedPHI) 2853 continue; 2854 2855 // Form a PHI out of all the data ops under this index. 2856 PHINode *PN = PHINode::Create( 2857 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator()); 2858 for (InvokeInst *II : Invokes) 2859 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2860 2861 U.set(PN); 2862 } 2863 2864 // We've ensured that each PHI node has compatible (identical) incoming values 2865 // when coming from each of the `invoke`s in the current merge set, 2866 // so update the PHI nodes accordingly. 2867 for (BasicBlock *Succ : successors(MergedInvoke)) 2868 addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2869 /*ExistPred=*/Invokes.front()->getParent()); 2870 2871 // And finally, replace the original `invoke`s with an unconditional branch 2872 // to the block with the merged `invoke`. Also, give that merged `invoke` 2873 // the merged debugloc of all the original `invoke`s. 2874 DILocation *MergedDebugLoc = nullptr; 2875 for (InvokeInst *II : Invokes) { 2876 // Compute the debug location common to all the original `invoke`s. 2877 if (!MergedDebugLoc) 2878 MergedDebugLoc = II->getDebugLoc(); 2879 else 2880 MergedDebugLoc = 2881 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2882 2883 // And replace the old `invoke` with an unconditionally branch 2884 // to the block with the merged `invoke`. 2885 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2886 OrigSuccBB->removePredecessor(II->getParent()); 2887 BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2888 II->replaceAllUsesWith(MergedInvoke); 2889 II->eraseFromParent(); 2890 ++NumInvokesMerged; 2891 } 2892 MergedInvoke->setDebugLoc(MergedDebugLoc); 2893 ++NumInvokeSetsFormed; 2894 2895 if (DTU) 2896 DTU->applyUpdates(Updates); 2897 } 2898 2899 /// If this block is a `landingpad` exception handling block, categorize all 2900 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2901 /// being "mergeable" together, and then merge invokes in each set together. 2902 /// 2903 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2904 /// [...] [...] 2905 /// | | 2906 /// [invoke0] [invoke1] 2907 /// / \ / \ 2908 /// [cont0] [landingpad] [cont1] 2909 /// to: 2910 /// [...] [...] 2911 /// \ / 2912 /// [invoke] 2913 /// / \ 2914 /// [cont] [landingpad] 2915 /// 2916 /// But of course we can only do that if the invokes share the `landingpad`, 2917 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2918 /// and the invoked functions are "compatible". 2919 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2920 if (!EnableMergeCompatibleInvokes) 2921 return false; 2922 2923 bool Changed = false; 2924 2925 // FIXME: generalize to all exception handling blocks? 2926 if (!BB->isLandingPad()) 2927 return Changed; 2928 2929 CompatibleSets Grouper; 2930 2931 // Record all the predecessors of this `landingpad`. As per verifier, 2932 // the only allowed predecessor is the unwind edge of an `invoke`. 2933 // We want to group "compatible" `invokes` into the same set to be merged. 2934 for (BasicBlock *PredBB : predecessors(BB)) 2935 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 2936 2937 // And now, merge `invoke`s that were grouped togeter. 2938 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 2939 if (Invokes.size() < 2) 2940 continue; 2941 Changed = true; 2942 mergeCompatibleInvokesImpl(Invokes, DTU); 2943 } 2944 2945 return Changed; 2946 } 2947 2948 namespace { 2949 /// Track ephemeral values, which should be ignored for cost-modelling 2950 /// purposes. Requires walking instructions in reverse order. 2951 class EphemeralValueTracker { 2952 SmallPtrSet<const Instruction *, 32> EphValues; 2953 2954 bool isEphemeral(const Instruction *I) { 2955 if (isa<AssumeInst>(I)) 2956 return true; 2957 return !I->mayHaveSideEffects() && !I->isTerminator() && 2958 all_of(I->users(), [&](const User *U) { 2959 return EphValues.count(cast<Instruction>(U)); 2960 }); 2961 } 2962 2963 public: 2964 bool track(const Instruction *I) { 2965 if (isEphemeral(I)) { 2966 EphValues.insert(I); 2967 return true; 2968 } 2969 return false; 2970 } 2971 2972 bool contains(const Instruction *I) const { return EphValues.contains(I); } 2973 }; 2974 } // namespace 2975 2976 /// Determine if we can hoist sink a sole store instruction out of a 2977 /// conditional block. 2978 /// 2979 /// We are looking for code like the following: 2980 /// BrBB: 2981 /// store i32 %add, i32* %arrayidx2 2982 /// ... // No other stores or function calls (we could be calling a memory 2983 /// ... // function). 2984 /// %cmp = icmp ult %x, %y 2985 /// br i1 %cmp, label %EndBB, label %ThenBB 2986 /// ThenBB: 2987 /// store i32 %add5, i32* %arrayidx2 2988 /// br label EndBB 2989 /// EndBB: 2990 /// ... 2991 /// We are going to transform this into: 2992 /// BrBB: 2993 /// store i32 %add, i32* %arrayidx2 2994 /// ... // 2995 /// %cmp = icmp ult %x, %y 2996 /// %add.add5 = select i1 %cmp, i32 %add, %add5 2997 /// store i32 %add.add5, i32* %arrayidx2 2998 /// ... 2999 /// 3000 /// \return The pointer to the value of the previous store if the store can be 3001 /// hoisted into the predecessor block. 0 otherwise. 3002 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 3003 BasicBlock *StoreBB, BasicBlock *EndBB) { 3004 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 3005 if (!StoreToHoist) 3006 return nullptr; 3007 3008 // Volatile or atomic. 3009 if (!StoreToHoist->isSimple()) 3010 return nullptr; 3011 3012 Value *StorePtr = StoreToHoist->getPointerOperand(); 3013 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 3014 3015 // Look for a store to the same pointer in BrBB. 3016 unsigned MaxNumInstToLookAt = 9; 3017 // Skip pseudo probe intrinsic calls which are not really killing any memory 3018 // accesses. 3019 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 3020 if (!MaxNumInstToLookAt) 3021 break; 3022 --MaxNumInstToLookAt; 3023 3024 // Could be calling an instruction that affects memory like free(). 3025 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 3026 return nullptr; 3027 3028 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 3029 // Found the previous store to same location and type. Make sure it is 3030 // simple, to avoid introducing a spurious non-atomic write after an 3031 // atomic write. 3032 if (SI->getPointerOperand() == StorePtr && 3033 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() && 3034 SI->getAlign() >= StoreToHoist->getAlign()) 3035 // Found the previous store, return its value operand. 3036 return SI->getValueOperand(); 3037 return nullptr; // Unknown store. 3038 } 3039 3040 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 3041 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 3042 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) { 3043 // Local objects (created by an `alloca` instruction) are always 3044 // writable, so once we are past a read from a location it is valid to 3045 // also write to that same location. 3046 // If the address of the local object never escapes the function, that 3047 // means it's never concurrently read or written, hence moving the store 3048 // from under the condition will not introduce a data race. 3049 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr)); 3050 if (AI && !PointerMayBeCaptured(AI, false, true)) 3051 // Found a previous load, return it. 3052 return LI; 3053 } 3054 // The load didn't work out, but we may still find a store. 3055 } 3056 } 3057 3058 return nullptr; 3059 } 3060 3061 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 3062 /// converted to selects. 3063 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 3064 BasicBlock *EndBB, 3065 unsigned &SpeculatedInstructions, 3066 InstructionCost &Cost, 3067 const TargetTransformInfo &TTI) { 3068 TargetTransformInfo::TargetCostKind CostKind = 3069 BB->getParent()->hasMinSize() 3070 ? TargetTransformInfo::TCK_CodeSize 3071 : TargetTransformInfo::TCK_SizeAndLatency; 3072 3073 bool HaveRewritablePHIs = false; 3074 for (PHINode &PN : EndBB->phis()) { 3075 Value *OrigV = PN.getIncomingValueForBlock(BB); 3076 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 3077 3078 // FIXME: Try to remove some of the duplication with 3079 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 3080 if (ThenV == OrigV) 3081 continue; 3082 3083 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 3084 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3085 3086 // Don't convert to selects if we could remove undefined behavior instead. 3087 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 3088 passingValueIsAlwaysUndefined(ThenV, &PN)) 3089 return false; 3090 3091 HaveRewritablePHIs = true; 3092 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 3093 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 3094 if (!OrigCE && !ThenCE) 3095 continue; // Known cheap (FIXME: Maybe not true for aggregates). 3096 3097 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 3098 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 3099 InstructionCost MaxCost = 3100 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3101 if (OrigCost + ThenCost > MaxCost) 3102 return false; 3103 3104 // Account for the cost of an unfolded ConstantExpr which could end up 3105 // getting expanded into Instructions. 3106 // FIXME: This doesn't account for how many operations are combined in the 3107 // constant expression. 3108 ++SpeculatedInstructions; 3109 if (SpeculatedInstructions > 1) 3110 return false; 3111 } 3112 3113 return HaveRewritablePHIs; 3114 } 3115 3116 static bool isProfitableToSpeculate(const BranchInst *BI, bool Invert, 3117 const TargetTransformInfo &TTI) { 3118 // If the branch is non-unpredictable, and is predicted to *not* branch to 3119 // the `then` block, then avoid speculating it. 3120 if (BI->getMetadata(LLVMContext::MD_unpredictable)) 3121 return true; 3122 3123 uint64_t TWeight, FWeight; 3124 if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0) 3125 return true; 3126 3127 uint64_t EndWeight = Invert ? TWeight : FWeight; 3128 BranchProbability BIEndProb = 3129 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 3130 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3131 return BIEndProb < Likely; 3132 } 3133 3134 /// Speculate a conditional basic block flattening the CFG. 3135 /// 3136 /// Note that this is a very risky transform currently. Speculating 3137 /// instructions like this is most often not desirable. Instead, there is an MI 3138 /// pass which can do it with full awareness of the resource constraints. 3139 /// However, some cases are "obvious" and we should do directly. An example of 3140 /// this is speculating a single, reasonably cheap instruction. 3141 /// 3142 /// There is only one distinct advantage to flattening the CFG at the IR level: 3143 /// it makes very common but simplistic optimizations such as are common in 3144 /// instcombine and the DAG combiner more powerful by removing CFG edges and 3145 /// modeling their effects with easier to reason about SSA value graphs. 3146 /// 3147 /// 3148 /// An illustration of this transform is turning this IR: 3149 /// \code 3150 /// BB: 3151 /// %cmp = icmp ult %x, %y 3152 /// br i1 %cmp, label %EndBB, label %ThenBB 3153 /// ThenBB: 3154 /// %sub = sub %x, %y 3155 /// br label BB2 3156 /// EndBB: 3157 /// %phi = phi [ %sub, %ThenBB ], [ 0, %BB ] 3158 /// ... 3159 /// \endcode 3160 /// 3161 /// Into this IR: 3162 /// \code 3163 /// BB: 3164 /// %cmp = icmp ult %x, %y 3165 /// %sub = sub %x, %y 3166 /// %cond = select i1 %cmp, 0, %sub 3167 /// ... 3168 /// \endcode 3169 /// 3170 /// \returns true if the conditional block is removed. 3171 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI, 3172 BasicBlock *ThenBB) { 3173 if (!Options.SpeculateBlocks) 3174 return false; 3175 3176 // Be conservative for now. FP select instruction can often be expensive. 3177 Value *BrCond = BI->getCondition(); 3178 if (isa<FCmpInst>(BrCond)) 3179 return false; 3180 3181 BasicBlock *BB = BI->getParent(); 3182 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 3183 InstructionCost Budget = 3184 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3185 3186 // If ThenBB is actually on the false edge of the conditional branch, remember 3187 // to swap the select operands later. 3188 bool Invert = false; 3189 if (ThenBB != BI->getSuccessor(0)) { 3190 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 3191 Invert = true; 3192 } 3193 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 3194 3195 if (!isProfitableToSpeculate(BI, Invert, TTI)) 3196 return false; 3197 3198 // Keep a count of how many times instructions are used within ThenBB when 3199 // they are candidates for sinking into ThenBB. Specifically: 3200 // - They are defined in BB, and 3201 // - They have no side effects, and 3202 // - All of their uses are in ThenBB. 3203 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 3204 3205 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 3206 3207 unsigned SpeculatedInstructions = 0; 3208 bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting && 3209 Options.HoistLoadsStoresWithCondFaulting; 3210 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 3211 Value *SpeculatedStoreValue = nullptr; 3212 StoreInst *SpeculatedStore = nullptr; 3213 EphemeralValueTracker EphTracker; 3214 for (Instruction &I : reverse(drop_end(*ThenBB))) { 3215 // Skip debug info. 3216 if (isa<DbgInfoIntrinsic>(I)) { 3217 SpeculatedDbgIntrinsics.push_back(&I); 3218 continue; 3219 } 3220 3221 // Skip pseudo probes. The consequence is we lose track of the branch 3222 // probability for ThenBB, which is fine since the optimization here takes 3223 // place regardless of the branch probability. 3224 if (isa<PseudoProbeInst>(I)) { 3225 // The probe should be deleted so that it will not be over-counted when 3226 // the samples collected on the non-conditional path are counted towards 3227 // the conditional path. We leave it for the counts inference algorithm to 3228 // figure out a proper count for an unknown probe. 3229 SpeculatedDbgIntrinsics.push_back(&I); 3230 continue; 3231 } 3232 3233 // Ignore ephemeral values, they will be dropped by the transform. 3234 if (EphTracker.track(&I)) 3235 continue; 3236 3237 // Only speculatively execute a single instruction (not counting the 3238 // terminator) for now. 3239 bool IsSafeCheapLoadStore = HoistLoadsStores && 3240 isSafeCheapLoadStore(&I, TTI) && 3241 SpeculatedConditionalLoadsStores.size() < 3242 HoistLoadsStoresWithCondFaultingThreshold; 3243 // Not count load/store into cost if target supports conditional faulting 3244 // b/c it's cheap to speculate it. 3245 if (IsSafeCheapLoadStore) 3246 SpeculatedConditionalLoadsStores.push_back(&I); 3247 else 3248 ++SpeculatedInstructions; 3249 3250 if (SpeculatedInstructions > 1) 3251 return false; 3252 3253 // Don't hoist the instruction if it's unsafe or expensive. 3254 if (!IsSafeCheapLoadStore && 3255 !isSafeToSpeculativelyExecute(&I, BI, Options.AC) && 3256 !(HoistCondStores && !SpeculatedStoreValue && 3257 (SpeculatedStoreValue = 3258 isSafeToSpeculateStore(&I, BB, ThenBB, EndBB)))) 3259 return false; 3260 if (!IsSafeCheapLoadStore && !SpeculatedStoreValue && 3261 computeSpeculationCost(&I, TTI) > 3262 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3263 return false; 3264 3265 // Store the store speculation candidate. 3266 if (!SpeculatedStore && SpeculatedStoreValue) 3267 SpeculatedStore = cast<StoreInst>(&I); 3268 3269 // Do not hoist the instruction if any of its operands are defined but not 3270 // used in BB. The transformation will prevent the operand from 3271 // being sunk into the use block. 3272 for (Use &Op : I.operands()) { 3273 Instruction *OpI = dyn_cast<Instruction>(Op); 3274 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3275 continue; // Not a candidate for sinking. 3276 3277 ++SinkCandidateUseCounts[OpI]; 3278 } 3279 } 3280 3281 // Consider any sink candidates which are only used in ThenBB as costs for 3282 // speculation. Note, while we iterate over a DenseMap here, we are summing 3283 // and so iteration order isn't significant. 3284 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3285 if (Inst->hasNUses(Count)) { 3286 ++SpeculatedInstructions; 3287 if (SpeculatedInstructions > 1) 3288 return false; 3289 } 3290 3291 // Check that we can insert the selects and that it's not too expensive to do 3292 // so. 3293 bool Convert = 3294 SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty(); 3295 InstructionCost Cost = 0; 3296 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3297 SpeculatedInstructions, Cost, TTI); 3298 if (!Convert || Cost > Budget) 3299 return false; 3300 3301 // If we get here, we can hoist the instruction and if-convert. 3302 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3303 3304 // Insert a select of the value of the speculated store. 3305 if (SpeculatedStoreValue) { 3306 IRBuilder<NoFolder> Builder(BI); 3307 Value *OrigV = SpeculatedStore->getValueOperand(); 3308 Value *TrueV = SpeculatedStore->getValueOperand(); 3309 Value *FalseV = SpeculatedStoreValue; 3310 if (Invert) 3311 std::swap(TrueV, FalseV); 3312 Value *S = Builder.CreateSelect( 3313 BrCond, TrueV, FalseV, "spec.store.select", BI); 3314 SpeculatedStore->setOperand(0, S); 3315 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3316 SpeculatedStore->getDebugLoc()); 3317 // The value stored is still conditional, but the store itself is now 3318 // unconditonally executed, so we must be sure that any linked dbg.assign 3319 // intrinsics are tracking the new stored value (the result of the 3320 // select). If we don't, and the store were to be removed by another pass 3321 // (e.g. DSE), then we'd eventually end up emitting a location describing 3322 // the conditional value, unconditionally. 3323 // 3324 // === Before this transformation === 3325 // pred: 3326 // store %one, %x.dest, !DIAssignID !1 3327 // dbg.assign %one, "x", ..., !1, ... 3328 // br %cond if.then 3329 // 3330 // if.then: 3331 // store %two, %x.dest, !DIAssignID !2 3332 // dbg.assign %two, "x", ..., !2, ... 3333 // 3334 // === After this transformation === 3335 // pred: 3336 // store %one, %x.dest, !DIAssignID !1 3337 // dbg.assign %one, "x", ..., !1 3338 /// ... 3339 // %merge = select %cond, %two, %one 3340 // store %merge, %x.dest, !DIAssignID !2 3341 // dbg.assign %merge, "x", ..., !2 3342 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3343 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3344 DbgAssign->replaceVariableLocationOp(OrigV, S); 3345 }; 3346 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3347 for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable); 3348 } 3349 3350 // Metadata can be dependent on the condition we are hoisting above. 3351 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3352 // to avoid making it appear as if the condition is a constant, which would 3353 // be misleading while debugging. 3354 // Similarly strip attributes that maybe dependent on condition we are 3355 // hoisting above. 3356 for (auto &I : make_early_inc_range(*ThenBB)) { 3357 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3358 // Don't update the DILocation of dbg.assign intrinsics. 3359 if (!isa<DbgAssignIntrinsic>(&I)) 3360 I.setDebugLoc(DebugLoc()); 3361 } 3362 I.dropUBImplyingAttrsAndMetadata(); 3363 3364 // Drop ephemeral values. 3365 if (EphTracker.contains(&I)) { 3366 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3367 I.eraseFromParent(); 3368 } 3369 } 3370 3371 // Hoist the instructions. 3372 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached 3373 // to these instructions, in the same way that dbg.value intrinsics are 3374 // dropped at the end of this block. 3375 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3376 for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange())) 3377 // Drop all records except assign-kind DbgVariableRecords (dbg.assign 3378 // equivalent). 3379 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 3380 !DVR || !DVR->isDbgAssign()) 3381 It.dropOneDbgRecord(&DR); 3382 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3383 std::prev(ThenBB->end())); 3384 3385 if (!SpeculatedConditionalLoadsStores.empty()) 3386 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert); 3387 3388 // Insert selects and rewrite the PHI operands. 3389 IRBuilder<NoFolder> Builder(BI); 3390 for (PHINode &PN : EndBB->phis()) { 3391 unsigned OrigI = PN.getBasicBlockIndex(BB); 3392 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3393 Value *OrigV = PN.getIncomingValue(OrigI); 3394 Value *ThenV = PN.getIncomingValue(ThenI); 3395 3396 // Skip PHIs which are trivial. 3397 if (OrigV == ThenV) 3398 continue; 3399 3400 // Create a select whose true value is the speculatively executed value and 3401 // false value is the pre-existing value. Swap them if the branch 3402 // destinations were inverted. 3403 Value *TrueV = ThenV, *FalseV = OrigV; 3404 if (Invert) 3405 std::swap(TrueV, FalseV); 3406 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3407 PN.setIncomingValue(OrigI, V); 3408 PN.setIncomingValue(ThenI, V); 3409 } 3410 3411 // Remove speculated dbg intrinsics. 3412 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3413 // dbg value for the different flows and inserting it after the select. 3414 for (Instruction *I : SpeculatedDbgIntrinsics) { 3415 // We still want to know that an assignment took place so don't remove 3416 // dbg.assign intrinsics. 3417 if (!isa<DbgAssignIntrinsic>(I)) 3418 I->eraseFromParent(); 3419 } 3420 3421 ++NumSpeculations; 3422 return true; 3423 } 3424 3425 /// Return true if we can thread a branch across this block. 3426 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3427 int Size = 0; 3428 EphemeralValueTracker EphTracker; 3429 3430 // Walk the loop in reverse so that we can identify ephemeral values properly 3431 // (values only feeding assumes). 3432 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3433 // Can't fold blocks that contain noduplicate or convergent calls. 3434 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3435 if (CI->cannotDuplicate() || CI->isConvergent()) 3436 return false; 3437 3438 // Ignore ephemeral values which are deleted during codegen. 3439 // We will delete Phis while threading, so Phis should not be accounted in 3440 // block's size. 3441 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3442 if (Size++ > MaxSmallBlockSize) 3443 return false; // Don't clone large BB's. 3444 } 3445 3446 // We can only support instructions that do not define values that are 3447 // live outside of the current basic block. 3448 for (User *U : I.users()) { 3449 Instruction *UI = cast<Instruction>(U); 3450 if (UI->getParent() != BB || isa<PHINode>(UI)) 3451 return false; 3452 } 3453 3454 // Looks ok, continue checking. 3455 } 3456 3457 return true; 3458 } 3459 3460 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3461 BasicBlock *To) { 3462 // Don't look past the block defining the value, we might get the value from 3463 // a previous loop iteration. 3464 auto *I = dyn_cast<Instruction>(V); 3465 if (I && I->getParent() == To) 3466 return nullptr; 3467 3468 // We know the value if the From block branches on it. 3469 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3470 if (BI && BI->isConditional() && BI->getCondition() == V && 3471 BI->getSuccessor(0) != BI->getSuccessor(1)) 3472 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3473 : ConstantInt::getFalse(BI->getContext()); 3474 3475 return nullptr; 3476 } 3477 3478 /// If we have a conditional branch on something for which we know the constant 3479 /// value in predecessors (e.g. a phi node in the current block), thread edges 3480 /// from the predecessor to their ultimate destination. 3481 static std::optional<bool> 3482 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3483 const DataLayout &DL, 3484 AssumptionCache *AC) { 3485 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3486 BasicBlock *BB = BI->getParent(); 3487 Value *Cond = BI->getCondition(); 3488 PHINode *PN = dyn_cast<PHINode>(Cond); 3489 if (PN && PN->getParent() == BB) { 3490 // Degenerate case of a single entry PHI. 3491 if (PN->getNumIncomingValues() == 1) { 3492 FoldSingleEntryPHINodes(PN->getParent()); 3493 return true; 3494 } 3495 3496 for (Use &U : PN->incoming_values()) 3497 if (auto *CB = dyn_cast<ConstantInt>(U)) 3498 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3499 } else { 3500 for (BasicBlock *Pred : predecessors(BB)) { 3501 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3502 KnownValues[CB].insert(Pred); 3503 } 3504 } 3505 3506 if (KnownValues.empty()) 3507 return false; 3508 3509 // Now we know that this block has multiple preds and two succs. 3510 // Check that the block is small enough and values defined in the block are 3511 // not used outside of it. 3512 if (!blockIsSimpleEnoughToThreadThrough(BB)) 3513 return false; 3514 3515 for (const auto &Pair : KnownValues) { 3516 // Okay, we now know that all edges from PredBB should be revectored to 3517 // branch to RealDest. 3518 ConstantInt *CB = Pair.first; 3519 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3520 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3521 3522 if (RealDest == BB) 3523 continue; // Skip self loops. 