xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 34b139594aa20fe712bc2ad68544632b3e4d8512)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
98 
99     cl::desc(
100         "Temporary development switch used to gradually uplift SimplifyCFG "
101         "into preserving DomTree,"));
102 
103 // Chosen as 2 so as to be cheap, but still to have enough power to fold
104 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
105 // To catch this, we need to fold a compare and a select, hence '2' being the
106 // minimum reasonable default.
107 static cl::opt<unsigned> PHINodeFoldingThreshold(
108     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
109     cl::desc(
110         "Control the amount of phi node folding to perform (default = 2)"));
111 
112 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
113     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
114     cl::desc("Control the maximal total instruction cost that we are willing "
115              "to speculatively execute to fold a 2-entry PHI node into a "
116              "select (default = 4)"));
117 
118 static cl::opt<bool>
119     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
120                 cl::desc("Hoist common instructions up to the parent block"));
121 
122 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
123     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
124     cl::init(true),
125     cl::desc("Hoist loads/stores if the target supports "
126              "conditional faulting"));
127 
128 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
129     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
130     cl::desc("Control the maximal conditional load/store that we are willing "
131              "to speculatively execute to eliminate conditional branch "
132              "(default = 6)"));
133 
134 static cl::opt<unsigned>
135     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
136                          cl::init(20),
137                          cl::desc("Allow reordering across at most this many "
138                                   "instructions when hoisting"));
139 
140 static cl::opt<bool>
141     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
142                cl::desc("Sink common instructions down to the end block"));
143 
144 static cl::opt<bool> HoistCondStores(
145     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
146     cl::desc("Hoist conditional stores if an unconditional store precedes"));
147 
148 static cl::opt<bool> MergeCondStores(
149     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
150     cl::desc("Hoist conditional stores even if an unconditional store does not "
151              "precede - hoist multiple conditional stores into a single "
152              "predicated store"));
153 
154 static cl::opt<bool> MergeCondStoresAggressively(
155     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
156     cl::desc("When merging conditional stores, do so even if the resultant "
157              "basic blocks are unlikely to be if-converted as a result"));
158 
159 static cl::opt<bool> SpeculateOneExpensiveInst(
160     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
161     cl::desc("Allow exactly one expensive instruction to be speculatively "
162              "executed"));
163 
164 static cl::opt<unsigned> MaxSpeculationDepth(
165     "max-speculation-depth", cl::Hidden, cl::init(10),
166     cl::desc("Limit maximum recursion depth when calculating costs of "
167              "speculatively executed instructions"));
168 
169 static cl::opt<int>
170     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
171                       cl::init(10),
172                       cl::desc("Max size of a block which is still considered "
173                                "small enough to thread through"));
174 
175 // Two is chosen to allow one negation and a logical combine.
176 static cl::opt<unsigned>
177     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
178                         cl::init(2),
179                         cl::desc("Maximum cost of combining conditions when "
180                                  "folding branches"));
181 
182 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
183     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
184     cl::init(2),
185     cl::desc("Multiplier to apply to threshold when determining whether or not "
186              "to fold branch to common destination when vector operations are "
187              "present"));
188 
189 static cl::opt<bool> EnableMergeCompatibleInvokes(
190     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
191     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
192 
193 static cl::opt<unsigned> MaxSwitchCasesPerResult(
194     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
195     cl::desc("Limit cases to analyze when converting a switch to select"));
196 
197 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
198 STATISTIC(NumLinearMaps,
199           "Number of switch instructions turned into linear mapping");
200 STATISTIC(NumLookupTables,
201           "Number of switch instructions turned into lookup tables");
202 STATISTIC(
203     NumLookupTablesHoles,
204     "Number of switch instructions turned into lookup tables (holes checked)");
205 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
206 STATISTIC(NumFoldValueComparisonIntoPredecessors,
207           "Number of value comparisons folded into predecessor basic blocks");
208 STATISTIC(NumFoldBranchToCommonDest,
209           "Number of branches folded into predecessor basic block");
210 STATISTIC(
211     NumHoistCommonCode,
212     "Number of common instruction 'blocks' hoisted up to the begin block");
213 STATISTIC(NumHoistCommonInstrs,
214           "Number of common instructions hoisted up to the begin block");
215 STATISTIC(NumSinkCommonCode,
216           "Number of common instruction 'blocks' sunk down to the end block");
217 STATISTIC(NumSinkCommonInstrs,
218           "Number of common instructions sunk down to the end block");
219 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
220 STATISTIC(NumInvokes,
221           "Number of invokes with empty resume blocks simplified into calls");
222 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
223 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
224 
225 namespace {
226 
227 // The first field contains the value that the switch produces when a certain
228 // case group is selected, and the second field is a vector containing the
229 // cases composing the case group.
230 using SwitchCaseResultVectorTy =
231     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
232 
233 // The first field contains the phi node that generates a result of the switch
234 // and the second field contains the value generated for a certain case in the
235 // switch for that PHI.
236 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
237 
238 /// ValueEqualityComparisonCase - Represents a case of a switch.
239 struct ValueEqualityComparisonCase {
240   ConstantInt *Value;
241   BasicBlock *Dest;
242 
243   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
244       : Value(Value), Dest(Dest) {}
245 
246   bool operator<(ValueEqualityComparisonCase RHS) const {
247     // Comparing pointers is ok as we only rely on the order for uniquing.
248     return Value < RHS.Value;
249   }
250 
251   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
252 };
253 
254 class SimplifyCFGOpt {
255   const TargetTransformInfo &TTI;
256   DomTreeUpdater *DTU;
257   const DataLayout &DL;
258   ArrayRef<WeakVH> LoopHeaders;
259   const SimplifyCFGOptions &Options;
260   bool Resimplify;
261 
262   Value *isValueEqualityComparison(Instruction *TI);
263   BasicBlock *getValueEqualityComparisonCases(
264       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
265   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
266                                                      BasicBlock *Pred,
267                                                      IRBuilder<> &Builder);
268   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
269                                                     Instruction *PTI,
270                                                     IRBuilder<> &Builder);
271   bool foldValueComparisonIntoPredecessors(Instruction *TI,
272                                            IRBuilder<> &Builder);
273 
274   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
275   bool simplifySingleResume(ResumeInst *RI);
276   bool simplifyCommonResume(ResumeInst *RI);
277   bool simplifyCleanupReturn(CleanupReturnInst *RI);
278   bool simplifyUnreachable(UnreachableInst *UI);
279   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
280   bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU);
281   bool simplifyIndirectBr(IndirectBrInst *IBI);
282   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
283   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
284   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
285 
286   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
287                                              IRBuilder<> &Builder);
288 
289   bool hoistCommonCodeFromSuccessors(Instruction *TI, bool AllInstsEqOnly);
290   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
291       Instruction *TI, Instruction *I1,
292       SmallVectorImpl<Instruction *> &OtherSuccTIs);
293   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
294   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
295                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
296                                   uint32_t TrueWeight, uint32_t FalseWeight);
297   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
298                                  const DataLayout &DL);
299   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
300   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
301   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
302 
303 public:
304   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
305                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
306                  const SimplifyCFGOptions &Opts)
307       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
308     assert((!DTU || !DTU->hasPostDomTree()) &&
309            "SimplifyCFG is not yet capable of maintaining validity of a "
310            "PostDomTree, so don't ask for it.");
311   }
312 
313   bool simplifyOnce(BasicBlock *BB);
314   bool run(BasicBlock *BB);
315 
316   // Helper to set Resimplify and return change indication.
317   bool requestResimplify() {
318     Resimplify = true;
319     return true;
320   }
321 };
322 
323 } // end anonymous namespace
324 
325 /// Return true if all the PHI nodes in the basic block \p BB
326 /// receive compatible (identical) incoming values when coming from
327 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
328 ///
329 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
330 /// is provided, and *both* of the values are present in the set,
331 /// then they are considered equal.
332 static bool incomingValuesAreCompatible(
333     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
334     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
335   assert(IncomingBlocks.size() == 2 &&
336          "Only for a pair of incoming blocks at the time!");
337 
338   // FIXME: it is okay if one of the incoming values is an `undef` value,
339   //        iff the other incoming value is guaranteed to be a non-poison value.
340   // FIXME: it is okay if one of the incoming values is a `poison` value.
341   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
342     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
343     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
344     if (IV0 == IV1)
345       return true;
346     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
347         EquivalenceSet->contains(IV1))
348       return true;
349     return false;
350   });
351 }
352 
353 /// Return true if it is safe to merge these two
354 /// terminator instructions together.
355 static bool
356 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
357                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
358   if (SI1 == SI2)
359     return false; // Can't merge with self!
360 
361   // It is not safe to merge these two switch instructions if they have a common
362   // successor, and if that successor has a PHI node, and if *that* PHI node has
363   // conflicting incoming values from the two switch blocks.
364   BasicBlock *SI1BB = SI1->getParent();
365   BasicBlock *SI2BB = SI2->getParent();
366 
367   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
368   bool Fail = false;
369   for (BasicBlock *Succ : successors(SI2BB)) {
370     if (!SI1Succs.count(Succ))
371       continue;
372     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
373       continue;
374     Fail = true;
375     if (FailBlocks)
376       FailBlocks->insert(Succ);
377     else
378       break;
379   }
380 
381   return !Fail;
382 }
383 
384 /// Update PHI nodes in Succ to indicate that there will now be entries in it
385 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
386 /// will be the same as those coming in from ExistPred, an existing predecessor
387 /// of Succ.
388 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
389                                   BasicBlock *ExistPred,
390                                   MemorySSAUpdater *MSSAU = nullptr) {
391   for (PHINode &PN : Succ->phis())
392     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
393   if (MSSAU)
394     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
395       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
396 }
397 
398 /// Compute an abstract "cost" of speculating the given instruction,
399 /// which is assumed to be safe to speculate. TCC_Free means cheap,
400 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
401 /// expensive.
402 static InstructionCost computeSpeculationCost(const User *I,
403                                               const TargetTransformInfo &TTI) {
404   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
405 }
406 
407 /// If we have a merge point of an "if condition" as accepted above,
408 /// return true if the specified value dominates the block.  We don't handle
409 /// the true generality of domination here, just a special case which works
410 /// well enough for us.
411 ///
412 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
413 /// see if V (which must be an instruction) and its recursive operands
414 /// that do not dominate BB have a combined cost lower than Budget and
415 /// are non-trapping.  If both are true, the instruction is inserted into the
416 /// set and true is returned.
417 ///
418 /// The cost for most non-trapping instructions is defined as 1 except for
419 /// Select whose cost is 2.
420 ///
421 /// After this function returns, Cost is increased by the cost of
422 /// V plus its non-dominating operands.  If that cost is greater than
423 /// Budget, false is returned and Cost is undefined.
424 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
425                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
426                                 InstructionCost &Cost, InstructionCost Budget,
427                                 const TargetTransformInfo &TTI,
428                                 AssumptionCache *AC, unsigned Depth = 0) {
429   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
430   // so limit the recursion depth.
431   // TODO: While this recursion limit does prevent pathological behavior, it
432   // would be better to track visited instructions to avoid cycles.
433   if (Depth == MaxSpeculationDepth)
434     return false;
435 
436   Instruction *I = dyn_cast<Instruction>(V);
437   if (!I) {
438     // Non-instructions dominate all instructions and can be executed
439     // unconditionally.
440     return true;
441   }
442   BasicBlock *PBB = I->getParent();
443 
444   // We don't want to allow weird loops that might have the "if condition" in
445   // the bottom of this block.
446   if (PBB == BB)
447     return false;
448 
449   // If this instruction is defined in a block that contains an unconditional
450   // branch to BB, then it must be in the 'conditional' part of the "if
451   // statement".  If not, it definitely dominates the region.
452   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
453   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
454     return true;
455 
456   // If we have seen this instruction before, don't count it again.
457   if (AggressiveInsts.count(I))
458     return true;
459 
460   // Okay, it looks like the instruction IS in the "condition".  Check to
461   // see if it's a cheap instruction to unconditionally compute, and if it
462   // only uses stuff defined outside of the condition.  If so, hoist it out.
463   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
464     return false;
465 
466   Cost += computeSpeculationCost(I, TTI);
467 
468   // Allow exactly one instruction to be speculated regardless of its cost
469   // (as long as it is safe to do so).
470   // This is intended to flatten the CFG even if the instruction is a division
471   // or other expensive operation. The speculation of an expensive instruction
472   // is expected to be undone in CodeGenPrepare if the speculation has not
473   // enabled further IR optimizations.
474   if (Cost > Budget &&
475       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
476        !Cost.isValid()))
477     return false;
478 
479   // Okay, we can only really hoist these out if their operands do
480   // not take us over the cost threshold.
481   for (Use &Op : I->operands())
482     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
483                              TTI, AC, Depth + 1))
484       return false;
485   // Okay, it's safe to do this!  Remember this instruction.
486   AggressiveInsts.insert(I);
487   return true;
488 }
489 
490 /// Extract ConstantInt from value, looking through IntToPtr
491 /// and PointerNullValue. Return NULL if value is not a constant int.
492 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
493   // Normal constant int.
494   ConstantInt *CI = dyn_cast<ConstantInt>(V);
495   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
496       DL.isNonIntegralPointerType(V->getType()))
497     return CI;
498 
499   // This is some kind of pointer constant. Turn it into a pointer-sized
500   // ConstantInt if possible.
501   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
502 
503   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
504   if (isa<ConstantPointerNull>(V))
505     return ConstantInt::get(PtrTy, 0);
506 
507   // IntToPtr const int.
508   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
509     if (CE->getOpcode() == Instruction::IntToPtr)
510       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
511         // The constant is very likely to have the right type already.
512         if (CI->getType() == PtrTy)
513           return CI;
514         else
515           return cast<ConstantInt>(
516               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
517       }
518   return nullptr;
519 }
520 
521 namespace {
522 
523 /// Given a chain of or (||) or and (&&) comparison of a value against a
524 /// constant, this will try to recover the information required for a switch
525 /// structure.
526 /// It will depth-first traverse the chain of comparison, seeking for patterns
527 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
528 /// representing the different cases for the switch.
529 /// Note that if the chain is composed of '||' it will build the set of elements
530 /// that matches the comparisons (i.e. any of this value validate the chain)
531 /// while for a chain of '&&' it will build the set elements that make the test
532 /// fail.
533 struct ConstantComparesGatherer {
534   const DataLayout &DL;
535 
536   /// Value found for the switch comparison
537   Value *CompValue = nullptr;
538 
539   /// Extra clause to be checked before the switch
540   Value *Extra = nullptr;
541 
542   /// Set of integers to match in switch
543   SmallVector<ConstantInt *, 8> Vals;
544 
545   /// Number of comparisons matched in the and/or chain
546   unsigned UsedICmps = 0;
547 
548   /// Construct and compute the result for the comparison instruction Cond
549   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
550     gather(Cond);
551   }
552 
553   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
554   ConstantComparesGatherer &
555   operator=(const ConstantComparesGatherer &) = delete;
556 
557 private:
558   /// Try to set the current value used for the comparison, it succeeds only if
559   /// it wasn't set before or if the new value is the same as the old one
560   bool setValueOnce(Value *NewVal) {
561     if (CompValue && CompValue != NewVal)
562       return false;
563     CompValue = NewVal;
564     return (CompValue != nullptr);
565   }
566 
567   /// Try to match Instruction "I" as a comparison against a constant and
568   /// populates the array Vals with the set of values that match (or do not
569   /// match depending on isEQ).
570   /// Return false on failure. On success, the Value the comparison matched
571   /// against is placed in CompValue.
572   /// If CompValue is already set, the function is expected to fail if a match
573   /// is found but the value compared to is different.
574   bool matchInstruction(Instruction *I, bool isEQ) {
575     // If this is an icmp against a constant, handle this as one of the cases.
576     ICmpInst *ICI;
577     ConstantInt *C;
578     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
579           (C = getConstantInt(I->getOperand(1), DL)))) {
580       return false;
581     }
582 
583     Value *RHSVal;
584     const APInt *RHSC;
585 
586     // Pattern match a special case
587     // (x & ~2^z) == y --> x == y || x == y|2^z
588     // This undoes a transformation done by instcombine to fuse 2 compares.
589     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
590       // It's a little bit hard to see why the following transformations are
591       // correct. Here is a CVC3 program to verify them for 64-bit values:
592 
593       /*
594          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
595          x    : BITVECTOR(64);
596          y    : BITVECTOR(64);
597          z    : BITVECTOR(64);
598          mask : BITVECTOR(64) = BVSHL(ONE, z);
599          QUERY( (y & ~mask = y) =>
600                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
601          );
602          QUERY( (y |  mask = y) =>
603                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
604          );
605       */
606 
607       // Please note that each pattern must be a dual implication (<--> or
608       // iff). One directional implication can create spurious matches. If the
609       // implication is only one-way, an unsatisfiable condition on the left
610       // side can imply a satisfiable condition on the right side. Dual
611       // implication ensures that satisfiable conditions are transformed to
612       // other satisfiable conditions and unsatisfiable conditions are
613       // transformed to other unsatisfiable conditions.
614 
615       // Here is a concrete example of a unsatisfiable condition on the left
616       // implying a satisfiable condition on the right:
617       //
618       // mask = (1 << z)
619       // (x & ~mask) == y  --> (x == y || x == (y | mask))
620       //
621       // Substituting y = 3, z = 0 yields:
622       // (x & -2) == 3 --> (x == 3 || x == 2)
623 
624       // Pattern match a special case:
625       /*
626         QUERY( (y & ~mask = y) =>
627                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
628         );
629       */
630       if (match(ICI->getOperand(0),
631                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
632         APInt Mask = ~*RHSC;
633         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
634           // If we already have a value for the switch, it has to match!
635           if (!setValueOnce(RHSVal))
636             return false;
637 
638           Vals.push_back(C);
639           Vals.push_back(
640               ConstantInt::get(C->getContext(),
641                                C->getValue() | Mask));
642           UsedICmps++;
643           return true;
644         }
645       }
646 
647       // Pattern match a special case:
648       /*
649         QUERY( (y |  mask = y) =>
650                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
651         );
652       */
653       if (match(ICI->getOperand(0),
654                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
655         APInt Mask = *RHSC;
656         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
657           // If we already have a value for the switch, it has to match!
658           if (!setValueOnce(RHSVal))
659             return false;
660 
661           Vals.push_back(C);
662           Vals.push_back(ConstantInt::get(C->getContext(),
663                                           C->getValue() & ~Mask));
664           UsedICmps++;
665           return true;
666         }
667       }
668 
669       // If we already have a value for the switch, it has to match!
670       if (!setValueOnce(ICI->getOperand(0)))
671         return false;
672 
673       UsedICmps++;
674       Vals.push_back(C);
675       return ICI->getOperand(0);
676     }
677 
678     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
679     ConstantRange Span =
680         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
681 
682     // Shift the range if the compare is fed by an add. This is the range
683     // compare idiom as emitted by instcombine.
684     Value *CandidateVal = I->getOperand(0);
685     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
686       Span = Span.subtract(*RHSC);
687       CandidateVal = RHSVal;
688     }
689 
690     // If this is an and/!= check, then we are looking to build the set of
691     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
692     // x != 0 && x != 1.
693     if (!isEQ)
694       Span = Span.inverse();
695 
696     // If there are a ton of values, we don't want to make a ginormous switch.
697     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
698       return false;
699     }
700 
701     // If we already have a value for the switch, it has to match!
702     if (!setValueOnce(CandidateVal))
703       return false;
704 
705     // Add all values from the range to the set
706     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
707       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
708 
709     UsedICmps++;
710     return true;
711   }
712 
713   /// Given a potentially 'or'd or 'and'd together collection of icmp
714   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
715   /// the value being compared, and stick the list constants into the Vals
716   /// vector.
717   /// One "Extra" case is allowed to differ from the other.
718   void gather(Value *V) {
719     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
720 
721     // Keep a stack (SmallVector for efficiency) for depth-first traversal
722     SmallVector<Value *, 8> DFT;
723     SmallPtrSet<Value *, 8> Visited;
724 
725     // Initialize
726     Visited.insert(V);
727     DFT.push_back(V);
728 
729     while (!DFT.empty()) {
730       V = DFT.pop_back_val();
731 
732       if (Instruction *I = dyn_cast<Instruction>(V)) {
733         // If it is a || (or && depending on isEQ), process the operands.
734         Value *Op0, *Op1;
735         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
736                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
737           if (Visited.insert(Op1).second)
738             DFT.push_back(Op1);
739           if (Visited.insert(Op0).second)
740             DFT.push_back(Op0);
741 
742           continue;
743         }
744 
745         // Try to match the current instruction
746         if (matchInstruction(I, isEQ))
747           // Match succeed, continue the loop
748           continue;
749       }
750 
751       // One element of the sequence of || (or &&) could not be match as a
752       // comparison against the same value as the others.
753       // We allow only one "Extra" case to be checked before the switch
754       if (!Extra) {
755         Extra = V;
756         continue;
757       }
758       // Failed to parse a proper sequence, abort now
759       CompValue = nullptr;
760       break;
761     }
762   }
763 };
764 
765 } // end anonymous namespace
766 
767 static void eraseTerminatorAndDCECond(Instruction *TI,
768                                       MemorySSAUpdater *MSSAU = nullptr) {
769   Instruction *Cond = nullptr;
770   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
771     Cond = dyn_cast<Instruction>(SI->getCondition());
772   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
773     if (BI->isConditional())
774       Cond = dyn_cast<Instruction>(BI->getCondition());
775   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
776     Cond = dyn_cast<Instruction>(IBI->getAddress());
777   }
778 
779   TI->eraseFromParent();
780   if (Cond)
781     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
782 }
783 
784 /// Return true if the specified terminator checks
785 /// to see if a value is equal to constant integer value.
786 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
787   Value *CV = nullptr;
788   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
789     // Do not permit merging of large switch instructions into their
790     // predecessors unless there is only one predecessor.
791     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
792       CV = SI->getCondition();
793   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
794     if (BI->isConditional() && BI->getCondition()->hasOneUse())
795       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
796         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
797           CV = ICI->getOperand(0);
798       }
799 
800   // Unwrap any lossless ptrtoint cast.
801   if (CV) {
802     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
803       Value *Ptr = PTII->getPointerOperand();
804       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
805         CV = Ptr;
806     }
807   }
808   return CV;
809 }
810 
811 /// Given a value comparison instruction,
812 /// decode all of the 'cases' that it represents and return the 'default' block.
813 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
814     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
815   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
816     Cases.reserve(SI->getNumCases());
817     for (auto Case : SI->cases())
818       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
819                                                   Case.getCaseSuccessor()));
820     return SI->getDefaultDest();
821   }
822 
823   BranchInst *BI = cast<BranchInst>(TI);
824   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
825   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
826   Cases.push_back(ValueEqualityComparisonCase(
827       getConstantInt(ICI->getOperand(1), DL), Succ));
828   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
829 }
830 
831 /// Given a vector of bb/value pairs, remove any entries
832 /// in the list that match the specified block.
833 static void
834 eliminateBlockCases(BasicBlock *BB,
835                     std::vector<ValueEqualityComparisonCase> &Cases) {
836   llvm::erase(Cases, BB);
837 }
838 
839 /// Return true if there are any keys in C1 that exist in C2 as well.
840 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
841                           std::vector<ValueEqualityComparisonCase> &C2) {
842   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
843 
844   // Make V1 be smaller than V2.
845   if (V1->size() > V2->size())
846     std::swap(V1, V2);
847 
848   if (V1->empty())
849     return false;
850   if (V1->size() == 1) {
851     // Just scan V2.
852     ConstantInt *TheVal = (*V1)[0].Value;
853     for (const ValueEqualityComparisonCase &VECC : *V2)
854       if (TheVal == VECC.Value)
855         return true;
856   }
857 
858   // Otherwise, just sort both lists and compare element by element.
859   array_pod_sort(V1->begin(), V1->end());
860   array_pod_sort(V2->begin(), V2->end());
861   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
862   while (i1 != e1 && i2 != e2) {
863     if ((*V1)[i1].Value == (*V2)[i2].Value)
864       return true;
865     if ((*V1)[i1].Value < (*V2)[i2].Value)
866       ++i1;
867     else
868       ++i2;
869   }
870   return false;
871 }
872 
873 // Set branch weights on SwitchInst. This sets the metadata if there is at
874 // least one non-zero weight.
875 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
876                              bool IsExpected) {
877   // Check that there is at least one non-zero weight. Otherwise, pass
878   // nullptr to setMetadata which will erase the existing metadata.
879   MDNode *N = nullptr;
880   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
881     N = MDBuilder(SI->getParent()->getContext())
882             .createBranchWeights(Weights, IsExpected);
883   SI->setMetadata(LLVMContext::MD_prof, N);
884 }
885 
886 // Similar to the above, but for branch and select instructions that take
887 // exactly 2 weights.
888 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
889                              uint32_t FalseWeight, bool IsExpected) {
890   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
891   // Check that there is at least one non-zero weight. Otherwise, pass
892   // nullptr to setMetadata which will erase the existing metadata.
893   MDNode *N = nullptr;
894   if (TrueWeight || FalseWeight)
895     N = MDBuilder(I->getParent()->getContext())
896             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
897   I->setMetadata(LLVMContext::MD_prof, N);
898 }
899 
900 /// If TI is known to be a terminator instruction and its block is known to
901 /// only have a single predecessor block, check to see if that predecessor is
902 /// also a value comparison with the same value, and if that comparison
903 /// determines the outcome of this comparison. If so, simplify TI. This does a
904 /// very limited form of jump threading.
905 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
906     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
907   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
908   if (!PredVal)
909     return false; // Not a value comparison in predecessor.
910 
911   Value *ThisVal = isValueEqualityComparison(TI);
912   assert(ThisVal && "This isn't a value comparison!!");
913   if (ThisVal != PredVal)
914     return false; // Different predicates.
915 
916   // TODO: Preserve branch weight metadata, similarly to how
917   // foldValueComparisonIntoPredecessors preserves it.
918 
919   // Find out information about when control will move from Pred to TI's block.
920   std::vector<ValueEqualityComparisonCase> PredCases;
921   BasicBlock *PredDef =
922       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
923   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
924 
925   // Find information about how control leaves this block.
926   std::vector<ValueEqualityComparisonCase> ThisCases;
927   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
928   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
929 
930   // If TI's block is the default block from Pred's comparison, potentially
931   // simplify TI based on this knowledge.
932   if (PredDef == TI->getParent()) {
933     // If we are here, we know that the value is none of those cases listed in
934     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
935     // can simplify TI.
936     if (!valuesOverlap(PredCases, ThisCases))
937       return false;
938 
939     if (isa<BranchInst>(TI)) {
940       // Okay, one of the successors of this condbr is dead.  Convert it to a
941       // uncond br.
942       assert(ThisCases.size() == 1 && "Branch can only have one case!");
943       // Insert the new branch.
944       Instruction *NI = Builder.CreateBr(ThisDef);
945       (void)NI;
946 
947       // Remove PHI node entries for the dead edge.
948       ThisCases[0].Dest->removePredecessor(PredDef);
949 
950       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
951                         << "Through successor TI: " << *TI << "Leaving: " << *NI
952                         << "\n");
953 
954       eraseTerminatorAndDCECond(TI);
955 
956       if (DTU)
957         DTU->applyUpdates(
958             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
959 
960       return true;
961     }
962 
963     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
964     // Okay, TI has cases that are statically dead, prune them away.
965     SmallPtrSet<Constant *, 16> DeadCases;
966     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
967       DeadCases.insert(PredCases[i].Value);
968 
969     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
970                       << "Through successor TI: " << *TI);
971 
972     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
973     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
974       --i;
975       auto *Successor = i->getCaseSuccessor();
976       if (DTU)
977         ++NumPerSuccessorCases[Successor];
978       if (DeadCases.count(i->getCaseValue())) {
979         Successor->removePredecessor(PredDef);
980         SI.removeCase(i);
981         if (DTU)
982           --NumPerSuccessorCases[Successor];
983       }
984     }
985 
986     if (DTU) {
987       std::vector<DominatorTree::UpdateType> Updates;
988       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
989         if (I.second == 0)
990           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
991       DTU->applyUpdates(Updates);
992     }
993 
994     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
995     return true;
996   }
997 
998   // Otherwise, TI's block must correspond to some matched value.  Find out
999   // which value (or set of values) this is.
1000   ConstantInt *TIV = nullptr;
1001   BasicBlock *TIBB = TI->getParent();
1002   for (const auto &[Value, Dest] : PredCases)
1003     if (Dest == TIBB) {
1004       if (TIV)
1005         return false; // Cannot handle multiple values coming to this block.
1006       TIV = Value;
1007     }
1008   assert(TIV && "No edge from pred to succ?");
1009 
1010   // Okay, we found the one constant that our value can be if we get into TI's
1011   // BB.  Find out which successor will unconditionally be branched to.
1012   BasicBlock *TheRealDest = nullptr;
1013   for (const auto &[Value, Dest] : ThisCases)
1014     if (Value == TIV) {
1015       TheRealDest = Dest;
1016       break;
1017     }
1018 
1019   // If not handled by any explicit cases, it is handled by the default case.
1020   if (!TheRealDest)
1021     TheRealDest = ThisDef;
1022 
1023   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1024 
1025   // Remove PHI node entries for dead edges.
1026   BasicBlock *CheckEdge = TheRealDest;
1027   for (BasicBlock *Succ : successors(TIBB))
1028     if (Succ != CheckEdge) {
1029       if (Succ != TheRealDest)
1030         RemovedSuccs.insert(Succ);
1031       Succ->removePredecessor(TIBB);
1032     } else
1033       CheckEdge = nullptr;
1034 
1035   // Insert the new branch.
1036   Instruction *NI = Builder.CreateBr(TheRealDest);
1037   (void)NI;
1038 
1039   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1040                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1041                     << "\n");
1042 
1043   eraseTerminatorAndDCECond(TI);
1044   if (DTU) {
1045     SmallVector<DominatorTree::UpdateType, 2> Updates;
1046     Updates.reserve(RemovedSuccs.size());
1047     for (auto *RemovedSucc : RemovedSuccs)
1048       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1049     DTU->applyUpdates(Updates);
1050   }
1051   return true;
1052 }
1053 
1054 namespace {
1055 
1056 /// This class implements a stable ordering of constant
1057 /// integers that does not depend on their address.  This is important for
1058 /// applications that sort ConstantInt's to ensure uniqueness.
1059 struct ConstantIntOrdering {
1060   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1061     return LHS->getValue().ult(RHS->getValue());
1062   }
1063 };
1064 
1065 } // end anonymous namespace
1066 
1067 static int constantIntSortPredicate(ConstantInt *const *P1,
1068                                     ConstantInt *const *P2) {
1069   const ConstantInt *LHS = *P1;
1070   const ConstantInt *RHS = *P2;
1071   if (LHS == RHS)
1072     return 0;
1073   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1074 }
1075 
1076 /// Get Weights of a given terminator, the default weight is at the front
1077 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1078 /// metadata.
1079 static void getBranchWeights(Instruction *TI,
1080                              SmallVectorImpl<uint64_t> &Weights) {
1081   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1082   assert(MD && "Invalid branch-weight metadata");
1083   extractFromBranchWeightMD64(MD, Weights);
1084 
1085   // If TI is a conditional eq, the default case is the false case,
1086   // and the corresponding branch-weight data is at index 2. We swap the
1087   // default weight to be the first entry.
1088   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1089     assert(Weights.size() == 2);
1090     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1091     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1092       std::swap(Weights.front(), Weights.back());
1093   }
1094 }
1095 
1096 /// Keep halving the weights until all can fit in uint32_t.
1097 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1098   uint64_t Max = *llvm::max_element(Weights);
1099   if (Max > UINT_MAX) {
1100     unsigned Offset = 32 - llvm::countl_zero(Max);
1101     for (uint64_t &I : Weights)
1102       I >>= Offset;
1103   }
1104 }
1105 
1106 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1107     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1108   Instruction *PTI = PredBlock->getTerminator();
1109 
1110   // If we have bonus instructions, clone them into the predecessor block.
1111   // Note that there may be multiple predecessor blocks, so we cannot move
1112   // bonus instructions to a predecessor block.
1113   for (Instruction &BonusInst : *BB) {
1114     if (BonusInst.isTerminator())
1115       continue;
1116 
1117     Instruction *NewBonusInst = BonusInst.clone();
1118 
1119     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1120         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1121       // Unless the instruction has the same !dbg location as the original
1122       // branch, drop it. When we fold the bonus instructions we want to make
1123       // sure we reset their debug locations in order to avoid stepping on
1124       // dead code caused by folding dead branches.
1125       NewBonusInst->setDebugLoc(DebugLoc());
1126     }
1127 
1128     RemapInstruction(NewBonusInst, VMap,
1129                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1130 
1131     // If we speculated an instruction, we need to drop any metadata that may
1132     // result in undefined behavior, as the metadata might have been valid
1133     // only given the branch precondition.
1134     // Similarly strip attributes on call parameters that may cause UB in
1135     // location the call is moved to.
1136     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1137 
1138     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1139     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1140     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1141                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1142 
1143     if (isa<DbgInfoIntrinsic>(BonusInst))
1144       continue;
1145 
1146     NewBonusInst->takeName(&BonusInst);
1147     BonusInst.setName(NewBonusInst->getName() + ".old");
1148     VMap[&BonusInst] = NewBonusInst;
1149 
1150     // Update (liveout) uses of bonus instructions,
1151     // now that the bonus instruction has been cloned into predecessor.
1152     // Note that we expect to be in a block-closed SSA form for this to work!
1153     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1154       auto *UI = cast<Instruction>(U.getUser());
1155       auto *PN = dyn_cast<PHINode>(UI);
1156       if (!PN) {
1157         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1158                "If the user is not a PHI node, then it should be in the same "
1159                "block as, and come after, the original bonus instruction.");
1160         continue; // Keep using the original bonus instruction.
1161       }
1162       // Is this the block-closed SSA form PHI node?
1163       if (PN->getIncomingBlock(U) == BB)
1164         continue; // Great, keep using the original bonus instruction.
1165       // The only other alternative is an "use" when coming from
1166       // the predecessor block - here we should refer to the cloned bonus instr.
1167       assert(PN->getIncomingBlock(U) == PredBlock &&
1168              "Not in block-closed SSA form?");
1169       U.set(NewBonusInst);
1170     }
1171   }
1172 }
1173 
1174 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1175     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1176   BasicBlock *BB = TI->getParent();
1177   BasicBlock *Pred = PTI->getParent();
1178 
1179   SmallVector<DominatorTree::UpdateType, 32> Updates;
1180 
1181   // Figure out which 'cases' to copy from SI to PSI.
1182   std::vector<ValueEqualityComparisonCase> BBCases;
1183   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1184 
1185   std::vector<ValueEqualityComparisonCase> PredCases;
1186   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1187 
1188   // Based on whether the default edge from PTI goes to BB or not, fill in
1189   // PredCases and PredDefault with the new switch cases we would like to
1190   // build.
