xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision c4a78b6fe32d72d5c9f3b4a4fa2be206675ccd05)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
98 
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
122     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
123     cl::init(true),
124     cl::desc("Hoist loads/stores if the target supports "
125              "conditional faulting"));
126 
127 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
128     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
129     cl::desc("Control the maximal conditonal load/store that we are willing "
130              "to speculatively execute to eliminate conditional branch "
131              "(default = 6)"));
132 
133 static cl::opt<unsigned>
134     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
135                          cl::init(20),
136                          cl::desc("Allow reordering across at most this many "
137                                   "instructions when hoisting"));
138 
139 static cl::opt<bool>
140     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
141                cl::desc("Sink common instructions down to the end block"));
142 
143 static cl::opt<bool> HoistCondStores(
144     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
145     cl::desc("Hoist conditional stores if an unconditional store precedes"));
146 
147 static cl::opt<bool> MergeCondStores(
148     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
149     cl::desc("Hoist conditional stores even if an unconditional store does not "
150              "precede - hoist multiple conditional stores into a single "
151              "predicated store"));
152 
153 static cl::opt<bool> MergeCondStoresAggressively(
154     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
155     cl::desc("When merging conditional stores, do so even if the resultant "
156              "basic blocks are unlikely to be if-converted as a result"));
157 
158 static cl::opt<bool> SpeculateOneExpensiveInst(
159     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
160     cl::desc("Allow exactly one expensive instruction to be speculatively "
161              "executed"));
162 
163 static cl::opt<unsigned> MaxSpeculationDepth(
164     "max-speculation-depth", cl::Hidden, cl::init(10),
165     cl::desc("Limit maximum recursion depth when calculating costs of "
166              "speculatively executed instructions"));
167 
168 static cl::opt<int>
169     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
170                       cl::init(10),
171                       cl::desc("Max size of a block which is still considered "
172                                "small enough to thread through"));
173 
174 // Two is chosen to allow one negation and a logical combine.
175 static cl::opt<unsigned>
176     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
177                         cl::init(2),
178                         cl::desc("Maximum cost of combining conditions when "
179                                  "folding branches"));
180 
181 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
182     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
183     cl::init(2),
184     cl::desc("Multiplier to apply to threshold when determining whether or not "
185              "to fold branch to common destination when vector operations are "
186              "present"));
187 
188 static cl::opt<bool> EnableMergeCompatibleInvokes(
189     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
190     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
191 
192 static cl::opt<unsigned> MaxSwitchCasesPerResult(
193     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
194     cl::desc("Limit cases to analyze when converting a switch to select"));
195 
196 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
197 STATISTIC(NumLinearMaps,
198           "Number of switch instructions turned into linear mapping");
199 STATISTIC(NumLookupTables,
200           "Number of switch instructions turned into lookup tables");
201 STATISTIC(
202     NumLookupTablesHoles,
203     "Number of switch instructions turned into lookup tables (holes checked)");
204 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
205 STATISTIC(NumFoldValueComparisonIntoPredecessors,
206           "Number of value comparisons folded into predecessor basic blocks");
207 STATISTIC(NumFoldBranchToCommonDest,
208           "Number of branches folded into predecessor basic block");
209 STATISTIC(
210     NumHoistCommonCode,
211     "Number of common instruction 'blocks' hoisted up to the begin block");
212 STATISTIC(NumHoistCommonInstrs,
213           "Number of common instructions hoisted up to the begin block");
214 STATISTIC(NumSinkCommonCode,
215           "Number of common instruction 'blocks' sunk down to the end block");
216 STATISTIC(NumSinkCommonInstrs,
217           "Number of common instructions sunk down to the end block");
218 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
219 STATISTIC(NumInvokes,
220           "Number of invokes with empty resume blocks simplified into calls");
221 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
222 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
223 
224 namespace {
225 
226 // The first field contains the value that the switch produces when a certain
227 // case group is selected, and the second field is a vector containing the
228 // cases composing the case group.
229 using SwitchCaseResultVectorTy =
230     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
231 
232 // The first field contains the phi node that generates a result of the switch
233 // and the second field contains the value generated for a certain case in the
234 // switch for that PHI.
235 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
236 
237 /// ValueEqualityComparisonCase - Represents a case of a switch.
238 struct ValueEqualityComparisonCase {
239   ConstantInt *Value;
240   BasicBlock *Dest;
241 
242   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
243       : Value(Value), Dest(Dest) {}
244 
245   bool operator<(ValueEqualityComparisonCase RHS) const {
246     // Comparing pointers is ok as we only rely on the order for uniquing.
247     return Value < RHS.Value;
248   }
249 
250   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
251 };
252 
253 class SimplifyCFGOpt {
254   const TargetTransformInfo &TTI;
255   DomTreeUpdater *DTU;
256   const DataLayout &DL;
257   ArrayRef<WeakVH> LoopHeaders;
258   const SimplifyCFGOptions &Options;
259   bool Resimplify;
260 
261   Value *isValueEqualityComparison(Instruction *TI);
262   BasicBlock *getValueEqualityComparisonCases(
263       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
264   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
265                                                      BasicBlock *Pred,
266                                                      IRBuilder<> &Builder);
267   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
268                                                     Instruction *PTI,
269                                                     IRBuilder<> &Builder);
270   bool foldValueComparisonIntoPredecessors(Instruction *TI,
271                                            IRBuilder<> &Builder);
272 
273   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
274   bool simplifySingleResume(ResumeInst *RI);
275   bool simplifyCommonResume(ResumeInst *RI);
276   bool simplifyCleanupReturn(CleanupReturnInst *RI);
277   bool simplifyUnreachable(UnreachableInst *UI);
278   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
279   bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU);
280   bool simplifyIndirectBr(IndirectBrInst *IBI);
281   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
282   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
283   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
284 
285   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
286                                              IRBuilder<> &Builder);
287 
288   bool hoistCommonCodeFromSuccessors(Instruction *TI, bool AllInstsEqOnly);
289   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
290       Instruction *TI, Instruction *I1,
291       SmallVectorImpl<Instruction *> &OtherSuccTIs);
292   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
293   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
294                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
295                                   uint32_t TrueWeight, uint32_t FalseWeight);
296   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
297                                  const DataLayout &DL);
298   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
299   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
300   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
301 
302 public:
303   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
304                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
305                  const SimplifyCFGOptions &Opts)
306       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
307     assert((!DTU || !DTU->hasPostDomTree()) &&
308            "SimplifyCFG is not yet capable of maintaining validity of a "
309            "PostDomTree, so don't ask for it.");
310   }
311 
312   bool simplifyOnce(BasicBlock *BB);
313   bool run(BasicBlock *BB);
314 
315   // Helper to set Resimplify and return change indication.
316   bool requestResimplify() {
317     Resimplify = true;
318     return true;
319   }
320 };
321 
322 } // end anonymous namespace
323 
324 /// Return true if all the PHI nodes in the basic block \p BB
325 /// receive compatible (identical) incoming values when coming from
326 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
327 ///
328 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
329 /// is provided, and *both* of the values are present in the set,
330 /// then they are considered equal.
331 static bool incomingValuesAreCompatible(
332     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
333     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
334   assert(IncomingBlocks.size() == 2 &&
335          "Only for a pair of incoming blocks at the time!");
336 
337   // FIXME: it is okay if one of the incoming values is an `undef` value,
338   //        iff the other incoming value is guaranteed to be a non-poison value.
339   // FIXME: it is okay if one of the incoming values is a `poison` value.
340   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
341     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
342     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
343     if (IV0 == IV1)
344       return true;
345     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
346         EquivalenceSet->contains(IV1))
347       return true;
348     return false;
349   });
350 }
351 
352 /// Return true if it is safe to merge these two
353 /// terminator instructions together.
354 static bool
355 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
356                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
357   if (SI1 == SI2)
358     return false; // Can't merge with self!
359 
360   // It is not safe to merge these two switch instructions if they have a common
361   // successor, and if that successor has a PHI node, and if *that* PHI node has
362   // conflicting incoming values from the two switch blocks.
363   BasicBlock *SI1BB = SI1->getParent();
364   BasicBlock *SI2BB = SI2->getParent();
365 
366   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
367   bool Fail = false;
368   for (BasicBlock *Succ : successors(SI2BB)) {
369     if (!SI1Succs.count(Succ))
370       continue;
371     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
372       continue;
373     Fail = true;
374     if (FailBlocks)
375       FailBlocks->insert(Succ);
376     else
377       break;
378   }
379 
380   return !Fail;
381 }
382 
383 /// Update PHI nodes in Succ to indicate that there will now be entries in it
384 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
385 /// will be the same as those coming in from ExistPred, an existing predecessor
386 /// of Succ.
387 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
388                                   BasicBlock *ExistPred,
389                                   MemorySSAUpdater *MSSAU = nullptr) {
390   for (PHINode &PN : Succ->phis())
391     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
392   if (MSSAU)
393     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
394       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
395 }
396 
397 /// Compute an abstract "cost" of speculating the given instruction,
398 /// which is assumed to be safe to speculate. TCC_Free means cheap,
399 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
400 /// expensive.
401 static InstructionCost computeSpeculationCost(const User *I,
402                                               const TargetTransformInfo &TTI) {
403   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
404 }
405 
406 /// If we have a merge point of an "if condition" as accepted above,
407 /// return true if the specified value dominates the block.  We don't handle
408 /// the true generality of domination here, just a special case which works
409 /// well enough for us.
410 ///
411 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
412 /// see if V (which must be an instruction) and its recursive operands
413 /// that do not dominate BB have a combined cost lower than Budget and
414 /// are non-trapping.  If both are true, the instruction is inserted into the
415 /// set and true is returned.
416 ///
417 /// The cost for most non-trapping instructions is defined as 1 except for
418 /// Select whose cost is 2.
419 ///
420 /// After this function returns, Cost is increased by the cost of
421 /// V plus its non-dominating operands.  If that cost is greater than
422 /// Budget, false is returned and Cost is undefined.
423 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
424                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
425                                 InstructionCost &Cost, InstructionCost Budget,
426                                 const TargetTransformInfo &TTI,
427                                 AssumptionCache *AC, unsigned Depth = 0) {
428   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
429   // so limit the recursion depth.
430   // TODO: While this recursion limit does prevent pathological behavior, it
431   // would be better to track visited instructions to avoid cycles.
432   if (Depth == MaxSpeculationDepth)
433     return false;
434 
435   Instruction *I = dyn_cast<Instruction>(V);
436   if (!I) {
437     // Non-instructions dominate all instructions and can be executed
438     // unconditionally.
439     return true;
440   }
441   BasicBlock *PBB = I->getParent();
442 
443   // We don't want to allow weird loops that might have the "if condition" in
444   // the bottom of this block.
445   if (PBB == BB)
446     return false;
447 
448   // If this instruction is defined in a block that contains an unconditional
449   // branch to BB, then it must be in the 'conditional' part of the "if
450   // statement".  If not, it definitely dominates the region.
451   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
452   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
453     return true;
454 
455   // If we have seen this instruction before, don't count it again.
456   if (AggressiveInsts.count(I))
457     return true;
458 
459   // Okay, it looks like the instruction IS in the "condition".  Check to
460   // see if it's a cheap instruction to unconditionally compute, and if it
461   // only uses stuff defined outside of the condition.  If so, hoist it out.
462   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
463     return false;
464 
465   Cost += computeSpeculationCost(I, TTI);
466 
467   // Allow exactly one instruction to be speculated regardless of its cost
468   // (as long as it is safe to do so).
469   // This is intended to flatten the CFG even if the instruction is a division
470   // or other expensive operation. The speculation of an expensive instruction
471   // is expected to be undone in CodeGenPrepare if the speculation has not
472   // enabled further IR optimizations.
473   if (Cost > Budget &&
474       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
475        !Cost.isValid()))
476     return false;
477 
478   // Okay, we can only really hoist these out if their operands do
479   // not take us over the cost threshold.
480   for (Use &Op : I->operands())
481     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
482                              TTI, AC, Depth + 1))
483       return false;
484   // Okay, it's safe to do this!  Remember this instruction.
485   AggressiveInsts.insert(I);
486   return true;
487 }
488 
489 /// Extract ConstantInt from value, looking through IntToPtr
490 /// and PointerNullValue. Return NULL if value is not a constant int.
491 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
492   // Normal constant int.
493   ConstantInt *CI = dyn_cast<ConstantInt>(V);
494   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
495       DL.isNonIntegralPointerType(V->getType()))
496     return CI;
497 
498   // This is some kind of pointer constant. Turn it into a pointer-sized
499   // ConstantInt if possible.
500   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
501 
502   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
503   if (isa<ConstantPointerNull>(V))
504     return ConstantInt::get(PtrTy, 0);
505 
506   // IntToPtr const int.
507   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
508     if (CE->getOpcode() == Instruction::IntToPtr)
509       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
510         // The constant is very likely to have the right type already.
511         if (CI->getType() == PtrTy)
512           return CI;
513         else
514           return cast<ConstantInt>(
515               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
516       }
517   return nullptr;
518 }
519 
520 namespace {
521 
522 /// Given a chain of or (||) or and (&&) comparison of a value against a
523 /// constant, this will try to recover the information required for a switch
524 /// structure.
525 /// It will depth-first traverse the chain of comparison, seeking for patterns
526 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
527 /// representing the different cases for the switch.
528 /// Note that if the chain is composed of '||' it will build the set of elements
529 /// that matches the comparisons (i.e. any of this value validate the chain)
530 /// while for a chain of '&&' it will build the set elements that make the test
531 /// fail.
532 struct ConstantComparesGatherer {
533   const DataLayout &DL;
534 
535   /// Value found for the switch comparison
536   Value *CompValue = nullptr;
537 
538   /// Extra clause to be checked before the switch
539   Value *Extra = nullptr;
540 
541   /// Set of integers to match in switch
542   SmallVector<ConstantInt *, 8> Vals;
543 
544   /// Number of comparisons matched in the and/or chain
545   unsigned UsedICmps = 0;
546 
547   /// Construct and compute the result for the comparison instruction Cond
548   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
549     gather(Cond);
550   }
551 
552   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
553   ConstantComparesGatherer &
554   operator=(const ConstantComparesGatherer &) = delete;
555 
556 private:
557   /// Try to set the current value used for the comparison, it succeeds only if
558   /// it wasn't set before or if the new value is the same as the old one
559   bool setValueOnce(Value *NewVal) {
560     if (CompValue && CompValue != NewVal)
561       return false;
562     CompValue = NewVal;
563     return (CompValue != nullptr);
564   }
565 
566   /// Try to match Instruction "I" as a comparison against a constant and
567   /// populates the array Vals with the set of values that match (or do not
568   /// match depending on isEQ).
569   /// Return false on failure. On success, the Value the comparison matched
570   /// against is placed in CompValue.
571   /// If CompValue is already set, the function is expected to fail if a match
572   /// is found but the value compared to is different.
573   bool matchInstruction(Instruction *I, bool isEQ) {
574     // If this is an icmp against a constant, handle this as one of the cases.
575     ICmpInst *ICI;
576     ConstantInt *C;
577     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
578           (C = getConstantInt(I->getOperand(1), DL)))) {
579       return false;
580     }
581 
582     Value *RHSVal;
583     const APInt *RHSC;
584 
585     // Pattern match a special case
586     // (x & ~2^z) == y --> x == y || x == y|2^z
587     // This undoes a transformation done by instcombine to fuse 2 compares.
588     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
589       // It's a little bit hard to see why the following transformations are
590       // correct. Here is a CVC3 program to verify them for 64-bit values:
591 
592       /*
593          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
594          x    : BITVECTOR(64);
595          y    : BITVECTOR(64);
596          z    : BITVECTOR(64);
597          mask : BITVECTOR(64) = BVSHL(ONE, z);
598          QUERY( (y & ~mask = y) =>
599                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
600          );
601          QUERY( (y |  mask = y) =>
602                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
603          );
604       */
605 
606       // Please note that each pattern must be a dual implication (<--> or
607       // iff). One directional implication can create spurious matches. If the
608       // implication is only one-way, an unsatisfiable condition on the left
609       // side can imply a satisfiable condition on the right side. Dual
610       // implication ensures that satisfiable conditions are transformed to
611       // other satisfiable conditions and unsatisfiable conditions are
612       // transformed to other unsatisfiable conditions.
613 
614       // Here is a concrete example of a unsatisfiable condition on the left
615       // implying a satisfiable condition on the right:
616       //
617       // mask = (1 << z)
618       // (x & ~mask) == y  --> (x == y || x == (y | mask))
619       //
620       // Substituting y = 3, z = 0 yields:
621       // (x & -2) == 3 --> (x == 3 || x == 2)
622 
623       // Pattern match a special case:
624       /*
625         QUERY( (y & ~mask = y) =>
626                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
627         );
628       */
629       if (match(ICI->getOperand(0),
630                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
631         APInt Mask = ~*RHSC;
632         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
633           // If we already have a value for the switch, it has to match!
634           if (!setValueOnce(RHSVal))
635             return false;
636 
637           Vals.push_back(C);
638           Vals.push_back(
639               ConstantInt::get(C->getContext(),
640                                C->getValue() | Mask));
641           UsedICmps++;
642           return true;
643         }
644       }
645 
646       // Pattern match a special case:
647       /*
648         QUERY( (y |  mask = y) =>
649                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
650         );
651       */
652       if (match(ICI->getOperand(0),
653                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
654         APInt Mask = *RHSC;
655         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
656           // If we already have a value for the switch, it has to match!
657           if (!setValueOnce(RHSVal))
658             return false;
659 
660           Vals.push_back(C);
661           Vals.push_back(ConstantInt::get(C->getContext(),
662                                           C->getValue() & ~Mask));
663           UsedICmps++;
664           return true;
665         }
666       }
667 
668       // If we already have a value for the switch, it has to match!
669       if (!setValueOnce(ICI->getOperand(0)))
670         return false;
671 
672       UsedICmps++;
673       Vals.push_back(C);
674       return ICI->getOperand(0);
675     }
676 
677     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
678     ConstantRange Span =
679         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
680 
681     // Shift the range if the compare is fed by an add. This is the range
682     // compare idiom as emitted by instcombine.
683     Value *CandidateVal = I->getOperand(0);
684     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
685       Span = Span.subtract(*RHSC);
686       CandidateVal = RHSVal;
687     }
688 
689     // If this is an and/!= check, then we are looking to build the set of
690     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
691     // x != 0 && x != 1.
692     if (!isEQ)
693       Span = Span.inverse();
694 
695     // If there are a ton of values, we don't want to make a ginormous switch.
696     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
697       return false;
698     }
699 
700     // If we already have a value for the switch, it has to match!
701     if (!setValueOnce(CandidateVal))
702       return false;
703 
704     // Add all values from the range to the set
705     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
706       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
707 
708     UsedICmps++;
709     return true;
710   }
711 
712   /// Given a potentially 'or'd or 'and'd together collection of icmp
713   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
714   /// the value being compared, and stick the list constants into the Vals
715   /// vector.
716   /// One "Extra" case is allowed to differ from the other.
717   void gather(Value *V) {
718     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
719 
720     // Keep a stack (SmallVector for efficiency) for depth-first traversal
721     SmallVector<Value *, 8> DFT;
722     SmallPtrSet<Value *, 8> Visited;
723 
724     // Initialize
725     Visited.insert(V);
726     DFT.push_back(V);
727 
728     while (!DFT.empty()) {
729       V = DFT.pop_back_val();
730 
731       if (Instruction *I = dyn_cast<Instruction>(V)) {
732         // If it is a || (or && depending on isEQ), process the operands.
733         Value *Op0, *Op1;
734         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
735                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736           if (Visited.insert(Op1).second)
737             DFT.push_back(Op1);
738           if (Visited.insert(Op0).second)
739             DFT.push_back(Op0);
740 
741           continue;
742         }
743 
744         // Try to match the current instruction
745         if (matchInstruction(I, isEQ))
746           // Match succeed, continue the loop
747           continue;
748       }
749 
750       // One element of the sequence of || (or &&) could not be match as a
751       // comparison against the same value as the others.
752       // We allow only one "Extra" case to be checked before the switch
753       if (!Extra) {
754         Extra = V;
755         continue;
756       }
757       // Failed to parse a proper sequence, abort now
758       CompValue = nullptr;
759       break;
760     }
761   }
762 };
763 
764 } // end anonymous namespace
765 
766 static void eraseTerminatorAndDCECond(Instruction *TI,
767                                       MemorySSAUpdater *MSSAU = nullptr) {
768   Instruction *Cond = nullptr;
769   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
770     Cond = dyn_cast<Instruction>(SI->getCondition());
771   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
772     if (BI->isConditional())
773       Cond = dyn_cast<Instruction>(BI->getCondition());
774   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
775     Cond = dyn_cast<Instruction>(IBI->getAddress());
776   }
777 
778   TI->eraseFromParent();
779   if (Cond)
780     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
781 }
782 
783 /// Return true if the specified terminator checks
784 /// to see if a value is equal to constant integer value.
785 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
786   Value *CV = nullptr;
787   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
788     // Do not permit merging of large switch instructions into their
789     // predecessors unless there is only one predecessor.
790     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
791       CV = SI->getCondition();
792   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
793     if (BI->isConditional() && BI->getCondition()->hasOneUse())
794       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
795         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
796           CV = ICI->getOperand(0);
797       }
798 
799   // Unwrap any lossless ptrtoint cast.
800   if (CV) {
801     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
802       Value *Ptr = PTII->getPointerOperand();
803       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
804         CV = Ptr;
805     }
806   }
807   return CV;
808 }
809 
810 /// Given a value comparison instruction,
811 /// decode all of the 'cases' that it represents and return the 'default' block.
812 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
813     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
814   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
815     Cases.reserve(SI->getNumCases());
816     for (auto Case : SI->cases())
817       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
818                                                   Case.getCaseSuccessor()));
819     return SI->getDefaultDest();
820   }
821 
822   BranchInst *BI = cast<BranchInst>(TI);
823   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
824   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
825   Cases.push_back(ValueEqualityComparisonCase(
826       getConstantInt(ICI->getOperand(1), DL), Succ));
827   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
828 }
829 
830 /// Given a vector of bb/value pairs, remove any entries
831 /// in the list that match the specified block.
832 static void
833 eliminateBlockCases(BasicBlock *BB,
834                     std::vector<ValueEqualityComparisonCase> &Cases) {
835   llvm::erase(Cases, BB);
836 }
837 
838 /// Return true if there are any keys in C1 that exist in C2 as well.
839 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
840                           std::vector<ValueEqualityComparisonCase> &C2) {
841   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
842 
843   // Make V1 be smaller than V2.
844   if (V1->size() > V2->size())
845     std::swap(V1, V2);
846 
847   if (V1->empty())
848     return false;
849   if (V1->size() == 1) {
850     // Just scan V2.
851     ConstantInt *TheVal = (*V1)[0].Value;
852     for (const ValueEqualityComparisonCase &VECC : *V2)
853       if (TheVal == VECC.Value)
854         return true;
855   }
856 
857   // Otherwise, just sort both lists and compare element by element.
858   array_pod_sort(V1->begin(), V1->end());
859   array_pod_sort(V2->begin(), V2->end());
860   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
861   while (i1 != e1 && i2 != e2) {
862     if ((*V1)[i1].Value == (*V2)[i2].Value)
863       return true;
864     if ((*V1)[i1].Value < (*V2)[i2].Value)
865       ++i1;
866     else
867       ++i2;
868   }
869   return false;
870 }
871 
872 // Set branch weights on SwitchInst. This sets the metadata if there is at
873 // least one non-zero weight.
874 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
875                              bool IsExpected) {
876   // Check that there is at least one non-zero weight. Otherwise, pass
877   // nullptr to setMetadata which will erase the existing metadata.
878   MDNode *N = nullptr;
879   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
880     N = MDBuilder(SI->getParent()->getContext())
881             .createBranchWeights(Weights, IsExpected);
882   SI->setMetadata(LLVMContext::MD_prof, N);
883 }
884 
885 // Similar to the above, but for branch and select instructions that take
886 // exactly 2 weights.
887 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
888                              uint32_t FalseWeight, bool IsExpected) {
889   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
890   // Check that there is at least one non-zero weight. Otherwise, pass
891   // nullptr to setMetadata which will erase the existing metadata.
892   MDNode *N = nullptr;
893   if (TrueWeight || FalseWeight)
894     N = MDBuilder(I->getParent()->getContext())
895             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
896   I->setMetadata(LLVMContext::MD_prof, N);
897 }
898 
899 /// If TI is known to be a terminator instruction and its block is known to
900 /// only have a single predecessor block, check to see if that predecessor is
901 /// also a value comparison with the same value, and if that comparison
902 /// determines the outcome of this comparison. If so, simplify TI. This does a
903 /// very limited form of jump threading.
904 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
905     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
906   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
907   if (!PredVal)
908     return false; // Not a value comparison in predecessor.
909 
910   Value *ThisVal = isValueEqualityComparison(TI);
911   assert(ThisVal && "This isn't a value comparison!!");
912   if (ThisVal != PredVal)
913     return false; // Different predicates.
914 
915   // TODO: Preserve branch weight metadata, similarly to how
916   // foldValueComparisonIntoPredecessors preserves it.
917 
918   // Find out information about when control will move from Pred to TI's block.
919   std::vector<ValueEqualityComparisonCase> PredCases;
920   BasicBlock *PredDef =
921       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
922   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
923 
924   // Find information about how control leaves this block.
925   std::vector<ValueEqualityComparisonCase> ThisCases;
926   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
927   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
928 
929   // If TI's block is the default block from Pred's comparison, potentially
930   // simplify TI based on this knowledge.
931   if (PredDef == TI->getParent()) {
932     // If we are here, we know that the value is none of those cases listed in
933     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
934     // can simplify TI.
935     if (!valuesOverlap(PredCases, ThisCases))
936       return false;
937 
938     if (isa<BranchInst>(TI)) {
939       // Okay, one of the successors of this condbr is dead.  Convert it to a
940       // uncond br.
941       assert(ThisCases.size() == 1 && "Branch can only have one case!");
942       // Insert the new branch.
943       Instruction *NI = Builder.CreateBr(ThisDef);
944       (void)NI;
945 
946       // Remove PHI node entries for the dead edge.
947       ThisCases[0].Dest->removePredecessor(PredDef);
948 
949       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
950                         << "Through successor TI: " << *TI << "Leaving: " << *NI
951                         << "\n");
952 
953       eraseTerminatorAndDCECond(TI);
954 
955       if (DTU)
956         DTU->applyUpdates(
957             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
958 
959       return true;
960     }
961 
962     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
963     // Okay, TI has cases that are statically dead, prune them away.
964     SmallPtrSet<Constant *, 16> DeadCases;
965     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
966       DeadCases.insert(PredCases[i].Value);
967 
968     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
969                       << "Through successor TI: " << *TI);
970 
971     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
972     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
973       --i;
974       auto *Successor = i->getCaseSuccessor();
975       if (DTU)
976         ++NumPerSuccessorCases[Successor];
977       if (DeadCases.count(i->getCaseValue())) {
978         Successor->removePredecessor(PredDef);
979         SI.removeCase(i);
980         if (DTU)
981           --NumPerSuccessorCases[Successor];
982       }
983     }
984 
985     if (DTU) {
986       std::vector<DominatorTree::UpdateType> Updates;
987       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
988         if (I.second == 0)
989           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
990       DTU->applyUpdates(Updates);
991     }
992 
993     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
994     return true;
995   }
996 
997   // Otherwise, TI's block must correspond to some matched value.  Find out
998   // which value (or set of values) this is.
999   ConstantInt *TIV = nullptr;
1000   BasicBlock *TIBB = TI->getParent();
1001   for (const auto &[Value, Dest] : PredCases)
1002     if (Dest == TIBB) {
1003       if (TIV)
1004         return false; // Cannot handle multiple values coming to this block.
1005       TIV = Value;
1006     }
1007   assert(TIV && "No edge from pred to succ?");
1008 
1009   // Okay, we found the one constant that our value can be if we get into TI's
1010   // BB.  Find out which successor will unconditionally be branched to.
1011   BasicBlock *TheRealDest = nullptr;
1012   for (const auto &[Value, Dest] : ThisCases)
1013     if (Value == TIV) {
1014       TheRealDest = Dest;
1015       break;
1016     }
1017 
1018   // If not handled by any explicit cases, it is handled by the default case.
1019   if (!TheRealDest)
1020     TheRealDest = ThisDef;
1021 
1022   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1023 
1024   // Remove PHI node entries for dead edges.
1025   BasicBlock *CheckEdge = TheRealDest;
1026   for (BasicBlock *Succ : successors(TIBB))
1027     if (Succ != CheckEdge) {
1028       if (Succ != TheRealDest)
1029         RemovedSuccs.insert(Succ);
1030       Succ->removePredecessor(TIBB);
1031     } else
1032       CheckEdge = nullptr;
1033 
1034   // Insert the new branch.
1035   Instruction *NI = Builder.CreateBr(TheRealDest);
1036   (void)NI;
1037 
1038   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1039                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1040                     << "\n");
1041 
1042   eraseTerminatorAndDCECond(TI);
1043   if (DTU) {
1044     SmallVector<DominatorTree::UpdateType, 2> Updates;
1045     Updates.reserve(RemovedSuccs.size());
1046     for (auto *RemovedSucc : RemovedSuccs)
1047       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1048     DTU->applyUpdates(Updates);
1049   }
1050   return true;
1051 }
1052 
1053 namespace {
1054 
1055 /// This class implements a stable ordering of constant
1056 /// integers that does not depend on their address.  This is important for
1057 /// applications that sort ConstantInt's to ensure uniqueness.
1058 struct ConstantIntOrdering {
1059   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1060     return LHS->getValue().ult(RHS->getValue());
1061   }
1062 };
1063 
1064 } // end anonymous namespace
1065 
1066 static int constantIntSortPredicate(ConstantInt *const *P1,
1067                                     ConstantInt *const *P2) {
1068   const ConstantInt *LHS = *P1;
1069   const ConstantInt *RHS = *P2;
1070   if (LHS == RHS)
1071     return 0;
1072   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1073 }
1074 
1075 /// Get Weights of a given terminator, the default weight is at the front
1076 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1077 /// metadata.