3524 3525 // Skip if the predecessor's terminator is an indirect branch. 3526 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3527 return isa<IndirectBrInst>(PredBB->getTerminator()); 3528 })) 3529 continue; 3530 3531 LLVM_DEBUG({ 3532 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3533 << " has value " << *Pair.first << " in predecessors:\n"; 3534 for (const BasicBlock *PredBB : Pair.second) 3535 dbgs() << " " << PredBB->getName() << "\n"; 3536 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3537 }); 3538 3539 // Split the predecessors we are threading into a new edge block. We'll 3540 // clone the instructions into this block, and then redirect it to RealDest. 3541 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3542 3543 // TODO: These just exist to reduce test diff, we can drop them if we like. 3544 EdgeBB->setName(RealDest->getName() + ".critedge"); 3545 EdgeBB->moveBefore(RealDest); 3546 3547 // Update PHI nodes. 3548 addPredecessorToBlock(RealDest, EdgeBB, BB); 3549 3550 // BB may have instructions that are being threaded over. Clone these 3551 // instructions into EdgeBB. We know that there will be no uses of the 3552 // cloned instructions outside of EdgeBB. 3553 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3554 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3555 TranslateMap[Cond] = CB; 3556 3557 // RemoveDIs: track instructions that we optimise away while folding, so 3558 // that we can copy DbgVariableRecords from them later. 3559 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3560 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3561 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3562 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3563 continue; 3564 } 3565 // Clone the instruction. 3566 Instruction *N = BBI->clone(); 3567 // Insert the new instruction into its new home. 3568 N->insertInto(EdgeBB, InsertPt); 3569 3570 if (BBI->hasName()) 3571 N->setName(BBI->getName() + ".c"); 3572 3573 // Update operands due to translation. 3574 for (Use &Op : N->operands()) { 3575 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3576 if (PI != TranslateMap.end()) 3577 Op = PI->second; 3578 } 3579 3580 // Check for trivial simplification. 3581 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3582 if (!BBI->use_empty()) 3583 TranslateMap[&*BBI] = V; 3584 if (!N->mayHaveSideEffects()) { 3585 N->eraseFromParent(); // Instruction folded away, don't need actual 3586 // inst 3587 N = nullptr; 3588 } 3589 } else { 3590 if (!BBI->use_empty()) 3591 TranslateMap[&*BBI] = N; 3592 } 3593 if (N) { 3594 // Copy all debug-info attached to instructions from the last we 3595 // successfully clone, up to this instruction (they might have been 3596 // folded away). 3597 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3598 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3599 SrcDbgCursor = std::next(BBI); 3600 // Clone debug-info on this instruction too. 3601 N->cloneDebugInfoFrom(&*BBI); 3602 3603 // Register the new instruction with the assumption cache if necessary. 3604 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3605 if (AC) 3606 AC->registerAssumption(Assume); 3607 } 3608 } 3609 3610 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3611 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3612 InsertPt->cloneDebugInfoFrom(BI); 3613 3614 BB->removePredecessor(EdgeBB); 3615 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3616 EdgeBI->setSuccessor(0, RealDest); 3617 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3618 3619 if (DTU) { 3620 SmallVector<DominatorTree::UpdateType, 2> Updates; 3621 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3622 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3623 DTU->applyUpdates(Updates); 3624 } 3625 3626 // For simplicity, we created a separate basic block for the edge. Merge 3627 // it back into the predecessor if possible. This not only avoids 3628 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3629 // bypass the check for trivial cycles above. 3630 MergeBlockIntoPredecessor(EdgeBB, DTU); 3631 3632 // Signal repeat, simplifying any other constants. 3633 return std::nullopt; 3634 } 3635 3636 return false; 3637 } 3638 3639 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3640 DomTreeUpdater *DTU, 3641 const DataLayout &DL, 3642 AssumptionCache *AC) { 3643 std::optional<bool> Result; 3644 bool EverChanged = false; 3645 do { 3646 // Note that None means "we changed things, but recurse further." 3647 Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3648 EverChanged |= Result == std::nullopt || *Result; 3649 } while (Result == std::nullopt); 3650 return EverChanged; 3651 } 3652 3653 /// Given a BB that starts with the specified two-entry PHI node, 3654 /// see if we can eliminate it. 3655 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3656 DomTreeUpdater *DTU, AssumptionCache *AC, 3657 const DataLayout &DL, 3658 bool SpeculateUnpredictables) { 3659 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3660 // statement", which has a very simple dominance structure. Basically, we 3661 // are trying to find the condition that is being branched on, which 3662 // subsequently causes this merge to happen. We really want control 3663 // dependence information for this check, but simplifycfg can't keep it up 3664 // to date, and this catches most of the cases we care about anyway. 3665 BasicBlock *BB = PN->getParent(); 3666 3667 BasicBlock *IfTrue, *IfFalse; 3668 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3669 if (!DomBI) 3670 return false; 3671 Value *IfCond = DomBI->getCondition(); 3672 // Don't bother if the branch will be constant folded trivially. 3673 if (isa<ConstantInt>(IfCond)) 3674 return false; 3675 3676 BasicBlock *DomBlock = DomBI->getParent(); 3677 SmallVector<BasicBlock *, 2> IfBlocks; 3678 llvm::copy_if( 3679 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3680 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3681 }); 3682 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3683 "Will have either one or two blocks to speculate."); 3684 3685 // If the branch is non-unpredictable, see if we either predictably jump to 3686 // the merge bb (if we have only a single 'then' block), or if we predictably 3687 // jump to one specific 'then' block (if we have two of them). 3688 // It isn't beneficial to speculatively execute the code 3689 // from the block that we know is predictably not entered. 3690 bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable); 3691 if (!IsUnpredictable) { 3692 uint64_t TWeight, FWeight; 3693 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3694 (TWeight + FWeight) != 0) { 3695 BranchProbability BITrueProb = 3696 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3697 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3698 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3699 if (IfBlocks.size() == 1) { 3700 BranchProbability BIBBProb = 3701 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3702 if (BIBBProb >= Likely) 3703 return false; 3704 } else { 3705 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3706 return false; 3707 } 3708 } 3709 } 3710 3711 // Don't try to fold an unreachable block. For example, the phi node itself 3712 // can't be the candidate if-condition for a select that we want to form. 3713 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3714 if (IfCondPhiInst->getParent() == BB) 3715 return false; 3716 3717 // Okay, we found that we can merge this two-entry phi node into a select. 3718 // Doing so would require us to fold *all* two entry phi nodes in this block. 3719 // At some point this becomes non-profitable (particularly if the target 3720 // doesn't support cmov's). Only do this transformation if there are two or 3721 // fewer PHI nodes in this block. 3722 unsigned NumPhis = 0; 3723 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3724 if (NumPhis > 2) 3725 return false; 3726 3727 // Loop over the PHI's seeing if we can promote them all to select 3728 // instructions. While we are at it, keep track of the instructions 3729 // that need to be moved to the dominating block. 3730 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3731 InstructionCost Cost = 0; 3732 InstructionCost Budget = 3733 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3734 if (SpeculateUnpredictables && IsUnpredictable) 3735 Budget += TTI.getBranchMispredictPenalty(); 3736 3737 bool Changed = false; 3738 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3739 PHINode *PN = cast<PHINode>(II++); 3740 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3741 PN->replaceAllUsesWith(V); 3742 PN->eraseFromParent(); 3743 Changed = true; 3744 continue; 3745 } 3746 3747 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI, 3748 AggressiveInsts, Cost, Budget, TTI, AC) || 3749 !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI, 3750 AggressiveInsts, Cost, Budget, TTI, AC)) 3751 return Changed; 3752 } 3753 3754 // If we folded the first phi, PN dangles at this point. Refresh it. If 3755 // we ran out of PHIs then we simplified them all. 3756 PN = dyn_cast<PHINode>(BB->begin()); 3757 if (!PN) 3758 return true; 3759 3760 // Return true if at least one of these is a 'not', and another is either 3761 // a 'not' too, or a constant. 3762 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3763 if (!match(V0, m_Not(m_Value()))) 3764 std::swap(V0, V1); 3765 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3766 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3767 }; 3768 3769 // Don't fold i1 branches on PHIs which contain binary operators or 3770 // (possibly inverted) select form of or/ands, unless one of 3771 // the incoming values is an 'not' and another one is freely invertible. 3772 // These can often be turned into switches and other things. 3773 auto IsBinOpOrAnd = [](Value *V) { 3774 return match( 3775 V, m_CombineOr( 3776 m_BinOp(), 3777 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3778 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3779 }; 3780 if (PN->getType()->isIntegerTy(1) && 3781 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3782 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3783 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3784 PN->getIncomingValue(1))) 3785 return Changed; 3786 3787 // If all PHI nodes are promotable, check to make sure that all instructions 3788 // in the predecessor blocks can be promoted as well. If not, we won't be able 3789 // to get rid of the control flow, so it's not worth promoting to select 3790 // instructions. 3791 for (BasicBlock *IfBlock : IfBlocks) 3792 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3793 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3794 // This is not an aggressive instruction that we can promote. 3795 // Because of this, we won't be able to get rid of the control flow, so 3796 // the xform is not worth it. 3797 return Changed; 3798 } 3799 3800 // If either of the blocks has it's address taken, we can't do this fold. 3801 if (any_of(IfBlocks, 3802 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3803 return Changed; 3804 3805 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond; 3806 if (IsUnpredictable) dbgs() << " (unpredictable)"; 3807 dbgs() << " T: " << IfTrue->getName() 3808 << " F: " << IfFalse->getName() << "\n"); 3809 3810 // If we can still promote the PHI nodes after this gauntlet of tests, 3811 // do all of the PHI's now. 3812 3813 // Move all 'aggressive' instructions, which are defined in the 3814 // conditional parts of the if's up to the dominating block. 3815 for (BasicBlock *IfBlock : IfBlocks) 3816 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3817 3818 IRBuilder<NoFolder> Builder(DomBI); 3819 // Propagate fast-math-flags from phi nodes to replacement selects. 3820 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3821 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3822 if (isa<FPMathOperator>(PN)) 3823 Builder.setFastMathFlags(PN->getFastMathFlags()); 3824 3825 // Change the PHI node into a select instruction. 3826 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3827 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3828 3829 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3830 PN->replaceAllUsesWith(Sel); 3831 Sel->takeName(PN); 3832 PN->eraseFromParent(); 3833 } 3834 3835 // At this point, all IfBlocks are empty, so our if statement 3836 // has been flattened. Change DomBlock to jump directly to our new block to 3837 // avoid other simplifycfg's kicking in on the diamond. 3838 Builder.CreateBr(BB); 3839 3840 SmallVector<DominatorTree::UpdateType, 3> Updates; 3841 if (DTU) { 3842 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3843 for (auto *Successor : successors(DomBlock)) 3844 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3845 } 3846 3847 DomBI->eraseFromParent(); 3848 if (DTU) 3849 DTU->applyUpdates(Updates); 3850 3851 return true; 3852 } 3853 3854 static Value *createLogicalOp(IRBuilderBase &Builder, 3855 Instruction::BinaryOps Opc, Value *LHS, 3856 Value *RHS, const Twine &Name = "") { 3857 // Try to relax logical op to binary op. 3858 if (impliesPoison(RHS, LHS)) 3859 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3860 if (Opc == Instruction::And) 3861 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3862 if (Opc == Instruction::Or) 3863 return Builder.CreateLogicalOr(LHS, RHS, Name); 3864 llvm_unreachable("Invalid logical opcode"); 3865 } 3866 3867 /// Return true if either PBI or BI has branch weight available, and store 3868 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3869 /// not have branch weight, use 1:1 as its weight. 3870 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3871 uint64_t &PredTrueWeight, 3872 uint64_t &PredFalseWeight, 3873 uint64_t &SuccTrueWeight, 3874 uint64_t &SuccFalseWeight) { 3875 bool PredHasWeights = 3876 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3877 bool SuccHasWeights = 3878 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3879 if (PredHasWeights || SuccHasWeights) { 3880 if (!PredHasWeights) 3881 PredTrueWeight = PredFalseWeight = 1; 3882 if (!SuccHasWeights) 3883 SuccTrueWeight = SuccFalseWeight = 1; 3884 return true; 3885 } else { 3886 return false; 3887 } 3888 } 3889 3890 /// Determine if the two branches share a common destination and deduce a glue 3891 /// that joins the branches' conditions to arrive at the common destination if 3892 /// that would be profitable. 3893 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3894 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3895 const TargetTransformInfo *TTI) { 3896 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3897 "Both blocks must end with a conditional branches."); 3898 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3899 "PredBB must be a predecessor of BB."); 3900 3901 // We have the potential to fold the conditions together, but if the 3902 // predecessor branch is predictable, we may not want to merge them. 3903 uint64_t PTWeight, PFWeight; 3904 BranchProbability PBITrueProb, Likely; 3905 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3906 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3907 (PTWeight + PFWeight) != 0) { 3908 PBITrueProb = 3909 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3910 Likely = TTI->getPredictableBranchThreshold(); 3911 } 3912 3913 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3914 // Speculate the 2nd condition unless the 1st is probably true. 3915 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3916 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3917 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3918 // Speculate the 2nd condition unless the 1st is probably false. 3919 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3920 return {{BI->getSuccessor(1), Instruction::And, false}}; 3921 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3922 // Speculate the 2nd condition unless the 1st is probably true. 3923 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3924 return {{BI->getSuccessor(1), Instruction::And, true}}; 3925 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3926 // Speculate the 2nd condition unless the 1st is probably false. 3927 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3928 return {{BI->getSuccessor(0), Instruction::Or, true}}; 3929 } 3930 return std::nullopt; 3931 } 3932 3933 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 3934 DomTreeUpdater *DTU, 3935 MemorySSAUpdater *MSSAU, 3936 const TargetTransformInfo *TTI) { 3937 BasicBlock *BB = BI->getParent(); 3938 BasicBlock *PredBlock = PBI->getParent(); 3939 3940 // Determine if the two branches share a common destination. 3941 BasicBlock *CommonSucc; 3942 Instruction::BinaryOps Opc; 3943 bool InvertPredCond; 3944 std::tie(CommonSucc, Opc, InvertPredCond) = 3945 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 3946 3947 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 3948 3949 IRBuilder<> Builder(PBI); 3950 // The builder is used to create instructions to eliminate the branch in BB. 3951 // If BB's terminator has !annotation metadata, add it to the new 3952 // instructions. 3953 Builder.CollectMetadataToCopy(BB->getTerminator(), 3954 {LLVMContext::MD_annotation}); 3955 3956 // If we need to invert the condition in the pred block to match, do so now. 3957 if (InvertPredCond) { 3958 InvertBranch(PBI, Builder); 3959 } 3960 3961 BasicBlock *UniqueSucc = 3962 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 3963 3964 // Before cloning instructions, notify the successor basic block that it 3965 // is about to have a new predecessor. This will update PHI nodes, 3966 // which will allow us to update live-out uses of bonus instructions. 3967 addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 3968 3969 // Try to update branch weights. 3970 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 3971 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 3972 SuccTrueWeight, SuccFalseWeight)) { 3973 SmallVector<uint64_t, 8> NewWeights; 3974 3975 if (PBI->getSuccessor(0) == BB) { 3976 // PBI: br i1 %x, BB, FalseDest 3977 // BI: br i1 %y, UniqueSucc, FalseDest 3978 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 3979 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 3980 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 3981 // TrueWeight for PBI * FalseWeight for BI. 3982 // We assume that total weights of a BranchInst can fit into 32 bits. 3983 // Therefore, we will not have overflow using 64-bit arithmetic. 3984 NewWeights.push_back(PredFalseWeight * 3985 (SuccFalseWeight + SuccTrueWeight) + 3986 PredTrueWeight * SuccFalseWeight); 3987 } else { 3988 // PBI: br i1 %x, TrueDest, BB 3989 // BI: br i1 %y, TrueDest, UniqueSucc 3990 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 3991 // FalseWeight for PBI * TrueWeight for BI. 3992 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 3993 PredFalseWeight * SuccTrueWeight); 3994 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 3995 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 3996 } 3997 3998 // Halve the weights if any of them cannot fit in an uint32_t 3999 fitWeights(NewWeights); 4000 4001 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 4002 setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false); 4003 4004 // TODO: If BB is reachable from all paths through PredBlock, then we 4005 // could replace PBI's branch probabilities with BI's. 4006 } else 4007 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 4008 4009 // Now, update the CFG. 4010 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 4011 4012 if (DTU) 4013 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 4014 {DominatorTree::Delete, PredBlock, BB}}); 4015 4016 // If BI was a loop latch, it may have had associated loop metadata. 4017 // We need to copy it to the new latch, that is, PBI. 4018 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 4019 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 4020 4021 ValueToValueMapTy VMap; // maps original values to cloned values 4022 cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 4023 4024 Module *M = BB->getModule(); 4025 4026 if (PredBlock->IsNewDbgInfoFormat) { 4027 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 4028 for (DbgVariableRecord &DVR : 4029 filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) { 4030 RemapDbgRecord(M, &DVR, VMap, 4031 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 4032 } 4033 } 4034 4035 // Now that the Cond was cloned into the predecessor basic block, 4036 // or/and the two conditions together. 4037 Value *BICond = VMap[BI->getCondition()]; 4038 PBI->setCondition( 4039 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 4040 4041 ++NumFoldBranchToCommonDest; 4042 return true; 4043 } 4044 4045 /// Return if an instruction's type or any of its operands' types are a vector 4046 /// type. 4047 static bool isVectorOp(Instruction &I) { 4048 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 4049 return U->getType()->isVectorTy(); 4050 }); 4051 } 4052 4053 /// If this basic block is simple enough, and if a predecessor branches to us 4054 /// and one of our successors, fold the block into the predecessor and use 4055 /// logical operations to pick the right destination. 4056 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 4057 MemorySSAUpdater *MSSAU, 4058 const TargetTransformInfo *TTI, 4059 unsigned BonusInstThreshold) { 4060 // If this block ends with an unconditional branch, 4061 // let speculativelyExecuteBB() deal with it. 4062 if (!BI->isConditional()) 4063 return false; 4064 4065 BasicBlock *BB = BI->getParent(); 4066 TargetTransformInfo::TargetCostKind CostKind = 4067 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 4068 : TargetTransformInfo::TCK_SizeAndLatency; 4069 4070 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4071 4072 if (!Cond || 4073 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 4074 !isa<SelectInst>(Cond)) || 4075 Cond->getParent() != BB || !Cond->hasOneUse()) 4076 return false; 4077 4078 // Finally, don't infinitely unroll conditional loops. 4079 if (is_contained(successors(BB), BB)) 4080 return false; 4081 4082 // With which predecessors will we want to deal with? 4083 SmallVector<BasicBlock *, 8> Preds; 4084 for (BasicBlock *PredBlock : predecessors(BB)) { 4085 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 4086 4087 // Check that we have two conditional branches. If there is a PHI node in 4088 // the common successor, verify that the same value flows in from both 4089 // blocks. 4090 if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI)) 4091 continue; 4092 4093 // Determine if the two branches share a common destination. 4094 BasicBlock *CommonSucc; 4095 Instruction::BinaryOps Opc; 4096 bool InvertPredCond; 4097 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 4098 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 4099 else 4100 continue; 4101 4102 // Check the cost of inserting the necessary logic before performing the 4103 // transformation. 4104 if (TTI) { 4105 Type *Ty = BI->getCondition()->getType(); 4106 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 4107 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 4108 !isa<CmpInst>(PBI->getCondition()))) 4109 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 4110 4111 if (Cost > BranchFoldThreshold) 4112 continue; 4113 } 4114 4115 // Ok, we do want to deal with this predecessor. Record it. 4116 Preds.emplace_back(PredBlock); 4117 } 4118 4119 // If there aren't any predecessors into which we can fold, 4120 // don't bother checking the cost. 4121 if (Preds.empty()) 4122 return false; 4123 4124 // Only allow this transformation if computing the condition doesn't involve 4125 // too many instructions and these involved instructions can be executed 4126 // unconditionally. We denote all involved instructions except the condition 4127 // as "bonus instructions", and only allow this transformation when the 4128 // number of the bonus instructions we'll need to create when cloning into 4129 // each predecessor does not exceed a certain threshold. 4130 unsigned NumBonusInsts = 0; 4131 bool SawVectorOp = false; 4132 const unsigned PredCount = Preds.size(); 4133 for (Instruction &I : *BB) { 4134 // Don't check the branch condition comparison itself. 4135 if (&I == Cond) 4136 continue; 4137 // Ignore dbg intrinsics, and the terminator. 4138 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 4139 continue; 4140 // I must be safe to execute unconditionally. 4141 if (!isSafeToSpeculativelyExecute(&I)) 4142 return false; 4143 SawVectorOp |= isVectorOp(I); 4144 4145 // Account for the cost of duplicating this instruction into each 4146 // predecessor. Ignore free instructions. 4147 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 4148 TargetTransformInfo::TCC_Free) { 4149 NumBonusInsts += PredCount; 4150 4151 // Early exits once we reach the limit. 