1191   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1192 
1193   // Update the branch weight metadata along the way
1194   SmallVector<uint64_t, 8> Weights;
1195   bool PredHasWeights = hasBranchWeightMD(*PTI);
1196   bool SuccHasWeights = hasBranchWeightMD(*TI);
1197 
1198   if (PredHasWeights) {
1199     getBranchWeights(PTI, Weights);
1200     // branch-weight metadata is inconsistent here.
1201     if (Weights.size() != 1 + PredCases.size())
1202       PredHasWeights = SuccHasWeights = false;
1203   } else if (SuccHasWeights)
1204     // If there are no predecessor weights but there are successor weights,
1205     // populate Weights with 1, which will later be scaled to the sum of
1206     // successor's weights
1207     Weights.assign(1 + PredCases.size(), 1);
1208 
1209   SmallVector<uint64_t, 8> SuccWeights;
1210   if (SuccHasWeights) {
1211     getBranchWeights(TI, SuccWeights);
1212     // branch-weight metadata is inconsistent here.
1213     if (SuccWeights.size() != 1 + BBCases.size())
1214       PredHasWeights = SuccHasWeights = false;
1215   } else if (PredHasWeights)
1216     SuccWeights.assign(1 + BBCases.size(), 1);
1217 
1218   if (PredDefault == BB) {
1219     // If this is the default destination from PTI, only the edges in TI
1220     // that don't occur in PTI, or that branch to BB will be activated.
1221     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1222     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1223       if (PredCases[i].Dest != BB)
1224         PTIHandled.insert(PredCases[i].Value);
1225       else {
1226         // The default destination is BB, we don't need explicit targets.
1227         std::swap(PredCases[i], PredCases.back());
1228 
1229         if (PredHasWeights || SuccHasWeights) {
1230           // Increase weight for the default case.
1231           Weights[0] += Weights[i + 1];
1232           std::swap(Weights[i + 1], Weights.back());
1233           Weights.pop_back();
1234         }
1235 
1236         PredCases.pop_back();
1237         --i;
1238         --e;
1239       }
1240 
1241     // Reconstruct the new switch statement we will be building.
1242     if (PredDefault != BBDefault) {
1243       PredDefault->removePredecessor(Pred);
1244       if (DTU && PredDefault != BB)
1245         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1246       PredDefault = BBDefault;
1247       ++NewSuccessors[BBDefault];
1248     }
1249 
1250     unsigned CasesFromPred = Weights.size();
1251     uint64_t ValidTotalSuccWeight = 0;
1252     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1253       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1254         PredCases.push_back(BBCases[i]);
1255         ++NewSuccessors[BBCases[i].Dest];
1256         if (SuccHasWeights || PredHasWeights) {
1257           // The default weight is at index 0, so weight for the ith case
1258           // should be at index i+1. Scale the cases from successor by
1259           // PredDefaultWeight (Weights[0]).
1260           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1261           ValidTotalSuccWeight += SuccWeights[i + 1];
1262         }
1263       }
1264 
1265     if (SuccHasWeights || PredHasWeights) {
1266       ValidTotalSuccWeight += SuccWeights[0];
1267       // Scale the cases from predecessor by ValidTotalSuccWeight.
1268       for (unsigned i = 1; i < CasesFromPred; ++i)
1269         Weights[i] *= ValidTotalSuccWeight;
1270       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1271       Weights[0] *= SuccWeights[0];
1272     }
1273   } else {
1274     // If this is not the default destination from PSI, only the edges
1275     // in SI that occur in PSI with a destination of BB will be
1276     // activated.
1277     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1278     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1279     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1280       if (PredCases[i].Dest == BB) {
1281         PTIHandled.insert(PredCases[i].Value);
1282 
1283         if (PredHasWeights || SuccHasWeights) {
1284           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1285           std::swap(Weights[i + 1], Weights.back());
1286           Weights.pop_back();
1287         }
1288 
1289         std::swap(PredCases[i], PredCases.back());
1290         PredCases.pop_back();
1291         --i;
1292         --e;
1293       }
1294 
1295     // Okay, now we know which constants were sent to BB from the
1296     // predecessor.  Figure out where they will all go now.
1297     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1298       if (PTIHandled.count(BBCases[i].Value)) {
1299         // If this is one we are capable of getting...
1300         if (PredHasWeights || SuccHasWeights)
1301           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1302         PredCases.push_back(BBCases[i]);
1303         ++NewSuccessors[BBCases[i].Dest];
1304         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1305       }
1306 
1307     // If there are any constants vectored to BB that TI doesn't handle,
1308     // they must go to the default destination of TI.
1309     for (ConstantInt *I : PTIHandled) {
1310       if (PredHasWeights || SuccHasWeights)
1311         Weights.push_back(WeightsForHandled[I]);
1312       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1313       ++NewSuccessors[BBDefault];
1314     }
1315   }
1316 
1317   // Okay, at this point, we know which new successor Pred will get.  Make
1318   // sure we update the number of entries in the PHI nodes for these
1319   // successors.
1320   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1321   if (DTU) {
1322     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1323     Updates.reserve(Updates.size() + NewSuccessors.size());
1324   }
1325   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1326        NewSuccessors) {
1327     for (auto I : seq(NewSuccessor.second)) {
1328       (void)I;
1329       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1330     }
1331     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1332       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1333   }
1334 
1335   Builder.SetInsertPoint(PTI);
1336   // Convert pointer to int before we switch.
1337   if (CV->getType()->isPointerTy()) {
1338     CV =
1339         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1340   }
1341 
1342   // Now that the successors are updated, create the new Switch instruction.
1343   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1344   NewSI->setDebugLoc(PTI->getDebugLoc());
1345   for (ValueEqualityComparisonCase &V : PredCases)
1346     NewSI->addCase(V.Value, V.Dest);
1347 
1348   if (PredHasWeights || SuccHasWeights) {
1349     // Halve the weights if any of them cannot fit in an uint32_t
1350     fitWeights(Weights);
1351 
1352     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1353 
1354     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1355   }
1356 
1357   eraseTerminatorAndDCECond(PTI);
1358 
1359   // Okay, last check.  If BB is still a successor of PSI, then we must
1360   // have an infinite loop case.  If so, add an infinitely looping block
1361   // to handle the case to preserve the behavior of the code.
1362   BasicBlock *InfLoopBlock = nullptr;
1363   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1364     if (NewSI->getSuccessor(i) == BB) {
1365       if (!InfLoopBlock) {
1366         // Insert it at the end of the function, because it's either code,
1367         // or it won't matter if it's hot. :)
1368         InfLoopBlock =
1369             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1370         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1371         if (DTU)
1372           Updates.push_back(
1373               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1374       }
1375       NewSI->setSuccessor(i, InfLoopBlock);
1376     }
1377 
1378   if (DTU) {
1379     if (InfLoopBlock)
1380       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1381 
1382     Updates.push_back({DominatorTree::Delete, Pred, BB});
1383 
1384     DTU->applyUpdates(Updates);
1385   }
1386 
1387   ++NumFoldValueComparisonIntoPredecessors;
1388   return true;
1389 }
1390 
1391 /// The specified terminator is a value equality comparison instruction
1392 /// (either a switch or a branch on "X == c").
1393 /// See if any of the predecessors of the terminator block are value comparisons
1394 /// on the same value.  If so, and if safe to do so, fold them together.
1395 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1396                                                          IRBuilder<> &Builder) {
1397   BasicBlock *BB = TI->getParent();
1398   Value *CV = isValueEqualityComparison(TI); // CondVal
1399   assert(CV && "Not a comparison?");
1400 
1401   bool Changed = false;
1402 
1403   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1404   while (!Preds.empty()) {
1405     BasicBlock *Pred = Preds.pop_back_val();
1406     Instruction *PTI = Pred->getTerminator();
1407 
1408     // Don't try to fold into itself.
1409     if (Pred == BB)
1410       continue;
1411 
1412     // See if the predecessor is a comparison with the same value.
1413     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1414     if (PCV != CV)
1415       continue;
1416 
1417     SmallSetVector<BasicBlock *, 4> FailBlocks;
1418     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1419       for (auto *Succ : FailBlocks) {
1420         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1421           return false;
1422       }
1423     }
1424 
1425     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1426     Changed = true;
1427   }
1428   return Changed;
1429 }
1430 
1431 // If we would need to insert a select that uses the value of this invoke
1432 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1433 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1434 // select in this case.
1435 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1436                                 Instruction *I1, Instruction *I2) {
1437   for (BasicBlock *Succ : successors(BB1)) {
1438     for (const PHINode &PN : Succ->phis()) {
1439       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1440       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1441       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1442         return false;
1443       }
1444     }
1445   }
1446   return true;
1447 }
1448 
1449 // Get interesting characteristics of instructions that
1450 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1451 // instructions can be reordered across.
1452 enum SkipFlags {
1453   SkipReadMem = 1,
1454   SkipSideEffect = 2,
1455   SkipImplicitControlFlow = 4
1456 };
1457 
1458 static unsigned skippedInstrFlags(Instruction *I) {
1459   unsigned Flags = 0;
1460   if (I->mayReadFromMemory())
1461     Flags |= SkipReadMem;
1462   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1463   // inalloca) across stacksave/stackrestore boundaries.
1464   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1465     Flags |= SkipSideEffect;
1466   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1467     Flags |= SkipImplicitControlFlow;
1468   return Flags;
1469 }
1470 
1471 // Returns true if it is safe to reorder an instruction across preceding
1472 // instructions in a basic block.
1473 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1474   // Don't reorder a store over a load.
1475   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1476     return false;
1477 
1478   // If we have seen an instruction with side effects, it's unsafe to reorder an
1479   // instruction which reads memory or itself has side effects.
1480   if ((Flags & SkipSideEffect) &&
1481       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1482     return false;
1483 
1484   // Reordering across an instruction which does not necessarily transfer
1485   // control to the next instruction is speculation.
1486   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1487     return false;
1488 
1489   // Hoisting of llvm.deoptimize is only legal together with the next return
1490   // instruction, which this pass is not always able to do.
1491   if (auto *CB = dyn_cast<CallBase>(I))
1492     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1493       return false;
1494 
1495   // It's also unsafe/illegal to hoist an instruction above its instruction
1496   // operands
1497   BasicBlock *BB = I->getParent();
1498   for (Value *Op : I->operands()) {
1499     if (auto *J = dyn_cast<Instruction>(Op))
1500       if (J->getParent() == BB)
1501         return false;
1502   }
1503 
1504   return true;
1505 }
1506 
1507 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1508 
1509 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1510 /// instructions \p I1 and \p I2 can and should be hoisted.
1511 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1512                                           const TargetTransformInfo &TTI) {
1513   // If we're going to hoist a call, make sure that the two instructions
1514   // we're commoning/hoisting are both marked with musttail, or neither of
1515   // them is marked as such. Otherwise, we might end up in a situation where
1516   // we hoist from a block where the terminator is a `ret` to a block where
1517   // the terminator is a `br`, and `musttail` calls expect to be followed by
1518   // a return.
1519   auto *C1 = dyn_cast<CallInst>(I1);
1520   auto *C2 = dyn_cast<CallInst>(I2);
1521   if (C1 && C2)
1522     if (C1->isMustTailCall() != C2->isMustTailCall())
1523       return false;
1524 
1525   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1526     return false;
1527 
1528   // If any of the two call sites has nomerge or convergent attribute, stop
1529   // hoisting.
1530   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1531     if (CB1->cannotMerge() || CB1->isConvergent())
1532       return false;
1533   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1534     if (CB2->cannotMerge() || CB2->isConvergent())
1535       return false;
1536 
1537   return true;
1538 }
1539 
1540 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1541 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1542 /// hoistCommonCodeFromSuccessors. e.g. The input:
1543 ///    I1                DVRs: { x, z },
1544 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1545 /// would result in hoisting only DbgVariableRecord x.
1546 static void hoistLockstepIdenticalDbgVariableRecords(
1547     Instruction *TI, Instruction *I1,
1548     SmallVectorImpl<Instruction *> &OtherInsts) {
1549   if (!I1->hasDbgRecords())
1550     return;
1551   using CurrentAndEndIt =
1552       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1553   // Vector of {Current, End} iterators.
1554   SmallVector<CurrentAndEndIt> Itrs;
1555   Itrs.reserve(OtherInsts.size() + 1);
1556   // Helper lambdas for lock-step checks:
1557   // Return true if this Current == End.
1558   auto atEnd = [](const CurrentAndEndIt &Pair) {
1559     return Pair.first == Pair.second;
1560   };
1561   // Return true if all Current are identical.
1562   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1563     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1564                   [&](DbgRecord::self_iterator I) {
1565                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1566                   });
1567   };
1568 
1569   // Collect the iterators.
1570   Itrs.push_back(
1571       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1572   for (Instruction *Other : OtherInsts) {
1573     if (!Other->hasDbgRecords())
1574       return;
1575     Itrs.push_back(
1576         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1577   }
1578 
1579   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1580   // the lock-step DbgRecord are identical, hoist all of them to TI.
1581   // This replicates the dbg.* intrinsic behaviour in
1582   // hoistCommonCodeFromSuccessors.
1583   while (none_of(Itrs, atEnd)) {
1584     bool HoistDVRs = allIdentical(Itrs);
1585     for (CurrentAndEndIt &Pair : Itrs) {
1586       // Increment Current iterator now as we may be about to move the
1587       // DbgRecord.
1588       DbgRecord &DR = *Pair.first++;
1589       if (HoistDVRs) {
1590         DR.removeFromParent();
1591         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1592       }
1593     }
1594   }
1595 }
1596 
1597 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1598                                           const Instruction *I2) {
1599   if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true))
1600     return true;
1601 
1602   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1603     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1604       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1605              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1606              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1607 
1608   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1609     return I1->getOperand(0) == I2->getOperand(1) &&
1610            I1->getOperand(1) == I2->getOperand(0) &&
1611            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1612   }
1613 
1614   return false;
1615 }
1616 
1617 /// If the target supports conditional faulting,
1618 /// we look for the following pattern:
1619 /// \code
1620 ///   BB:
1621 ///     ...
1622 ///     %cond = icmp ult %x, %y
1623 ///     br i1 %cond, label %TrueBB, label %FalseBB
1624 ///   FalseBB:
1625 ///     store i32 1, ptr %q, align 4
1626 ///     ...
1627 ///   TrueBB:
1628 ///     %maskedloadstore = load i32, ptr %b, align 4
1629 ///     store i32 %maskedloadstore, ptr %p, align 4
1630 ///     ...
1631 /// \endcode
1632 ///
1633 /// and transform it into:
1634 ///
1635 /// \code
1636 ///   BB:
1637 ///     ...
1638 ///     %cond = icmp ult %x, %y
1639 ///     %maskedloadstore = cload i32, ptr %b, %cond
1640 ///     cstore i32 %maskedloadstore, ptr %p, %cond
1641 ///     cstore i32 1, ptr %q, ~%cond
1642 ///     br i1 %cond, label %TrueBB, label %FalseBB
1643 ///   FalseBB:
1644 ///     ...
1645 ///   TrueBB:
1646 ///     ...
1647 /// \endcode
1648 ///
1649 /// where cload/cstore are represented by llvm.masked.load/store intrinsics,
1650 /// e.g.
1651 ///
1652 /// \code
1653 ///   %vcond = bitcast i1 %cond to <1 x i1>
1654 ///   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
1655 ///                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
1656 ///   %maskedloadstore = bitcast <1 x i32> %v0 to i32
1657 ///   call void @llvm.masked.store.v1i32.p0
1658 ///                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
1659 ///   %cond.not = xor i1 %cond, true
1660 ///   %vcond.not = bitcast i1 %cond.not to <1 x i>
1661 ///   call void @llvm.masked.store.v1i32.p0
1662 ///              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
1663 /// \endcode
1664 ///
1665 /// So we need to turn hoisted load/store into cload/cstore.
1666 ///
1667 /// \param BI The branch instruction.
1668 /// \param SpeculatedConditionalLoadsStores The load/store instructions that
1669 ///                                         will be speculated.
1670 /// \param Invert indicates if speculates FalseBB. Only used in triangle CFG.
1671 static void hoistConditionalLoadsStores(
1672     BranchInst *BI,
1673     SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores,
1674     std::optional<bool> Invert) {
1675   auto &Context = BI->getParent()->getContext();
1676   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
1677   auto *Cond = BI->getOperand(0);
1678   // Construct the condition if needed.
1679   BasicBlock *BB = BI->getParent();
1680   IRBuilder<> Builder(
1681       Invert.has_value() ? SpeculatedConditionalLoadsStores.back() : BI);
1682   Value *Mask = nullptr;
1683   Value *MaskFalse = nullptr;
1684   Value *MaskTrue = nullptr;
1685   if (Invert.has_value()) {
1686     Mask = Builder.CreateBitCast(
1687         *Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
1688         VCondTy);
1689   } else {
1690     MaskFalse = Builder.CreateBitCast(
1691         Builder.CreateXor(Cond, ConstantInt::getTrue(Context)), VCondTy);
1692     MaskTrue = Builder.CreateBitCast(Cond, VCondTy);
1693   }
1694   auto PeekThroughBitcasts = [](Value *V) {
1695     while (auto *BitCast = dyn_cast<BitCastInst>(V))
1696       V = BitCast->getOperand(0);
1697     return V;
1698   };
1699   for (auto *I : SpeculatedConditionalLoadsStores) {
1700     IRBuilder<> Builder(Invert.has_value() ? I : BI);
1701     if (!Invert.has_value())
1702       Mask = I->getParent() == BI->getSuccessor(0) ? MaskTrue : MaskFalse;
1703     // We currently assume conditional faulting load/store is supported for
1704     // scalar types only when creating new instructions. This can be easily
1705     // extended for vector types in the future.
1706     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
1707     auto *Op0 = I->getOperand(0);
1708     CallInst *MaskedLoadStore = nullptr;
1709     if (auto *LI = dyn_cast<LoadInst>(I)) {
1710       // Handle Load.
1711       auto *Ty = I->getType();
1712       PHINode *PN = nullptr;
1713       Value *PassThru = nullptr;
1714       if (Invert.has_value())
1715         for (User *U : I->users())
1716           if ((PN = dyn_cast<PHINode>(U))) {
1717             PassThru = Builder.CreateBitCast(
1718                 PeekThroughBitcasts(PN->getIncomingValueForBlock(BB)),
1719                 FixedVectorType::get(Ty, 1));
1720             break;
1721           }
1722       MaskedLoadStore = Builder.CreateMaskedLoad(
1723           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
1724       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
1725       if (PN)
1726         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
1727       I->replaceAllUsesWith(NewLoadStore);
1728     } else {
1729       // Handle Store.
1730       auto *StoredVal = Builder.CreateBitCast(
1731           PeekThroughBitcasts(Op0), FixedVectorType::get(Op0->getType(), 1));
1732       MaskedLoadStore = Builder.CreateMaskedStore(
1733           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
1734     }
1735     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
1736     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
1737     //
1738     // !nonnull, !align : Not support pointer type, no need to keep.
1739     // !range: Load type is changed from scalar to vector, but the metadata on
1740     //         vector specifies a per-element range, so the semantics stay the
1741     //         same. Keep it.
1742     // !annotation: Not impact semantics. Keep it.
1743     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1744       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
1745     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
1746     // FIXME: DIAssignID is not supported for masked store yet.
1747     // (Verifier::visitDIAssignIDMetadata)
1748     at::deleteAssignmentMarkers(I);
1749     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
1750       return Node->getMetadataID() == Metadata::DIAssignIDKind;
1751     });
1752     MaskedLoadStore->copyMetadata(*I);
1753     I->eraseFromParent();
1754   }
1755 }
1756 
1757 static bool isSafeCheapLoadStore(const Instruction *I,
1758                                  const TargetTransformInfo &TTI) {
1759   // Not handle volatile or atomic.
1760   if (auto *L = dyn_cast<LoadInst>(I)) {
1761     if (!L->isSimple())
1762       return false;
1763   } else if (auto *S = dyn_cast<StoreInst>(I)) {
1764     if (!S->isSimple())
1765       return false;
1766   } else
1767     return false;
1768 
1769   // llvm.masked.load/store use i32 for alignment while load/store use i64.
1770   // That's why we have the alignment limitation.
1771   // FIXME: Update the prototype of the intrinsics?
1772   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
1773          getLoadStoreAlignment(I) < Value::MaximumAlignment;
1774 }
1775 
1776 namespace {
1777 
1778 // LockstepReverseIterator - Iterates through instructions
1779 // in a set of blocks in reverse order from the first non-terminator.
1780 // For example (assume all blocks have size n):
1781 //   LockstepReverseIterator I([B1, B2, B3]);
1782 //   *I-- = [B1[n], B2[n], B3[n]];
1783 //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1784 //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1785 //   ...
1786 class LockstepReverseIterator {
1787   ArrayRef<BasicBlock *> Blocks;
1788   SmallVector<Instruction *, 4> Insts;
1789   bool Fail;
1790 
1791 public:
1792   LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
1793     reset();
1794   }
1795 
1796   void reset() {
1797     Fail = false;
1798     Insts.clear();
1799     for (auto *BB : Blocks) {
1800       Instruction *Inst = BB->getTerminator();
1801       for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1802         Inst = Inst->getPrevNode();
1803       if (!Inst) {
1804         // Block wasn't big enough.
1805         Fail = true;
1806         return;
1807       }
1808       Insts.push_back(Inst);
1809     }
1810   }
1811 
1812   bool isValid() const { return !Fail; }
1813 
1814   void operator--() {
1815     if (Fail)
1816       return;
1817     for (auto *&Inst : Insts) {
1818       for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1819         Inst = Inst->getPrevNode();
1820       // Already at beginning of block.
1821       if (!Inst) {
1822         Fail = true;
1823         return;
1824       }
1825     }
1826   }
1827 
1828   void operator++() {
1829     if (Fail)
1830       return;
1831     for (auto *&Inst : Insts) {
1832       for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1833         Inst = Inst->getNextNode();
1834       // Already at end of block.
1835       if (!Inst) {
1836         Fail = true;
1837         return;
1838       }
1839     }
1840   }
1841 
1842   ArrayRef<Instruction *> operator*() const { return Insts; }
1843 };
1844 
1845 } // end anonymous namespace
1846 
1847 /// Hoist any common code in the successor blocks up into the block. This
1848 /// function guarantees that BB dominates all successors. If AllInstsEqOnly is
1849 /// given, only perform hoisting in case all successors blocks contain matching
1850 /// instructions only. In that case, all instructions can be hoisted and the
1851 /// original branch will be replaced and selects for PHIs are added.
1852 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI,
1853                                                    bool AllInstsEqOnly) {
1854   // This does very trivial matching, with limited scanning, to find identical
1855   // instructions in the two blocks. In particular, we don't want to get into
1856   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1857   // such, we currently just scan for obviously identical instructions in an
1858   // identical order, possibly separated by the same number of non-identical
1859   // instructions.
1860   BasicBlock *BB = TI->getParent();
1861   unsigned int SuccSize = succ_size(BB);
1862   if (SuccSize < 2)
1863     return false;
1864 
1865   // If either of the blocks has it's address taken, then we can't do this fold,
1866   // because the code we'd hoist would no longer run when we jump into the block
1867   // by it's address.
1868   for (auto *Succ : successors(BB))
1869     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1870       return false;
1871 
1872   // The second of pair is a SkipFlags bitmask.
1873   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1874   SmallVector<SuccIterPair, 8> SuccIterPairs;
1875   for (auto *Succ : successors(BB)) {
1876     BasicBlock::iterator SuccItr = Succ->begin();
1877     if (isa<PHINode>(*SuccItr))
1878       return false;
1879     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1880   }
1881 
1882   if (AllInstsEqOnly) {
1883     // Check if all instructions in the successor blocks match. This allows
1884     // hoisting all instructions and removing the blocks we are hoisting from,
1885     // so does not add any new instructions.
1886     SmallVector<BasicBlock *> Succs = to_vector(successors(BB));
1887     // Check if sizes and terminators of all successors match.
1888     bool AllSame = none_of(Succs, [&Succs](BasicBlock *Succ) {
1889       Instruction *Term0 = Succs[0]->getTerminator();
1890       Instruction *Term = Succ->getTerminator();
1891       return !Term->isSameOperationAs(Term0) ||
1892              !equal(Term->operands(), Term0->operands()) ||
1893              Succs[0]->size() != Succ->size();
1894     });
1895     if (!AllSame)
1896       return false;
1897     if (AllSame) {
1898       LockstepReverseIterator LRI(Succs);
1899       while (LRI.isValid()) {
1900         Instruction *I0 = (*LRI)[0];
1901         if (any_of(*LRI, [I0](Instruction *I) {
1902               return !areIdenticalUpToCommutativity(I0, I);
1903             })) {
1904           return false;
1905         }
1906         --LRI;
1907       }
1908     }
1909     // Now we know that all instructions in all successors can be hoisted. Let
1910     // the loop below handle the hoisting.
1911   }
1912 
1913   // Count how many instructions were not hoisted so far. There's a limit on how
1914   // many instructions we skip, serving as a compilation time control as well as
1915   // preventing excessive increase of life ranges.
1916   unsigned NumSkipped = 0;
1917   // If we find an unreachable instruction at the beginning of a basic block, we
1918   // can still hoist instructions from the rest of the basic blocks.
1919   if (SuccIterPairs.size() > 2) {
1920     erase_if(SuccIterPairs,
1921              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1922     if (SuccIterPairs.size() < 2)
1923       return false;
1924   }
1925 
1926   bool Changed = false;
1927 
1928   for (;;) {
1929     auto *SuccIterPairBegin = SuccIterPairs.begin();
1930     auto &BB1ItrPair = *SuccIterPairBegin++;
1931     auto OtherSuccIterPairRange =
1932         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1933     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1934 
1935     Instruction *I1 = &*BB1ItrPair.first;
1936 
1937     // Skip debug info if it is not identical.
1938     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1939       Instruction *I2 = &*Iter;
1940       return I1->isIdenticalToWhenDefined(I2);
1941     });
1942     if (!AllDbgInstsAreIdentical) {
1943       while (isa<DbgInfoIntrinsic>(I1))
1944         I1 = &*++BB1ItrPair.first;
1945       for (auto &SuccIter : OtherSuccIterRange) {
1946         Instruction *I2 = &*SuccIter;
1947         while (isa<DbgInfoIntrinsic>(I2))
1948           I2 = &*++SuccIter;
1949       }
1950     }
1951 
1952     bool AllInstsAreIdentical = true;
1953     bool HasTerminator = I1->isTerminator();
1954     for (auto &SuccIter : OtherSuccIterRange) {
1955       Instruction *I2 = &*SuccIter;
1956       HasTerminator |= I2->isTerminator();
1957       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1958                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1959         AllInstsAreIdentical = false;
1960     }
1961 
1962     SmallVector<Instruction *, 8> OtherInsts;
1963     for (auto &SuccIter : OtherSuccIterRange)
1964       OtherInsts.push_back(&*SuccIter);
1965 
1966     // If we are hoisting the terminator instruction, don't move one (making a
1967     // broken BB), instead clone it, and remove BI.
1968     if (HasTerminator) {
1969       // Even if BB, which contains only one unreachable instruction, is ignored
1970       // at the beginning of the loop, we can hoist the terminator instruction.
1971       // If any instructions remain in the block, we cannot hoist terminators.
1972       if (NumSkipped || !AllInstsAreIdentical) {
1973         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1974         return Changed;
1975       }
1976 
1977       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1978              Changed;
1979     }
1980 
1981     if (AllInstsAreIdentical) {
1982       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1983       AllInstsAreIdentical =
1984           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1985           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1986             Instruction *I2 = &*Pair.first;
1987             unsigned SkipFlagsBB2 = Pair.second;
1988             // Even if the instructions are identical, it may not
1989             // be safe to hoist them if we have skipped over
1990             // instructions with side effects or their operands
1991             // weren't hoisted.
1992             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1993                    shouldHoistCommonInstructions(I1, I2, TTI);
1994           });
1995     }
1996 
1997     if (AllInstsAreIdentical) {
1998       BB1ItrPair.first++;
1999       if (isa<DbgInfoIntrinsic>(I1)) {
2000         // The debug location is an integral part of a debug info intrinsic
2001         // and can't be separated from it or replaced.  Instead of attempting
2002         // to merge locations, simply hoist both copies of the intrinsic.
2003         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2004         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
2005         // and leave any that were not hoisted behind (by calling moveBefore
2006         // rather than moveBeforePreserving).
2007         I1->moveBefore(TI->getIterator());
2008         for (auto &SuccIter : OtherSuccIterRange) {
2009           auto *I2 = &*SuccIter++;
2010           assert(isa<DbgInfoIntrinsic>(I2));
2011           I2->moveBefore(TI->getIterator());
2012         }
2013       } else {
2014         // For a normal instruction, we just move one to right before the
2015         // branch, then replace all uses of the other with the first.  Finally,
2016         // we remove the now redundant second instruction.
2017         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2018         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
2019         // and leave any that were not hoisted behind (by calling moveBefore
2020         // rather than moveBeforePreserving).
2021         I1->moveBefore(TI->getIterator());
2022         for (auto &SuccIter : OtherSuccIterRange) {
2023           Instruction *I2 = &*SuccIter++;
2024           assert(I2 != I1);
2025           if (!I2->use_empty())
2026             I2->replaceAllUsesWith(I1);
2027           I1->andIRFlags(I2);
2028           if (auto *CB = dyn_cast<CallBase>(I1)) {
2029             bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2));
2030             assert(Success && "We should not be trying to hoist callbases "
2031                               "with non-intersectable attributes");
2032             // For NDEBUG Compile.
2033             (void)Success;
2034           }
2035 
2036           combineMetadataForCSE(I1, I2, true);
2037           // I1 and I2 are being combined into a single instruction.  Its debug
2038           // location is the merged locations of the original instructions.
2039           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
2040           I2->eraseFromParent();
2041         }
2042       }
2043       if (!Changed)
2044         NumHoistCommonCode += SuccIterPairs.size();
2045       Changed = true;
2046       NumHoistCommonInstrs += SuccIterPairs.size();
2047     } else {
2048       if (NumSkipped >= HoistCommonSkipLimit) {
2049         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2050         return Changed;
2051       }
2052       // We are about to skip over a pair of non-identical instructions. Record
2053       // if any have characteristics that would prevent reordering instructions
2054       // across them.
2055       for (auto &SuccIterPair : SuccIterPairs) {
2056         Instruction *I = &*SuccIterPair.first++;
2057         SuccIterPair.second |= skippedInstrFlags(I);
2058       }
2059       ++NumSkipped;
2060     }
2061   }
2062 }
2063 
2064 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
2065     Instruction *TI, Instruction *I1,
2066     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
2067 
2068   auto *BI = dyn_cast<BranchInst>(TI);
2069 
2070   bool Changed = false;
2071   BasicBlock *TIParent = TI->getParent();
2072   BasicBlock *BB1 = I1->getParent();
2073 
2074   // Use only for an if statement.
2075   auto *I2 = *OtherSuccTIs.begin();
2076   auto *BB2 = I2->getParent();
2077   if (BI) {
2078     assert(OtherSuccTIs.size() == 1);
2079     assert(BI->getSuccessor(0) == I1->getParent());
2080     assert(BI->getSuccessor(1) == I2->getParent());
2081   }
2082 
2083   // In the case of an if statement, we try to hoist an invoke.
2084   // FIXME: Can we define a safety predicate for CallBr?
2085   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
2086   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
2087   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
2088     return false;
2089 
2090   // TODO: callbr hoisting currently disabled pending further study.
2091   if (isa<CallBrInst>(I1))
2092     return false;
2093 
2094   for (BasicBlock *Succ : successors(BB1)) {
2095     for (PHINode &PN : Succ->phis()) {
2096       Value *BB1V = PN.getIncomingValueForBlock(BB1);
2097       for (Instruction *OtherSuccTI : OtherSuccTIs) {
2098         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
2099         if (BB1V == BB2V)
2100           continue;
2101 
2102         // In the case of an if statement, check for
2103         // passingValueIsAlwaysUndefined here because we would rather eliminate
2104         // undefined control flow then converting it to a select.
2105         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
2106             passingValueIsAlwaysUndefined(BB2V, &PN))
2107           return false;
2108       }
2109     }
2110   }
2111 
2112   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
2113   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
2114   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
2115   // Clone the terminator and hoist it into the pred, without any debug info.
2116   Instruction *NT = I1->clone();
2117   NT->insertInto(TIParent, TI->getIterator());
2118   if (!NT->getType()->isVoidTy()) {
2119     I1->replaceAllUsesWith(NT);
2120     for (Instruction *OtherSuccTI : OtherSuccTIs)
2121       OtherSuccTI->replaceAllUsesWith(NT);
2122     NT->takeName(I1);
2123   }
2124   Changed = true;
2125   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
2126 
2127   // Ensure terminator gets a debug location, even an unknown one, in case
2128   // it involves inlinable calls.
2129   SmallVector<DILocation *, 4> Locs;
2130   Locs.push_back(I1->getDebugLoc());
2131   for (auto *OtherSuccTI : OtherSuccTIs)
2132     Locs.push_back(OtherSuccTI->getDebugLoc());
2133   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
2134 
2135   // PHIs created below will adopt NT's merged DebugLoc.
2136   IRBuilder<NoFolder> Builder(NT);
2137 
2138   // In the case of an if statement, hoisting one of the terminators from our
2139   // successor is a great thing. Unfortunately, the successors of the if/else
2140   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
2141   // must agree for all PHI nodes, so we insert select instruction to compute
2142   // the final result.
2143   if (BI) {
2144     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
2145     for (BasicBlock *Succ : successors(BB1)) {
2146       for (PHINode &PN : Succ->phis()) {
2147         Value *BB1V = PN.getIncomingValueForBlock(BB1);
2148         Value *BB2V = PN.getIncomingValueForBlock(BB2);
2149         if (BB1V == BB2V)
2150           continue;
2151 
2152         // These values do not agree.  Insert a select instruction before NT
2153         // that determines the right value.
2154         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
2155         if (!SI) {
2156           // Propagate fast-math-flags from phi node to its replacement select.
2157           SI = cast<SelectInst>(Builder.CreateSelectFMF(
2158               BI->getCondition(), BB1V, BB2V,
2159               isa<FPMathOperator>(PN) ? &PN : nullptr,
2160               BB1V->getName() + "." + BB2V->getName(), BI));
2161         }
2162 
2163         // Make the PHI node use the select for all incoming values for BB1/BB2
2164         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2165           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
2166             PN.setIncomingValue(i, SI);
2167       }
2168     }
2169   }
2170 
2171   SmallVector<DominatorTree::UpdateType, 4> Updates;
2172 
2173   // Update any PHI nodes in our new successors.
2174   for (BasicBlock *Succ : successors(BB1)) {
2175     addPredecessorToBlock(Succ, TIParent, BB1);
2176     if (DTU)
2177       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
2178   }
2179 
2180   if (DTU)
2181     for (BasicBlock *Succ : successors(TI))
2182       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
2183 
2184   eraseTerminatorAndDCECond(TI);
2185   if (DTU)
2186     DTU->applyUpdates(Updates);
2187   return Changed;
2188 }
2189 
2190 // Check lifetime markers.