1078 static void getBranchWeights(Instruction *TI,
1079                              SmallVectorImpl<uint64_t> &Weights) {
1080   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1081   assert(MD && "Invalid branch-weight metadata");
1082   extractFromBranchWeightMD64(MD, Weights);
1083 
1084   // If TI is a conditional eq, the default case is the false case,
1085   // and the corresponding branch-weight data is at index 2. We swap the
1086   // default weight to be the first entry.
1087   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1088     assert(Weights.size() == 2);
1089     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1090     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1091       std::swap(Weights.front(), Weights.back());
1092   }
1093 }
1094 
1095 /// Keep halving the weights until all can fit in uint32_t.
1096 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1097   uint64_t Max = *llvm::max_element(Weights);
1098   if (Max > UINT_MAX) {
1099     unsigned Offset = 32 - llvm::countl_zero(Max);
1100     for (uint64_t &I : Weights)
1101       I >>= Offset;
1102   }
1103 }
1104 
1105 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1106     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1107   Instruction *PTI = PredBlock->getTerminator();
1108 
1109   // If we have bonus instructions, clone them into the predecessor block.
1110   // Note that there may be multiple predecessor blocks, so we cannot move
1111   // bonus instructions to a predecessor block.
1112   for (Instruction &BonusInst : *BB) {
1113     if (BonusInst.isTerminator())
1114       continue;
1115 
1116     Instruction *NewBonusInst = BonusInst.clone();
1117 
1118     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1119         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1120       // Unless the instruction has the same !dbg location as the original
1121       // branch, drop it. When we fold the bonus instructions we want to make
1122       // sure we reset their debug locations in order to avoid stepping on
1123       // dead code caused by folding dead branches.
1124       NewBonusInst->setDebugLoc(DebugLoc());
1125     }
1126 
1127     RemapInstruction(NewBonusInst, VMap,
1128                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1129 
1130     // If we speculated an instruction, we need to drop any metadata that may
1131     // result in undefined behavior, as the metadata might have been valid
1132     // only given the branch precondition.
1133     // Similarly strip attributes on call parameters that may cause UB in
1134     // location the call is moved to.
1135     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1136 
1137     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1138     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1139     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1140                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1141 
1142     if (isa<DbgInfoIntrinsic>(BonusInst))
1143       continue;
1144 
1145     NewBonusInst->takeName(&BonusInst);
1146     BonusInst.setName(NewBonusInst->getName() + ".old");
1147     VMap[&BonusInst] = NewBonusInst;
1148 
1149     // Update (liveout) uses of bonus instructions,
1150     // now that the bonus instruction has been cloned into predecessor.
1151     // Note that we expect to be in a block-closed SSA form for this to work!
1152     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1153       auto *UI = cast<Instruction>(U.getUser());
1154       auto *PN = dyn_cast<PHINode>(UI);
1155       if (!PN) {
1156         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1157                "If the user is not a PHI node, then it should be in the same "
1158                "block as, and come after, the original bonus instruction.");
1159         continue; // Keep using the original bonus instruction.
1160       }
1161       // Is this the block-closed SSA form PHI node?
1162       if (PN->getIncomingBlock(U) == BB)
1163         continue; // Great, keep using the original bonus instruction.
1164       // The only other alternative is an "use" when coming from
1165       // the predecessor block - here we should refer to the cloned bonus instr.
1166       assert(PN->getIncomingBlock(U) == PredBlock &&
1167              "Not in block-closed SSA form?");
1168       U.set(NewBonusInst);
1169     }
1170   }
1171 }
1172 
1173 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1174     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1175   BasicBlock *BB = TI->getParent();
1176   BasicBlock *Pred = PTI->getParent();
1177 
1178   SmallVector<DominatorTree::UpdateType, 32> Updates;
1179 
1180   // Figure out which 'cases' to copy from SI to PSI.
1181   std::vector<ValueEqualityComparisonCase> BBCases;
1182   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1183 
1184   std::vector<ValueEqualityComparisonCase> PredCases;
1185   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1186 
1187   // Based on whether the default edge from PTI goes to BB or not, fill in
1188   // PredCases and PredDefault with the new switch cases we would like to
1189   // build.
1190   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1191 
1192   // Update the branch weight metadata along the way
1193   SmallVector<uint64_t, 8> Weights;
1194   bool PredHasWeights = hasBranchWeightMD(*PTI);
1195   bool SuccHasWeights = hasBranchWeightMD(*TI);
1196 
1197   if (PredHasWeights) {
1198     getBranchWeights(PTI, Weights);
1199     // branch-weight metadata is inconsistent here.
1200     if (Weights.size() != 1 + PredCases.size())
1201       PredHasWeights = SuccHasWeights = false;
1202   } else if (SuccHasWeights)
1203     // If there are no predecessor weights but there are successor weights,
1204     // populate Weights with 1, which will later be scaled to the sum of
1205     // successor's weights
1206     Weights.assign(1 + PredCases.size(), 1);
1207 
1208   SmallVector<uint64_t, 8> SuccWeights;
1209   if (SuccHasWeights) {
1210     getBranchWeights(TI, SuccWeights);
1211     // branch-weight metadata is inconsistent here.
1212     if (SuccWeights.size() != 1 + BBCases.size())
1213       PredHasWeights = SuccHasWeights = false;
1214   } else if (PredHasWeights)
1215     SuccWeights.assign(1 + BBCases.size(), 1);
1216 
1217   if (PredDefault == BB) {
1218     // If this is the default destination from PTI, only the edges in TI
1219     // that don't occur in PTI, or that branch to BB will be activated.
1220     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1221     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1222       if (PredCases[i].Dest != BB)
1223         PTIHandled.insert(PredCases[i].Value);
1224       else {
1225         // The default destination is BB, we don't need explicit targets.
1226         std::swap(PredCases[i], PredCases.back());
1227 
1228         if (PredHasWeights || SuccHasWeights) {
1229           // Increase weight for the default case.
1230           Weights[0] += Weights[i + 1];
1231           std::swap(Weights[i + 1], Weights.back());
1232           Weights.pop_back();
1233         }
1234 
1235         PredCases.pop_back();
1236         --i;
1237         --e;
1238       }
1239 
1240     // Reconstruct the new switch statement we will be building.
1241     if (PredDefault != BBDefault) {
1242       PredDefault->removePredecessor(Pred);
1243       if (DTU && PredDefault != BB)
1244         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1245       PredDefault = BBDefault;
1246       ++NewSuccessors[BBDefault];
1247     }
1248 
1249     unsigned CasesFromPred = Weights.size();
1250     uint64_t ValidTotalSuccWeight = 0;
1251     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1252       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1253         PredCases.push_back(BBCases[i]);
1254         ++NewSuccessors[BBCases[i].Dest];
1255         if (SuccHasWeights || PredHasWeights) {
1256           // The default weight is at index 0, so weight for the ith case
1257           // should be at index i+1. Scale the cases from successor by
1258           // PredDefaultWeight (Weights[0]).
1259           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1260           ValidTotalSuccWeight += SuccWeights[i + 1];
1261         }
1262       }
1263 
1264     if (SuccHasWeights || PredHasWeights) {
1265       ValidTotalSuccWeight += SuccWeights[0];
1266       // Scale the cases from predecessor by ValidTotalSuccWeight.
1267       for (unsigned i = 1; i < CasesFromPred; ++i)
1268         Weights[i] *= ValidTotalSuccWeight;
1269       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1270       Weights[0] *= SuccWeights[0];
1271     }
1272   } else {
1273     // If this is not the default destination from PSI, only the edges
1274     // in SI that occur in PSI with a destination of BB will be
1275     // activated.
1276     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1277     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1278     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1279       if (PredCases[i].Dest == BB) {
1280         PTIHandled.insert(PredCases[i].Value);
1281 
1282         if (PredHasWeights || SuccHasWeights) {
1283           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1284           std::swap(Weights[i + 1], Weights.back());
1285           Weights.pop_back();
1286         }
1287 
1288         std::swap(PredCases[i], PredCases.back());
1289         PredCases.pop_back();
1290         --i;
1291         --e;
1292       }
1293 
1294     // Okay, now we know which constants were sent to BB from the
1295     // predecessor.  Figure out where they will all go now.
1296     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1297       if (PTIHandled.count(BBCases[i].Value)) {
1298         // If this is one we are capable of getting...
1299         if (PredHasWeights || SuccHasWeights)
1300           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1301         PredCases.push_back(BBCases[i]);
1302         ++NewSuccessors[BBCases[i].Dest];
1303         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1304       }
1305 
1306     // If there are any constants vectored to BB that TI doesn't handle,
1307     // they must go to the default destination of TI.
1308     for (ConstantInt *I : PTIHandled) {
1309       if (PredHasWeights || SuccHasWeights)
1310         Weights.push_back(WeightsForHandled[I]);
1311       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1312       ++NewSuccessors[BBDefault];
1313     }
1314   }
1315 
1316   // Okay, at this point, we know which new successor Pred will get.  Make
1317   // sure we update the number of entries in the PHI nodes for these
1318   // successors.
1319   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1320   if (DTU) {
1321     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1322     Updates.reserve(Updates.size() + NewSuccessors.size());
1323   }
1324   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1325        NewSuccessors) {
1326     for (auto I : seq(NewSuccessor.second)) {
1327       (void)I;
1328       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1329     }
1330     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1331       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1332   }
1333 
1334   Builder.SetInsertPoint(PTI);
1335   // Convert pointer to int before we switch.
1336   if (CV->getType()->isPointerTy()) {
1337     CV =
1338         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1339   }
1340 
1341   // Now that the successors are updated, create the new Switch instruction.
1342   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1343   NewSI->setDebugLoc(PTI->getDebugLoc());
1344   for (ValueEqualityComparisonCase &V : PredCases)
1345     NewSI->addCase(V.Value, V.Dest);
1346 
1347   if (PredHasWeights || SuccHasWeights) {
1348     // Halve the weights if any of them cannot fit in an uint32_t
1349     fitWeights(Weights);
1350 
1351     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1352 
1353     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1354   }
1355 
1356   eraseTerminatorAndDCECond(PTI);
1357 
1358   // Okay, last check.  If BB is still a successor of PSI, then we must
1359   // have an infinite loop case.  If so, add an infinitely looping block
1360   // to handle the case to preserve the behavior of the code.
1361   BasicBlock *InfLoopBlock = nullptr;
1362   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1363     if (NewSI->getSuccessor(i) == BB) {
1364       if (!InfLoopBlock) {
1365         // Insert it at the end of the function, because it's either code,
1366         // or it won't matter if it's hot. :)
1367         InfLoopBlock =
1368             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1369         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1370         if (DTU)
1371           Updates.push_back(
1372               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1373       }
1374       NewSI->setSuccessor(i, InfLoopBlock);
1375     }
1376 
1377   if (DTU) {
1378     if (InfLoopBlock)
1379       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1380 
1381     Updates.push_back({DominatorTree::Delete, Pred, BB});
1382 
1383     DTU->applyUpdates(Updates);
1384   }
1385 
1386   ++NumFoldValueComparisonIntoPredecessors;
1387   return true;
1388 }
1389 
1390 /// The specified terminator is a value equality comparison instruction
1391 /// (either a switch or a branch on "X == c").
1392 /// See if any of the predecessors of the terminator block are value comparisons
1393 /// on the same value.  If so, and if safe to do so, fold them together.
1394 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1395                                                          IRBuilder<> &Builder) {
1396   BasicBlock *BB = TI->getParent();
1397   Value *CV = isValueEqualityComparison(TI); // CondVal
1398   assert(CV && "Not a comparison?");
1399 
1400   bool Changed = false;
1401 
1402   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1403   while (!Preds.empty()) {
1404     BasicBlock *Pred = Preds.pop_back_val();
1405     Instruction *PTI = Pred->getTerminator();
1406 
1407     // Don't try to fold into itself.
1408     if (Pred == BB)
1409       continue;
1410 
1411     // See if the predecessor is a comparison with the same value.
1412     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1413     if (PCV != CV)
1414       continue;
1415 
1416     SmallSetVector<BasicBlock *, 4> FailBlocks;
1417     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1418       for (auto *Succ : FailBlocks) {
1419         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1420           return false;
1421       }
1422     }
1423 
1424     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1425     Changed = true;
1426   }
1427   return Changed;
1428 }
1429 
1430 // If we would need to insert a select that uses the value of this invoke
1431 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1432 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1433 // select in this case.
1434 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1435                                 Instruction *I1, Instruction *I2) {
1436   for (BasicBlock *Succ : successors(BB1)) {
1437     for (const PHINode &PN : Succ->phis()) {
1438       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1439       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1440       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1441         return false;
1442       }
1443     }
1444   }
1445   return true;
1446 }
1447 
1448 // Get interesting characteristics of instructions that
1449 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1450 // instructions can be reordered across.
1451 enum SkipFlags {
1452   SkipReadMem = 1,
1453   SkipSideEffect = 2,
1454   SkipImplicitControlFlow = 4
1455 };
1456 
1457 static unsigned skippedInstrFlags(Instruction *I) {
1458   unsigned Flags = 0;
1459   if (I->mayReadFromMemory())
1460     Flags |= SkipReadMem;
1461   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1462   // inalloca) across stacksave/stackrestore boundaries.
1463   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1464     Flags |= SkipSideEffect;
1465   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1466     Flags |= SkipImplicitControlFlow;
1467   return Flags;
1468 }
1469 
1470 // Returns true if it is safe to reorder an instruction across preceding
1471 // instructions in a basic block.
1472 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1473   // Don't reorder a store over a load.
1474   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1475     return false;
1476 
1477   // If we have seen an instruction with side effects, it's unsafe to reorder an
1478   // instruction which reads memory or itself has side effects.
1479   if ((Flags & SkipSideEffect) &&
1480       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1481     return false;
1482 
1483   // Reordering across an instruction which does not necessarily transfer
1484   // control to the next instruction is speculation.
1485   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1486     return false;
1487 
1488   // Hoisting of llvm.deoptimize is only legal together with the next return
1489   // instruction, which this pass is not always able to do.
1490   if (auto *CB = dyn_cast<CallBase>(I))
1491     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1492       return false;
1493 
1494   // It's also unsafe/illegal to hoist an instruction above its instruction
1495   // operands
1496   BasicBlock *BB = I->getParent();
1497   for (Value *Op : I->operands()) {
1498     if (auto *J = dyn_cast<Instruction>(Op))
1499       if (J->getParent() == BB)
1500         return false;
1501   }
1502 
1503   return true;
1504 }
1505 
1506 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1507 
1508 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1509 /// instructions \p I1 and \p I2 can and should be hoisted.
1510 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1511                                           const TargetTransformInfo &TTI) {
1512   // If we're going to hoist a call, make sure that the two instructions
1513   // we're commoning/hoisting are both marked with musttail, or neither of
1514   // them is marked as such. Otherwise, we might end up in a situation where
1515   // we hoist from a block where the terminator is a `ret` to a block where
1516   // the terminator is a `br`, and `musttail` calls expect to be followed by
1517   // a return.
1518   auto *C1 = dyn_cast<CallInst>(I1);
1519   auto *C2 = dyn_cast<CallInst>(I2);
1520   if (C1 && C2)
1521     if (C1->isMustTailCall() != C2->isMustTailCall())
1522       return false;
1523 
1524   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1525     return false;
1526 
1527   // If any of the two call sites has nomerge or convergent attribute, stop
1528   // hoisting.
1529   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1530     if (CB1->cannotMerge() || CB1->isConvergent())
1531       return false;
1532   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1533     if (CB2->cannotMerge() || CB2->isConvergent())
1534       return false;
1535 
1536   return true;
1537 }
1538 
1539 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1540 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1541 /// hoistCommonCodeFromSuccessors. e.g. The input:
1542 ///    I1                DVRs: { x, z },
1543 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1544 /// would result in hoisting only DbgVariableRecord x.
1545 static void hoistLockstepIdenticalDbgVariableRecords(
1546     Instruction *TI, Instruction *I1,
1547     SmallVectorImpl<Instruction *> &OtherInsts) {
1548   if (!I1->hasDbgRecords())
1549     return;
1550   using CurrentAndEndIt =
1551       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1552   // Vector of {Current, End} iterators.
1553   SmallVector<CurrentAndEndIt> Itrs;
1554   Itrs.reserve(OtherInsts.size() + 1);
1555   // Helper lambdas for lock-step checks:
1556   // Return true if this Current == End.
1557   auto atEnd = [](const CurrentAndEndIt &Pair) {
1558     return Pair.first == Pair.second;
1559   };
1560   // Return true if all Current are identical.
1561   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1562     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1563                   [&](DbgRecord::self_iterator I) {
1564                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1565                   });
1566   };
1567 
1568   // Collect the iterators.
1569   Itrs.push_back(
1570       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1571   for (Instruction *Other : OtherInsts) {
1572     if (!Other->hasDbgRecords())
1573       return;
1574     Itrs.push_back(
1575         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1576   }
1577 
1578   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1579   // the lock-step DbgRecord are identical, hoist all of them to TI.
1580   // This replicates the dbg.* intrinsic behaviour in
1581   // hoistCommonCodeFromSuccessors.
1582   while (none_of(Itrs, atEnd)) {
1583     bool HoistDVRs = allIdentical(Itrs);
1584     for (CurrentAndEndIt &Pair : Itrs) {
1585       // Increment Current iterator now as we may be about to move the
1586       // DbgRecord.
1587       DbgRecord &DR = *Pair.first++;
1588       if (HoistDVRs) {
1589         DR.removeFromParent();
1590         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1591       }
1592     }
1593   }
1594 }
1595 
1596 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1597                                           const Instruction *I2) {
1598   if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true))
1599     return true;
1600 
1601   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1602     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1603       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1604              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1605              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1606 
1607   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1608     return I1->getOperand(0) == I2->getOperand(1) &&
1609            I1->getOperand(1) == I2->getOperand(0) &&
1610            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1611   }
1612 
1613   return false;
1614 }
1615 
1616 /// If the target supports conditional faulting,
1617 /// we look for the following pattern:
1618 /// \code
1619 ///   BB:
1620 ///     ...
1621 ///     %cond = icmp ult %x, %y
1622 ///     br i1 %cond, label %TrueBB, label %FalseBB
1623 ///   FalseBB:
1624 ///     store i32 1, ptr %q, align 4
1625 ///     ...
1626 ///   TrueBB:
1627 ///     %maskedloadstore = load i32, ptr %b, align 4
1628 ///     store i32 %maskedloadstore, ptr %p, align 4
1629 ///     ...
1630 /// \endcode
1631 ///
1632 /// and transform it into:
1633 ///
1634 /// \code
1635 ///   BB:
1636 ///     ...
1637 ///     %cond = icmp ult %x, %y
1638 ///     %maskedloadstore = cload i32, ptr %b, %cond
1639 ///     cstore i32 %maskedloadstore, ptr %p, %cond
1640 ///     cstore i32 1, ptr %q, ~%cond
1641 ///     br i1 %cond, label %TrueBB, label %FalseBB
1642 ///   FalseBB:
1643 ///     ...
1644 ///   TrueBB:
1645 ///     ...
1646 /// \endcode
1647 ///
1648 /// where cload/cstore are represented by llvm.masked.load/store intrinsics,
1649 /// e.g.
1650 ///
1651 /// \code
1652 ///   %vcond = bitcast i1 %cond to <1 x i1>
1653 ///   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
1654 ///                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
1655 ///   %maskedloadstore = bitcast <1 x i32> %v0 to i32
1656 ///   call void @llvm.masked.store.v1i32.p0
1657 ///                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
1658 ///   %cond.not = xor i1 %cond, true
1659 ///   %vcond.not = bitcast i1 %cond.not to <1 x i>
1660 ///   call void @llvm.masked.store.v1i32.p0
1661 ///              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
1662 /// \endcode
1663 ///
1664 /// So we need to turn hoisted load/store into cload/cstore.
1665 ///
1666 /// \param BI The branch instruction.
1667 /// \param SpeculatedConditionalLoadsStores The load/store instructions that
1668 ///                                         will be speculated.
1669 /// \param Invert indicates if speculates FalseBB. Only used in triangle CFG.
1670 static void hoistConditionalLoadsStores(
1671     BranchInst *BI,
1672     SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores,
1673     std::optional<bool> Invert) {
1674   auto &Context = BI->getParent()->getContext();
1675   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
1676   auto *Cond = BI->getOperand(0);
1677   // Construct the condition if needed.
1678   BasicBlock *BB = BI->getParent();
1679   IRBuilder<> Builder(
1680       Invert.has_value() ? SpeculatedConditionalLoadsStores.back() : BI);
1681   Value *Mask = nullptr;
1682   Value *MaskFalse = nullptr;
1683   Value *MaskTrue = nullptr;
1684   if (Invert.has_value()) {
1685     Mask = Builder.CreateBitCast(
1686         *Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
1687         VCondTy);
1688   } else {
1689     MaskFalse = Builder.CreateBitCast(
1690         Builder.CreateXor(Cond, ConstantInt::getTrue(Context)), VCondTy);
1691     MaskTrue = Builder.CreateBitCast(Cond, VCondTy);
1692   }
1693   auto PeekThroughBitcasts = [](Value *V) {
1694     while (auto *BitCast = dyn_cast<BitCastInst>(V))
1695       V = BitCast->getOperand(0);
1696     return V;
1697   };
1698   for (auto *I : SpeculatedConditionalLoadsStores) {
1699     IRBuilder<> Builder(Invert.has_value() ? I : BI);
1700     if (!Invert.has_value())
1701       Mask = I->getParent() == BI->getSuccessor(0) ? MaskTrue : MaskFalse;
1702     // We currently assume conditional faulting load/store is supported for
1703     // scalar types only when creating new instructions. This can be easily
1704     // extended for vector types in the future.
1705     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
1706     auto *Op0 = I->getOperand(0);
1707     CallInst *MaskedLoadStore = nullptr;
1708     if (auto *LI = dyn_cast<LoadInst>(I)) {
1709       // Handle Load.
1710       auto *Ty = I->getType();
1711       PHINode *PN = nullptr;
1712       Value *PassThru = nullptr;
1713       if (Invert.has_value())
1714         for (User *U : I->users())
1715           if ((PN = dyn_cast<PHINode>(U))) {
1716             PassThru = Builder.CreateBitCast(
1717                 PeekThroughBitcasts(PN->getIncomingValueForBlock(BB)),
1718                 FixedVectorType::get(Ty, 1));
1719             break;
1720           }
1721       MaskedLoadStore = Builder.CreateMaskedLoad(
1722           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
1723       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
1724       if (PN)
1725         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
1726       I->replaceAllUsesWith(NewLoadStore);
1727     } else {
1728       // Handle Store.
1729       auto *StoredVal = Builder.CreateBitCast(
1730           PeekThroughBitcasts(Op0), FixedVectorType::get(Op0->getType(), 1));
1731       MaskedLoadStore = Builder.CreateMaskedStore(
1732           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
1733     }
1734     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
1735     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
1736     //
1737     // !nonnull, !align : Not support pointer type, no need to keep.
1738     // !range: Load type is changed from scalar to vector, but the metadata on
1739     //         vector specifies a per-element range, so the semantics stay the
1740     //         same. Keep it.
1741     // !annotation: Not impact semantics. Keep it.
1742     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1743       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
1744     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
1745     // FIXME: DIAssignID is not supported for masked store yet.
1746     // (Verifier::visitDIAssignIDMetadata)
1747     at::deleteAssignmentMarkers(I);
1748     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
1749       return Node->getMetadataID() == Metadata::DIAssignIDKind;
1750     });
1751     MaskedLoadStore->copyMetadata(*I);
1752     I->eraseFromParent();
1753   }
1754 }
1755 
1756 static bool isSafeCheapLoadStore(const Instruction *I,
1757                                  const TargetTransformInfo &TTI) {
1758   // Not handle volatile or atomic.
1759   if (auto *L = dyn_cast<LoadInst>(I)) {
1760     if (!L->isSimple())
1761       return false;
1762   } else if (auto *S = dyn_cast<StoreInst>(I)) {
1763     if (!S->isSimple())
1764       return false;
1765   } else
1766     return false;
1767 
1768   // llvm.masked.load/store use i32 for alignment while load/store use i64.
1769   // That's why we have the alignment limitation.
1770   // FIXME: Update the prototype of the intrinsics?
1771   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
1772          getLoadStoreAlignment(I) < Value::MaximumAlignment;
1773 }
1774 
1775 namespace {
1776 
1777 // LockstepReverseIterator - Iterates through instructions
1778 // in a set of blocks in reverse order from the first non-terminator.
1779 // For example (assume all blocks have size n):
1780 //   LockstepReverseIterator I([B1, B2, B3]);
1781 //   *I-- = [B1[n], B2[n], B3[n]];
1782 //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1783 //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1784 //   ...
1785 class LockstepReverseIterator {
1786   ArrayRef<BasicBlock *> Blocks;
1787   SmallVector<Instruction *, 4> Insts;
1788   bool Fail;
1789 
1790 public:
1791   LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
1792     reset();
1793   }
1794 
1795   void reset() {
1796     Fail = false;
1797     Insts.clear();
1798     for (auto *BB : Blocks) {
1799       Instruction *Inst = BB->getTerminator();
1800       for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1801         Inst = Inst->getPrevNode();
1802       if (!Inst) {
1803         // Block wasn't big enough.
1804         Fail = true;
1805         return;
1806       }
1807       Insts.push_back(Inst);
1808     }
1809   }
1810 
1811   bool isValid() const { return !Fail; }
1812 
1813   void operator--() {
1814     if (Fail)
1815       return;
1816     for (auto *&Inst : Insts) {
1817       for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1818         Inst = Inst->getPrevNode();
1819       // Already at beginning of block.
1820       if (!Inst) {
1821         Fail = true;
1822         return;
1823       }
1824     }
1825   }
1826 
1827   void operator++() {
1828     if (Fail)
1829       return;
1830     for (auto *&Inst : Insts) {
1831       for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1832         Inst = Inst->getNextNode();
1833       // Already at end of block.
1834       if (!Inst) {
1835         Fail = true;
1836         return;
1837       }
1838     }
1839   }
1840 
1841   ArrayRef<Instruction *> operator*() const { return Insts; }
1842 };
1843 
1844 } // end anonymous namespace
1845 
1846 /// Hoist any common code in the successor blocks up into the block. This
1847 /// function guarantees that BB dominates all successors. If AllInstsEqOnly is
1848 /// given, only perform hoisting in case all successors blocks contain matching
1849 /// instructions only. In that case, all instructions can be hoisted and the
1850 /// original branch will be replaced and selects for PHIs are added.
1851 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI,
1852                                                    bool AllInstsEqOnly) {
1853   // This does very trivial matching, with limited scanning, to find identical
1854   // instructions in the two blocks. In particular, we don't want to get into
1855   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1856   // such, we currently just scan for obviously identical instructions in an
1857   // identical order, possibly separated by the same number of non-identical
1858   // instructions.
1859   BasicBlock *BB = TI->getParent();
1860   unsigned int SuccSize = succ_size(BB);
1861   if (SuccSize < 2)
1862     return false;
1863 
1864   // If either of the blocks has it's address taken, then we can't do this fold,
1865   // because the code we'd hoist would no longer run when we jump into the block
1866   // by it's address.
1867   for (auto *Succ : successors(BB))
1868     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1869       return false;
1870 
1871   // The second of pair is a SkipFlags bitmask.
1872   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1873   SmallVector<SuccIterPair, 8> SuccIterPairs;
1874   for (auto *Succ : successors(BB)) {
1875     BasicBlock::iterator SuccItr = Succ->begin();
1876     if (isa<PHINode>(*SuccItr))
1877       return false;
1878     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1879   }
1880 
1881   if (AllInstsEqOnly) {
1882     // Check if all instructions in the successor blocks match. This allows
1883     // hoisting all instructions and removing the blocks we are hoisting from,
1884     // so does not add any new instructions.
1885     SmallVector<BasicBlock *> Succs = to_vector(successors(BB));
1886     // Check if sizes and terminators of all successors match.
1887     bool AllSame = none_of(Succs, [&Succs](BasicBlock *Succ) {
1888       Instruction *Term0 = Succs[0]->getTerminator();
1889       Instruction *Term = Succ->getTerminator();
1890       return !Term->isSameOperationAs(Term0) ||
1891              !equal(Term->operands(), Term0->operands()) ||
1892              Succs[0]->size() != Succ->size();
1893     });
1894     if (!AllSame)
1895       return false;
1896     if (AllSame) {
1897       LockstepReverseIterator LRI(Succs);
1898       while (LRI.isValid()) {
1899         Instruction *I0 = (*LRI)[0];
1900         if (any_of(*LRI, [I0](Instruction *I) {
1901               return !areIdenticalUpToCommutativity(I0, I);
1902             })) {
1903           return false;
1904         }
1905         --LRI;
1906       }
1907     }
1908     // Now we know that all instructions in all successors can be hoisted. Let
1909     // the loop below handle the hoisting.
1910   }
1911 
1912   // Count how many instructions were not hoisted so far. There's a limit on how
1913   // many instructions we skip, serving as a compilation time control as well as
1914   // preventing excessive increase of life ranges.
1915   unsigned NumSkipped = 0;
1916   // If we find an unreachable instruction at the beginning of a basic block, we
1917   // can still hoist instructions from the rest of the basic blocks.
1918   if (SuccIterPairs.size() > 2) {
1919     erase_if(SuccIterPairs,
1920              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1921     if (SuccIterPairs.size() < 2)
1922       return false;
1923   }
1924 
1925   bool Changed = false;
1926 
1927   for (;;) {
1928     auto *SuccIterPairBegin = SuccIterPairs.begin();
1929     auto &BB1ItrPair = *SuccIterPairBegin++;
1930     auto OtherSuccIterPairRange =
1931         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1932     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1933 
1934     Instruction *I1 = &*BB1ItrPair.first;
1935 
1936     // Skip debug info if it is not identical.