4152 if (NumBonusInsts > 4153 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 4154 return false; 4155 } 4156 4157 auto IsBCSSAUse = [BB, &I](Use &U) { 4158 auto *UI = cast<Instruction>(U.getUser()); 4159 if (auto *PN = dyn_cast<PHINode>(UI)) 4160 return PN->getIncomingBlock(U) == BB; 4161 return UI->getParent() == BB && I.comesBefore(UI); 4162 }; 4163 4164 // Does this instruction require rewriting of uses? 4165 if (!all_of(I.uses(), IsBCSSAUse)) 4166 return false; 4167 } 4168 if (NumBonusInsts > 4169 BonusInstThreshold * 4170 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 4171 return false; 4172 4173 // Ok, we have the budget. Perform the transformation. 4174 for (BasicBlock *PredBlock : Preds) { 4175 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 4176 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 4177 } 4178 return false; 4179 } 4180 4181 // If there is only one store in BB1 and BB2, return it, otherwise return 4182 // nullptr. 4183 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 4184 StoreInst *S = nullptr; 4185 for (auto *BB : {BB1, BB2}) { 4186 if (!BB) 4187 continue; 4188 for (auto &I : *BB) 4189 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4190 if (S) 4191 // Multiple stores seen. 4192 return nullptr; 4193 else 4194 S = SI; 4195 } 4196 } 4197 return S; 4198 } 4199 4200 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 4201 Value *AlternativeV = nullptr) { 4202 // PHI is going to be a PHI node that allows the value V that is defined in 4203 // BB to be referenced in BB's only successor. 4204 // 4205 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 4206 // doesn't matter to us what the other operand is (it'll never get used). We 4207 // could just create a new PHI with an undef incoming value, but that could 4208 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 4209 // other PHI. So here we directly look for some PHI in BB's successor with V 4210 // as an incoming operand. If we find one, we use it, else we create a new 4211 // one. 4212 // 4213 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 4214 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 4215 // where OtherBB is the single other predecessor of BB's only successor. 4216 PHINode *PHI = nullptr; 4217 BasicBlock *Succ = BB->getSingleSuccessor(); 4218 4219 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 4220 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 4221 PHI = cast<PHINode>(I); 4222 if (!AlternativeV) 4223 break; 4224 4225 assert(Succ->hasNPredecessors(2)); 4226 auto PredI = pred_begin(Succ); 4227 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 4228 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 4229 break; 4230 PHI = nullptr; 4231 } 4232 if (PHI) 4233 return PHI; 4234 4235 // If V is not an instruction defined in BB, just return it. 4236 if (!AlternativeV && 4237 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 4238 return V; 4239 4240 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 4241 PHI->insertBefore(Succ->begin()); 4242 PHI->addIncoming(V, BB); 4243 for (BasicBlock *PredBB : predecessors(Succ)) 4244 if (PredBB != BB) 4245 PHI->addIncoming( 4246 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4247 return PHI; 4248 } 4249 4250 static bool mergeConditionalStoreToAddress( 4251 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4252 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4253 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4254 // For every pointer, there must be exactly two stores, one coming from 4255 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4256 // store (to any address) in PTB,PFB or QTB,QFB. 4257 // FIXME: We could relax this restriction with a bit more work and performance 4258 // testing. 4259 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4260 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4261 if (!PStore || !QStore) 4262 return false; 4263 4264 // Now check the stores are compatible. 4265 if (!QStore->isUnordered() || !PStore->isUnordered() || 4266 PStore->getValueOperand()->getType() != 4267 QStore->getValueOperand()->getType()) 4268 return false; 4269 4270 // Check that sinking the store won't cause program behavior changes. Sinking 4271 // the store out of the Q blocks won't change any behavior as we're sinking 4272 // from a block to its unconditional successor. But we're moving a store from 4273 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4274 // So we need to check that there are no aliasing loads or stores in 4275 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4276 // operations between PStore and the end of its parent block. 4277 // 4278 // The ideal way to do this is to query AliasAnalysis, but we don't 4279 // preserve AA currently so that is dangerous. Be super safe and just 4280 // check there are no other memory operations at all. 4281 for (auto &I : *QFB->getSinglePredecessor()) 4282 if (I.mayReadOrWriteMemory()) 4283 return false; 4284 for (auto &I : *QFB) 4285 if (&I != QStore && I.mayReadOrWriteMemory()) 4286 return false; 4287 if (QTB) 4288 for (auto &I : *QTB) 4289 if (&I != QStore && I.mayReadOrWriteMemory()) 4290 return false; 4291 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4292 I != E; ++I) 4293 if (&*I != PStore && I->mayReadOrWriteMemory()) 4294 return false; 4295 4296 // If we're not in aggressive mode, we only optimize if we have some 4297 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4298 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4299 if (!BB) 4300 return true; 4301 // Heuristic: if the block can be if-converted/phi-folded and the 4302 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4303 // thread this store. 4304 InstructionCost Cost = 0; 4305 InstructionCost Budget = 4306 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4307 for (auto &I : BB->instructionsWithoutDebug(false)) { 4308 // Consider terminator instruction to be free. 4309 if (I.isTerminator()) 4310 continue; 4311 // If this is one the stores that we want to speculate out of this BB, 4312 // then don't count it's cost, consider it to be free. 4313 if (auto *S = dyn_cast<StoreInst>(&I)) 4314 if (llvm::find(FreeStores, S)) 4315 continue; 4316 // Else, we have a white-list of instructions that we are ak speculating. 4317 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4318 return false; // Not in white-list - not worthwhile folding. 4319 // And finally, if this is a non-free instruction that we are okay 4320 // speculating, ensure that we consider the speculation budget. 4321 Cost += 4322 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4323 if (Cost > Budget) 4324 return false; // Eagerly refuse to fold as soon as we're out of budget. 4325 } 4326 assert(Cost <= Budget && 4327 "When we run out of budget we will eagerly return from within the " 4328 "per-instruction loop."); 4329 return true; 4330 }; 4331 4332 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4333 if (!MergeCondStoresAggressively && 4334 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4335 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4336 return false; 4337 4338 // If PostBB has more than two predecessors, we need to split it so we can 4339 // sink the store. 4340 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4341 // We know that QFB's only successor is PostBB. And QFB has a single 4342 // predecessor. If QTB exists, then its only successor is also PostBB. 4343 // If QTB does not exist, then QFB's only predecessor has a conditional 4344 // branch to QFB and PostBB. 4345 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4346 BasicBlock *NewBB = 4347 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4348 if (!NewBB) 4349 return false; 4350 PostBB = NewBB; 4351 } 4352 4353 // OK, we're going to sink the stores to PostBB. The store has to be 4354 // conditional though, so first create the predicate. 4355 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4356 ->getCondition(); 4357 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4358 ->getCondition(); 4359 4360 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4361 PStore->getParent()); 4362 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4363 QStore->getParent(), PPHI); 4364 4365 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4366 IRBuilder<> QB(PostBB, PostBBFirst); 4367 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4368 4369 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4370 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4371 4372 if (InvertPCond) 4373 PPred = QB.CreateNot(PPred); 4374 if (InvertQCond) 4375 QPred = QB.CreateNot(QPred); 4376 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4377 4378 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4379 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4380 /*Unreachable=*/false, 4381 /*BranchWeights=*/nullptr, DTU); 4382 4383 QB.SetInsertPoint(T); 4384 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4385 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4386 // Choose the minimum alignment. If we could prove both stores execute, we 4387 // could use biggest one. In this case, though, we only know that one of the 4388 // stores executes. And we don't know it's safe to take the alignment from a 4389 // store that doesn't execute. 4390 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4391 4392 QStore->eraseFromParent(); 4393 PStore->eraseFromParent(); 4394 4395 return true; 4396 } 4397 4398 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4399 DomTreeUpdater *DTU, const DataLayout &DL, 4400 const TargetTransformInfo &TTI) { 4401 // The intention here is to find diamonds or triangles (see below) where each 4402 // conditional block contains a store to the same address. Both of these 4403 // stores are conditional, so they can't be unconditionally sunk. But it may 4404 // be profitable to speculatively sink the stores into one merged store at the 4405 // end, and predicate the merged store on the union of the two conditions of 4406 // PBI and QBI. 4407 // 4408 // This can reduce the number of stores executed if both of the conditions are 4409 // true, and can allow the blocks to become small enough to be if-converted. 4410 // This optimization will also chain, so that ladders of test-and-set 4411 // sequences can be if-converted away. 4412 // 4413 // We only deal with simple diamonds or triangles: 4414 // 4415 // PBI or PBI or a combination of the two 4416 // / \ | \ 4417 // PTB PFB | PFB 4418 // \ / | / 4419 // QBI QBI 4420 // / \ | \ 4421 // QTB QFB | QFB 4422 // \ / | / 4423 // PostBB PostBB 4424 // 4425 // We model triangles as a type of diamond with a nullptr "true" block. 4426 // Triangles are canonicalized so that the fallthrough edge is represented by 4427 // a true condition, as in the diagram above. 4428 BasicBlock *PTB = PBI->getSuccessor(0); 4429 BasicBlock *PFB = PBI->getSuccessor(1); 4430 BasicBlock *QTB = QBI->getSuccessor(0); 4431 BasicBlock *QFB = QBI->getSuccessor(1); 4432 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4433 4434 // Make sure we have a good guess for PostBB. If QTB's only successor is 4435 // QFB, then QFB is a better PostBB. 4436 if (QTB->getSingleSuccessor() == QFB) 4437 PostBB = QFB; 4438 4439 // If we couldn't find a good PostBB, stop. 4440 if (!PostBB) 4441 return false; 4442 4443 bool InvertPCond = false, InvertQCond = false; 4444 // Canonicalize fallthroughs to the true branches. 4445 if (PFB == QBI->getParent()) { 4446 std::swap(PFB, PTB); 4447 InvertPCond = true; 4448 } 4449 if (QFB == PostBB) { 4450 std::swap(QFB, QTB); 4451 InvertQCond = true; 4452 } 4453 4454 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4455 // and QFB may not. Model fallthroughs as a nullptr block. 4456 if (PTB == QBI->getParent()) 4457 PTB = nullptr; 4458 if (QTB == PostBB) 4459 QTB = nullptr; 4460 4461 // Legality bailouts. We must have at least the non-fallthrough blocks and 4462 // the post-dominating block, and the non-fallthroughs must only have one 4463 // predecessor. 4464 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4465 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4466 }; 4467 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4468 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4469 return false; 4470 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4471 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4472 return false; 4473 if (!QBI->getParent()->hasNUses(2)) 4474 return false; 4475 4476 // OK, this is a sequence of two diamonds or triangles. 4477 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4478 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4479 for (auto *BB : {PTB, PFB}) { 4480 if (!BB) 4481 continue; 4482 for (auto &I : *BB) 4483 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4484 PStoreAddresses.insert(SI->getPointerOperand()); 4485 } 4486 for (auto *BB : {QTB, QFB}) { 4487 if (!BB) 4488 continue; 4489 for (auto &I : *BB) 4490 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4491 QStoreAddresses.insert(SI->getPointerOperand()); 4492 } 4493 4494 set_intersect(PStoreAddresses, QStoreAddresses); 4495 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4496 // clear what it contains. 4497 auto &CommonAddresses = PStoreAddresses; 4498 4499 bool Changed = false; 4500 for (auto *Address : CommonAddresses) 4501 Changed |= 4502 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4503 InvertPCond, InvertQCond, DTU, DL, TTI); 4504 return Changed; 4505 } 4506 4507 /// If the previous block ended with a widenable branch, determine if reusing 4508 /// the target block is profitable and legal. This will have the effect of 4509 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4510 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4511 DomTreeUpdater *DTU) { 4512 // TODO: This can be generalized in two important ways: 4513 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4514 // values from the PBI edge. 4515 // 2) We can sink side effecting instructions into BI's fallthrough 4516 // successor provided they doesn't contribute to computation of 4517 // BI's condition. 4518 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4519 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4520 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4521 !BI->getParent()->getSinglePredecessor()) 4522 return false; 4523 if (!IfFalseBB->phis().empty()) 4524 return false; // TODO 4525 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4526 // may undo the transform done here. 4527 // TODO: There might be a more fine-grained solution to this. 4528 if (!llvm::succ_empty(IfFalseBB)) 4529 return false; 4530 // Use lambda to lazily compute expensive condition after cheap ones. 4531 auto NoSideEffects = [](BasicBlock &BB) { 4532 return llvm::none_of(BB, [](const Instruction &I) { 4533 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4534 }); 4535 }; 4536 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4537 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4538 NoSideEffects(*BI->getParent())) { 4539 auto *OldSuccessor = BI->getSuccessor(1); 4540 OldSuccessor->removePredecessor(BI->getParent()); 4541 BI->setSuccessor(1, IfFalseBB); 4542 if (DTU) 4543 DTU->applyUpdates( 4544 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4545 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4546 return true; 4547 } 4548 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4549 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4550 NoSideEffects(*BI->getParent())) { 4551 auto *OldSuccessor = BI->getSuccessor(0); 4552 OldSuccessor->removePredecessor(BI->getParent()); 4553 BI->setSuccessor(0, IfFalseBB); 4554 if (DTU) 4555 DTU->applyUpdates( 4556 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4557 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4558 return true; 4559 } 4560 return false; 4561 } 4562 4563 /// If we have a conditional branch as a predecessor of another block, 4564 /// this function tries to simplify it. We know 4565 /// that PBI and BI are both conditional branches, and BI is in one of the 4566 /// successor blocks of PBI - PBI branches to BI. 4567 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4568 DomTreeUpdater *DTU, 4569 const DataLayout &DL, 4570 const TargetTransformInfo &TTI) { 4571 assert(PBI->isConditional() && BI->isConditional()); 4572 BasicBlock *BB = BI->getParent(); 4573 4574 // If this block ends with a branch instruction, and if there is a 4575 // predecessor that ends on a branch of the same condition, make 4576 // this conditional branch redundant. 4577 if (PBI->getCondition() == BI->getCondition() && 4578 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4579 // Okay, the outcome of this conditional branch is statically 4580 // knowable. If this block had a single pred, handle specially, otherwise 4581 // foldCondBranchOnValueKnownInPredecessor() will handle it. 4582 if (BB->getSinglePredecessor()) { 4583 // Turn this into a branch on constant. 4584 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4585 BI->setCondition( 4586 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4587 return true; // Nuke the branch on constant. 4588 } 4589 } 4590 4591 // If the previous block ended with a widenable branch, determine if reusing 4592 // the target block is profitable and legal. This will have the effect of 4593 // "widening" PBI, but doesn't require us to reason about hosting safety. 4594 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4595 return true; 4596 4597 // If both branches are conditional and both contain stores to the same 4598 // address, remove the stores from the conditionals and create a conditional 4599 // merged store at the end. 4600 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4601 return true; 4602 4603 // If this is a conditional branch in an empty block, and if any 4604 // predecessors are a conditional branch to one of our destinations, 4605 // fold the conditions into logical ops and one cond br. 4606 4607 // Ignore dbg intrinsics. 4608 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4609 return false; 4610 4611 int PBIOp, BIOp; 4612 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4613 PBIOp = 0; 4614 BIOp = 0; 4615 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4616 PBIOp = 0; 4617 BIOp = 1; 4618 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4619 PBIOp = 1; 4620 BIOp = 0; 4621 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4622 PBIOp = 1; 4623 BIOp = 1; 4624 } else { 4625 return false; 4626 } 4627 4628 // Check to make sure that the other destination of this branch 4629 // isn't BB itself. If so, this is an infinite loop that will 4630 // keep getting unwound. 4631 if (PBI->getSuccessor(PBIOp) == BB) 4632 return false; 4633 4634 // If predecessor's branch probability to BB is too low don't merge branches. 4635 SmallVector<uint32_t, 2> PredWeights; 4636 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4637 extractBranchWeights(*PBI, PredWeights) && 4638 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4639 4640 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4641 PredWeights[PBIOp], 4642 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4643 4644 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4645 if (CommonDestProb >= Likely) 4646 return false; 4647 } 4648 4649 // Do not perform this transformation if it would require 4650 // insertion of a large number of select instructions. For targets 4651 // without predication/cmovs, this is a big pessimization. 4652 4653 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4654 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4655 unsigned NumPhis = 0; 4656 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4657 ++II, ++NumPhis) { 4658 if (NumPhis > 2) // Disable this xform. 4659 return false; 4660 } 4661 4662 // Finally, if everything is ok, fold the branches to logical ops. 4663 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4664 4665 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4666 << "AND: " << *BI->getParent()); 4667 4668 SmallVector<DominatorTree::UpdateType, 5> Updates; 4669 4670 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4671 // branch in it, where one edge (OtherDest) goes back to itself but the other 4672 // exits. We don't *know* that the program avoids the infinite loop 4673 // (even though that seems likely). If we do this xform naively, we'll end up 4674 // recursively unpeeling the loop. Since we know that (after the xform is 4675 // done) that the block *is* infinite if reached, we just make it an obviously 4676 // infinite loop with no cond branch. 4677 if (OtherDest == BB) { 4678 // Insert it at the end of the function, because it's either code, 4679 // or it won't matter if it's hot. :) 4680 BasicBlock *InfLoopBlock = 4681 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4682 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4683 if (DTU) 4684 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4685 OtherDest = InfLoopBlock; 4686 } 4687 4688 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4689 4690 // BI may have other predecessors. Because of this, we leave 4691 // it alone, but modify PBI. 4692 4693 // Make sure we get to CommonDest on True&True directions. 4694 Value *PBICond = PBI->getCondition(); 4695 IRBuilder<NoFolder> Builder(PBI); 4696 if (PBIOp) 4697 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4698 4699 Value *BICond = BI->getCondition(); 4700 if (BIOp) 4701 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4702 4703 // Merge the conditions. 4704 Value *Cond = 4705 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4706 4707 // Modify PBI to branch on the new condition to the new dests. 4708 PBI->setCondition(Cond); 4709 PBI->setSuccessor(0, CommonDest); 4710 PBI->setSuccessor(1, OtherDest); 4711 4712 if (DTU) { 4713 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4714 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4715 4716 DTU->applyUpdates(Updates); 4717 } 4718 4719 // Update branch weight for PBI. 4720 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4721 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4722 bool HasWeights = 4723 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4724 SuccTrueWeight, SuccFalseWeight); 4725 if (HasWeights) { 4726 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4727 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4728 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4729 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4730 // The weight to CommonDest should be PredCommon * SuccTotal + 4731 // PredOther * SuccCommon. 4732 // The weight to OtherDest should be PredOther * SuccOther. 4733 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4734 PredOther * SuccCommon, 4735 PredOther * SuccOther}; 4736 // Halve the weights if any of them cannot fit in an uint32_t 4737 fitWeights(NewWeights); 4738 4739 setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false); 4740 } 4741 4742 // OtherDest may have phi nodes. If so, add an entry from PBI's 4743 // block that are identical to the entries for BI's block. 4744 addPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4745 4746 // We know that the CommonDest already had an edge from PBI to 4747 // it. If it has PHIs though, the PHIs may have different 4748 // entries for BB and PBI's BB. If so, insert a select to make 4749 // them agree. 4750 for (PHINode &PN : CommonDest->phis()) { 4751 Value *BIV = PN.getIncomingValueForBlock(BB); 4752 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4753 Value *PBIV = PN.getIncomingValue(PBBIdx); 4754 if (BIV != PBIV) { 4755 // Insert a select in PBI to pick the right value. 4756 SelectInst *NV = cast<SelectInst>( 4757 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4758 PN.setIncomingValue(PBBIdx, NV); 4759 // Although the select has the same condition as PBI, the original branch 4760 // weights for PBI do not apply to the new select because the select's 4761 // 'logical' edges are incoming edges of the phi that is eliminated, not 4762 // the outgoing edges of PBI. 4763 if (HasWeights) { 4764 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4765 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4766 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4767 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4768 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4769 // The weight to PredOtherDest should be PredOther * SuccCommon. 4770 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4771 PredOther * SuccCommon}; 4772 4773 fitWeights(NewWeights); 4774 4775 setBranchWeights(NV, NewWeights[0], NewWeights[1], 4776 /*IsExpected=*/false); 4777 } 4778 } 4779 } 4780 4781 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4782 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4783 4784 // This basic block is probably dead. We know it has at least 4785 // one fewer predecessor. 4786 return true; 4787 } 4788 4789 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4790 // true or to FalseBB if Cond is false. 4791 // Takes care of updating the successors and removing the old terminator. 4792 // Also makes sure not to introduce new successors by assuming that edges to 4793 // non-successor TrueBBs and FalseBBs aren't reachable. 