2191 static bool isLifeTimeMarker(const Instruction *I) {
2192   if (auto II = dyn_cast<IntrinsicInst>(I)) {
2193     switch (II->getIntrinsicID()) {
2194     default:
2195       break;
2196     case Intrinsic::lifetime_start:
2197     case Intrinsic::lifetime_end:
2198       return true;
2199     }
2200   }
2201   return false;
2202 }
2203 
2204 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
2205 // into variables.
2206 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
2207                                                 int OpIdx) {
2208   // Divide/Remainder by constant is typically much cheaper than by variable.
2209   if (I->isIntDivRem())
2210     return OpIdx != 1;
2211   return !isa<IntrinsicInst>(I);
2212 }
2213 
2214 // All instructions in Insts belong to different blocks that all unconditionally
2215 // branch to a common successor. Analyze each instruction and return true if it
2216 // would be possible to sink them into their successor, creating one common
2217 // instruction instead. For every value that would be required to be provided by
2218 // PHI node (because an operand varies in each input block), add to PHIOperands.
2219 static bool canSinkInstructions(
2220     ArrayRef<Instruction *> Insts,
2221     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
2222   // Prune out obviously bad instructions to move. Each instruction must have
2223   // the same number of uses, and we check later that the uses are consistent.
2224   std::optional<unsigned> NumUses;
2225   for (auto *I : Insts) {
2226     // These instructions may change or break semantics if moved.
2227     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
2228         I->getType()->isTokenTy())
2229       return false;
2230 
2231     // Do not try to sink an instruction in an infinite loop - it can cause
2232     // this algorithm to infinite loop.
2233     if (I->getParent()->getSingleSuccessor() == I->getParent())
2234       return false;
2235 
2236     // Conservatively return false if I is an inline-asm instruction. Sinking
2237     // and merging inline-asm instructions can potentially create arguments
2238     // that cannot satisfy the inline-asm constraints.
2239     // If the instruction has nomerge or convergent attribute, return false.
2240     if (const auto *C = dyn_cast<CallBase>(I))
2241       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
2242         return false;
2243 
2244     if (!NumUses)
2245       NumUses = I->getNumUses();
2246     else if (NumUses != I->getNumUses())
2247       return false;
2248   }
2249 
2250   const Instruction *I0 = Insts.front();
2251   const auto I0MMRA = MMRAMetadata(*I0);
2252   for (auto *I : Insts) {
2253     if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs))
2254       return false;
2255 
2256     // swifterror pointers can only be used by a load or store; sinking a load
2257     // or store would require introducing a select for the pointer operand,
2258     // which isn't allowed for swifterror pointers.
2259     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2260       return false;
2261     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2262       return false;
2263 
2264     // Treat MMRAs conservatively. This pass can be quite aggressive and
2265     // could drop a lot of MMRAs otherwise.
2266     if (MMRAMetadata(*I) != I0MMRA)
2267       return false;
2268   }
2269 
2270   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2271   // then the other phi operands must match the instructions from Insts. This
2272   // also has to hold true for any phi nodes that would be created as a result
2273   // of sinking. Both of these cases are represented by PhiOperands.
2274   for (const Use &U : I0->uses()) {
2275     auto It = PHIOperands.find(&U);
2276     if (It == PHIOperands.end())
2277       // There may be uses in other blocks when sinking into a loop header.
2278       return false;
2279     if (!equal(Insts, It->second))
2280       return false;
2281   }
2282 
2283   // For calls to be sinkable, they must all be indirect, or have same callee.
2284   // I.e. if we have two direct calls to different callees, we don't want to
2285   // turn that into an indirect call. Likewise, if we have an indirect call,
2286   // and a direct call, we don't actually want to have a single indirect call.
2287   if (isa<CallBase>(I0)) {
2288     auto IsIndirectCall = [](const Instruction *I) {
2289       return cast<CallBase>(I)->isIndirectCall();
2290     };
2291     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2292     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2293     if (HaveIndirectCalls) {
2294       if (!AllCallsAreIndirect)
2295         return false;
2296     } else {
2297       // All callees must be identical.
2298       Value *Callee = nullptr;
2299       for (const Instruction *I : Insts) {
2300         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2301         if (!Callee)
2302           Callee = CurrCallee;
2303         else if (Callee != CurrCallee)
2304           return false;
2305       }
2306     }
2307   }
2308 
2309   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2310     Value *Op = I0->getOperand(OI);
2311     if (Op->getType()->isTokenTy())
2312       // Don't touch any operand of token type.
2313       return false;
2314 
2315     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2316       assert(I->getNumOperands() == I0->getNumOperands());
2317       return I->getOperand(OI) == I0->getOperand(OI);
2318     };
2319     if (!all_of(Insts, SameAsI0)) {
2320       // SROA can't speculate lifetime markers of selects/phis, and the
2321       // backend may handle such lifetimes incorrectly as well (#104776).
2322       // Don't sink lifetimes if it would introduce a phi on the pointer
2323       // argument.
2324       if (isLifeTimeMarker(I0) && OI == 1 &&
2325           any_of(Insts, [](const Instruction *I) {
2326             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2327           }))
2328         return false;
2329 
2330       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2331           !canReplaceOperandWithVariable(I0, OI))
2332         // We can't create a PHI from this GEP.
2333         return false;
2334       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2335       for (auto *I : Insts)
2336         Ops.push_back(I->getOperand(OI));
2337     }
2338   }
2339   return true;
2340 }
2341 
2342 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2343 // instruction of every block in Blocks to their common successor, commoning
2344 // into one instruction.
2345 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2346   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2347 
2348   // canSinkInstructions returning true guarantees that every block has at
2349   // least one non-terminator instruction.
2350   SmallVector<Instruction*,4> Insts;
2351   for (auto *BB : Blocks) {
2352     Instruction *I = BB->getTerminator();
2353     do {
2354       I = I->getPrevNode();
2355     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2356     if (!isa<DbgInfoIntrinsic>(I))
2357       Insts.push_back(I);
2358   }
2359 
2360   // We don't need to do any more checking here; canSinkInstructions should
2361   // have done it all for us.
2362   SmallVector<Value*, 4> NewOperands;
2363   Instruction *I0 = Insts.front();
2364   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2365     // This check is different to that in canSinkInstructions. There, we
2366     // cared about the global view once simplifycfg (and instcombine) have
2367     // completed - it takes into account PHIs that become trivially
2368     // simplifiable.  However here we need a more local view; if an operand
2369     // differs we create a PHI and rely on instcombine to clean up the very
2370     // small mess we may make.
2371     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2372       return I->getOperand(O) != I0->getOperand(O);
2373     });
2374     if (!NeedPHI) {
2375       NewOperands.push_back(I0->getOperand(O));
2376       continue;
2377     }
2378 
2379     // Create a new PHI in the successor block and populate it.
2380     auto *Op = I0->getOperand(O);
2381     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2382     auto *PN =
2383         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2384     PN->insertBefore(BBEnd->begin());
2385     for (auto *I : Insts)
2386       PN->addIncoming(I->getOperand(O), I->getParent());
2387     NewOperands.push_back(PN);
2388   }
2389 
2390   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2391   // and move it to the start of the successor block.
2392   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2393     I0->getOperandUse(O).set(NewOperands[O]);
2394 
2395   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2396 
2397   // Update metadata and IR flags, and merge debug locations.
2398   for (auto *I : Insts)
2399     if (I != I0) {
2400       // The debug location for the "common" instruction is the merged locations
2401       // of all the commoned instructions.  We start with the original location
2402       // of the "common" instruction and iteratively merge each location in the
2403       // loop below.
2404       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2405       // However, as N-way merge for CallInst is rare, so we use simplified API
2406       // instead of using complex API for N-way merge.
2407       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2408       combineMetadataForCSE(I0, I, true);
2409       I0->andIRFlags(I);
2410       if (auto *CB = dyn_cast<CallBase>(I0)) {
2411         bool Success = CB->tryIntersectAttributes(cast<CallBase>(I));
2412         assert(Success && "We should not be trying to sink callbases "
2413                           "with non-intersectable attributes");
2414         // For NDEBUG Compile.
2415         (void)Success;
2416       }
2417     }
2418 
2419   for (User *U : make_early_inc_range(I0->users())) {
2420     // canSinkLastInstruction checked that all instructions are only used by
2421     // phi nodes in a way that allows replacing the phi node with the common
2422     // instruction.
2423     auto *PN = cast<PHINode>(U);
2424     PN->replaceAllUsesWith(I0);
2425     PN->eraseFromParent();
2426   }
2427 
2428   // Finally nuke all instructions apart from the common instruction.
2429   for (auto *I : Insts) {
2430     if (I == I0)
2431       continue;
2432     // The remaining uses are debug users, replace those with the common inst.
2433     // In most (all?) cases this just introduces a use-before-def.
2434     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2435     I->replaceAllUsesWith(I0);
2436     I->eraseFromParent();
2437   }
2438 }
2439 
2440 /// Check whether BB's predecessors end with unconditional branches. If it is
2441 /// true, sink any common code from the predecessors to BB.
2442 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2443                                            DomTreeUpdater *DTU) {
2444   // We support two situations:
2445   //   (1) all incoming arcs are unconditional
2446   //   (2) there are non-unconditional incoming arcs
2447   //
2448   // (2) is very common in switch defaults and
2449   // else-if patterns;
2450   //
2451   //   if (a) f(1);
2452   //   else if (b) f(2);
2453   //
2454   // produces:
2455   //
2456   //       [if]
2457   //      /    \
2458   //    [f(1)] [if]
2459   //      |     | \
2460   //      |     |  |
2461   //      |  [f(2)]|
2462   //       \    | /
2463   //        [ end ]
2464   //
2465   // [end] has two unconditional predecessor arcs and one conditional. The
2466   // conditional refers to the implicit empty 'else' arc. This conditional
2467   // arc can also be caused by an empty default block in a switch.
2468   //
2469   // In this case, we attempt to sink code from all *unconditional* arcs.
2470   // If we can sink instructions from these arcs (determined during the scan
2471   // phase below) we insert a common successor for all unconditional arcs and
2472   // connect that to [end], to enable sinking:
2473   //
2474   //       [if]
2475   //      /    \
2476   //    [x(1)] [if]
2477   //      |     | \
2478   //      |     |  \
2479   //      |  [x(2)] |
2480   //       \   /    |
2481   //   [sink.split] |
2482   //         \     /
2483   //         [ end ]
2484   //
2485   SmallVector<BasicBlock*,4> UnconditionalPreds;
2486   bool HaveNonUnconditionalPredecessors = false;
2487   for (auto *PredBB : predecessors(BB)) {
2488     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2489     if (PredBr && PredBr->isUnconditional())
2490       UnconditionalPreds.push_back(PredBB);
2491     else
2492       HaveNonUnconditionalPredecessors = true;
2493   }
2494   if (UnconditionalPreds.size() < 2)
2495     return false;
2496 
2497   // We take a two-step approach to tail sinking. First we scan from the end of
2498   // each block upwards in lockstep. If the n'th instruction from the end of each
2499   // block can be sunk, those instructions are added to ValuesToSink and we
2500   // carry on. If we can sink an instruction but need to PHI-merge some operands
2501   // (because they're not identical in each instruction) we add these to
2502   // PHIOperands.
2503   // We prepopulate PHIOperands with the phis that already exist in BB.
2504   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2505   for (PHINode &PN : BB->phis()) {
2506     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2507     for (const Use &U : PN.incoming_values())
2508       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2509     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2510     for (BasicBlock *Pred : UnconditionalPreds)
2511       Ops.push_back(*IncomingVals[Pred]);
2512   }
2513 
2514   int ScanIdx = 0;
2515   SmallPtrSet<Value*,4> InstructionsToSink;
2516   LockstepReverseIterator LRI(UnconditionalPreds);
2517   while (LRI.isValid() &&
2518          canSinkInstructions(*LRI, PHIOperands)) {
2519     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2520                       << "\n");
2521     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2522     ++ScanIdx;
2523     --LRI;
2524   }
2525 
2526   // If no instructions can be sunk, early-return.
2527   if (ScanIdx == 0)
2528     return false;
2529 
2530   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2531 
2532   if (!followedByDeoptOrUnreachable) {
2533     // Check whether this is the pointer operand of a load/store.
2534     auto IsMemOperand = [](Use &U) {
2535       auto *I = cast<Instruction>(U.getUser());
2536       if (isa<LoadInst>(I))
2537         return U.getOperandNo() == LoadInst::getPointerOperandIndex();
2538       if (isa<StoreInst>(I))
2539         return U.getOperandNo() == StoreInst::getPointerOperandIndex();
2540       return false;
2541     };
2542 
2543     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2544     // actually sink before encountering instruction that is unprofitable to
2545     // sink?
2546     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2547       unsigned NumPHIInsts = 0;
2548       for (Use &U : (*LRI)[0]->operands()) {
2549         auto It = PHIOperands.find(&U);
2550         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2551               return InstructionsToSink.contains(V);
2552             })) {
2553           ++NumPHIInsts;
2554           // Do not separate a load/store from the gep producing the address.
2555           // The gep can likely be folded into the load/store as an addressing
2556           // mode. Additionally, a load of a gep is easier to analyze than a
2557           // load of a phi.
2558           if (IsMemOperand(U) &&
2559               any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); }))
2560             return false;
2561           // FIXME: this check is overly optimistic. We may end up not sinking
2562           // said instruction, due to the very same profitability check.
2563           // See @creating_too_many_phis in sink-common-code.ll.
2564         }
2565       }
2566       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2567       return NumPHIInsts <= 1;
2568     };
2569 
2570     // We've determined that we are going to sink last ScanIdx instructions,
2571     // and recorded them in InstructionsToSink. Now, some instructions may be
2572     // unprofitable to sink. But that determination depends on the instructions
2573     // that we are going to sink.
2574 
2575     // First, forward scan: find the first instruction unprofitable to sink,
2576     // recording all the ones that are profitable to sink.
2577     // FIXME: would it be better, after we detect that not all are profitable.
2578     // to either record the profitable ones, or erase the unprofitable ones?
2579     // Maybe we need to choose (at runtime) the one that will touch least
2580     // instrs?
2581     LRI.reset();
2582     int Idx = 0;
2583     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2584     while (Idx < ScanIdx) {
2585       if (!ProfitableToSinkInstruction(LRI)) {
2586         // Too many PHIs would be created.
2587         LLVM_DEBUG(
2588             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2589         break;
2590       }
2591       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2592       --LRI;
2593       ++Idx;
2594     }
2595 
2596     // If no instructions can be sunk, early-return.
2597     if (Idx == 0)
2598       return false;
2599 
2600     // Did we determine that (only) some instructions are unprofitable to sink?
2601     if (Idx < ScanIdx) {
2602       // Okay, some instructions are unprofitable.
2603       ScanIdx = Idx;
2604       InstructionsToSink = InstructionsProfitableToSink;
2605 
2606       // But, that may make other instructions unprofitable, too.
2607       // So, do a backward scan, do any earlier instructions become
2608       // unprofitable?
2609       assert(
2610           !ProfitableToSinkInstruction(LRI) &&
2611           "We already know that the last instruction is unprofitable to sink");
2612       ++LRI;
2613       --Idx;
2614       while (Idx >= 0) {
2615         // If we detect that an instruction becomes unprofitable to sink,
2616         // all earlier instructions won't be sunk either,
2617         // so preemptively keep InstructionsProfitableToSink in sync.
2618         // FIXME: is this the most performant approach?
2619         for (auto *I : *LRI)
2620           InstructionsProfitableToSink.erase(I);
2621         if (!ProfitableToSinkInstruction(LRI)) {
2622           // Everything starting with this instruction won't be sunk.
2623           ScanIdx = Idx;
2624           InstructionsToSink = InstructionsProfitableToSink;
2625         }
2626         ++LRI;
2627         --Idx;
2628       }
2629     }
2630 
2631     // If no instructions can be sunk, early-return.
2632     if (ScanIdx == 0)
2633       return false;
2634   }
2635 
2636   bool Changed = false;
2637 
2638   if (HaveNonUnconditionalPredecessors) {
2639     if (!followedByDeoptOrUnreachable) {
2640       // It is always legal to sink common instructions from unconditional
2641       // predecessors. However, if not all predecessors are unconditional,
2642       // this transformation might be pessimizing. So as a rule of thumb,
2643       // don't do it unless we'd sink at least one non-speculatable instruction.
2644       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2645       LRI.reset();
2646       int Idx = 0;
2647       bool Profitable = false;
2648       while (Idx < ScanIdx) {
2649         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2650           Profitable = true;
2651           break;
2652         }
2653         --LRI;
2654         ++Idx;
2655       }
2656       if (!Profitable)
2657         return false;
2658     }
2659 
2660     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2661     // We have a conditional edge and we're going to sink some instructions.
2662     // Insert a new block postdominating all blocks we're going to sink from.
2663     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2664       // Edges couldn't be split.
2665       return false;
2666     Changed = true;
2667   }
2668 
2669   // Now that we've analyzed all potential sinking candidates, perform the
2670   // actual sink. We iteratively sink the last non-terminator of the source
2671   // blocks into their common successor unless doing so would require too
2672   // many PHI instructions to be generated (currently only one PHI is allowed
2673   // per sunk instruction).
2674   //
2675   // We can use InstructionsToSink to discount values needing PHI-merging that will
2676   // actually be sunk in a later iteration. This allows us to be more
2677   // aggressive in what we sink. This does allow a false positive where we
2678   // sink presuming a later value will also be sunk, but stop half way through
2679   // and never actually sink it which means we produce more PHIs than intended.
2680   // This is unlikely in practice though.
2681   int SinkIdx = 0;
2682   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2683     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2684                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2685                       << "\n");
2686 
2687     // Because we've sunk every instruction in turn, the current instruction to
2688     // sink is always at index 0.
2689     LRI.reset();
2690 
2691     sinkLastInstruction(UnconditionalPreds);
2692     NumSinkCommonInstrs++;
2693     Changed = true;
2694   }
2695   if (SinkIdx != 0)
2696     ++NumSinkCommonCode;
2697   return Changed;
2698 }
2699 
2700 namespace {
2701 
2702 struct CompatibleSets {
2703   using SetTy = SmallVector<InvokeInst *, 2>;
2704 
2705   SmallVector<SetTy, 1> Sets;
2706 
2707   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2708 
2709   SetTy &getCompatibleSet(InvokeInst *II);
2710 
2711   void insert(InvokeInst *II);
2712 };
2713 
2714 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2715   // Perform a linear scan over all the existing sets, see if the new `invoke`
2716   // is compatible with any particular set. Since we know that all the `invokes`
2717   // within a set are compatible, only check the first `invoke` in each set.
2718   // WARNING: at worst, this has quadratic complexity.
2719   for (CompatibleSets::SetTy &Set : Sets) {
2720     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2721       return Set;
2722   }
2723 
2724   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2725   return Sets.emplace_back();
2726 }
2727 
2728 void CompatibleSets::insert(InvokeInst *II) {
2729   getCompatibleSet(II).emplace_back(II);
2730 }
2731 
2732 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2733   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2734 
2735   // Can we theoretically merge these `invoke`s?
2736   auto IsIllegalToMerge = [](InvokeInst *II) {
2737     return II->cannotMerge() || II->isInlineAsm();
2738   };
2739   if (any_of(Invokes, IsIllegalToMerge))
2740     return false;
2741 
2742   // Either both `invoke`s must be   direct,
2743   // or     both `invoke`s must be indirect.
2744   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2745   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2746   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2747   if (HaveIndirectCalls) {
2748     if (!AllCallsAreIndirect)
2749       return false;
2750   } else {
2751     // All callees must be identical.
2752     Value *Callee = nullptr;
2753     for (InvokeInst *II : Invokes) {
2754       Value *CurrCallee = II->getCalledOperand();
2755       assert(CurrCallee && "There is always a called operand.");
2756       if (!Callee)
2757         Callee = CurrCallee;
2758       else if (Callee != CurrCallee)
2759         return false;
2760     }
2761   }
2762 
2763   // Either both `invoke`s must not have a normal destination,
2764   // or     both `invoke`s must     have a normal destination,
2765   auto HasNormalDest = [](InvokeInst *II) {
2766     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2767   };
2768   if (any_of(Invokes, HasNormalDest)) {
2769     // Do not merge `invoke` that does not have a normal destination with one
2770     // that does have a normal destination, even though doing so would be legal.
2771     if (!all_of(Invokes, HasNormalDest))
2772       return false;
2773 
2774     // All normal destinations must be identical.
2775     BasicBlock *NormalBB = nullptr;
2776     for (InvokeInst *II : Invokes) {
2777       BasicBlock *CurrNormalBB = II->getNormalDest();
2778       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2779       if (!NormalBB)
2780         NormalBB = CurrNormalBB;
2781       else if (NormalBB != CurrNormalBB)
2782         return false;
2783     }
2784 
2785     // In the normal destination, the incoming values for these two `invoke`s
2786     // must be compatible.
2787     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2788     if (!incomingValuesAreCompatible(
2789             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2790             &EquivalenceSet))
2791       return false;
2792   }
2793 
2794 #ifndef NDEBUG
2795   // All unwind destinations must be identical.
2796   // We know that because we have started from said unwind destination.
2797   BasicBlock *UnwindBB = nullptr;
2798   for (InvokeInst *II : Invokes) {
2799     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2800     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2801     if (!UnwindBB)
2802       UnwindBB = CurrUnwindBB;
2803     else
2804       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2805   }
2806 #endif
2807 
2808   // In the unwind destination, the incoming values for these two `invoke`s
2809   // must be compatible.
2810   if (!incomingValuesAreCompatible(
2811           Invokes.front()->getUnwindDest(),
2812           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2813     return false;
2814 
2815   // Ignoring arguments, these `invoke`s must be identical,
2816   // including operand bundles.
2817   const InvokeInst *II0 = Invokes.front();
2818   for (auto *II : Invokes.drop_front())
2819     if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs))
2820       return false;
2821 
2822   // Can we theoretically form the data operands for the merged `invoke`?
2823   auto IsIllegalToMergeArguments = [](auto Ops) {
2824     Use &U0 = std::get<0>(Ops);
2825     Use &U1 = std::get<1>(Ops);
2826     if (U0 == U1)
2827       return false;
2828     return U0->getType()->isTokenTy() ||
2829            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2830                                           U0.getOperandNo());
2831   };
2832   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2833   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2834              IsIllegalToMergeArguments))
2835     return false;
2836 
2837   return true;
2838 }
2839 
2840 } // namespace
2841 
2842 // Merge all invokes in the provided set, all of which are compatible
2843 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2844 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2845                                        DomTreeUpdater *DTU) {
2846   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2847 
2848   SmallVector<DominatorTree::UpdateType, 8> Updates;
2849   if (DTU)
2850     Updates.reserve(2 + 3 * Invokes.size());
2851 
2852   bool HasNormalDest =
2853       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2854 
2855   // Clone one of the invokes into a new basic block.
2856   // Since they are all compatible, it doesn't matter which invoke is cloned.
2857   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2858     InvokeInst *II0 = Invokes.front();
2859     BasicBlock *II0BB = II0->getParent();
2860     BasicBlock *InsertBeforeBlock =
2861         II0->getParent()->getIterator()->getNextNode();
2862     Function *Func = II0BB->getParent();
2863     LLVMContext &Ctx = II0->getContext();
2864 
2865     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2866         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2867 
2868     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2869     // NOTE: all invokes have the same attributes, so no handling needed.
2870     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2871 
2872     if (!HasNormalDest) {
2873       // This set does not have a normal destination,
2874       // so just form a new block with unreachable terminator.
2875       BasicBlock *MergedNormalDest = BasicBlock::Create(
2876           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2877       new UnreachableInst(Ctx, MergedNormalDest);
2878       MergedInvoke->setNormalDest(MergedNormalDest);
2879     }
2880 
2881     // The unwind destination, however, remainds identical for all invokes here.
2882 
2883     return MergedInvoke;
2884   }();
2885 
2886   if (DTU) {
2887     // Predecessor blocks that contained these invokes will now branch to
2888     // the new block that contains the merged invoke, ...
2889     for (InvokeInst *II : Invokes)
2890       Updates.push_back(
2891           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2892 
2893     // ... which has the new `unreachable` block as normal destination,
2894     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2895     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2896       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2897                          SuccBBOfMergedInvoke});
2898 
2899     // Since predecessor blocks now unconditionally branch to a new block,
2900     // they no longer branch to their original successors.
2901     for (InvokeInst *II : Invokes)
2902       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2903         Updates.push_back(
2904             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2905   }
2906 
2907   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2908 
2909   // Form the merged operands for the merged invoke.
2910   for (Use &U : MergedInvoke->operands()) {
2911     // Only PHI together the indirect callees and data operands.
2912     if (MergedInvoke->isCallee(&U)) {
2913       if (!IsIndirectCall)
2914         continue;
2915     } else if (!MergedInvoke->isDataOperand(&U))
2916       continue;
2917 
2918     // Don't create trivial PHI's with all-identical incoming values.
2919     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2920       return II->getOperand(U.getOperandNo()) != U.get();
2921     });
2922     if (!NeedPHI)
2923       continue;
2924 
2925     // Form a PHI out of all the data ops under this index.
2926     PHINode *PN = PHINode::Create(
2927         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2928     for (InvokeInst *II : Invokes)
2929       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2930 
2931     U.set(PN);
2932   }
2933 
2934   // We've ensured that each PHI node has compatible (identical) incoming values
2935   // when coming from each of the `invoke`s in the current merge set,
2936   // so update the PHI nodes accordingly.
2937   for (BasicBlock *Succ : successors(MergedInvoke))
2938     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2939                           /*ExistPred=*/Invokes.front()->getParent());
2940 
2941   // And finally, replace the original `invoke`s with an unconditional branch
2942   // to the block with the merged `invoke`. Also, give that merged `invoke`
2943   // the merged debugloc of all the original `invoke`s.
2944   DILocation *MergedDebugLoc = nullptr;
2945   for (InvokeInst *II : Invokes) {
2946     // Compute the debug location common to all the original `invoke`s.
2947     if (!MergedDebugLoc)
2948       MergedDebugLoc = II->getDebugLoc();
2949     else
2950       MergedDebugLoc =
2951           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2952 
2953     // And replace the old `invoke` with an unconditionally branch
2954     // to the block with the merged `invoke`.
2955     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2956       OrigSuccBB->removePredecessor(II->getParent());
2957     auto *BI = BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2958     // The unconditional branch is part of the replacement for the original
2959     // invoke, so should use its DebugLoc.
2960     BI->setDebugLoc(II->getDebugLoc());
2961     bool Success = MergedInvoke->tryIntersectAttributes(II);
2962     assert(Success && "Merged invokes with incompatible attributes");
2963     // For NDEBUG Compile
2964     (void)Success;
2965     II->replaceAllUsesWith(MergedInvoke);
2966     II->eraseFromParent();
2967     ++NumInvokesMerged;
2968   }
2969   MergedInvoke->setDebugLoc(MergedDebugLoc);
2970   ++NumInvokeSetsFormed;
2971 
2972   if (DTU)
2973     DTU->applyUpdates(Updates);
2974 }
2975 
2976 /// If this block is a `landingpad` exception handling block, categorize all
2977 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2978 /// being "mergeable" together, and then merge invokes in each set together.
2979 ///
2980 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2981 ///          [...]        [...]
2982 ///            |            |
2983 ///        [invoke0]    [invoke1]
2984 ///           / \          / \
2985 ///     [cont0] [landingpad] [cont1]
2986 /// to:
2987 ///      [...] [...]
2988 ///          \ /
2989 ///       [invoke]
2990 ///          / \
2991 ///     [cont] [landingpad]
2992 ///
2993 /// But of course we can only do that if the invokes share the `landingpad`,
2994 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2995 /// and the invoked functions are "compatible".
2996 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2997   if (!EnableMergeCompatibleInvokes)
2998     return false;
2999 
3000   bool Changed = false;
3001 
3002   // FIXME: generalize to all exception handling blocks?
3003   if (!BB->isLandingPad())
3004     return Changed;
3005 
3006   CompatibleSets Grouper;
3007 
3008   // Record all the predecessors of this `landingpad`. As per verifier,
3009   // the only allowed predecessor is the unwind edge of an `invoke`.
3010   // We want to group "compatible" `invokes` into the same set to be merged.
3011   for (BasicBlock *PredBB : predecessors(BB))
3012     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
3013 
3014   // And now, merge `invoke`s that were grouped togeter.
3015   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
3016     if (Invokes.size() < 2)
3017       continue;
3018     Changed = true;
3019     mergeCompatibleInvokesImpl(Invokes, DTU);
3020   }
3021 
3022   return Changed;
3023 }
3024 
3025 namespace {
3026 /// Track ephemeral values, which should be ignored for cost-modelling
3027 /// purposes. Requires walking instructions in reverse order.
3028 class EphemeralValueTracker {
3029   SmallPtrSet<const Instruction *, 32> EphValues;
3030 
3031   bool isEphemeral(const Instruction *I) {
3032     if (isa<AssumeInst>(I))
3033       return true;
3034     return !I->mayHaveSideEffects() && !I->isTerminator() &&
3035            all_of(I->users(), [&](const User *U) {
3036              return EphValues.count(cast<Instruction>(U));
3037            });
3038   }
3039 
3040 public:
3041   bool track(const Instruction *I) {
3042     if (isEphemeral(I)) {
3043       EphValues.insert(I);
3044       return true;
3045     }
3046     return false;
3047   }
3048 
3049   bool contains(const Instruction *I) const { return EphValues.contains(I); }
3050 };
3051 } // namespace
3052 
3053 /// Determine if we can hoist sink a sole store instruction out of a
3054 /// conditional block.
3055 ///
3056 /// We are looking for code like the following:
3057 ///   BrBB:
3058 ///     store i32 %add, i32* %arrayidx2
3059 ///     ... // No other stores or function calls (we could be calling a memory
3060 ///     ... // function).
3061 ///     %cmp = icmp ult %x, %y
3062 ///     br i1 %cmp, label %EndBB, label %ThenBB
3063 ///   ThenBB:
3064 ///     store i32 %add5, i32* %arrayidx2
3065 ///     br label EndBB
3066 ///   EndBB:
3067 ///     ...
3068 ///   We are going to transform this into:
3069 ///   BrBB:
3070 ///     store i32 %add, i32* %arrayidx2
3071 ///     ... //
3072 ///     %cmp = icmp ult %x, %y
3073 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
3074 ///     store i32 %add.add5, i32* %arrayidx2
3075 ///     ...
3076 ///
3077 /// \return The pointer to the value of the previous store if the store can be
3078 ///         hoisted into the predecessor block. 0 otherwise.
3079 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
3080                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
3081   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
3082   if (!StoreToHoist)
3083     return nullptr;
3084 
3085   // Volatile or atomic.
3086   if (!StoreToHoist->isSimple())
3087     return nullptr;
3088 
3089   Value *StorePtr = StoreToHoist->getPointerOperand();
3090   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
3091 
3092   // Look for a store to the same pointer in BrBB.
3093   unsigned MaxNumInstToLookAt = 9;
3094   // Skip pseudo probe intrinsic calls which are not really killing any memory
3095   // accesses.
3096   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
3097     if (!MaxNumInstToLookAt)
3098       break;
3099     --MaxNumInstToLookAt;
3100 
3101     // Could be calling an instruction that affects memory like free().
3102     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
3103       return nullptr;
3104 
3105     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
3106       // Found the previous store to same location and type. Make sure it is
3107       // simple, to avoid introducing a spurious non-atomic write after an
3108       // atomic write.
3109       if (SI->getPointerOperand() == StorePtr &&
3110           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
3111           SI->getAlign() >= StoreToHoist->getAlign())
3112         // Found the previous store, return its value operand.
3113         return SI->getValueOperand();
3114       return nullptr; // Unknown store.
3115     }
3116 
3117     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
3118       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
3119           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
3120         Value *Obj = getUnderlyingObject(StorePtr);
3121         bool ExplicitlyDereferenceableOnly;
3122         if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) &&
3123             !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false,
3124                                   /*StoreCaptures=*/true) &&
3125             (!ExplicitlyDereferenceableOnly ||
3126              isDereferenceablePointer(StorePtr, StoreTy,
3127                                       LI->getDataLayout()))) {
3128           // Found a previous load, return it.
3129           return LI;
3130         }
3131       }
3132       // The load didn't work out, but we may still find a store.
3133     }
3134   }
3135 
3136   return nullptr;
3137 }
3138 
3139 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
3140 /// converted to selects.
3141 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
3142                                            BasicBlock *EndBB,
3143                                            unsigned &SpeculatedInstructions,
3144                                            InstructionCost &Cost,
3145                                            const TargetTransformInfo &TTI) {
3146   TargetTransformInfo::TargetCostKind CostKind =
3147     BB->getParent()->hasMinSize()
3148     ? TargetTransformInfo::TCK_CodeSize
3149     : TargetTransformInfo::TCK_SizeAndLatency;
3150 
3151   bool HaveRewritablePHIs = false;
3152   for (PHINode &PN : EndBB->phis()) {
3153     Value *OrigV = PN.getIncomingValueForBlock(BB);
3154     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
3155 
3156     // FIXME: Try to remove some of the duplication with
3157     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
3158     if (ThenV == OrigV)
3159       continue;
3160 
3161     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
3162                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
3163 
3164     // Don't convert to selects if we could remove undefined behavior instead.
3165     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
3166         passingValueIsAlwaysUndefined(ThenV, &PN))
3167       return false;
3168 
3169     HaveRewritablePHIs = true;
3170     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
3171     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
3172     if (!OrigCE && !ThenCE)
3173       continue; // Known cheap (FIXME: Maybe not true for aggregates).
3174 
3175     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
3176     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
3177     InstructionCost MaxCost =
3178         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3179     if (OrigCost + ThenCost > MaxCost)
3180       return false;
3181 
3182     // Account for the cost of an unfolded ConstantExpr which could end up
3183     // getting expanded into Instructions.
3184     // FIXME: This doesn't account for how many operations are combined in the
3185     // constant expression.
3186     ++SpeculatedInstructions;
3187     if (SpeculatedInstructions > 1)
3188       return false;
3189   }
3190 
3191   return HaveRewritablePHIs;
3192 }
3193 
3194 static bool isProfitableToSpeculate(const BranchInst *BI,
3195                                     std::optional<bool> Invert,
3196                                     const TargetTransformInfo &TTI) {
3197   // If the branch is non-unpredictable, and is predicted to *not* branch to
3198   // the `then` block, then avoid speculating it.
3199   if (BI->getMetadata(LLVMContext::MD_unpredictable))
3200     return true;
3201 
3202   uint64_t TWeight, FWeight;
3203   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
3204     return true;
3205 
3206   if (!Invert.has_value())
3207     return false;
3208 
3209   uint64_t EndWeight = *Invert ? TWeight : FWeight;
3210   BranchProbability BIEndProb =
3211       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
3212   BranchProbability Likely = TTI.getPredictableBranchThreshold();
3213   return BIEndProb < Likely;
3214 }
3215 
3216 /// Speculate a conditional basic block flattening the CFG.