1937     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1938       Instruction *I2 = &*Iter;
1939       return I1->isIdenticalToWhenDefined(I2);
1940     });
1941     if (!AllDbgInstsAreIdentical) {
1942       while (isa<DbgInfoIntrinsic>(I1))
1943         I1 = &*++BB1ItrPair.first;
1944       for (auto &SuccIter : OtherSuccIterRange) {
1945         Instruction *I2 = &*SuccIter;
1946         while (isa<DbgInfoIntrinsic>(I2))
1947           I2 = &*++SuccIter;
1948       }
1949     }
1950 
1951     bool AllInstsAreIdentical = true;
1952     bool HasTerminator = I1->isTerminator();
1953     for (auto &SuccIter : OtherSuccIterRange) {
1954       Instruction *I2 = &*SuccIter;
1955       HasTerminator |= I2->isTerminator();
1956       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1957                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1958         AllInstsAreIdentical = false;
1959     }
1960 
1961     SmallVector<Instruction *, 8> OtherInsts;
1962     for (auto &SuccIter : OtherSuccIterRange)
1963       OtherInsts.push_back(&*SuccIter);
1964 
1965     // If we are hoisting the terminator instruction, don't move one (making a
1966     // broken BB), instead clone it, and remove BI.
1967     if (HasTerminator) {
1968       // Even if BB, which contains only one unreachable instruction, is ignored
1969       // at the beginning of the loop, we can hoist the terminator instruction.
1970       // If any instructions remain in the block, we cannot hoist terminators.
1971       if (NumSkipped || !AllInstsAreIdentical) {
1972         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1973         return Changed;
1974       }
1975 
1976       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1977              Changed;
1978     }
1979 
1980     if (AllInstsAreIdentical) {
1981       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1982       AllInstsAreIdentical =
1983           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1984           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1985             Instruction *I2 = &*Pair.first;
1986             unsigned SkipFlagsBB2 = Pair.second;
1987             // Even if the instructions are identical, it may not
1988             // be safe to hoist them if we have skipped over
1989             // instructions with side effects or their operands
1990             // weren't hoisted.
1991             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1992                    shouldHoistCommonInstructions(I1, I2, TTI);
1993           });
1994     }
1995 
1996     if (AllInstsAreIdentical) {
1997       BB1ItrPair.first++;
1998       if (isa<DbgInfoIntrinsic>(I1)) {
1999         // The debug location is an integral part of a debug info intrinsic
2000         // and can't be separated from it or replaced.  Instead of attempting
2001         // to merge locations, simply hoist both copies of the intrinsic.
2002         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2003         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
2004         // and leave any that were not hoisted behind (by calling moveBefore
2005         // rather than moveBeforePreserving).
2006         I1->moveBefore(TI);
2007         for (auto &SuccIter : OtherSuccIterRange) {
2008           auto *I2 = &*SuccIter++;
2009           assert(isa<DbgInfoIntrinsic>(I2));
2010           I2->moveBefore(TI);
2011         }
2012       } else {
2013         // For a normal instruction, we just move one to right before the
2014         // branch, then replace all uses of the other with the first.  Finally,
2015         // we remove the now redundant second instruction.
2016         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2017         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
2018         // and leave any that were not hoisted behind (by calling moveBefore
2019         // rather than moveBeforePreserving).
2020         I1->moveBefore(TI);
2021         for (auto &SuccIter : OtherSuccIterRange) {
2022           Instruction *I2 = &*SuccIter++;
2023           assert(I2 != I1);
2024           if (!I2->use_empty())
2025             I2->replaceAllUsesWith(I1);
2026           I1->andIRFlags(I2);
2027           if (auto *CB = dyn_cast<CallBase>(I1)) {
2028             bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2));
2029             assert(Success && "We should not be trying to hoist callbases "
2030                               "with non-intersectable attributes");
2031             // For NDEBUG Compile.
2032             (void)Success;
2033           }
2034 
2035           combineMetadataForCSE(I1, I2, true);
2036           // I1 and I2 are being combined into a single instruction.  Its debug
2037           // location is the merged locations of the original instructions.
2038           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
2039           I2->eraseFromParent();
2040         }
2041       }
2042       if (!Changed)
2043         NumHoistCommonCode += SuccIterPairs.size();
2044       Changed = true;
2045       NumHoistCommonInstrs += SuccIterPairs.size();
2046     } else {
2047       if (NumSkipped >= HoistCommonSkipLimit) {
2048         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
2049         return Changed;
2050       }
2051       // We are about to skip over a pair of non-identical instructions. Record
2052       // if any have characteristics that would prevent reordering instructions
2053       // across them.
2054       for (auto &SuccIterPair : SuccIterPairs) {
2055         Instruction *I = &*SuccIterPair.first++;
2056         SuccIterPair.second |= skippedInstrFlags(I);
2057       }
2058       ++NumSkipped;
2059     }
2060   }
2061 }
2062 
2063 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
2064     Instruction *TI, Instruction *I1,
2065     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
2066 
2067   auto *BI = dyn_cast<BranchInst>(TI);
2068 
2069   bool Changed = false;
2070   BasicBlock *TIParent = TI->getParent();
2071   BasicBlock *BB1 = I1->getParent();
2072 
2073   // Use only for an if statement.
2074   auto *I2 = *OtherSuccTIs.begin();
2075   auto *BB2 = I2->getParent();
2076   if (BI) {
2077     assert(OtherSuccTIs.size() == 1);
2078     assert(BI->getSuccessor(0) == I1->getParent());
2079     assert(BI->getSuccessor(1) == I2->getParent());
2080   }
2081 
2082   // In the case of an if statement, we try to hoist an invoke.
2083   // FIXME: Can we define a safety predicate for CallBr?
2084   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
2085   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
2086   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
2087     return false;
2088 
2089   // TODO: callbr hoisting currently disabled pending further study.
2090   if (isa<CallBrInst>(I1))
2091     return false;
2092 
2093   for (BasicBlock *Succ : successors(BB1)) {
2094     for (PHINode &PN : Succ->phis()) {
2095       Value *BB1V = PN.getIncomingValueForBlock(BB1);
2096       for (Instruction *OtherSuccTI : OtherSuccTIs) {
2097         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
2098         if (BB1V == BB2V)
2099           continue;
2100 
2101         // In the case of an if statement, check for
2102         // passingValueIsAlwaysUndefined here because we would rather eliminate
2103         // undefined control flow then converting it to a select.
2104         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
2105             passingValueIsAlwaysUndefined(BB2V, &PN))
2106           return false;
2107       }
2108     }
2109   }
2110 
2111   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
2112   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
2113   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
2114   // Clone the terminator and hoist it into the pred, without any debug info.
2115   Instruction *NT = I1->clone();
2116   NT->insertInto(TIParent, TI->getIterator());
2117   if (!NT->getType()->isVoidTy()) {
2118     I1->replaceAllUsesWith(NT);
2119     for (Instruction *OtherSuccTI : OtherSuccTIs)
2120       OtherSuccTI->replaceAllUsesWith(NT);
2121     NT->takeName(I1);
2122   }
2123   Changed = true;
2124   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
2125 
2126   // Ensure terminator gets a debug location, even an unknown one, in case
2127   // it involves inlinable calls.
2128   SmallVector<DILocation *, 4> Locs;
2129   Locs.push_back(I1->getDebugLoc());
2130   for (auto *OtherSuccTI : OtherSuccTIs)
2131     Locs.push_back(OtherSuccTI->getDebugLoc());
2132   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
2133 
2134   // PHIs created below will adopt NT's merged DebugLoc.
2135   IRBuilder<NoFolder> Builder(NT);
2136 
2137   // In the case of an if statement, hoisting one of the terminators from our
2138   // successor is a great thing. Unfortunately, the successors of the if/else
2139   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
2140   // must agree for all PHI nodes, so we insert select instruction to compute
2141   // the final result.
2142   if (BI) {
2143     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
2144     for (BasicBlock *Succ : successors(BB1)) {
2145       for (PHINode &PN : Succ->phis()) {
2146         Value *BB1V = PN.getIncomingValueForBlock(BB1);
2147         Value *BB2V = PN.getIncomingValueForBlock(BB2);
2148         if (BB1V == BB2V)
2149           continue;
2150 
2151         // These values do not agree.  Insert a select instruction before NT
2152         // that determines the right value.
2153         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
2154         if (!SI) {
2155           // Propagate fast-math-flags from phi node to its replacement select.
2156           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2157           if (isa<FPMathOperator>(PN))
2158             Builder.setFastMathFlags(PN.getFastMathFlags());
2159 
2160           SI = cast<SelectInst>(Builder.CreateSelect(
2161               BI->getCondition(), BB1V, BB2V,
2162               BB1V->getName() + "." + BB2V->getName(), BI));
2163         }
2164 
2165         // Make the PHI node use the select for all incoming values for BB1/BB2
2166         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2167           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
2168             PN.setIncomingValue(i, SI);
2169       }
2170     }
2171   }
2172 
2173   SmallVector<DominatorTree::UpdateType, 4> Updates;
2174 
2175   // Update any PHI nodes in our new successors.
2176   for (BasicBlock *Succ : successors(BB1)) {
2177     addPredecessorToBlock(Succ, TIParent, BB1);
2178     if (DTU)
2179       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
2180   }
2181 
2182   if (DTU)
2183     for (BasicBlock *Succ : successors(TI))
2184       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
2185 
2186   eraseTerminatorAndDCECond(TI);
2187   if (DTU)
2188     DTU->applyUpdates(Updates);
2189   return Changed;
2190 }
2191 
2192 // Check lifetime markers.
2193 static bool isLifeTimeMarker(const Instruction *I) {
2194   if (auto II = dyn_cast<IntrinsicInst>(I)) {
2195     switch (II->getIntrinsicID()) {
2196     default:
2197       break;
2198     case Intrinsic::lifetime_start:
2199     case Intrinsic::lifetime_end:
2200       return true;
2201     }
2202   }
2203   return false;
2204 }
2205 
2206 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
2207 // into variables.
2208 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
2209                                                 int OpIdx) {
2210   // Divide/Remainder by constant is typically much cheaper than by variable.
2211   if (I->isIntDivRem())
2212     return OpIdx != 1;
2213   return !isa<IntrinsicInst>(I);
2214 }
2215 
2216 // All instructions in Insts belong to different blocks that all unconditionally
2217 // branch to a common successor. Analyze each instruction and return true if it
2218 // would be possible to sink them into their successor, creating one common
2219 // instruction instead. For every value that would be required to be provided by
2220 // PHI node (because an operand varies in each input block), add to PHIOperands.
2221 static bool canSinkInstructions(
2222     ArrayRef<Instruction *> Insts,
2223     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
2224   // Prune out obviously bad instructions to move. Each instruction must have
2225   // the same number of uses, and we check later that the uses are consistent.
2226   std::optional<unsigned> NumUses;
2227   for (auto *I : Insts) {
2228     // These instructions may change or break semantics if moved.
2229     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
2230         I->getType()->isTokenTy())
2231       return false;
2232 
2233     // Do not try to sink an instruction in an infinite loop - it can cause
2234     // this algorithm to infinite loop.
2235     if (I->getParent()->getSingleSuccessor() == I->getParent())
2236       return false;
2237 
2238     // Conservatively return false if I is an inline-asm instruction. Sinking
2239     // and merging inline-asm instructions can potentially create arguments
2240     // that cannot satisfy the inline-asm constraints.
2241     // If the instruction has nomerge or convergent attribute, return false.
2242     if (const auto *C = dyn_cast<CallBase>(I))
2243       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
2244         return false;
2245 
2246     if (!NumUses)
2247       NumUses = I->getNumUses();
2248     else if (NumUses != I->getNumUses())
2249       return false;
2250   }
2251 
2252   const Instruction *I0 = Insts.front();
2253   const auto I0MMRA = MMRAMetadata(*I0);
2254   for (auto *I : Insts) {
2255     if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs))
2256       return false;
2257 
2258     // swifterror pointers can only be used by a load or store; sinking a load
2259     // or store would require introducing a select for the pointer operand,
2260     // which isn't allowed for swifterror pointers.
2261     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2262       return false;
2263     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2264       return false;
2265 
2266     // Treat MMRAs conservatively. This pass can be quite aggressive and
2267     // could drop a lot of MMRAs otherwise.
2268     if (MMRAMetadata(*I) != I0MMRA)
2269       return false;
2270   }
2271 
2272   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2273   // then the other phi operands must match the instructions from Insts. This
2274   // also has to hold true for any phi nodes that would be created as a result
2275   // of sinking. Both of these cases are represented by PhiOperands.
2276   for (const Use &U : I0->uses()) {
2277     auto It = PHIOperands.find(&U);
2278     if (It == PHIOperands.end())
2279       // There may be uses in other blocks when sinking into a loop header.
2280       return false;
2281     if (!equal(Insts, It->second))
2282       return false;
2283   }
2284 
2285   // For calls to be sinkable, they must all be indirect, or have same callee.
2286   // I.e. if we have two direct calls to different callees, we don't want to
2287   // turn that into an indirect call. Likewise, if we have an indirect call,
2288   // and a direct call, we don't actually want to have a single indirect call.
2289   if (isa<CallBase>(I0)) {
2290     auto IsIndirectCall = [](const Instruction *I) {
2291       return cast<CallBase>(I)->isIndirectCall();
2292     };
2293     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2294     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2295     if (HaveIndirectCalls) {
2296       if (!AllCallsAreIndirect)
2297         return false;
2298     } else {
2299       // All callees must be identical.
2300       Value *Callee = nullptr;
2301       for (const Instruction *I : Insts) {
2302         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2303         if (!Callee)
2304           Callee = CurrCallee;
2305         else if (Callee != CurrCallee)
2306           return false;
2307       }
2308     }
2309   }
2310 
2311   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2312     Value *Op = I0->getOperand(OI);
2313     if (Op->getType()->isTokenTy())
2314       // Don't touch any operand of token type.
2315       return false;
2316 
2317     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2318       assert(I->getNumOperands() == I0->getNumOperands());
2319       return I->getOperand(OI) == I0->getOperand(OI);
2320     };
2321     if (!all_of(Insts, SameAsI0)) {
2322       // SROA can't speculate lifetime markers of selects/phis, and the
2323       // backend may handle such lifetimes incorrectly as well (#104776).
2324       // Don't sink lifetimes if it would introduce a phi on the pointer
2325       // argument.
2326       if (isLifeTimeMarker(I0) && OI == 1 &&
2327           any_of(Insts, [](const Instruction *I) {
2328             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2329           }))
2330         return false;
2331 
2332       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2333           !canReplaceOperandWithVariable(I0, OI))
2334         // We can't create a PHI from this GEP.
2335         return false;
2336       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2337       for (auto *I : Insts)
2338         Ops.push_back(I->getOperand(OI));
2339     }
2340   }
2341   return true;
2342 }
2343 
2344 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2345 // instruction of every block in Blocks to their common successor, commoning
2346 // into one instruction.
2347 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2348   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2349 
2350   // canSinkInstructions returning true guarantees that every block has at
2351   // least one non-terminator instruction.
2352   SmallVector<Instruction*,4> Insts;
2353   for (auto *BB : Blocks) {
2354     Instruction *I = BB->getTerminator();
2355     do {
2356       I = I->getPrevNode();
2357     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2358     if (!isa<DbgInfoIntrinsic>(I))
2359       Insts.push_back(I);
2360   }
2361 
2362   // We don't need to do any more checking here; canSinkInstructions should
2363   // have done it all for us.
2364   SmallVector<Value*, 4> NewOperands;
2365   Instruction *I0 = Insts.front();
2366   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2367     // This check is different to that in canSinkInstructions. There, we
2368     // cared about the global view once simplifycfg (and instcombine) have
2369     // completed - it takes into account PHIs that become trivially
2370     // simplifiable.  However here we need a more local view; if an operand
2371     // differs we create a PHI and rely on instcombine to clean up the very
2372     // small mess we may make.
2373     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2374       return I->getOperand(O) != I0->getOperand(O);
2375     });
2376     if (!NeedPHI) {
2377       NewOperands.push_back(I0->getOperand(O));
2378       continue;
2379     }
2380 
2381     // Create a new PHI in the successor block and populate it.
2382     auto *Op = I0->getOperand(O);
2383     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2384     auto *PN =
2385         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2386     PN->insertBefore(BBEnd->begin());
2387     for (auto *I : Insts)
2388       PN->addIncoming(I->getOperand(O), I->getParent());
2389     NewOperands.push_back(PN);
2390   }
2391 
2392   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2393   // and move it to the start of the successor block.
2394   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2395     I0->getOperandUse(O).set(NewOperands[O]);
2396 
2397   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2398 
2399   // Update metadata and IR flags, and merge debug locations.
2400   for (auto *I : Insts)
2401     if (I != I0) {
2402       // The debug location for the "common" instruction is the merged locations
2403       // of all the commoned instructions.  We start with the original location
2404       // of the "common" instruction and iteratively merge each location in the
2405       // loop below.
2406       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2407       // However, as N-way merge for CallInst is rare, so we use simplified API
2408       // instead of using complex API for N-way merge.
2409       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2410       combineMetadataForCSE(I0, I, true);
2411       I0->andIRFlags(I);
2412       if (auto *CB = dyn_cast<CallBase>(I0)) {
2413         bool Success = CB->tryIntersectAttributes(cast<CallBase>(I));
2414         assert(Success && "We should not be trying to sink callbases "
2415                           "with non-intersectable attributes");
2416         // For NDEBUG Compile.
2417         (void)Success;
2418       }
2419     }
2420 
2421   for (User *U : make_early_inc_range(I0->users())) {
2422     // canSinkLastInstruction checked that all instructions are only used by
2423     // phi nodes in a way that allows replacing the phi node with the common
2424     // instruction.
2425     auto *PN = cast<PHINode>(U);
2426     PN->replaceAllUsesWith(I0);
2427     PN->eraseFromParent();
2428   }
2429 
2430   // Finally nuke all instructions apart from the common instruction.
2431   for (auto *I : Insts) {
2432     if (I == I0)
2433       continue;
2434     // The remaining uses are debug users, replace those with the common inst.
2435     // In most (all?) cases this just introduces a use-before-def.
2436     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2437     I->replaceAllUsesWith(I0);
2438     I->eraseFromParent();
2439   }
2440 }
2441 
2442 /// Check whether BB's predecessors end with unconditional branches. If it is
2443 /// true, sink any common code from the predecessors to BB.
2444 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2445                                            DomTreeUpdater *DTU) {
2446   // We support two situations:
2447   //   (1) all incoming arcs are unconditional
2448   //   (2) there are non-unconditional incoming arcs
2449   //
2450   // (2) is very common in switch defaults and
2451   // else-if patterns;
2452   //
2453   //   if (a) f(1);
2454   //   else if (b) f(2);
2455   //
2456   // produces:
2457   //
2458   //       [if]
2459   //      /    \
2460   //    [f(1)] [if]
2461   //      |     | \
2462   //      |     |  |
2463   //      |  [f(2)]|
2464   //       \    | /
2465   //        [ end ]
2466   //
2467   // [end] has two unconditional predecessor arcs and one conditional. The
2468   // conditional refers to the implicit empty 'else' arc. This conditional
2469   // arc can also be caused by an empty default block in a switch.
2470   //
2471   // In this case, we attempt to sink code from all *unconditional* arcs.
2472   // If we can sink instructions from these arcs (determined during the scan
2473   // phase below) we insert a common successor for all unconditional arcs and
2474   // connect that to [end], to enable sinking:
2475   //
2476   //       [if]
2477   //      /    \
2478   //    [x(1)] [if]
2479   //      |     | \
2480   //      |     |  \
2481   //      |  [x(2)] |
2482   //       \   /    |
2483   //   [sink.split] |
2484   //         \     /
2485   //         [ end ]
2486   //
2487   SmallVector<BasicBlock*,4> UnconditionalPreds;
2488   bool HaveNonUnconditionalPredecessors = false;
2489   for (auto *PredBB : predecessors(BB)) {
2490     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2491     if (PredBr && PredBr->isUnconditional())
2492       UnconditionalPreds.push_back(PredBB);
2493     else
2494       HaveNonUnconditionalPredecessors = true;
2495   }
2496   if (UnconditionalPreds.size() < 2)
2497     return false;
2498 
2499   // We take a two-step approach to tail sinking. First we scan from the end of
2500   // each block upwards in lockstep. If the n'th instruction from the end of each
2501   // block can be sunk, those instructions are added to ValuesToSink and we
2502   // carry on. If we can sink an instruction but need to PHI-merge some operands
2503   // (because they're not identical in each instruction) we add these to
2504   // PHIOperands.
2505   // We prepopulate PHIOperands with the phis that already exist in BB.
2506   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2507   for (PHINode &PN : BB->phis()) {
2508     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2509     for (const Use &U : PN.incoming_values())
2510       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2511     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2512     for (BasicBlock *Pred : UnconditionalPreds)
2513       Ops.push_back(*IncomingVals[Pred]);
2514   }
2515 
2516   int ScanIdx = 0;
2517   SmallPtrSet<Value*,4> InstructionsToSink;
2518   LockstepReverseIterator LRI(UnconditionalPreds);
2519   while (LRI.isValid() &&
2520          canSinkInstructions(*LRI, PHIOperands)) {
2521     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2522                       << "\n");
2523     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2524     ++ScanIdx;
2525     --LRI;
2526   }
2527 
2528   // If no instructions can be sunk, early-return.
2529   if (ScanIdx == 0)
2530     return false;
2531 
2532   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2533 
2534   if (!followedByDeoptOrUnreachable) {
2535     // Check whether this is the pointer operand of a load/store.
2536     auto IsMemOperand = [](Use &U) {
2537       auto *I = cast<Instruction>(U.getUser());
2538       if (isa<LoadInst>(I))
2539         return U.getOperandNo() == LoadInst::getPointerOperandIndex();
2540       if (isa<StoreInst>(I))
2541         return U.getOperandNo() == StoreInst::getPointerOperandIndex();
2542       return false;
2543     };
2544 
2545     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2546     // actually sink before encountering instruction that is unprofitable to
2547     // sink?
2548     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2549       unsigned NumPHIInsts = 0;
2550       for (Use &U : (*LRI)[0]->operands()) {
2551         auto It = PHIOperands.find(&U);
2552         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2553               return InstructionsToSink.contains(V);
2554             })) {
2555           ++NumPHIInsts;
2556           // Do not separate a load/store from the gep producing the address.
2557           // The gep can likely be folded into the load/store as an addressing
2558           // mode. Additionally, a load of a gep is easier to analyze than a
2559           // load of a phi.
2560           if (IsMemOperand(U) &&
2561               any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); }))
2562             return false;
2563           // FIXME: this check is overly optimistic. We may end up not sinking
2564           // said instruction, due to the very same profitability check.
2565           // See @creating_too_many_phis in sink-common-code.ll.
2566         }
2567       }
2568       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2569       return NumPHIInsts <= 1;
2570     };
2571 
2572     // We've determined that we are going to sink last ScanIdx instructions,
2573     // and recorded them in InstructionsToSink. Now, some instructions may be
2574     // unprofitable to sink. But that determination depends on the instructions
2575     // that we are going to sink.
2576 
2577     // First, forward scan: find the first instruction unprofitable to sink,
2578     // recording all the ones that are profitable to sink.
2579     // FIXME: would it be better, after we detect that not all are profitable.
2580     // to either record the profitable ones, or erase the unprofitable ones?
2581     // Maybe we need to choose (at runtime) the one that will touch least
2582     // instrs?
2583     LRI.reset();
2584     int Idx = 0;
2585     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2586     while (Idx < ScanIdx) {
2587       if (!ProfitableToSinkInstruction(LRI)) {
2588         // Too many PHIs would be created.
2589         LLVM_DEBUG(
2590             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2591         break;
2592       }
2593       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2594       --LRI;
2595       ++Idx;
2596     }
2597 
2598     // If no instructions can be sunk, early-return.
2599     if (Idx == 0)
2600       return false;
2601 
2602     // Did we determine that (only) some instructions are unprofitable to sink?
2603     if (Idx < ScanIdx) {
2604       // Okay, some instructions are unprofitable.
2605       ScanIdx = Idx;
2606       InstructionsToSink = InstructionsProfitableToSink;
2607 
2608       // But, that may make other instructions unprofitable, too.
2609       // So, do a backward scan, do any earlier instructions become
2610       // unprofitable?
2611       assert(
2612           !ProfitableToSinkInstruction(LRI) &&
2613           "We already know that the last instruction is unprofitable to sink");
2614       ++LRI;
2615       --Idx;
2616       while (Idx >= 0) {
2617         // If we detect that an instruction becomes unprofitable to sink,
2618         // all earlier instructions won't be sunk either,
2619         // so preemptively keep InstructionsProfitableToSink in sync.
2620         // FIXME: is this the most performant approach?
2621         for (auto *I : *LRI)
2622           InstructionsProfitableToSink.erase(I);
2623         if (!ProfitableToSinkInstruction(LRI)) {
2624           // Everything starting with this instruction won't be sunk.
2625           ScanIdx = Idx;
2626           InstructionsToSink = InstructionsProfitableToSink;
2627         }
2628         ++LRI;
2629         --Idx;
2630       }
2631     }
2632 
2633     // If no instructions can be sunk, early-return.
2634     if (ScanIdx == 0)
2635       return false;
2636   }
2637 
2638   bool Changed = false;
2639 
2640   if (HaveNonUnconditionalPredecessors) {
2641     if (!followedByDeoptOrUnreachable) {
2642       // It is always legal to sink common instructions from unconditional
2643       // predecessors. However, if not all predecessors are unconditional,
2644       // this transformation might be pessimizing. So as a rule of thumb,
2645       // don't do it unless we'd sink at least one non-speculatable instruction.
2646       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2647       LRI.reset();
2648       int Idx = 0;
2649       bool Profitable = false;
2650       while (Idx < ScanIdx) {
2651         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2652           Profitable = true;
2653           break;
2654         }
2655         --LRI;
2656         ++Idx;
2657       }
2658       if (!Profitable)
2659         return false;
2660     }
2661 
2662     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2663     // We have a conditional edge and we're going to sink some instructions.
2664     // Insert a new block postdominating all blocks we're going to sink from.
2665     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2666       // Edges couldn't be split.
2667       return false;
2668     Changed = true;
2669   }
2670 
2671   // Now that we've analyzed all potential sinking candidates, perform the
2672   // actual sink. We iteratively sink the last non-terminator of the source
2673   // blocks into their common successor unless doing so would require too
2674   // many PHI instructions to be generated (currently only one PHI is allowed
2675   // per sunk instruction).
2676   //
2677   // We can use InstructionsToSink to discount values needing PHI-merging that will
2678   // actually be sunk in a later iteration. This allows us to be more
2679   // aggressive in what we sink. This does allow a false positive where we
2680   // sink presuming a later value will also be sunk, but stop half way through
2681   // and never actually sink it which means we produce more PHIs than intended.
2682   // This is unlikely in practice though.
2683   int SinkIdx = 0;
2684   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2685     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2686                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2687                       << "\n");
2688 
2689     // Because we've sunk every instruction in turn, the current instruction to
2690     // sink is always at index 0.
2691     LRI.reset();
2692 
2693     sinkLastInstruction(UnconditionalPreds);
2694     NumSinkCommonInstrs++;
2695     Changed = true;
2696   }
2697   if (SinkIdx != 0)
2698     ++NumSinkCommonCode;
2699   return Changed;
2700 }
2701 
2702 namespace {
2703 
2704 struct CompatibleSets {
2705   using SetTy = SmallVector<InvokeInst *, 2>;
2706 
2707   SmallVector<SetTy, 1> Sets;
2708 
2709   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2710 
2711   SetTy &getCompatibleSet(InvokeInst *II);
2712 
2713   void insert(InvokeInst *II);
2714 };
2715 
2716 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2717   // Perform a linear scan over all the existing sets, see if the new `invoke`
2718   // is compatible with any particular set. Since we know that all the `invokes`
2719   // within a set are compatible, only check the first `invoke` in each set.
2720   // WARNING: at worst, this has quadratic complexity.
2721   for (CompatibleSets::SetTy &Set : Sets) {
2722     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2723       return Set;
2724   }
2725 
2726   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2727   return Sets.emplace_back();
2728 }
2729 
2730 void CompatibleSets::insert(InvokeInst *II) {
2731   getCompatibleSet(II).emplace_back(II);
2732 }
2733 
2734 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2735   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2736 
2737   // Can we theoretically merge these `invoke`s?
2738   auto IsIllegalToMerge = [](InvokeInst *II) {
2739     return II->cannotMerge() || II->isInlineAsm();
2740   };
2741   if (any_of(Invokes, IsIllegalToMerge))
2742     return false;
2743 
2744   // Either both `invoke`s must be   direct,
2745   // or     both `invoke`s must be indirect.
2746   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2747   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2748   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2749   if (HaveIndirectCalls) {
2750     if (!AllCallsAreIndirect)
2751       return false;
2752   } else {
2753     // All callees must be identical.
2754     Value *Callee = nullptr;
2755     for (InvokeInst *II : Invokes) {
2756       Value *CurrCallee = II->getCalledOperand();
2757       assert(CurrCallee && "There is always a called operand.");
2758       if (!Callee)
2759         Callee = CurrCallee;
2760       else if (Callee != CurrCallee)
2761         return false;
2762     }
2763   }
2764 
2765   // Either both `invoke`s must not have a normal destination,
2766   // or     both `invoke`s must     have a normal destination,
2767   auto HasNormalDest = [](InvokeInst *II) {
2768     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2769   };
2770   if (any_of(Invokes, HasNormalDest)) {
2771     // Do not merge `invoke` that does not have a normal destination with one
2772     // that does have a normal destination, even though doing so would be legal.
2773     if (!all_of(Invokes, HasNormalDest))
2774       return false;
2775 
2776     // All normal destinations must be identical.