4794 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm, 4795 Value *Cond, BasicBlock *TrueBB, 4796 BasicBlock *FalseBB, 4797 uint32_t TrueWeight, 4798 uint32_t FalseWeight) { 4799 auto *BB = OldTerm->getParent(); 4800 // Remove any superfluous successor edges from the CFG. 4801 // First, figure out which successors to preserve. 4802 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4803 // successor. 4804 BasicBlock *KeepEdge1 = TrueBB; 4805 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4806 4807 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4808 4809 // Then remove the rest. 4810 for (BasicBlock *Succ : successors(OldTerm)) { 4811 // Make sure only to keep exactly one copy of each edge. 4812 if (Succ == KeepEdge1) 4813 KeepEdge1 = nullptr; 4814 else if (Succ == KeepEdge2) 4815 KeepEdge2 = nullptr; 4816 else { 4817 Succ->removePredecessor(BB, 4818 /*KeepOneInputPHIs=*/true); 4819 4820 if (Succ != TrueBB && Succ != FalseBB) 4821 RemovedSuccessors.insert(Succ); 4822 } 4823 } 4824 4825 IRBuilder<> Builder(OldTerm); 4826 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4827 4828 // Insert an appropriate new terminator. 4829 if (!KeepEdge1 && !KeepEdge2) { 4830 if (TrueBB == FalseBB) { 4831 // We were only looking for one successor, and it was present. 4832 // Create an unconditional branch to it. 4833 Builder.CreateBr(TrueBB); 4834 } else { 4835 // We found both of the successors we were looking for. 4836 // Create a conditional branch sharing the condition of the select. 4837 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4838 if (TrueWeight != FalseWeight) 4839 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 4840 } 4841 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4842 // Neither of the selected blocks were successors, so this 4843 // terminator must be unreachable. 4844 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator()); 4845 } else { 4846 // One of the selected values was a successor, but the other wasn't. 4847 // Insert an unconditional branch to the one that was found; 4848 // the edge to the one that wasn't must be unreachable. 4849 if (!KeepEdge1) { 4850 // Only TrueBB was found. 4851 Builder.CreateBr(TrueBB); 4852 } else { 4853 // Only FalseBB was found. 4854 Builder.CreateBr(FalseBB); 4855 } 4856 } 4857 4858 eraseTerminatorAndDCECond(OldTerm); 4859 4860 if (DTU) { 4861 SmallVector<DominatorTree::UpdateType, 2> Updates; 4862 Updates.reserve(RemovedSuccessors.size()); 4863 for (auto *RemovedSuccessor : RemovedSuccessors) 4864 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4865 DTU->applyUpdates(Updates); 4866 } 4867 4868 return true; 4869 } 4870 4871 // Replaces 4872 // (switch (select cond, X, Y)) on constant X, Y 4873 // with a branch - conditional if X and Y lead to distinct BBs, 4874 // unconditional otherwise. 4875 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI, 4876 SelectInst *Select) { 4877 // Check for constant integer values in the select. 4878 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4879 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4880 if (!TrueVal || !FalseVal) 4881 return false; 4882 4883 // Find the relevant condition and destinations. 4884 Value *Condition = Select->getCondition(); 4885 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4886 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4887 4888 // Get weight for TrueBB and FalseBB. 4889 uint32_t TrueWeight = 0, FalseWeight = 0; 4890 SmallVector<uint64_t, 8> Weights; 4891 bool HasWeights = hasBranchWeightMD(*SI); 4892 if (HasWeights) { 4893 getBranchWeights(SI, Weights); 4894 if (Weights.size() == 1 + SI->getNumCases()) { 4895 TrueWeight = 4896 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4897 FalseWeight = 4898 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4899 } 4900 } 4901 4902 // Perform the actual simplification. 4903 return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4904 FalseWeight); 4905 } 4906 4907 // Replaces 4908 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4909 // blockaddress(@fn, BlockB))) 4910 // with 4911 // (br cond, BlockA, BlockB). 4912 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4913 SelectInst *SI) { 4914 // Check that both operands of the select are block addresses. 4915 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4916 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4917 if (!TBA || !FBA) 4918 return false; 4919 4920 // Extract the actual blocks. 4921 BasicBlock *TrueBB = TBA->getBasicBlock(); 4922 BasicBlock *FalseBB = FBA->getBasicBlock(); 4923 4924 // Perform the actual simplification. 4925 return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4926 0); 4927 } 4928 4929 /// This is called when we find an icmp instruction 4930 /// (a seteq/setne with a constant) as the only instruction in a 4931 /// block that ends with an uncond branch. We are looking for a very specific 4932 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 4933 /// this case, we merge the first two "or's of icmp" into a switch, but then the 4934 /// default value goes to an uncond block with a seteq in it, we get something 4935 /// like: 4936 /// 4937 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 4938 /// DEFAULT: 4939 /// %tmp = icmp eq i8 %A, 92 4940 /// br label %end 4941 /// end: 4942 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 4943 /// 4944 /// We prefer to split the edge to 'end' so that there is a true/false entry to 4945 /// the PHI, merging the third icmp into the switch. 4946 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 4947 ICmpInst *ICI, IRBuilder<> &Builder) { 4948 BasicBlock *BB = ICI->getParent(); 4949 4950 // If the block has any PHIs in it or the icmp has multiple uses, it is too 4951 // complex. 4952 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 4953 return false; 4954 4955 Value *V = ICI->getOperand(0); 4956 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 4957 4958 // The pattern we're looking for is where our only predecessor is a switch on 4959 // 'V' and this block is the default case for the switch. In this case we can 4960 // fold the compared value into the switch to simplify things. 4961 BasicBlock *Pred = BB->getSinglePredecessor(); 4962 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 4963 return false; 4964 4965 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 4966 if (SI->getCondition() != V) 4967 return false; 4968 4969 // If BB is reachable on a non-default case, then we simply know the value of 4970 // V in this block. Substitute it and constant fold the icmp instruction 4971 // away. 4972 if (SI->getDefaultDest() != BB) { 4973 ConstantInt *VVal = SI->findCaseDest(BB); 4974 assert(VVal && "Should have a unique destination value"); 4975 ICI->setOperand(0, VVal); 4976 4977 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 4978 ICI->replaceAllUsesWith(V); 4979 ICI->eraseFromParent(); 4980 } 4981 // BB is now empty, so it is likely to simplify away. 4982 return requestResimplify(); 4983 } 4984 4985 // Ok, the block is reachable from the default dest. If the constant we're 4986 // comparing exists in one of the other edges, then we can constant fold ICI 4987 // and zap it. 4988 if (SI->findCaseValue(Cst) != SI->case_default()) { 4989 Value *V; 4990 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 4991 V = ConstantInt::getFalse(BB->getContext()); 4992 else 4993 V = ConstantInt::getTrue(BB->getContext()); 4994 4995 ICI->replaceAllUsesWith(V); 4996 ICI->eraseFromParent(); 4997 // BB is now empty, so it is likely to simplify away. 4998 return requestResimplify(); 4999 } 5000 5001 // The use of the icmp has to be in the 'end' block, by the only PHI node in 5002 // the block. 5003 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 5004 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 5005 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 5006 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 5007 return false; 5008 5009 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 5010 // true in the PHI. 5011 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 5012 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 5013 5014 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5015 std::swap(DefaultCst, NewCst); 5016 5017 // Replace ICI (which is used by the PHI for the default value) with true or 5018 // false depending on if it is EQ or NE. 5019 ICI->replaceAllUsesWith(DefaultCst); 5020 ICI->eraseFromParent(); 5021 5022 SmallVector<DominatorTree::UpdateType, 2> Updates; 5023 5024 // Okay, the switch goes to this block on a default value. Add an edge from 5025 // the switch to the merge point on the compared value. 5026 BasicBlock *NewBB = 5027 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 5028 { 5029 SwitchInstProfUpdateWrapper SIW(*SI); 5030 auto W0 = SIW.getSuccessorWeight(0); 5031 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 5032 if (W0) { 5033 NewW = ((uint64_t(*W0) + 1) >> 1); 5034 SIW.setSuccessorWeight(0, *NewW); 5035 } 5036 SIW.addCase(Cst, NewBB, NewW); 5037 if (DTU) 5038 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 5039 } 5040 5041 // NewBB branches to the phi block, add the uncond branch and the phi entry. 5042 Builder.SetInsertPoint(NewBB); 5043 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 5044 Builder.CreateBr(SuccBlock); 5045 PHIUse->addIncoming(NewCst, NewBB); 5046 if (DTU) { 5047 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 5048 DTU->applyUpdates(Updates); 5049 } 5050 return true; 5051 } 5052 5053 /// The specified branch is a conditional branch. 5054 /// Check to see if it is branching on an or/and chain of icmp instructions, and 5055 /// fold it into a switch instruction if so. 5056 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI, 5057 IRBuilder<> &Builder, 5058 const DataLayout &DL) { 5059 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 5060 if (!Cond) 5061 return false; 5062 5063 // Change br (X == 0 | X == 1), T, F into a switch instruction. 5064 // If this is a bunch of seteq's or'd together, or if it's a bunch of 5065 // 'setne's and'ed together, collect them. 5066 5067 // Try to gather values from a chain of and/or to be turned into a switch 5068 ConstantComparesGatherer ConstantCompare(Cond, DL); 5069 // Unpack the result 5070 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 5071 Value *CompVal = ConstantCompare.CompValue; 5072 unsigned UsedICmps = ConstantCompare.UsedICmps; 5073 Value *ExtraCase = ConstantCompare.Extra; 5074 5075 // If we didn't have a multiply compared value, fail. 5076 if (!CompVal) 5077 return false; 5078 5079 // Avoid turning single icmps into a switch. 5080 if (UsedICmps <= 1) 5081 return false; 5082 5083 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 5084 5085 // There might be duplicate constants in the list, which the switch 5086 // instruction can't handle, remove them now. 5087 array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate); 5088 Values.erase(llvm::unique(Values), Values.end()); 5089 5090 // If Extra was used, we require at least two switch values to do the 5091 // transformation. A switch with one value is just a conditional branch. 5092 if (ExtraCase && Values.size() < 2) 5093 return false; 5094 5095 // TODO: Preserve branch weight metadata, similarly to how 5096 // foldValueComparisonIntoPredecessors preserves it. 5097 5098 // Figure out which block is which destination. 5099 BasicBlock *DefaultBB = BI->getSuccessor(1); 5100 BasicBlock *EdgeBB = BI->getSuccessor(0); 5101 if (!TrueWhenEqual) 5102 std::swap(DefaultBB, EdgeBB); 5103 5104 BasicBlock *BB = BI->getParent(); 5105 5106 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 5107 << " cases into SWITCH. BB is:\n" 5108 << *BB); 5109 5110 SmallVector<DominatorTree::UpdateType, 2> Updates; 5111 5112 // If there are any extra values that couldn't be folded into the switch 5113 // then we evaluate them with an explicit branch first. Split the block 5114 // right before the condbr to handle it. 5115 if (ExtraCase) { 5116 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 5117 /*MSSAU=*/nullptr, "switch.early.test"); 5118 5119 // Remove the uncond branch added to the old block. 5120 Instruction *OldTI = BB->getTerminator(); 5121 Builder.SetInsertPoint(OldTI); 5122 5123 // There can be an unintended UB if extra values are Poison. Before the 5124 // transformation, extra values may not be evaluated according to the 5125 // condition, and it will not raise UB. But after transformation, we are 5126 // evaluating extra values before checking the condition, and it will raise 5127 // UB. It can be solved by adding freeze instruction to extra values. 5128 AssumptionCache *AC = Options.AC; 5129 5130 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 5131 ExtraCase = Builder.CreateFreeze(ExtraCase); 5132 5133 if (TrueWhenEqual) 5134 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 5135 else 5136 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 5137 5138 OldTI->eraseFromParent(); 5139 5140 if (DTU) 5141 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 5142 5143 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 5144 // for the edge we just added. 5145 addPredecessorToBlock(EdgeBB, BB, NewBB); 5146 5147 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 5148 << "\nEXTRABB = " << *BB); 5149 BB = NewBB; 5150 } 5151 5152 Builder.SetInsertPoint(BI); 5153 // Convert pointer to int before we switch. 5154 if (CompVal->getType()->isPointerTy()) { 5155 CompVal = Builder.CreatePtrToInt( 5156 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 5157 } 5158 5159 // Create the new switch instruction now. 5160 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 5161 5162 // Add all of the 'cases' to the switch instruction. 5163 for (unsigned i = 0, e = Values.size(); i != e; ++i) 5164 New->addCase(Values[i], EdgeBB); 5165 5166 // We added edges from PI to the EdgeBB. As such, if there were any 5167 // PHI nodes in EdgeBB, they need entries to be added corresponding to 5168 // the number of edges added. 5169 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 5170 PHINode *PN = cast<PHINode>(BBI); 5171 Value *InVal = PN->getIncomingValueForBlock(BB); 5172 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 5173 PN->addIncoming(InVal, BB); 5174 } 5175 5176 // Erase the old branch instruction. 5177 eraseTerminatorAndDCECond(BI); 5178 if (DTU) 5179 DTU->applyUpdates(Updates); 5180 5181 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 5182 return true; 5183 } 5184 5185 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 5186 if (isa<PHINode>(RI->getValue())) 5187 return simplifyCommonResume(RI); 5188 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 5189 RI->getValue() == RI->getParent()->getFirstNonPHI()) 5190 // The resume must unwind the exception that caused control to branch here. 5191 return simplifySingleResume(RI); 5192 5193 return false; 5194 } 5195 5196 // Check if cleanup block is empty 5197 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 5198 for (Instruction &I : R) { 5199 auto *II = dyn_cast<IntrinsicInst>(&I); 5200 if (!II) 5201 return false; 5202 5203 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 5204 switch (IntrinsicID) { 5205 case Intrinsic::dbg_declare: 5206 case Intrinsic::dbg_value: 5207 case Intrinsic::dbg_label: 5208 case Intrinsic::lifetime_end: 5209 break; 5210 default: 5211 return false; 5212 } 5213 } 5214 return true; 5215 } 5216 5217 // Simplify resume that is shared by several landing pads (phi of landing pad). 5218 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 5219 BasicBlock *BB = RI->getParent(); 5220 5221 // Check that there are no other instructions except for debug and lifetime 5222 // intrinsics between the phi's and resume instruction. 5223 if (!isCleanupBlockEmpty( 5224 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 5225 return false; 5226 5227 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 5228 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 5229 5230 // Check incoming blocks to see if any of them are trivial. 5231 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 5232 Idx++) { 5233 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 5234 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 5235 5236 // If the block has other successors, we can not delete it because 5237 // it has other dependents. 5238 if (IncomingBB->getUniqueSuccessor() != BB) 5239 continue; 5240 5241 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 5242 // Not the landing pad that caused the control to branch here. 5243 if (IncomingValue != LandingPad) 5244 continue; 5245 5246 if (isCleanupBlockEmpty( 5247 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5248 TrivialUnwindBlocks.insert(IncomingBB); 5249 } 5250 5251 // If no trivial unwind blocks, don't do any simplifications. 5252 if (TrivialUnwindBlocks.empty()) 5253 return false; 5254 5255 // Turn all invokes that unwind here into calls. 5256 for (auto *TrivialBB : TrivialUnwindBlocks) { 5257 // Blocks that will be simplified should be removed from the phi node. 5258 // Note there could be multiple edges to the resume block, and we need 5259 // to remove them all. 5260 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5261 BB->removePredecessor(TrivialBB, true); 5262 5263 for (BasicBlock *Pred : 5264 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5265 removeUnwindEdge(Pred, DTU); 5266 ++NumInvokes; 5267 } 5268 5269 // In each SimplifyCFG run, only the current processed block can be erased. 5270 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5271 // of erasing TrivialBB, we only remove the branch to the common resume 5272 // block so that we can later erase the resume block since it has no 5273 // predecessors. 5274 TrivialBB->getTerminator()->eraseFromParent(); 5275 new UnreachableInst(RI->getContext(), TrivialBB); 5276 if (DTU) 5277 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5278 } 5279 5280 // Delete the resume block if all its predecessors have been removed. 5281 if (pred_empty(BB)) 5282 DeleteDeadBlock(BB, DTU); 5283 5284 return !TrivialUnwindBlocks.empty(); 5285 } 5286 5287 // Simplify resume that is only used by a single (non-phi) landing pad. 5288 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5289 BasicBlock *BB = RI->getParent(); 5290 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 5291 assert(RI->getValue() == LPInst && 5292 "Resume must unwind the exception that caused control to here"); 5293 5294 // Check that there are no other instructions except for debug intrinsics. 5295 if (!isCleanupBlockEmpty( 5296 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5297 return false; 5298 5299 // Turn all invokes that unwind here into calls and delete the basic block. 5300 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5301 removeUnwindEdge(Pred, DTU); 5302 ++NumInvokes; 5303 } 5304 5305 // The landingpad is now unreachable. Zap it. 5306 DeleteDeadBlock(BB, DTU); 5307 return true; 5308 } 5309 5310 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5311 // If this is a trivial cleanup pad that executes no instructions, it can be 5312 // eliminated. If the cleanup pad continues to the caller, any predecessor 5313 // that is an EH pad will be updated to continue to the caller and any 5314 // predecessor that terminates with an invoke instruction will have its invoke 5315 // instruction converted to a call instruction. If the cleanup pad being 5316 // simplified does not continue to the caller, each predecessor will be 5317 // updated to continue to the unwind destination of the cleanup pad being 5318 // simplified. 5319 BasicBlock *BB = RI->getParent(); 5320 CleanupPadInst *CPInst = RI->getCleanupPad(); 5321 if (CPInst->getParent() != BB) 5322 // This isn't an empty cleanup. 5323 return false; 5324 5325 // We cannot kill the pad if it has multiple uses. This typically arises 5326 // from unreachable basic blocks. 5327 if (!CPInst->hasOneUse()) 5328 return false; 5329 5330 // Check that there are no other instructions except for benign intrinsics. 5331 if (!isCleanupBlockEmpty( 5332 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5333 return false; 5334 5335 // If the cleanup return we are simplifying unwinds to the caller, this will 5336 // set UnwindDest to nullptr. 5337 BasicBlock *UnwindDest = RI->getUnwindDest(); 5338 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 5339 5340 // We're about to remove BB from the control flow. Before we do, sink any 5341 // PHINodes into the unwind destination. Doing this before changing the 5342 // control flow avoids some potentially slow checks, since we can currently 5343 // be certain that UnwindDest and BB have no common predecessors (since they 5344 // are both EH pads). 5345 if (UnwindDest) { 5346 // First, go through the PHI nodes in UnwindDest and update any nodes that 5347 // reference the block we are removing 5348 for (PHINode &DestPN : UnwindDest->phis()) { 5349 int Idx = DestPN.getBasicBlockIndex(BB); 5350 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5351 assert(Idx != -1); 5352 // This PHI node has an incoming value that corresponds to a control 5353 // path through the cleanup pad we are removing. If the incoming 5354 // value is in the cleanup pad, it must be a PHINode (because we 5355 // verified above that the block is otherwise empty). Otherwise, the 5356 // value is either a constant or a value that dominates the cleanup 5357 // pad being removed. 5358 // 5359 // Because BB and UnwindDest are both EH pads, all of their 5360 // predecessors must unwind to these blocks, and since no instruction 5361 // can have multiple unwind destinations, there will be no overlap in 5362 // incoming blocks between SrcPN and DestPN. 5363 Value *SrcVal = DestPN.getIncomingValue(Idx); 5364 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5365 5366 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5367 for (auto *Pred : predecessors(BB)) { 5368 Value *Incoming = 5369 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5370 DestPN.addIncoming(Incoming, Pred); 5371 } 5372 } 5373 5374 // Sink any remaining PHI nodes directly into UnwindDest. 5375 Instruction *InsertPt = DestEHPad; 5376 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5377 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5378 // If the PHI node has no uses or all of its uses are in this basic 5379 // block (meaning they are debug or lifetime intrinsics), just leave 5380 // it. It will be erased when we erase BB below. 5381 continue; 5382 5383 // Otherwise, sink this PHI node into UnwindDest. 5384 // Any predecessors to UnwindDest which are not already represented 5385 // must be back edges which inherit the value from the path through 5386 // BB. In this case, the PHI value must reference itself. 5387 for (auto *pred : predecessors(UnwindDest)) 5388 if (pred != BB) 5389 PN.addIncoming(&PN, pred); 5390 PN.moveBefore(InsertPt); 5391 // Also, add a dummy incoming value for the original BB itself, 5392 // so that the PHI is well-formed until we drop said predecessor. 5393 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5394 } 5395 } 5396 5397 std::vector<DominatorTree::UpdateType> Updates; 5398 5399 // We use make_early_inc_range here because we will remove all predecessors. 5400 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5401 if (UnwindDest == nullptr) { 5402 if (DTU) { 5403 DTU->applyUpdates(Updates); 5404 Updates.clear(); 5405 } 5406 removeUnwindEdge(PredBB, DTU); 5407 ++NumInvokes; 5408 } else { 5409 BB->removePredecessor(PredBB); 5410 Instruction *TI = PredBB->getTerminator(); 5411 TI->replaceUsesOfWith(BB, UnwindDest); 5412 if (DTU) { 5413 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5414 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5415 } 5416 } 5417 } 5418 5419 if (DTU) 5420 DTU->applyUpdates(Updates); 5421 5422 DeleteDeadBlock(BB, DTU); 5423 5424 return true; 5425 } 5426 5427 // Try to merge two cleanuppads together. 5428 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5429 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5430 // with. 5431 BasicBlock *UnwindDest = RI->getUnwindDest(); 5432 if (!UnwindDest) 5433 return false; 5434 5435 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5436 // be safe to merge without code duplication. 5437 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5438 return false; 5439 5440 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5441 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5442 if (!SuccessorCleanupPad) 5443 return false; 5444 5445 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5446 // Replace any uses of the successor cleanupad with the predecessor pad 5447 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5448 // funclet bundle operands. 5449 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5450 // Remove the old cleanuppad. 5451 SuccessorCleanupPad->eraseFromParent(); 5452 // Now, we simply replace the cleanupret with a branch to the unwind 5453 // destination. 5454 BranchInst::Create(UnwindDest, RI->getParent()); 5455 RI->eraseFromParent(); 5456 5457 return true; 5458 } 5459 5460 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5461 // It is possible to transiantly have an undef cleanuppad operand because we 5462 // have deleted some, but not all, dead blocks. 5463 // Eventually, this block will be deleted. 