3217 ///
3218 /// Note that this is a very risky transform currently. Speculating
3219 /// instructions like this is most often not desirable. Instead, there is an MI
3220 /// pass which can do it with full awareness of the resource constraints.
3221 /// However, some cases are "obvious" and we should do directly. An example of
3222 /// this is speculating a single, reasonably cheap instruction.
3223 ///
3224 /// There is only one distinct advantage to flattening the CFG at the IR level:
3225 /// it makes very common but simplistic optimizations such as are common in
3226 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3227 /// modeling their effects with easier to reason about SSA value graphs.
3228 ///
3229 ///
3230 /// An illustration of this transform is turning this IR:
3231 /// \code
3232 ///   BB:
3233 ///     %cmp = icmp ult %x, %y
3234 ///     br i1 %cmp, label %EndBB, label %ThenBB
3235 ///   ThenBB:
3236 ///     %sub = sub %x, %y
3237 ///     br label BB2
3238 ///   EndBB:
3239 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3240 ///     ...
3241 /// \endcode
3242 ///
3243 /// Into this IR:
3244 /// \code
3245 ///   BB:
3246 ///     %cmp = icmp ult %x, %y
3247 ///     %sub = sub %x, %y
3248 ///     %cond = select i1 %cmp, 0, %sub
3249 ///     ...
3250 /// \endcode
3251 ///
3252 /// \returns true if the conditional block is removed.
3253 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3254                                             BasicBlock *ThenBB) {
3255   if (!Options.SpeculateBlocks)
3256     return false;
3257 
3258   // Be conservative for now. FP select instruction can often be expensive.
3259   Value *BrCond = BI->getCondition();
3260   if (isa<FCmpInst>(BrCond))
3261     return false;
3262 
3263   BasicBlock *BB = BI->getParent();
3264   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3265   InstructionCost Budget =
3266       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3267 
3268   // If ThenBB is actually on the false edge of the conditional branch, remember
3269   // to swap the select operands later.
3270   bool Invert = false;
3271   if (ThenBB != BI->getSuccessor(0)) {
3272     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3273     Invert = true;
3274   }
3275   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3276 
3277   if (!isProfitableToSpeculate(BI, Invert, TTI))
3278     return false;
3279 
3280   // Keep a count of how many times instructions are used within ThenBB when
3281   // they are candidates for sinking into ThenBB. Specifically:
3282   // - They are defined in BB, and
3283   // - They have no side effects, and
3284   // - All of their uses are in ThenBB.
3285   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3286 
3287   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3288 
3289   unsigned SpeculatedInstructions = 0;
3290   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3291                           Options.HoistLoadsStoresWithCondFaulting;
3292   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3293   Value *SpeculatedStoreValue = nullptr;
3294   StoreInst *SpeculatedStore = nullptr;
3295   EphemeralValueTracker EphTracker;
3296   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3297     // Skip debug info.
3298     if (isa<DbgInfoIntrinsic>(I)) {
3299       SpeculatedDbgIntrinsics.push_back(&I);
3300       continue;
3301     }
3302 
3303     // Skip pseudo probes. The consequence is we lose track of the branch
3304     // probability for ThenBB, which is fine since the optimization here takes
3305     // place regardless of the branch probability.
3306     if (isa<PseudoProbeInst>(I)) {
3307       // The probe should be deleted so that it will not be over-counted when
3308       // the samples collected on the non-conditional path are counted towards
3309       // the conditional path. We leave it for the counts inference algorithm to
3310       // figure out a proper count for an unknown probe.
3311       SpeculatedDbgIntrinsics.push_back(&I);
3312       continue;
3313     }
3314 
3315     // Ignore ephemeral values, they will be dropped by the transform.
3316     if (EphTracker.track(&I))
3317       continue;
3318 
3319     // Only speculatively execute a single instruction (not counting the
3320     // terminator) for now.
3321     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3322                                 isSafeCheapLoadStore(&I, TTI) &&
3323                                 SpeculatedConditionalLoadsStores.size() <
3324                                     HoistLoadsStoresWithCondFaultingThreshold;
3325     // Not count load/store into cost if target supports conditional faulting
3326     // b/c it's cheap to speculate it.
3327     if (IsSafeCheapLoadStore)
3328       SpeculatedConditionalLoadsStores.push_back(&I);
3329     else
3330       ++SpeculatedInstructions;
3331 
3332     if (SpeculatedInstructions > 1)
3333       return false;
3334 
3335     // Don't hoist the instruction if it's unsafe or expensive.
3336     if (!IsSafeCheapLoadStore &&
3337         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3338         !(HoistCondStores && !SpeculatedStoreValue &&
3339           (SpeculatedStoreValue =
3340                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3341       return false;
3342     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3343         computeSpeculationCost(&I, TTI) >
3344             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3345       return false;
3346 
3347     // Store the store speculation candidate.
3348     if (!SpeculatedStore && SpeculatedStoreValue)
3349       SpeculatedStore = cast<StoreInst>(&I);
3350 
3351     // Do not hoist the instruction if any of its operands are defined but not
3352     // used in BB. The transformation will prevent the operand from
3353     // being sunk into the use block.
3354     for (Use &Op : I.operands()) {
3355       Instruction *OpI = dyn_cast<Instruction>(Op);
3356       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3357         continue; // Not a candidate for sinking.
3358 
3359       ++SinkCandidateUseCounts[OpI];
3360     }
3361   }
3362 
3363   // Consider any sink candidates which are only used in ThenBB as costs for
3364   // speculation. Note, while we iterate over a DenseMap here, we are summing
3365   // and so iteration order isn't significant.
3366   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3367     if (Inst->hasNUses(Count)) {
3368       ++SpeculatedInstructions;
3369       if (SpeculatedInstructions > 1)
3370         return false;
3371     }
3372 
3373   // Check that we can insert the selects and that it's not too expensive to do
3374   // so.
3375   bool Convert =
3376       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3377   InstructionCost Cost = 0;
3378   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3379                                             SpeculatedInstructions, Cost, TTI);
3380   if (!Convert || Cost > Budget)
3381     return false;
3382 
3383   // If we get here, we can hoist the instruction and if-convert.
3384   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3385 
3386   // Insert a select of the value of the speculated store.
3387   if (SpeculatedStoreValue) {
3388     IRBuilder<NoFolder> Builder(BI);
3389     Value *OrigV = SpeculatedStore->getValueOperand();
3390     Value *TrueV = SpeculatedStore->getValueOperand();
3391     Value *FalseV = SpeculatedStoreValue;
3392     if (Invert)
3393       std::swap(TrueV, FalseV);
3394     Value *S = Builder.CreateSelect(
3395         BrCond, TrueV, FalseV, "spec.store.select", BI);
3396     SpeculatedStore->setOperand(0, S);
3397     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3398                                          SpeculatedStore->getDebugLoc());
3399     // The value stored is still conditional, but the store itself is now
3400     // unconditonally executed, so we must be sure that any linked dbg.assign
3401     // intrinsics are tracking the new stored value (the result of the
3402     // select). If we don't, and the store were to be removed by another pass
3403     // (e.g. DSE), then we'd eventually end up emitting a location describing
3404     // the conditional value, unconditionally.
3405     //
3406     // === Before this transformation ===
3407     // pred:
3408     //   store %one, %x.dest, !DIAssignID !1
3409     //   dbg.assign %one, "x", ..., !1, ...
3410     //   br %cond if.then
3411     //
3412     // if.then:
3413     //   store %two, %x.dest, !DIAssignID !2
3414     //   dbg.assign %two, "x", ..., !2, ...
3415     //
3416     // === After this transformation ===
3417     // pred:
3418     //   store %one, %x.dest, !DIAssignID !1
3419     //   dbg.assign %one, "x", ..., !1
3420     ///  ...
3421     //   %merge = select %cond, %two, %one
3422     //   store %merge, %x.dest, !DIAssignID !2
3423     //   dbg.assign %merge, "x", ..., !2
3424     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3425       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3426         DbgAssign->replaceVariableLocationOp(OrigV, S);
3427     };
3428     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3429     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3430   }
3431 
3432   // Metadata can be dependent on the condition we are hoisting above.
3433   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3434   // to avoid making it appear as if the condition is a constant, which would
3435   // be misleading while debugging.
3436   // Similarly strip attributes that maybe dependent on condition we are
3437   // hoisting above.
3438   for (auto &I : make_early_inc_range(*ThenBB)) {
3439     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3440       // Don't update the DILocation of dbg.assign intrinsics.
3441       if (!isa<DbgAssignIntrinsic>(&I))
3442         I.setDebugLoc(DebugLoc());
3443     }
3444     I.dropUBImplyingAttrsAndMetadata();
3445 
3446     // Drop ephemeral values.
3447     if (EphTracker.contains(&I)) {
3448       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3449       I.eraseFromParent();
3450     }
3451   }
3452 
3453   // Hoist the instructions.
3454   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3455   // to these instructions, in the same way that dbg.value intrinsics are
3456   // dropped at the end of this block.
3457   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3458     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3459       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3460       // equivalent).
3461       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3462           !DVR || !DVR->isDbgAssign())
3463         It.dropOneDbgRecord(&DR);
3464   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3465              std::prev(ThenBB->end()));
3466 
3467   if (!SpeculatedConditionalLoadsStores.empty())
3468     hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert);
3469 
3470   // Insert selects and rewrite the PHI operands.
3471   IRBuilder<NoFolder> Builder(BI);
3472   for (PHINode &PN : EndBB->phis()) {
3473     unsigned OrigI = PN.getBasicBlockIndex(BB);
3474     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3475     Value *OrigV = PN.getIncomingValue(OrigI);
3476     Value *ThenV = PN.getIncomingValue(ThenI);
3477 
3478     // Skip PHIs which are trivial.
3479     if (OrigV == ThenV)
3480       continue;
3481 
3482     // Create a select whose true value is the speculatively executed value and
3483     // false value is the pre-existing value. Swap them if the branch
3484     // destinations were inverted.
3485     Value *TrueV = ThenV, *FalseV = OrigV;
3486     if (Invert)
3487       std::swap(TrueV, FalseV);
3488     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3489     PN.setIncomingValue(OrigI, V);
3490     PN.setIncomingValue(ThenI, V);
3491   }
3492 
3493   // Remove speculated dbg intrinsics.
3494   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3495   // dbg value for the different flows and inserting it after the select.
3496   for (Instruction *I : SpeculatedDbgIntrinsics) {
3497     // We still want to know that an assignment took place so don't remove
3498     // dbg.assign intrinsics.
3499     if (!isa<DbgAssignIntrinsic>(I))
3500       I->eraseFromParent();
3501   }
3502 
3503   ++NumSpeculations;
3504   return true;
3505 }
3506 
3507 /// Return true if we can thread a branch across this block.
3508 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3509   int Size = 0;
3510   EphemeralValueTracker EphTracker;
3511 
3512   // Walk the loop in reverse so that we can identify ephemeral values properly
3513   // (values only feeding assumes).
3514   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3515     // Can't fold blocks that contain noduplicate or convergent calls.
3516     if (CallInst *CI = dyn_cast<CallInst>(&I))
3517       if (CI->cannotDuplicate() || CI->isConvergent())
3518         return false;
3519 
3520     // Ignore ephemeral values which are deleted during codegen.
3521     // We will delete Phis while threading, so Phis should not be accounted in
3522     // block's size.
3523     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3524       if (Size++ > MaxSmallBlockSize)
3525         return false; // Don't clone large BB's.
3526     }
3527 
3528     // We can only support instructions that do not define values that are
3529     // live outside of the current basic block.
3530     for (User *U : I.users()) {
3531       Instruction *UI = cast<Instruction>(U);
3532       if (UI->getParent() != BB || isa<PHINode>(UI))
3533         return false;
3534     }
3535 
3536     // Looks ok, continue checking.
3537   }
3538 
3539   return true;
3540 }
3541 
3542 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3543                                         BasicBlock *To) {
3544   // Don't look past the block defining the value, we might get the value from
3545   // a previous loop iteration.
3546   auto *I = dyn_cast<Instruction>(V);
3547   if (I && I->getParent() == To)
3548     return nullptr;
3549 
3550   // We know the value if the From block branches on it.
3551   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3552   if (BI && BI->isConditional() && BI->getCondition() == V &&
3553       BI->getSuccessor(0) != BI->getSuccessor(1))
3554     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3555                                      : ConstantInt::getFalse(BI->getContext());
3556 
3557   return nullptr;
3558 }
3559 
3560 /// If we have a conditional branch on something for which we know the constant
3561 /// value in predecessors (e.g. a phi node in the current block), thread edges
3562 /// from the predecessor to their ultimate destination.
3563 static std::optional<bool>
3564 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3565                                             const DataLayout &DL,
3566                                             AssumptionCache *AC) {
3567   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3568   BasicBlock *BB = BI->getParent();
3569   Value *Cond = BI->getCondition();
3570   PHINode *PN = dyn_cast<PHINode>(Cond);
3571   if (PN && PN->getParent() == BB) {
3572     // Degenerate case of a single entry PHI.
3573     if (PN->getNumIncomingValues() == 1) {
3574       FoldSingleEntryPHINodes(PN->getParent());
3575       return true;
3576     }
3577 
3578     for (Use &U : PN->incoming_values())
3579       if (auto *CB = dyn_cast<ConstantInt>(U))
3580         KnownValues[CB].insert(PN->getIncomingBlock(U));
3581   } else {
3582     for (BasicBlock *Pred : predecessors(BB)) {
3583       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3584         KnownValues[CB].insert(Pred);
3585     }
3586   }
3587 
3588   if (KnownValues.empty())
3589     return false;
3590 
3591   // Now we know that this block has multiple preds and two succs.
3592   // Check that the block is small enough and values defined in the block are
3593   // not used outside of it.
3594   if (!blockIsSimpleEnoughToThreadThrough(BB))
3595     return false;
3596 
3597   for (const auto &Pair : KnownValues) {
3598     // Okay, we now know that all edges from PredBB should be revectored to
3599     // branch to RealDest.
3600     ConstantInt *CB = Pair.first;
3601     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3602     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3603 
3604     if (RealDest == BB)
3605       continue; // Skip self loops.
3606 
3607     // Skip if the predecessor's terminator is an indirect branch.
3608     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3609           return isa<IndirectBrInst>(PredBB->getTerminator());
3610         }))
3611       continue;
3612 
3613     LLVM_DEBUG({
3614       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3615              << " has value " << *Pair.first << " in predecessors:\n";
3616       for (const BasicBlock *PredBB : Pair.second)
3617         dbgs() << "  " << PredBB->getName() << "\n";
3618       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3619     });
3620 
3621     // Split the predecessors we are threading into a new edge block. We'll
3622     // clone the instructions into this block, and then redirect it to RealDest.
3623     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3624 
3625     // TODO: These just exist to reduce test diff, we can drop them if we like.
3626     EdgeBB->setName(RealDest->getName() + ".critedge");
3627     EdgeBB->moveBefore(RealDest);
3628 
3629     // Update PHI nodes.
3630     addPredecessorToBlock(RealDest, EdgeBB, BB);
3631 
3632     // BB may have instructions that are being threaded over.  Clone these
3633     // instructions into EdgeBB.  We know that there will be no uses of the
3634     // cloned instructions outside of EdgeBB.
3635     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3636     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3637     TranslateMap[Cond] = CB;
3638 
3639     // RemoveDIs: track instructions that we optimise away while folding, so
3640     // that we can copy DbgVariableRecords from them later.
3641     BasicBlock::iterator SrcDbgCursor = BB->begin();
3642     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3643       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3644         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3645         continue;
3646       }
3647       // Clone the instruction.
3648       Instruction *N = BBI->clone();
3649       // Insert the new instruction into its new home.
3650       N->insertInto(EdgeBB, InsertPt);
3651 
3652       if (BBI->hasName())
3653         N->setName(BBI->getName() + ".c");
3654 
3655       // Update operands due to translation.
3656       for (Use &Op : N->operands()) {
3657         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3658         if (PI != TranslateMap.end())
3659           Op = PI->second;
3660       }
3661 
3662       // Check for trivial simplification.
3663       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3664         if (!BBI->use_empty())
3665           TranslateMap[&*BBI] = V;
3666         if (!N->mayHaveSideEffects()) {
3667           N->eraseFromParent(); // Instruction folded away, don't need actual
3668                                 // inst
3669           N = nullptr;
3670         }
3671       } else {
3672         if (!BBI->use_empty())
3673           TranslateMap[&*BBI] = N;
3674       }
3675       if (N) {
3676         // Copy all debug-info attached to instructions from the last we
3677         // successfully clone, up to this instruction (they might have been
3678         // folded away).
3679         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3680           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3681         SrcDbgCursor = std::next(BBI);
3682         // Clone debug-info on this instruction too.
3683         N->cloneDebugInfoFrom(&*BBI);
3684 
3685         // Register the new instruction with the assumption cache if necessary.
3686         if (auto *Assume = dyn_cast<AssumeInst>(N))
3687           if (AC)
3688             AC->registerAssumption(Assume);
3689       }
3690     }
3691 
3692     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3693       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3694     InsertPt->cloneDebugInfoFrom(BI);
3695 
3696     BB->removePredecessor(EdgeBB);
3697     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3698     EdgeBI->setSuccessor(0, RealDest);
3699     EdgeBI->setDebugLoc(BI->getDebugLoc());
3700 
3701     if (DTU) {
3702       SmallVector<DominatorTree::UpdateType, 2> Updates;
3703       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3704       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3705       DTU->applyUpdates(Updates);
3706     }
3707 
3708     // For simplicity, we created a separate basic block for the edge. Merge
3709     // it back into the predecessor if possible. This not only avoids
3710     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3711     // bypass the check for trivial cycles above.
3712     MergeBlockIntoPredecessor(EdgeBB, DTU);
3713 
3714     // Signal repeat, simplifying any other constants.
3715     return std::nullopt;
3716   }
3717 
3718   return false;
3719 }
3720 
3721 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3722                                                     DomTreeUpdater *DTU,
3723                                                     const DataLayout &DL,
3724                                                     AssumptionCache *AC) {
3725   std::optional<bool> Result;
3726   bool EverChanged = false;
3727   do {
3728     // Note that None means "we changed things, but recurse further."
3729     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3730     EverChanged |= Result == std::nullopt || *Result;
3731   } while (Result == std::nullopt);
3732   return EverChanged;
3733 }
3734 
3735 /// Given a BB that starts with the specified two-entry PHI node,
3736 /// see if we can eliminate it.
3737 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3738                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3739                                 const DataLayout &DL,
3740                                 bool SpeculateUnpredictables) {
3741   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3742   // statement", which has a very simple dominance structure.  Basically, we
3743   // are trying to find the condition that is being branched on, which
3744   // subsequently causes this merge to happen.  We really want control
3745   // dependence information for this check, but simplifycfg can't keep it up
3746   // to date, and this catches most of the cases we care about anyway.
3747   BasicBlock *BB = PN->getParent();
3748 
3749   BasicBlock *IfTrue, *IfFalse;
3750   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3751   if (!DomBI)
3752     return false;
3753   Value *IfCond = DomBI->getCondition();
3754   // Don't bother if the branch will be constant folded trivially.
3755   if (isa<ConstantInt>(IfCond))
3756     return false;
3757 
3758   BasicBlock *DomBlock = DomBI->getParent();
3759   SmallVector<BasicBlock *, 2> IfBlocks;
3760   llvm::copy_if(
3761       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3762         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3763       });
3764   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3765          "Will have either one or two blocks to speculate.");
3766 
3767   // If the branch is non-unpredictable, see if we either predictably jump to
3768   // the merge bb (if we have only a single 'then' block), or if we predictably
3769   // jump to one specific 'then' block (if we have two of them).
3770   // It isn't beneficial to speculatively execute the code
3771   // from the block that we know is predictably not entered.
3772   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3773   if (!IsUnpredictable) {
3774     uint64_t TWeight, FWeight;
3775     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3776         (TWeight + FWeight) != 0) {
3777       BranchProbability BITrueProb =
3778           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3779       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3780       BranchProbability BIFalseProb = BITrueProb.getCompl();
3781       if (IfBlocks.size() == 1) {
3782         BranchProbability BIBBProb =
3783             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3784         if (BIBBProb >= Likely)
3785           return false;
3786       } else {
3787         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3788           return false;
3789       }
3790     }
3791   }
3792 
3793   // Don't try to fold an unreachable block. For example, the phi node itself
3794   // can't be the candidate if-condition for a select that we want to form.
3795   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3796     if (IfCondPhiInst->getParent() == BB)
3797       return false;
3798 
3799   // Okay, we found that we can merge this two-entry phi node into a select.
3800   // Doing so would require us to fold *all* two entry phi nodes in this block.
3801   // At some point this becomes non-profitable (particularly if the target
3802   // doesn't support cmov's).  Only do this transformation if there are two or
3803   // fewer PHI nodes in this block.
3804   unsigned NumPhis = 0;
3805   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3806     if (NumPhis > 2)
3807       return false;
3808 
3809   // Loop over the PHI's seeing if we can promote them all to select
3810   // instructions.  While we are at it, keep track of the instructions
3811   // that need to be moved to the dominating block.
3812   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3813   InstructionCost Cost = 0;
3814   InstructionCost Budget =
3815       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3816   if (SpeculateUnpredictables && IsUnpredictable)
3817     Budget += TTI.getBranchMispredictPenalty();
3818 
3819   bool Changed = false;
3820   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3821     PHINode *PN = cast<PHINode>(II++);
3822     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3823       PN->replaceAllUsesWith(V);
3824       PN->eraseFromParent();
3825       Changed = true;
3826       continue;
3827     }
3828 
3829     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3830                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3831         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3832                              AggressiveInsts, Cost, Budget, TTI, AC))
3833       return Changed;
3834   }
3835 
3836   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3837   // we ran out of PHIs then we simplified them all.
3838   PN = dyn_cast<PHINode>(BB->begin());
3839   if (!PN)
3840     return true;
3841 
3842   // Return true if at least one of these is a 'not', and another is either
3843   // a 'not' too, or a constant.
3844   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3845     if (!match(V0, m_Not(m_Value())))
3846       std::swap(V0, V1);
3847     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3848     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3849   };
3850 
3851   // Don't fold i1 branches on PHIs which contain binary operators or
3852   // (possibly inverted) select form of or/ands,  unless one of
3853   // the incoming values is an 'not' and another one is freely invertible.
3854   // These can often be turned into switches and other things.
3855   auto IsBinOpOrAnd = [](Value *V) {
3856     return match(
3857         V, m_CombineOr(m_BinOp(), m_c_Select(m_ImmConstant(), m_Value())));
3858   };
3859   if (PN->getType()->isIntegerTy(1) &&
3860       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3861        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3862       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3863                                  PN->getIncomingValue(1)))
3864     return Changed;
3865 
3866   // If all PHI nodes are promotable, check to make sure that all instructions
3867   // in the predecessor blocks can be promoted as well. If not, we won't be able
3868   // to get rid of the control flow, so it's not worth promoting to select
3869   // instructions.
3870   for (BasicBlock *IfBlock : IfBlocks)
3871     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3872       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3873         // This is not an aggressive instruction that we can promote.
3874         // Because of this, we won't be able to get rid of the control flow, so
3875         // the xform is not worth it.
3876         return Changed;
3877       }
3878 
3879   // If either of the blocks has it's address taken, we can't do this fold.
3880   if (any_of(IfBlocks,
3881              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3882     return Changed;
3883 
3884   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3885              if (IsUnpredictable) dbgs() << " (unpredictable)";
3886              dbgs() << "  T: " << IfTrue->getName()
3887                     << "  F: " << IfFalse->getName() << "\n");
3888 
3889   // If we can still promote the PHI nodes after this gauntlet of tests,
3890   // do all of the PHI's now.
3891 
3892   // Move all 'aggressive' instructions, which are defined in the
3893   // conditional parts of the if's up to the dominating block.
3894   for (BasicBlock *IfBlock : IfBlocks)
3895       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3896 
3897   IRBuilder<NoFolder> Builder(DomBI);
3898   // Propagate fast-math-flags from phi nodes to replacement selects.
3899   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3900     // Change the PHI node into a select instruction.
3901     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3902     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3903 
3904     Value *Sel = Builder.CreateSelectFMF(IfCond, TrueVal, FalseVal,
3905                                          isa<FPMathOperator>(PN) ? PN : nullptr,
3906                                          "", DomBI);
3907     PN->replaceAllUsesWith(Sel);
3908     Sel->takeName(PN);
3909     PN->eraseFromParent();
3910   }
3911 
3912   // At this point, all IfBlocks are empty, so our if statement
3913   // has been flattened.  Change DomBlock to jump directly to our new block to
3914   // avoid other simplifycfg's kicking in on the diamond.
3915   Builder.CreateBr(BB);
3916 
3917   SmallVector<DominatorTree::UpdateType, 3> Updates;
3918   if (DTU) {
3919     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3920     for (auto *Successor : successors(DomBlock))
3921       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3922   }
3923 
3924   DomBI->eraseFromParent();
3925   if (DTU)
3926     DTU->applyUpdates(Updates);
3927 
3928   return true;
3929 }
3930 
3931 static Value *createLogicalOp(IRBuilderBase &Builder,
3932                               Instruction::BinaryOps Opc, Value *LHS,
3933                               Value *RHS, const Twine &Name = "") {
3934   // Try to relax logical op to binary op.
3935   if (impliesPoison(RHS, LHS))
3936     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3937   if (Opc == Instruction::And)
3938     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3939   if (Opc == Instruction::Or)
3940     return Builder.CreateLogicalOr(LHS, RHS, Name);
3941   llvm_unreachable("Invalid logical opcode");
3942 }
3943 
3944 /// Return true if either PBI or BI has branch weight available, and store
3945 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3946 /// not have branch weight, use 1:1 as its weight.
3947 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3948                                    uint64_t &PredTrueWeight,
3949                                    uint64_t &PredFalseWeight,
3950                                    uint64_t &SuccTrueWeight,
3951                                    uint64_t &SuccFalseWeight) {
3952   bool PredHasWeights =
3953       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3954   bool SuccHasWeights =
3955       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3956   if (PredHasWeights || SuccHasWeights) {
3957     if (!PredHasWeights)
3958       PredTrueWeight = PredFalseWeight = 1;
3959     if (!SuccHasWeights)
3960       SuccTrueWeight = SuccFalseWeight = 1;
3961     return true;
3962   } else {
3963     return false;
3964   }
3965 }
3966 
3967 /// Determine if the two branches share a common destination and deduce a glue
3968 /// that joins the branches' conditions to arrive at the common destination if
3969 /// that would be profitable.
3970 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3971 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3972                                           const TargetTransformInfo *TTI) {
3973   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3974          "Both blocks must end with a conditional branches.");
3975   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3976          "PredBB must be a predecessor of BB.");
3977 
3978   // We have the potential to fold the conditions together, but if the
3979   // predecessor branch is predictable, we may not want to merge them.
3980   uint64_t PTWeight, PFWeight;
3981   BranchProbability PBITrueProb, Likely;
3982   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3983       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3984       (PTWeight + PFWeight) != 0) {
3985     PBITrueProb =
3986         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3987     Likely = TTI->getPredictableBranchThreshold();
3988   }
3989 
3990   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3991     // Speculate the 2nd condition unless the 1st is probably true.
3992     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3993       return {{BI->getSuccessor(0), Instruction::Or, false}};
3994   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3995     // Speculate the 2nd condition unless the 1st is probably false.
3996     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3997       return {{BI->getSuccessor(1), Instruction::And, false}};
3998   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3999     // Speculate the 2nd condition unless the 1st is probably true.
4000     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
4001       return {{BI->getSuccessor(1), Instruction::And, true}};
4002   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4003     // Speculate the 2nd condition unless the 1st is probably false.
4004     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
4005       return {{BI->getSuccessor(0), Instruction::Or, true}};
4006   }
4007   return std::nullopt;
4008 }
4009 
4010 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
4011                                              DomTreeUpdater *DTU,
4012                                              MemorySSAUpdater *MSSAU,
4013                                              const TargetTransformInfo *TTI) {
4014   BasicBlock *BB = BI->getParent();
4015   BasicBlock *PredBlock = PBI->getParent();
4016 
4017   // Determine if the two branches share a common destination.
4018   BasicBlock *CommonSucc;
4019   Instruction::BinaryOps Opc;
4020   bool InvertPredCond;
4021   std::tie(CommonSucc, Opc, InvertPredCond) =
4022       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
4023 
4024   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
4025 
4026   IRBuilder<> Builder(PBI);
4027   // The builder is used to create instructions to eliminate the branch in BB.
4028   // If BB's terminator has !annotation metadata, add it to the new
4029   // instructions.
4030   Builder.CollectMetadataToCopy(BB->getTerminator(),
4031                                 {LLVMContext::MD_annotation});
4032 
4033   // If we need to invert the condition in the pred block to match, do so now.
4034   if (InvertPredCond) {
4035     InvertBranch(PBI, Builder);
4036   }
4037 
4038   BasicBlock *UniqueSucc =
4039       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
4040 
4041   // Before cloning instructions, notify the successor basic block that it
4042   // is about to have a new predecessor. This will update PHI nodes,
4043   // which will allow us to update live-out uses of bonus instructions.
4044   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
4045 
4046   // Try to update branch weights.
4047   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4048   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4049                              SuccTrueWeight, SuccFalseWeight)) {
4050     SmallVector<uint64_t, 8> NewWeights;
4051 
4052     if (PBI->getSuccessor(0) == BB) {
4053       // PBI: br i1 %x, BB, FalseDest
4054       // BI:  br i1 %y, UniqueSucc, FalseDest
4055       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
4056       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
4057       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
4058       //               TrueWeight for PBI * FalseWeight for BI.
4059       // We assume that total weights of a BranchInst can fit into 32 bits.
4060       // Therefore, we will not have overflow using 64-bit arithmetic.
4061       NewWeights.push_back(PredFalseWeight *
4062                                (SuccFalseWeight + SuccTrueWeight) +
4063                            PredTrueWeight * SuccFalseWeight);
4064     } else {
4065       // PBI: br i1 %x, TrueDest, BB
4066       // BI:  br i1 %y, TrueDest, UniqueSucc
4067       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
4068       //              FalseWeight for PBI * TrueWeight for BI.
4069       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
4070                            PredFalseWeight * SuccTrueWeight);
4071       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
4072       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
4073     }
4074 
4075     // Halve the weights if any of them cannot fit in an uint32_t
4076     fitWeights(NewWeights);
4077 
4078     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
4079     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
4080 
4081     // TODO: If BB is reachable from all paths through PredBlock, then we
4082     // could replace PBI's branch probabilities with BI's.
4083   } else
4084     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4085 
4086   // Now, update the CFG.
4087   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4088 
4089   if (DTU)
4090     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4091                        {DominatorTree::Delete, PredBlock, BB}});
4092 
4093   // If BI was a loop latch, it may have had associated loop metadata.
4094   // We need to copy it to the new latch, that is, PBI.
4095   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4096     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4097 
4098   ValueToValueMapTy VMap; // maps original values to cloned values
4099   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4100 
4101   Module *M = BB->getModule();
4102 
4103   if (PredBlock->IsNewDbgInfoFormat) {
4104     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4105     for (DbgVariableRecord &DVR :
4106          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4107       RemapDbgRecord(M, &DVR, VMap,
4108                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4109     }
4110   }
4111 
4112   // Now that the Cond was cloned into the predecessor basic block,
4113   // or/and the two conditions together.
4114   Value *BICond = VMap[BI->getCondition()];
4115   PBI->setCondition(
4116       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4117 
4118   ++NumFoldBranchToCommonDest;
4119   return true;
4120 }
4121 
4122 /// Return if an instruction's type or any of its operands' types are a vector
4123 /// type.
4124 static bool isVectorOp(Instruction &I) {
4125   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4126            return U->getType()->isVectorTy();
4127          });
4128 }
4129 
4130 /// If this basic block is simple enough, and if a predecessor branches to us
4131 /// and one of our successors, fold the block into the predecessor and use
4132 /// logical operations to pick the right destination.
4133 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4134                                   MemorySSAUpdater *MSSAU,
4135                                   const TargetTransformInfo *TTI,
4136                                   unsigned BonusInstThreshold) {
4137   // If this block ends with an unconditional branch,
4138   // let speculativelyExecuteBB() deal with it.
4139   if (!BI->isConditional())
4140     return false;
4141 
4142   BasicBlock *BB = BI->getParent();
4143   TargetTransformInfo::TargetCostKind CostKind =
4144     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4145                                   : TargetTransformInfo::TCK_SizeAndLatency;
4146 
4147   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4148 
4149   if (!Cond ||
4150       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4151        !isa<SelectInst>(Cond)) ||
4152       Cond->getParent() != BB || !Cond->hasOneUse())
4153     return false;
4154 
4155   // Finally, don't infinitely unroll conditional loops.
4156   if (is_contained(successors(BB), BB))
4157     return false;
4158 
4159   // With which predecessors will we want to deal with?
4160   SmallVector<BasicBlock *, 8> Preds;
4161   for (BasicBlock *PredBlock : predecessors(BB)) {
4162     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4163 
4164     // Check that we have two conditional branches.  If there is a PHI node in
4165     // the common successor, verify that the same value flows in from both
4166     // blocks.
4167     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4168       continue;
4169 
4170     // Determine if the two branches share a common destination.
4171     BasicBlock *CommonSucc;
4172     Instruction::BinaryOps Opc;
4173     bool InvertPredCond;
4174     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4175       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4176     else
4177       continue;
4178 
4179     // Check the cost of inserting the necessary logic before performing the
4180     // transformation.
4181     if (TTI) {
4182       Type *Ty = BI->getCondition()->getType();
4183       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4184       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4185                              !isa<CmpInst>(PBI->getCondition())))
4186         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4187 
4188       if (Cost > BranchFoldThreshold)
4189         continue;
4190     }
4191 
4192     // Ok, we do want to deal with this predecessor. Record it.
4193     Preds.emplace_back(PredBlock);
4194   }
4195 
4196   // If there aren't any predecessors into which we can fold,
4197   // don't bother checking the cost.
4198   if (Preds.empty())
4199     return false;
4200 
4201   // Only allow this transformation if computing the condition doesn't involve
4202   // too many instructions and these involved instructions can be executed
4203   // unconditionally. We denote all involved instructions except the condition
4204   // as "bonus instructions", and only allow this transformation when the
4205   // number of the bonus instructions we'll need to create when cloning into
4206   // each predecessor does not exceed a certain threshold.
4207   unsigned NumBonusInsts = 0;
4208   bool SawVectorOp = false;
4209   const unsigned PredCount = Preds.size();
4210   for (Instruction &I : *BB) {
4211     // Don't check the branch condition comparison itself.
4212     if (&I == Cond)
4213       continue;
4214     // Ignore dbg intrinsics, and the terminator.
4215     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4216       continue;
4217     // I must be safe to execute unconditionally.