2777     BasicBlock *NormalBB = nullptr;
2778     for (InvokeInst *II : Invokes) {
2779       BasicBlock *CurrNormalBB = II->getNormalDest();
2780       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2781       if (!NormalBB)
2782         NormalBB = CurrNormalBB;
2783       else if (NormalBB != CurrNormalBB)
2784         return false;
2785     }
2786 
2787     // In the normal destination, the incoming values for these two `invoke`s
2788     // must be compatible.
2789     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2790     if (!incomingValuesAreCompatible(
2791             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2792             &EquivalenceSet))
2793       return false;
2794   }
2795 
2796 #ifndef NDEBUG
2797   // All unwind destinations must be identical.
2798   // We know that because we have started from said unwind destination.
2799   BasicBlock *UnwindBB = nullptr;
2800   for (InvokeInst *II : Invokes) {
2801     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2802     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2803     if (!UnwindBB)
2804       UnwindBB = CurrUnwindBB;
2805     else
2806       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2807   }
2808 #endif
2809 
2810   // In the unwind destination, the incoming values for these two `invoke`s
2811   // must be compatible.
2812   if (!incomingValuesAreCompatible(
2813           Invokes.front()->getUnwindDest(),
2814           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2815     return false;
2816 
2817   // Ignoring arguments, these `invoke`s must be identical,
2818   // including operand bundles.
2819   const InvokeInst *II0 = Invokes.front();
2820   for (auto *II : Invokes.drop_front())
2821     if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs))
2822       return false;
2823 
2824   // Can we theoretically form the data operands for the merged `invoke`?
2825   auto IsIllegalToMergeArguments = [](auto Ops) {
2826     Use &U0 = std::get<0>(Ops);
2827     Use &U1 = std::get<1>(Ops);
2828     if (U0 == U1)
2829       return false;
2830     return U0->getType()->isTokenTy() ||
2831            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2832                                           U0.getOperandNo());
2833   };
2834   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2835   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2836              IsIllegalToMergeArguments))
2837     return false;
2838 
2839   return true;
2840 }
2841 
2842 } // namespace
2843 
2844 // Merge all invokes in the provided set, all of which are compatible
2845 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2846 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2847                                        DomTreeUpdater *DTU) {
2848   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2849 
2850   SmallVector<DominatorTree::UpdateType, 8> Updates;
2851   if (DTU)
2852     Updates.reserve(2 + 3 * Invokes.size());
2853 
2854   bool HasNormalDest =
2855       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2856 
2857   // Clone one of the invokes into a new basic block.
2858   // Since they are all compatible, it doesn't matter which invoke is cloned.
2859   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2860     InvokeInst *II0 = Invokes.front();
2861     BasicBlock *II0BB = II0->getParent();
2862     BasicBlock *InsertBeforeBlock =
2863         II0->getParent()->getIterator()->getNextNode();
2864     Function *Func = II0BB->getParent();
2865     LLVMContext &Ctx = II0->getContext();
2866 
2867     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2868         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2869 
2870     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2871     // NOTE: all invokes have the same attributes, so no handling needed.
2872     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2873 
2874     if (!HasNormalDest) {
2875       // This set does not have a normal destination,
2876       // so just form a new block with unreachable terminator.
2877       BasicBlock *MergedNormalDest = BasicBlock::Create(
2878           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2879       new UnreachableInst(Ctx, MergedNormalDest);
2880       MergedInvoke->setNormalDest(MergedNormalDest);
2881     }
2882 
2883     // The unwind destination, however, remainds identical for all invokes here.
2884 
2885     return MergedInvoke;
2886   }();
2887 
2888   if (DTU) {
2889     // Predecessor blocks that contained these invokes will now branch to
2890     // the new block that contains the merged invoke, ...
2891     for (InvokeInst *II : Invokes)
2892       Updates.push_back(
2893           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2894 
2895     // ... which has the new `unreachable` block as normal destination,
2896     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2897     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2898       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2899                          SuccBBOfMergedInvoke});
2900 
2901     // Since predecessor blocks now unconditionally branch to a new block,
2902     // they no longer branch to their original successors.
2903     for (InvokeInst *II : Invokes)
2904       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2905         Updates.push_back(
2906             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2907   }
2908 
2909   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2910 
2911   // Form the merged operands for the merged invoke.
2912   for (Use &U : MergedInvoke->operands()) {
2913     // Only PHI together the indirect callees and data operands.
2914     if (MergedInvoke->isCallee(&U)) {
2915       if (!IsIndirectCall)
2916         continue;
2917     } else if (!MergedInvoke->isDataOperand(&U))
2918       continue;
2919 
2920     // Don't create trivial PHI's with all-identical incoming values.
2921     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2922       return II->getOperand(U.getOperandNo()) != U.get();
2923     });
2924     if (!NeedPHI)
2925       continue;
2926 
2927     // Form a PHI out of all the data ops under this index.
2928     PHINode *PN = PHINode::Create(
2929         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2930     for (InvokeInst *II : Invokes)
2931       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2932 
2933     U.set(PN);
2934   }
2935 
2936   // We've ensured that each PHI node has compatible (identical) incoming values
2937   // when coming from each of the `invoke`s in the current merge set,
2938   // so update the PHI nodes accordingly.
2939   for (BasicBlock *Succ : successors(MergedInvoke))
2940     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2941                           /*ExistPred=*/Invokes.front()->getParent());
2942 
2943   // And finally, replace the original `invoke`s with an unconditional branch
2944   // to the block with the merged `invoke`. Also, give that merged `invoke`
2945   // the merged debugloc of all the original `invoke`s.
2946   DILocation *MergedDebugLoc = nullptr;
2947   for (InvokeInst *II : Invokes) {
2948     // Compute the debug location common to all the original `invoke`s.
2949     if (!MergedDebugLoc)
2950       MergedDebugLoc = II->getDebugLoc();
2951     else
2952       MergedDebugLoc =
2953           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2954 
2955     // And replace the old `invoke` with an unconditionally branch
2956     // to the block with the merged `invoke`.
2957     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2958       OrigSuccBB->removePredecessor(II->getParent());
2959     auto *BI = BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2960     // The unconditional branch is part of the replacement for the original
2961     // invoke, so should use its DebugLoc.
2962     BI->setDebugLoc(II->getDebugLoc());
2963     bool Success = MergedInvoke->tryIntersectAttributes(II);
2964     assert(Success && "Merged invokes with incompatible attributes");
2965     // For NDEBUG Compile
2966     (void)Success;
2967     II->replaceAllUsesWith(MergedInvoke);
2968     II->eraseFromParent();
2969     ++NumInvokesMerged;
2970   }
2971   MergedInvoke->setDebugLoc(MergedDebugLoc);
2972   ++NumInvokeSetsFormed;
2973 
2974   if (DTU)
2975     DTU->applyUpdates(Updates);
2976 }
2977 
2978 /// If this block is a `landingpad` exception handling block, categorize all
2979 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2980 /// being "mergeable" together, and then merge invokes in each set together.
2981 ///
2982 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2983 ///          [...]        [...]
2984 ///            |            |
2985 ///        [invoke0]    [invoke1]
2986 ///           / \          / \
2987 ///     [cont0] [landingpad] [cont1]
2988 /// to:
2989 ///      [...] [...]
2990 ///          \ /
2991 ///       [invoke]
2992 ///          / \
2993 ///     [cont] [landingpad]
2994 ///
2995 /// But of course we can only do that if the invokes share the `landingpad`,
2996 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2997 /// and the invoked functions are "compatible".
2998 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2999   if (!EnableMergeCompatibleInvokes)
3000     return false;
3001 
3002   bool Changed = false;
3003 
3004   // FIXME: generalize to all exception handling blocks?
3005   if (!BB->isLandingPad())
3006     return Changed;
3007 
3008   CompatibleSets Grouper;
3009 
3010   // Record all the predecessors of this `landingpad`. As per verifier,
3011   // the only allowed predecessor is the unwind edge of an `invoke`.
3012   // We want to group "compatible" `invokes` into the same set to be merged.
3013   for (BasicBlock *PredBB : predecessors(BB))
3014     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
3015 
3016   // And now, merge `invoke`s that were grouped togeter.
3017   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
3018     if (Invokes.size() < 2)
3019       continue;
3020     Changed = true;
3021     mergeCompatibleInvokesImpl(Invokes, DTU);
3022   }
3023 
3024   return Changed;
3025 }
3026 
3027 namespace {
3028 /// Track ephemeral values, which should be ignored for cost-modelling
3029 /// purposes. Requires walking instructions in reverse order.
3030 class EphemeralValueTracker {
3031   SmallPtrSet<const Instruction *, 32> EphValues;
3032 
3033   bool isEphemeral(const Instruction *I) {
3034     if (isa<AssumeInst>(I))
3035       return true;
3036     return !I->mayHaveSideEffects() && !I->isTerminator() &&
3037            all_of(I->users(), [&](const User *U) {
3038              return EphValues.count(cast<Instruction>(U));
3039            });
3040   }
3041 
3042 public:
3043   bool track(const Instruction *I) {
3044     if (isEphemeral(I)) {
3045       EphValues.insert(I);
3046       return true;
3047     }
3048     return false;
3049   }
3050 
3051   bool contains(const Instruction *I) const { return EphValues.contains(I); }
3052 };
3053 } // namespace
3054 
3055 /// Determine if we can hoist sink a sole store instruction out of a
3056 /// conditional block.
3057 ///
3058 /// We are looking for code like the following:
3059 ///   BrBB:
3060 ///     store i32 %add, i32* %arrayidx2
3061 ///     ... // No other stores or function calls (we could be calling a memory
3062 ///     ... // function).
3063 ///     %cmp = icmp ult %x, %y
3064 ///     br i1 %cmp, label %EndBB, label %ThenBB
3065 ///   ThenBB:
3066 ///     store i32 %add5, i32* %arrayidx2
3067 ///     br label EndBB
3068 ///   EndBB:
3069 ///     ...
3070 ///   We are going to transform this into:
3071 ///   BrBB:
3072 ///     store i32 %add, i32* %arrayidx2
3073 ///     ... //
3074 ///     %cmp = icmp ult %x, %y
3075 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
3076 ///     store i32 %add.add5, i32* %arrayidx2
3077 ///     ...
3078 ///
3079 /// \return The pointer to the value of the previous store if the store can be
3080 ///         hoisted into the predecessor block. 0 otherwise.
3081 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
3082                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
3083   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
3084   if (!StoreToHoist)
3085     return nullptr;
3086 
3087   // Volatile or atomic.
3088   if (!StoreToHoist->isSimple())
3089     return nullptr;
3090 
3091   Value *StorePtr = StoreToHoist->getPointerOperand();
3092   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
3093 
3094   // Look for a store to the same pointer in BrBB.
3095   unsigned MaxNumInstToLookAt = 9;
3096   // Skip pseudo probe intrinsic calls which are not really killing any memory
3097   // accesses.
3098   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
3099     if (!MaxNumInstToLookAt)
3100       break;
3101     --MaxNumInstToLookAt;
3102 
3103     // Could be calling an instruction that affects memory like free().
3104     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
3105       return nullptr;
3106 
3107     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
3108       // Found the previous store to same location and type. Make sure it is
3109       // simple, to avoid introducing a spurious non-atomic write after an
3110       // atomic write.
3111       if (SI->getPointerOperand() == StorePtr &&
3112           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
3113           SI->getAlign() >= StoreToHoist->getAlign())
3114         // Found the previous store, return its value operand.
3115         return SI->getValueOperand();
3116       return nullptr; // Unknown store.
3117     }
3118 
3119     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
3120       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
3121           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
3122         Value *Obj = getUnderlyingObject(StorePtr);
3123         bool ExplicitlyDereferenceableOnly;
3124         if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) &&
3125             !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false,
3126                                   /*StoreCaptures=*/true) &&
3127             (!ExplicitlyDereferenceableOnly ||
3128              isDereferenceablePointer(StorePtr, StoreTy,
3129                                       LI->getDataLayout()))) {
3130           // Found a previous load, return it.
3131           return LI;
3132         }
3133       }
3134       // The load didn't work out, but we may still find a store.
3135     }
3136   }
3137 
3138   return nullptr;
3139 }
3140 
3141 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
3142 /// converted to selects.
3143 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
3144                                            BasicBlock *EndBB,
3145                                            unsigned &SpeculatedInstructions,
3146                                            InstructionCost &Cost,
3147                                            const TargetTransformInfo &TTI) {
3148   TargetTransformInfo::TargetCostKind CostKind =
3149     BB->getParent()->hasMinSize()
3150     ? TargetTransformInfo::TCK_CodeSize
3151     : TargetTransformInfo::TCK_SizeAndLatency;
3152 
3153   bool HaveRewritablePHIs = false;
3154   for (PHINode &PN : EndBB->phis()) {
3155     Value *OrigV = PN.getIncomingValueForBlock(BB);
3156     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
3157 
3158     // FIXME: Try to remove some of the duplication with
3159     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
3160     if (ThenV == OrigV)
3161       continue;
3162 
3163     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
3164                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
3165 
3166     // Don't convert to selects if we could remove undefined behavior instead.
3167     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
3168         passingValueIsAlwaysUndefined(ThenV, &PN))
3169       return false;
3170 
3171     HaveRewritablePHIs = true;
3172     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
3173     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
3174     if (!OrigCE && !ThenCE)
3175       continue; // Known cheap (FIXME: Maybe not true for aggregates).
3176 
3177     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
3178     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
3179     InstructionCost MaxCost =
3180         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3181     if (OrigCost + ThenCost > MaxCost)
3182       return false;
3183 
3184     // Account for the cost of an unfolded ConstantExpr which could end up
3185     // getting expanded into Instructions.
3186     // FIXME: This doesn't account for how many operations are combined in the
3187     // constant expression.
3188     ++SpeculatedInstructions;
3189     if (SpeculatedInstructions > 1)
3190       return false;
3191   }
3192 
3193   return HaveRewritablePHIs;
3194 }
3195 
3196 static bool isProfitableToSpeculate(const BranchInst *BI,
3197                                     std::optional<bool> Invert,
3198                                     const TargetTransformInfo &TTI) {
3199   // If the branch is non-unpredictable, and is predicted to *not* branch to
3200   // the `then` block, then avoid speculating it.
3201   if (BI->getMetadata(LLVMContext::MD_unpredictable))
3202     return true;
3203 
3204   uint64_t TWeight, FWeight;
3205   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
3206     return true;
3207 
3208   if (!Invert.has_value())
3209     return false;
3210 
3211   uint64_t EndWeight = *Invert ? TWeight : FWeight;
3212   BranchProbability BIEndProb =
3213       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
3214   BranchProbability Likely = TTI.getPredictableBranchThreshold();
3215   return BIEndProb < Likely;
3216 }
3217 
3218 /// Speculate a conditional basic block flattening the CFG.
3219 ///
3220 /// Note that this is a very risky transform currently. Speculating
3221 /// instructions like this is most often not desirable. Instead, there is an MI
3222 /// pass which can do it with full awareness of the resource constraints.
3223 /// However, some cases are "obvious" and we should do directly. An example of
3224 /// this is speculating a single, reasonably cheap instruction.
3225 ///
3226 /// There is only one distinct advantage to flattening the CFG at the IR level:
3227 /// it makes very common but simplistic optimizations such as are common in
3228 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3229 /// modeling their effects with easier to reason about SSA value graphs.
3230 ///
3231 ///
3232 /// An illustration of this transform is turning this IR:
3233 /// \code
3234 ///   BB:
3235 ///     %cmp = icmp ult %x, %y
3236 ///     br i1 %cmp, label %EndBB, label %ThenBB
3237 ///   ThenBB:
3238 ///     %sub = sub %x, %y
3239 ///     br label BB2
3240 ///   EndBB:
3241 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3242 ///     ...
3243 /// \endcode
3244 ///
3245 /// Into this IR:
3246 /// \code
3247 ///   BB:
3248 ///     %cmp = icmp ult %x, %y
3249 ///     %sub = sub %x, %y
3250 ///     %cond = select i1 %cmp, 0, %sub
3251 ///     ...
3252 /// \endcode
3253 ///
3254 /// \returns true if the conditional block is removed.
3255 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3256                                             BasicBlock *ThenBB) {
3257   if (!Options.SpeculateBlocks)
3258     return false;
3259 
3260   // Be conservative for now. FP select instruction can often be expensive.
3261   Value *BrCond = BI->getCondition();
3262   if (isa<FCmpInst>(BrCond))
3263     return false;
3264 
3265   BasicBlock *BB = BI->getParent();
3266   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3267   InstructionCost Budget =
3268       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3269 
3270   // If ThenBB is actually on the false edge of the conditional branch, remember
3271   // to swap the select operands later.
3272   bool Invert = false;
3273   if (ThenBB != BI->getSuccessor(0)) {
3274     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3275     Invert = true;
3276   }
3277   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3278 
3279   if (!isProfitableToSpeculate(BI, Invert, TTI))
3280     return false;
3281 
3282   // Keep a count of how many times instructions are used within ThenBB when
3283   // they are candidates for sinking into ThenBB. Specifically:
3284   // - They are defined in BB, and
3285   // - They have no side effects, and
3286   // - All of their uses are in ThenBB.
3287   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3288 
3289   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3290 
3291   unsigned SpeculatedInstructions = 0;
3292   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3293                           Options.HoistLoadsStoresWithCondFaulting;
3294   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3295   Value *SpeculatedStoreValue = nullptr;
3296   StoreInst *SpeculatedStore = nullptr;
3297   EphemeralValueTracker EphTracker;
3298   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3299     // Skip debug info.
3300     if (isa<DbgInfoIntrinsic>(I)) {
3301       SpeculatedDbgIntrinsics.push_back(&I);
3302       continue;
3303     }
3304 
3305     // Skip pseudo probes. The consequence is we lose track of the branch
3306     // probability for ThenBB, which is fine since the optimization here takes
3307     // place regardless of the branch probability.
3308     if (isa<PseudoProbeInst>(I)) {
3309       // The probe should be deleted so that it will not be over-counted when
3310       // the samples collected on the non-conditional path are counted towards
3311       // the conditional path. We leave it for the counts inference algorithm to
3312       // figure out a proper count for an unknown probe.
3313       SpeculatedDbgIntrinsics.push_back(&I);
3314       continue;
3315     }
3316 
3317     // Ignore ephemeral values, they will be dropped by the transform.
3318     if (EphTracker.track(&I))
3319       continue;
3320 
3321     // Only speculatively execute a single instruction (not counting the
3322     // terminator) for now.
3323     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3324                                 isSafeCheapLoadStore(&I, TTI) &&
3325                                 SpeculatedConditionalLoadsStores.size() <
3326                                     HoistLoadsStoresWithCondFaultingThreshold;
3327     // Not count load/store into cost if target supports conditional faulting
3328     // b/c it's cheap to speculate it.
3329     if (IsSafeCheapLoadStore)
3330       SpeculatedConditionalLoadsStores.push_back(&I);
3331     else
3332       ++SpeculatedInstructions;
3333 
3334     if (SpeculatedInstructions > 1)
3335       return false;
3336 
3337     // Don't hoist the instruction if it's unsafe or expensive.
3338     if (!IsSafeCheapLoadStore &&
3339         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3340         !(HoistCondStores && !SpeculatedStoreValue &&
3341           (SpeculatedStoreValue =
3342                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3343       return false;
3344     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3345         computeSpeculationCost(&I, TTI) >
3346             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3347       return false;
3348 
3349     // Store the store speculation candidate.
3350     if (!SpeculatedStore && SpeculatedStoreValue)
3351       SpeculatedStore = cast<StoreInst>(&I);
3352 
3353     // Do not hoist the instruction if any of its operands are defined but not
3354     // used in BB. The transformation will prevent the operand from
3355     // being sunk into the use block.
3356     for (Use &Op : I.operands()) {
3357       Instruction *OpI = dyn_cast<Instruction>(Op);
3358       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3359         continue; // Not a candidate for sinking.
3360 
3361       ++SinkCandidateUseCounts[OpI];
3362     }
3363   }
3364 
3365   // Consider any sink candidates which are only used in ThenBB as costs for
3366   // speculation. Note, while we iterate over a DenseMap here, we are summing
3367   // and so iteration order isn't significant.
3368   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3369     if (Inst->hasNUses(Count)) {
3370       ++SpeculatedInstructions;
3371       if (SpeculatedInstructions > 1)
3372         return false;
3373     }
3374 
3375   // Check that we can insert the selects and that it's not too expensive to do
3376   // so.
3377   bool Convert =
3378       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3379   InstructionCost Cost = 0;
3380   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3381                                             SpeculatedInstructions, Cost, TTI);
3382   if (!Convert || Cost > Budget)
3383     return false;
3384 
3385   // If we get here, we can hoist the instruction and if-convert.
3386   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3387 
3388   // Insert a select of the value of the speculated store.
3389   if (SpeculatedStoreValue) {
3390     IRBuilder<NoFolder> Builder(BI);
3391     Value *OrigV = SpeculatedStore->getValueOperand();
3392     Value *TrueV = SpeculatedStore->getValueOperand();
3393     Value *FalseV = SpeculatedStoreValue;
3394     if (Invert)
3395       std::swap(TrueV, FalseV);
3396     Value *S = Builder.CreateSelect(
3397         BrCond, TrueV, FalseV, "spec.store.select", BI);
3398     SpeculatedStore->setOperand(0, S);
3399     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3400                                          SpeculatedStore->getDebugLoc());
3401     // The value stored is still conditional, but the store itself is now
3402     // unconditonally executed, so we must be sure that any linked dbg.assign
3403     // intrinsics are tracking the new stored value (the result of the
3404     // select). If we don't, and the store were to be removed by another pass
3405     // (e.g. DSE), then we'd eventually end up emitting a location describing
3406     // the conditional value, unconditionally.
3407     //
3408     // === Before this transformation ===
3409     // pred:
3410     //   store %one, %x.dest, !DIAssignID !1
3411     //   dbg.assign %one, "x", ..., !1, ...
3412     //   br %cond if.then
3413     //
3414     // if.then:
3415     //   store %two, %x.dest, !DIAssignID !2
3416     //   dbg.assign %two, "x", ..., !2, ...
3417     //
3418     // === After this transformation ===
3419     // pred:
3420     //   store %one, %x.dest, !DIAssignID !1
3421     //   dbg.assign %one, "x", ..., !1
3422     ///  ...
3423     //   %merge = select %cond, %two, %one
3424     //   store %merge, %x.dest, !DIAssignID !2
3425     //   dbg.assign %merge, "x", ..., !2
3426     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3427       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3428         DbgAssign->replaceVariableLocationOp(OrigV, S);
3429     };
3430     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3431     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3432   }
3433 
3434   // Metadata can be dependent on the condition we are hoisting above.
3435   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3436   // to avoid making it appear as if the condition is a constant, which would
3437   // be misleading while debugging.
3438   // Similarly strip attributes that maybe dependent on condition we are
3439   // hoisting above.
3440   for (auto &I : make_early_inc_range(*ThenBB)) {
3441     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3442       // Don't update the DILocation of dbg.assign intrinsics.
3443       if (!isa<DbgAssignIntrinsic>(&I))
3444         I.setDebugLoc(DebugLoc());
3445     }
3446     I.dropUBImplyingAttrsAndMetadata();
3447 
3448     // Drop ephemeral values.
3449     if (EphTracker.contains(&I)) {
3450       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3451       I.eraseFromParent();
3452     }
3453   }
3454 
3455   // Hoist the instructions.
3456   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3457   // to these instructions, in the same way that dbg.value intrinsics are
3458   // dropped at the end of this block.
3459   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3460     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3461       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3462       // equivalent).
3463       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3464           !DVR || !DVR->isDbgAssign())
3465         It.dropOneDbgRecord(&DR);
3466   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3467              std::prev(ThenBB->end()));
3468 
3469   if (!SpeculatedConditionalLoadsStores.empty())
3470     hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert);
3471 
3472   // Insert selects and rewrite the PHI operands.
3473   IRBuilder<NoFolder> Builder(BI);
3474   for (PHINode &PN : EndBB->phis()) {
3475     unsigned OrigI = PN.getBasicBlockIndex(BB);
3476     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3477     Value *OrigV = PN.getIncomingValue(OrigI);
3478     Value *ThenV = PN.getIncomingValue(ThenI);
3479 
3480     // Skip PHIs which are trivial.
3481     if (OrigV == ThenV)
3482       continue;
3483 
3484     // Create a select whose true value is the speculatively executed value and
3485     // false value is the pre-existing value. Swap them if the branch
3486     // destinations were inverted.
3487     Value *TrueV = ThenV, *FalseV = OrigV;
3488     if (Invert)
3489       std::swap(TrueV, FalseV);
3490     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3491     PN.setIncomingValue(OrigI, V);
3492     PN.setIncomingValue(ThenI, V);
3493   }
3494 
3495   // Remove speculated dbg intrinsics.
3496   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3497   // dbg value for the different flows and inserting it after the select.
3498   for (Instruction *I : SpeculatedDbgIntrinsics) {
3499     // We still want to know that an assignment took place so don't remove
3500     // dbg.assign intrinsics.
3501     if (!isa<DbgAssignIntrinsic>(I))
3502       I->eraseFromParent();
3503   }
3504 
3505   ++NumSpeculations;
3506   return true;
3507 }
3508 
3509 /// Return true if we can thread a branch across this block.
3510 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3511   int Size = 0;
3512   EphemeralValueTracker EphTracker;
3513 
3514   // Walk the loop in reverse so that we can identify ephemeral values properly
3515   // (values only feeding assumes).
3516   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3517     // Can't fold blocks that contain noduplicate or convergent calls.
3518     if (CallInst *CI = dyn_cast<CallInst>(&I))
3519       if (CI->cannotDuplicate() || CI->isConvergent())
3520         return false;
3521 
3522     // Ignore ephemeral values which are deleted during codegen.
3523     // We will delete Phis while threading, so Phis should not be accounted in
3524     // block's size.
3525     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3526       if (Size++ > MaxSmallBlockSize)
3527         return false; // Don't clone large BB's.
3528     }
3529 
3530     // We can only support instructions that do not define values that are
3531     // live outside of the current basic block.
3532     for (User *U : I.users()) {
3533       Instruction *UI = cast<Instruction>(U);
3534       if (UI->getParent() != BB || isa<PHINode>(UI))
3535         return false;
3536     }
3537 
3538     // Looks ok, continue checking.
3539   }
3540 
3541   return true;
3542 }
3543 
3544 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3545                                         BasicBlock *To) {
3546   // Don't look past the block defining the value, we might get the value from
3547   // a previous loop iteration.
3548   auto *I = dyn_cast<Instruction>(V);
3549   if (I && I->getParent() == To)
3550     return nullptr;
3551 
3552   // We know the value if the From block branches on it.
3553   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3554   if (BI && BI->isConditional() && BI->getCondition() == V &&
3555       BI->getSuccessor(0) != BI->getSuccessor(1))
3556     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3557                                      : ConstantInt::getFalse(BI->getContext());
3558 
3559   return nullptr;
3560 }
3561 
3562 /// If we have a conditional branch on something for which we know the constant
3563 /// value in predecessors (e.g. a phi node in the current block), thread edges
3564 /// from the predecessor to their ultimate destination.
3565 static std::optional<bool>
3566 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3567                                             const DataLayout &DL,
3568                                             AssumptionCache *AC) {
3569   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3570   BasicBlock *BB = BI->getParent();
3571   Value *Cond = BI->getCondition();
3572   PHINode *PN = dyn_cast<PHINode>(Cond);
3573   if (PN && PN->getParent() == BB) {
3574     // Degenerate case of a single entry PHI.
3575     if (PN->getNumIncomingValues() == 1) {
3576       FoldSingleEntryPHINodes(PN->getParent());
3577       return true;
3578     }
3579 
3580     for (Use &U : PN->incoming_values())
3581       if (auto *CB = dyn_cast<ConstantInt>(U))
3582         KnownValues[CB].insert(PN->getIncomingBlock(U));
3583   } else {
3584     for (BasicBlock *Pred : predecessors(BB)) {
3585       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3586         KnownValues[CB].insert(Pred);
3587     }
3588   }
3589 
3590   if (KnownValues.empty())
3591     return false;
3592 
3593   // Now we know that this block has multiple preds and two succs.
3594   // Check that the block is small enough and values defined in the block are
3595   // not used outside of it.
3596   if (!blockIsSimpleEnoughToThreadThrough(BB))
3597     return false;
3598 
3599   for (const auto &Pair : KnownValues) {
3600     // Okay, we now know that all edges from PredBB should be revectored to
3601     // branch to RealDest.
3602     ConstantInt *CB = Pair.first;
3603     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3604     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3605 
3606     if (RealDest == BB)
3607       continue; // Skip self loops.
3608 
3609     // Skip if the predecessor's terminator is an indirect branch.
3610     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3611           return isa<IndirectBrInst>(PredBB->getTerminator());
3612         }))
3613       continue;
3614 
3615     LLVM_DEBUG({
3616       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3617              << " has value " << *Pair.first << " in predecessors:\n";
3618       for (const BasicBlock *PredBB : Pair.second)
3619         dbgs() << "  " << PredBB->getName() << "\n";
3620       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3621     });
3622 
3623     // Split the predecessors we are threading into a new edge block. We'll
3624     // clone the instructions into this block, and then redirect it to RealDest.
3625     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3626 
3627     // TODO: These just exist to reduce test diff, we can drop them if we like.
3628     EdgeBB->setName(RealDest->getName() + ".critedge");
3629     EdgeBB->moveBefore(RealDest);
3630 
3631     // Update PHI nodes.
3632     addPredecessorToBlock(RealDest, EdgeBB, BB);
3633 
3634     // BB may have instructions that are being threaded over.  Clone these
3635     // instructions into EdgeBB.  We know that there will be no uses of the
3636     // cloned instructions outside of EdgeBB.
3637     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3638     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3639     TranslateMap[Cond] = CB;
3640 
3641     // RemoveDIs: track instructions that we optimise away while folding, so
3642     // that we can copy DbgVariableRecords from them later.
3643     BasicBlock::iterator SrcDbgCursor = BB->begin();
3644     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3645       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3646         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3647         continue;
3648       }
3649       // Clone the instruction.