5464 if (isa<UndefValue>(RI->getOperand(0))) 5465 return false; 5466 5467 if (mergeCleanupPad(RI)) 5468 return true; 5469 5470 if (removeEmptyCleanup(RI, DTU)) 5471 return true; 5472 5473 return false; 5474 } 5475 5476 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5477 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5478 BasicBlock *BB = UI->getParent(); 5479 5480 bool Changed = false; 5481 5482 // Ensure that any debug-info records that used to occur after the Unreachable 5483 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5484 // the block. 5485 BB->flushTerminatorDbgRecords(); 5486 5487 // Debug-info records on the unreachable inst itself should be deleted, as 5488 // below we delete everything past the final executable instruction. 5489 UI->dropDbgRecords(); 5490 5491 // If there are any instructions immediately before the unreachable that can 5492 // be removed, do so. 5493 while (UI->getIterator() != BB->begin()) { 5494 BasicBlock::iterator BBI = UI->getIterator(); 5495 --BBI; 5496 5497 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5498 break; // Can not drop any more instructions. We're done here. 5499 // Otherwise, this instruction can be freely erased, 5500 // even if it is not side-effect free. 5501 5502 // Note that deleting EH's here is in fact okay, although it involves a bit 5503 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5504 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5505 // and we can therefore guarantee this block will be erased. 5506 5507 // If we're deleting this, we're deleting any subsequent debug info, so 5508 // delete DbgRecords. 5509 BBI->dropDbgRecords(); 5510 5511 // Delete this instruction (any uses are guaranteed to be dead) 5512 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5513 BBI->eraseFromParent(); 5514 Changed = true; 5515 } 5516 5517 // If the unreachable instruction is the first in the block, take a gander 5518 // at all of the predecessors of this instruction, and simplify them. 5519 if (&BB->front() != UI) 5520 return Changed; 5521 5522 std::vector<DominatorTree::UpdateType> Updates; 5523 5524 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5525 for (BasicBlock *Predecessor : Preds) { 5526 Instruction *TI = Predecessor->getTerminator(); 5527 IRBuilder<> Builder(TI); 5528 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5529 // We could either have a proper unconditional branch, 5530 // or a degenerate conditional branch with matching destinations. 5531 if (all_of(BI->successors(), 5532 [BB](auto *Successor) { return Successor == BB; })) { 5533 new UnreachableInst(TI->getContext(), TI->getIterator()); 5534 TI->eraseFromParent(); 5535 Changed = true; 5536 } else { 5537 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5538 Value* Cond = BI->getCondition(); 5539 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5540 "The destinations are guaranteed to be different here."); 5541 CallInst *Assumption; 5542 if (BI->getSuccessor(0) == BB) { 5543 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5544 Builder.CreateBr(BI->getSuccessor(1)); 5545 } else { 5546 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5547 Assumption = Builder.CreateAssumption(Cond); 5548 Builder.CreateBr(BI->getSuccessor(0)); 5549 } 5550 if (Options.AC) 5551 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5552 5553 eraseTerminatorAndDCECond(BI); 5554 Changed = true; 5555 } 5556 if (DTU) 5557 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5558 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5559 SwitchInstProfUpdateWrapper SU(*SI); 5560 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5561 if (i->getCaseSuccessor() != BB) { 5562 ++i; 5563 continue; 5564 } 5565 BB->removePredecessor(SU->getParent()); 5566 i = SU.removeCase(i); 5567 e = SU->case_end(); 5568 Changed = true; 5569 } 5570 // Note that the default destination can't be removed! 5571 if (DTU && SI->getDefaultDest() != BB) 5572 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5573 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5574 if (II->getUnwindDest() == BB) { 5575 if (DTU) { 5576 DTU->applyUpdates(Updates); 5577 Updates.clear(); 5578 } 5579 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5580 if (!CI->doesNotThrow()) 5581 CI->setDoesNotThrow(); 5582 Changed = true; 5583 } 5584 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5585 if (CSI->getUnwindDest() == BB) { 5586 if (DTU) { 5587 DTU->applyUpdates(Updates); 5588 Updates.clear(); 5589 } 5590 removeUnwindEdge(TI->getParent(), DTU); 5591 Changed = true; 5592 continue; 5593 } 5594 5595 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5596 E = CSI->handler_end(); 5597 I != E; ++I) { 5598 if (*I == BB) { 5599 CSI->removeHandler(I); 5600 --I; 5601 --E; 5602 Changed = true; 5603 } 5604 } 5605 if (DTU) 5606 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5607 if (CSI->getNumHandlers() == 0) { 5608 if (CSI->hasUnwindDest()) { 5609 // Redirect all predecessors of the block containing CatchSwitchInst 5610 // to instead branch to the CatchSwitchInst's unwind destination. 5611 if (DTU) { 5612 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5613 Updates.push_back({DominatorTree::Insert, 5614 PredecessorOfPredecessor, 5615 CSI->getUnwindDest()}); 5616 Updates.push_back({DominatorTree::Delete, 5617 PredecessorOfPredecessor, Predecessor}); 5618 } 5619 } 5620 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5621 } else { 5622 // Rewrite all preds to unwind to caller (or from invoke to call). 5623 if (DTU) { 5624 DTU->applyUpdates(Updates); 5625 Updates.clear(); 5626 } 5627 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5628 for (BasicBlock *EHPred : EHPreds) 5629 removeUnwindEdge(EHPred, DTU); 5630 } 5631 // The catchswitch is no longer reachable. 5632 new UnreachableInst(CSI->getContext(), CSI->getIterator()); 5633 CSI->eraseFromParent(); 5634 Changed = true; 5635 } 5636 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5637 (void)CRI; 5638 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5639 "Expected to always have an unwind to BB."); 5640 if (DTU) 5641 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5642 new UnreachableInst(TI->getContext(), TI->getIterator()); 5643 TI->eraseFromParent(); 5644 Changed = true; 5645 } 5646 } 5647 5648 if (DTU) 5649 DTU->applyUpdates(Updates); 5650 5651 // If this block is now dead, remove it. 5652 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5653 DeleteDeadBlock(BB, DTU); 5654 return true; 5655 } 5656 5657 return Changed; 5658 } 5659 5660 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5661 assert(Cases.size() >= 1); 5662 5663 array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate); 5664 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5665 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5666 return false; 5667 } 5668 return true; 5669 } 5670 5671 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5672 DomTreeUpdater *DTU, 5673 bool RemoveOrigDefaultBlock = true) { 5674 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5675 auto *BB = Switch->getParent(); 5676 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5677 if (RemoveOrigDefaultBlock) 5678 OrigDefaultBlock->removePredecessor(BB); 5679 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5680 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5681 OrigDefaultBlock); 5682 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5683 Switch->setDefaultDest(&*NewDefaultBlock); 5684 if (DTU) { 5685 SmallVector<DominatorTree::UpdateType, 2> Updates; 5686 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5687 if (RemoveOrigDefaultBlock && 5688 !is_contained(successors(BB), OrigDefaultBlock)) 5689 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5690 DTU->applyUpdates(Updates); 5691 } 5692 } 5693 5694 /// Turn a switch into an integer range comparison and branch. 5695 /// Switches with more than 2 destinations are ignored. 5696 /// Switches with 1 destination are also ignored. 5697 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI, 5698 IRBuilder<> &Builder) { 5699 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5700 5701 bool HasDefault = 5702 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5703 5704 auto *BB = SI->getParent(); 5705 5706 // Partition the cases into two sets with different destinations. 5707 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5708 BasicBlock *DestB = nullptr; 5709 SmallVector<ConstantInt *, 16> CasesA; 5710 SmallVector<ConstantInt *, 16> CasesB; 5711 5712 for (auto Case : SI->cases()) { 5713 BasicBlock *Dest = Case.getCaseSuccessor(); 5714 if (!DestA) 5715 DestA = Dest; 5716 if (Dest == DestA) { 5717 CasesA.push_back(Case.getCaseValue()); 5718 continue; 5719 } 5720 if (!DestB) 5721 DestB = Dest; 5722 if (Dest == DestB) { 5723 CasesB.push_back(Case.getCaseValue()); 5724 continue; 5725 } 5726 return false; // More than two destinations. 5727 } 5728 if (!DestB) 5729 return false; // All destinations are the same and the default is unreachable 5730 5731 assert(DestA && DestB && 5732 "Single-destination switch should have been folded."); 5733 assert(DestA != DestB); 5734 assert(DestB != SI->getDefaultDest()); 5735 assert(!CasesB.empty() && "There must be non-default cases."); 5736 assert(!CasesA.empty() || HasDefault); 5737 5738 // Figure out if one of the sets of cases form a contiguous range. 5739 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5740 BasicBlock *ContiguousDest = nullptr; 5741 BasicBlock *OtherDest = nullptr; 5742 if (!CasesA.empty() && casesAreContiguous(CasesA)) { 5743 ContiguousCases = &CasesA; 5744 ContiguousDest = DestA; 5745 OtherDest = DestB; 5746 } else if (casesAreContiguous(CasesB)) { 5747 ContiguousCases = &CasesB; 5748 ContiguousDest = DestB; 5749 OtherDest = DestA; 5750 } else 5751 return false; 5752 5753 // Start building the compare and branch. 5754 5755 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5756 Constant *NumCases = 5757 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5758 5759 Value *Sub = SI->getCondition(); 5760 if (!Offset->isNullValue()) 5761 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5762 5763 Value *Cmp; 5764 // If NumCases overflowed, then all possible values jump to the successor. 5765 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5766 Cmp = ConstantInt::getTrue(SI->getContext()); 5767 else 5768 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5769 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5770 5771 // Update weight for the newly-created conditional branch. 5772 if (hasBranchWeightMD(*SI)) { 5773 SmallVector<uint64_t, 8> Weights; 5774 getBranchWeights(SI, Weights); 5775 if (Weights.size() == 1 + SI->getNumCases()) { 5776 uint64_t TrueWeight = 0; 5777 uint64_t FalseWeight = 0; 5778 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5779 if (SI->getSuccessor(I) == ContiguousDest) 5780 TrueWeight += Weights[I]; 5781 else 5782 FalseWeight += Weights[I]; 5783 } 5784 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5785 TrueWeight /= 2; 5786 FalseWeight /= 2; 5787 } 5788 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 5789 } 5790 } 5791 5792 // Prune obsolete incoming values off the successors' PHI nodes. 5793 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5794 unsigned PreviousEdges = ContiguousCases->size(); 5795 if (ContiguousDest == SI->getDefaultDest()) 5796 ++PreviousEdges; 5797 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5798 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5799 } 5800 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5801 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5802 if (OtherDest == SI->getDefaultDest()) 5803 ++PreviousEdges; 5804 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5805 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5806 } 5807 5808 // Clean up the default block - it may have phis or other instructions before 5809 // the unreachable terminator. 5810 if (!HasDefault) 5811 createUnreachableSwitchDefault(SI, DTU); 5812 5813 auto *UnreachableDefault = SI->getDefaultDest(); 5814 5815 // Drop the switch. 5816 SI->eraseFromParent(); 5817 5818 if (!HasDefault && DTU) 5819 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5820 5821 return true; 5822 } 5823 5824 /// Compute masked bits for the condition of a switch 5825 /// and use it to remove dead cases. 5826 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5827 AssumptionCache *AC, 5828 const DataLayout &DL) { 5829 Value *Cond = SI->getCondition(); 5830 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5831 5832 // We can also eliminate cases by determining that their values are outside of 5833 // the limited range of the condition based on how many significant (non-sign) 5834 // bits are in the condition value. 5835 unsigned MaxSignificantBitsInCond = 5836 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5837 5838 // Gather dead cases. 5839 SmallVector<ConstantInt *, 8> DeadCases; 5840 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5841 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5842 for (const auto &Case : SI->cases()) { 5843 auto *Successor = Case.getCaseSuccessor(); 5844 if (DTU) { 5845 if (!NumPerSuccessorCases.count(Successor)) 5846 UniqueSuccessors.push_back(Successor); 5847 ++NumPerSuccessorCases[Successor]; 5848 } 5849 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5850 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5851 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5852 DeadCases.push_back(Case.getCaseValue()); 5853 if (DTU) 5854 --NumPerSuccessorCases[Successor]; 5855 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5856 << " is dead.\n"); 5857 } 5858 } 5859 5860 // If we can prove that the cases must cover all possible values, the 5861 // default destination becomes dead and we can remove it. If we know some 5862 // of the bits in the value, we can use that to more precisely compute the 5863 // number of possible unique case values. 5864 bool HasDefault = 5865 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5866 const unsigned NumUnknownBits = 5867 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5868 assert(NumUnknownBits <= Known.getBitWidth()); 5869 if (HasDefault && DeadCases.empty() && 5870 NumUnknownBits < 64 /* avoid overflow */) { 5871 uint64_t AllNumCases = 1ULL << NumUnknownBits; 5872 if (SI->getNumCases() == AllNumCases) { 5873 createUnreachableSwitchDefault(SI, DTU); 5874 return true; 5875 } 5876 // When only one case value is missing, replace default with that case. 5877 // Eliminating the default branch will provide more opportunities for 5878 // optimization, such as lookup tables. 5879 if (SI->getNumCases() == AllNumCases - 1) { 5880 assert(NumUnknownBits > 1 && "Should be canonicalized to a branch"); 5881 IntegerType *CondTy = cast<IntegerType>(Cond->getType()); 5882 if (CondTy->getIntegerBitWidth() > 64 || 5883 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5884 return false; 5885 5886 uint64_t MissingCaseVal = 0; 5887 for (const auto &Case : SI->cases()) 5888 MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue(); 5889 auto *MissingCase = 5890 cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal)); 5891 SwitchInstProfUpdateWrapper SIW(*SI); 5892 SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0)); 5893 createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false); 5894 SIW.setSuccessorWeight(0, 0); 5895 return true; 5896 } 5897 } 5898 5899 if (DeadCases.empty()) 5900 return false; 5901 5902 SwitchInstProfUpdateWrapper SIW(*SI); 5903 for (ConstantInt *DeadCase : DeadCases) { 5904 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5905 assert(CaseI != SI->case_default() && 5906 "Case was not found. Probably mistake in DeadCases forming."); 5907 // Prune unused values from PHI nodes. 5908 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5909 SIW.removeCase(CaseI); 5910 } 5911 5912 if (DTU) { 5913 std::vector<DominatorTree::UpdateType> Updates; 5914 for (auto *Successor : UniqueSuccessors) 5915 if (NumPerSuccessorCases[Successor] == 0) 5916 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5917 DTU->applyUpdates(Updates); 5918 } 5919 5920 return true; 5921 } 5922 5923 /// If BB would be eligible for simplification by 5924 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5925 /// by an unconditional branch), look at the phi node for BB in the successor 5926 /// block and see if the incoming value is equal to CaseValue. If so, return 5927 /// the phi node, and set PhiIndex to BB's index in the phi node. 5928 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue, 5929 BasicBlock *BB, int *PhiIndex) { 5930 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 5931 return nullptr; // BB must be empty to be a candidate for simplification. 5932 if (!BB->getSinglePredecessor()) 5933 return nullptr; // BB must be dominated by the switch. 5934 5935 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 5936 if (!Branch || !Branch->isUnconditional()) 5937 return nullptr; // Terminator must be unconditional branch. 5938 5939 BasicBlock *Succ = Branch->getSuccessor(0); 5940 5941 for (PHINode &PHI : Succ->phis()) { 5942 int Idx = PHI.getBasicBlockIndex(BB); 5943 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 5944 5945 Value *InValue = PHI.getIncomingValue(Idx); 5946 if (InValue != CaseValue) 5947 continue; 5948 5949 *PhiIndex = Idx; 5950 return &PHI; 5951 } 5952 5953 return nullptr; 5954 } 5955 5956 /// Try to forward the condition of a switch instruction to a phi node 5957 /// dominated by the switch, if that would mean that some of the destination 5958 /// blocks of the switch can be folded away. Return true if a change is made. 5959 static bool forwardSwitchConditionToPHI(SwitchInst *SI) { 5960 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 5961 5962 ForwardingNodesMap ForwardingNodes; 5963 BasicBlock *SwitchBlock = SI->getParent(); 5964 bool Changed = false; 5965 for (const auto &Case : SI->cases()) { 5966 ConstantInt *CaseValue = Case.getCaseValue(); 5967 BasicBlock *CaseDest = Case.getCaseSuccessor(); 5968 5969 // Replace phi operands in successor blocks that are using the constant case 5970 // value rather than the switch condition variable: 5971 // switchbb: 5972 // switch i32 %x, label %default [ 5973 // i32 17, label %succ 5974 // ... 5975 // succ: 5976 // %r = phi i32 ... [ 17, %switchbb ] ... 5977 // --> 5978 // %r = phi i32 ... [ %x, %switchbb ] ... 5979 5980 for (PHINode &Phi : CaseDest->phis()) { 5981 // This only works if there is exactly 1 incoming edge from the switch to 5982 // a phi. If there is >1, that means multiple cases of the switch map to 1 5983 // value in the phi, and that phi value is not the switch condition. Thus, 5984 // this transform would not make sense (the phi would be invalid because 5985 // a phi can't have different incoming values from the same block). 5986 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 5987 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 5988 count(Phi.blocks(), SwitchBlock) == 1) { 5989 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 5990 Changed = true; 5991 } 5992 } 5993 5994 // Collect phi nodes that are indirectly using this switch's case constants. 5995 int PhiIdx; 5996 if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 5997 ForwardingNodes[Phi].push_back(PhiIdx); 5998 } 5999 6000 for (auto &ForwardingNode : ForwardingNodes) { 6001 PHINode *Phi = ForwardingNode.first; 6002 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 6003 // Check if it helps to fold PHI. 6004 if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition())) 6005 continue; 6006 6007 for (int Index : Indexes) 6008 Phi->setIncomingValue(Index, SI->getCondition()); 6009 Changed = true; 6010 } 6011 6012 return Changed; 6013 } 6014 6015 /// Return true if the backend will be able to handle 6016 /// initializing an array of constants like C. 6017 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 6018 if (C->isThreadDependent()) 6019 return false; 6020 if (C->isDLLImportDependent()) 6021 return false; 6022 6023 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 6024 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 6025 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 6026 return false; 6027 6028 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 6029 // Pointer casts and in-bounds GEPs will not prohibit the backend from 6030 // materializing the array of constants. 6031 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 6032 if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI)) 6033 return false; 6034 } 6035 6036 if (!TTI.shouldBuildLookupTablesForConstant(C)) 6037 return false; 6038 6039 return true; 6040 } 6041 6042 /// If V is a Constant, return it. Otherwise, try to look up 6043 /// its constant value in ConstantPool, returning 0 if it's not there. 6044 static Constant * 6045 lookupConstant(Value *V, 6046 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6047 if (Constant *C = dyn_cast<Constant>(V)) 6048 return C; 6049 return ConstantPool.lookup(V); 6050 } 6051 6052 /// Try to fold instruction I into a constant. This works for 6053 /// simple instructions such as binary operations where both operands are 6054 /// constant or can be replaced by constants from the ConstantPool. Returns the 6055 /// resulting constant on success, 0 otherwise. 6056 static Constant * 6057 constantFold(Instruction *I, const DataLayout &DL, 6058 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6059 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 6060 Constant *A = lookupConstant(Select->getCondition(), ConstantPool); 6061 if (!A) 6062 return nullptr; 6063 if (A->isAllOnesValue()) 6064 return lookupConstant(Select->getTrueValue(), ConstantPool); 6065 if (A->isNullValue()) 6066 return lookupConstant(Select->getFalseValue(), ConstantPool); 6067 return nullptr; 6068 } 6069 6070 SmallVector<Constant *, 4> COps; 6071 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 6072 if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool)) 6073 COps.push_back(A); 6074 else 6075 return nullptr; 6076 } 6077 6078 return ConstantFoldInstOperands(I, COps, DL); 6079 } 6080 6081 /// Try to determine the resulting constant values in phi nodes 6082 /// at the common destination basic block, *CommonDest, for one of the case 6083 /// destionations CaseDest corresponding to value CaseVal (0 for the default 6084 /// case), of a switch instruction SI. 6085 static bool 6086 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 6087 BasicBlock **CommonDest, 6088 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 6089 const DataLayout &DL, const TargetTransformInfo &TTI) { 6090 // The block from which we enter the common destination. 6091 BasicBlock *Pred = SI->getParent(); 6092 6093 // If CaseDest is empty except for some side-effect free instructions through 6094 // which we can constant-propagate the CaseVal, continue to its successor. 6095 SmallDenseMap<Value *, Constant *> ConstantPool; 6096 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 6097 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 6098 if (I.isTerminator()) { 6099 // If the terminator is a simple branch, continue to the next block. 6100 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 6101 return false; 6102 Pred = CaseDest; 6103 CaseDest = I.getSuccessor(0); 6104 } else if (Constant *C = constantFold(&I, DL, ConstantPool)) { 6105 // Instruction is side-effect free and constant. 6106 6107 // If the instruction has uses outside this block or a phi node slot for 6108 // the block, it is not safe to bypass the instruction since it would then 6109 // no longer dominate all its uses. 6110 for (auto &Use : I.uses()) { 6111 User *User = Use.getUser(); 6112 if (Instruction *I = dyn_cast<Instruction>(User)) 6113 if (I->getParent() == CaseDest) 6114 continue; 6115 if (PHINode *Phi = dyn_cast<PHINode>(User)) 6116 if (Phi->getIncomingBlock(Use) == CaseDest) 6117 continue; 6118 return false; 6119 } 6120 6121 ConstantPool.insert(std::make_pair(&I, C)); 6122 } else { 6123 break; 6124 } 6125 } 6126 6127 // If we did not have a CommonDest before, use the current one. 6128 if (!*CommonDest) 6129 *CommonDest = CaseDest; 6130 // If the destination isn't the common one, abort. 6131 if (CaseDest != *CommonDest) 6132 return false; 6133 6134 // Get the values for this case from phi nodes in the destination block. 6135 for (PHINode &PHI : (*CommonDest)->phis()) { 6136 int Idx = PHI.getBasicBlockIndex(Pred); 6137 if (Idx == -1) 6138 continue; 6139 6140 Constant *ConstVal = 6141 lookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 6142 if (!ConstVal) 6143 return false; 6144 6145 // Be conservative about which kinds of constants we support. 6146 if (!validLookupTableConstant(ConstVal, TTI)) 6147 return false; 6148 6149 Res.push_back(std::make_pair(&PHI, ConstVal)); 6150 } 6151 6152 return Res.size() > 0; 6153 } 6154 6155 // Helper function used to add CaseVal to the list of cases that generate 6156 // Result. Returns the updated number of cases that generate this result. 