4218     if (!isSafeToSpeculativelyExecute(&I))
4219       return false;
4220     SawVectorOp |= isVectorOp(I);
4221 
4222     // Account for the cost of duplicating this instruction into each
4223     // predecessor. Ignore free instructions.
4224     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4225                     TargetTransformInfo::TCC_Free) {
4226       NumBonusInsts += PredCount;
4227 
4228       // Early exits once we reach the limit.
4229       if (NumBonusInsts >
4230           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4231         return false;
4232     }
4233 
4234     auto IsBCSSAUse = [BB, &I](Use &U) {
4235       auto *UI = cast<Instruction>(U.getUser());
4236       if (auto *PN = dyn_cast<PHINode>(UI))
4237         return PN->getIncomingBlock(U) == BB;
4238       return UI->getParent() == BB && I.comesBefore(UI);
4239     };
4240 
4241     // Does this instruction require rewriting of uses?
4242     if (!all_of(I.uses(), IsBCSSAUse))
4243       return false;
4244   }
4245   if (NumBonusInsts >
4246       BonusInstThreshold *
4247           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4248     return false;
4249 
4250   // Ok, we have the budget. Perform the transformation.
4251   for (BasicBlock *PredBlock : Preds) {
4252     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4253     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4254   }
4255   return false;
4256 }
4257 
4258 // If there is only one store in BB1 and BB2, return it, otherwise return
4259 // nullptr.
4260 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4261   StoreInst *S = nullptr;
4262   for (auto *BB : {BB1, BB2}) {
4263     if (!BB)
4264       continue;
4265     for (auto &I : *BB)
4266       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4267         if (S)
4268           // Multiple stores seen.
4269           return nullptr;
4270         else
4271           S = SI;
4272       }
4273   }
4274   return S;
4275 }
4276 
4277 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4278                                               Value *AlternativeV = nullptr) {
4279   // PHI is going to be a PHI node that allows the value V that is defined in
4280   // BB to be referenced in BB's only successor.
4281   //
4282   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4283   // doesn't matter to us what the other operand is (it'll never get used). We
4284   // could just create a new PHI with an undef incoming value, but that could
4285   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4286   // other PHI. So here we directly look for some PHI in BB's successor with V
4287   // as an incoming operand. If we find one, we use it, else we create a new
4288   // one.
4289   //
4290   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4291   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4292   // where OtherBB is the single other predecessor of BB's only successor.
4293   PHINode *PHI = nullptr;
4294   BasicBlock *Succ = BB->getSingleSuccessor();
4295 
4296   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4297     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4298       PHI = cast<PHINode>(I);
4299       if (!AlternativeV)
4300         break;
4301 
4302       assert(Succ->hasNPredecessors(2));
4303       auto PredI = pred_begin(Succ);
4304       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4305       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4306         break;
4307       PHI = nullptr;
4308     }
4309   if (PHI)
4310     return PHI;
4311 
4312   // If V is not an instruction defined in BB, just return it.
4313   if (!AlternativeV &&
4314       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4315     return V;
4316 
4317   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4318   PHI->insertBefore(Succ->begin());
4319   PHI->addIncoming(V, BB);
4320   for (BasicBlock *PredBB : predecessors(Succ))
4321     if (PredBB != BB)
4322       PHI->addIncoming(
4323           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4324   return PHI;
4325 }
4326 
4327 static bool mergeConditionalStoreToAddress(
4328     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4329     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4330     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4331   // For every pointer, there must be exactly two stores, one coming from
4332   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4333   // store (to any address) in PTB,PFB or QTB,QFB.
4334   // FIXME: We could relax this restriction with a bit more work and performance
4335   // testing.
4336   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4337   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4338   if (!PStore || !QStore)
4339     return false;
4340 
4341   // Now check the stores are compatible.
4342   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4343       PStore->getValueOperand()->getType() !=
4344           QStore->getValueOperand()->getType())
4345     return false;
4346 
4347   // Check that sinking the store won't cause program behavior changes. Sinking
4348   // the store out of the Q blocks won't change any behavior as we're sinking
4349   // from a block to its unconditional successor. But we're moving a store from
4350   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4351   // So we need to check that there are no aliasing loads or stores in
4352   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4353   // operations between PStore and the end of its parent block.
4354   //
4355   // The ideal way to do this is to query AliasAnalysis, but we don't
4356   // preserve AA currently so that is dangerous. Be super safe and just
4357   // check there are no other memory operations at all.
4358   for (auto &I : *QFB->getSinglePredecessor())
4359     if (I.mayReadOrWriteMemory())
4360       return false;
4361   for (auto &I : *QFB)
4362     if (&I != QStore && I.mayReadOrWriteMemory())
4363       return false;
4364   if (QTB)
4365     for (auto &I : *QTB)
4366       if (&I != QStore && I.mayReadOrWriteMemory())
4367         return false;
4368   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4369        I != E; ++I)
4370     if (&*I != PStore && I->mayReadOrWriteMemory())
4371       return false;
4372 
4373   // If we're not in aggressive mode, we only optimize if we have some
4374   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4375   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4376     if (!BB)
4377       return true;
4378     // Heuristic: if the block can be if-converted/phi-folded and the
4379     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4380     // thread this store.
4381     InstructionCost Cost = 0;
4382     InstructionCost Budget =
4383         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4384     for (auto &I : BB->instructionsWithoutDebug(false)) {
4385       // Consider terminator instruction to be free.
4386       if (I.isTerminator())
4387         continue;
4388       // If this is one the stores that we want to speculate out of this BB,
4389       // then don't count it's cost, consider it to be free.
4390       if (auto *S = dyn_cast<StoreInst>(&I))
4391         if (llvm::find(FreeStores, S))
4392           continue;
4393       // Else, we have a white-list of instructions that we are ak speculating.
4394       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4395         return false; // Not in white-list - not worthwhile folding.
4396       // And finally, if this is a non-free instruction that we are okay
4397       // speculating, ensure that we consider the speculation budget.
4398       Cost +=
4399           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4400       if (Cost > Budget)
4401         return false; // Eagerly refuse to fold as soon as we're out of budget.
4402     }
4403     assert(Cost <= Budget &&
4404            "When we run out of budget we will eagerly return from within the "
4405            "per-instruction loop.");
4406     return true;
4407   };
4408 
4409   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4410   if (!MergeCondStoresAggressively &&
4411       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4412        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4413     return false;
4414 
4415   // If PostBB has more than two predecessors, we need to split it so we can
4416   // sink the store.
4417   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4418     // We know that QFB's only successor is PostBB. And QFB has a single
4419     // predecessor. If QTB exists, then its only successor is also PostBB.
4420     // If QTB does not exist, then QFB's only predecessor has a conditional
4421     // branch to QFB and PostBB.
4422     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4423     BasicBlock *NewBB =
4424         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4425     if (!NewBB)
4426       return false;
4427     PostBB = NewBB;
4428   }
4429 
4430   // OK, we're going to sink the stores to PostBB. The store has to be
4431   // conditional though, so first create the predicate.
4432   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4433                      ->getCondition();
4434   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4435                      ->getCondition();
4436 
4437   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4438                                                 PStore->getParent());
4439   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4440                                                 QStore->getParent(), PPHI);
4441 
4442   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4443   IRBuilder<> QB(PostBB, PostBBFirst);
4444   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4445 
4446   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4447   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4448 
4449   if (InvertPCond)
4450     PPred = QB.CreateNot(PPred);
4451   if (InvertQCond)
4452     QPred = QB.CreateNot(QPred);
4453   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4454 
4455   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4456   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4457                                       /*Unreachable=*/false,
4458                                       /*BranchWeights=*/nullptr, DTU);
4459 
4460   QB.SetInsertPoint(T);
4461   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4462   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4463   // Choose the minimum alignment. If we could prove both stores execute, we
4464   // could use biggest one.  In this case, though, we only know that one of the
4465   // stores executes.  And we don't know it's safe to take the alignment from a
4466   // store that doesn't execute.
4467   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4468 
4469   QStore->eraseFromParent();
4470   PStore->eraseFromParent();
4471 
4472   return true;
4473 }
4474 
4475 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4476                                    DomTreeUpdater *DTU, const DataLayout &DL,
4477                                    const TargetTransformInfo &TTI) {
4478   // The intention here is to find diamonds or triangles (see below) where each
4479   // conditional block contains a store to the same address. Both of these
4480   // stores are conditional, so they can't be unconditionally sunk. But it may
4481   // be profitable to speculatively sink the stores into one merged store at the
4482   // end, and predicate the merged store on the union of the two conditions of
4483   // PBI and QBI.
4484   //
4485   // This can reduce the number of stores executed if both of the conditions are
4486   // true, and can allow the blocks to become small enough to be if-converted.
4487   // This optimization will also chain, so that ladders of test-and-set
4488   // sequences can be if-converted away.
4489   //
4490   // We only deal with simple diamonds or triangles:
4491   //
4492   //     PBI       or      PBI        or a combination of the two
4493   //    /   \               | \
4494   //   PTB  PFB             |  PFB
4495   //    \   /               | /
4496   //     QBI                QBI
4497   //    /  \                | \
4498   //   QTB  QFB             |  QFB
4499   //    \  /                | /
4500   //    PostBB            PostBB
4501   //
4502   // We model triangles as a type of diamond with a nullptr "true" block.
4503   // Triangles are canonicalized so that the fallthrough edge is represented by
4504   // a true condition, as in the diagram above.
4505   BasicBlock *PTB = PBI->getSuccessor(0);
4506   BasicBlock *PFB = PBI->getSuccessor(1);
4507   BasicBlock *QTB = QBI->getSuccessor(0);
4508   BasicBlock *QFB = QBI->getSuccessor(1);
4509   BasicBlock *PostBB = QFB->getSingleSuccessor();
4510 
4511   // Make sure we have a good guess for PostBB. If QTB's only successor is
4512   // QFB, then QFB is a better PostBB.
4513   if (QTB->getSingleSuccessor() == QFB)
4514     PostBB = QFB;
4515 
4516   // If we couldn't find a good PostBB, stop.
4517   if (!PostBB)
4518     return false;
4519 
4520   bool InvertPCond = false, InvertQCond = false;
4521   // Canonicalize fallthroughs to the true branches.
4522   if (PFB == QBI->getParent()) {
4523     std::swap(PFB, PTB);
4524     InvertPCond = true;
4525   }
4526   if (QFB == PostBB) {
4527     std::swap(QFB, QTB);
4528     InvertQCond = true;
4529   }
4530 
4531   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4532   // and QFB may not. Model fallthroughs as a nullptr block.
4533   if (PTB == QBI->getParent())
4534     PTB = nullptr;
4535   if (QTB == PostBB)
4536     QTB = nullptr;
4537 
4538   // Legality bailouts. We must have at least the non-fallthrough blocks and
4539   // the post-dominating block, and the non-fallthroughs must only have one
4540   // predecessor.
4541   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4542     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4543   };
4544   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4545       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4546     return false;
4547   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4548       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4549     return false;
4550   if (!QBI->getParent()->hasNUses(2))
4551     return false;
4552 
4553   // OK, this is a sequence of two diamonds or triangles.
4554   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4555   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4556   for (auto *BB : {PTB, PFB}) {
4557     if (!BB)
4558       continue;
4559     for (auto &I : *BB)
4560       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4561         PStoreAddresses.insert(SI->getPointerOperand());
4562   }
4563   for (auto *BB : {QTB, QFB}) {
4564     if (!BB)
4565       continue;
4566     for (auto &I : *BB)
4567       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4568         QStoreAddresses.insert(SI->getPointerOperand());
4569   }
4570 
4571   set_intersect(PStoreAddresses, QStoreAddresses);
4572   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4573   // clear what it contains.
4574   auto &CommonAddresses = PStoreAddresses;
4575 
4576   bool Changed = false;
4577   for (auto *Address : CommonAddresses)
4578     Changed |=
4579         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4580                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4581   return Changed;
4582 }
4583 
4584 /// If the previous block ended with a widenable branch, determine if reusing
4585 /// the target block is profitable and legal.  This will have the effect of
4586 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4587 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4588                                            DomTreeUpdater *DTU) {
4589   // TODO: This can be generalized in two important ways:
4590   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4591   //    values from the PBI edge.
4592   // 2) We can sink side effecting instructions into BI's fallthrough
4593   //    successor provided they doesn't contribute to computation of
4594   //    BI's condition.
4595   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4596   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4597   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4598       !BI->getParent()->getSinglePredecessor())
4599     return false;
4600   if (!IfFalseBB->phis().empty())
4601     return false; // TODO
4602   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4603   // may undo the transform done here.
4604   // TODO: There might be a more fine-grained solution to this.
4605   if (!llvm::succ_empty(IfFalseBB))
4606     return false;
4607   // Use lambda to lazily compute expensive condition after cheap ones.
4608   auto NoSideEffects = [](BasicBlock &BB) {
4609     return llvm::none_of(BB, [](const Instruction &I) {
4610         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4611       });
4612   };
4613   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4614       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4615       NoSideEffects(*BI->getParent())) {
4616     auto *OldSuccessor = BI->getSuccessor(1);
4617     OldSuccessor->removePredecessor(BI->getParent());
4618     BI->setSuccessor(1, IfFalseBB);
4619     if (DTU)
4620       DTU->applyUpdates(
4621           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4622            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4623     return true;
4624   }
4625   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4626       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4627       NoSideEffects(*BI->getParent())) {
4628     auto *OldSuccessor = BI->getSuccessor(0);
4629     OldSuccessor->removePredecessor(BI->getParent());
4630     BI->setSuccessor(0, IfFalseBB);
4631     if (DTU)
4632       DTU->applyUpdates(
4633           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4634            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4635     return true;
4636   }
4637   return false;
4638 }
4639 
4640 /// If we have a conditional branch as a predecessor of another block,
4641 /// this function tries to simplify it.  We know
4642 /// that PBI and BI are both conditional branches, and BI is in one of the
4643 /// successor blocks of PBI - PBI branches to BI.
4644 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4645                                            DomTreeUpdater *DTU,
4646                                            const DataLayout &DL,
4647                                            const TargetTransformInfo &TTI) {
4648   assert(PBI->isConditional() && BI->isConditional());
4649   BasicBlock *BB = BI->getParent();
4650 
4651   // If this block ends with a branch instruction, and if there is a
4652   // predecessor that ends on a branch of the same condition, make
4653   // this conditional branch redundant.
4654   if (PBI->getCondition() == BI->getCondition() &&
4655       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4656     // Okay, the outcome of this conditional branch is statically
4657     // knowable.  If this block had a single pred, handle specially, otherwise
4658     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4659     if (BB->getSinglePredecessor()) {
4660       // Turn this into a branch on constant.
4661       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4662       BI->setCondition(
4663           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4664       return true; // Nuke the branch on constant.
4665     }
4666   }
4667 
4668   // If the previous block ended with a widenable branch, determine if reusing
4669   // the target block is profitable and legal.  This will have the effect of
4670   // "widening" PBI, but doesn't require us to reason about hosting safety.
4671   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4672     return true;
4673 
4674   // If both branches are conditional and both contain stores to the same
4675   // address, remove the stores from the conditionals and create a conditional
4676   // merged store at the end.
4677   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4678     return true;
4679 
4680   // If this is a conditional branch in an empty block, and if any
4681   // predecessors are a conditional branch to one of our destinations,
4682   // fold the conditions into logical ops and one cond br.
4683 
4684   // Ignore dbg intrinsics.
4685   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4686     return false;
4687 
4688   int PBIOp, BIOp;
4689   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4690     PBIOp = 0;
4691     BIOp = 0;
4692   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4693     PBIOp = 0;
4694     BIOp = 1;
4695   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4696     PBIOp = 1;
4697     BIOp = 0;
4698   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4699     PBIOp = 1;
4700     BIOp = 1;
4701   } else {
4702     return false;
4703   }
4704 
4705   // Check to make sure that the other destination of this branch
4706   // isn't BB itself.  If so, this is an infinite loop that will
4707   // keep getting unwound.
4708   if (PBI->getSuccessor(PBIOp) == BB)
4709     return false;
4710 
4711   // If predecessor's branch probability to BB is too low don't merge branches.
4712   SmallVector<uint32_t, 2> PredWeights;
4713   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4714       extractBranchWeights(*PBI, PredWeights) &&
4715       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4716 
4717     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4718         PredWeights[PBIOp],
4719         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4720 
4721     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4722     if (CommonDestProb >= Likely)
4723       return false;
4724   }
4725 
4726   // Do not perform this transformation if it would require
4727   // insertion of a large number of select instructions. For targets
4728   // without predication/cmovs, this is a big pessimization.
4729 
4730   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4731   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4732   unsigned NumPhis = 0;
4733   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4734        ++II, ++NumPhis) {
4735     if (NumPhis > 2) // Disable this xform.
4736       return false;
4737   }
4738 
4739   // Finally, if everything is ok, fold the branches to logical ops.
4740   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4741 
4742   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4743                     << "AND: " << *BI->getParent());
4744 
4745   SmallVector<DominatorTree::UpdateType, 5> Updates;
4746 
4747   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4748   // branch in it, where one edge (OtherDest) goes back to itself but the other
4749   // exits.  We don't *know* that the program avoids the infinite loop
4750   // (even though that seems likely).  If we do this xform naively, we'll end up
4751   // recursively unpeeling the loop.  Since we know that (after the xform is
4752   // done) that the block *is* infinite if reached, we just make it an obviously
4753   // infinite loop with no cond branch.
4754   if (OtherDest == BB) {
4755     // Insert it at the end of the function, because it's either code,
4756     // or it won't matter if it's hot. :)
4757     BasicBlock *InfLoopBlock =
4758         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4759     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4760     if (DTU)
4761       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4762     OtherDest = InfLoopBlock;
4763   }
4764 
4765   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4766 
4767   // BI may have other predecessors.  Because of this, we leave
4768   // it alone, but modify PBI.
4769 
4770   // Make sure we get to CommonDest on True&True directions.
4771   Value *PBICond = PBI->getCondition();
4772   IRBuilder<NoFolder> Builder(PBI);
4773   if (PBIOp)
4774     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4775 
4776   Value *BICond = BI->getCondition();
4777   if (BIOp)
4778     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4779 
4780   // Merge the conditions.
4781   Value *Cond =
4782       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4783 
4784   // Modify PBI to branch on the new condition to the new dests.
4785   PBI->setCondition(Cond);
4786   PBI->setSuccessor(0, CommonDest);
4787   PBI->setSuccessor(1, OtherDest);
4788 
4789   if (DTU) {
4790     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4791     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4792 
4793     DTU->applyUpdates(Updates);
4794   }
4795 
4796   // Update branch weight for PBI.
4797   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4798   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4799   bool HasWeights =
4800       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4801                              SuccTrueWeight, SuccFalseWeight);
4802   if (HasWeights) {
4803     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4804     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4805     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4806     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4807     // The weight to CommonDest should be PredCommon * SuccTotal +
4808     //                                    PredOther * SuccCommon.
4809     // The weight to OtherDest should be PredOther * SuccOther.
4810     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4811                                   PredOther * SuccCommon,
4812                               PredOther * SuccOther};
4813     // Halve the weights if any of them cannot fit in an uint32_t
4814     fitWeights(NewWeights);
4815 
4816     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4817   }
4818 
4819   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4820   // block that are identical to the entries for BI's block.
4821   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4822 
4823   // We know that the CommonDest already had an edge from PBI to
4824   // it.  If it has PHIs though, the PHIs may have different
4825   // entries for BB and PBI's BB.  If so, insert a select to make
4826   // them agree.
4827   for (PHINode &PN : CommonDest->phis()) {
4828     Value *BIV = PN.getIncomingValueForBlock(BB);
4829     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4830     Value *PBIV = PN.getIncomingValue(PBBIdx);
4831     if (BIV != PBIV) {
4832       // Insert a select in PBI to pick the right value.
4833       SelectInst *NV = cast<SelectInst>(
4834           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4835       PN.setIncomingValue(PBBIdx, NV);
4836       // Although the select has the same condition as PBI, the original branch
4837       // weights for PBI do not apply to the new select because the select's
4838       // 'logical' edges are incoming edges of the phi that is eliminated, not
4839       // the outgoing edges of PBI.
4840       if (HasWeights) {
4841         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4842         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4843         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4844         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4845         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4846         // The weight to PredOtherDest should be PredOther * SuccCommon.
4847         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4848                                   PredOther * SuccCommon};
4849 
4850         fitWeights(NewWeights);
4851 
4852         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4853                          /*IsExpected=*/false);
4854       }
4855     }
4856   }
4857 
4858   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4859   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4860 
4861   // This basic block is probably dead.  We know it has at least
4862   // one fewer predecessor.
4863   return true;
4864 }
4865 
4866 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4867 // true or to FalseBB if Cond is false.
4868 // Takes care of updating the successors and removing the old terminator.
4869 // Also makes sure not to introduce new successors by assuming that edges to
4870 // non-successor TrueBBs and FalseBBs aren't reachable.
4871 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4872                                                 Value *Cond, BasicBlock *TrueBB,
4873                                                 BasicBlock *FalseBB,
4874                                                 uint32_t TrueWeight,
4875                                                 uint32_t FalseWeight) {
4876   auto *BB = OldTerm->getParent();
4877   // Remove any superfluous successor edges from the CFG.
4878   // First, figure out which successors to preserve.
4879   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4880   // successor.
4881   BasicBlock *KeepEdge1 = TrueBB;
4882   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4883 
4884   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4885 
4886   // Then remove the rest.
4887   for (BasicBlock *Succ : successors(OldTerm)) {
4888     // Make sure only to keep exactly one copy of each edge.
4889     if (Succ == KeepEdge1)
4890       KeepEdge1 = nullptr;
4891     else if (Succ == KeepEdge2)
4892       KeepEdge2 = nullptr;
4893     else {
4894       Succ->removePredecessor(BB,
4895                               /*KeepOneInputPHIs=*/true);
4896 
4897       if (Succ != TrueBB && Succ != FalseBB)
4898         RemovedSuccessors.insert(Succ);
4899     }
4900   }
4901 
4902   IRBuilder<> Builder(OldTerm);
4903   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4904 
4905   // Insert an appropriate new terminator.
4906   if (!KeepEdge1 && !KeepEdge2) {
4907     if (TrueBB == FalseBB) {
4908       // We were only looking for one successor, and it was present.
4909       // Create an unconditional branch to it.
4910       Builder.CreateBr(TrueBB);
4911     } else {
4912       // We found both of the successors we were looking for.
4913       // Create a conditional branch sharing the condition of the select.
4914       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4915       if (TrueWeight != FalseWeight)
4916         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4917     }
4918   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4919     // Neither of the selected blocks were successors, so this
4920     // terminator must be unreachable.
4921     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4922   } else {
4923     // One of the selected values was a successor, but the other wasn't.
4924     // Insert an unconditional branch to the one that was found;
4925     // the edge to the one that wasn't must be unreachable.
4926     if (!KeepEdge1) {
4927       // Only TrueBB was found.
4928       Builder.CreateBr(TrueBB);
4929     } else {
4930       // Only FalseBB was found.
4931       Builder.CreateBr(FalseBB);
4932     }
4933   }
4934 
4935   eraseTerminatorAndDCECond(OldTerm);
4936 
4937   if (DTU) {
4938     SmallVector<DominatorTree::UpdateType, 2> Updates;
4939     Updates.reserve(RemovedSuccessors.size());
4940     for (auto *RemovedSuccessor : RemovedSuccessors)
4941       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4942     DTU->applyUpdates(Updates);
4943   }
4944 
4945   return true;
4946 }
4947 
4948 // Replaces
4949 //   (switch (select cond, X, Y)) on constant X, Y
4950 // with a branch - conditional if X and Y lead to distinct BBs,
4951 // unconditional otherwise.
4952 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4953                                             SelectInst *Select) {
4954   // Check for constant integer values in the select.
4955   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4956   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4957   if (!TrueVal || !FalseVal)
4958     return false;
4959 
4960   // Find the relevant condition and destinations.
4961   Value *Condition = Select->getCondition();
4962   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4963   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4964 
4965   // Get weight for TrueBB and FalseBB.
4966   uint32_t TrueWeight = 0, FalseWeight = 0;
4967   SmallVector<uint64_t, 8> Weights;
4968   bool HasWeights = hasBranchWeightMD(*SI);
4969   if (HasWeights) {
4970     getBranchWeights(SI, Weights);
4971     if (Weights.size() == 1 + SI->getNumCases()) {
4972       TrueWeight =
4973           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4974       FalseWeight =
4975           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4976     }
4977   }
4978 
4979   // Perform the actual simplification.
4980   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4981                                     FalseWeight);
4982 }
4983 
4984 // Replaces
4985 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4986 //                             blockaddress(@fn, BlockB)))
4987 // with
4988 //   (br cond, BlockA, BlockB).
4989 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4990                                                 SelectInst *SI) {
4991   // Check that both operands of the select are block addresses.
4992   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4993   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4994   if (!TBA || !FBA)
4995     return false;
4996 
4997   // Extract the actual blocks.
4998   BasicBlock *TrueBB = TBA->getBasicBlock();
4999   BasicBlock *FalseBB = FBA->getBasicBlock();
5000 
5001   // Perform the actual simplification.
5002   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
5003                                     0);
5004 }
5005 
5006 /// This is called when we find an icmp instruction
5007 /// (a seteq/setne with a constant) as the only instruction in a
5008 /// block that ends with an uncond branch.  We are looking for a very specific
5009 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
5010 /// this case, we merge the first two "or's of icmp" into a switch, but then the
5011 /// default value goes to an uncond block with a seteq in it, we get something
5012 /// like:
5013 ///
5014 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
5015 /// DEFAULT:
5016 ///   %tmp = icmp eq i8 %A, 92
5017 ///   br label %end
5018 /// end:
5019 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
5020 ///
5021 /// We prefer to split the edge to 'end' so that there is a true/false entry to
5022 /// the PHI, merging the third icmp into the switch.
5023 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
5024     ICmpInst *ICI, IRBuilder<> &Builder) {
5025   BasicBlock *BB = ICI->getParent();
5026 
5027   // If the block has any PHIs in it or the icmp has multiple uses, it is too
5028   // complex.
5029   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
5030     return false;
5031 
5032   Value *V = ICI->getOperand(0);
5033   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
5034 
5035   // The pattern we're looking for is where our only predecessor is a switch on
5036   // 'V' and this block is the default case for the switch.  In this case we can
5037   // fold the compared value into the switch to simplify things.
5038   BasicBlock *Pred = BB->getSinglePredecessor();
5039   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
5040     return false;
5041 
5042   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
5043   if (SI->getCondition() != V)
5044     return false;
5045 
5046   // If BB is reachable on a non-default case, then we simply know the value of
5047   // V in this block.  Substitute it and constant fold the icmp instruction
5048   // away.
5049   if (SI->getDefaultDest() != BB) {
5050     ConstantInt *VVal = SI->findCaseDest(BB);
5051     assert(VVal && "Should have a unique destination value");
5052     ICI->setOperand(0, VVal);
5053 
5054     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
5055       ICI->replaceAllUsesWith(V);
5056       ICI->eraseFromParent();
5057     }
5058     // BB is now empty, so it is likely to simplify away.
5059     return requestResimplify();
5060   }
5061 
5062   // Ok, the block is reachable from the default dest.  If the constant we're
5063   // comparing exists in one of the other edges, then we can constant fold ICI
5064   // and zap it.
5065   if (SI->findCaseValue(Cst) != SI->case_default()) {
5066     Value *V;
5067     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5068       V = ConstantInt::getFalse(BB->getContext());
5069     else
5070       V = ConstantInt::getTrue(BB->getContext());
5071 
5072     ICI->replaceAllUsesWith(V);
5073     ICI->eraseFromParent();
5074     // BB is now empty, so it is likely to simplify away.
5075     return requestResimplify();
5076   }
5077 
5078   // The use of the icmp has to be in the 'end' block, by the only PHI node in
5079   // the block.
5080   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
5081   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5082   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5083       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5084     return false;
5085 
5086   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5087   // true in the PHI.
5088   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5089   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5090 
5091   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5092     std::swap(DefaultCst, NewCst);
5093 
5094   // Replace ICI (which is used by the PHI for the default value) with true or
5095   // false depending on if it is EQ or NE.
5096   ICI->replaceAllUsesWith(DefaultCst);
5097   ICI->eraseFromParent();
5098 
5099   SmallVector<DominatorTree::UpdateType, 2> Updates;
5100 
5101   // Okay, the switch goes to this block on a default value.  Add an edge from
5102   // the switch to the merge point on the compared value.
5103   BasicBlock *NewBB =
5104       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5105   {
5106     SwitchInstProfUpdateWrapper SIW(*SI);
5107     auto W0 = SIW.getSuccessorWeight(0);
5108     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5109     if (W0) {
5110       NewW = ((uint64_t(*W0) + 1) >> 1);
5111       SIW.setSuccessorWeight(0, *NewW);
5112     }
5113     SIW.addCase(Cst, NewBB, NewW);
5114     if (DTU)
5115       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5116   }
5117 
5118   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5119   Builder.SetInsertPoint(NewBB);
5120   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5121   Builder.CreateBr(SuccBlock);
5122   PHIUse->addIncoming(NewCst, NewBB);
5123   if (DTU) {
5124     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5125     DTU->applyUpdates(Updates);
5126   }
5127   return true;
5128 }
5129 
5130 /// The specified branch is a conditional branch.
5131 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5132 /// fold it into a switch instruction if so.
5133 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5134                                                IRBuilder<> &Builder,
5135                                                const DataLayout &DL) {
5136   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5137   if (!Cond)
5138     return false;
5139 
5140   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5141   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5142   // 'setne's and'ed together, collect them.
5143 
5144   // Try to gather values from a chain of and/or to be turned into a switch
5145   ConstantComparesGatherer ConstantCompare(Cond, DL);
5146   // Unpack the result
5147   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5148   Value *CompVal = ConstantCompare.CompValue;
5149   unsigned UsedICmps = ConstantCompare.UsedICmps;
5150   Value *ExtraCase = ConstantCompare.Extra;
5151 
5152   // If we didn't have a multiply compared value, fail.
5153   if (!CompVal)
5154     return false;
5155 
5156   // Avoid turning single icmps into a switch.
5157   if (UsedICmps <= 1)
5158     return false;
5159 
5160   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5161 
5162   // There might be duplicate constants in the list, which the switch
5163   // instruction can't handle, remove them now.
5164   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5165   Values.erase(llvm::unique(Values), Values.end());
5166 
5167   // If Extra was used, we require at least two switch values to do the
5168   // transformation.  A switch with one value is just a conditional branch.
5169   if (ExtraCase && Values.size() < 2)
5170     return false;
5171 
5172   // TODO: Preserve branch weight metadata, similarly to how
5173   // foldValueComparisonIntoPredecessors preserves it.
5174 
5175   // Figure out which block is which destination.
5176   BasicBlock *DefaultBB = BI->getSuccessor(1);
5177   BasicBlock *EdgeBB = BI->getSuccessor(0);
5178   if (!TrueWhenEqual)
5179     std::swap(DefaultBB, EdgeBB);
5180 
5181   BasicBlock *BB = BI->getParent();
5182 
5183   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5184                     << " cases into SWITCH.  BB is:\n"
5185                     << *BB);
5186 
5187   SmallVector<DominatorTree::UpdateType, 2> Updates;
5188 
5189   // If there are any extra values that couldn't be folded into the switch
5190   // then we evaluate them with an explicit branch first. Split the block
5191   // right before the condbr to handle it.
5192   if (ExtraCase) {
5193     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5194                                    /*MSSAU=*/nullptr, "switch.early.test");
5195 
5196     // Remove the uncond branch added to the old block.
5197     Instruction *OldTI = BB->getTerminator();
5198     Builder.SetInsertPoint(OldTI);
5199 
5200     // There can be an unintended UB if extra values are Poison. Before the
5201     // transformation, extra values may not be evaluated according to the
5202     // condition, and it will not raise UB. But after transformation, we are
5203     // evaluating extra values before checking the condition, and it will raise
5204     // UB. It can be solved by adding freeze instruction to extra values.
5205     AssumptionCache *AC = Options.AC;
5206 
5207     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5208       ExtraCase = Builder.CreateFreeze(ExtraCase);
5209 
5210     if (TrueWhenEqual)
5211       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5212     else
5213       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5214 
5215     OldTI->eraseFromParent();
5216 
5217     if (DTU)
5218       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5219 
5220     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5221     // for the edge we just added.
5222     addPredecessorToBlock(EdgeBB, BB, NewBB);
5223 
5224     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5225                       << "\nEXTRABB = " << *BB);
5226     BB = NewBB;
5227   }
5228 
5229   Builder.SetInsertPoint(BI);
5230   // Convert pointer to int before we switch.
5231   if (CompVal->getType()->isPointerTy()) {
5232     CompVal = Builder.CreatePtrToInt(
5233         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5234   }
5235 
5236   // Create the new switch instruction now.
5237   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5238 
5239   // Add all of the 'cases' to the switch instruction.
5240   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5241     New->addCase(Values[i], EdgeBB);
5242 
5243   // We added edges from PI to the EdgeBB.  As such, if there were any
5244   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5245   // the number of edges added.
5246   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5247     PHINode *PN = cast<PHINode>(BBI);
5248     Value *InVal = PN->getIncomingValueForBlock(BB);
5249     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5250       PN->addIncoming(InVal, BB);
5251   }
5252 
5253   // Erase the old branch instruction.
5254   eraseTerminatorAndDCECond(BI);
5255   if (DTU)
5256     DTU->applyUpdates(Updates);
5257 
5258   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5259   return true;
5260 }
5261 
5262 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5263   if (isa<PHINode>(RI->getValue()))
5264     return simplifyCommonResume(RI);
5265   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHIIt()) &&
5266            RI->getValue() == &*RI->getParent()->getFirstNonPHIIt())
5267     // The resume must unwind the exception that caused control to branch here.
5268     return simplifySingleResume(RI);
5269 
5270   return false;
5271 }
5272 
5273 // Check if cleanup block is empty
5274 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5275   for (Instruction &I : R) {
5276     auto *II = dyn_cast<IntrinsicInst>(&I);
5277     if (!II)
5278       return false;
5279 
5280     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5281     switch (IntrinsicID) {
5282     case Intrinsic::dbg_declare:
5283     case Intrinsic::dbg_value:
5284     case Intrinsic::dbg_label:
5285     case Intrinsic::lifetime_end:
5286       break;
5287     default:
5288       return false;
5289     }
5290   }
5291   return true;
5292 }
5293 
5294 // Simplify resume that is shared by several landing pads (phi of landing pad).
5295 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5296   BasicBlock *BB = RI->getParent();
5297 
5298   // Check that there are no other instructions except for debug and lifetime
5299   // intrinsics between the phi's and resume instruction.
5300   if (!isCleanupBlockEmpty(make_range(RI->getParent()->getFirstNonPHIIt(),
5301                                       BB->getTerminator()->getIterator())))
5302     return false;
5303 
5304   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5305   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5306 
5307   // Check incoming blocks to see if any of them are trivial.