3650       Instruction *N = BBI->clone();
3651       // Insert the new instruction into its new home.
3652       N->insertInto(EdgeBB, InsertPt);
3653 
3654       if (BBI->hasName())
3655         N->setName(BBI->getName() + ".c");
3656 
3657       // Update operands due to translation.
3658       for (Use &Op : N->operands()) {
3659         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3660         if (PI != TranslateMap.end())
3661           Op = PI->second;
3662       }
3663 
3664       // Check for trivial simplification.
3665       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3666         if (!BBI->use_empty())
3667           TranslateMap[&*BBI] = V;
3668         if (!N->mayHaveSideEffects()) {
3669           N->eraseFromParent(); // Instruction folded away, don't need actual
3670                                 // inst
3671           N = nullptr;
3672         }
3673       } else {
3674         if (!BBI->use_empty())
3675           TranslateMap[&*BBI] = N;
3676       }
3677       if (N) {
3678         // Copy all debug-info attached to instructions from the last we
3679         // successfully clone, up to this instruction (they might have been
3680         // folded away).
3681         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3682           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3683         SrcDbgCursor = std::next(BBI);
3684         // Clone debug-info on this instruction too.
3685         N->cloneDebugInfoFrom(&*BBI);
3686 
3687         // Register the new instruction with the assumption cache if necessary.
3688         if (auto *Assume = dyn_cast<AssumeInst>(N))
3689           if (AC)
3690             AC->registerAssumption(Assume);
3691       }
3692     }
3693 
3694     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3695       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3696     InsertPt->cloneDebugInfoFrom(BI);
3697 
3698     BB->removePredecessor(EdgeBB);
3699     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3700     EdgeBI->setSuccessor(0, RealDest);
3701     EdgeBI->setDebugLoc(BI->getDebugLoc());
3702 
3703     if (DTU) {
3704       SmallVector<DominatorTree::UpdateType, 2> Updates;
3705       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3706       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3707       DTU->applyUpdates(Updates);
3708     }
3709 
3710     // For simplicity, we created a separate basic block for the edge. Merge
3711     // it back into the predecessor if possible. This not only avoids
3712     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3713     // bypass the check for trivial cycles above.
3714     MergeBlockIntoPredecessor(EdgeBB, DTU);
3715 
3716     // Signal repeat, simplifying any other constants.
3717     return std::nullopt;
3718   }
3719 
3720   return false;
3721 }
3722 
3723 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3724                                                     DomTreeUpdater *DTU,
3725                                                     const DataLayout &DL,
3726                                                     AssumptionCache *AC) {
3727   std::optional<bool> Result;
3728   bool EverChanged = false;
3729   do {
3730     // Note that None means "we changed things, but recurse further."
3731     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3732     EverChanged |= Result == std::nullopt || *Result;
3733   } while (Result == std::nullopt);
3734   return EverChanged;
3735 }
3736 
3737 /// Given a BB that starts with the specified two-entry PHI node,
3738 /// see if we can eliminate it.
3739 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3740                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3741                                 const DataLayout &DL,
3742                                 bool SpeculateUnpredictables) {
3743   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3744   // statement", which has a very simple dominance structure.  Basically, we
3745   // are trying to find the condition that is being branched on, which
3746   // subsequently causes this merge to happen.  We really want control
3747   // dependence information for this check, but simplifycfg can't keep it up
3748   // to date, and this catches most of the cases we care about anyway.
3749   BasicBlock *BB = PN->getParent();
3750 
3751   BasicBlock *IfTrue, *IfFalse;
3752   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3753   if (!DomBI)
3754     return false;
3755   Value *IfCond = DomBI->getCondition();
3756   // Don't bother if the branch will be constant folded trivially.
3757   if (isa<ConstantInt>(IfCond))
3758     return false;
3759 
3760   BasicBlock *DomBlock = DomBI->getParent();
3761   SmallVector<BasicBlock *, 2> IfBlocks;
3762   llvm::copy_if(
3763       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3764         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3765       });
3766   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3767          "Will have either one or two blocks to speculate.");
3768 
3769   // If the branch is non-unpredictable, see if we either predictably jump to
3770   // the merge bb (if we have only a single 'then' block), or if we predictably
3771   // jump to one specific 'then' block (if we have two of them).
3772   // It isn't beneficial to speculatively execute the code
3773   // from the block that we know is predictably not entered.
3774   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3775   if (!IsUnpredictable) {
3776     uint64_t TWeight, FWeight;
3777     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3778         (TWeight + FWeight) != 0) {
3779       BranchProbability BITrueProb =
3780           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3781       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3782       BranchProbability BIFalseProb = BITrueProb.getCompl();
3783       if (IfBlocks.size() == 1) {
3784         BranchProbability BIBBProb =
3785             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3786         if (BIBBProb >= Likely)
3787           return false;
3788       } else {
3789         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3790           return false;
3791       }
3792     }
3793   }
3794 
3795   // Don't try to fold an unreachable block. For example, the phi node itself
3796   // can't be the candidate if-condition for a select that we want to form.
3797   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3798     if (IfCondPhiInst->getParent() == BB)
3799       return false;
3800 
3801   // Okay, we found that we can merge this two-entry phi node into a select.
3802   // Doing so would require us to fold *all* two entry phi nodes in this block.
3803   // At some point this becomes non-profitable (particularly if the target
3804   // doesn't support cmov's).  Only do this transformation if there are two or
3805   // fewer PHI nodes in this block.
3806   unsigned NumPhis = 0;
3807   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3808     if (NumPhis > 2)
3809       return false;
3810 
3811   // Loop over the PHI's seeing if we can promote them all to select
3812   // instructions.  While we are at it, keep track of the instructions
3813   // that need to be moved to the dominating block.
3814   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3815   InstructionCost Cost = 0;
3816   InstructionCost Budget =
3817       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3818   if (SpeculateUnpredictables && IsUnpredictable)
3819     Budget += TTI.getBranchMispredictPenalty();
3820 
3821   bool Changed = false;
3822   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3823     PHINode *PN = cast<PHINode>(II++);
3824     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3825       PN->replaceAllUsesWith(V);
3826       PN->eraseFromParent();
3827       Changed = true;
3828       continue;
3829     }
3830 
3831     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3832                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3833         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3834                              AggressiveInsts, Cost, Budget, TTI, AC))
3835       return Changed;
3836   }
3837 
3838   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3839   // we ran out of PHIs then we simplified them all.
3840   PN = dyn_cast<PHINode>(BB->begin());
3841   if (!PN)
3842     return true;
3843 
3844   // Return true if at least one of these is a 'not', and another is either
3845   // a 'not' too, or a constant.
3846   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3847     if (!match(V0, m_Not(m_Value())))
3848       std::swap(V0, V1);
3849     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3850     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3851   };
3852 
3853   // Don't fold i1 branches on PHIs which contain binary operators or
3854   // (possibly inverted) select form of or/ands,  unless one of
3855   // the incoming values is an 'not' and another one is freely invertible.
3856   // These can often be turned into switches and other things.
3857   auto IsBinOpOrAnd = [](Value *V) {
3858     return match(
3859         V, m_CombineOr(m_BinOp(), m_c_Select(m_ImmConstant(), m_Value())));
3860   };
3861   if (PN->getType()->isIntegerTy(1) &&
3862       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3863        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3864       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3865                                  PN->getIncomingValue(1)))
3866     return Changed;
3867 
3868   // If all PHI nodes are promotable, check to make sure that all instructions
3869   // in the predecessor blocks can be promoted as well. If not, we won't be able
3870   // to get rid of the control flow, so it's not worth promoting to select
3871   // instructions.
3872   for (BasicBlock *IfBlock : IfBlocks)
3873     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3874       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3875         // This is not an aggressive instruction that we can promote.
3876         // Because of this, we won't be able to get rid of the control flow, so
3877         // the xform is not worth it.
3878         return Changed;
3879       }
3880 
3881   // If either of the blocks has it's address taken, we can't do this fold.
3882   if (any_of(IfBlocks,
3883              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3884     return Changed;
3885 
3886   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3887              if (IsUnpredictable) dbgs() << " (unpredictable)";
3888              dbgs() << "  T: " << IfTrue->getName()
3889                     << "  F: " << IfFalse->getName() << "\n");
3890 
3891   // If we can still promote the PHI nodes after this gauntlet of tests,
3892   // do all of the PHI's now.
3893 
3894   // Move all 'aggressive' instructions, which are defined in the
3895   // conditional parts of the if's up to the dominating block.
3896   for (BasicBlock *IfBlock : IfBlocks)
3897       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3898 
3899   IRBuilder<NoFolder> Builder(DomBI);
3900   // Propagate fast-math-flags from phi nodes to replacement selects.
3901   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3902   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3903     if (isa<FPMathOperator>(PN))
3904       Builder.setFastMathFlags(PN->getFastMathFlags());
3905 
3906     // Change the PHI node into a select instruction.
3907     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3908     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3909 
3910     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3911     PN->replaceAllUsesWith(Sel);
3912     Sel->takeName(PN);
3913     PN->eraseFromParent();
3914   }
3915 
3916   // At this point, all IfBlocks are empty, so our if statement
3917   // has been flattened.  Change DomBlock to jump directly to our new block to
3918   // avoid other simplifycfg's kicking in on the diamond.
3919   Builder.CreateBr(BB);
3920 
3921   SmallVector<DominatorTree::UpdateType, 3> Updates;
3922   if (DTU) {
3923     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3924     for (auto *Successor : successors(DomBlock))
3925       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3926   }
3927 
3928   DomBI->eraseFromParent();
3929   if (DTU)
3930     DTU->applyUpdates(Updates);
3931 
3932   return true;
3933 }
3934 
3935 static Value *createLogicalOp(IRBuilderBase &Builder,
3936                               Instruction::BinaryOps Opc, Value *LHS,
3937                               Value *RHS, const Twine &Name = "") {
3938   // Try to relax logical op to binary op.
3939   if (impliesPoison(RHS, LHS))
3940     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3941   if (Opc == Instruction::And)
3942     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3943   if (Opc == Instruction::Or)
3944     return Builder.CreateLogicalOr(LHS, RHS, Name);
3945   llvm_unreachable("Invalid logical opcode");
3946 }
3947 
3948 /// Return true if either PBI or BI has branch weight available, and store
3949 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3950 /// not have branch weight, use 1:1 as its weight.
3951 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3952                                    uint64_t &PredTrueWeight,
3953                                    uint64_t &PredFalseWeight,
3954                                    uint64_t &SuccTrueWeight,
3955                                    uint64_t &SuccFalseWeight) {
3956   bool PredHasWeights =
3957       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3958   bool SuccHasWeights =
3959       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3960   if (PredHasWeights || SuccHasWeights) {
3961     if (!PredHasWeights)
3962       PredTrueWeight = PredFalseWeight = 1;
3963     if (!SuccHasWeights)
3964       SuccTrueWeight = SuccFalseWeight = 1;
3965     return true;
3966   } else {
3967     return false;
3968   }
3969 }
3970 
3971 /// Determine if the two branches share a common destination and deduce a glue
3972 /// that joins the branches' conditions to arrive at the common destination if
3973 /// that would be profitable.
3974 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3975 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3976                                           const TargetTransformInfo *TTI) {
3977   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3978          "Both blocks must end with a conditional branches.");
3979   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3980          "PredBB must be a predecessor of BB.");
3981 
3982   // We have the potential to fold the conditions together, but if the
3983   // predecessor branch is predictable, we may not want to merge them.
3984   uint64_t PTWeight, PFWeight;
3985   BranchProbability PBITrueProb, Likely;
3986   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3987       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3988       (PTWeight + PFWeight) != 0) {
3989     PBITrueProb =
3990         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3991     Likely = TTI->getPredictableBranchThreshold();
3992   }
3993 
3994   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3995     // Speculate the 2nd condition unless the 1st is probably true.
3996     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3997       return {{BI->getSuccessor(0), Instruction::Or, false}};
3998   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3999     // Speculate the 2nd condition unless the 1st is probably false.
4000     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
4001       return {{BI->getSuccessor(1), Instruction::And, false}};
4002   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4003     // Speculate the 2nd condition unless the 1st is probably true.
4004     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
4005       return {{BI->getSuccessor(1), Instruction::And, true}};
4006   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4007     // Speculate the 2nd condition unless the 1st is probably false.
4008     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
4009       return {{BI->getSuccessor(0), Instruction::Or, true}};
4010   }
4011   return std::nullopt;
4012 }
4013 
4014 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
4015                                              DomTreeUpdater *DTU,
4016                                              MemorySSAUpdater *MSSAU,
4017                                              const TargetTransformInfo *TTI) {
4018   BasicBlock *BB = BI->getParent();
4019   BasicBlock *PredBlock = PBI->getParent();
4020 
4021   // Determine if the two branches share a common destination.
4022   BasicBlock *CommonSucc;
4023   Instruction::BinaryOps Opc;
4024   bool InvertPredCond;
4025   std::tie(CommonSucc, Opc, InvertPredCond) =
4026       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
4027 
4028   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
4029 
4030   IRBuilder<> Builder(PBI);
4031   // The builder is used to create instructions to eliminate the branch in BB.
4032   // If BB's terminator has !annotation metadata, add it to the new
4033   // instructions.
4034   Builder.CollectMetadataToCopy(BB->getTerminator(),
4035                                 {LLVMContext::MD_annotation});
4036 
4037   // If we need to invert the condition in the pred block to match, do so now.
4038   if (InvertPredCond) {
4039     InvertBranch(PBI, Builder);
4040   }
4041 
4042   BasicBlock *UniqueSucc =
4043       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
4044 
4045   // Before cloning instructions, notify the successor basic block that it
4046   // is about to have a new predecessor. This will update PHI nodes,
4047   // which will allow us to update live-out uses of bonus instructions.
4048   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
4049 
4050   // Try to update branch weights.
4051   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4052   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4053                              SuccTrueWeight, SuccFalseWeight)) {
4054     SmallVector<uint64_t, 8> NewWeights;
4055 
4056     if (PBI->getSuccessor(0) == BB) {
4057       // PBI: br i1 %x, BB, FalseDest
4058       // BI:  br i1 %y, UniqueSucc, FalseDest
4059       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
4060       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
4061       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
4062       //               TrueWeight for PBI * FalseWeight for BI.
4063       // We assume that total weights of a BranchInst can fit into 32 bits.
4064       // Therefore, we will not have overflow using 64-bit arithmetic.
4065       NewWeights.push_back(PredFalseWeight *
4066                                (SuccFalseWeight + SuccTrueWeight) +
4067                            PredTrueWeight * SuccFalseWeight);
4068     } else {
4069       // PBI: br i1 %x, TrueDest, BB
4070       // BI:  br i1 %y, TrueDest, UniqueSucc
4071       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
4072       //              FalseWeight for PBI * TrueWeight for BI.
4073       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
4074                            PredFalseWeight * SuccTrueWeight);
4075       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
4076       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
4077     }
4078 
4079     // Halve the weights if any of them cannot fit in an uint32_t
4080     fitWeights(NewWeights);
4081 
4082     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
4083     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
4084 
4085     // TODO: If BB is reachable from all paths through PredBlock, then we
4086     // could replace PBI's branch probabilities with BI's.
4087   } else
4088     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4089 
4090   // Now, update the CFG.
4091   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4092 
4093   if (DTU)
4094     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4095                        {DominatorTree::Delete, PredBlock, BB}});
4096 
4097   // If BI was a loop latch, it may have had associated loop metadata.
4098   // We need to copy it to the new latch, that is, PBI.
4099   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4100     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4101 
4102   ValueToValueMapTy VMap; // maps original values to cloned values
4103   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4104 
4105   Module *M = BB->getModule();
4106 
4107   if (PredBlock->IsNewDbgInfoFormat) {
4108     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4109     for (DbgVariableRecord &DVR :
4110          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4111       RemapDbgRecord(M, &DVR, VMap,
4112                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4113     }
4114   }
4115 
4116   // Now that the Cond was cloned into the predecessor basic block,
4117   // or/and the two conditions together.
4118   Value *BICond = VMap[BI->getCondition()];
4119   PBI->setCondition(
4120       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4121 
4122   ++NumFoldBranchToCommonDest;
4123   return true;
4124 }
4125 
4126 /// Return if an instruction's type or any of its operands' types are a vector
4127 /// type.
4128 static bool isVectorOp(Instruction &I) {
4129   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4130            return U->getType()->isVectorTy();
4131          });
4132 }
4133 
4134 /// If this basic block is simple enough, and if a predecessor branches to us
4135 /// and one of our successors, fold the block into the predecessor and use
4136 /// logical operations to pick the right destination.
4137 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4138                                   MemorySSAUpdater *MSSAU,
4139                                   const TargetTransformInfo *TTI,
4140                                   unsigned BonusInstThreshold) {
4141   // If this block ends with an unconditional branch,
4142   // let speculativelyExecuteBB() deal with it.
4143   if (!BI->isConditional())
4144     return false;
4145 
4146   BasicBlock *BB = BI->getParent();
4147   TargetTransformInfo::TargetCostKind CostKind =
4148     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4149                                   : TargetTransformInfo::TCK_SizeAndLatency;
4150 
4151   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4152 
4153   if (!Cond ||
4154       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4155        !isa<SelectInst>(Cond)) ||
4156       Cond->getParent() != BB || !Cond->hasOneUse())
4157     return false;
4158 
4159   // Finally, don't infinitely unroll conditional loops.
4160   if (is_contained(successors(BB), BB))
4161     return false;
4162 
4163   // With which predecessors will we want to deal with?
4164   SmallVector<BasicBlock *, 8> Preds;
4165   for (BasicBlock *PredBlock : predecessors(BB)) {
4166     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4167 
4168     // Check that we have two conditional branches.  If there is a PHI node in
4169     // the common successor, verify that the same value flows in from both
4170     // blocks.
4171     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4172       continue;
4173 
4174     // Determine if the two branches share a common destination.
4175     BasicBlock *CommonSucc;
4176     Instruction::BinaryOps Opc;
4177     bool InvertPredCond;
4178     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4179       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4180     else
4181       continue;
4182 
4183     // Check the cost of inserting the necessary logic before performing the
4184     // transformation.
4185     if (TTI) {
4186       Type *Ty = BI->getCondition()->getType();
4187       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4188       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4189                              !isa<CmpInst>(PBI->getCondition())))
4190         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4191 
4192       if (Cost > BranchFoldThreshold)
4193         continue;
4194     }
4195 
4196     // Ok, we do want to deal with this predecessor. Record it.
4197     Preds.emplace_back(PredBlock);
4198   }
4199 
4200   // If there aren't any predecessors into which we can fold,
4201   // don't bother checking the cost.
4202   if (Preds.empty())
4203     return false;
4204 
4205   // Only allow this transformation if computing the condition doesn't involve
4206   // too many instructions and these involved instructions can be executed
4207   // unconditionally. We denote all involved instructions except the condition
4208   // as "bonus instructions", and only allow this transformation when the
4209   // number of the bonus instructions we'll need to create when cloning into
4210   // each predecessor does not exceed a certain threshold.
4211   unsigned NumBonusInsts = 0;
4212   bool SawVectorOp = false;
4213   const unsigned PredCount = Preds.size();
4214   for (Instruction &I : *BB) {
4215     // Don't check the branch condition comparison itself.
4216     if (&I == Cond)
4217       continue;
4218     // Ignore dbg intrinsics, and the terminator.
4219     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4220       continue;
4221     // I must be safe to execute unconditionally.
4222     if (!isSafeToSpeculativelyExecute(&I))
4223       return false;
4224     SawVectorOp |= isVectorOp(I);
4225 
4226     // Account for the cost of duplicating this instruction into each
4227     // predecessor. Ignore free instructions.
4228     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4229                     TargetTransformInfo::TCC_Free) {
4230       NumBonusInsts += PredCount;
4231 
4232       // Early exits once we reach the limit.
4233       if (NumBonusInsts >
4234           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4235         return false;
4236     }
4237 
4238     auto IsBCSSAUse = [BB, &I](Use &U) {
4239       auto *UI = cast<Instruction>(U.getUser());
4240       if (auto *PN = dyn_cast<PHINode>(UI))
4241         return PN->getIncomingBlock(U) == BB;
4242       return UI->getParent() == BB && I.comesBefore(UI);
4243     };
4244 
4245     // Does this instruction require rewriting of uses?
4246     if (!all_of(I.uses(), IsBCSSAUse))
4247       return false;
4248   }
4249   if (NumBonusInsts >
4250       BonusInstThreshold *
4251           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4252     return false;
4253 
4254   // Ok, we have the budget. Perform the transformation.
4255   for (BasicBlock *PredBlock : Preds) {
4256     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4257     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4258   }
4259   return false;
4260 }
4261 
4262 // If there is only one store in BB1 and BB2, return it, otherwise return
4263 // nullptr.
4264 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4265   StoreInst *S = nullptr;
4266   for (auto *BB : {BB1, BB2}) {
4267     if (!BB)
4268       continue;
4269     for (auto &I : *BB)
4270       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4271         if (S)
4272           // Multiple stores seen.
4273           return nullptr;
4274         else
4275           S = SI;
4276       }
4277   }
4278   return S;
4279 }
4280 
4281 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4282                                               Value *AlternativeV = nullptr) {
4283   // PHI is going to be a PHI node that allows the value V that is defined in
4284   // BB to be referenced in BB's only successor.
4285   //
4286   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4287   // doesn't matter to us what the other operand is (it'll never get used). We
4288   // could just create a new PHI with an undef incoming value, but that could
4289   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4290   // other PHI. So here we directly look for some PHI in BB's successor with V
4291   // as an incoming operand. If we find one, we use it, else we create a new
4292   // one.
4293   //
4294   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4295   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4296   // where OtherBB is the single other predecessor of BB's only successor.
4297   PHINode *PHI = nullptr;
4298   BasicBlock *Succ = BB->getSingleSuccessor();
4299 
4300   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4301     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4302       PHI = cast<PHINode>(I);
4303       if (!AlternativeV)
4304         break;
4305 
4306       assert(Succ->hasNPredecessors(2));
4307       auto PredI = pred_begin(Succ);
4308       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4309       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4310         break;
4311       PHI = nullptr;
4312     }
4313   if (PHI)
4314     return PHI;
4315 
4316   // If V is not an instruction defined in BB, just return it.
4317   if (!AlternativeV &&
4318       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4319     return V;
4320 
4321   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4322   PHI->insertBefore(Succ->begin());
4323   PHI->addIncoming(V, BB);
4324   for (BasicBlock *PredBB : predecessors(Succ))
4325     if (PredBB != BB)
4326       PHI->addIncoming(
4327           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4328   return PHI;
4329 }
4330 
4331 static bool mergeConditionalStoreToAddress(
4332     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4333     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4334     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4335   // For every pointer, there must be exactly two stores, one coming from
4336   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4337   // store (to any address) in PTB,PFB or QTB,QFB.
4338   // FIXME: We could relax this restriction with a bit more work and performance
4339   // testing.
4340   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4341   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4342   if (!PStore || !QStore)
4343     return false;
4344 
4345   // Now check the stores are compatible.
4346   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4347       PStore->getValueOperand()->getType() !=
4348           QStore->getValueOperand()->getType())
4349     return false;
4350 
4351   // Check that sinking the store won't cause program behavior changes. Sinking
4352   // the store out of the Q blocks won't change any behavior as we're sinking
4353   // from a block to its unconditional successor. But we're moving a store from
4354   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4355   // So we need to check that there are no aliasing loads or stores in
4356   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4357   // operations between PStore and the end of its parent block.
4358   //
4359   // The ideal way to do this is to query AliasAnalysis, but we don't
4360   // preserve AA currently so that is dangerous. Be super safe and just
4361   // check there are no other memory operations at all.
4362   for (auto &I : *QFB->getSinglePredecessor())
4363     if (I.mayReadOrWriteMemory())
4364       return false;
4365   for (auto &I : *QFB)
4366     if (&I != QStore && I.mayReadOrWriteMemory())
4367       return false;
4368   if (QTB)
4369     for (auto &I : *QTB)
4370       if (&I != QStore && I.mayReadOrWriteMemory())
4371         return false;
4372   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4373        I != E; ++I)
4374     if (&*I != PStore && I->mayReadOrWriteMemory())
4375       return false;
4376 
4377   // If we're not in aggressive mode, we only optimize if we have some
4378   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4379   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4380     if (!BB)
4381       return true;
4382     // Heuristic: if the block can be if-converted/phi-folded and the
4383     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4384     // thread this store.
4385     InstructionCost Cost = 0;
4386     InstructionCost Budget =
4387         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4388     for (auto &I : BB->instructionsWithoutDebug(false)) {
4389       // Consider terminator instruction to be free.
4390       if (I.isTerminator())
4391         continue;
4392       // If this is one the stores that we want to speculate out of this BB,
4393       // then don't count it's cost, consider it to be free.
4394       if (auto *S = dyn_cast<StoreInst>(&I))
4395         if (llvm::find(FreeStores, S))
4396           continue;
4397       // Else, we have a white-list of instructions that we are ak speculating.
4398       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4399         return false; // Not in white-list - not worthwhile folding.
4400       // And finally, if this is a non-free instruction that we are okay
4401       // speculating, ensure that we consider the speculation budget.
4402       Cost +=
4403           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4404       if (Cost > Budget)
4405         return false; // Eagerly refuse to fold as soon as we're out of budget.
4406     }
4407     assert(Cost <= Budget &&
4408            "When we run out of budget we will eagerly return from within the "
4409            "per-instruction loop.");
4410     return true;
4411   };
4412 
4413   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4414   if (!MergeCondStoresAggressively &&
4415       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4416        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4417     return false;
4418 
4419   // If PostBB has more than two predecessors, we need to split it so we can
4420   // sink the store.
4421   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4422     // We know that QFB's only successor is PostBB. And QFB has a single
4423     // predecessor. If QTB exists, then its only successor is also PostBB.
4424     // If QTB does not exist, then QFB's only predecessor has a conditional
4425     // branch to QFB and PostBB.
4426     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4427     BasicBlock *NewBB =
4428         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4429     if (!NewBB)
4430       return false;
4431     PostBB = NewBB;
4432   }
4433 
4434   // OK, we're going to sink the stores to PostBB. The store has to be
4435   // conditional though, so first create the predicate.
4436   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4437                      ->getCondition();
4438   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4439                      ->getCondition();
4440 
4441   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4442                                                 PStore->getParent());
4443   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4444                                                 QStore->getParent(), PPHI);
4445 
4446   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4447   IRBuilder<> QB(PostBB, PostBBFirst);
4448   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4449 
4450   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4451   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4452 
4453   if (InvertPCond)
4454     PPred = QB.CreateNot(PPred);
4455   if (InvertQCond)
4456     QPred = QB.CreateNot(QPred);
4457   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4458 
4459   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4460   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4461                                       /*Unreachable=*/false,
4462                                       /*BranchWeights=*/nullptr, DTU);
4463 
4464   QB.SetInsertPoint(T);
4465   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4466   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4467   // Choose the minimum alignment. If we could prove both stores execute, we
4468   // could use biggest one.  In this case, though, we only know that one of the
4469   // stores executes.  And we don't know it's safe to take the alignment from a
4470   // store that doesn't execute.
4471   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4472 
4473   QStore->eraseFromParent();
4474   PStore->eraseFromParent();
4475 
4476   return true;
4477 }
4478 
4479 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4480                                    DomTreeUpdater *DTU, const DataLayout &DL,
4481                                    const TargetTransformInfo &TTI) {
4482   // The intention here is to find diamonds or triangles (see below) where each
4483   // conditional block contains a store to the same address. Both of these
4484   // stores are conditional, so they can't be unconditionally sunk. But it may
4485   // be profitable to speculatively sink the stores into one merged store at the
4486   // end, and predicate the merged store on the union of the two conditions of
4487   // PBI and QBI.
4488   //
4489   // This can reduce the number of stores executed if both of the conditions are
4490   // true, and can allow the blocks to become small enough to be if-converted.
4491   // This optimization will also chain, so that ladders of test-and-set
4492   // sequences can be if-converted away.
4493   //
4494   // We only deal with simple diamonds or triangles:
4495   //
4496   //     PBI       or      PBI        or a combination of the two
4497   //    /   \               | \
4498   //   PTB  PFB             |  PFB
4499   //    \   /               | /
4500   //     QBI                QBI
4501   //    /  \                | \
4502   //   QTB  QFB             |  QFB
4503   //    \  /                | /
4504   //    PostBB            PostBB
4505   //
4506   // We model triangles as a type of diamond with a nullptr "true" block.
4507   // Triangles are canonicalized so that the fallthrough edge is represented by
4508   // a true condition, as in the diagram above.
4509   BasicBlock *PTB = PBI->getSuccessor(0);
4510   BasicBlock *PFB = PBI->getSuccessor(1);
4511   BasicBlock *QTB = QBI->getSuccessor(0);
4512   BasicBlock *QFB = QBI->getSuccessor(1);
4513   BasicBlock *PostBB = QFB->getSingleSuccessor();
4514 
4515   // Make sure we have a good guess for PostBB. If QTB's only successor is
4516   // QFB, then QFB is a better PostBB.
4517   if (QTB->getSingleSuccessor() == QFB)
4518     PostBB = QFB;
4519 
4520   // If we couldn't find a good PostBB, stop.
4521   if (!PostBB)
4522     return false;
4523 
4524   bool InvertPCond = false, InvertQCond = false;
4525   // Canonicalize fallthroughs to the true branches.
4526   if (PFB == QBI->getParent()) {
4527     std::swap(PFB, PTB);
4528     InvertPCond = true;
4529   }
4530   if (QFB == PostBB) {
4531     std::swap(QFB, QTB);
4532     InvertQCond = true;
4533   }
4534 
4535   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4536   // and QFB may not. Model fallthroughs as a nullptr block.
4537   if (PTB == QBI->getParent())
4538     PTB = nullptr;
4539   if (QTB == PostBB)
4540     QTB = nullptr;
4541 
4542   // Legality bailouts. We must have at least the non-fallthrough blocks and
4543   // the post-dominating block, and the non-fallthroughs must only have one
4544   // predecessor.