6157 static size_t mapCaseToResult(ConstantInt *CaseVal, 6158 SwitchCaseResultVectorTy &UniqueResults, 6159 Constant *Result) { 6160 for (auto &I : UniqueResults) { 6161 if (I.first == Result) { 6162 I.second.push_back(CaseVal); 6163 return I.second.size(); 6164 } 6165 } 6166 UniqueResults.push_back( 6167 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 6168 return 1; 6169 } 6170 6171 // Helper function that initializes a map containing 6172 // results for the PHI node of the common destination block for a switch 6173 // instruction. Returns false if multiple PHI nodes have been found or if 6174 // there is not a common destination block for the switch. 6175 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 6176 BasicBlock *&CommonDest, 6177 SwitchCaseResultVectorTy &UniqueResults, 6178 Constant *&DefaultResult, 6179 const DataLayout &DL, 6180 const TargetTransformInfo &TTI, 6181 uintptr_t MaxUniqueResults) { 6182 for (const auto &I : SI->cases()) { 6183 ConstantInt *CaseVal = I.getCaseValue(); 6184 6185 // Resulting value at phi nodes for this case value. 6186 SwitchCaseResultsTy Results; 6187 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 6188 DL, TTI)) 6189 return false; 6190 6191 // Only one value per case is permitted. 6192 if (Results.size() > 1) 6193 return false; 6194 6195 // Add the case->result mapping to UniqueResults. 6196 const size_t NumCasesForResult = 6197 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 6198 6199 // Early out if there are too many cases for this result. 6200 if (NumCasesForResult > MaxSwitchCasesPerResult) 6201 return false; 6202 6203 // Early out if there are too many unique results. 6204 if (UniqueResults.size() > MaxUniqueResults) 6205 return false; 6206 6207 // Check the PHI consistency. 6208 if (!PHI) 6209 PHI = Results[0].first; 6210 else if (PHI != Results[0].first) 6211 return false; 6212 } 6213 // Find the default result value. 6214 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 6215 BasicBlock *DefaultDest = SI->getDefaultDest(); 6216 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 6217 DL, TTI); 6218 // If the default value is not found abort unless the default destination 6219 // is unreachable. 6220 DefaultResult = 6221 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 6222 if ((!DefaultResult && 6223 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 6224 return false; 6225 6226 return true; 6227 } 6228 6229 // Helper function that checks if it is possible to transform a switch with only 6230 // two cases (or two cases + default) that produces a result into a select. 6231 // TODO: Handle switches with more than 2 cases that map to the same result. 6232 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 6233 Constant *DefaultResult, Value *Condition, 6234 IRBuilder<> &Builder) { 6235 // If we are selecting between only two cases transform into a simple 6236 // select or a two-way select if default is possible. 6237 // Example: 6238 // switch (a) { %0 = icmp eq i32 %a, 10 6239 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 6240 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 6241 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 6242 // } 6243 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 6244 ResultVector[1].second.size() == 1) { 6245 ConstantInt *FirstCase = ResultVector[0].second[0]; 6246 ConstantInt *SecondCase = ResultVector[1].second[0]; 6247 Value *SelectValue = ResultVector[1].first; 6248 if (DefaultResult) { 6249 Value *ValueCompare = 6250 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 6251 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 6252 DefaultResult, "switch.select"); 6253 } 6254 Value *ValueCompare = 6255 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 6256 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 6257 SelectValue, "switch.select"); 6258 } 6259 6260 // Handle the degenerate case where two cases have the same result value. 6261 if (ResultVector.size() == 1 && DefaultResult) { 6262 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 6263 unsigned CaseCount = CaseValues.size(); 6264 // n bits group cases map to the same result: 6265 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 6266 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 6267 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 6268 if (isPowerOf2_32(CaseCount)) { 6269 ConstantInt *MinCaseVal = CaseValues[0]; 6270 // Find mininal value. 6271 for (auto *Case : CaseValues) 6272 if (Case->getValue().slt(MinCaseVal->getValue())) 6273 MinCaseVal = Case; 6274 6275 // Mark the bits case number touched. 6276 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6277 for (auto *Case : CaseValues) 6278 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6279 6280 // Check if cases with the same result can cover all number 6281 // in touched bits. 6282 if (BitMask.popcount() == Log2_32(CaseCount)) { 6283 if (!MinCaseVal->isNullValue()) 6284 Condition = Builder.CreateSub(Condition, MinCaseVal); 6285 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6286 Value *Cmp = Builder.CreateICmpEQ( 6287 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6288 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6289 } 6290 } 6291 6292 // Handle the degenerate case where two cases have the same value. 6293 if (CaseValues.size() == 2) { 6294 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6295 "switch.selectcmp.case1"); 6296 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6297 "switch.selectcmp.case2"); 6298 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6299 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6300 } 6301 } 6302 6303 return nullptr; 6304 } 6305 6306 // Helper function to cleanup a switch instruction that has been converted into 6307 // a select, fixing up PHI nodes and basic blocks. 6308 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6309 Value *SelectValue, 6310 IRBuilder<> &Builder, 6311 DomTreeUpdater *DTU) { 6312 std::vector<DominatorTree::UpdateType> Updates; 6313 6314 BasicBlock *SelectBB = SI->getParent(); 6315 BasicBlock *DestBB = PHI->getParent(); 6316 6317 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6318 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6319 Builder.CreateBr(DestBB); 6320 6321 // Remove the switch. 6322 6323 PHI->removeIncomingValueIf( 6324 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6325 PHI->addIncoming(SelectValue, SelectBB); 6326 6327 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6328 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6329 BasicBlock *Succ = SI->getSuccessor(i); 6330 6331 if (Succ == DestBB) 6332 continue; 6333 Succ->removePredecessor(SelectBB); 6334 if (DTU && RemovedSuccessors.insert(Succ).second) 6335 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6336 } 6337 SI->eraseFromParent(); 6338 if (DTU) 6339 DTU->applyUpdates(Updates); 6340 } 6341 6342 /// If a switch is only used to initialize one or more phi nodes in a common 6343 /// successor block with only two different constant values, try to replace the 6344 /// switch with a select. Returns true if the fold was made. 6345 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6346 DomTreeUpdater *DTU, const DataLayout &DL, 6347 const TargetTransformInfo &TTI) { 6348 Value *const Cond = SI->getCondition(); 6349 PHINode *PHI = nullptr; 6350 BasicBlock *CommonDest = nullptr; 6351 Constant *DefaultResult; 6352 SwitchCaseResultVectorTy UniqueResults; 6353 // Collect all the cases that will deliver the same value from the switch. 6354 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6355 DL, TTI, /*MaxUniqueResults*/ 2)) 6356 return false; 6357 6358 assert(PHI != nullptr && "PHI for value select not found"); 6359 Builder.SetInsertPoint(SI); 6360 Value *SelectValue = 6361 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6362 if (!SelectValue) 6363 return false; 6364 6365 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6366 return true; 6367 } 6368 6369 namespace { 6370 6371 /// This class represents a lookup table that can be used to replace a switch. 6372 class SwitchLookupTable { 6373 public: 6374 /// Create a lookup table to use as a switch replacement with the contents 6375 /// of Values, using DefaultValue to fill any holes in the table. 6376 SwitchLookupTable( 6377 Module &M, uint64_t TableSize, ConstantInt *Offset, 6378 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6379 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6380 6381 /// Build instructions with Builder to retrieve the value at 6382 /// the position given by Index in the lookup table. 6383 Value *buildLookup(Value *Index, IRBuilder<> &Builder); 6384 6385 /// Return true if a table with TableSize elements of 6386 /// type ElementType would fit in a target-legal register. 6387 static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6388 Type *ElementType); 6389 6390 private: 6391 // Depending on the contents of the table, it can be represented in 6392 // different ways. 6393 enum { 6394 // For tables where each element contains the same value, we just have to 6395 // store that single value and return it for each lookup. 6396 SingleValueKind, 6397 6398 // For tables where there is a linear relationship between table index 6399 // and values. We calculate the result with a simple multiplication 6400 // and addition instead of a table lookup. 6401 LinearMapKind, 6402 6403 // For small tables with integer elements, we can pack them into a bitmap 6404 // that fits into a target-legal register. Values are retrieved by 6405 // shift and mask operations. 6406 BitMapKind, 6407 6408 // The table is stored as an array of values. Values are retrieved by load 6409 // instructions from the table. 6410 ArrayKind 6411 } Kind; 6412 6413 // For SingleValueKind, this is the single value. 6414 Constant *SingleValue = nullptr; 6415 6416 // For BitMapKind, this is the bitmap. 6417 ConstantInt *BitMap = nullptr; 6418 IntegerType *BitMapElementTy = nullptr; 6419 6420 // For LinearMapKind, these are the constants used to derive the value. 6421 ConstantInt *LinearOffset = nullptr; 6422 ConstantInt *LinearMultiplier = nullptr; 6423 bool LinearMapValWrapped = false; 6424 6425 // For ArrayKind, this is the array. 6426 GlobalVariable *Array = nullptr; 6427 }; 6428 6429 } // end anonymous namespace 6430 6431 SwitchLookupTable::SwitchLookupTable( 6432 Module &M, uint64_t TableSize, ConstantInt *Offset, 6433 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6434 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6435 assert(Values.size() && "Can't build lookup table without values!"); 6436 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6437 6438 // If all values in the table are equal, this is that value. 6439 SingleValue = Values.begin()->second; 6440 6441 Type *ValueType = Values.begin()->second->getType(); 6442 6443 // Build up the table contents. 6444 SmallVector<Constant *, 64> TableContents(TableSize); 6445 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6446 ConstantInt *CaseVal = Values[I].first; 6447 Constant *CaseRes = Values[I].second; 6448 assert(CaseRes->getType() == ValueType); 6449 6450 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6451 TableContents[Idx] = CaseRes; 6452 6453 if (CaseRes != SingleValue) 6454 SingleValue = nullptr; 6455 } 6456 6457 // Fill in any holes in the table with the default result. 6458 if (Values.size() < TableSize) { 6459 assert(DefaultValue && 6460 "Need a default value to fill the lookup table holes."); 6461 assert(DefaultValue->getType() == ValueType); 6462 for (uint64_t I = 0; I < TableSize; ++I) { 6463 if (!TableContents[I]) 6464 TableContents[I] = DefaultValue; 6465 } 6466 6467 if (DefaultValue != SingleValue) 6468 SingleValue = nullptr; 6469 } 6470 6471 // If each element in the table contains the same value, we only need to store 6472 // that single value. 6473 if (SingleValue) { 6474 Kind = SingleValueKind; 6475 return; 6476 } 6477 6478 // Check if we can derive the value with a linear transformation from the 6479 // table index. 6480 if (isa<IntegerType>(ValueType)) { 6481 bool LinearMappingPossible = true; 6482 APInt PrevVal; 6483 APInt DistToPrev; 6484 // When linear map is monotonic and signed overflow doesn't happen on 6485 // maximum index, we can attach nsw on Add and Mul. 6486 bool NonMonotonic = false; 6487 assert(TableSize >= 2 && "Should be a SingleValue table."); 6488 // Check if there is the same distance between two consecutive values. 6489 for (uint64_t I = 0; I < TableSize; ++I) { 6490 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6491 if (!ConstVal) { 6492 // This is an undef. We could deal with it, but undefs in lookup tables 6493 // are very seldom. It's probably not worth the additional complexity. 6494 LinearMappingPossible = false; 6495 break; 6496 } 6497 const APInt &Val = ConstVal->getValue(); 6498 if (I != 0) { 6499 APInt Dist = Val - PrevVal; 6500 if (I == 1) { 6501 DistToPrev = Dist; 6502 } else if (Dist != DistToPrev) { 6503 LinearMappingPossible = false; 6504 break; 6505 } 6506 NonMonotonic |= 6507 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6508 } 6509 PrevVal = Val; 6510 } 6511 if (LinearMappingPossible) { 6512 LinearOffset = cast<ConstantInt>(TableContents[0]); 6513 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6514 bool MayWrap = false; 6515 APInt M = LinearMultiplier->getValue(); 6516 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6517 LinearMapValWrapped = NonMonotonic || MayWrap; 6518 Kind = LinearMapKind; 6519 ++NumLinearMaps; 6520 return; 6521 } 6522 } 6523 6524 // If the type is integer and the table fits in a register, build a bitmap. 6525 if (wouldFitInRegister(DL, TableSize, ValueType)) { 6526 IntegerType *IT = cast<IntegerType>(ValueType); 6527 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6528 for (uint64_t I = TableSize; I > 0; --I) { 6529 TableInt <<= IT->getBitWidth(); 6530 // Insert values into the bitmap. Undef values are set to zero. 6531 if (!isa<UndefValue>(TableContents[I - 1])) { 6532 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6533 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6534 } 6535 } 6536 BitMap = ConstantInt::get(M.getContext(), TableInt); 6537 BitMapElementTy = IT; 6538 Kind = BitMapKind; 6539 ++NumBitMaps; 6540 return; 6541 } 6542 6543 // Store the table in an array. 6544 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6545 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6546 6547 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6548 GlobalVariable::PrivateLinkage, Initializer, 6549 "switch.table." + FuncName); 6550 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6551 // Set the alignment to that of an array items. We will be only loading one 6552 // value out of it. 6553 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6554 Kind = ArrayKind; 6555 } 6556 6557 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) { 6558 switch (Kind) { 6559 case SingleValueKind: 6560 return SingleValue; 6561 case LinearMapKind: { 6562 // Derive the result value from the input value. 6563 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6564 false, "switch.idx.cast"); 6565 if (!LinearMultiplier->isOne()) 6566 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6567 /*HasNUW = */ false, 6568 /*HasNSW = */ !LinearMapValWrapped); 6569 6570 if (!LinearOffset->isZero()) 6571 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6572 /*HasNUW = */ false, 6573 /*HasNSW = */ !LinearMapValWrapped); 6574 return Result; 6575 } 6576 case BitMapKind: { 6577 // Type of the bitmap (e.g. i59). 6578 IntegerType *MapTy = BitMap->getIntegerType(); 6579 6580 // Cast Index to the same type as the bitmap. 6581 // Note: The Index is <= the number of elements in the table, so 6582 // truncating it to the width of the bitmask is safe. 6583 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6584 6585 // Multiply the shift amount by the element width. NUW/NSW can always be 6586 // set, because wouldFitInRegister guarantees Index * ShiftAmt is in 6587 // BitMap's bit width. 6588 ShiftAmt = Builder.CreateMul( 6589 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6590 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6591 6592 // Shift down. 6593 Value *DownShifted = 6594 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6595 // Mask off. 6596 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6597 } 6598 case ArrayKind: { 6599 // Make sure the table index will not overflow when treated as signed. 6600 IntegerType *IT = cast<IntegerType>(Index->getType()); 6601 uint64_t TableSize = 6602 Array->getInitializer()->getType()->getArrayNumElements(); 6603 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6604 Index = Builder.CreateZExt( 6605 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6606 "switch.tableidx.zext"); 6607 6608 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6609 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6610 GEPIndices, "switch.gep"); 6611 return Builder.CreateLoad( 6612 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6613 "switch.load"); 6614 } 6615 } 6616 llvm_unreachable("Unknown lookup table kind!"); 6617 } 6618 6619 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL, 6620 uint64_t TableSize, 6621 Type *ElementType) { 6622 auto *IT = dyn_cast<IntegerType>(ElementType); 6623 if (!IT) 6624 return false; 6625 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6626 // are <= 15, we could try to narrow the type. 6627 6628 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6629 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6630 return false; 6631 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6632 } 6633 6634 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6635 const DataLayout &DL) { 6636 // Allow any legal type. 6637 if (TTI.isTypeLegal(Ty)) 6638 return true; 6639 6640 auto *IT = dyn_cast<IntegerType>(Ty); 6641 if (!IT) 6642 return false; 6643 6644 // Also allow power of 2 integer types that have at least 8 bits and fit in 6645 // a register. These types are common in frontend languages and targets 6646 // usually support loads of these types. 6647 // TODO: We could relax this to any integer that fits in a register and rely 6648 // on ABI alignment and padding in the table to allow the load to be widened. 6649 // Or we could widen the constants and truncate the load. 6650 unsigned BitWidth = IT->getBitWidth(); 6651 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6652 DL.fitsInLegalInteger(IT->getBitWidth()); 6653 } 6654 6655 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6656 // 40% is the default density for building a jump table in optsize/minsize 6657 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6658 // function was based on. 6659 const uint64_t MinDensity = 40; 6660 6661 if (CaseRange >= UINT64_MAX / 100) 6662 return false; // Avoid multiplication overflows below. 6663 6664 return NumCases * 100 >= CaseRange * MinDensity; 6665 } 6666 6667 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6668 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6669 uint64_t Range = Diff + 1; 6670 if (Range < Diff) 6671 return false; // Overflow. 6672 6673 return isSwitchDense(Values.size(), Range); 6674 } 6675 6676 /// Determine whether a lookup table should be built for this switch, based on 6677 /// the number of cases, size of the table, and the types of the results. 6678 // TODO: We could support larger than legal types by limiting based on the 6679 // number of loads required and/or table size. If the constants are small we 6680 // could use smaller table entries and extend after the load. 6681 static bool 6682 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6683 const TargetTransformInfo &TTI, const DataLayout &DL, 6684 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6685 if (SI->getNumCases() > TableSize) 6686 return false; // TableSize overflowed. 6687 6688 bool AllTablesFitInRegister = true; 6689 bool HasIllegalType = false; 6690 for (const auto &I : ResultTypes) { 6691 Type *Ty = I.second; 6692 6693 // Saturate this flag to true. 6694 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6695 6696 // Saturate this flag to false. 6697 AllTablesFitInRegister = 6698 AllTablesFitInRegister && 6699 SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty); 6700 6701 // If both flags saturate, we're done. NOTE: This *only* works with 6702 // saturating flags, and all flags have to saturate first due to the 6703 // non-deterministic behavior of iterating over a dense map. 6704 if (HasIllegalType && !AllTablesFitInRegister) 6705 break; 6706 } 6707 6708 // If each table would fit in a register, we should build it anyway. 6709 if (AllTablesFitInRegister) 6710 return true; 6711 6712 // Don't build a table that doesn't fit in-register if it has illegal types. 6713 if (HasIllegalType) 6714 return false; 6715 6716 return isSwitchDense(SI->getNumCases(), TableSize); 6717 } 6718 6719 static bool shouldUseSwitchConditionAsTableIndex( 6720 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6721 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6722 const DataLayout &DL, const TargetTransformInfo &TTI) { 6723 if (MinCaseVal.isNullValue()) 6724 return true; 6725 if (MinCaseVal.isNegative() || 6726 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6727 !HasDefaultResults) 6728 return false; 6729 return all_of(ResultTypes, [&](const auto &KV) { 6730 return SwitchLookupTable::wouldFitInRegister( 6731 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6732 KV.second /* ResultType */); 6733 }); 6734 } 6735 6736 /// Try to reuse the switch table index compare. Following pattern: 6737 /// \code 6738 /// if (idx < tablesize) 6739 /// r = table[idx]; // table does not contain default_value 6740 /// else 6741 /// r = default_value; 6742 /// if (r != default_value) 6743 /// ... 6744 /// \endcode 6745 /// Is optimized to: 6746 /// \code 6747 /// cond = idx < tablesize; 6748 /// if (cond) 6749 /// r = table[idx]; 6750 /// else 6751 /// r = default_value; 6752 /// if (cond) 6753 /// ... 6754 /// \endcode 6755 /// Jump threading will then eliminate the second if(cond). 6756 static void reuseTableCompare( 6757 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6758 Constant *DefaultValue, 6759 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6760 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6761 if (!CmpInst) 6762 return; 6763 6764 // We require that the compare is in the same block as the phi so that jump 6765 // threading can do its work afterwards. 6766 if (CmpInst->getParent() != PhiBlock) 6767 return; 6768 6769 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6770 if (!CmpOp1) 6771 return; 6772 6773 Value *RangeCmp = RangeCheckBranch->getCondition(); 6774 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6775 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6776 6777 // Check if the compare with the default value is constant true or false. 6778 const DataLayout &DL = PhiBlock->getDataLayout(); 6779 Constant *DefaultConst = ConstantFoldCompareInstOperands( 6780 CmpInst->getPredicate(), DefaultValue, CmpOp1, DL); 6781 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6782 return; 6783 6784 // Check if the compare with the case values is distinct from the default 6785 // compare result. 6786 for (auto ValuePair : Values) { 6787 Constant *CaseConst = ConstantFoldCompareInstOperands( 6788 CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL); 6789 if (!CaseConst || CaseConst == DefaultConst || 6790 (CaseConst != TrueConst && CaseConst != FalseConst)) 6791 return; 6792 } 6793 6794 // Check if the branch instruction dominates the phi node. It's a simple 6795 // dominance check, but sufficient for our needs. 6796 // Although this check is invariant in the calling loops, it's better to do it 6797 // at this late stage. Practically we do it at most once for a switch. 6798 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6799 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6800 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6801 return; 6802 } 6803 6804 if (DefaultConst == FalseConst) { 6805 // The compare yields the same result. We can replace it. 6806 CmpInst->replaceAllUsesWith(RangeCmp); 6807 ++NumTableCmpReuses; 6808 } else { 6809 // The compare yields the same result, just inverted. We can replace it. 6810 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6811 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6812 RangeCheckBranch->getIterator()); 6813 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6814 ++NumTableCmpReuses; 6815 } 6816 } 6817 6818 /// If the switch is only used to initialize one or more phi nodes in a common 6819 /// successor block with different constant values, replace the switch with 6820 /// lookup tables. 