5308   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5309        Idx++) {
5310     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5311     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5312 
5313     // If the block has other successors, we can not delete it because
5314     // it has other dependents.
5315     if (IncomingBB->getUniqueSuccessor() != BB)
5316       continue;
5317 
5318     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHIIt());
5319     // Not the landing pad that caused the control to branch here.
5320     if (IncomingValue != LandingPad)
5321       continue;
5322 
5323     if (isCleanupBlockEmpty(
5324             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5325       TrivialUnwindBlocks.insert(IncomingBB);
5326   }
5327 
5328   // If no trivial unwind blocks, don't do any simplifications.
5329   if (TrivialUnwindBlocks.empty())
5330     return false;
5331 
5332   // Turn all invokes that unwind here into calls.
5333   for (auto *TrivialBB : TrivialUnwindBlocks) {
5334     // Blocks that will be simplified should be removed from the phi node.
5335     // Note there could be multiple edges to the resume block, and we need
5336     // to remove them all.
5337     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5338       BB->removePredecessor(TrivialBB, true);
5339 
5340     for (BasicBlock *Pred :
5341          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5342       removeUnwindEdge(Pred, DTU);
5343       ++NumInvokes;
5344     }
5345 
5346     // In each SimplifyCFG run, only the current processed block can be erased.
5347     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5348     // of erasing TrivialBB, we only remove the branch to the common resume
5349     // block so that we can later erase the resume block since it has no
5350     // predecessors.
5351     TrivialBB->getTerminator()->eraseFromParent();
5352     new UnreachableInst(RI->getContext(), TrivialBB);
5353     if (DTU)
5354       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5355   }
5356 
5357   // Delete the resume block if all its predecessors have been removed.
5358   if (pred_empty(BB))
5359     DeleteDeadBlock(BB, DTU);
5360 
5361   return !TrivialUnwindBlocks.empty();
5362 }
5363 
5364 // Simplify resume that is only used by a single (non-phi) landing pad.
5365 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5366   BasicBlock *BB = RI->getParent();
5367   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHIIt());
5368   assert(RI->getValue() == LPInst &&
5369          "Resume must unwind the exception that caused control to here");
5370 
5371   // Check that there are no other instructions except for debug intrinsics.
5372   if (!isCleanupBlockEmpty(
5373           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5374     return false;
5375 
5376   // Turn all invokes that unwind here into calls and delete the basic block.
5377   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5378     removeUnwindEdge(Pred, DTU);
5379     ++NumInvokes;
5380   }
5381 
5382   // The landingpad is now unreachable.  Zap it.
5383   DeleteDeadBlock(BB, DTU);
5384   return true;
5385 }
5386 
5387 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5388   // If this is a trivial cleanup pad that executes no instructions, it can be
5389   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5390   // that is an EH pad will be updated to continue to the caller and any
5391   // predecessor that terminates with an invoke instruction will have its invoke
5392   // instruction converted to a call instruction.  If the cleanup pad being
5393   // simplified does not continue to the caller, each predecessor will be
5394   // updated to continue to the unwind destination of the cleanup pad being
5395   // simplified.
5396   BasicBlock *BB = RI->getParent();
5397   CleanupPadInst *CPInst = RI->getCleanupPad();
5398   if (CPInst->getParent() != BB)
5399     // This isn't an empty cleanup.
5400     return false;
5401 
5402   // We cannot kill the pad if it has multiple uses.  This typically arises
5403   // from unreachable basic blocks.
5404   if (!CPInst->hasOneUse())
5405     return false;
5406 
5407   // Check that there are no other instructions except for benign intrinsics.
5408   if (!isCleanupBlockEmpty(
5409           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5410     return false;
5411 
5412   // If the cleanup return we are simplifying unwinds to the caller, this will
5413   // set UnwindDest to nullptr.
5414   BasicBlock *UnwindDest = RI->getUnwindDest();
5415 
5416   // We're about to remove BB from the control flow.  Before we do, sink any
5417   // PHINodes into the unwind destination.  Doing this before changing the
5418   // control flow avoids some potentially slow checks, since we can currently
5419   // be certain that UnwindDest and BB have no common predecessors (since they
5420   // are both EH pads).
5421   if (UnwindDest) {
5422     // First, go through the PHI nodes in UnwindDest and update any nodes that
5423     // reference the block we are removing
5424     for (PHINode &DestPN : UnwindDest->phis()) {
5425       int Idx = DestPN.getBasicBlockIndex(BB);
5426       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5427       assert(Idx != -1);
5428       // This PHI node has an incoming value that corresponds to a control
5429       // path through the cleanup pad we are removing.  If the incoming
5430       // value is in the cleanup pad, it must be a PHINode (because we
5431       // verified above that the block is otherwise empty).  Otherwise, the
5432       // value is either a constant or a value that dominates the cleanup
5433       // pad being removed.
5434       //
5435       // Because BB and UnwindDest are both EH pads, all of their
5436       // predecessors must unwind to these blocks, and since no instruction
5437       // can have multiple unwind destinations, there will be no overlap in
5438       // incoming blocks between SrcPN and DestPN.
5439       Value *SrcVal = DestPN.getIncomingValue(Idx);
5440       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5441 
5442       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5443       for (auto *Pred : predecessors(BB)) {
5444         Value *Incoming =
5445             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5446         DestPN.addIncoming(Incoming, Pred);
5447       }
5448     }
5449 
5450     // Sink any remaining PHI nodes directly into UnwindDest.
5451     BasicBlock::iterator InsertPt = UnwindDest->getFirstNonPHIIt();
5452     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5453       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5454         // If the PHI node has no uses or all of its uses are in this basic
5455         // block (meaning they are debug or lifetime intrinsics), just leave
5456         // it.  It will be erased when we erase BB below.
5457         continue;
5458 
5459       // Otherwise, sink this PHI node into UnwindDest.
5460       // Any predecessors to UnwindDest which are not already represented
5461       // must be back edges which inherit the value from the path through
5462       // BB.  In this case, the PHI value must reference itself.
5463       for (auto *pred : predecessors(UnwindDest))
5464         if (pred != BB)
5465           PN.addIncoming(&PN, pred);
5466       PN.moveBefore(InsertPt);
5467       // Also, add a dummy incoming value for the original BB itself,
5468       // so that the PHI is well-formed until we drop said predecessor.
5469       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5470     }
5471   }
5472 
5473   std::vector<DominatorTree::UpdateType> Updates;
5474 
5475   // We use make_early_inc_range here because we will remove all predecessors.
5476   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5477     if (UnwindDest == nullptr) {
5478       if (DTU) {
5479         DTU->applyUpdates(Updates);
5480         Updates.clear();
5481       }
5482       removeUnwindEdge(PredBB, DTU);
5483       ++NumInvokes;
5484     } else {
5485       BB->removePredecessor(PredBB);
5486       Instruction *TI = PredBB->getTerminator();
5487       TI->replaceUsesOfWith(BB, UnwindDest);
5488       if (DTU) {
5489         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5490         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5491       }
5492     }
5493   }
5494 
5495   if (DTU)
5496     DTU->applyUpdates(Updates);
5497 
5498   DeleteDeadBlock(BB, DTU);
5499 
5500   return true;
5501 }
5502 
5503 // Try to merge two cleanuppads together.
5504 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5505   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5506   // with.
5507   BasicBlock *UnwindDest = RI->getUnwindDest();
5508   if (!UnwindDest)
5509     return false;
5510 
5511   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5512   // be safe to merge without code duplication.
5513   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5514     return false;
5515 
5516   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5517   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5518   if (!SuccessorCleanupPad)
5519     return false;
5520 
5521   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5522   // Replace any uses of the successor cleanupad with the predecessor pad
5523   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5524   // funclet bundle operands.
5525   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5526   // Remove the old cleanuppad.
5527   SuccessorCleanupPad->eraseFromParent();
5528   // Now, we simply replace the cleanupret with a branch to the unwind
5529   // destination.
5530   BranchInst::Create(UnwindDest, RI->getParent());
5531   RI->eraseFromParent();
5532 
5533   return true;
5534 }
5535 
5536 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5537   // It is possible to transiantly have an undef cleanuppad operand because we
5538   // have deleted some, but not all, dead blocks.
5539   // Eventually, this block will be deleted.
5540   if (isa<UndefValue>(RI->getOperand(0)))
5541     return false;
5542 
5543   if (mergeCleanupPad(RI))
5544     return true;
5545 
5546   if (removeEmptyCleanup(RI, DTU))
5547     return true;
5548 
5549   return false;
5550 }
5551 
5552 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5553 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5554   BasicBlock *BB = UI->getParent();
5555 
5556   bool Changed = false;
5557 
5558   // Ensure that any debug-info records that used to occur after the Unreachable
5559   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5560   // the block.
5561   BB->flushTerminatorDbgRecords();
5562 
5563   // Debug-info records on the unreachable inst itself should be deleted, as
5564   // below we delete everything past the final executable instruction.
5565   UI->dropDbgRecords();
5566 
5567   // If there are any instructions immediately before the unreachable that can
5568   // be removed, do so.
5569   while (UI->getIterator() != BB->begin()) {
5570     BasicBlock::iterator BBI = UI->getIterator();
5571     --BBI;
5572 
5573     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5574       break; // Can not drop any more instructions. We're done here.
5575     // Otherwise, this instruction can be freely erased,
5576     // even if it is not side-effect free.
5577 
5578     // Note that deleting EH's here is in fact okay, although it involves a bit
5579     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5580     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5581     // and we can therefore guarantee this block will be erased.
5582 
5583     // If we're deleting this, we're deleting any subsequent debug info, so
5584     // delete DbgRecords.
5585     BBI->dropDbgRecords();
5586 
5587     // Delete this instruction (any uses are guaranteed to be dead)
5588     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5589     BBI->eraseFromParent();
5590     Changed = true;
5591   }
5592 
5593   // If the unreachable instruction is the first in the block, take a gander
5594   // at all of the predecessors of this instruction, and simplify them.
5595   if (&BB->front() != UI)
5596     return Changed;
5597 
5598   std::vector<DominatorTree::UpdateType> Updates;
5599 
5600   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5601   for (BasicBlock *Predecessor : Preds) {
5602     Instruction *TI = Predecessor->getTerminator();
5603     IRBuilder<> Builder(TI);
5604     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5605       // We could either have a proper unconditional branch,
5606       // or a degenerate conditional branch with matching destinations.
5607       if (all_of(BI->successors(),
5608                  [BB](auto *Successor) { return Successor == BB; })) {
5609         new UnreachableInst(TI->getContext(), TI->getIterator());
5610         TI->eraseFromParent();
5611         Changed = true;
5612       } else {
5613         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5614         Value* Cond = BI->getCondition();
5615         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5616                "The destinations are guaranteed to be different here.");
5617         CallInst *Assumption;
5618         if (BI->getSuccessor(0) == BB) {
5619           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5620           Builder.CreateBr(BI->getSuccessor(1));
5621         } else {
5622           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5623           Assumption = Builder.CreateAssumption(Cond);
5624           Builder.CreateBr(BI->getSuccessor(0));
5625         }
5626         if (Options.AC)
5627           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5628 
5629         eraseTerminatorAndDCECond(BI);
5630         Changed = true;
5631       }
5632       if (DTU)
5633         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5634     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5635       SwitchInstProfUpdateWrapper SU(*SI);
5636       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5637         if (i->getCaseSuccessor() != BB) {
5638           ++i;
5639           continue;
5640         }
5641         BB->removePredecessor(SU->getParent());
5642         i = SU.removeCase(i);
5643         e = SU->case_end();
5644         Changed = true;
5645       }
5646       // Note that the default destination can't be removed!
5647       if (DTU && SI->getDefaultDest() != BB)
5648         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5649     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5650       if (II->getUnwindDest() == BB) {
5651         if (DTU) {
5652           DTU->applyUpdates(Updates);
5653           Updates.clear();
5654         }
5655         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5656         if (!CI->doesNotThrow())
5657           CI->setDoesNotThrow();
5658         Changed = true;
5659       }
5660     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5661       if (CSI->getUnwindDest() == BB) {
5662         if (DTU) {
5663           DTU->applyUpdates(Updates);
5664           Updates.clear();
5665         }
5666         removeUnwindEdge(TI->getParent(), DTU);
5667         Changed = true;
5668         continue;
5669       }
5670 
5671       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5672                                              E = CSI->handler_end();
5673            I != E; ++I) {
5674         if (*I == BB) {
5675           CSI->removeHandler(I);
5676           --I;
5677           --E;
5678           Changed = true;
5679         }
5680       }
5681       if (DTU)
5682         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5683       if (CSI->getNumHandlers() == 0) {
5684         if (CSI->hasUnwindDest()) {
5685           // Redirect all predecessors of the block containing CatchSwitchInst
5686           // to instead branch to the CatchSwitchInst's unwind destination.
5687           if (DTU) {
5688             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5689               Updates.push_back({DominatorTree::Insert,
5690                                  PredecessorOfPredecessor,
5691                                  CSI->getUnwindDest()});
5692               Updates.push_back({DominatorTree::Delete,
5693                                  PredecessorOfPredecessor, Predecessor});
5694             }
5695           }
5696           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5697         } else {
5698           // Rewrite all preds to unwind to caller (or from invoke to call).
5699           if (DTU) {
5700             DTU->applyUpdates(Updates);
5701             Updates.clear();
5702           }
5703           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5704           for (BasicBlock *EHPred : EHPreds)
5705             removeUnwindEdge(EHPred, DTU);
5706         }
5707         // The catchswitch is no longer reachable.
5708         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5709         CSI->eraseFromParent();
5710         Changed = true;
5711       }
5712     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5713       (void)CRI;
5714       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5715              "Expected to always have an unwind to BB.");
5716       if (DTU)
5717         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5718       new UnreachableInst(TI->getContext(), TI->getIterator());
5719       TI->eraseFromParent();
5720       Changed = true;
5721     }
5722   }
5723 
5724   if (DTU)
5725     DTU->applyUpdates(Updates);
5726 
5727   // If this block is now dead, remove it.
5728   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5729     DeleteDeadBlock(BB, DTU);
5730     return true;
5731   }
5732 
5733   return Changed;
5734 }
5735 
5736 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5737   assert(Cases.size() >= 1);
5738 
5739   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5740   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5741     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5742       return false;
5743   }
5744   return true;
5745 }
5746 
5747 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5748                                            DomTreeUpdater *DTU,
5749                                            bool RemoveOrigDefaultBlock = true) {
5750   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5751   auto *BB = Switch->getParent();
5752   auto *OrigDefaultBlock = Switch->getDefaultDest();
5753   if (RemoveOrigDefaultBlock)
5754     OrigDefaultBlock->removePredecessor(BB);
5755   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5756       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5757       OrigDefaultBlock);
5758   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5759   Switch->setDefaultDest(&*NewDefaultBlock);
5760   if (DTU) {
5761     SmallVector<DominatorTree::UpdateType, 2> Updates;
5762     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5763     if (RemoveOrigDefaultBlock &&
5764         !is_contained(successors(BB), OrigDefaultBlock))
5765       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5766     DTU->applyUpdates(Updates);
5767   }
5768 }
5769 
5770 /// Turn a switch into an integer range comparison and branch.
5771 /// Switches with more than 2 destinations are ignored.
5772 /// Switches with 1 destination are also ignored.
5773 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5774                                              IRBuilder<> &Builder) {
5775   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5776 
5777   bool HasDefault =
5778       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5779 
5780   auto *BB = SI->getParent();
5781 
5782   // Partition the cases into two sets with different destinations.
5783   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5784   BasicBlock *DestB = nullptr;
5785   SmallVector<ConstantInt *, 16> CasesA;
5786   SmallVector<ConstantInt *, 16> CasesB;
5787 
5788   for (auto Case : SI->cases()) {
5789     BasicBlock *Dest = Case.getCaseSuccessor();
5790     if (!DestA)
5791       DestA = Dest;
5792     if (Dest == DestA) {
5793       CasesA.push_back(Case.getCaseValue());
5794       continue;
5795     }
5796     if (!DestB)
5797       DestB = Dest;
5798     if (Dest == DestB) {
5799       CasesB.push_back(Case.getCaseValue());
5800       continue;
5801     }
5802     return false; // More than two destinations.
5803   }
5804   if (!DestB)
5805     return false; // All destinations are the same and the default is unreachable
5806 
5807   assert(DestA && DestB &&
5808          "Single-destination switch should have been folded.");
5809   assert(DestA != DestB);
5810   assert(DestB != SI->getDefaultDest());
5811   assert(!CasesB.empty() && "There must be non-default cases.");
5812   assert(!CasesA.empty() || HasDefault);
5813 
5814   // Figure out if one of the sets of cases form a contiguous range.
5815   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5816   BasicBlock *ContiguousDest = nullptr;
5817   BasicBlock *OtherDest = nullptr;
5818   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5819     ContiguousCases = &CasesA;
5820     ContiguousDest = DestA;
5821     OtherDest = DestB;
5822   } else if (casesAreContiguous(CasesB)) {
5823     ContiguousCases = &CasesB;
5824     ContiguousDest = DestB;
5825     OtherDest = DestA;
5826   } else
5827     return false;
5828 
5829   // Start building the compare and branch.
5830 
5831   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5832   Constant *NumCases =
5833       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5834 
5835   Value *Sub = SI->getCondition();
5836   if (!Offset->isNullValue())
5837     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5838 
5839   Value *Cmp;
5840   // If NumCases overflowed, then all possible values jump to the successor.
5841   if (NumCases->isNullValue() && !ContiguousCases->empty())
5842     Cmp = ConstantInt::getTrue(SI->getContext());
5843   else
5844     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5845   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5846 
5847   // Update weight for the newly-created conditional branch.
5848   if (hasBranchWeightMD(*SI)) {
5849     SmallVector<uint64_t, 8> Weights;
5850     getBranchWeights(SI, Weights);
5851     if (Weights.size() == 1 + SI->getNumCases()) {
5852       uint64_t TrueWeight = 0;
5853       uint64_t FalseWeight = 0;
5854       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5855         if (SI->getSuccessor(I) == ContiguousDest)
5856           TrueWeight += Weights[I];
5857         else
5858           FalseWeight += Weights[I];
5859       }
5860       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5861         TrueWeight /= 2;
5862         FalseWeight /= 2;
5863       }
5864       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5865     }
5866   }
5867 
5868   // Prune obsolete incoming values off the successors' PHI nodes.
5869   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5870     unsigned PreviousEdges = ContiguousCases->size();
5871     if (ContiguousDest == SI->getDefaultDest())
5872       ++PreviousEdges;
5873     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5874       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5875   }
5876   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5877     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5878     if (OtherDest == SI->getDefaultDest())
5879       ++PreviousEdges;
5880     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5881       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5882   }
5883 
5884   // Clean up the default block - it may have phis or other instructions before
5885   // the unreachable terminator.
5886   if (!HasDefault)
5887     createUnreachableSwitchDefault(SI, DTU);
5888 
5889   auto *UnreachableDefault = SI->getDefaultDest();
5890 
5891   // Drop the switch.
5892   SI->eraseFromParent();
5893 
5894   if (!HasDefault && DTU)
5895     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5896 
5897   return true;
5898 }
5899 
5900 /// Compute masked bits for the condition of a switch
5901 /// and use it to remove dead cases.
5902 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5903                                      AssumptionCache *AC,
5904                                      const DataLayout &DL) {
5905   Value *Cond = SI->getCondition();
5906   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5907 
5908   // We can also eliminate cases by determining that their values are outside of
5909   // the limited range of the condition based on how many significant (non-sign)
5910   // bits are in the condition value.
5911   unsigned MaxSignificantBitsInCond =
5912       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5913 
5914   // Gather dead cases.
5915   SmallVector<ConstantInt *, 8> DeadCases;
5916   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5917   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5918   for (const auto &Case : SI->cases()) {
5919     auto *Successor = Case.getCaseSuccessor();
5920     if (DTU) {
5921       if (!NumPerSuccessorCases.count(Successor))
5922         UniqueSuccessors.push_back(Successor);
5923       ++NumPerSuccessorCases[Successor];
5924     }
5925     const APInt &CaseVal = Case.getCaseValue()->getValue();
5926     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5927         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5928       DeadCases.push_back(Case.getCaseValue());
5929       if (DTU)
5930         --NumPerSuccessorCases[Successor];
5931       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5932                         << " is dead.\n");
5933     }
5934   }
5935 
5936   // If we can prove that the cases must cover all possible values, the
5937   // default destination becomes dead and we can remove it.  If we know some
5938   // of the bits in the value, we can use that to more precisely compute the
5939   // number of possible unique case values.
5940   bool HasDefault =
5941       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5942   const unsigned NumUnknownBits =
5943       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5944   assert(NumUnknownBits <= Known.getBitWidth());
5945   if (HasDefault && DeadCases.empty() &&
5946       NumUnknownBits < 64 /* avoid overflow */) {
5947     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5948     if (SI->getNumCases() == AllNumCases) {
5949       createUnreachableSwitchDefault(SI, DTU);
5950       return true;
5951     }
5952     // When only one case value is missing, replace default with that case.
5953     // Eliminating the default branch will provide more opportunities for
5954     // optimization, such as lookup tables.
5955     if (SI->getNumCases() == AllNumCases - 1) {
5956       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5957       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5958       if (CondTy->getIntegerBitWidth() > 64 ||
5959           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5960         return false;
5961 
5962       uint64_t MissingCaseVal = 0;
5963       for (const auto &Case : SI->cases())
5964         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5965       auto *MissingCase =
5966           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5967       SwitchInstProfUpdateWrapper SIW(*SI);
5968       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5969       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5970       SIW.setSuccessorWeight(0, 0);
5971       return true;
5972     }
5973   }
5974 
5975   if (DeadCases.empty())
5976     return false;
5977 
5978   SwitchInstProfUpdateWrapper SIW(*SI);
5979   for (ConstantInt *DeadCase : DeadCases) {
5980     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5981     assert(CaseI != SI->case_default() &&
5982            "Case was not found. Probably mistake in DeadCases forming.");
5983     // Prune unused values from PHI nodes.
5984     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5985     SIW.removeCase(CaseI);
5986   }
5987 
5988   if (DTU) {
5989     std::vector<DominatorTree::UpdateType> Updates;
5990     for (auto *Successor : UniqueSuccessors)
5991       if (NumPerSuccessorCases[Successor] == 0)
5992         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5993     DTU->applyUpdates(Updates);
5994   }
5995 
5996   return true;
5997 }
5998 
5999 /// If BB would be eligible for simplification by
6000 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
6001 /// by an unconditional branch), look at the phi node for BB in the successor
6002 /// block and see if the incoming value is equal to CaseValue. If so, return
6003 /// the phi node, and set PhiIndex to BB's index in the phi node.
6004 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
6005                                               BasicBlock *BB, int *PhiIndex) {
6006   if (&*BB->getFirstNonPHIIt() != BB->getTerminator())
6007     return nullptr; // BB must be empty to be a candidate for simplification.
6008   if (!BB->getSinglePredecessor())
6009     return nullptr; // BB must be dominated by the switch.
6010 
6011   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
6012   if (!Branch || !Branch->isUnconditional())
6013     return nullptr; // Terminator must be unconditional branch.
6014 
6015   BasicBlock *Succ = Branch->getSuccessor(0);
6016 
6017   for (PHINode &PHI : Succ->phis()) {
6018     int Idx = PHI.getBasicBlockIndex(BB);
6019     assert(Idx >= 0 && "PHI has no entry for predecessor?");
6020 
6021     Value *InValue = PHI.getIncomingValue(Idx);
6022     if (InValue != CaseValue)
6023       continue;
6024 
6025     *PhiIndex = Idx;
6026     return &PHI;
6027   }
6028 
6029   return nullptr;
6030 }
6031 
6032 /// Try to forward the condition of a switch instruction to a phi node
6033 /// dominated by the switch, if that would mean that some of the destination
6034 /// blocks of the switch can be folded away. Return true if a change is made.
6035 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
6036   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
6037 
6038   ForwardingNodesMap ForwardingNodes;
6039   BasicBlock *SwitchBlock = SI->getParent();
6040   bool Changed = false;
6041   for (const auto &Case : SI->cases()) {
6042     ConstantInt *CaseValue = Case.getCaseValue();
6043     BasicBlock *CaseDest = Case.getCaseSuccessor();
6044 
6045     // Replace phi operands in successor blocks that are using the constant case
6046     // value rather than the switch condition variable:
6047     //   switchbb:
6048     //   switch i32 %x, label %default [
6049     //     i32 17, label %succ
6050     //   ...
6051     //   succ:
6052     //     %r = phi i32 ... [ 17, %switchbb ] ...
6053     // -->
6054     //     %r = phi i32 ... [ %x, %switchbb ] ...
6055 
6056     for (PHINode &Phi : CaseDest->phis()) {
6057       // This only works if there is exactly 1 incoming edge from the switch to
6058       // a phi. If there is >1, that means multiple cases of the switch map to 1
6059       // value in the phi, and that phi value is not the switch condition. Thus,
6060       // this transform would not make sense (the phi would be invalid because
6061       // a phi can't have different incoming values from the same block).
6062       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
6063       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
6064           count(Phi.blocks(), SwitchBlock) == 1) {
6065         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
6066         Changed = true;
6067       }
6068     }
6069 
6070     // Collect phi nodes that are indirectly using this switch's case constants.
6071     int PhiIdx;
6072     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
6073       ForwardingNodes[Phi].push_back(PhiIdx);
6074   }
6075 
6076   for (auto &ForwardingNode : ForwardingNodes) {
6077     PHINode *Phi = ForwardingNode.first;
6078     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
6079     // Check if it helps to fold PHI.
6080     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6081       continue;
6082 
6083     for (int Index : Indexes)
6084       Phi->setIncomingValue(Index, SI->getCondition());
6085     Changed = true;
6086   }
6087 
6088   return Changed;
6089 }
6090 
6091 /// Return true if the backend will be able to handle
6092 /// initializing an array of constants like C.
6093 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6094   if (C->isThreadDependent())
6095     return false;
6096   if (C->isDLLImportDependent())
6097     return false;
6098 
6099   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6100       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6101       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6102     return false;
6103 
6104   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6105     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6106     // materializing the array of constants.
6107     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6108     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6109       return false;
6110   }
6111 
6112   if (!TTI.shouldBuildLookupTablesForConstant(C))
6113     return false;
6114 
6115   return true;
6116 }
6117 
6118 /// If V is a Constant, return it. Otherwise, try to look up
6119 /// its constant value in ConstantPool, returning 0 if it's not there.
6120 static Constant *
6121 lookupConstant(Value *V,
6122                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6123   if (Constant *C = dyn_cast<Constant>(V))
6124     return C;
6125   return ConstantPool.lookup(V);
6126 }
6127 
6128 /// Try to fold instruction I into a constant. This works for
6129 /// simple instructions such as binary operations where both operands are
6130 /// constant or can be replaced by constants from the ConstantPool. Returns the
6131 /// resulting constant on success, 0 otherwise.
6132 static Constant *
6133 constantFold(Instruction *I, const DataLayout &DL,
6134              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6135   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6136     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6137     if (!A)
6138       return nullptr;
6139     if (A->isAllOnesValue())
6140       return lookupConstant(Select->getTrueValue(), ConstantPool);
6141     if (A->isNullValue())
6142       return lookupConstant(Select->getFalseValue(), ConstantPool);
6143     return nullptr;
6144   }
6145 
6146   SmallVector<Constant *, 4> COps;
6147   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6148     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6149       COps.push_back(A);
6150     else
6151       return nullptr;
6152   }
6153 
6154   return ConstantFoldInstOperands(I, COps, DL);
6155 }
6156 
6157 /// Try to determine the resulting constant values in phi nodes
6158 /// at the common destination basic block, *CommonDest, for one of the case
6159 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6160 /// case), of a switch instruction SI.
6161 static bool
6162 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6163                BasicBlock **CommonDest,
6164                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6165                const DataLayout &DL, const TargetTransformInfo &TTI) {
6166   // The block from which we enter the common destination.
6167   BasicBlock *Pred = SI->getParent();
6168 
6169   // If CaseDest is empty except for some side-effect free instructions through
6170   // which we can constant-propagate the CaseVal, continue to its successor.
6171   SmallDenseMap<Value *, Constant *> ConstantPool;
6172   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6173   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6174     if (I.isTerminator()) {
6175       // If the terminator is a simple branch, continue to the next block.
6176       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6177         return false;
6178       Pred = CaseDest;
6179       CaseDest = I.getSuccessor(0);
6180     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6181       // Instruction is side-effect free and constant.
6182 
6183       // If the instruction has uses outside this block or a phi node slot for
6184       // the block, it is not safe to bypass the instruction since it would then
6185       // no longer dominate all its uses.
6186       for (auto &Use : I.uses()) {
6187         User *User = Use.getUser();
6188         if (Instruction *I = dyn_cast<Instruction>(User))
6189           if (I->getParent() == CaseDest)
6190             continue;
6191         if (PHINode *Phi = dyn_cast<PHINode>(User))
6192           if (Phi->getIncomingBlock(Use) == CaseDest)
6193             continue;
6194         return false;
6195       }
6196 
6197       ConstantPool.insert(std::make_pair(&I, C));
6198     } else {
6199       break;
6200     }
6201   }
6202 
6203   // If we did not have a CommonDest before, use the current one.
6204   if (!*CommonDest)
6205     *CommonDest = CaseDest;
6206   // If the destination isn't the common one, abort.
6207   if (CaseDest != *CommonDest)
6208     return false;
6209 
6210   // Get the values for this case from phi nodes in the destination block.
6211   for (PHINode &PHI : (*CommonDest)->phis()) {
6212     int Idx = PHI.getBasicBlockIndex(Pred);
6213     if (Idx == -1)
6214       continue;
6215 
6216     Constant *ConstVal =
6217         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6218     if (!ConstVal)
6219       return false;
6220 
6221     // Be conservative about which kinds of constants we support.
6222     if (!validLookupTableConstant(ConstVal, TTI))
6223       return false;
6224 
6225     Res.push_back(std::make_pair(&PHI, ConstVal));
6226   }
6227 
6228   return Res.size() > 0;
6229 }
6230 
6231 // Helper function used to add CaseVal to the list of cases that generate
6232 // Result. Returns the updated number of cases that generate this result.
6233 static size_t mapCaseToResult(ConstantInt *CaseVal,
6234                               SwitchCaseResultVectorTy &UniqueResults,
6235                               Constant *Result) {
6236   for (auto &I : UniqueResults) {
6237     if (I.first == Result) {
6238       I.second.push_back(CaseVal);
6239       return I.second.size();
6240     }
6241   }
6242   UniqueResults.push_back(
6243       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6244   return 1;
6245 }
6246 
6247 // Helper function that initializes a map containing
6248 // results for the PHI node of the common destination block for a switch
6249 // instruction. Returns false if multiple PHI nodes have been found or if
6250 // there is not a common destination block for the switch.
6251 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6252                                   BasicBlock *&CommonDest,
6253                                   SwitchCaseResultVectorTy &UniqueResults,
6254                                   Constant *&DefaultResult,
6255                                   const DataLayout &DL,
6256                                   const TargetTransformInfo &TTI,
6257                                   uintptr_t MaxUniqueResults) {
6258   for (const auto &I : SI->cases()) {
6259     ConstantInt *CaseVal = I.getCaseValue();
6260 
6261     // Resulting value at phi nodes for this case value.
6262     SwitchCaseResultsTy Results;
6263     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6264                         DL, TTI))
6265       return false;
6266 
6267     // Only one value per case is permitted.
6268     if (Results.size() > 1)
6269       return false;
6270 
6271     // Add the case->result mapping to UniqueResults.
6272     const size_t NumCasesForResult =
6273         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6274 
6275     // Early out if there are too many cases for this result.
6276     if (NumCasesForResult > MaxSwitchCasesPerResult)
6277       return false;
6278 
6279     // Early out if there are too many unique results.
6280     if (UniqueResults.size() > MaxUniqueResults)
6281       return false;
6282 
6283     // Check the PHI consistency.
6284     if (!PHI)
6285       PHI = Results[0].first;
6286     else if (PHI != Results[0].first)
6287       return false;
6288   }
6289   // Find the default result value.
6290   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6291   BasicBlock *DefaultDest = SI->getDefaultDest();
6292   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6293                  DL, TTI);
6294   // If the default value is not found abort unless the default destination
6295   // is unreachable.
6296   DefaultResult =
6297       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6298   if ((!DefaultResult &&
6299        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6300     return false;
6301 
6302   return true;
6303 }
6304 
6305 // Helper function that checks if it is possible to transform a switch with only
6306 // two cases (or two cases + default) that produces a result into a select.
6307 // TODO: Handle switches with more than 2 cases that map to the same result.
6308 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6309                                  Constant *DefaultResult, Value *Condition,
6310                                  IRBuilder<> &Builder) {
6311   // If we are selecting between only two cases transform into a simple
6312   // select or a two-way select if default is possible.
6313   // Example:
6314   // switch (a) {                  %0 = icmp eq i32 %a, 10
6315   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6316   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6317   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6318   // }
6319   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6320       ResultVector[1].second.size() == 1) {
6321     ConstantInt *FirstCase = ResultVector[0].second[0];
6322     ConstantInt *SecondCase = ResultVector[1].second[0];
6323     Value *SelectValue = ResultVector[1].first;
6324     if (DefaultResult) {
6325       Value *ValueCompare =
6326           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6327       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6328                                          DefaultResult, "switch.select");
6329     }
6330     Value *ValueCompare =
6331         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6332     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6333                                 SelectValue, "switch.select");
6334   }
6335 
6336   // Handle the degenerate case where two cases have the same result value.
6337   if (ResultVector.size() == 1 && DefaultResult) {
6338     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6339     unsigned CaseCount = CaseValues.size();
6340     // n bits group cases map to the same result:
6341     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6342     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6343     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6344     if (isPowerOf2_32(CaseCount)) {
6345       ConstantInt *MinCaseVal = CaseValues[0];
6346       // Find mininal value.
6347       for (auto *Case : CaseValues)
6348         if (Case->getValue().slt(MinCaseVal->getValue()))
6349           MinCaseVal = Case;
6350 
6351       // Mark the bits case number touched.
6352       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6353       for (auto *Case : CaseValues)
6354         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6355 
6356       // Check if cases with the same result can cover all number
6357       // in touched bits.
6358       if (BitMask.popcount() == Log2_32(CaseCount)) {
6359         if (!MinCaseVal->isNullValue())
6360           Condition = Builder.CreateSub(Condition, MinCaseVal);
6361         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6362         Value *Cmp = Builder.CreateICmpEQ(
6363             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6364         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6365       }
6366     }
6367 
6368     // Handle the degenerate case where two cases have the same value.
6369     if (CaseValues.size() == 2) {
6370       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6371                                          "switch.selectcmp.case1");
6372       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6373                                          "switch.selectcmp.case2");
6374       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6375       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6376     }
6377   }
6378 
6379   return nullptr;
6380 }
6381 
6382 // Helper function to cleanup a switch instruction that has been converted into
6383 // a select, fixing up PHI nodes and basic blocks.