4545   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4546     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4547   };
4548   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4549       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4550     return false;
4551   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4552       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4553     return false;
4554   if (!QBI->getParent()->hasNUses(2))
4555     return false;
4556 
4557   // OK, this is a sequence of two diamonds or triangles.
4558   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4559   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4560   for (auto *BB : {PTB, PFB}) {
4561     if (!BB)
4562       continue;
4563     for (auto &I : *BB)
4564       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4565         PStoreAddresses.insert(SI->getPointerOperand());
4566   }
4567   for (auto *BB : {QTB, QFB}) {
4568     if (!BB)
4569       continue;
4570     for (auto &I : *BB)
4571       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4572         QStoreAddresses.insert(SI->getPointerOperand());
4573   }
4574 
4575   set_intersect(PStoreAddresses, QStoreAddresses);
4576   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4577   // clear what it contains.
4578   auto &CommonAddresses = PStoreAddresses;
4579 
4580   bool Changed = false;
4581   for (auto *Address : CommonAddresses)
4582     Changed |=
4583         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4584                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4585   return Changed;
4586 }
4587 
4588 /// If the previous block ended with a widenable branch, determine if reusing
4589 /// the target block is profitable and legal.  This will have the effect of
4590 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4591 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4592                                            DomTreeUpdater *DTU) {
4593   // TODO: This can be generalized in two important ways:
4594   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4595   //    values from the PBI edge.
4596   // 2) We can sink side effecting instructions into BI's fallthrough
4597   //    successor provided they doesn't contribute to computation of
4598   //    BI's condition.
4599   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4600   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4601   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4602       !BI->getParent()->getSinglePredecessor())
4603     return false;
4604   if (!IfFalseBB->phis().empty())
4605     return false; // TODO
4606   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4607   // may undo the transform done here.
4608   // TODO: There might be a more fine-grained solution to this.
4609   if (!llvm::succ_empty(IfFalseBB))
4610     return false;
4611   // Use lambda to lazily compute expensive condition after cheap ones.
4612   auto NoSideEffects = [](BasicBlock &BB) {
4613     return llvm::none_of(BB, [](const Instruction &I) {
4614         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4615       });
4616   };
4617   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4618       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4619       NoSideEffects(*BI->getParent())) {
4620     auto *OldSuccessor = BI->getSuccessor(1);
4621     OldSuccessor->removePredecessor(BI->getParent());
4622     BI->setSuccessor(1, IfFalseBB);
4623     if (DTU)
4624       DTU->applyUpdates(
4625           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4626            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4627     return true;
4628   }
4629   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4630       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4631       NoSideEffects(*BI->getParent())) {
4632     auto *OldSuccessor = BI->getSuccessor(0);
4633     OldSuccessor->removePredecessor(BI->getParent());
4634     BI->setSuccessor(0, IfFalseBB);
4635     if (DTU)
4636       DTU->applyUpdates(
4637           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4638            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4639     return true;
4640   }
4641   return false;
4642 }
4643 
4644 /// If we have a conditional branch as a predecessor of another block,
4645 /// this function tries to simplify it.  We know
4646 /// that PBI and BI are both conditional branches, and BI is in one of the
4647 /// successor blocks of PBI - PBI branches to BI.
4648 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4649                                            DomTreeUpdater *DTU,
4650                                            const DataLayout &DL,
4651                                            const TargetTransformInfo &TTI) {
4652   assert(PBI->isConditional() && BI->isConditional());
4653   BasicBlock *BB = BI->getParent();
4654 
4655   // If this block ends with a branch instruction, and if there is a
4656   // predecessor that ends on a branch of the same condition, make
4657   // this conditional branch redundant.
4658   if (PBI->getCondition() == BI->getCondition() &&
4659       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4660     // Okay, the outcome of this conditional branch is statically
4661     // knowable.  If this block had a single pred, handle specially, otherwise
4662     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4663     if (BB->getSinglePredecessor()) {
4664       // Turn this into a branch on constant.
4665       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4666       BI->setCondition(
4667           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4668       return true; // Nuke the branch on constant.
4669     }
4670   }
4671 
4672   // If the previous block ended with a widenable branch, determine if reusing
4673   // the target block is profitable and legal.  This will have the effect of
4674   // "widening" PBI, but doesn't require us to reason about hosting safety.
4675   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4676     return true;
4677 
4678   // If both branches are conditional and both contain stores to the same
4679   // address, remove the stores from the conditionals and create a conditional
4680   // merged store at the end.
4681   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4682     return true;
4683 
4684   // If this is a conditional branch in an empty block, and if any
4685   // predecessors are a conditional branch to one of our destinations,
4686   // fold the conditions into logical ops and one cond br.
4687 
4688   // Ignore dbg intrinsics.
4689   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4690     return false;
4691 
4692   int PBIOp, BIOp;
4693   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4694     PBIOp = 0;
4695     BIOp = 0;
4696   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4697     PBIOp = 0;
4698     BIOp = 1;
4699   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4700     PBIOp = 1;
4701     BIOp = 0;
4702   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4703     PBIOp = 1;
4704     BIOp = 1;
4705   } else {
4706     return false;
4707   }
4708 
4709   // Check to make sure that the other destination of this branch
4710   // isn't BB itself.  If so, this is an infinite loop that will
4711   // keep getting unwound.
4712   if (PBI->getSuccessor(PBIOp) == BB)
4713     return false;
4714 
4715   // If predecessor's branch probability to BB is too low don't merge branches.
4716   SmallVector<uint32_t, 2> PredWeights;
4717   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4718       extractBranchWeights(*PBI, PredWeights) &&
4719       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4720 
4721     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4722         PredWeights[PBIOp],
4723         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4724 
4725     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4726     if (CommonDestProb >= Likely)
4727       return false;
4728   }
4729 
4730   // Do not perform this transformation if it would require
4731   // insertion of a large number of select instructions. For targets
4732   // without predication/cmovs, this is a big pessimization.
4733 
4734   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4735   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4736   unsigned NumPhis = 0;
4737   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4738        ++II, ++NumPhis) {
4739     if (NumPhis > 2) // Disable this xform.
4740       return false;
4741   }
4742 
4743   // Finally, if everything is ok, fold the branches to logical ops.
4744   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4745 
4746   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4747                     << "AND: " << *BI->getParent());
4748 
4749   SmallVector<DominatorTree::UpdateType, 5> Updates;
4750 
4751   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4752   // branch in it, where one edge (OtherDest) goes back to itself but the other
4753   // exits.  We don't *know* that the program avoids the infinite loop
4754   // (even though that seems likely).  If we do this xform naively, we'll end up
4755   // recursively unpeeling the loop.  Since we know that (after the xform is
4756   // done) that the block *is* infinite if reached, we just make it an obviously
4757   // infinite loop with no cond branch.
4758   if (OtherDest == BB) {
4759     // Insert it at the end of the function, because it's either code,
4760     // or it won't matter if it's hot. :)
4761     BasicBlock *InfLoopBlock =
4762         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4763     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4764     if (DTU)
4765       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4766     OtherDest = InfLoopBlock;
4767   }
4768 
4769   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4770 
4771   // BI may have other predecessors.  Because of this, we leave
4772   // it alone, but modify PBI.
4773 
4774   // Make sure we get to CommonDest on True&True directions.
4775   Value *PBICond = PBI->getCondition();
4776   IRBuilder<NoFolder> Builder(PBI);
4777   if (PBIOp)
4778     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4779 
4780   Value *BICond = BI->getCondition();
4781   if (BIOp)
4782     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4783 
4784   // Merge the conditions.
4785   Value *Cond =
4786       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4787 
4788   // Modify PBI to branch on the new condition to the new dests.
4789   PBI->setCondition(Cond);
4790   PBI->setSuccessor(0, CommonDest);
4791   PBI->setSuccessor(1, OtherDest);
4792 
4793   if (DTU) {
4794     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4795     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4796 
4797     DTU->applyUpdates(Updates);
4798   }
4799 
4800   // Update branch weight for PBI.
4801   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4802   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4803   bool HasWeights =
4804       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4805                              SuccTrueWeight, SuccFalseWeight);
4806   if (HasWeights) {
4807     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4808     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4809     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4810     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4811     // The weight to CommonDest should be PredCommon * SuccTotal +
4812     //                                    PredOther * SuccCommon.
4813     // The weight to OtherDest should be PredOther * SuccOther.
4814     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4815                                   PredOther * SuccCommon,
4816                               PredOther * SuccOther};
4817     // Halve the weights if any of them cannot fit in an uint32_t
4818     fitWeights(NewWeights);
4819 
4820     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4821   }
4822 
4823   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4824   // block that are identical to the entries for BI's block.
4825   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4826 
4827   // We know that the CommonDest already had an edge from PBI to
4828   // it.  If it has PHIs though, the PHIs may have different
4829   // entries for BB and PBI's BB.  If so, insert a select to make
4830   // them agree.
4831   for (PHINode &PN : CommonDest->phis()) {
4832     Value *BIV = PN.getIncomingValueForBlock(BB);
4833     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4834     Value *PBIV = PN.getIncomingValue(PBBIdx);
4835     if (BIV != PBIV) {
4836       // Insert a select in PBI to pick the right value.
4837       SelectInst *NV = cast<SelectInst>(
4838           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4839       PN.setIncomingValue(PBBIdx, NV);
4840       // Although the select has the same condition as PBI, the original branch
4841       // weights for PBI do not apply to the new select because the select's
4842       // 'logical' edges are incoming edges of the phi that is eliminated, not
4843       // the outgoing edges of PBI.
4844       if (HasWeights) {
4845         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4846         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4847         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4848         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4849         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4850         // The weight to PredOtherDest should be PredOther * SuccCommon.
4851         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4852                                   PredOther * SuccCommon};
4853 
4854         fitWeights(NewWeights);
4855 
4856         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4857                          /*IsExpected=*/false);
4858       }
4859     }
4860   }
4861 
4862   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4863   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4864 
4865   // This basic block is probably dead.  We know it has at least
4866   // one fewer predecessor.
4867   return true;
4868 }
4869 
4870 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4871 // true or to FalseBB if Cond is false.
4872 // Takes care of updating the successors and removing the old terminator.
4873 // Also makes sure not to introduce new successors by assuming that edges to
4874 // non-successor TrueBBs and FalseBBs aren't reachable.
4875 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4876                                                 Value *Cond, BasicBlock *TrueBB,
4877                                                 BasicBlock *FalseBB,
4878                                                 uint32_t TrueWeight,
4879                                                 uint32_t FalseWeight) {
4880   auto *BB = OldTerm->getParent();
4881   // Remove any superfluous successor edges from the CFG.
4882   // First, figure out which successors to preserve.
4883   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4884   // successor.
4885   BasicBlock *KeepEdge1 = TrueBB;
4886   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4887 
4888   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4889 
4890   // Then remove the rest.
4891   for (BasicBlock *Succ : successors(OldTerm)) {
4892     // Make sure only to keep exactly one copy of each edge.
4893     if (Succ == KeepEdge1)
4894       KeepEdge1 = nullptr;
4895     else if (Succ == KeepEdge2)
4896       KeepEdge2 = nullptr;
4897     else {
4898       Succ->removePredecessor(BB,
4899                               /*KeepOneInputPHIs=*/true);
4900 
4901       if (Succ != TrueBB && Succ != FalseBB)
4902         RemovedSuccessors.insert(Succ);
4903     }
4904   }
4905 
4906   IRBuilder<> Builder(OldTerm);
4907   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4908 
4909   // Insert an appropriate new terminator.
4910   if (!KeepEdge1 && !KeepEdge2) {
4911     if (TrueBB == FalseBB) {
4912       // We were only looking for one successor, and it was present.
4913       // Create an unconditional branch to it.
4914       Builder.CreateBr(TrueBB);
4915     } else {
4916       // We found both of the successors we were looking for.
4917       // Create a conditional branch sharing the condition of the select.
4918       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4919       if (TrueWeight != FalseWeight)
4920         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4921     }
4922   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4923     // Neither of the selected blocks were successors, so this
4924     // terminator must be unreachable.
4925     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4926   } else {
4927     // One of the selected values was a successor, but the other wasn't.
4928     // Insert an unconditional branch to the one that was found;
4929     // the edge to the one that wasn't must be unreachable.
4930     if (!KeepEdge1) {
4931       // Only TrueBB was found.
4932       Builder.CreateBr(TrueBB);
4933     } else {
4934       // Only FalseBB was found.
4935       Builder.CreateBr(FalseBB);
4936     }
4937   }
4938 
4939   eraseTerminatorAndDCECond(OldTerm);
4940 
4941   if (DTU) {
4942     SmallVector<DominatorTree::UpdateType, 2> Updates;
4943     Updates.reserve(RemovedSuccessors.size());
4944     for (auto *RemovedSuccessor : RemovedSuccessors)
4945       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4946     DTU->applyUpdates(Updates);
4947   }
4948 
4949   return true;
4950 }
4951 
4952 // Replaces
4953 //   (switch (select cond, X, Y)) on constant X, Y
4954 // with a branch - conditional if X and Y lead to distinct BBs,
4955 // unconditional otherwise.
4956 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4957                                             SelectInst *Select) {
4958   // Check for constant integer values in the select.
4959   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4960   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4961   if (!TrueVal || !FalseVal)
4962     return false;
4963 
4964   // Find the relevant condition and destinations.
4965   Value *Condition = Select->getCondition();
4966   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4967   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4968 
4969   // Get weight for TrueBB and FalseBB.
4970   uint32_t TrueWeight = 0, FalseWeight = 0;
4971   SmallVector<uint64_t, 8> Weights;
4972   bool HasWeights = hasBranchWeightMD(*SI);
4973   if (HasWeights) {
4974     getBranchWeights(SI, Weights);
4975     if (Weights.size() == 1 + SI->getNumCases()) {
4976       TrueWeight =
4977           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4978       FalseWeight =
4979           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4980     }
4981   }
4982 
4983   // Perform the actual simplification.
4984   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4985                                     FalseWeight);
4986 }
4987 
4988 // Replaces
4989 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4990 //                             blockaddress(@fn, BlockB)))
4991 // with
4992 //   (br cond, BlockA, BlockB).
4993 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4994                                                 SelectInst *SI) {
4995   // Check that both operands of the select are block addresses.
4996   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4997   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4998   if (!TBA || !FBA)
4999     return false;
5000 
5001   // Extract the actual blocks.
5002   BasicBlock *TrueBB = TBA->getBasicBlock();
5003   BasicBlock *FalseBB = FBA->getBasicBlock();
5004 
5005   // Perform the actual simplification.
5006   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
5007                                     0);
5008 }
5009 
5010 /// This is called when we find an icmp instruction
5011 /// (a seteq/setne with a constant) as the only instruction in a
5012 /// block that ends with an uncond branch.  We are looking for a very specific
5013 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
5014 /// this case, we merge the first two "or's of icmp" into a switch, but then the
5015 /// default value goes to an uncond block with a seteq in it, we get something
5016 /// like:
5017 ///
5018 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
5019 /// DEFAULT:
5020 ///   %tmp = icmp eq i8 %A, 92
5021 ///   br label %end
5022 /// end:
5023 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
5024 ///
5025 /// We prefer to split the edge to 'end' so that there is a true/false entry to
5026 /// the PHI, merging the third icmp into the switch.
5027 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
5028     ICmpInst *ICI, IRBuilder<> &Builder) {
5029   BasicBlock *BB = ICI->getParent();
5030 
5031   // If the block has any PHIs in it or the icmp has multiple uses, it is too
5032   // complex.
5033   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
5034     return false;
5035 
5036   Value *V = ICI->getOperand(0);
5037   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
5038 
5039   // The pattern we're looking for is where our only predecessor is a switch on
5040   // 'V' and this block is the default case for the switch.  In this case we can
5041   // fold the compared value into the switch to simplify things.
5042   BasicBlock *Pred = BB->getSinglePredecessor();
5043   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
5044     return false;
5045 
5046   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
5047   if (SI->getCondition() != V)
5048     return false;
5049 
5050   // If BB is reachable on a non-default case, then we simply know the value of
5051   // V in this block.  Substitute it and constant fold the icmp instruction
5052   // away.
5053   if (SI->getDefaultDest() != BB) {
5054     ConstantInt *VVal = SI->findCaseDest(BB);
5055     assert(VVal && "Should have a unique destination value");
5056     ICI->setOperand(0, VVal);
5057 
5058     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
5059       ICI->replaceAllUsesWith(V);
5060       ICI->eraseFromParent();
5061     }
5062     // BB is now empty, so it is likely to simplify away.
5063     return requestResimplify();
5064   }
5065 
5066   // Ok, the block is reachable from the default dest.  If the constant we're
5067   // comparing exists in one of the other edges, then we can constant fold ICI
5068   // and zap it.
5069   if (SI->findCaseValue(Cst) != SI->case_default()) {
5070     Value *V;
5071     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5072       V = ConstantInt::getFalse(BB->getContext());
5073     else
5074       V = ConstantInt::getTrue(BB->getContext());
5075 
5076     ICI->replaceAllUsesWith(V);
5077     ICI->eraseFromParent();
5078     // BB is now empty, so it is likely to simplify away.
5079     return requestResimplify();
5080   }
5081 
5082   // The use of the icmp has to be in the 'end' block, by the only PHI node in
5083   // the block.
5084   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
5085   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5086   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5087       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5088     return false;
5089 
5090   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5091   // true in the PHI.
5092   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5093   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5094 
5095   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5096     std::swap(DefaultCst, NewCst);
5097 
5098   // Replace ICI (which is used by the PHI for the default value) with true or
5099   // false depending on if it is EQ or NE.
5100   ICI->replaceAllUsesWith(DefaultCst);
5101   ICI->eraseFromParent();
5102 
5103   SmallVector<DominatorTree::UpdateType, 2> Updates;
5104 
5105   // Okay, the switch goes to this block on a default value.  Add an edge from
5106   // the switch to the merge point on the compared value.
5107   BasicBlock *NewBB =
5108       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5109   {
5110     SwitchInstProfUpdateWrapper SIW(*SI);
5111     auto W0 = SIW.getSuccessorWeight(0);
5112     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5113     if (W0) {
5114       NewW = ((uint64_t(*W0) + 1) >> 1);
5115       SIW.setSuccessorWeight(0, *NewW);
5116     }
5117     SIW.addCase(Cst, NewBB, NewW);
5118     if (DTU)
5119       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5120   }
5121 
5122   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5123   Builder.SetInsertPoint(NewBB);
5124   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5125   Builder.CreateBr(SuccBlock);
5126   PHIUse->addIncoming(NewCst, NewBB);
5127   if (DTU) {
5128     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5129     DTU->applyUpdates(Updates);
5130   }
5131   return true;
5132 }
5133 
5134 /// The specified branch is a conditional branch.
5135 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5136 /// fold it into a switch instruction if so.
5137 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5138                                                IRBuilder<> &Builder,
5139                                                const DataLayout &DL) {
5140   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5141   if (!Cond)
5142     return false;
5143 
5144   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5145   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5146   // 'setne's and'ed together, collect them.
5147 
5148   // Try to gather values from a chain of and/or to be turned into a switch
5149   ConstantComparesGatherer ConstantCompare(Cond, DL);
5150   // Unpack the result
5151   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5152   Value *CompVal = ConstantCompare.CompValue;
5153   unsigned UsedICmps = ConstantCompare.UsedICmps;
5154   Value *ExtraCase = ConstantCompare.Extra;
5155 
5156   // If we didn't have a multiply compared value, fail.
5157   if (!CompVal)
5158     return false;
5159 
5160   // Avoid turning single icmps into a switch.
5161   if (UsedICmps <= 1)
5162     return false;
5163 
5164   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5165 
5166   // There might be duplicate constants in the list, which the switch
5167   // instruction can't handle, remove them now.
5168   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5169   Values.erase(llvm::unique(Values), Values.end());
5170 
5171   // If Extra was used, we require at least two switch values to do the
5172   // transformation.  A switch with one value is just a conditional branch.
5173   if (ExtraCase && Values.size() < 2)
5174     return false;
5175 
5176   // TODO: Preserve branch weight metadata, similarly to how
5177   // foldValueComparisonIntoPredecessors preserves it.
5178 
5179   // Figure out which block is which destination.
5180   BasicBlock *DefaultBB = BI->getSuccessor(1);
5181   BasicBlock *EdgeBB = BI->getSuccessor(0);
5182   if (!TrueWhenEqual)
5183     std::swap(DefaultBB, EdgeBB);
5184 
5185   BasicBlock *BB = BI->getParent();
5186 
5187   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5188                     << " cases into SWITCH.  BB is:\n"
5189                     << *BB);
5190 
5191   SmallVector<DominatorTree::UpdateType, 2> Updates;
5192 
5193   // If there are any extra values that couldn't be folded into the switch
5194   // then we evaluate them with an explicit branch first. Split the block
5195   // right before the condbr to handle it.
5196   if (ExtraCase) {
5197     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5198                                    /*MSSAU=*/nullptr, "switch.early.test");
5199 
5200     // Remove the uncond branch added to the old block.
5201     Instruction *OldTI = BB->getTerminator();
5202     Builder.SetInsertPoint(OldTI);
5203 
5204     // There can be an unintended UB if extra values are Poison. Before the
5205     // transformation, extra values may not be evaluated according to the
5206     // condition, and it will not raise UB. But after transformation, we are
5207     // evaluating extra values before checking the condition, and it will raise
5208     // UB. It can be solved by adding freeze instruction to extra values.
5209     AssumptionCache *AC = Options.AC;
5210 
5211     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5212       ExtraCase = Builder.CreateFreeze(ExtraCase);
5213 
5214     if (TrueWhenEqual)
5215       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5216     else
5217       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5218 
5219     OldTI->eraseFromParent();
5220 
5221     if (DTU)
5222       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5223 
5224     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5225     // for the edge we just added.
5226     addPredecessorToBlock(EdgeBB, BB, NewBB);
5227 
5228     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5229                       << "\nEXTRABB = " << *BB);
5230     BB = NewBB;
5231   }
5232 
5233   Builder.SetInsertPoint(BI);
5234   // Convert pointer to int before we switch.
5235   if (CompVal->getType()->isPointerTy()) {
5236     CompVal = Builder.CreatePtrToInt(
5237         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5238   }
5239 
5240   // Create the new switch instruction now.
5241   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5242 
5243   // Add all of the 'cases' to the switch instruction.
5244   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5245     New->addCase(Values[i], EdgeBB);
5246 
5247   // We added edges from PI to the EdgeBB.  As such, if there were any
5248   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5249   // the number of edges added.
5250   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5251     PHINode *PN = cast<PHINode>(BBI);
5252     Value *InVal = PN->getIncomingValueForBlock(BB);
5253     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5254       PN->addIncoming(InVal, BB);
5255   }
5256 
5257   // Erase the old branch instruction.
5258   eraseTerminatorAndDCECond(BI);
5259   if (DTU)
5260     DTU->applyUpdates(Updates);
5261 
5262   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5263   return true;
5264 }
5265 
5266 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5267   if (isa<PHINode>(RI->getValue()))
5268     return simplifyCommonResume(RI);
5269   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
5270            RI->getValue() == RI->getParent()->getFirstNonPHI())
5271     // The resume must unwind the exception that caused control to branch here.
5272     return simplifySingleResume(RI);
5273 
5274   return false;
5275 }
5276 
5277 // Check if cleanup block is empty
5278 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5279   for (Instruction &I : R) {
5280     auto *II = dyn_cast<IntrinsicInst>(&I);
5281     if (!II)
5282       return false;
5283 
5284     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5285     switch (IntrinsicID) {
5286     case Intrinsic::dbg_declare:
5287     case Intrinsic::dbg_value:
5288     case Intrinsic::dbg_label:
5289     case Intrinsic::lifetime_end:
5290       break;
5291     default:
5292       return false;
5293     }
5294   }
5295   return true;
5296 }
5297 
5298 // Simplify resume that is shared by several landing pads (phi of landing pad).
5299 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5300   BasicBlock *BB = RI->getParent();
5301 
5302   // Check that there are no other instructions except for debug and lifetime
5303   // intrinsics between the phi's and resume instruction.
5304   if (!isCleanupBlockEmpty(
5305           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
5306     return false;
5307 
5308   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5309   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5310 
5311   // Check incoming blocks to see if any of them are trivial.
5312   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5313        Idx++) {
5314     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5315     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5316 
5317     // If the block has other successors, we can not delete it because
5318     // it has other dependents.
5319     if (IncomingBB->getUniqueSuccessor() != BB)
5320       continue;
5321 
5322     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
5323     // Not the landing pad that caused the control to branch here.
5324     if (IncomingValue != LandingPad)
5325       continue;
5326 
5327     if (isCleanupBlockEmpty(
5328             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5329       TrivialUnwindBlocks.insert(IncomingBB);
5330   }
5331 
5332   // If no trivial unwind blocks, don't do any simplifications.
5333   if (TrivialUnwindBlocks.empty())
5334     return false;
5335 
5336   // Turn all invokes that unwind here into calls.
5337   for (auto *TrivialBB : TrivialUnwindBlocks) {
5338     // Blocks that will be simplified should be removed from the phi node.
5339     // Note there could be multiple edges to the resume block, and we need
5340     // to remove them all.
5341     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5342       BB->removePredecessor(TrivialBB, true);
5343 
5344     for (BasicBlock *Pred :
5345          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5346       removeUnwindEdge(Pred, DTU);
5347       ++NumInvokes;
5348     }
5349 
5350     // In each SimplifyCFG run, only the current processed block can be erased.
5351     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5352     // of erasing TrivialBB, we only remove the branch to the common resume
5353     // block so that we can later erase the resume block since it has no
5354     // predecessors.
5355     TrivialBB->getTerminator()->eraseFromParent();
5356     new UnreachableInst(RI->getContext(), TrivialBB);
5357     if (DTU)
5358       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5359   }
5360 
5361   // Delete the resume block if all its predecessors have been removed.
5362   if (pred_empty(BB))
5363     DeleteDeadBlock(BB, DTU);
5364 
5365   return !TrivialUnwindBlocks.empty();
5366 }
5367 
5368 // Simplify resume that is only used by a single (non-phi) landing pad.
5369 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5370   BasicBlock *BB = RI->getParent();
5371   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5372   assert(RI->getValue() == LPInst &&
5373          "Resume must unwind the exception that caused control to here");
5374 
5375   // Check that there are no other instructions except for debug intrinsics.
5376   if (!isCleanupBlockEmpty(
5377           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5378     return false;
5379 
5380   // Turn all invokes that unwind here into calls and delete the basic block.
5381   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5382     removeUnwindEdge(Pred, DTU);
5383     ++NumInvokes;
5384   }
5385 
5386   // The landingpad is now unreachable.  Zap it.
5387   DeleteDeadBlock(BB, DTU);
5388   return true;
5389 }
5390 
5391 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5392   // If this is a trivial cleanup pad that executes no instructions, it can be
5393   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5394   // that is an EH pad will be updated to continue to the caller and any
5395   // predecessor that terminates with an invoke instruction will have its invoke
5396   // instruction converted to a call instruction.  If the cleanup pad being
5397   // simplified does not continue to the caller, each predecessor will be
5398   // updated to continue to the unwind destination of the cleanup pad being
5399   // simplified.
5400   BasicBlock *BB = RI->getParent();
5401   CleanupPadInst *CPInst = RI->getCleanupPad();
5402   if (CPInst->getParent() != BB)
5403     // This isn't an empty cleanup.
5404     return false;
5405 
5406   // We cannot kill the pad if it has multiple uses.  This typically arises
5407   // from unreachable basic blocks.
5408   if (!CPInst->hasOneUse())
5409     return false;
5410 
5411   // Check that there are no other instructions except for benign intrinsics.
5412   if (!isCleanupBlockEmpty(
5413           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5414     return false;
5415 
5416   // If the cleanup return we are simplifying unwinds to the caller, this will
5417   // set UnwindDest to nullptr.
5418   BasicBlock *UnwindDest = RI->getUnwindDest();
5419   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5420 
5421   // We're about to remove BB from the control flow.  Before we do, sink any
5422   // PHINodes into the unwind destination.  Doing this before changing the
5423   // control flow avoids some potentially slow checks, since we can currently
5424   // be certain that UnwindDest and BB have no common predecessors (since they
5425   // are both EH pads).
5426   if (UnwindDest) {
5427     // First, go through the PHI nodes in UnwindDest and update any nodes that
5428     // reference the block we are removing
5429     for (PHINode &DestPN : UnwindDest->phis()) {
5430       int Idx = DestPN.getBasicBlockIndex(BB);
5431       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5432       assert(Idx != -1);
5433       // This PHI node has an incoming value that corresponds to a control
5434       // path through the cleanup pad we are removing.  If the incoming
5435       // value is in the cleanup pad, it must be a PHINode (because we
5436       // verified above that the block is otherwise empty).  Otherwise, the
5437       // value is either a constant or a value that dominates the cleanup
5438       // pad being removed.
5439       //
5440       // Because BB and UnwindDest are both EH pads, all of their
5441       // predecessors must unwind to these blocks, and since no instruction
5442       // can have multiple unwind destinations, there will be no overlap in
5443       // incoming blocks between SrcPN and DestPN.
5444       Value *SrcVal = DestPN.getIncomingValue(Idx);
5445       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5446 
5447       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5448       for (auto *Pred : predecessors(BB)) {
5449         Value *Incoming =
5450             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5451         DestPN.addIncoming(Incoming, Pred);
5452       }
5453     }
5454 
5455     // Sink any remaining PHI nodes directly into UnwindDest.
5456     Instruction *InsertPt = DestEHPad;
5457     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5458       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5459         // If the PHI node has no uses or all of its uses are in this basic
5460         // block (meaning they are debug or lifetime intrinsics), just leave
5461         // it.  It will be erased when we erase BB below.
5462         continue;
5463 
5464       // Otherwise, sink this PHI node into UnwindDest.
5465       // Any predecessors to UnwindDest which are not already represented
5466       // must be back edges which inherit the value from the path through
5467       // BB.  In this case, the PHI value must reference itself.