6821 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6822 DomTreeUpdater *DTU, const DataLayout &DL, 6823 const TargetTransformInfo &TTI) { 6824 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6825 6826 BasicBlock *BB = SI->getParent(); 6827 Function *Fn = BB->getParent(); 6828 // Only build lookup table when we have a target that supports it or the 6829 // attribute is not set. 6830 if (!TTI.shouldBuildLookupTables() || 6831 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6832 return false; 6833 6834 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6835 // split off a dense part and build a lookup table for that. 6836 6837 // FIXME: This creates arrays of GEPs to constant strings, which means each 6838 // GEP needs a runtime relocation in PIC code. We should just build one big 6839 // string and lookup indices into that. 6840 6841 // Ignore switches with less than three cases. Lookup tables will not make 6842 // them faster, so we don't analyze them. 6843 if (SI->getNumCases() < 3) 6844 return false; 6845 6846 // Figure out the corresponding result for each case value and phi node in the 6847 // common destination, as well as the min and max case values. 6848 assert(!SI->cases().empty()); 6849 SwitchInst::CaseIt CI = SI->case_begin(); 6850 ConstantInt *MinCaseVal = CI->getCaseValue(); 6851 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6852 6853 BasicBlock *CommonDest = nullptr; 6854 6855 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6856 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6857 6858 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6859 SmallDenseMap<PHINode *, Type *> ResultTypes; 6860 SmallVector<PHINode *, 4> PHIs; 6861 6862 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6863 ConstantInt *CaseVal = CI->getCaseValue(); 6864 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6865 MinCaseVal = CaseVal; 6866 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6867 MaxCaseVal = CaseVal; 6868 6869 // Resulting value at phi nodes for this case value. 6870 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6871 ResultsTy Results; 6872 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6873 Results, DL, TTI)) 6874 return false; 6875 6876 // Append the result from this case to the list for each phi. 6877 for (const auto &I : Results) { 6878 PHINode *PHI = I.first; 6879 Constant *Value = I.second; 6880 if (!ResultLists.count(PHI)) 6881 PHIs.push_back(PHI); 6882 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6883 } 6884 } 6885 6886 // Keep track of the result types. 6887 for (PHINode *PHI : PHIs) { 6888 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6889 } 6890 6891 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6892 6893 // If the table has holes, we need a constant result for the default case 6894 // or a bitmask that fits in a register. 6895 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6896 bool HasDefaultResults = 6897 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6898 DefaultResultsList, DL, TTI); 6899 6900 for (const auto &I : DefaultResultsList) { 6901 PHINode *PHI = I.first; 6902 Constant *Result = I.second; 6903 DefaultResults[PHI] = Result; 6904 } 6905 6906 bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex( 6907 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6908 uint64_t TableSize; 6909 if (UseSwitchConditionAsTableIndex) 6910 TableSize = MaxCaseVal->getLimitedValue() + 1; 6911 else 6912 TableSize = 6913 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 6914 6915 // If the default destination is unreachable, or if the lookup table covers 6916 // all values of the conditional variable, branch directly to the lookup table 6917 // BB. Otherwise, check that the condition is within the case range. 6918 bool DefaultIsReachable = !SI->defaultDestUndefined(); 6919 6920 bool TableHasHoles = (NumResults < TableSize); 6921 6922 // If the table has holes but the default destination doesn't produce any 6923 // constant results, the lookup table entries corresponding to the holes will 6924 // contain undefined values. 6925 bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults; 6926 6927 // If the default destination doesn't produce a constant result but is still 6928 // reachable, and the lookup table has holes, we need to use a mask to 6929 // determine if the current index should load from the lookup table or jump 6930 // to the default case. 6931 // The mask is unnecessary if the table has holes but the default destination 6932 // is unreachable, as in that case the holes must also be unreachable. 6933 bool NeedMask = AllHolesAreUndefined && DefaultIsReachable; 6934 if (NeedMask) { 6935 // As an extra penalty for the validity test we require more cases. 6936 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 6937 return false; 6938 if (!DL.fitsInLegalInteger(TableSize)) 6939 return false; 6940 } 6941 6942 if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 6943 return false; 6944 6945 std::vector<DominatorTree::UpdateType> Updates; 6946 6947 // Compute the maximum table size representable by the integer type we are 6948 // switching upon. 6949 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 6950 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 6951 assert(MaxTableSize >= TableSize && 6952 "It is impossible for a switch to have more entries than the max " 6953 "representable value of its input integer type's size."); 6954 6955 // Create the BB that does the lookups. 6956 Module &Mod = *CommonDest->getParent()->getParent(); 6957 BasicBlock *LookupBB = BasicBlock::Create( 6958 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 6959 6960 // Compute the table index value. 6961 Builder.SetInsertPoint(SI); 6962 Value *TableIndex; 6963 ConstantInt *TableIndexOffset; 6964 if (UseSwitchConditionAsTableIndex) { 6965 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 6966 TableIndex = SI->getCondition(); 6967 } else { 6968 TableIndexOffset = MinCaseVal; 6969 // If the default is unreachable, all case values are s>= MinCaseVal. Then 6970 // we can try to attach nsw. 6971 bool MayWrap = true; 6972 if (!DefaultIsReachable) { 6973 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 6974 (void)Res; 6975 } 6976 6977 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 6978 "switch.tableidx", /*HasNUW =*/false, 6979 /*HasNSW =*/!MayWrap); 6980 } 6981 6982 BranchInst *RangeCheckBranch = nullptr; 6983 6984 // Grow the table to cover all possible index values to avoid the range check. 6985 // It will use the default result to fill in the table hole later, so make 6986 // sure it exist. 6987 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 6988 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 6989 // Grow the table shouldn't have any size impact by checking 6990 // wouldFitInRegister. 6991 // TODO: Consider growing the table also when it doesn't fit in a register 6992 // if no optsize is specified. 6993 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 6994 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 6995 return SwitchLookupTable::wouldFitInRegister( 6996 DL, UpperBound, KV.second /* ResultType */); 6997 })) { 6998 // There may be some case index larger than the UpperBound (unreachable 6999 // case), so make sure the table size does not get smaller. 7000 TableSize = std::max(UpperBound, TableSize); 7001 // The default branch is unreachable after we enlarge the lookup table. 7002 // Adjust DefaultIsReachable to reuse code path. 7003 DefaultIsReachable = false; 7004 } 7005 } 7006 7007 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 7008 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7009 Builder.CreateBr(LookupBB); 7010 if (DTU) 7011 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7012 // Note: We call removeProdecessor later since we need to be able to get the 7013 // PHI value for the default case in case we're using a bit mask. 7014 } else { 7015 Value *Cmp = Builder.CreateICmpULT( 7016 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 7017 RangeCheckBranch = 7018 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 7019 if (DTU) 7020 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7021 } 7022 7023 // Populate the BB that does the lookups. 7024 Builder.SetInsertPoint(LookupBB); 7025 7026 if (NeedMask) { 7027 // Before doing the lookup, we do the hole check. The LookupBB is therefore 7028 // re-purposed to do the hole check, and we create a new LookupBB. 7029 BasicBlock *MaskBB = LookupBB; 7030 MaskBB->setName("switch.hole_check"); 7031 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 7032 CommonDest->getParent(), CommonDest); 7033 7034 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 7035 // unnecessary illegal types. 7036 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 7037 APInt MaskInt(TableSizePowOf2, 0); 7038 APInt One(TableSizePowOf2, 1); 7039 // Build bitmask; fill in a 1 bit for every case. 7040 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 7041 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 7042 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 7043 .getLimitedValue(); 7044 MaskInt |= One << Idx; 7045 } 7046 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 7047 7048 // Get the TableIndex'th bit of the bitmask. 7049 // If this bit is 0 (meaning hole) jump to the default destination, 7050 // else continue with table lookup. 7051 IntegerType *MapTy = TableMask->getIntegerType(); 7052 Value *MaskIndex = 7053 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 7054 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 7055 Value *LoBit = Builder.CreateTrunc( 7056 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 7057 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 7058 if (DTU) { 7059 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 7060 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 7061 } 7062 Builder.SetInsertPoint(LookupBB); 7063 addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 7064 } 7065 7066 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7067 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 7068 // do not delete PHINodes here. 7069 SI->getDefaultDest()->removePredecessor(BB, 7070 /*KeepOneInputPHIs=*/true); 7071 if (DTU) 7072 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 7073 } 7074 7075 for (PHINode *PHI : PHIs) { 7076 const ResultListTy &ResultList = ResultLists[PHI]; 7077 7078 // Use any value to fill the lookup table holes. 7079 Constant *DV = 7080 AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI]; 7081 StringRef FuncName = Fn->getName(); 7082 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 7083 DL, FuncName); 7084 7085 Value *Result = Table.buildLookup(TableIndex, Builder); 7086 7087 // Do a small peephole optimization: re-use the switch table compare if 7088 // possible. 7089 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 7090 BasicBlock *PhiBlock = PHI->getParent(); 7091 // Search for compare instructions which use the phi. 7092 for (auto *User : PHI->users()) { 7093 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 7094 } 7095 } 7096 7097 PHI->addIncoming(Result, LookupBB); 7098 } 7099 7100 Builder.CreateBr(CommonDest); 7101 if (DTU) 7102 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 7103 7104 // Remove the switch. 7105 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 7106 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 7107 BasicBlock *Succ = SI->getSuccessor(i); 7108 7109 if (Succ == SI->getDefaultDest()) 7110 continue; 7111 Succ->removePredecessor(BB); 7112 if (DTU && RemovedSuccessors.insert(Succ).second) 7113 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7114 } 7115 SI->eraseFromParent(); 7116 7117 if (DTU) 7118 DTU->applyUpdates(Updates); 7119 7120 ++NumLookupTables; 7121 if (NeedMask) 7122 ++NumLookupTablesHoles; 7123 return true; 7124 } 7125 7126 /// Try to transform a switch that has "holes" in it to a contiguous sequence 7127 /// of cases. 7128 /// 7129 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 7130 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 7131 /// 7132 /// This converts a sparse switch into a dense switch which allows better 7133 /// lowering and could also allow transforming into a lookup table. 7134 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 7135 const DataLayout &DL, 7136 const TargetTransformInfo &TTI) { 7137 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 7138 if (CondTy->getIntegerBitWidth() > 64 || 7139 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7140 return false; 7141 // Only bother with this optimization if there are more than 3 switch cases; 7142 // SDAG will only bother creating jump tables for 4 or more cases. 7143 if (SI->getNumCases() < 4) 7144 return false; 7145 7146 // This transform is agnostic to the signedness of the input or case values. We 7147 // can treat the case values as signed or unsigned. We can optimize more common 7148 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 7149 // as signed. 7150 SmallVector<int64_t,4> Values; 7151 for (const auto &C : SI->cases()) 7152 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 7153 llvm::sort(Values); 7154 7155 // If the switch is already dense, there's nothing useful to do here. 7156 if (isSwitchDense(Values)) 7157 return false; 7158 7159 // First, transform the values such that they start at zero and ascend. 7160 int64_t Base = Values[0]; 7161 for (auto &V : Values) 7162 V -= (uint64_t)(Base); 7163 7164 // Now we have signed numbers that have been shifted so that, given enough 7165 // precision, there are no negative values. Since the rest of the transform 7166 // is bitwise only, we switch now to an unsigned representation. 7167 7168 // This transform can be done speculatively because it is so cheap - it 7169 // results in a single rotate operation being inserted. 7170 7171 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 7172 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 7173 // less than 64. 7174 unsigned Shift = 64; 7175 for (auto &V : Values) 7176 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 7177 assert(Shift < 64); 7178 if (Shift > 0) 7179 for (auto &V : Values) 7180 V = (int64_t)((uint64_t)V >> Shift); 7181 7182 if (!isSwitchDense(Values)) 7183 // Transform didn't create a dense switch. 7184 return false; 7185 7186 // The obvious transform is to shift the switch condition right and emit a 7187 // check that the condition actually cleanly divided by GCD, i.e. 7188 // C & (1 << Shift - 1) == 0 7189 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 7190 // 7191 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 7192 // shift and puts the shifted-off bits in the uppermost bits. If any of these 7193 // are nonzero then the switch condition will be very large and will hit the 7194 // default case. 7195 7196 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 7197 Builder.SetInsertPoint(SI); 7198 Value *Sub = 7199 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 7200 Value *Rot = Builder.CreateIntrinsic( 7201 Ty, Intrinsic::fshl, 7202 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 7203 SI->replaceUsesOfWith(SI->getCondition(), Rot); 7204 7205 for (auto Case : SI->cases()) { 7206 auto *Orig = Case.getCaseValue(); 7207 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); 7208 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 7209 } 7210 return true; 7211 } 7212 7213 /// Tries to transform switch of powers of two to reduce switch range. 7214 /// For example, switch like: 7215 /// switch (C) { case 1: case 2: case 64: case 128: } 7216 /// will be transformed to: 7217 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 7218 /// 7219 /// This transformation allows better lowering and could allow transforming into 7220 /// a lookup table. 7221 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 7222 const DataLayout &DL, 7223 const TargetTransformInfo &TTI) { 7224 Value *Condition = SI->getCondition(); 7225 LLVMContext &Context = SI->getContext(); 7226 auto *CondTy = cast<IntegerType>(Condition->getType()); 7227 7228 if (CondTy->getIntegerBitWidth() > 64 || 7229 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7230 return false; 7231 7232 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 7233 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 7234 {Condition, ConstantInt::getTrue(Context)}), 7235 TTI::TCK_SizeAndLatency); 7236 7237 if (CttzIntrinsicCost > TTI::TCC_Basic) 7238 // Inserting intrinsic is too expensive. 7239 return false; 7240 7241 // Only bother with this optimization if there are more than 3 switch cases. 7242 // SDAG will only bother creating jump tables for 4 or more cases. 7243 if (SI->getNumCases() < 4) 7244 return false; 7245 7246 // We perform this optimization only for switches with 7247 // unreachable default case. 7248 // This assumtion will save us from checking if `Condition` is a power of two. 7249 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 7250 return false; 7251 7252 // Check that switch cases are powers of two. 7253 SmallVector<uint64_t, 4> Values; 7254 for (const auto &Case : SI->cases()) { 7255 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 7256 if (llvm::has_single_bit(CaseValue)) 7257 Values.push_back(CaseValue); 7258 else 7259 return false; 7260 } 7261 7262 // isSwichDense requires case values to be sorted. 7263 llvm::sort(Values); 7264 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 7265 llvm::countr_zero(Values.front()) + 1)) 7266 // Transform is unable to generate dense switch. 7267 return false; 7268 7269 Builder.SetInsertPoint(SI); 7270 7271 // Replace each case with its trailing zeros number. 7272 for (auto &Case : SI->cases()) { 7273 auto *OrigValue = Case.getCaseValue(); 7274 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 7275 OrigValue->getValue().countr_zero())); 7276 } 7277 7278 // Replace condition with its trailing zeros number. 7279 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 7280 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 7281 7282 SI->setCondition(ConditionTrailingZeros); 7283 7284 return true; 7285 } 7286 7287 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have 7288 /// the same destination. 7289 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder, 7290 DomTreeUpdater *DTU) { 7291 auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition()); 7292 if (!Cmp || !Cmp->hasOneUse()) 7293 return false; 7294 7295 SmallVector<uint32_t, 4> Weights; 7296 bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights); 7297 if (!HasWeights) 7298 Weights.resize(4); // Avoid checking HasWeights everywhere. 7299 7300 // Normalize to [us]cmp == Res ? Succ : OtherSucc. 7301 int64_t Res; 7302 BasicBlock *Succ, *OtherSucc; 7303 uint32_t SuccWeight = 0, OtherSuccWeight = 0; 7304 BasicBlock *Unreachable = nullptr; 7305 7306 if (SI->getNumCases() == 2) { 7307 // Find which of 1, 0 or -1 is missing (handled by default dest). 7308 SmallSet<int64_t, 3> Missing; 7309 Missing.insert(1); 7310 Missing.insert(0); 7311 Missing.insert(-1); 7312 7313 Succ = SI->getDefaultDest(); 7314 SuccWeight = Weights[0]; 7315 OtherSucc = nullptr; 7316 for (auto &Case : SI->cases()) { 7317 std::optional<int64_t> Val = 7318 Case.getCaseValue()->getValue().trySExtValue(); 7319 if (!Val) 7320 return false; 7321 if (!Missing.erase(*Val)) 7322 return false; 7323 if (OtherSucc && OtherSucc != Case.getCaseSuccessor()) 7324 return false; 7325 OtherSucc = Case.getCaseSuccessor(); 7326 OtherSuccWeight += Weights[Case.getSuccessorIndex()]; 7327 } 7328 7329 assert(Missing.size() == 1 && "Should have one case left"); 7330 Res = *Missing.begin(); 7331 } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) { 7332 // Normalize so that Succ is taken once and OtherSucc twice. 7333 Unreachable = SI->getDefaultDest(); 7334 Succ = OtherSucc = nullptr; 7335 for (auto &Case : SI->cases()) { 7336 BasicBlock *NewSucc = Case.getCaseSuccessor(); 7337 uint32_t Weight = Weights[Case.getSuccessorIndex()]; 7338 if (!OtherSucc || OtherSucc == NewSucc) { 7339 OtherSucc = NewSucc; 7340 OtherSuccWeight += Weight; 7341 } else if (!Succ) { 7342 Succ = NewSucc; 7343 SuccWeight = Weight; 7344 } else if (Succ == NewSucc) { 7345 std::swap(Succ, OtherSucc); 7346 std::swap(SuccWeight, OtherSuccWeight); 7347 } else 7348 return false; 7349 } 7350 for (auto &Case : SI->cases()) { 7351 std::optional<int64_t> Val = 7352 Case.getCaseValue()->getValue().trySExtValue(); 7353 if (!Val || (Val != 1 && Val != 0 && Val != -1)) 7354 return false; 7355 if (Case.getCaseSuccessor() == Succ) { 7356 Res = *Val; 7357 break; 7358 } 7359 } 7360 } else { 7361 return false; 7362 } 7363 7364 // Determine predicate for the missing case. 7365 ICmpInst::Predicate Pred; 7366 switch (Res) { 7367 case 1: 7368 Pred = ICmpInst::ICMP_UGT; 7369 break; 7370 case 0: 7371 Pred = ICmpInst::ICMP_EQ; 7372 break; 7373 case -1: 7374 Pred = ICmpInst::ICMP_ULT; 7375 break; 7376 } 7377 if (Cmp->isSigned()) 7378 Pred = ICmpInst::getSignedPredicate(Pred); 7379 7380 MDNode *NewWeights = nullptr; 7381 if (HasWeights) 7382 NewWeights = MDBuilder(SI->getContext()) 7383 .createBranchWeights(SuccWeight, OtherSuccWeight); 7384 7385 BasicBlock *BB = SI->getParent(); 7386 Builder.SetInsertPoint(SI->getIterator()); 7387 Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS()); 7388 Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights, 7389 SI->getMetadata(LLVMContext::MD_unpredictable)); 7390 OtherSucc->removePredecessor(BB); 7391 if (Unreachable) 7392 Unreachable->removePredecessor(BB); 7393 SI->eraseFromParent(); 7394 Cmp->eraseFromParent(); 7395 if (DTU && Unreachable) 7396 DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}}); 7397 return true; 7398 } 7399 7400 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7401 BasicBlock *BB = SI->getParent(); 7402 7403 if (isValueEqualityComparison(SI)) { 7404 // If we only have one predecessor, and if it is a branch on this value, 7405 // see if that predecessor totally determines the outcome of this switch. 7406 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7407 if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7408 return requestResimplify(); 7409 7410 Value *Cond = SI->getCondition(); 7411 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7412 if (simplifySwitchOnSelect(SI, Select)) 7413 return requestResimplify(); 7414 7415 // If the block only contains the switch, see if we can fold the block 7416 // away into any preds. 7417 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7418 if (foldValueComparisonIntoPredecessors(SI, Builder)) 7419 return requestResimplify(); 7420 } 7421 7422 // Try to transform the switch into an icmp and a branch. 7423 // The conversion from switch to comparison may lose information on 7424 // impossible switch values, so disable it early in the pipeline. 7425 if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder)) 7426 return requestResimplify(); 7427 7428 // Remove unreachable cases. 7429 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7430 return requestResimplify(); 7431 7432 if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU)) 7433 return requestResimplify(); 7434 7435 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7436 return requestResimplify(); 7437 7438 if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI)) 7439 return requestResimplify(); 7440 7441 // The conversion from switch to lookup tables results in difficult-to-analyze 7442 // code and makes pruning branches much harder. This is a problem if the 7443 // switch expression itself can still be restricted as a result of inlining or 7444 // CVP. Therefore, only apply this transformation during late stages of the 7445 // optimisation pipeline. 7446 if (Options.ConvertSwitchToLookupTable && 7447 switchToLookupTable(SI, Builder, DTU, DL, TTI)) 7448 return requestResimplify(); 7449 7450 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7451 return requestResimplify(); 7452 7453 if (reduceSwitchRange(SI, Builder, DL, TTI)) 7454 return requestResimplify(); 7455 7456 if (HoistCommon && 7457 hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts)) 7458 return requestResimplify(); 7459 7460 return false; 7461 } 7462 7463 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7464 BasicBlock *BB = IBI->getParent(); 7465 bool Changed = false; 7466 7467 // Eliminate redundant destinations. 7468 SmallPtrSet<Value *, 8> Succs; 7469 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7470 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7471 BasicBlock *Dest = IBI->getDestination(i); 7472 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7473 if (!Dest->hasAddressTaken()) 7474 RemovedSuccs.insert(Dest); 7475 Dest->removePredecessor(BB); 7476 IBI->removeDestination(i); 7477 --i; 7478 --e; 7479 Changed = true; 7480 } 7481 } 7482 7483 if (DTU) { 7484 std::vector<DominatorTree::UpdateType> Updates; 7485 Updates.reserve(RemovedSuccs.size()); 7486 for (auto *RemovedSucc : RemovedSuccs) 7487 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7488 DTU->applyUpdates(Updates); 7489 } 7490 7491 if (IBI->getNumDestinations() == 0) { 7492 // If the indirectbr has no successors, change it to unreachable. 7493 new UnreachableInst(IBI->getContext(), IBI->getIterator()); 7494 eraseTerminatorAndDCECond(IBI); 7495 return true; 7496 } 7497 7498 if (IBI->getNumDestinations() == 1) { 7499 // If the indirectbr has one successor, change it to a direct branch. 7500 BranchInst::Create(IBI->getDestination(0), IBI->getIterator()); 7501 eraseTerminatorAndDCECond(IBI); 7502 return true; 7503 } 7504 7505 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7506 if (simplifyIndirectBrOnSelect(IBI, SI)) 7507 return requestResimplify(); 7508 } 7509 return Changed; 7510 } 7511 7512 /// Given an block with only a single landing pad and a unconditional branch 7513 /// try to find another basic block which this one can be merged with. This 7514 /// handles cases where we have multiple invokes with unique landing pads, but 7515 /// a shared handler. 