6384 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6385                                         Value *SelectValue,
6386                                         IRBuilder<> &Builder,
6387                                         DomTreeUpdater *DTU) {
6388   std::vector<DominatorTree::UpdateType> Updates;
6389 
6390   BasicBlock *SelectBB = SI->getParent();
6391   BasicBlock *DestBB = PHI->getParent();
6392 
6393   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6394     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6395   Builder.CreateBr(DestBB);
6396 
6397   // Remove the switch.
6398 
6399   PHI->removeIncomingValueIf(
6400       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6401   PHI->addIncoming(SelectValue, SelectBB);
6402 
6403   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6404   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6405     BasicBlock *Succ = SI->getSuccessor(i);
6406 
6407     if (Succ == DestBB)
6408       continue;
6409     Succ->removePredecessor(SelectBB);
6410     if (DTU && RemovedSuccessors.insert(Succ).second)
6411       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6412   }
6413   SI->eraseFromParent();
6414   if (DTU)
6415     DTU->applyUpdates(Updates);
6416 }
6417 
6418 /// If a switch is only used to initialize one or more phi nodes in a common
6419 /// successor block with only two different constant values, try to replace the
6420 /// switch with a select. Returns true if the fold was made.
6421 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6422                               DomTreeUpdater *DTU, const DataLayout &DL,
6423                               const TargetTransformInfo &TTI) {
6424   Value *const Cond = SI->getCondition();
6425   PHINode *PHI = nullptr;
6426   BasicBlock *CommonDest = nullptr;
6427   Constant *DefaultResult;
6428   SwitchCaseResultVectorTy UniqueResults;
6429   // Collect all the cases that will deliver the same value from the switch.
6430   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6431                              DL, TTI, /*MaxUniqueResults*/ 2))
6432     return false;
6433 
6434   assert(PHI != nullptr && "PHI for value select not found");
6435   Builder.SetInsertPoint(SI);
6436   Value *SelectValue =
6437       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6438   if (!SelectValue)
6439     return false;
6440 
6441   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6442   return true;
6443 }
6444 
6445 namespace {
6446 
6447 /// This class represents a lookup table that can be used to replace a switch.
6448 class SwitchLookupTable {
6449 public:
6450   /// Create a lookup table to use as a switch replacement with the contents
6451   /// of Values, using DefaultValue to fill any holes in the table.
6452   SwitchLookupTable(
6453       Module &M, uint64_t TableSize, ConstantInt *Offset,
6454       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6455       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6456 
6457   /// Build instructions with Builder to retrieve the value at
6458   /// the position given by Index in the lookup table.
6459   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6460 
6461   /// Return true if a table with TableSize elements of
6462   /// type ElementType would fit in a target-legal register.
6463   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6464                                  Type *ElementType);
6465 
6466 private:
6467   // Depending on the contents of the table, it can be represented in
6468   // different ways.
6469   enum {
6470     // For tables where each element contains the same value, we just have to
6471     // store that single value and return it for each lookup.
6472     SingleValueKind,
6473 
6474     // For tables where there is a linear relationship between table index
6475     // and values. We calculate the result with a simple multiplication
6476     // and addition instead of a table lookup.
6477     LinearMapKind,
6478 
6479     // For small tables with integer elements, we can pack them into a bitmap
6480     // that fits into a target-legal register. Values are retrieved by
6481     // shift and mask operations.
6482     BitMapKind,
6483 
6484     // The table is stored as an array of values. Values are retrieved by load
6485     // instructions from the table.
6486     ArrayKind
6487   } Kind;
6488 
6489   // For SingleValueKind, this is the single value.
6490   Constant *SingleValue = nullptr;
6491 
6492   // For BitMapKind, this is the bitmap.
6493   ConstantInt *BitMap = nullptr;
6494   IntegerType *BitMapElementTy = nullptr;
6495 
6496   // For LinearMapKind, these are the constants used to derive the value.
6497   ConstantInt *LinearOffset = nullptr;
6498   ConstantInt *LinearMultiplier = nullptr;
6499   bool LinearMapValWrapped = false;
6500 
6501   // For ArrayKind, this is the array.
6502   GlobalVariable *Array = nullptr;
6503 };
6504 
6505 } // end anonymous namespace
6506 
6507 SwitchLookupTable::SwitchLookupTable(
6508     Module &M, uint64_t TableSize, ConstantInt *Offset,
6509     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6510     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6511   assert(Values.size() && "Can't build lookup table without values!");
6512   assert(TableSize >= Values.size() && "Can't fit values in table!");
6513 
6514   // If all values in the table are equal, this is that value.
6515   SingleValue = Values.begin()->second;
6516 
6517   Type *ValueType = Values.begin()->second->getType();
6518 
6519   // Build up the table contents.
6520   SmallVector<Constant *, 64> TableContents(TableSize);
6521   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6522     ConstantInt *CaseVal = Values[I].first;
6523     Constant *CaseRes = Values[I].second;
6524     assert(CaseRes->getType() == ValueType);
6525 
6526     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6527     TableContents[Idx] = CaseRes;
6528 
6529     if (SingleValue && !isa<PoisonValue>(CaseRes) && CaseRes != SingleValue)
6530       SingleValue = isa<PoisonValue>(SingleValue) ? CaseRes : nullptr;
6531   }
6532 
6533   // Fill in any holes in the table with the default result.
6534   if (Values.size() < TableSize) {
6535     assert(DefaultValue &&
6536            "Need a default value to fill the lookup table holes.");
6537     assert(DefaultValue->getType() == ValueType);
6538     for (uint64_t I = 0; I < TableSize; ++I) {
6539       if (!TableContents[I])
6540         TableContents[I] = DefaultValue;
6541     }
6542 
6543     // If the default value is poison, all the holes are poison.
6544     bool DefaultValueIsPoison = isa<PoisonValue>(DefaultValue);
6545 
6546     if (DefaultValue != SingleValue && !DefaultValueIsPoison)
6547       SingleValue = nullptr;
6548   }
6549 
6550   // If each element in the table contains the same value, we only need to store
6551   // that single value.
6552   if (SingleValue) {
6553     Kind = SingleValueKind;
6554     return;
6555   }
6556 
6557   // Check if we can derive the value with a linear transformation from the
6558   // table index.
6559   if (isa<IntegerType>(ValueType)) {
6560     bool LinearMappingPossible = true;
6561     APInt PrevVal;
6562     APInt DistToPrev;
6563     // When linear map is monotonic and signed overflow doesn't happen on
6564     // maximum index, we can attach nsw on Add and Mul.
6565     bool NonMonotonic = false;
6566     assert(TableSize >= 2 && "Should be a SingleValue table.");
6567     // Check if there is the same distance between two consecutive values.
6568     for (uint64_t I = 0; I < TableSize; ++I) {
6569       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6570 
6571       if (!ConstVal && isa<PoisonValue>(TableContents[I])) {
6572         // This is an poison, so it's (probably) a lookup table hole.
6573         // To prevent any regressions from before we switched to using poison as
6574         // the default value, holes will fall back to using the first value.
6575         // This can be removed once we add proper handling for poisons in lookup
6576         // tables.
6577         ConstVal = dyn_cast<ConstantInt>(Values[0].second);
6578       }
6579 
6580       if (!ConstVal) {
6581         // This is an undef. We could deal with it, but undefs in lookup tables
6582         // are very seldom. It's probably not worth the additional complexity.
6583         LinearMappingPossible = false;
6584         break;
6585       }
6586       const APInt &Val = ConstVal->getValue();
6587       if (I != 0) {
6588         APInt Dist = Val - PrevVal;
6589         if (I == 1) {
6590           DistToPrev = Dist;
6591         } else if (Dist != DistToPrev) {
6592           LinearMappingPossible = false;
6593           break;
6594         }
6595         NonMonotonic |=
6596             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6597       }
6598       PrevVal = Val;
6599     }
6600     if (LinearMappingPossible) {
6601       LinearOffset = cast<ConstantInt>(TableContents[0]);
6602       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6603       APInt M = LinearMultiplier->getValue();
6604       bool MayWrap = true;
6605       if (isIntN(M.getBitWidth(), TableSize - 1))
6606         (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6607       LinearMapValWrapped = NonMonotonic || MayWrap;
6608       Kind = LinearMapKind;
6609       ++NumLinearMaps;
6610       return;
6611     }
6612   }
6613 
6614   // If the type is integer and the table fits in a register, build a bitmap.
6615   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6616     IntegerType *IT = cast<IntegerType>(ValueType);
6617     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6618     for (uint64_t I = TableSize; I > 0; --I) {
6619       TableInt <<= IT->getBitWidth();
6620       // Insert values into the bitmap. Undef values are set to zero.
6621       if (!isa<UndefValue>(TableContents[I - 1])) {
6622         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6623         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6624       }
6625     }
6626     BitMap = ConstantInt::get(M.getContext(), TableInt);
6627     BitMapElementTy = IT;
6628     Kind = BitMapKind;
6629     ++NumBitMaps;
6630     return;
6631   }
6632 
6633   // Store the table in an array.
6634   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6635   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6636 
6637   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6638                              GlobalVariable::PrivateLinkage, Initializer,
6639                              "switch.table." + FuncName);
6640   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6641   // Set the alignment to that of an array items. We will be only loading one
6642   // value out of it.
6643   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6644   Kind = ArrayKind;
6645 }
6646 
6647 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6648   switch (Kind) {
6649   case SingleValueKind:
6650     return SingleValue;
6651   case LinearMapKind: {
6652     // Derive the result value from the input value.
6653     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6654                                           false, "switch.idx.cast");
6655     if (!LinearMultiplier->isOne())
6656       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6657                                  /*HasNUW = */ false,
6658                                  /*HasNSW = */ !LinearMapValWrapped);
6659 
6660     if (!LinearOffset->isZero())
6661       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6662                                  /*HasNUW = */ false,
6663                                  /*HasNSW = */ !LinearMapValWrapped);
6664     return Result;
6665   }
6666   case BitMapKind: {
6667     // Type of the bitmap (e.g. i59).
6668     IntegerType *MapTy = BitMap->getIntegerType();
6669 
6670     // Cast Index to the same type as the bitmap.
6671     // Note: The Index is <= the number of elements in the table, so
6672     // truncating it to the width of the bitmask is safe.
6673     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6674 
6675     // Multiply the shift amount by the element width. NUW/NSW can always be
6676     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6677     // BitMap's bit width.
6678     ShiftAmt = Builder.CreateMul(
6679         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6680         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6681 
6682     // Shift down.
6683     Value *DownShifted =
6684         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6685     // Mask off.
6686     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6687   }
6688   case ArrayKind: {
6689     // Make sure the table index will not overflow when treated as signed.
6690     IntegerType *IT = cast<IntegerType>(Index->getType());
6691     uint64_t TableSize =
6692         Array->getInitializer()->getType()->getArrayNumElements();
6693     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6694       Index = Builder.CreateZExt(
6695           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6696           "switch.tableidx.zext");
6697 
6698     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6699     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6700                                            GEPIndices, "switch.gep");
6701     return Builder.CreateLoad(
6702         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6703         "switch.load");
6704   }
6705   }
6706   llvm_unreachable("Unknown lookup table kind!");
6707 }
6708 
6709 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6710                                            uint64_t TableSize,
6711                                            Type *ElementType) {
6712   auto *IT = dyn_cast<IntegerType>(ElementType);
6713   if (!IT)
6714     return false;
6715   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6716   // are <= 15, we could try to narrow the type.
6717 
6718   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6719   if (TableSize >= UINT_MAX / IT->getBitWidth())
6720     return false;
6721   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6722 }
6723 
6724 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6725                                       const DataLayout &DL) {
6726   // Allow any legal type.
6727   if (TTI.isTypeLegal(Ty))
6728     return true;
6729 
6730   auto *IT = dyn_cast<IntegerType>(Ty);
6731   if (!IT)
6732     return false;
6733 
6734   // Also allow power of 2 integer types that have at least 8 bits and fit in
6735   // a register. These types are common in frontend languages and targets
6736   // usually support loads of these types.
6737   // TODO: We could relax this to any integer that fits in a register and rely
6738   // on ABI alignment and padding in the table to allow the load to be widened.
6739   // Or we could widen the constants and truncate the load.
6740   unsigned BitWidth = IT->getBitWidth();
6741   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6742          DL.fitsInLegalInteger(IT->getBitWidth());
6743 }
6744 
6745 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6746   // 40% is the default density for building a jump table in optsize/minsize
6747   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6748   // function was based on.
6749   const uint64_t MinDensity = 40;
6750 
6751   if (CaseRange >= UINT64_MAX / 100)
6752     return false; // Avoid multiplication overflows below.
6753 
6754   return NumCases * 100 >= CaseRange * MinDensity;
6755 }
6756 
6757 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6758   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6759   uint64_t Range = Diff + 1;
6760   if (Range < Diff)
6761     return false; // Overflow.
6762 
6763   return isSwitchDense(Values.size(), Range);
6764 }
6765 
6766 /// Determine whether a lookup table should be built for this switch, based on
6767 /// the number of cases, size of the table, and the types of the results.
6768 // TODO: We could support larger than legal types by limiting based on the
6769 // number of loads required and/or table size. If the constants are small we
6770 // could use smaller table entries and extend after the load.
6771 static bool
6772 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6773                        const TargetTransformInfo &TTI, const DataLayout &DL,
6774                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6775   if (SI->getNumCases() > TableSize)
6776     return false; // TableSize overflowed.
6777 
6778   bool AllTablesFitInRegister = true;
6779   bool HasIllegalType = false;
6780   for (const auto &I : ResultTypes) {
6781     Type *Ty = I.second;
6782 
6783     // Saturate this flag to true.
6784     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6785 
6786     // Saturate this flag to false.
6787     AllTablesFitInRegister =
6788         AllTablesFitInRegister &&
6789         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6790 
6791     // If both flags saturate, we're done. NOTE: This *only* works with
6792     // saturating flags, and all flags have to saturate first due to the
6793     // non-deterministic behavior of iterating over a dense map.
6794     if (HasIllegalType && !AllTablesFitInRegister)
6795       break;
6796   }
6797 
6798   // If each table would fit in a register, we should build it anyway.
6799   if (AllTablesFitInRegister)
6800     return true;
6801 
6802   // Don't build a table that doesn't fit in-register if it has illegal types.
6803   if (HasIllegalType)
6804     return false;
6805 
6806   return isSwitchDense(SI->getNumCases(), TableSize);
6807 }
6808 
6809 static bool shouldUseSwitchConditionAsTableIndex(
6810     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6811     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6812     const DataLayout &DL, const TargetTransformInfo &TTI) {
6813   if (MinCaseVal.isNullValue())
6814     return true;
6815   if (MinCaseVal.isNegative() ||
6816       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6817       !HasDefaultResults)
6818     return false;
6819   return all_of(ResultTypes, [&](const auto &KV) {
6820     return SwitchLookupTable::wouldFitInRegister(
6821         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6822         KV.second /* ResultType */);
6823   });
6824 }
6825 
6826 /// Try to reuse the switch table index compare. Following pattern:
6827 /// \code
6828 ///     if (idx < tablesize)
6829 ///        r = table[idx]; // table does not contain default_value
6830 ///     else
6831 ///        r = default_value;
6832 ///     if (r != default_value)
6833 ///        ...
6834 /// \endcode
6835 /// Is optimized to:
6836 /// \code
6837 ///     cond = idx < tablesize;
6838 ///     if (cond)
6839 ///        r = table[idx];
6840 ///     else
6841 ///        r = default_value;
6842 ///     if (cond)
6843 ///        ...
6844 /// \endcode
6845 /// Jump threading will then eliminate the second if(cond).
6846 static void reuseTableCompare(
6847     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6848     Constant *DefaultValue,
6849     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6850   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6851   if (!CmpInst)
6852     return;
6853 
6854   // We require that the compare is in the same block as the phi so that jump
6855   // threading can do its work afterwards.
6856   if (CmpInst->getParent() != PhiBlock)
6857     return;
6858 
6859   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6860   if (!CmpOp1)
6861     return;
6862 
6863   Value *RangeCmp = RangeCheckBranch->getCondition();
6864   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6865   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6866 
6867   // Check if the compare with the default value is constant true or false.
6868   const DataLayout &DL = PhiBlock->getDataLayout();
6869   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6870       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6871   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6872     return;
6873 
6874   // Check if the compare with the case values is distinct from the default
6875   // compare result.
6876   for (auto ValuePair : Values) {
6877     Constant *CaseConst = ConstantFoldCompareInstOperands(
6878         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6879     if (!CaseConst || CaseConst == DefaultConst ||
6880         (CaseConst != TrueConst && CaseConst != FalseConst))
6881       return;
6882   }
6883 
6884   // Check if the branch instruction dominates the phi node. It's a simple
6885   // dominance check, but sufficient for our needs.
6886   // Although this check is invariant in the calling loops, it's better to do it
6887   // at this late stage. Practically we do it at most once for a switch.
6888   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6889   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6890     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6891       return;
6892   }
6893 
6894   if (DefaultConst == FalseConst) {
6895     // The compare yields the same result. We can replace it.
6896     CmpInst->replaceAllUsesWith(RangeCmp);
6897     ++NumTableCmpReuses;
6898   } else {
6899     // The compare yields the same result, just inverted. We can replace it.
6900     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6901         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6902         RangeCheckBranch->getIterator());
6903     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6904     ++NumTableCmpReuses;
6905   }
6906 }
6907 
6908 /// If the switch is only used to initialize one or more phi nodes in a common
6909 /// successor block with different constant values, replace the switch with
6910 /// lookup tables.
6911 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6912                                 DomTreeUpdater *DTU, const DataLayout &DL,
6913                                 const TargetTransformInfo &TTI) {
6914   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6915 
6916   BasicBlock *BB = SI->getParent();
6917   Function *Fn = BB->getParent();
6918   // Only build lookup table when we have a target that supports it or the
6919   // attribute is not set.
6920   if (!TTI.shouldBuildLookupTables() ||
6921       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6922     return false;
6923 
6924   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6925   // split off a dense part and build a lookup table for that.
6926 
6927   // FIXME: This creates arrays of GEPs to constant strings, which means each
6928   // GEP needs a runtime relocation in PIC code. We should just build one big
6929   // string and lookup indices into that.
6930 
6931   // Ignore switches with less than three cases. Lookup tables will not make
6932   // them faster, so we don't analyze them.
6933   if (SI->getNumCases() < 3)
6934     return false;
6935 
6936   // Figure out the corresponding result for each case value and phi node in the
6937   // common destination, as well as the min and max case values.
6938   assert(!SI->cases().empty());
6939   SwitchInst::CaseIt CI = SI->case_begin();
6940   ConstantInt *MinCaseVal = CI->getCaseValue();
6941   ConstantInt *MaxCaseVal = CI->getCaseValue();
6942 
6943   BasicBlock *CommonDest = nullptr;
6944 
6945   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6946   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6947 
6948   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6949   SmallDenseMap<PHINode *, Type *> ResultTypes;
6950   SmallVector<PHINode *, 4> PHIs;
6951 
6952   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6953     ConstantInt *CaseVal = CI->getCaseValue();
6954     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6955       MinCaseVal = CaseVal;
6956     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6957       MaxCaseVal = CaseVal;
6958 
6959     // Resulting value at phi nodes for this case value.
6960     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6961     ResultsTy Results;
6962     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6963                         Results, DL, TTI))
6964       return false;
6965 
6966     // Append the result from this case to the list for each phi.
6967     for (const auto &I : Results) {
6968       PHINode *PHI = I.first;
6969       Constant *Value = I.second;
6970       if (!ResultLists.count(PHI))
6971         PHIs.push_back(PHI);
6972       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6973     }
6974   }
6975 
6976   // Keep track of the result types.
6977   for (PHINode *PHI : PHIs) {
6978     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6979   }
6980 
6981   uint64_t NumResults = ResultLists[PHIs[0]].size();
6982 
6983   // If the table has holes, we need a constant result for the default case
6984   // or a bitmask that fits in a register.
6985   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6986   bool HasDefaultResults =
6987       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6988                      DefaultResultsList, DL, TTI);
6989 
6990   for (const auto &I : DefaultResultsList) {
6991     PHINode *PHI = I.first;
6992     Constant *Result = I.second;
6993     DefaultResults[PHI] = Result;
6994   }
6995 
6996   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6997       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6998   uint64_t TableSize;
6999   if (UseSwitchConditionAsTableIndex)
7000     TableSize = MaxCaseVal->getLimitedValue() + 1;
7001   else
7002     TableSize =
7003         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
7004 
7005   // If the default destination is unreachable, or if the lookup table covers
7006   // all values of the conditional variable, branch directly to the lookup table
7007   // BB. Otherwise, check that the condition is within the case range.
7008   bool DefaultIsReachable = !SI->defaultDestUndefined();
7009 
7010   bool TableHasHoles = (NumResults < TableSize);
7011 
7012   // If the table has holes but the default destination doesn't produce any
7013   // constant results, the lookup table entries corresponding to the holes will
7014   // contain poison.
7015   bool AllHolesArePoison = TableHasHoles && !HasDefaultResults;
7016 
7017   // If the default destination doesn't produce a constant result but is still
7018   // reachable, and the lookup table has holes, we need to use a mask to
7019   // determine if the current index should load from the lookup table or jump
7020   // to the default case.
7021   // The mask is unnecessary if the table has holes but the default destination
7022   // is unreachable, as in that case the holes must also be unreachable.
7023   bool NeedMask = AllHolesArePoison && DefaultIsReachable;
7024   if (NeedMask) {
7025     // As an extra penalty for the validity test we require more cases.
7026     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
7027       return false;
7028     if (!DL.fitsInLegalInteger(TableSize))
7029       return false;
7030   }
7031 
7032   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
7033     return false;
7034 
7035   std::vector<DominatorTree::UpdateType> Updates;
7036 
7037   // Compute the maximum table size representable by the integer type we are
7038   // switching upon.
7039   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
7040   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
7041   assert(MaxTableSize >= TableSize &&
7042          "It is impossible for a switch to have more entries than the max "
7043          "representable value of its input integer type's size.");
7044 
7045   // Create the BB that does the lookups.
7046   Module &Mod = *CommonDest->getParent()->getParent();
7047   BasicBlock *LookupBB = BasicBlock::Create(
7048       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
7049 
7050   // Compute the table index value.
7051   Builder.SetInsertPoint(SI);
7052   Value *TableIndex;
7053   ConstantInt *TableIndexOffset;
7054   if (UseSwitchConditionAsTableIndex) {
7055     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
7056     TableIndex = SI->getCondition();
7057   } else {
7058     TableIndexOffset = MinCaseVal;
7059     // If the default is unreachable, all case values are s>= MinCaseVal. Then
7060     // we can try to attach nsw.
7061     bool MayWrap = true;
7062     if (!DefaultIsReachable) {
7063       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
7064       (void)Res;
7065     }
7066 
7067     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
7068                                    "switch.tableidx", /*HasNUW =*/false,
7069                                    /*HasNSW =*/!MayWrap);
7070   }
7071 
7072   BranchInst *RangeCheckBranch = nullptr;
7073 
7074   // Grow the table to cover all possible index values to avoid the range check.
7075   // It will use the default result to fill in the table hole later, so make
7076   // sure it exist.
7077   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
7078     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
7079     // Grow the table shouldn't have any size impact by checking
7080     // wouldFitInRegister.
7081     // TODO: Consider growing the table also when it doesn't fit in a register
7082     // if no optsize is specified.
7083     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
7084     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
7085           return SwitchLookupTable::wouldFitInRegister(
7086               DL, UpperBound, KV.second /* ResultType */);
7087         })) {
7088       // There may be some case index larger than the UpperBound (unreachable
7089       // case), so make sure the table size does not get smaller.
7090       TableSize = std::max(UpperBound, TableSize);
7091       // The default branch is unreachable after we enlarge the lookup table.
7092       // Adjust DefaultIsReachable to reuse code path.
7093       DefaultIsReachable = false;
7094     }
7095   }
7096 
7097   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7098   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7099     Builder.CreateBr(LookupBB);
7100     if (DTU)
7101       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7102     // Note: We call removeProdecessor later since we need to be able to get the
7103     // PHI value for the default case in case we're using a bit mask.
7104   } else {
7105     Value *Cmp = Builder.CreateICmpULT(
7106         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7107     RangeCheckBranch =
7108         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7109     if (DTU)
7110       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7111   }
7112 
7113   // Populate the BB that does the lookups.
7114   Builder.SetInsertPoint(LookupBB);
7115 
7116   if (NeedMask) {
7117     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7118     // re-purposed to do the hole check, and we create a new LookupBB.
7119     BasicBlock *MaskBB = LookupBB;
7120     MaskBB->setName("switch.hole_check");
7121     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7122                                   CommonDest->getParent(), CommonDest);
7123 
7124     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7125     // unnecessary illegal types.
7126     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7127     APInt MaskInt(TableSizePowOf2, 0);
7128     APInt One(TableSizePowOf2, 1);
7129     // Build bitmask; fill in a 1 bit for every case.
7130     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7131     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7132       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7133                          .getLimitedValue();
7134       MaskInt |= One << Idx;
7135     }
7136     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7137 
7138     // Get the TableIndex'th bit of the bitmask.
7139     // If this bit is 0 (meaning hole) jump to the default destination,
7140     // else continue with table lookup.
7141     IntegerType *MapTy = TableMask->getIntegerType();
7142     Value *MaskIndex =
7143         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7144     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7145     Value *LoBit = Builder.CreateTrunc(
7146         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7147     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7148     if (DTU) {
7149       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7150       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7151     }
7152     Builder.SetInsertPoint(LookupBB);
7153     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7154   }
7155 
7156   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7157     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7158     // do not delete PHINodes here.
7159     SI->getDefaultDest()->removePredecessor(BB,
7160                                             /*KeepOneInputPHIs=*/true);
7161     if (DTU)
7162       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7163   }
7164 
7165   for (PHINode *PHI : PHIs) {
7166     const ResultListTy &ResultList = ResultLists[PHI];
7167 
7168     Type *ResultType = ResultList.begin()->second->getType();
7169 
7170     // Use any value to fill the lookup table holes.
7171     Constant *DV =
7172         AllHolesArePoison ? PoisonValue::get(ResultType) : DefaultResults[PHI];
7173     StringRef FuncName = Fn->getName();
7174     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7175                             DL, FuncName);
7176 
7177     Value *Result = Table.buildLookup(TableIndex, Builder);
7178 
7179     // Do a small peephole optimization: re-use the switch table compare if
7180     // possible.
7181     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7182       BasicBlock *PhiBlock = PHI->getParent();
7183       // Search for compare instructions which use the phi.
7184       for (auto *User : PHI->users()) {
7185         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7186       }
7187     }
7188 
7189     PHI->addIncoming(Result, LookupBB);
7190   }
7191 
7192   Builder.CreateBr(CommonDest);
7193   if (DTU)
7194     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7195 
7196   // Remove the switch.
7197   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7198   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7199     BasicBlock *Succ = SI->getSuccessor(i);
7200 
7201     if (Succ == SI->getDefaultDest())
7202       continue;
7203     Succ->removePredecessor(BB);
7204     if (DTU && RemovedSuccessors.insert(Succ).second)
7205       Updates.push_back({DominatorTree::Delete, BB, Succ});
7206   }
7207   SI->eraseFromParent();
7208 
7209   if (DTU)
7210     DTU->applyUpdates(Updates);
7211 
7212   ++NumLookupTables;
7213   if (NeedMask)
7214     ++NumLookupTablesHoles;
7215   return true;
7216 }
7217 
7218 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7219 /// of cases.
7220 ///
7221 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7222 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7223 ///
7224 /// This converts a sparse switch into a dense switch which allows better
7225 /// lowering and could also allow transforming into a lookup table.
7226 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7227                               const DataLayout &DL,
7228                               const TargetTransformInfo &TTI) {
7229   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7230   if (CondTy->getIntegerBitWidth() > 64 ||
7231       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7232     return false;
7233   // Only bother with this optimization if there are more than 3 switch cases;
7234   // SDAG will only bother creating jump tables for 4 or more cases.
7235   if (SI->getNumCases() < 4)
7236     return false;
7237 
7238   // This transform is agnostic to the signedness of the input or case values. We
7239   // can treat the case values as signed or unsigned. We can optimize more common
7240   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7241   // as signed.
7242   SmallVector<int64_t,4> Values;
7243   for (const auto &C : SI->cases())
7244     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7245   llvm::sort(Values);
7246 
7247   // If the switch is already dense, there's nothing useful to do here.
7248   if (isSwitchDense(Values))
7249     return false;
7250 
7251   // First, transform the values such that they start at zero and ascend.
7252   int64_t Base = Values[0];
7253   for (auto &V : Values)
7254     V -= (uint64_t)(Base);
7255 
7256   // Now we have signed numbers that have been shifted so that, given enough
7257   // precision, there are no negative values. Since the rest of the transform
7258   // is bitwise only, we switch now to an unsigned representation.
7259 
7260   // This transform can be done speculatively because it is so cheap - it
7261   // results in a single rotate operation being inserted.
7262 
7263   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7264   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7265   // less than 64.
7266   unsigned Shift = 64;
7267   for (auto &V : Values)
7268     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7269   assert(Shift < 64);
7270   if (Shift > 0)
7271     for (auto &V : Values)
7272       V = (int64_t)((uint64_t)V >> Shift);
7273 
7274   if (!isSwitchDense(Values))
7275     // Transform didn't create a dense switch.
7276     return false;
7277 
7278   // The obvious transform is to shift the switch condition right and emit a
7279   // check that the condition actually cleanly divided by GCD, i.e.
7280   //   C & (1 << Shift - 1) == 0
7281   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7282   //
7283   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7284   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7285   // are nonzero then the switch condition will be very large and will hit the
7286   // default case.
7287 
7288   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7289   Builder.SetInsertPoint(SI);
7290   Value *Sub =
7291       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7292   Value *Rot = Builder.CreateIntrinsic(
7293       Ty, Intrinsic::fshl,
7294       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7295   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7296 
7297   for (auto Case : SI->cases()) {
7298     auto *Orig = Case.getCaseValue();
7299     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true);
7300     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7301   }
7302   return true;
7303 }
7304 
7305 /// Tries to transform switch of powers of two to reduce switch range.
7306 /// For example, switch like:
7307 /// switch (C) { case 1: case 2: case 64: case 128: }
7308 /// will be transformed to:
7309 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7310 ///
7311 /// This transformation allows better lowering and could allow transforming into
7312 /// a lookup table.
7313 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7314                                         const DataLayout &DL,
7315                                         const TargetTransformInfo &TTI) {
7316   Value *Condition = SI->getCondition();
7317   LLVMContext &Context = SI->getContext();
7318   auto *CondTy = cast<IntegerType>(Condition->getType());
7319 
7320   if (CondTy->getIntegerBitWidth() > 64 ||
7321       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7322     return false;
7323 
7324   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7325       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7326                               {Condition, ConstantInt::getTrue(Context)}),
7327       TTI::TCK_SizeAndLatency);
7328 
7329   if (CttzIntrinsicCost > TTI::TCC_Basic)
7330     // Inserting intrinsic is too expensive.
7331     return false;
7332 
7333   // Only bother with this optimization if there are more than 3 switch cases.
7334   // SDAG will only bother creating jump tables for 4 or more cases.
7335   if (SI->getNumCases() < 4)
7336     return false;
7337 
7338   // We perform this optimization only for switches with
7339   // unreachable default case.
7340   // This assumtion will save us from checking if `Condition` is a power of two.
7341   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7342     return false;
7343 
7344   // Check that switch cases are powers of two.
7345   SmallVector<uint64_t, 4> Values;
7346   for (const auto &Case : SI->cases()) {
7347     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7348     if (llvm::has_single_bit(CaseValue))
7349       Values.push_back(CaseValue);
7350     else
7351       return false;
7352   }
7353 
7354   // isSwichDense requires case values to be sorted.
7355   llvm::sort(Values);
7356   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7357                                         llvm::countr_zero(Values.front()) + 1))
7358     // Transform is unable to generate dense switch.
7359     return false;
7360 
7361   Builder.SetInsertPoint(SI);
7362 
7363   // Replace each case with its trailing zeros number.
7364   for (auto &Case : SI->cases()) {
7365     auto *OrigValue = Case.getCaseValue();
7366     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7367                                    OrigValue->getValue().countr_zero()));
7368   }
7369 
7370   // Replace condition with its trailing zeros number.
7371   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7372       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7373 
7374   SI->setCondition(ConditionTrailingZeros);
7375 
7376   return true;
7377 }
7378 
7379 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7380 /// the same destination.
7381 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7382                                          DomTreeUpdater *DTU) {
7383   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7384   if (!Cmp || !Cmp->hasOneUse())
7385     return false;
7386 
7387   SmallVector<uint32_t, 4> Weights;
7388   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7389   if (!HasWeights)
7390     Weights.resize(4); // Avoid checking HasWeights everywhere.
7391 
7392   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7393   int64_t Res;
7394   BasicBlock *Succ, *OtherSucc;
7395   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7396   BasicBlock *Unreachable = nullptr;
7397 
7398   if (SI->getNumCases() == 2) {
7399     // Find which of 1, 0 or -1 is missing (handled by default dest).
7400     SmallSet<int64_t, 3> Missing;
7401     Missing.insert(1);
7402     Missing.insert(0);
7403     Missing.insert(-1);
7404 
7405     Succ = SI->getDefaultDest();
7406     SuccWeight = Weights[0];
7407     OtherSucc = nullptr;
7408     for (auto &Case : SI->cases()) {
7409       std::optional<int64_t> Val =
7410           Case.getCaseValue()->getValue().trySExtValue();
7411       if (!Val)
7412         return false;
7413       if (!Missing.erase(*Val))
7414         return false;
7415       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7416         return false;
7417       OtherSucc = Case.getCaseSuccessor();
7418       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7419     }
7420 
7421     assert(Missing.size() == 1 && "Should have one case left");
7422     Res = *Missing.begin();
7423   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7424     // Normalize so that Succ is taken once and OtherSucc twice.
7425     Unreachable = SI->getDefaultDest();
7426     Succ = OtherSucc = nullptr;
7427     for (auto &Case : SI->cases()) {
7428       BasicBlock *NewSucc = Case.getCaseSuccessor();
7429       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7430       if (!OtherSucc || OtherSucc == NewSucc) {
7431         OtherSucc = NewSucc;
7432         OtherSuccWeight += Weight;
7433       } else if (!Succ) {
7434         Succ = NewSucc;
7435         SuccWeight = Weight;
7436       } else if (Succ == NewSucc) {
7437         std::swap(Succ, OtherSucc);
7438         std::swap(SuccWeight, OtherSuccWeight);
7439       } else
7440         return false;
7441     }
7442     for (auto &Case : SI->cases()) {
7443       std::optional<int64_t> Val =
7444           Case.getCaseValue()->getValue().trySExtValue();
7445       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7446         return false;
7447       if (Case.getCaseSuccessor() == Succ) {
7448         Res = *Val;
7449         break;
7450       }
7451     }
7452   } else {
7453     return false;
7454   }
7455 
7456   // Determine predicate for the missing case.