5468       for (auto *pred : predecessors(UnwindDest))
5469         if (pred != BB)
5470           PN.addIncoming(&PN, pred);
5471       PN.moveBefore(InsertPt);
5472       // Also, add a dummy incoming value for the original BB itself,
5473       // so that the PHI is well-formed until we drop said predecessor.
5474       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5475     }
5476   }
5477 
5478   std::vector<DominatorTree::UpdateType> Updates;
5479 
5480   // We use make_early_inc_range here because we will remove all predecessors.
5481   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5482     if (UnwindDest == nullptr) {
5483       if (DTU) {
5484         DTU->applyUpdates(Updates);
5485         Updates.clear();
5486       }
5487       removeUnwindEdge(PredBB, DTU);
5488       ++NumInvokes;
5489     } else {
5490       BB->removePredecessor(PredBB);
5491       Instruction *TI = PredBB->getTerminator();
5492       TI->replaceUsesOfWith(BB, UnwindDest);
5493       if (DTU) {
5494         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5495         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5496       }
5497     }
5498   }
5499 
5500   if (DTU)
5501     DTU->applyUpdates(Updates);
5502 
5503   DeleteDeadBlock(BB, DTU);
5504 
5505   return true;
5506 }
5507 
5508 // Try to merge two cleanuppads together.
5509 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5510   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5511   // with.
5512   BasicBlock *UnwindDest = RI->getUnwindDest();
5513   if (!UnwindDest)
5514     return false;
5515 
5516   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5517   // be safe to merge without code duplication.
5518   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5519     return false;
5520 
5521   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5522   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5523   if (!SuccessorCleanupPad)
5524     return false;
5525 
5526   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5527   // Replace any uses of the successor cleanupad with the predecessor pad
5528   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5529   // funclet bundle operands.
5530   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5531   // Remove the old cleanuppad.
5532   SuccessorCleanupPad->eraseFromParent();
5533   // Now, we simply replace the cleanupret with a branch to the unwind
5534   // destination.
5535   BranchInst::Create(UnwindDest, RI->getParent());
5536   RI->eraseFromParent();
5537 
5538   return true;
5539 }
5540 
5541 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5542   // It is possible to transiantly have an undef cleanuppad operand because we
5543   // have deleted some, but not all, dead blocks.
5544   // Eventually, this block will be deleted.
5545   if (isa<UndefValue>(RI->getOperand(0)))
5546     return false;
5547 
5548   if (mergeCleanupPad(RI))
5549     return true;
5550 
5551   if (removeEmptyCleanup(RI, DTU))
5552     return true;
5553 
5554   return false;
5555 }
5556 
5557 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5558 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5559   BasicBlock *BB = UI->getParent();
5560 
5561   bool Changed = false;
5562 
5563   // Ensure that any debug-info records that used to occur after the Unreachable
5564   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5565   // the block.
5566   BB->flushTerminatorDbgRecords();
5567 
5568   // Debug-info records on the unreachable inst itself should be deleted, as
5569   // below we delete everything past the final executable instruction.
5570   UI->dropDbgRecords();
5571 
5572   // If there are any instructions immediately before the unreachable that can
5573   // be removed, do so.
5574   while (UI->getIterator() != BB->begin()) {
5575     BasicBlock::iterator BBI = UI->getIterator();
5576     --BBI;
5577 
5578     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5579       break; // Can not drop any more instructions. We're done here.
5580     // Otherwise, this instruction can be freely erased,
5581     // even if it is not side-effect free.
5582 
5583     // Note that deleting EH's here is in fact okay, although it involves a bit
5584     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5585     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5586     // and we can therefore guarantee this block will be erased.
5587 
5588     // If we're deleting this, we're deleting any subsequent debug info, so
5589     // delete DbgRecords.
5590     BBI->dropDbgRecords();
5591 
5592     // Delete this instruction (any uses are guaranteed to be dead)
5593     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5594     BBI->eraseFromParent();
5595     Changed = true;
5596   }
5597 
5598   // If the unreachable instruction is the first in the block, take a gander
5599   // at all of the predecessors of this instruction, and simplify them.
5600   if (&BB->front() != UI)
5601     return Changed;
5602 
5603   std::vector<DominatorTree::UpdateType> Updates;
5604 
5605   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5606   for (BasicBlock *Predecessor : Preds) {
5607     Instruction *TI = Predecessor->getTerminator();
5608     IRBuilder<> Builder(TI);
5609     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5610       // We could either have a proper unconditional branch,
5611       // or a degenerate conditional branch with matching destinations.
5612       if (all_of(BI->successors(),
5613                  [BB](auto *Successor) { return Successor == BB; })) {
5614         new UnreachableInst(TI->getContext(), TI->getIterator());
5615         TI->eraseFromParent();
5616         Changed = true;
5617       } else {
5618         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5619         Value* Cond = BI->getCondition();
5620         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5621                "The destinations are guaranteed to be different here.");
5622         CallInst *Assumption;
5623         if (BI->getSuccessor(0) == BB) {
5624           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5625           Builder.CreateBr(BI->getSuccessor(1));
5626         } else {
5627           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5628           Assumption = Builder.CreateAssumption(Cond);
5629           Builder.CreateBr(BI->getSuccessor(0));
5630         }
5631         if (Options.AC)
5632           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5633 
5634         eraseTerminatorAndDCECond(BI);
5635         Changed = true;
5636       }
5637       if (DTU)
5638         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5639     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5640       SwitchInstProfUpdateWrapper SU(*SI);
5641       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5642         if (i->getCaseSuccessor() != BB) {
5643           ++i;
5644           continue;
5645         }
5646         BB->removePredecessor(SU->getParent());
5647         i = SU.removeCase(i);
5648         e = SU->case_end();
5649         Changed = true;
5650       }
5651       // Note that the default destination can't be removed!
5652       if (DTU && SI->getDefaultDest() != BB)
5653         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5654     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5655       if (II->getUnwindDest() == BB) {
5656         if (DTU) {
5657           DTU->applyUpdates(Updates);
5658           Updates.clear();
5659         }
5660         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5661         if (!CI->doesNotThrow())
5662           CI->setDoesNotThrow();
5663         Changed = true;
5664       }
5665     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5666       if (CSI->getUnwindDest() == BB) {
5667         if (DTU) {
5668           DTU->applyUpdates(Updates);
5669           Updates.clear();
5670         }
5671         removeUnwindEdge(TI->getParent(), DTU);
5672         Changed = true;
5673         continue;
5674       }
5675 
5676       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5677                                              E = CSI->handler_end();
5678            I != E; ++I) {
5679         if (*I == BB) {
5680           CSI->removeHandler(I);
5681           --I;
5682           --E;
5683           Changed = true;
5684         }
5685       }
5686       if (DTU)
5687         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5688       if (CSI->getNumHandlers() == 0) {
5689         if (CSI->hasUnwindDest()) {
5690           // Redirect all predecessors of the block containing CatchSwitchInst
5691           // to instead branch to the CatchSwitchInst's unwind destination.
5692           if (DTU) {
5693             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5694               Updates.push_back({DominatorTree::Insert,
5695                                  PredecessorOfPredecessor,
5696                                  CSI->getUnwindDest()});
5697               Updates.push_back({DominatorTree::Delete,
5698                                  PredecessorOfPredecessor, Predecessor});
5699             }
5700           }
5701           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5702         } else {
5703           // Rewrite all preds to unwind to caller (or from invoke to call).
5704           if (DTU) {
5705             DTU->applyUpdates(Updates);
5706             Updates.clear();
5707           }
5708           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5709           for (BasicBlock *EHPred : EHPreds)
5710             removeUnwindEdge(EHPred, DTU);
5711         }
5712         // The catchswitch is no longer reachable.
5713         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5714         CSI->eraseFromParent();
5715         Changed = true;
5716       }
5717     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5718       (void)CRI;
5719       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5720              "Expected to always have an unwind to BB.");
5721       if (DTU)
5722         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5723       new UnreachableInst(TI->getContext(), TI->getIterator());
5724       TI->eraseFromParent();
5725       Changed = true;
5726     }
5727   }
5728 
5729   if (DTU)
5730     DTU->applyUpdates(Updates);
5731 
5732   // If this block is now dead, remove it.
5733   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5734     DeleteDeadBlock(BB, DTU);
5735     return true;
5736   }
5737 
5738   return Changed;
5739 }
5740 
5741 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5742   assert(Cases.size() >= 1);
5743 
5744   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5745   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5746     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5747       return false;
5748   }
5749   return true;
5750 }
5751 
5752 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5753                                            DomTreeUpdater *DTU,
5754                                            bool RemoveOrigDefaultBlock = true) {
5755   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5756   auto *BB = Switch->getParent();
5757   auto *OrigDefaultBlock = Switch->getDefaultDest();
5758   if (RemoveOrigDefaultBlock)
5759     OrigDefaultBlock->removePredecessor(BB);
5760   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5761       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5762       OrigDefaultBlock);
5763   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5764   Switch->setDefaultDest(&*NewDefaultBlock);
5765   if (DTU) {
5766     SmallVector<DominatorTree::UpdateType, 2> Updates;
5767     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5768     if (RemoveOrigDefaultBlock &&
5769         !is_contained(successors(BB), OrigDefaultBlock))
5770       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5771     DTU->applyUpdates(Updates);
5772   }
5773 }
5774 
5775 /// Turn a switch into an integer range comparison and branch.
5776 /// Switches with more than 2 destinations are ignored.
5777 /// Switches with 1 destination are also ignored.
5778 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5779                                              IRBuilder<> &Builder) {
5780   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5781 
5782   bool HasDefault =
5783       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5784 
5785   auto *BB = SI->getParent();
5786 
5787   // Partition the cases into two sets with different destinations.
5788   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5789   BasicBlock *DestB = nullptr;
5790   SmallVector<ConstantInt *, 16> CasesA;
5791   SmallVector<ConstantInt *, 16> CasesB;
5792 
5793   for (auto Case : SI->cases()) {
5794     BasicBlock *Dest = Case.getCaseSuccessor();
5795     if (!DestA)
5796       DestA = Dest;
5797     if (Dest == DestA) {
5798       CasesA.push_back(Case.getCaseValue());
5799       continue;
5800     }
5801     if (!DestB)
5802       DestB = Dest;
5803     if (Dest == DestB) {
5804       CasesB.push_back(Case.getCaseValue());
5805       continue;
5806     }
5807     return false; // More than two destinations.
5808   }
5809   if (!DestB)
5810     return false; // All destinations are the same and the default is unreachable
5811 
5812   assert(DestA && DestB &&
5813          "Single-destination switch should have been folded.");
5814   assert(DestA != DestB);
5815   assert(DestB != SI->getDefaultDest());
5816   assert(!CasesB.empty() && "There must be non-default cases.");
5817   assert(!CasesA.empty() || HasDefault);
5818 
5819   // Figure out if one of the sets of cases form a contiguous range.
5820   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5821   BasicBlock *ContiguousDest = nullptr;
5822   BasicBlock *OtherDest = nullptr;
5823   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5824     ContiguousCases = &CasesA;
5825     ContiguousDest = DestA;
5826     OtherDest = DestB;
5827   } else if (casesAreContiguous(CasesB)) {
5828     ContiguousCases = &CasesB;
5829     ContiguousDest = DestB;
5830     OtherDest = DestA;
5831   } else
5832     return false;
5833 
5834   // Start building the compare and branch.
5835 
5836   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5837   Constant *NumCases =
5838       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5839 
5840   Value *Sub = SI->getCondition();
5841   if (!Offset->isNullValue())
5842     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5843 
5844   Value *Cmp;
5845   // If NumCases overflowed, then all possible values jump to the successor.
5846   if (NumCases->isNullValue() && !ContiguousCases->empty())
5847     Cmp = ConstantInt::getTrue(SI->getContext());
5848   else
5849     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5850   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5851 
5852   // Update weight for the newly-created conditional branch.
5853   if (hasBranchWeightMD(*SI)) {
5854     SmallVector<uint64_t, 8> Weights;
5855     getBranchWeights(SI, Weights);
5856     if (Weights.size() == 1 + SI->getNumCases()) {
5857       uint64_t TrueWeight = 0;
5858       uint64_t FalseWeight = 0;
5859       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5860         if (SI->getSuccessor(I) == ContiguousDest)
5861           TrueWeight += Weights[I];
5862         else
5863           FalseWeight += Weights[I];
5864       }
5865       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5866         TrueWeight /= 2;
5867         FalseWeight /= 2;
5868       }
5869       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5870     }
5871   }
5872 
5873   // Prune obsolete incoming values off the successors' PHI nodes.
5874   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5875     unsigned PreviousEdges = ContiguousCases->size();
5876     if (ContiguousDest == SI->getDefaultDest())
5877       ++PreviousEdges;
5878     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5879       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5880   }
5881   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5882     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5883     if (OtherDest == SI->getDefaultDest())
5884       ++PreviousEdges;
5885     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5886       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5887   }
5888 
5889   // Clean up the default block - it may have phis or other instructions before
5890   // the unreachable terminator.
5891   if (!HasDefault)
5892     createUnreachableSwitchDefault(SI, DTU);
5893 
5894   auto *UnreachableDefault = SI->getDefaultDest();
5895 
5896   // Drop the switch.
5897   SI->eraseFromParent();
5898 
5899   if (!HasDefault && DTU)
5900     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5901 
5902   return true;
5903 }
5904 
5905 /// Compute masked bits for the condition of a switch
5906 /// and use it to remove dead cases.
5907 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5908                                      AssumptionCache *AC,
5909                                      const DataLayout &DL) {
5910   Value *Cond = SI->getCondition();
5911   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5912 
5913   // We can also eliminate cases by determining that their values are outside of
5914   // the limited range of the condition based on how many significant (non-sign)
5915   // bits are in the condition value.
5916   unsigned MaxSignificantBitsInCond =
5917       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5918 
5919   // Gather dead cases.
5920   SmallVector<ConstantInt *, 8> DeadCases;
5921   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5922   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5923   for (const auto &Case : SI->cases()) {
5924     auto *Successor = Case.getCaseSuccessor();
5925     if (DTU) {
5926       if (!NumPerSuccessorCases.count(Successor))
5927         UniqueSuccessors.push_back(Successor);
5928       ++NumPerSuccessorCases[Successor];
5929     }
5930     const APInt &CaseVal = Case.getCaseValue()->getValue();
5931     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5932         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5933       DeadCases.push_back(Case.getCaseValue());
5934       if (DTU)
5935         --NumPerSuccessorCases[Successor];
5936       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5937                         << " is dead.\n");
5938     }
5939   }
5940 
5941   // If we can prove that the cases must cover all possible values, the
5942   // default destination becomes dead and we can remove it.  If we know some
5943   // of the bits in the value, we can use that to more precisely compute the
5944   // number of possible unique case values.
5945   bool HasDefault =
5946       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5947   const unsigned NumUnknownBits =
5948       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5949   assert(NumUnknownBits <= Known.getBitWidth());
5950   if (HasDefault && DeadCases.empty() &&
5951       NumUnknownBits < 64 /* avoid overflow */) {
5952     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5953     if (SI->getNumCases() == AllNumCases) {
5954       createUnreachableSwitchDefault(SI, DTU);
5955       return true;
5956     }
5957     // When only one case value is missing, replace default with that case.
5958     // Eliminating the default branch will provide more opportunities for
5959     // optimization, such as lookup tables.
5960     if (SI->getNumCases() == AllNumCases - 1) {
5961       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5962       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5963       if (CondTy->getIntegerBitWidth() > 64 ||
5964           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5965         return false;
5966 
5967       uint64_t MissingCaseVal = 0;
5968       for (const auto &Case : SI->cases())
5969         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5970       auto *MissingCase =
5971           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5972       SwitchInstProfUpdateWrapper SIW(*SI);
5973       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5974       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5975       SIW.setSuccessorWeight(0, 0);
5976       return true;
5977     }
5978   }
5979 
5980   if (DeadCases.empty())
5981     return false;
5982 
5983   SwitchInstProfUpdateWrapper SIW(*SI);
5984   for (ConstantInt *DeadCase : DeadCases) {
5985     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5986     assert(CaseI != SI->case_default() &&
5987            "Case was not found. Probably mistake in DeadCases forming.");
5988     // Prune unused values from PHI nodes.
5989     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5990     SIW.removeCase(CaseI);
5991   }
5992 
5993   if (DTU) {
5994     std::vector<DominatorTree::UpdateType> Updates;
5995     for (auto *Successor : UniqueSuccessors)
5996       if (NumPerSuccessorCases[Successor] == 0)
5997         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5998     DTU->applyUpdates(Updates);
5999   }
6000 
6001   return true;
6002 }
6003 
6004 /// If BB would be eligible for simplification by
6005 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
6006 /// by an unconditional branch), look at the phi node for BB in the successor
6007 /// block and see if the incoming value is equal to CaseValue. If so, return
6008 /// the phi node, and set PhiIndex to BB's index in the phi node.
6009 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
6010                                               BasicBlock *BB, int *PhiIndex) {
6011   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
6012     return nullptr; // BB must be empty to be a candidate for simplification.
6013   if (!BB->getSinglePredecessor())
6014     return nullptr; // BB must be dominated by the switch.
6015 
6016   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
6017   if (!Branch || !Branch->isUnconditional())
6018     return nullptr; // Terminator must be unconditional branch.
6019 
6020   BasicBlock *Succ = Branch->getSuccessor(0);
6021 
6022   for (PHINode &PHI : Succ->phis()) {
6023     int Idx = PHI.getBasicBlockIndex(BB);
6024     assert(Idx >= 0 && "PHI has no entry for predecessor?");
6025 
6026     Value *InValue = PHI.getIncomingValue(Idx);
6027     if (InValue != CaseValue)
6028       continue;
6029 
6030     *PhiIndex = Idx;
6031     return &PHI;
6032   }
6033 
6034   return nullptr;
6035 }
6036 
6037 /// Try to forward the condition of a switch instruction to a phi node
6038 /// dominated by the switch, if that would mean that some of the destination
6039 /// blocks of the switch can be folded away. Return true if a change is made.
6040 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
6041   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
6042 
6043   ForwardingNodesMap ForwardingNodes;
6044   BasicBlock *SwitchBlock = SI->getParent();
6045   bool Changed = false;
6046   for (const auto &Case : SI->cases()) {
6047     ConstantInt *CaseValue = Case.getCaseValue();
6048     BasicBlock *CaseDest = Case.getCaseSuccessor();
6049 
6050     // Replace phi operands in successor blocks that are using the constant case
6051     // value rather than the switch condition variable:
6052     //   switchbb:
6053     //   switch i32 %x, label %default [
6054     //     i32 17, label %succ
6055     //   ...
6056     //   succ:
6057     //     %r = phi i32 ... [ 17, %switchbb ] ...
6058     // -->
6059     //     %r = phi i32 ... [ %x, %switchbb ] ...
6060 
6061     for (PHINode &Phi : CaseDest->phis()) {
6062       // This only works if there is exactly 1 incoming edge from the switch to
6063       // a phi. If there is >1, that means multiple cases of the switch map to 1
6064       // value in the phi, and that phi value is not the switch condition. Thus,
6065       // this transform would not make sense (the phi would be invalid because
6066       // a phi can't have different incoming values from the same block).
6067       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
6068       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
6069           count(Phi.blocks(), SwitchBlock) == 1) {
6070         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
6071         Changed = true;
6072       }
6073     }
6074 
6075     // Collect phi nodes that are indirectly using this switch's case constants.
6076     int PhiIdx;
6077     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
6078       ForwardingNodes[Phi].push_back(PhiIdx);
6079   }
6080 
6081   for (auto &ForwardingNode : ForwardingNodes) {
6082     PHINode *Phi = ForwardingNode.first;
6083     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
6084     // Check if it helps to fold PHI.
6085     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6086       continue;
6087 
6088     for (int Index : Indexes)
6089       Phi->setIncomingValue(Index, SI->getCondition());
6090     Changed = true;
6091   }
6092 
6093   return Changed;
6094 }
6095 
6096 /// Return true if the backend will be able to handle
6097 /// initializing an array of constants like C.
6098 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6099   if (C->isThreadDependent())
6100     return false;
6101   if (C->isDLLImportDependent())
6102     return false;
6103 
6104   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6105       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6106       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6107     return false;
6108 
6109   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6110     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6111     // materializing the array of constants.
6112     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6113     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6114       return false;
6115   }
6116 
6117   if (!TTI.shouldBuildLookupTablesForConstant(C))
6118     return false;
6119 
6120   return true;
6121 }
6122 
6123 /// If V is a Constant, return it. Otherwise, try to look up
6124 /// its constant value in ConstantPool, returning 0 if it's not there.
6125 static Constant *
6126 lookupConstant(Value *V,
6127                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6128   if (Constant *C = dyn_cast<Constant>(V))
6129     return C;
6130   return ConstantPool.lookup(V);
6131 }
6132 
6133 /// Try to fold instruction I into a constant. This works for
6134 /// simple instructions such as binary operations where both operands are
6135 /// constant or can be replaced by constants from the ConstantPool. Returns the
6136 /// resulting constant on success, 0 otherwise.
6137 static Constant *
6138 constantFold(Instruction *I, const DataLayout &DL,
6139              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6140   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6141     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6142     if (!A)
6143       return nullptr;
6144     if (A->isAllOnesValue())
6145       return lookupConstant(Select->getTrueValue(), ConstantPool);
6146     if (A->isNullValue())
6147       return lookupConstant(Select->getFalseValue(), ConstantPool);
6148     return nullptr;
6149   }
6150 
6151   SmallVector<Constant *, 4> COps;
6152   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6153     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6154       COps.push_back(A);
6155     else
6156       return nullptr;
6157   }
6158 
6159   return ConstantFoldInstOperands(I, COps, DL);
6160 }
6161 
6162 /// Try to determine the resulting constant values in phi nodes
6163 /// at the common destination basic block, *CommonDest, for one of the case
6164 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6165 /// case), of a switch instruction SI.
6166 static bool
6167 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6168                BasicBlock **CommonDest,
6169                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6170                const DataLayout &DL, const TargetTransformInfo &TTI) {
6171   // The block from which we enter the common destination.
6172   BasicBlock *Pred = SI->getParent();
6173 
6174   // If CaseDest is empty except for some side-effect free instructions through
6175   // which we can constant-propagate the CaseVal, continue to its successor.
6176   SmallDenseMap<Value *, Constant *> ConstantPool;
6177   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6178   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6179     if (I.isTerminator()) {
6180       // If the terminator is a simple branch, continue to the next block.
6181       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6182         return false;
6183       Pred = CaseDest;
6184       CaseDest = I.getSuccessor(0);
6185     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6186       // Instruction is side-effect free and constant.
6187 
6188       // If the instruction has uses outside this block or a phi node slot for
6189       // the block, it is not safe to bypass the instruction since it would then
6190       // no longer dominate all its uses.
6191       for (auto &Use : I.uses()) {
6192         User *User = Use.getUser();
6193         if (Instruction *I = dyn_cast<Instruction>(User))
6194           if (I->getParent() == CaseDest)
6195             continue;
6196         if (PHINode *Phi = dyn_cast<PHINode>(User))
6197           if (Phi->getIncomingBlock(Use) == CaseDest)
6198             continue;
6199         return false;
6200       }
6201 
6202       ConstantPool.insert(std::make_pair(&I, C));
6203     } else {
6204       break;
6205     }
6206   }
6207 
6208   // If we did not have a CommonDest before, use the current one.
6209   if (!*CommonDest)
6210     *CommonDest = CaseDest;
6211   // If the destination isn't the common one, abort.
6212   if (CaseDest != *CommonDest)
6213     return false;
6214 
6215   // Get the values for this case from phi nodes in the destination block.
6216   for (PHINode &PHI : (*CommonDest)->phis()) {
6217     int Idx = PHI.getBasicBlockIndex(Pred);
6218     if (Idx == -1)
6219       continue;
6220 
6221     Constant *ConstVal =
6222         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6223     if (!ConstVal)
6224       return false;
6225 
6226     // Be conservative about which kinds of constants we support.
6227     if (!validLookupTableConstant(ConstVal, TTI))
6228       return false;
6229 
6230     Res.push_back(std::make_pair(&PHI, ConstVal));
6231   }
6232 
6233   return Res.size() > 0;
6234 }
6235 
6236 // Helper function used to add CaseVal to the list of cases that generate
6237 // Result. Returns the updated number of cases that generate this result.
6238 static size_t mapCaseToResult(ConstantInt *CaseVal,
6239                               SwitchCaseResultVectorTy &UniqueResults,
6240                               Constant *Result) {
6241   for (auto &I : UniqueResults) {
6242     if (I.first == Result) {
6243       I.second.push_back(CaseVal);
6244       return I.second.size();
6245     }
6246   }
6247   UniqueResults.push_back(
6248       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6249   return 1;
6250 }
6251 
6252 // Helper function that initializes a map containing
6253 // results for the PHI node of the common destination block for a switch
6254 // instruction. Returns false if multiple PHI nodes have been found or if
6255 // there is not a common destination block for the switch.
6256 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6257                                   BasicBlock *&CommonDest,
6258                                   SwitchCaseResultVectorTy &UniqueResults,
6259                                   Constant *&DefaultResult,
6260                                   const DataLayout &DL,
6261                                   const TargetTransformInfo &TTI,
6262                                   uintptr_t MaxUniqueResults) {
6263   for (const auto &I : SI->cases()) {
6264     ConstantInt *CaseVal = I.getCaseValue();
6265 
6266     // Resulting value at phi nodes for this case value.
6267     SwitchCaseResultsTy Results;
6268     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6269                         DL, TTI))
6270       return false;
6271 
6272     // Only one value per case is permitted.
6273     if (Results.size() > 1)
6274       return false;
6275 
6276     // Add the case->result mapping to UniqueResults.
6277     const size_t NumCasesForResult =
6278         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6279 
6280     // Early out if there are too many cases for this result.
6281     if (NumCasesForResult > MaxSwitchCasesPerResult)
6282       return false;
6283 
6284     // Early out if there are too many unique results.
6285     if (UniqueResults.size() > MaxUniqueResults)
6286       return false;
6287 
6288     // Check the PHI consistency.
6289     if (!PHI)
6290       PHI = Results[0].first;
6291     else if (PHI != Results[0].first)
6292       return false;
6293   }
6294   // Find the default result value.
6295   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6296   BasicBlock *DefaultDest = SI->getDefaultDest();
6297   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6298                  DL, TTI);
6299   // If the default value is not found abort unless the default destination
6300   // is unreachable.
6301   DefaultResult =
6302       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6303   if ((!DefaultResult &&
6304        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6305     return false;
6306 
6307   return true;
6308 }
6309 
6310 // Helper function that checks if it is possible to transform a switch with only
6311 // two cases (or two cases + default) that produces a result into a select.
6312 // TODO: Handle switches with more than 2 cases that map to the same result.
6313 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6314                                  Constant *DefaultResult, Value *Condition,
6315                                  IRBuilder<> &Builder) {
6316   // If we are selecting between only two cases transform into a simple
6317   // select or a two-way select if default is possible.
6318   // Example:
6319   // switch (a) {                  %0 = icmp eq i32 %a, 10
6320   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6321   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6322   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6323   // }
6324   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6325       ResultVector[1].second.size() == 1) {
6326     ConstantInt *FirstCase = ResultVector[0].second[0];
6327     ConstantInt *SecondCase = ResultVector[1].second[0];
6328     Value *SelectValue = ResultVector[1].first;
6329     if (DefaultResult) {
6330       Value *ValueCompare =
6331           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6332       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6333                                          DefaultResult, "switch.select");
6334     }
6335     Value *ValueCompare =
6336         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6337     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6338                                 SelectValue, "switch.select");
6339   }
6340 
6341   // Handle the degenerate case where two cases have the same result value.
6342   if (ResultVector.size() == 1 && DefaultResult) {
6343     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6344     unsigned CaseCount = CaseValues.size();
6345     // n bits group cases map to the same result:
6346     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6347     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6348     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6349     if (isPowerOf2_32(CaseCount)) {
6350       ConstantInt *MinCaseVal = CaseValues[0];
6351       // Find mininal value.
6352       for (auto *Case : CaseValues)
6353         if (Case->getValue().slt(MinCaseVal->getValue()))
6354           MinCaseVal = Case;
6355 
6356       // Mark the bits case number touched.
6357       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6358       for (auto *Case : CaseValues)
6359         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6360 
6361       // Check if cases with the same result can cover all number
6362       // in touched bits.
6363       if (BitMask.popcount() == Log2_32(CaseCount)) {
6364         if (!MinCaseVal->isNullValue())
6365           Condition = Builder.CreateSub(Condition, MinCaseVal);
6366         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6367         Value *Cmp = Builder.CreateICmpEQ(
6368             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6369         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6370       }
6371     }
6372 
6373     // Handle the degenerate case where two cases have the same value.
6374     if (CaseValues.size() == 2) {
6375       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6376                                          "switch.selectcmp.case1");
6377       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6378                                          "switch.selectcmp.case2");
6379       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6380       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6381     }
6382   }
6383 
6384   return nullptr;
6385 }
6386 
6387 // Helper function to cleanup a switch instruction that has been converted into
6388 // a select, fixing up PHI nodes and basic blocks.
6389 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6390                                         Value *SelectValue,
6391                                         IRBuilder<> &Builder,
6392                                         DomTreeUpdater *DTU) {
6393   std::vector<DominatorTree::UpdateType> Updates;
6394 
6395   BasicBlock *SelectBB = SI->getParent();
6396   BasicBlock *DestBB = PHI->getParent();
6397 
6398   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6399     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6400   Builder.CreateBr(DestBB);
6401 
6402   // Remove the switch.