7516 /// 7517 /// We specifically choose to not worry about merging non-empty blocks 7518 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7519 /// practice, the optimizer produces empty landing pad blocks quite frequently 7520 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7521 /// sinking in this file) 7522 /// 7523 /// This is primarily a code size optimization. We need to avoid performing 7524 /// any transform which might inhibit optimization (such as our ability to 7525 /// specialize a particular handler via tail commoning). We do this by not 7526 /// merging any blocks which require us to introduce a phi. Since the same 7527 /// values are flowing through both blocks, we don't lose any ability to 7528 /// specialize. If anything, we make such specialization more likely. 7529 /// 7530 /// TODO - This transformation could remove entries from a phi in the target 7531 /// block when the inputs in the phi are the same for the two blocks being 7532 /// merged. In some cases, this could result in removal of the PHI entirely. 7533 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7534 BasicBlock *BB, DomTreeUpdater *DTU) { 7535 auto Succ = BB->getUniqueSuccessor(); 7536 assert(Succ); 7537 // If there's a phi in the successor block, we'd likely have to introduce 7538 // a phi into the merged landing pad block. 7539 if (isa<PHINode>(*Succ->begin())) 7540 return false; 7541 7542 for (BasicBlock *OtherPred : predecessors(Succ)) { 7543 if (BB == OtherPred) 7544 continue; 7545 BasicBlock::iterator I = OtherPred->begin(); 7546 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7547 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7548 continue; 7549 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7550 ; 7551 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7552 if (!BI2 || !BI2->isIdenticalTo(BI)) 7553 continue; 7554 7555 std::vector<DominatorTree::UpdateType> Updates; 7556 7557 // We've found an identical block. Update our predecessors to take that 7558 // path instead and make ourselves dead. 7559 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7560 for (BasicBlock *Pred : UniquePreds) { 7561 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7562 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7563 "unexpected successor"); 7564 II->setUnwindDest(OtherPred); 7565 if (DTU) { 7566 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7567 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7568 } 7569 } 7570 7571 // The debug info in OtherPred doesn't cover the merged control flow that 7572 // used to go through BB. We need to delete it or update it. 7573 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7574 if (isa<DbgInfoIntrinsic>(Inst)) 7575 Inst.eraseFromParent(); 7576 7577 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7578 for (BasicBlock *Succ : UniqueSuccs) { 7579 Succ->removePredecessor(BB); 7580 if (DTU) 7581 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7582 } 7583 7584 IRBuilder<> Builder(BI); 7585 Builder.CreateUnreachable(); 7586 BI->eraseFromParent(); 7587 if (DTU) 7588 DTU->applyUpdates(Updates); 7589 return true; 7590 } 7591 return false; 7592 } 7593 7594 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7595 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7596 : simplifyCondBranch(Branch, Builder); 7597 } 7598 7599 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7600 IRBuilder<> &Builder) { 7601 BasicBlock *BB = BI->getParent(); 7602 BasicBlock *Succ = BI->getSuccessor(0); 7603 7604 // If the Terminator is the only non-phi instruction, simplify the block. 7605 // If LoopHeader is provided, check if the block or its successor is a loop 7606 // header. (This is for early invocations before loop simplify and 7607 // vectorization to keep canonical loop forms for nested loops. These blocks 7608 // can be eliminated when the pass is invoked later in the back-end.) 7609 // Note that if BB has only one predecessor then we do not introduce new 7610 // backedge, so we can eliminate BB. 7611 bool NeedCanonicalLoop = 7612 Options.NeedCanonicalLoop && 7613 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7614 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7615 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 7616 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7617 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7618 return true; 7619 7620 // If the only instruction in the block is a seteq/setne comparison against a 7621 // constant, try to simplify the block. 7622 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7623 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7624 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7625 ; 7626 if (I->isTerminator() && 7627 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7628 return true; 7629 } 7630 7631 // See if we can merge an empty landing pad block with another which is 7632 // equivalent. 7633 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7634 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7635 ; 7636 if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU)) 7637 return true; 7638 } 7639 7640 // If this basic block is ONLY a compare and a branch, and if a predecessor 7641 // branches to us and our successor, fold the comparison into the 7642 // predecessor and use logical operations to update the incoming value 7643 // for PHI nodes in common successor. 7644 if (Options.SpeculateBlocks && 7645 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7646 Options.BonusInstThreshold)) 7647 return requestResimplify(); 7648 return false; 7649 } 7650 7651 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7652 BasicBlock *PredPred = nullptr; 7653 for (auto *P : predecessors(BB)) { 7654 BasicBlock *PPred = P->getSinglePredecessor(); 7655 if (!PPred || (PredPred && PredPred != PPred)) 7656 return nullptr; 7657 PredPred = PPred; 7658 } 7659 return PredPred; 7660 } 7661 7662 /// Fold the following pattern: 7663 /// bb0: 7664 /// br i1 %cond1, label %bb1, label %bb2 7665 /// bb1: 7666 /// br i1 %cond2, label %bb3, label %bb4 7667 /// bb2: 7668 /// br i1 %cond2, label %bb4, label %bb3 7669 /// bb3: 7670 /// ... 7671 /// bb4: 7672 /// ... 7673 /// into 7674 /// bb0: 7675 /// %cond = xor i1 %cond1, %cond2 7676 /// br i1 %cond, label %bb4, label %bb3 7677 /// bb3: 7678 /// ... 7679 /// bb4: 7680 /// ... 7681 /// NOTE: %cond2 always dominates the terminator of bb0. 7682 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) { 7683 BasicBlock *BB = BI->getParent(); 7684 BasicBlock *BB1 = BI->getSuccessor(0); 7685 BasicBlock *BB2 = BI->getSuccessor(1); 7686 auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) { 7687 if (Succ == BB) 7688 return false; 7689 if (&Succ->front() != Succ->getTerminator()) 7690 return false; 7691 SuccBI = dyn_cast<BranchInst>(Succ->getTerminator()); 7692 if (!SuccBI || !SuccBI->isConditional()) 7693 return false; 7694 BasicBlock *Succ1 = SuccBI->getSuccessor(0); 7695 BasicBlock *Succ2 = SuccBI->getSuccessor(1); 7696 return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB && 7697 !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front()); 7698 }; 7699 BranchInst *BB1BI, *BB2BI; 7700 if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI)) 7701 return false; 7702 7703 if (BB1BI->getCondition() != BB2BI->getCondition() || 7704 BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) || 7705 BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0)) 7706 return false; 7707 7708 BasicBlock *BB3 = BB1BI->getSuccessor(0); 7709 BasicBlock *BB4 = BB1BI->getSuccessor(1); 7710 IRBuilder<> Builder(BI); 7711 BI->setCondition( 7712 Builder.CreateXor(BI->getCondition(), BB1BI->getCondition())); 7713 BB1->removePredecessor(BB); 7714 BI->setSuccessor(0, BB4); 7715 BB2->removePredecessor(BB); 7716 BI->setSuccessor(1, BB3); 7717 if (DTU) { 7718 SmallVector<DominatorTree::UpdateType, 4> Updates; 7719 Updates.push_back({DominatorTree::Delete, BB, BB1}); 7720 Updates.push_back({DominatorTree::Insert, BB, BB4}); 7721 Updates.push_back({DominatorTree::Delete, BB, BB2}); 7722 Updates.push_back({DominatorTree::Insert, BB, BB3}); 7723 7724 DTU->applyUpdates(Updates); 7725 } 7726 bool HasWeight = false; 7727 uint64_t BBTWeight, BBFWeight; 7728 if (extractBranchWeights(*BI, BBTWeight, BBFWeight)) 7729 HasWeight = true; 7730 else 7731 BBTWeight = BBFWeight = 1; 7732 uint64_t BB1TWeight, BB1FWeight; 7733 if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight)) 7734 HasWeight = true; 7735 else 7736 BB1TWeight = BB1FWeight = 1; 7737 uint64_t BB2TWeight, BB2FWeight; 7738 if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight)) 7739 HasWeight = true; 7740 else 7741 BB2TWeight = BB2FWeight = 1; 7742 if (HasWeight) { 7743 uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight, 7744 BBTWeight * BB1TWeight + BBFWeight * BB2FWeight}; 7745 fitWeights(Weights); 7746 setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false); 7747 } 7748 return true; 7749 } 7750 7751 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 7752 assert( 7753 !isa<ConstantInt>(BI->getCondition()) && 7754 BI->getSuccessor(0) != BI->getSuccessor(1) && 7755 "Tautological conditional branch should have been eliminated already."); 7756 7757 BasicBlock *BB = BI->getParent(); 7758 if (!Options.SimplifyCondBranch || 7759 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 7760 return false; 7761 7762 // Conditional branch 7763 if (isValueEqualityComparison(BI)) { 7764 // If we only have one predecessor, and if it is a branch on this value, 7765 // see if that predecessor totally determines the outcome of this 7766 // switch. 7767 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7768 if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 7769 return requestResimplify(); 7770 7771 // This block must be empty, except for the setcond inst, if it exists. 7772 // Ignore dbg and pseudo intrinsics. 7773 auto I = BB->instructionsWithoutDebug(true).begin(); 7774 if (&*I == BI) { 7775 if (foldValueComparisonIntoPredecessors(BI, Builder)) 7776 return requestResimplify(); 7777 } else if (&*I == cast<Instruction>(BI->getCondition())) { 7778 ++I; 7779 if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder)) 7780 return requestResimplify(); 7781 } 7782 } 7783 7784 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 7785 if (simplifyBranchOnICmpChain(BI, Builder, DL)) 7786 return true; 7787 7788 // If this basic block has dominating predecessor blocks and the dominating 7789 // blocks' conditions imply BI's condition, we know the direction of BI. 7790 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 7791 if (Imp) { 7792 // Turn this into a branch on constant. 7793 auto *OldCond = BI->getCondition(); 7794 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 7795 : ConstantInt::getFalse(BB->getContext()); 7796 BI->setCondition(TorF); 7797 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 7798 return requestResimplify(); 7799 } 7800 7801 // If this basic block is ONLY a compare and a branch, and if a predecessor 7802 // branches to us and one of our successors, fold the comparison into the 7803 // predecessor and use logical operations to pick the right destination. 7804 if (Options.SpeculateBlocks && 7805 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7806 Options.BonusInstThreshold)) 7807 return requestResimplify(); 7808 7809 // We have a conditional branch to two blocks that are only reachable 7810 // from BI. We know that the condbr dominates the two blocks, so see if 7811 // there is any identical code in the "then" and "else" blocks. If so, we 7812 // can hoist it up to the branching block. 7813 if (BI->getSuccessor(0)->getSinglePredecessor()) { 7814 if (BI->getSuccessor(1)->getSinglePredecessor()) { 7815 if (HoistCommon && 7816 hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts)) 7817 return requestResimplify(); 7818 } else { 7819 // If Successor #1 has multiple preds, we may be able to conditionally 7820 // execute Successor #0 if it branches to Successor #1. 7821 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 7822 if (Succ0TI->getNumSuccessors() == 1 && 7823 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 7824 if (speculativelyExecuteBB(BI, BI->getSuccessor(0))) 7825 return requestResimplify(); 7826 } 7827 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 7828 // If Successor #0 has multiple preds, we may be able to conditionally 7829 // execute Successor #1 if it branches to Successor #0. 7830 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 7831 if (Succ1TI->getNumSuccessors() == 1 && 7832 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 7833 if (speculativelyExecuteBB(BI, BI->getSuccessor(1))) 7834 return requestResimplify(); 7835 } 7836 7837 // If this is a branch on something for which we know the constant value in 7838 // predecessors (e.g. a phi node in the current block), thread control 7839 // through this block. 7840 if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 7841 return requestResimplify(); 7842 7843 // Scan predecessor blocks for conditional branches. 7844 for (BasicBlock *Pred : predecessors(BB)) 7845 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 7846 if (PBI != BI && PBI->isConditional()) 7847 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 7848 return requestResimplify(); 7849 7850 // Look for diamond patterns. 7851 if (MergeCondStores) 7852 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 7853 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 7854 if (PBI != BI && PBI->isConditional()) 7855 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 7856 return requestResimplify(); 7857 7858 // Look for nested conditional branches. 7859 if (mergeNestedCondBranch(BI, DTU)) 7860 return requestResimplify(); 7861 7862 return false; 7863 } 7864 7865 /// Check if passing a value to an instruction will cause undefined behavior. 7866 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 7867 Constant *C = dyn_cast<Constant>(V); 7868 if (!C) 7869 return false; 7870 7871 if (I->use_empty()) 7872 return false; 7873 7874 if (C->isNullValue() || isa<UndefValue>(C)) { 7875 // Only look at the first use we can handle, avoid hurting compile time with 7876 // long uselists 7877 auto FindUse = llvm::find_if(I->users(), [](auto *U) { 7878 auto *Use = cast<Instruction>(U); 7879 // Change this list when we want to add new instructions. 7880 switch (Use->getOpcode()) { 7881 default: 7882 return false; 7883 case Instruction::GetElementPtr: 7884 case Instruction::Ret: 7885 case Instruction::BitCast: 7886 case Instruction::Load: 7887 case Instruction::Store: 7888 case Instruction::Call: 7889 case Instruction::CallBr: 7890 case Instruction::Invoke: 7891 case Instruction::UDiv: 7892 case Instruction::URem: 7893 // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not 7894 // implemented to avoid code complexity as it is unclear how useful such 7895 // logic is. 7896 case Instruction::SDiv: 7897 case Instruction::SRem: 7898 return true; 7899 } 7900 }); 7901 if (FindUse == I->user_end()) 7902 return false; 7903 auto *Use = cast<Instruction>(*FindUse); 7904 // Bail out if Use is not in the same BB as I or Use == I or Use comes 7905 // before I in the block. The latter two can be the case if Use is a 7906 // PHI node. 7907 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 7908 return false; 7909 7910 // Now make sure that there are no instructions in between that can alter 7911 // control flow (eg. calls) 7912 auto InstrRange = 7913 make_range(std::next(I->getIterator()), Use->getIterator()); 7914 if (any_of(InstrRange, [](Instruction &I) { 7915 return !isGuaranteedToTransferExecutionToSuccessor(&I); 7916 })) 7917 return false; 7918 7919 // Look through GEPs. A load from a GEP derived from NULL is still undefined 7920 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 7921 if (GEP->getPointerOperand() == I) { 7922 // The current base address is null, there are four cases to consider: 7923 // getelementptr (TY, null, 0) -> null 7924 // getelementptr (TY, null, not zero) -> may be modified 7925 // getelementptr inbounds (TY, null, 0) -> null 7926 // getelementptr inbounds (TY, null, not zero) -> poison iff null is 7927 // undefined? 7928 if (!GEP->hasAllZeroIndices() && 7929 (!GEP->isInBounds() || 7930 NullPointerIsDefined(GEP->getFunction(), 7931 GEP->getPointerAddressSpace()))) 7932 PtrValueMayBeModified = true; 7933 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 7934 } 7935 7936 // Look through return. 7937 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) { 7938 bool HasNoUndefAttr = 7939 Ret->getFunction()->hasRetAttribute(Attribute::NoUndef); 7940 // Return undefined to a noundef return value is undefined. 7941 if (isa<UndefValue>(C) && HasNoUndefAttr) 7942 return true; 7943 // Return null to a nonnull+noundef return value is undefined. 7944 if (C->isNullValue() && HasNoUndefAttr && 7945 Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) { 7946 return !PtrValueMayBeModified; 7947 } 7948 } 7949 7950 // Load from null is undefined. 7951 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 7952 if (!LI->isVolatile()) 7953 return !NullPointerIsDefined(LI->getFunction(), 7954 LI->getPointerAddressSpace()); 7955 7956 // Store to null is undefined. 7957 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 7958 if (!SI->isVolatile()) 7959 return (!NullPointerIsDefined(SI->getFunction(), 7960 SI->getPointerAddressSpace())) && 7961 SI->getPointerOperand() == I; 7962 7963 // llvm.assume(false/undef) always triggers immediate UB. 7964 if (auto *Assume = dyn_cast<AssumeInst>(Use)) { 7965 // Ignore assume operand bundles. 7966 if (I == Assume->getArgOperand(0)) 7967 return true; 7968 } 7969 7970 if (auto *CB = dyn_cast<CallBase>(Use)) { 7971 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 7972 return false; 7973 // A call to null is undefined. 7974 if (CB->getCalledOperand() == I) 7975 return true; 7976 7977 if (C->isNullValue()) { 7978 for (const llvm::Use &Arg : CB->args()) 7979 if (Arg == I) { 7980 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7981 if (CB->isPassingUndefUB(ArgIdx) && 7982 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 7983 // Passing null to a nonnnull+noundef argument is undefined. 7984 return !PtrValueMayBeModified; 7985 } 7986 } 7987 } else if (isa<UndefValue>(C)) { 7988 // Passing undef to a noundef argument is undefined. 7989 for (const llvm::Use &Arg : CB->args()) 7990 if (Arg == I) { 7991 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 7992 if (CB->isPassingUndefUB(ArgIdx)) { 7993 // Passing undef to a noundef argument is undefined. 7994 return true; 7995 } 7996 } 7997 } 7998 } 7999 // Div/Rem by zero is immediate UB 8000 if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem()) 8001 return true; 8002 } 8003 return false; 8004 } 8005 8006 /// If BB has an incoming value that will always trigger undefined behavior 8007 /// (eg. null pointer dereference), remove the branch leading here. 8008 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 8009 DomTreeUpdater *DTU, 8010 AssumptionCache *AC) { 8011 for (PHINode &PHI : BB->phis()) 8012 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 8013 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 8014 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 8015 Instruction *T = Predecessor->getTerminator(); 8016 IRBuilder<> Builder(T); 8017 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 8018 BB->removePredecessor(Predecessor); 8019 // Turn unconditional branches into unreachables and remove the dead 8020 // destination from conditional branches. 8021 if (BI->isUnconditional()) 8022 Builder.CreateUnreachable(); 8023 else { 8024 // Preserve guarding condition in assume, because it might not be 8025 // inferrable from any dominating condition. 8026 Value *Cond = BI->getCondition(); 8027 CallInst *Assumption; 8028 if (BI->getSuccessor(0) == BB) 8029 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 8030 else 8031 Assumption = Builder.CreateAssumption(Cond); 8032 if (AC) 8033 AC->registerAssumption(cast<AssumeInst>(Assumption)); 8034 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 8035 : BI->getSuccessor(0)); 8036 } 8037 BI->eraseFromParent(); 8038 if (DTU) 8039 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 8040 return true; 8041 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 8042 // Redirect all branches leading to UB into 8043 // a newly created unreachable block. 8044 BasicBlock *Unreachable = BasicBlock::Create( 8045 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 8046 Builder.SetInsertPoint(Unreachable); 8047 // The new block contains only one instruction: Unreachable 8048 Builder.CreateUnreachable(); 8049 for (const auto &Case : SI->cases()) 8050 if (Case.getCaseSuccessor() == BB) { 8051 BB->removePredecessor(Predecessor); 8052 Case.setSuccessor(Unreachable); 8053 } 8054 if (SI->getDefaultDest() == BB) { 8055 BB->removePredecessor(Predecessor); 8056 SI->setDefaultDest(Unreachable); 8057 } 8058 8059 if (DTU) 8060 DTU->applyUpdates( 8061 { { DominatorTree::Insert, Predecessor, Unreachable }, 8062 { DominatorTree::Delete, Predecessor, BB } }); 8063 return true; 8064 } 8065 } 8066 8067 return false; 8068 } 8069 8070 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 8071 bool Changed = false; 8072 8073 assert(BB && BB->getParent() && "Block not embedded in function!"); 8074 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 8075 8076 // Remove basic blocks that have no predecessors (except the entry block)... 8077 // or that just have themself as a predecessor. These are unreachable. 8078 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 8079 BB->getSinglePredecessor() == BB) { 8080 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 8081 DeleteDeadBlock(BB, DTU); 8082 return true; 8083 } 8084 8085 // Check to see if we can constant propagate this terminator instruction 8086 // away... 8087 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 8088 /*TLI=*/nullptr, DTU); 8089 8090 // Check for and eliminate duplicate PHI nodes in this block. 8091 Changed |= EliminateDuplicatePHINodes(BB); 8092 8093 // Check for and remove branches that will always cause undefined behavior. 8094 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 8095 return requestResimplify(); 8096 8097 // Merge basic blocks into their predecessor if there is only one distinct 8098 // pred, and if there is only one distinct successor of the predecessor, and 8099 // if there are no PHI nodes. 8100 if (MergeBlockIntoPredecessor(BB, DTU)) 8101 return true; 8102 8103 if (SinkCommon && Options.SinkCommonInsts) 8104 if (sinkCommonCodeFromPredecessors(BB, DTU) || 8105 mergeCompatibleInvokes(BB, DTU)) { 8106 // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 8107 // so we may now how duplicate PHI's. 8108 // Let's rerun EliminateDuplicatePHINodes() first, 8109 // before foldTwoEntryPHINode() potentially converts them into select's, 8110 // after which we'd need a whole EarlyCSE pass run to cleanup them. 8111 return true; 8112 } 8113 8114 IRBuilder<> Builder(BB); 8115 8116 if (Options.SpeculateBlocks && 8117 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 8118 // If there is a trivial two-entry PHI node in this basic block, and we can 8119 // eliminate it, do so now. 8120 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 8121 if (PN->getNumIncomingValues() == 2) 8122 if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL, 8123 Options.SpeculateUnpredictables)) 8124 return true; 8125 } 8126 8127 Instruction *Terminator = BB->getTerminator(); 8128 Builder.SetInsertPoint(Terminator); 8129 switch (Terminator->getOpcode()) { 8130 case Instruction::Br: 8131 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 8132 break; 8133 case Instruction::Resume: 8134 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 8135 break; 8136 case Instruction::CleanupRet: 8137 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 8138 break; 8139 case Instruction::Switch: 8140 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 8141 break; 8142 case Instruction::Unreachable: 8143 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 8144 break; 8145 case Instruction::IndirectBr: 8146 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 8147 break; 8148 } 8149 8150 return Changed; 8151 } 8152 8153 bool SimplifyCFGOpt::run(BasicBlock *BB) { 8154 bool Changed = false; 8155 8156 // Repeated simplify BB as long as resimplification is requested. 8157 do { 8158 Resimplify = false; 8159 8160 // Perform one round of simplifcation. Resimplify flag will be set if 8161 // another iteration is requested. 8162 Changed |= simplifyOnce(BB); 8163 } while (Resimplify); 8164 8165 return Changed; 8166 } 8167 8168 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 8169 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 8170 ArrayRef<WeakVH> LoopHeaders) { 8171 return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders, 8172 Options) 8173 .run(BB); 8174 } 8175