7457   ICmpInst::Predicate Pred;
7458   switch (Res) {
7459   case 1:
7460     Pred = ICmpInst::ICMP_UGT;
7461     break;
7462   case 0:
7463     Pred = ICmpInst::ICMP_EQ;
7464     break;
7465   case -1:
7466     Pred = ICmpInst::ICMP_ULT;
7467     break;
7468   }
7469   if (Cmp->isSigned())
7470     Pred = ICmpInst::getSignedPredicate(Pred);
7471 
7472   MDNode *NewWeights = nullptr;
7473   if (HasWeights)
7474     NewWeights = MDBuilder(SI->getContext())
7475                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7476 
7477   BasicBlock *BB = SI->getParent();
7478   Builder.SetInsertPoint(SI->getIterator());
7479   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7480   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7481                        SI->getMetadata(LLVMContext::MD_unpredictable));
7482   OtherSucc->removePredecessor(BB);
7483   if (Unreachable)
7484     Unreachable->removePredecessor(BB);
7485   SI->eraseFromParent();
7486   Cmp->eraseFromParent();
7487   if (DTU && Unreachable)
7488     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7489   return true;
7490 }
7491 
7492 /// Checking whether two cases of SI are equal depends on the contents of the
7493 /// BasicBlock and the incoming values of their successor PHINodes.
7494 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid
7495 /// calling this function on each BasicBlock every time isEqual is called,
7496 /// especially since the same BasicBlock may be passed as an argument multiple
7497 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock ->
7498 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking
7499 /// of the incoming values.
7500 struct SwitchSuccWrapper {
7501   BasicBlock *Dest;
7502   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs;
7503 };
7504 
7505 namespace llvm {
7506 template <> struct DenseMapInfo<const SwitchSuccWrapper *> {
7507   static const SwitchSuccWrapper *getEmptyKey() {
7508     return static_cast<SwitchSuccWrapper *>(
7509         DenseMapInfo<void *>::getEmptyKey());
7510   }
7511   static const SwitchSuccWrapper *getTombstoneKey() {
7512     return static_cast<SwitchSuccWrapper *>(
7513         DenseMapInfo<void *>::getTombstoneKey());
7514   }
7515   static unsigned getHashValue(const SwitchSuccWrapper *SSW) {
7516     BasicBlock *Succ = SSW->Dest;
7517     BranchInst *BI = cast<BranchInst>(Succ->getTerminator());
7518     assert(BI->isUnconditional() &&
7519            "Only supporting unconditional branches for now");
7520     assert(BI->getNumSuccessors() == 1 &&
7521            "Expected unconditional branches to have one successor");
7522     assert(Succ->size() == 1 && "Expected just a single branch in the BB");
7523 
7524     // Since we assume the BB is just a single BranchInst with a single
7525     // successor, we hash as the BB and the incoming Values of its successor
7526     // PHIs. Initially, we tried to just use the successor BB as the hash, but
7527     // including the incoming PHI values leads to better performance.
7528     // We also tried to build a map from BB -> Succs.IncomingValues ahead of
7529     // time and passing it in SwitchSuccWrapper, but this slowed down the
7530     // average compile time without having any impact on the worst case compile
7531     // time.
7532     BasicBlock *BB = BI->getSuccessor(0);
7533     SmallVector<Value *> PhiValsForBB;
7534     for (PHINode &Phi : BB->phis())
7535       PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]);
7536 
7537     return hash_combine(
7538         BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end()));
7539   }
7540   static bool isEqual(const SwitchSuccWrapper *LHS,
7541                       const SwitchSuccWrapper *RHS) {
7542     auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey();
7543     auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey();
7544     if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey)
7545       return LHS == RHS;
7546 
7547     BasicBlock *A = LHS->Dest;
7548     BasicBlock *B = RHS->Dest;
7549 
7550     // FIXME: we checked that the size of A and B are both 1 in
7551     // simplifyDuplicateSwitchArms to make the Case list smaller to
7552     // improve performance. If we decide to support BasicBlocks with more
7553     // than just a single instruction, we need to check that A.size() ==
7554     // B.size() here, and we need to check more than just the BranchInsts
7555     // for equality.
7556 
7557     BranchInst *ABI = cast<BranchInst>(A->getTerminator());
7558     BranchInst *BBI = cast<BranchInst>(B->getTerminator());
7559     assert(ABI->isUnconditional() && BBI->isUnconditional() &&
7560            "Only supporting unconditional branches for now");
7561     if (ABI->getSuccessor(0) != BBI->getSuccessor(0))
7562       return false;
7563 
7564     // Need to check that PHIs in successor have matching values
7565     BasicBlock *Succ = ABI->getSuccessor(0);
7566     for (PHINode &Phi : Succ->phis()) {
7567       auto &PredIVs = (*LHS->PhiPredIVs)[&Phi];
7568       if (PredIVs[A] != PredIVs[B])
7569         return false;
7570     }
7571 
7572     return true;
7573   }
7574 };
7575 } // namespace llvm
7576 
7577 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI,
7578                                                  DomTreeUpdater *DTU) {
7579   // Build Cases. Skip BBs that are not candidates for simplification. Mark
7580   // PHINodes which need to be processed into PhiPredIVs. We decide to process
7581   // an entire PHI at once after the loop, opposed to calling
7582   // getIncomingValueForBlock inside this loop, since each call to
7583   // getIncomingValueForBlock is O(|Preds|).
7584   SmallPtrSet<PHINode *, 8> Phis;
7585   SmallPtrSet<BasicBlock *, 8> Seen;
7586   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs;
7587   DenseMap<BasicBlock *, SmallVector<unsigned, 4>> BBToSuccessorIndexes;
7588   SmallVector<SwitchSuccWrapper> Cases;
7589   Cases.reserve(SI->getNumSuccessors());
7590 
7591   for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) {
7592     BasicBlock *BB = SI->getSuccessor(I);
7593 
7594     // FIXME: Support more than just a single BranchInst. One way we could do
7595     // this is by taking a hashing approach of all insts in BB.
7596     if (BB->size() != 1)
7597       continue;
7598 
7599     // FIXME: This case needs some extra care because the terminators other than
7600     // SI need to be updated. For now, consider only backedges to the SI.
7601     if (BB->hasNPredecessorsOrMore(4) ||
7602         BB->getUniquePredecessor() != SI->getParent())
7603       continue;
7604 
7605     // FIXME: Relax that the terminator is a BranchInst by checking for equality
7606     // on other kinds of terminators. We decide to only support unconditional
7607     // branches for now for compile time reasons.
7608     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
7609     if (!BI || BI->isConditional())
7610       continue;
7611 
7612     if (Seen.insert(BB).second) {
7613       // Keep track of which PHIs we need as keys in PhiPredIVs below.
7614       for (BasicBlock *Succ : BI->successors())
7615         for (PHINode &Phi : Succ->phis())
7616           Phis.insert(&Phi);
7617       // Add the successor only if not previously visited.
7618       Cases.emplace_back(SwitchSuccWrapper{BB, &PhiPredIVs});
7619     }
7620 
7621     BBToSuccessorIndexes[BB].emplace_back(I);
7622   }
7623 
7624   // Precompute a data structure to improve performance of isEqual for
7625   // SwitchSuccWrapper.
7626   PhiPredIVs.reserve(Phis.size());
7627   for (PHINode *Phi : Phis) {
7628     PhiPredIVs[Phi] =
7629         SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues());
7630     for (auto &IV : Phi->incoming_values())
7631       PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()});
7632   }
7633 
7634   // Build a set such that if the SwitchSuccWrapper exists in the set and
7635   // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper
7636   // which is not in the set should be replaced with the one in the set. If the
7637   // SwitchSuccWrapper is not in the set, then it should be added to the set so
7638   // other SwitchSuccWrappers can check against it in the same manner. We use
7639   // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass
7640   // around information to isEquality, getHashValue, and when doing the
7641   // replacement with better performance.
7642   DenseSet<const SwitchSuccWrapper *> ReplaceWith;
7643   ReplaceWith.reserve(Cases.size());
7644 
7645   SmallVector<DominatorTree::UpdateType> Updates;
7646   Updates.reserve(ReplaceWith.size());
7647   bool MadeChange = false;
7648   for (auto &SSW : Cases) {
7649     // SSW is a candidate for simplification. If we find a duplicate BB,
7650     // replace it.
7651     const auto [It, Inserted] = ReplaceWith.insert(&SSW);
7652     if (!Inserted) {
7653       // We know that SI's parent BB no longer dominates the old case successor
7654       // since we are making it dead.
7655       Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest});
7656       const auto &Successors = BBToSuccessorIndexes.at(SSW.Dest);
7657       for (unsigned Idx : Successors)
7658         SI->setSuccessor(Idx, (*It)->Dest);
7659       MadeChange = true;
7660     }
7661   }
7662 
7663   if (DTU)
7664     DTU->applyUpdates(Updates);
7665 
7666   return MadeChange;
7667 }
7668 
7669 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7670   BasicBlock *BB = SI->getParent();
7671 
7672   if (isValueEqualityComparison(SI)) {
7673     // If we only have one predecessor, and if it is a branch on this value,
7674     // see if that predecessor totally determines the outcome of this switch.
7675     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7676       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7677         return requestResimplify();
7678 
7679     Value *Cond = SI->getCondition();
7680     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7681       if (simplifySwitchOnSelect(SI, Select))
7682         return requestResimplify();
7683 
7684     // If the block only contains the switch, see if we can fold the block
7685     // away into any preds.
7686     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7687       if (foldValueComparisonIntoPredecessors(SI, Builder))
7688         return requestResimplify();
7689   }
7690 
7691   // Try to transform the switch into an icmp and a branch.
7692   // The conversion from switch to comparison may lose information on
7693   // impossible switch values, so disable it early in the pipeline.
7694   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7695     return requestResimplify();
7696 
7697   // Remove unreachable cases.
7698   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7699     return requestResimplify();
7700 
7701   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7702     return requestResimplify();
7703 
7704   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7705     return requestResimplify();
7706 
7707   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7708     return requestResimplify();
7709 
7710   // The conversion from switch to lookup tables results in difficult-to-analyze
7711   // code and makes pruning branches much harder. This is a problem if the
7712   // switch expression itself can still be restricted as a result of inlining or
7713   // CVP. Therefore, only apply this transformation during late stages of the
7714   // optimisation pipeline.
7715   if (Options.ConvertSwitchToLookupTable &&
7716       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7717     return requestResimplify();
7718 
7719   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7720     return requestResimplify();
7721 
7722   if (reduceSwitchRange(SI, Builder, DL, TTI))
7723     return requestResimplify();
7724 
7725   if (HoistCommon &&
7726       hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts))
7727     return requestResimplify();
7728 
7729   if (simplifyDuplicateSwitchArms(SI, DTU))
7730     return requestResimplify();
7731 
7732   return false;
7733 }
7734 
7735 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7736   BasicBlock *BB = IBI->getParent();
7737   bool Changed = false;
7738 
7739   // Eliminate redundant destinations.
7740   SmallPtrSet<Value *, 8> Succs;
7741   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7742   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7743     BasicBlock *Dest = IBI->getDestination(i);
7744     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7745       if (!Dest->hasAddressTaken())
7746         RemovedSuccs.insert(Dest);
7747       Dest->removePredecessor(BB);
7748       IBI->removeDestination(i);
7749       --i;
7750       --e;
7751       Changed = true;
7752     }
7753   }
7754 
7755   if (DTU) {
7756     std::vector<DominatorTree::UpdateType> Updates;
7757     Updates.reserve(RemovedSuccs.size());
7758     for (auto *RemovedSucc : RemovedSuccs)
7759       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7760     DTU->applyUpdates(Updates);
7761   }
7762 
7763   if (IBI->getNumDestinations() == 0) {
7764     // If the indirectbr has no successors, change it to unreachable.
7765     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7766     eraseTerminatorAndDCECond(IBI);
7767     return true;
7768   }
7769 
7770   if (IBI->getNumDestinations() == 1) {
7771     // If the indirectbr has one successor, change it to a direct branch.
7772     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7773     eraseTerminatorAndDCECond(IBI);
7774     return true;
7775   }
7776 
7777   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7778     if (simplifyIndirectBrOnSelect(IBI, SI))
7779       return requestResimplify();
7780   }
7781   return Changed;
7782 }
7783 
7784 /// Given an block with only a single landing pad and a unconditional branch
7785 /// try to find another basic block which this one can be merged with.  This
7786 /// handles cases where we have multiple invokes with unique landing pads, but
7787 /// a shared handler.
7788 ///
7789 /// We specifically choose to not worry about merging non-empty blocks
7790 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7791 /// practice, the optimizer produces empty landing pad blocks quite frequently
7792 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7793 /// sinking in this file)
7794 ///
7795 /// This is primarily a code size optimization.  We need to avoid performing
7796 /// any transform which might inhibit optimization (such as our ability to
7797 /// specialize a particular handler via tail commoning).  We do this by not
7798 /// merging any blocks which require us to introduce a phi.  Since the same
7799 /// values are flowing through both blocks, we don't lose any ability to
7800 /// specialize.  If anything, we make such specialization more likely.
7801 ///
7802 /// TODO - This transformation could remove entries from a phi in the target
7803 /// block when the inputs in the phi are the same for the two blocks being
7804 /// merged.  In some cases, this could result in removal of the PHI entirely.
7805 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7806                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7807   auto Succ = BB->getUniqueSuccessor();
7808   assert(Succ);
7809   // If there's a phi in the successor block, we'd likely have to introduce
7810   // a phi into the merged landing pad block.
7811   if (isa<PHINode>(*Succ->begin()))
7812     return false;
7813 
7814   for (BasicBlock *OtherPred : predecessors(Succ)) {
7815     if (BB == OtherPred)
7816       continue;
7817     BasicBlock::iterator I = OtherPred->begin();
7818     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7819     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7820       continue;
7821     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7822       ;
7823     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7824     if (!BI2 || !BI2->isIdenticalTo(BI))
7825       continue;
7826 
7827     std::vector<DominatorTree::UpdateType> Updates;
7828 
7829     // We've found an identical block.  Update our predecessors to take that
7830     // path instead and make ourselves dead.
7831     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7832     for (BasicBlock *Pred : UniquePreds) {
7833       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7834       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7835              "unexpected successor");
7836       II->setUnwindDest(OtherPred);
7837       if (DTU) {
7838         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7839         Updates.push_back({DominatorTree::Delete, Pred, BB});
7840       }
7841     }
7842 
7843     // The debug info in OtherPred doesn't cover the merged control flow that
7844     // used to go through BB.  We need to delete it or update it.
7845     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7846       if (isa<DbgInfoIntrinsic>(Inst))
7847         Inst.eraseFromParent();
7848 
7849     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7850     for (BasicBlock *Succ : UniqueSuccs) {
7851       Succ->removePredecessor(BB);
7852       if (DTU)
7853         Updates.push_back({DominatorTree::Delete, BB, Succ});
7854     }
7855 
7856     IRBuilder<> Builder(BI);
7857     Builder.CreateUnreachable();
7858     BI->eraseFromParent();
7859     if (DTU)
7860       DTU->applyUpdates(Updates);
7861     return true;
7862   }
7863   return false;
7864 }
7865 
7866 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7867   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7868                                    : simplifyCondBranch(Branch, Builder);
7869 }
7870 
7871 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7872                                           IRBuilder<> &Builder) {
7873   BasicBlock *BB = BI->getParent();
7874   BasicBlock *Succ = BI->getSuccessor(0);
7875 
7876   // If the Terminator is the only non-phi instruction, simplify the block.
7877   // If LoopHeader is provided, check if the block or its successor is a loop
7878   // header. (This is for early invocations before loop simplify and
7879   // vectorization to keep canonical loop forms for nested loops. These blocks
7880   // can be eliminated when the pass is invoked later in the back-end.)
7881   // Note that if BB has only one predecessor then we do not introduce new
7882   // backedge, so we can eliminate BB.
7883   bool NeedCanonicalLoop =
7884       Options.NeedCanonicalLoop &&
7885       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7886        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7887   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg();
7888   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7889       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7890     return true;
7891 
7892   // If the only instruction in the block is a seteq/setne comparison against a
7893   // constant, try to simplify the block.
7894   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7895     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7896       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7897         ;
7898       if (I->isTerminator() &&
7899           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7900         return true;
7901     }
7902 
7903   // See if we can merge an empty landing pad block with another which is
7904   // equivalent.
7905   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7906     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7907       ;
7908     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7909       return true;
7910   }
7911 
7912   // If this basic block is ONLY a compare and a branch, and if a predecessor
7913   // branches to us and our successor, fold the comparison into the
7914   // predecessor and use logical operations to update the incoming value
7915   // for PHI nodes in common successor.
7916   if (Options.SpeculateBlocks &&
7917       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7918                              Options.BonusInstThreshold))
7919     return requestResimplify();
7920   return false;
7921 }
7922 
7923 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7924   BasicBlock *PredPred = nullptr;
7925   for (auto *P : predecessors(BB)) {
7926     BasicBlock *PPred = P->getSinglePredecessor();
7927     if (!PPred || (PredPred && PredPred != PPred))
7928       return nullptr;
7929     PredPred = PPred;
7930   }
7931   return PredPred;
7932 }
7933 
7934 /// Fold the following pattern:
7935 /// bb0:
7936 ///   br i1 %cond1, label %bb1, label %bb2
7937 /// bb1:
7938 ///   br i1 %cond2, label %bb3, label %bb4
7939 /// bb2:
7940 ///   br i1 %cond2, label %bb4, label %bb3
7941 /// bb3:
7942 ///   ...
7943 /// bb4:
7944 ///   ...
7945 /// into
7946 /// bb0:
7947 ///   %cond = xor i1 %cond1, %cond2
7948 ///   br i1 %cond, label %bb4, label %bb3
7949 /// bb3:
7950 ///   ...
7951 /// bb4:
7952 ///   ...
7953 /// NOTE: %cond2 always dominates the terminator of bb0.
7954 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7955   BasicBlock *BB = BI->getParent();
7956   BasicBlock *BB1 = BI->getSuccessor(0);
7957   BasicBlock *BB2 = BI->getSuccessor(1);
7958   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7959     if (Succ == BB)
7960       return false;
7961     if (&Succ->front() != Succ->getTerminator())
7962       return false;
7963     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7964     if (!SuccBI || !SuccBI->isConditional())
7965       return false;
7966     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7967     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7968     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7969            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7970   };
7971   BranchInst *BB1BI, *BB2BI;
7972   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7973     return false;
7974 
7975   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7976       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7977       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7978     return false;
7979 
7980   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7981   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7982   IRBuilder<> Builder(BI);
7983   BI->setCondition(
7984       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7985   BB1->removePredecessor(BB);
7986   BI->setSuccessor(0, BB4);
7987   BB2->removePredecessor(BB);
7988   BI->setSuccessor(1, BB3);
7989   if (DTU) {
7990     SmallVector<DominatorTree::UpdateType, 4> Updates;
7991     Updates.push_back({DominatorTree::Delete, BB, BB1});
7992     Updates.push_back({DominatorTree::Insert, BB, BB4});
7993     Updates.push_back({DominatorTree::Delete, BB, BB2});
7994     Updates.push_back({DominatorTree::Insert, BB, BB3});
7995 
7996     DTU->applyUpdates(Updates);
7997   }
7998   bool HasWeight = false;
7999   uint64_t BBTWeight, BBFWeight;
8000   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
8001     HasWeight = true;
8002   else
8003     BBTWeight = BBFWeight = 1;
8004   uint64_t BB1TWeight, BB1FWeight;
8005   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
8006     HasWeight = true;
8007   else
8008     BB1TWeight = BB1FWeight = 1;
8009   uint64_t BB2TWeight, BB2FWeight;
8010   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
8011     HasWeight = true;
8012   else
8013     BB2TWeight = BB2FWeight = 1;
8014   if (HasWeight) {
8015     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
8016                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
8017     fitWeights(Weights);
8018     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
8019   }
8020   return true;
8021 }
8022 
8023 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
8024   assert(
8025       !isa<ConstantInt>(BI->getCondition()) &&
8026       BI->getSuccessor(0) != BI->getSuccessor(1) &&
8027       "Tautological conditional branch should have been eliminated already.");
8028 
8029   BasicBlock *BB = BI->getParent();
8030   if (!Options.SimplifyCondBranch ||
8031       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
8032     return false;
8033 
8034   // Conditional branch
8035   if (isValueEqualityComparison(BI)) {
8036     // If we only have one predecessor, and if it is a branch on this value,
8037     // see if that predecessor totally determines the outcome of this
8038     // switch.
8039     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
8040       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
8041         return requestResimplify();
8042 
8043     // This block must be empty, except for the setcond inst, if it exists.
8044     // Ignore dbg and pseudo intrinsics.
8045     auto I = BB->instructionsWithoutDebug(true).begin();
8046     if (&*I == BI) {
8047       if (foldValueComparisonIntoPredecessors(BI, Builder))
8048         return requestResimplify();
8049     } else if (&*I == cast<Instruction>(BI->getCondition())) {
8050       ++I;
8051       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
8052         return requestResimplify();
8053     }
8054   }
8055 
8056   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
8057   if (simplifyBranchOnICmpChain(BI, Builder, DL))
8058     return true;
8059 
8060   // If this basic block has dominating predecessor blocks and the dominating
8061   // blocks' conditions imply BI's condition, we know the direction of BI.
8062   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
8063   if (Imp) {
8064     // Turn this into a branch on constant.
8065     auto *OldCond = BI->getCondition();
8066     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
8067                              : ConstantInt::getFalse(BB->getContext());
8068     BI->setCondition(TorF);
8069     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
8070     return requestResimplify();
8071   }
8072 
8073   // If this basic block is ONLY a compare and a branch, and if a predecessor
8074   // branches to us and one of our successors, fold the comparison into the
8075   // predecessor and use logical operations to pick the right destination.
8076   if (Options.SpeculateBlocks &&
8077       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
8078                              Options.BonusInstThreshold))
8079     return requestResimplify();
8080 
8081   // We have a conditional branch to two blocks that are only reachable
8082   // from BI.  We know that the condbr dominates the two blocks, so see if
8083   // there is any identical code in the "then" and "else" blocks.  If so, we
8084   // can hoist it up to the branching block.
8085   if (BI->getSuccessor(0)->getSinglePredecessor()) {
8086     if (BI->getSuccessor(1)->getSinglePredecessor()) {
8087       if (HoistCommon &&
8088           hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts))
8089         return requestResimplify();
8090 
8091       if (BI && HoistLoadsStoresWithCondFaulting &&
8092           Options.HoistLoadsStoresWithCondFaulting &&
8093           isProfitableToSpeculate(BI, std::nullopt, TTI)) {
8094         SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
8095         auto CanSpeculateConditionalLoadsStores = [&]() {
8096           for (auto *Succ : successors(BB)) {
8097             for (Instruction &I : *Succ) {
8098               if (I.isTerminator()) {
8099                 if (I.getNumSuccessors() > 1)
8100                   return false;
8101                 continue;
8102               } else if (!isSafeCheapLoadStore(&I, TTI) ||
8103                          SpeculatedConditionalLoadsStores.size() ==
8104                              HoistLoadsStoresWithCondFaultingThreshold) {
8105                 return false;
8106               }
8107               SpeculatedConditionalLoadsStores.push_back(&I);
8108             }
8109           }
8110           return !SpeculatedConditionalLoadsStores.empty();
8111         };
8112 
8113         if (CanSpeculateConditionalLoadsStores()) {
8114           hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores,
8115                                       std::nullopt);
8116           return requestResimplify();
8117         }
8118       }
8119     } else {
8120       // If Successor #1 has multiple preds, we may be able to conditionally
8121       // execute Successor #0 if it branches to Successor #1.
8122       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
8123       if (Succ0TI->getNumSuccessors() == 1 &&
8124           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
8125         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
8126           return requestResimplify();
8127     }
8128   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
8129     // If Successor #0 has multiple preds, we may be able to conditionally
8130     // execute Successor #1 if it branches to Successor #0.
8131     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
8132     if (Succ1TI->getNumSuccessors() == 1 &&
8133         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
8134       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
8135         return requestResimplify();
8136   }
8137 
8138   // If this is a branch on something for which we know the constant value in
8139   // predecessors (e.g. a phi node in the current block), thread control
8140   // through this block.
8141   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
8142     return requestResimplify();
8143 
8144   // Scan predecessor blocks for conditional branches.
8145   for (BasicBlock *Pred : predecessors(BB))
8146     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
8147       if (PBI != BI && PBI->isConditional())
8148         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
8149           return requestResimplify();
8150 
8151   // Look for diamond patterns.
8152   if (MergeCondStores)
8153     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
8154       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
8155         if (PBI != BI && PBI->isConditional())
8156           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
8157             return requestResimplify();
8158 
8159   // Look for nested conditional branches.
8160   if (mergeNestedCondBranch(BI, DTU))
8161     return requestResimplify();
8162 
8163   return false;
8164 }
8165 
8166 /// Check if passing a value to an instruction will cause undefined behavior.
8167 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
8168   Constant *C = dyn_cast<Constant>(V);
8169   if (!C)
8170     return false;
8171 
8172   if (I->use_empty())
8173     return false;
8174 
8175   if (C->isNullValue() || isa<UndefValue>(C)) {
8176     // Only look at the first use we can handle, avoid hurting compile time with
8177     // long uselists
8178     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
8179       auto *Use = cast<Instruction>(U);
8180       // Change this list when we want to add new instructions.
8181       switch (Use->getOpcode()) {
8182       default:
8183         return false;
8184       case Instruction::GetElementPtr:
8185       case Instruction::Ret:
8186       case Instruction::BitCast:
8187       case Instruction::Load:
8188       case Instruction::Store:
8189       case Instruction::Call:
8190       case Instruction::CallBr:
8191       case Instruction::Invoke:
8192       case Instruction::UDiv:
8193       case Instruction::URem:
8194         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
8195         // implemented to avoid code complexity as it is unclear how useful such
8196         // logic is.
8197       case Instruction::SDiv:
8198       case Instruction::SRem:
8199         return true;
8200       }
8201     });
8202     if (FindUse == I->user_end())
8203       return false;
8204     auto *Use = cast<Instruction>(*FindUse);
8205     // Bail out if Use is not in the same BB as I or Use == I or Use comes
8206     // before I in the block. The latter two can be the case if Use is a
8207     // PHI node.
8208     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
8209       return false;
8210 
8211     // Now make sure that there are no instructions in between that can alter
8212     // control flow (eg. calls)
8213     auto InstrRange =
8214         make_range(std::next(I->getIterator()), Use->getIterator());
8215     if (any_of(InstrRange, [](Instruction &I) {
8216           return !isGuaranteedToTransferExecutionToSuccessor(&I);
8217         }))
8218       return false;
8219 
8220     // Look through GEPs. A load from a GEP derived from NULL is still undefined
8221     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
8222       if (GEP->getPointerOperand() == I) {
8223         // The current base address is null, there are four cases to consider:
8224         // getelementptr (TY, null, 0)                 -> null
8225         // getelementptr (TY, null, not zero)          -> may be modified
8226         // getelementptr inbounds (TY, null, 0)        -> null
8227         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
8228         // undefined?
8229         if (!GEP->hasAllZeroIndices() &&
8230             (!GEP->isInBounds() ||
8231              NullPointerIsDefined(GEP->getFunction(),
8232                                   GEP->getPointerAddressSpace())))
8233           PtrValueMayBeModified = true;
8234         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
8235       }
8236 
8237     // Look through return.
8238     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
8239       bool HasNoUndefAttr =
8240           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
8241       // Return undefined to a noundef return value is undefined.
8242       if (isa<UndefValue>(C) && HasNoUndefAttr)
8243         return true;
8244       // Return null to a nonnull+noundef return value is undefined.
8245       if (C->isNullValue() && HasNoUndefAttr &&
8246           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
8247         return !PtrValueMayBeModified;
8248       }
8249     }
8250 
8251     // Load from null is undefined.
8252     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
8253       if (!LI->isVolatile())
8254         return !NullPointerIsDefined(LI->getFunction(),
8255                                      LI->getPointerAddressSpace());
8256 
8257     // Store to null is undefined.
8258     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
8259       if (!SI->isVolatile())
8260         return (!NullPointerIsDefined(SI->getFunction(),
8261                                       SI->getPointerAddressSpace())) &&
8262                SI->getPointerOperand() == I;
8263 
8264     // llvm.assume(false/undef) always triggers immediate UB.
8265     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
8266       // Ignore assume operand bundles.
8267       if (I == Assume->getArgOperand(0))
8268         return true;
8269     }
8270 
8271     if (auto *CB = dyn_cast<CallBase>(Use)) {
8272       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
8273         return false;
8274       // A call to null is undefined.
8275       if (CB->getCalledOperand() == I)
8276         return true;
8277 
8278       if (C->isNullValue()) {
8279         for (const llvm::Use &Arg : CB->args())
8280           if (Arg == I) {
8281             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8282             if (CB->isPassingUndefUB(ArgIdx) &&
8283                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
8284               // Passing null to a nonnnull+noundef argument is undefined.
8285               return !PtrValueMayBeModified;
8286             }
8287           }
8288       } else if (isa<UndefValue>(C)) {
8289         // Passing undef to a noundef argument is undefined.
8290         for (const llvm::Use &Arg : CB->args())
8291           if (Arg == I) {
8292             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8293             if (CB->isPassingUndefUB(ArgIdx)) {
8294               // Passing undef to a noundef argument is undefined.
8295               return true;
8296             }
8297           }
8298       }
8299     }
8300     // Div/Rem by zero is immediate UB
8301     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
8302       return true;
8303   }
8304   return false;
8305 }
8306 
8307 /// If BB has an incoming value that will always trigger undefined behavior
8308 /// (eg. null pointer dereference), remove the branch leading here.
8309 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8310                                               DomTreeUpdater *DTU,
8311                                               AssumptionCache *AC) {
8312   for (PHINode &PHI : BB->phis())
8313     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8314       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8315         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8316         Instruction *T = Predecessor->getTerminator();
8317         IRBuilder<> Builder(T);
8318         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8319           BB->removePredecessor(Predecessor);
8320           // Turn unconditional branches into unreachables and remove the dead
8321           // destination from conditional branches.
8322           if (BI->isUnconditional())
8323             Builder.CreateUnreachable();
8324           else {
8325             // Preserve guarding condition in assume, because it might not be
8326             // inferrable from any dominating condition.
8327             Value *Cond = BI->getCondition();
8328             CallInst *Assumption;
8329             if (BI->getSuccessor(0) == BB)
8330               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8331             else
8332               Assumption = Builder.CreateAssumption(Cond);
8333             if (AC)
8334               AC->registerAssumption(cast<AssumeInst>(Assumption));
8335             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8336                                                        : BI->getSuccessor(0));
8337           }
8338           BI->eraseFromParent();
8339           if (DTU)
8340             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8341           return true;
8342         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8343           // Redirect all branches leading to UB into
8344           // a newly created unreachable block.
8345           BasicBlock *Unreachable = BasicBlock::Create(
8346               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8347           Builder.SetInsertPoint(Unreachable);
8348           // The new block contains only one instruction: Unreachable
8349           Builder.CreateUnreachable();
8350           for (const auto &Case : SI->cases())
8351             if (Case.getCaseSuccessor() == BB) {
8352               BB->removePredecessor(Predecessor);
8353               Case.setSuccessor(Unreachable);
8354             }
8355           if (SI->getDefaultDest() == BB) {
8356             BB->removePredecessor(Predecessor);
8357             SI->setDefaultDest(Unreachable);
8358           }
8359 
8360           if (DTU)
8361             DTU->applyUpdates(
8362                 { { DominatorTree::Insert, Predecessor, Unreachable },
8363                   { DominatorTree::Delete, Predecessor, BB } });
8364           return true;
8365         }
8366       }
8367 
8368   return false;
8369 }
8370 
8371 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8372   bool Changed = false;
8373 
8374   assert(BB && BB->getParent() && "Block not embedded in function!");
8375   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8376 
8377   // Remove basic blocks that have no predecessors (except the entry block)...
8378   // or that just have themself as a predecessor.  These are unreachable.
8379   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8380       BB->getSinglePredecessor() == BB) {
8381     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8382     DeleteDeadBlock(BB, DTU);
8383     return true;
8384   }
8385 
8386   // Check to see if we can constant propagate this terminator instruction
8387   // away...
8388   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8389                                     /*TLI=*/nullptr, DTU);
8390 
8391   // Check for and eliminate duplicate PHI nodes in this block.
8392   Changed |= EliminateDuplicatePHINodes(BB);
8393 
8394   // Check for and remove branches that will always cause undefined behavior.
8395   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8396     return requestResimplify();
8397 
8398   // Merge basic blocks into their predecessor if there is only one distinct
8399   // pred, and if there is only one distinct successor of the predecessor, and
8400   // if there are no PHI nodes.
8401   if (MergeBlockIntoPredecessor(BB, DTU))
8402     return true;
8403 
8404   if (SinkCommon && Options.SinkCommonInsts)
8405     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8406         mergeCompatibleInvokes(BB, DTU)) {
8407       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8408       // so we may now how duplicate PHI's.
8409       // Let's rerun EliminateDuplicatePHINodes() first,
8410       // before foldTwoEntryPHINode() potentially converts them into select's,
8411       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8412       return true;
8413     }
8414 
8415   IRBuilder<> Builder(BB);
8416 
8417   if (Options.SpeculateBlocks &&
8418       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8419     // If there is a trivial two-entry PHI node in this basic block, and we can
8420     // eliminate it, do so now.
8421     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8422       if (PN->getNumIncomingValues() == 2)
8423         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8424                                 Options.SpeculateUnpredictables))
8425           return true;
8426   }
8427 
8428   Instruction *Terminator = BB->getTerminator();
8429   Builder.SetInsertPoint(Terminator);
8430   switch (Terminator->getOpcode()) {
8431   case Instruction::Br:
8432     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8433     break;
8434   case Instruction::Resume:
8435     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8436     break;
8437   case Instruction::CleanupRet:
8438     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8439     break;
8440   case Instruction::Switch:
8441     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8442     break;
8443   case Instruction::Unreachable:
8444     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8445     break;
8446   case Instruction::IndirectBr:
8447     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8448     break;
8449   }
8450 
8451   return Changed;
8452 }
8453 
8454 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8455   bool Changed = false;
8456 
8457   // Repeated simplify BB as long as resimplification is requested.
8458   do {
8459     Resimplify = false;
8460 
8461     // Perform one round of simplifcation. Resimplify flag will be set if
8462     // another iteration is requested.
8463     Changed |= simplifyOnce(BB);
8464   } while (Resimplify);
8465 
8466   return Changed;
8467 }
8468 
8469 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8470                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8471                        ArrayRef<WeakVH> LoopHeaders) {
8472   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8473                         Options)
8474       .run(BB);
8475 }
8476