6403 
6404   PHI->removeIncomingValueIf(
6405       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6406   PHI->addIncoming(SelectValue, SelectBB);
6407 
6408   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6409   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6410     BasicBlock *Succ = SI->getSuccessor(i);
6411 
6412     if (Succ == DestBB)
6413       continue;
6414     Succ->removePredecessor(SelectBB);
6415     if (DTU && RemovedSuccessors.insert(Succ).second)
6416       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6417   }
6418   SI->eraseFromParent();
6419   if (DTU)
6420     DTU->applyUpdates(Updates);
6421 }
6422 
6423 /// If a switch is only used to initialize one or more phi nodes in a common
6424 /// successor block with only two different constant values, try to replace the
6425 /// switch with a select. Returns true if the fold was made.
6426 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6427                               DomTreeUpdater *DTU, const DataLayout &DL,
6428                               const TargetTransformInfo &TTI) {
6429   Value *const Cond = SI->getCondition();
6430   PHINode *PHI = nullptr;
6431   BasicBlock *CommonDest = nullptr;
6432   Constant *DefaultResult;
6433   SwitchCaseResultVectorTy UniqueResults;
6434   // Collect all the cases that will deliver the same value from the switch.
6435   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6436                              DL, TTI, /*MaxUniqueResults*/ 2))
6437     return false;
6438 
6439   assert(PHI != nullptr && "PHI for value select not found");
6440   Builder.SetInsertPoint(SI);
6441   Value *SelectValue =
6442       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6443   if (!SelectValue)
6444     return false;
6445 
6446   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6447   return true;
6448 }
6449 
6450 namespace {
6451 
6452 /// This class represents a lookup table that can be used to replace a switch.
6453 class SwitchLookupTable {
6454 public:
6455   /// Create a lookup table to use as a switch replacement with the contents
6456   /// of Values, using DefaultValue to fill any holes in the table.
6457   SwitchLookupTable(
6458       Module &M, uint64_t TableSize, ConstantInt *Offset,
6459       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6460       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6461 
6462   /// Build instructions with Builder to retrieve the value at
6463   /// the position given by Index in the lookup table.
6464   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6465 
6466   /// Return true if a table with TableSize elements of
6467   /// type ElementType would fit in a target-legal register.
6468   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6469                                  Type *ElementType);
6470 
6471 private:
6472   // Depending on the contents of the table, it can be represented in
6473   // different ways.
6474   enum {
6475     // For tables where each element contains the same value, we just have to
6476     // store that single value and return it for each lookup.
6477     SingleValueKind,
6478 
6479     // For tables where there is a linear relationship between table index
6480     // and values. We calculate the result with a simple multiplication
6481     // and addition instead of a table lookup.
6482     LinearMapKind,
6483 
6484     // For small tables with integer elements, we can pack them into a bitmap
6485     // that fits into a target-legal register. Values are retrieved by
6486     // shift and mask operations.
6487     BitMapKind,
6488 
6489     // The table is stored as an array of values. Values are retrieved by load
6490     // instructions from the table.
6491     ArrayKind
6492   } Kind;
6493 
6494   // For SingleValueKind, this is the single value.
6495   Constant *SingleValue = nullptr;
6496 
6497   // For BitMapKind, this is the bitmap.
6498   ConstantInt *BitMap = nullptr;
6499   IntegerType *BitMapElementTy = nullptr;
6500 
6501   // For LinearMapKind, these are the constants used to derive the value.
6502   ConstantInt *LinearOffset = nullptr;
6503   ConstantInt *LinearMultiplier = nullptr;
6504   bool LinearMapValWrapped = false;
6505 
6506   // For ArrayKind, this is the array.
6507   GlobalVariable *Array = nullptr;
6508 };
6509 
6510 } // end anonymous namespace
6511 
6512 SwitchLookupTable::SwitchLookupTable(
6513     Module &M, uint64_t TableSize, ConstantInt *Offset,
6514     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6515     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6516   assert(Values.size() && "Can't build lookup table without values!");
6517   assert(TableSize >= Values.size() && "Can't fit values in table!");
6518 
6519   // If all values in the table are equal, this is that value.
6520   SingleValue = Values.begin()->second;
6521 
6522   Type *ValueType = Values.begin()->second->getType();
6523 
6524   // Build up the table contents.
6525   SmallVector<Constant *, 64> TableContents(TableSize);
6526   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6527     ConstantInt *CaseVal = Values[I].first;
6528     Constant *CaseRes = Values[I].second;
6529     assert(CaseRes->getType() == ValueType);
6530 
6531     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6532     TableContents[Idx] = CaseRes;
6533 
6534     if (CaseRes != SingleValue)
6535       SingleValue = nullptr;
6536   }
6537 
6538   // Fill in any holes in the table with the default result.
6539   if (Values.size() < TableSize) {
6540     assert(DefaultValue &&
6541            "Need a default value to fill the lookup table holes.");
6542     assert(DefaultValue->getType() == ValueType);
6543     for (uint64_t I = 0; I < TableSize; ++I) {
6544       if (!TableContents[I])
6545         TableContents[I] = DefaultValue;
6546     }
6547 
6548     if (DefaultValue != SingleValue)
6549       SingleValue = nullptr;
6550   }
6551 
6552   // If each element in the table contains the same value, we only need to store
6553   // that single value.
6554   if (SingleValue) {
6555     Kind = SingleValueKind;
6556     return;
6557   }
6558 
6559   // Check if we can derive the value with a linear transformation from the
6560   // table index.
6561   if (isa<IntegerType>(ValueType)) {
6562     bool LinearMappingPossible = true;
6563     APInt PrevVal;
6564     APInt DistToPrev;
6565     // When linear map is monotonic and signed overflow doesn't happen on
6566     // maximum index, we can attach nsw on Add and Mul.
6567     bool NonMonotonic = false;
6568     assert(TableSize >= 2 && "Should be a SingleValue table.");
6569     // Check if there is the same distance between two consecutive values.
6570     for (uint64_t I = 0; I < TableSize; ++I) {
6571       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6572       if (!ConstVal) {
6573         // This is an undef. We could deal with it, but undefs in lookup tables
6574         // are very seldom. It's probably not worth the additional complexity.
6575         LinearMappingPossible = false;
6576         break;
6577       }
6578       const APInt &Val = ConstVal->getValue();
6579       if (I != 0) {
6580         APInt Dist = Val - PrevVal;
6581         if (I == 1) {
6582           DistToPrev = Dist;
6583         } else if (Dist != DistToPrev) {
6584           LinearMappingPossible = false;
6585           break;
6586         }
6587         NonMonotonic |=
6588             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6589       }
6590       PrevVal = Val;
6591     }
6592     if (LinearMappingPossible) {
6593       LinearOffset = cast<ConstantInt>(TableContents[0]);
6594       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6595       APInt M = LinearMultiplier->getValue();
6596       bool MayWrap = true;
6597       if (isIntN(M.getBitWidth(), TableSize - 1))
6598         (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6599       LinearMapValWrapped = NonMonotonic || MayWrap;
6600       Kind = LinearMapKind;
6601       ++NumLinearMaps;
6602       return;
6603     }
6604   }
6605 
6606   // If the type is integer and the table fits in a register, build a bitmap.
6607   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6608     IntegerType *IT = cast<IntegerType>(ValueType);
6609     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6610     for (uint64_t I = TableSize; I > 0; --I) {
6611       TableInt <<= IT->getBitWidth();
6612       // Insert values into the bitmap. Undef values are set to zero.
6613       if (!isa<UndefValue>(TableContents[I - 1])) {
6614         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6615         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6616       }
6617     }
6618     BitMap = ConstantInt::get(M.getContext(), TableInt);
6619     BitMapElementTy = IT;
6620     Kind = BitMapKind;
6621     ++NumBitMaps;
6622     return;
6623   }
6624 
6625   // Store the table in an array.
6626   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6627   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6628 
6629   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6630                              GlobalVariable::PrivateLinkage, Initializer,
6631                              "switch.table." + FuncName);
6632   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6633   // Set the alignment to that of an array items. We will be only loading one
6634   // value out of it.
6635   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6636   Kind = ArrayKind;
6637 }
6638 
6639 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6640   switch (Kind) {
6641   case SingleValueKind:
6642     return SingleValue;
6643   case LinearMapKind: {
6644     // Derive the result value from the input value.
6645     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6646                                           false, "switch.idx.cast");
6647     if (!LinearMultiplier->isOne())
6648       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6649                                  /*HasNUW = */ false,
6650                                  /*HasNSW = */ !LinearMapValWrapped);
6651 
6652     if (!LinearOffset->isZero())
6653       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6654                                  /*HasNUW = */ false,
6655                                  /*HasNSW = */ !LinearMapValWrapped);
6656     return Result;
6657   }
6658   case BitMapKind: {
6659     // Type of the bitmap (e.g. i59).
6660     IntegerType *MapTy = BitMap->getIntegerType();
6661 
6662     // Cast Index to the same type as the bitmap.
6663     // Note: The Index is <= the number of elements in the table, so
6664     // truncating it to the width of the bitmask is safe.
6665     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6666 
6667     // Multiply the shift amount by the element width. NUW/NSW can always be
6668     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6669     // BitMap's bit width.
6670     ShiftAmt = Builder.CreateMul(
6671         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6672         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6673 
6674     // Shift down.
6675     Value *DownShifted =
6676         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6677     // Mask off.
6678     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6679   }
6680   case ArrayKind: {
6681     // Make sure the table index will not overflow when treated as signed.
6682     IntegerType *IT = cast<IntegerType>(Index->getType());
6683     uint64_t TableSize =
6684         Array->getInitializer()->getType()->getArrayNumElements();
6685     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6686       Index = Builder.CreateZExt(
6687           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6688           "switch.tableidx.zext");
6689 
6690     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6691     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6692                                            GEPIndices, "switch.gep");
6693     return Builder.CreateLoad(
6694         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6695         "switch.load");
6696   }
6697   }
6698   llvm_unreachable("Unknown lookup table kind!");
6699 }
6700 
6701 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6702                                            uint64_t TableSize,
6703                                            Type *ElementType) {
6704   auto *IT = dyn_cast<IntegerType>(ElementType);
6705   if (!IT)
6706     return false;
6707   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6708   // are <= 15, we could try to narrow the type.
6709 
6710   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6711   if (TableSize >= UINT_MAX / IT->getBitWidth())
6712     return false;
6713   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6714 }
6715 
6716 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6717                                       const DataLayout &DL) {
6718   // Allow any legal type.
6719   if (TTI.isTypeLegal(Ty))
6720     return true;
6721 
6722   auto *IT = dyn_cast<IntegerType>(Ty);
6723   if (!IT)
6724     return false;
6725 
6726   // Also allow power of 2 integer types that have at least 8 bits and fit in
6727   // a register. These types are common in frontend languages and targets
6728   // usually support loads of these types.
6729   // TODO: We could relax this to any integer that fits in a register and rely
6730   // on ABI alignment and padding in the table to allow the load to be widened.
6731   // Or we could widen the constants and truncate the load.
6732   unsigned BitWidth = IT->getBitWidth();
6733   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6734          DL.fitsInLegalInteger(IT->getBitWidth());
6735 }
6736 
6737 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6738   // 40% is the default density for building a jump table in optsize/minsize
6739   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6740   // function was based on.
6741   const uint64_t MinDensity = 40;
6742 
6743   if (CaseRange >= UINT64_MAX / 100)
6744     return false; // Avoid multiplication overflows below.
6745 
6746   return NumCases * 100 >= CaseRange * MinDensity;
6747 }
6748 
6749 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6750   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6751   uint64_t Range = Diff + 1;
6752   if (Range < Diff)
6753     return false; // Overflow.
6754 
6755   return isSwitchDense(Values.size(), Range);
6756 }
6757 
6758 /// Determine whether a lookup table should be built for this switch, based on
6759 /// the number of cases, size of the table, and the types of the results.
6760 // TODO: We could support larger than legal types by limiting based on the
6761 // number of loads required and/or table size. If the constants are small we
6762 // could use smaller table entries and extend after the load.
6763 static bool
6764 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6765                        const TargetTransformInfo &TTI, const DataLayout &DL,
6766                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6767   if (SI->getNumCases() > TableSize)
6768     return false; // TableSize overflowed.
6769 
6770   bool AllTablesFitInRegister = true;
6771   bool HasIllegalType = false;
6772   for (const auto &I : ResultTypes) {
6773     Type *Ty = I.second;
6774 
6775     // Saturate this flag to true.
6776     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6777 
6778     // Saturate this flag to false.
6779     AllTablesFitInRegister =
6780         AllTablesFitInRegister &&
6781         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6782 
6783     // If both flags saturate, we're done. NOTE: This *only* works with
6784     // saturating flags, and all flags have to saturate first due to the
6785     // non-deterministic behavior of iterating over a dense map.
6786     if (HasIllegalType && !AllTablesFitInRegister)
6787       break;
6788   }
6789 
6790   // If each table would fit in a register, we should build it anyway.
6791   if (AllTablesFitInRegister)
6792     return true;
6793 
6794   // Don't build a table that doesn't fit in-register if it has illegal types.
6795   if (HasIllegalType)
6796     return false;
6797 
6798   return isSwitchDense(SI->getNumCases(), TableSize);
6799 }
6800 
6801 static bool shouldUseSwitchConditionAsTableIndex(
6802     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6803     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6804     const DataLayout &DL, const TargetTransformInfo &TTI) {
6805   if (MinCaseVal.isNullValue())
6806     return true;
6807   if (MinCaseVal.isNegative() ||
6808       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6809       !HasDefaultResults)
6810     return false;
6811   return all_of(ResultTypes, [&](const auto &KV) {
6812     return SwitchLookupTable::wouldFitInRegister(
6813         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6814         KV.second /* ResultType */);
6815   });
6816 }
6817 
6818 /// Try to reuse the switch table index compare. Following pattern:
6819 /// \code
6820 ///     if (idx < tablesize)
6821 ///        r = table[idx]; // table does not contain default_value
6822 ///     else
6823 ///        r = default_value;
6824 ///     if (r != default_value)
6825 ///        ...
6826 /// \endcode
6827 /// Is optimized to:
6828 /// \code
6829 ///     cond = idx < tablesize;
6830 ///     if (cond)
6831 ///        r = table[idx];
6832 ///     else
6833 ///        r = default_value;
6834 ///     if (cond)
6835 ///        ...
6836 /// \endcode
6837 /// Jump threading will then eliminate the second if(cond).
6838 static void reuseTableCompare(
6839     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6840     Constant *DefaultValue,
6841     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6842   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6843   if (!CmpInst)
6844     return;
6845 
6846   // We require that the compare is in the same block as the phi so that jump
6847   // threading can do its work afterwards.
6848   if (CmpInst->getParent() != PhiBlock)
6849     return;
6850 
6851   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6852   if (!CmpOp1)
6853     return;
6854 
6855   Value *RangeCmp = RangeCheckBranch->getCondition();
6856   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6857   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6858 
6859   // Check if the compare with the default value is constant true or false.
6860   const DataLayout &DL = PhiBlock->getDataLayout();
6861   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6862       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6863   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6864     return;
6865 
6866   // Check if the compare with the case values is distinct from the default
6867   // compare result.
6868   for (auto ValuePair : Values) {
6869     Constant *CaseConst = ConstantFoldCompareInstOperands(
6870         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6871     if (!CaseConst || CaseConst == DefaultConst ||
6872         (CaseConst != TrueConst && CaseConst != FalseConst))
6873       return;
6874   }
6875 
6876   // Check if the branch instruction dominates the phi node. It's a simple
6877   // dominance check, but sufficient for our needs.
6878   // Although this check is invariant in the calling loops, it's better to do it
6879   // at this late stage. Practically we do it at most once for a switch.
6880   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6881   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6882     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6883       return;
6884   }
6885 
6886   if (DefaultConst == FalseConst) {
6887     // The compare yields the same result. We can replace it.
6888     CmpInst->replaceAllUsesWith(RangeCmp);
6889     ++NumTableCmpReuses;
6890   } else {
6891     // The compare yields the same result, just inverted. We can replace it.
6892     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6893         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6894         RangeCheckBranch->getIterator());
6895     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6896     ++NumTableCmpReuses;
6897   }
6898 }
6899 
6900 /// If the switch is only used to initialize one or more phi nodes in a common
6901 /// successor block with different constant values, replace the switch with
6902 /// lookup tables.
6903 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6904                                 DomTreeUpdater *DTU, const DataLayout &DL,
6905                                 const TargetTransformInfo &TTI) {
6906   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6907 
6908   BasicBlock *BB = SI->getParent();
6909   Function *Fn = BB->getParent();
6910   // Only build lookup table when we have a target that supports it or the
6911   // attribute is not set.
6912   if (!TTI.shouldBuildLookupTables() ||
6913       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6914     return false;
6915 
6916   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6917   // split off a dense part and build a lookup table for that.
6918 
6919   // FIXME: This creates arrays of GEPs to constant strings, which means each
6920   // GEP needs a runtime relocation in PIC code. We should just build one big
6921   // string and lookup indices into that.
6922 
6923   // Ignore switches with less than three cases. Lookup tables will not make
6924   // them faster, so we don't analyze them.
6925   if (SI->getNumCases() < 3)
6926     return false;
6927 
6928   // Figure out the corresponding result for each case value and phi node in the
6929   // common destination, as well as the min and max case values.
6930   assert(!SI->cases().empty());
6931   SwitchInst::CaseIt CI = SI->case_begin();
6932   ConstantInt *MinCaseVal = CI->getCaseValue();
6933   ConstantInt *MaxCaseVal = CI->getCaseValue();
6934 
6935   BasicBlock *CommonDest = nullptr;
6936 
6937   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6938   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6939 
6940   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6941   SmallDenseMap<PHINode *, Type *> ResultTypes;
6942   SmallVector<PHINode *, 4> PHIs;
6943 
6944   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6945     ConstantInt *CaseVal = CI->getCaseValue();
6946     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6947       MinCaseVal = CaseVal;
6948     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6949       MaxCaseVal = CaseVal;
6950 
6951     // Resulting value at phi nodes for this case value.
6952     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6953     ResultsTy Results;
6954     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6955                         Results, DL, TTI))
6956       return false;
6957 
6958     // Append the result from this case to the list for each phi.
6959     for (const auto &I : Results) {
6960       PHINode *PHI = I.first;
6961       Constant *Value = I.second;
6962       if (!ResultLists.count(PHI))
6963         PHIs.push_back(PHI);
6964       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6965     }
6966   }
6967 
6968   // Keep track of the result types.
6969   for (PHINode *PHI : PHIs) {
6970     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6971   }
6972 
6973   uint64_t NumResults = ResultLists[PHIs[0]].size();
6974 
6975   // If the table has holes, we need a constant result for the default case
6976   // or a bitmask that fits in a register.
6977   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6978   bool HasDefaultResults =
6979       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6980                      DefaultResultsList, DL, TTI);
6981 
6982   for (const auto &I : DefaultResultsList) {
6983     PHINode *PHI = I.first;
6984     Constant *Result = I.second;
6985     DefaultResults[PHI] = Result;
6986   }
6987 
6988   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6989       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6990   uint64_t TableSize;
6991   if (UseSwitchConditionAsTableIndex)
6992     TableSize = MaxCaseVal->getLimitedValue() + 1;
6993   else
6994     TableSize =
6995         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6996 
6997   // If the default destination is unreachable, or if the lookup table covers
6998   // all values of the conditional variable, branch directly to the lookup table
6999   // BB. Otherwise, check that the condition is within the case range.
7000   bool DefaultIsReachable = !SI->defaultDestUndefined();
7001 
7002   bool TableHasHoles = (NumResults < TableSize);
7003 
7004   // If the table has holes but the default destination doesn't produce any
7005   // constant results, the lookup table entries corresponding to the holes will
7006   // contain undefined values.
7007   bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults;
7008 
7009   // If the default destination doesn't produce a constant result but is still
7010   // reachable, and the lookup table has holes, we need to use a mask to
7011   // determine if the current index should load from the lookup table or jump
7012   // to the default case.
7013   // The mask is unnecessary if the table has holes but the default destination
7014   // is unreachable, as in that case the holes must also be unreachable.
7015   bool NeedMask = AllHolesAreUndefined && DefaultIsReachable;
7016   if (NeedMask) {
7017     // As an extra penalty for the validity test we require more cases.
7018     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
7019       return false;
7020     if (!DL.fitsInLegalInteger(TableSize))
7021       return false;
7022   }
7023 
7024   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
7025     return false;
7026 
7027   std::vector<DominatorTree::UpdateType> Updates;
7028 
7029   // Compute the maximum table size representable by the integer type we are
7030   // switching upon.
7031   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
7032   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
7033   assert(MaxTableSize >= TableSize &&
7034          "It is impossible for a switch to have more entries than the max "
7035          "representable value of its input integer type's size.");
7036 
7037   // Create the BB that does the lookups.
7038   Module &Mod = *CommonDest->getParent()->getParent();
7039   BasicBlock *LookupBB = BasicBlock::Create(
7040       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
7041 
7042   // Compute the table index value.
7043   Builder.SetInsertPoint(SI);
7044   Value *TableIndex;
7045   ConstantInt *TableIndexOffset;
7046   if (UseSwitchConditionAsTableIndex) {
7047     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
7048     TableIndex = SI->getCondition();
7049   } else {
7050     TableIndexOffset = MinCaseVal;
7051     // If the default is unreachable, all case values are s>= MinCaseVal. Then
7052     // we can try to attach nsw.
7053     bool MayWrap = true;
7054     if (!DefaultIsReachable) {
7055       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
7056       (void)Res;
7057     }
7058 
7059     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
7060                                    "switch.tableidx", /*HasNUW =*/false,
7061                                    /*HasNSW =*/!MayWrap);
7062   }
7063 
7064   BranchInst *RangeCheckBranch = nullptr;
7065 
7066   // Grow the table to cover all possible index values to avoid the range check.
7067   // It will use the default result to fill in the table hole later, so make
7068   // sure it exist.
7069   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
7070     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
7071     // Grow the table shouldn't have any size impact by checking
7072     // wouldFitInRegister.
7073     // TODO: Consider growing the table also when it doesn't fit in a register
7074     // if no optsize is specified.
7075     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
7076     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
7077           return SwitchLookupTable::wouldFitInRegister(
7078               DL, UpperBound, KV.second /* ResultType */);
7079         })) {
7080       // There may be some case index larger than the UpperBound (unreachable
7081       // case), so make sure the table size does not get smaller.
7082       TableSize = std::max(UpperBound, TableSize);
7083       // The default branch is unreachable after we enlarge the lookup table.
7084       // Adjust DefaultIsReachable to reuse code path.
7085       DefaultIsReachable = false;
7086     }
7087   }
7088 
7089   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7090   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7091     Builder.CreateBr(LookupBB);
7092     if (DTU)
7093       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7094     // Note: We call removeProdecessor later since we need to be able to get the
7095     // PHI value for the default case in case we're using a bit mask.
7096   } else {
7097     Value *Cmp = Builder.CreateICmpULT(
7098         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7099     RangeCheckBranch =
7100         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7101     if (DTU)
7102       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7103   }
7104 
7105   // Populate the BB that does the lookups.
7106   Builder.SetInsertPoint(LookupBB);
7107 
7108   if (NeedMask) {
7109     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7110     // re-purposed to do the hole check, and we create a new LookupBB.
7111     BasicBlock *MaskBB = LookupBB;
7112     MaskBB->setName("switch.hole_check");
7113     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7114                                   CommonDest->getParent(), CommonDest);
7115 
7116     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7117     // unnecessary illegal types.
7118     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7119     APInt MaskInt(TableSizePowOf2, 0);
7120     APInt One(TableSizePowOf2, 1);
7121     // Build bitmask; fill in a 1 bit for every case.
7122     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7123     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7124       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7125                          .getLimitedValue();
7126       MaskInt |= One << Idx;
7127     }
7128     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7129 
7130     // Get the TableIndex'th bit of the bitmask.
7131     // If this bit is 0 (meaning hole) jump to the default destination,
7132     // else continue with table lookup.
7133     IntegerType *MapTy = TableMask->getIntegerType();
7134     Value *MaskIndex =
7135         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7136     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7137     Value *LoBit = Builder.CreateTrunc(
7138         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7139     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7140     if (DTU) {
7141       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7142       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7143     }
7144     Builder.SetInsertPoint(LookupBB);
7145     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7146   }
7147 
7148   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7149     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7150     // do not delete PHINodes here.
7151     SI->getDefaultDest()->removePredecessor(BB,
7152                                             /*KeepOneInputPHIs=*/true);
7153     if (DTU)
7154       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7155   }
7156 
7157   for (PHINode *PHI : PHIs) {
7158     const ResultListTy &ResultList = ResultLists[PHI];
7159 
7160     // Use any value to fill the lookup table holes.
7161     Constant *DV =
7162         AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI];
7163     StringRef FuncName = Fn->getName();
7164     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7165                             DL, FuncName);
7166 
7167     Value *Result = Table.buildLookup(TableIndex, Builder);
7168 
7169     // Do a small peephole optimization: re-use the switch table compare if
7170     // possible.
7171     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7172       BasicBlock *PhiBlock = PHI->getParent();
7173       // Search for compare instructions which use the phi.
7174       for (auto *User : PHI->users()) {
7175         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7176       }
7177     }
7178 
7179     PHI->addIncoming(Result, LookupBB);
7180   }
7181 
7182   Builder.CreateBr(CommonDest);
7183   if (DTU)
7184     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7185 
7186   // Remove the switch.
7187   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7188   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7189     BasicBlock *Succ = SI->getSuccessor(i);
7190 
7191     if (Succ == SI->getDefaultDest())
7192       continue;
7193     Succ->removePredecessor(BB);
7194     if (DTU && RemovedSuccessors.insert(Succ).second)
7195       Updates.push_back({DominatorTree::Delete, BB, Succ});
7196   }
7197   SI->eraseFromParent();
7198 
7199   if (DTU)
7200     DTU->applyUpdates(Updates);
7201 
7202   ++NumLookupTables;
7203   if (NeedMask)
7204     ++NumLookupTablesHoles;
7205   return true;
7206 }
7207 
7208 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7209 /// of cases.
7210 ///
7211 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7212 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7213 ///
7214 /// This converts a sparse switch into a dense switch which allows better
7215 /// lowering and could also allow transforming into a lookup table.
7216 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7217                               const DataLayout &DL,
7218                               const TargetTransformInfo &TTI) {
7219   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7220   if (CondTy->getIntegerBitWidth() > 64 ||
7221       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7222     return false;
7223   // Only bother with this optimization if there are more than 3 switch cases;
7224   // SDAG will only bother creating jump tables for 4 or more cases.
7225   if (SI->getNumCases() < 4)
7226     return false;
7227 
7228   // This transform is agnostic to the signedness of the input or case values. We
7229   // can treat the case values as signed or unsigned. We can optimize more common
7230   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7231   // as signed.
7232   SmallVector<int64_t,4> Values;
7233   for (const auto &C : SI->cases())
7234     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7235   llvm::sort(Values);
7236 
7237   // If the switch is already dense, there's nothing useful to do here.
7238   if (isSwitchDense(Values))
7239     return false;
7240 
7241   // First, transform the values such that they start at zero and ascend.
7242   int64_t Base = Values[0];
7243   for (auto &V : Values)
7244     V -= (uint64_t)(Base);
7245 
7246   // Now we have signed numbers that have been shifted so that, given enough
7247   // precision, there are no negative values. Since the rest of the transform
7248   // is bitwise only, we switch now to an unsigned representation.
7249 
7250   // This transform can be done speculatively because it is so cheap - it
7251   // results in a single rotate operation being inserted.
7252 
7253   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7254   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7255   // less than 64.
7256   unsigned Shift = 64;
7257   for (auto &V : Values)
7258     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7259   assert(Shift < 64);
7260   if (Shift > 0)
7261     for (auto &V : Values)
7262       V = (int64_t)((uint64_t)V >> Shift);
7263 
7264   if (!isSwitchDense(Values))
7265     // Transform didn't create a dense switch.
7266     return false;
7267 
7268   // The obvious transform is to shift the switch condition right and emit a
7269   // check that the condition actually cleanly divided by GCD, i.e.
7270   //   C & (1 << Shift - 1) == 0
7271   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7272   //
7273   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7274   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7275   // are nonzero then the switch condition will be very large and will hit the
7276   // default case.
7277 
7278   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7279   Builder.SetInsertPoint(SI);
7280   Value *Sub =
7281       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7282   Value *Rot = Builder.CreateIntrinsic(
7283       Ty, Intrinsic::fshl,
7284       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7285   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7286 
7287   for (auto Case : SI->cases()) {
7288     auto *Orig = Case.getCaseValue();
7289     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true);
7290     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7291   }
7292   return true;
7293 }
7294 
7295 /// Tries to transform switch of powers of two to reduce switch range.
7296 /// For example, switch like:
7297 /// switch (C) { case 1: case 2: case 64: case 128: }
7298 /// will be transformed to:
7299 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7300 ///
7301 /// This transformation allows better lowering and could allow transforming into
7302 /// a lookup table.
7303 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7304                                         const DataLayout &DL,
7305                                         const TargetTransformInfo &TTI) {
7306   Value *Condition = SI->getCondition();
7307   LLVMContext &Context = SI->getContext();
7308   auto *CondTy = cast<IntegerType>(Condition->getType());
7309 
7310   if (CondTy->getIntegerBitWidth() > 64 ||
7311       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7312     return false;
7313 
7314   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7315       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7316                               {Condition, ConstantInt::getTrue(Context)}),
7317       TTI::TCK_SizeAndLatency);
7318 
7319   if (CttzIntrinsicCost > TTI::TCC_Basic)
7320     // Inserting intrinsic is too expensive.
7321     return false;
7322 
7323   // Only bother with this optimization if there are more than 3 switch cases.
7324   // SDAG will only bother creating jump tables for 4 or more cases.
7325   if (SI->getNumCases() < 4)
7326     return false;
7327 
7328   // We perform this optimization only for switches with
7329   // unreachable default case.
7330   // This assumtion will save us from checking if `Condition` is a power of two.
7331   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7332     return false;
7333 
7334   // Check that switch cases are powers of two.
7335   SmallVector<uint64_t, 4> Values;
7336   for (const auto &Case : SI->cases()) {
7337     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7338     if (llvm::has_single_bit(CaseValue))
7339       Values.push_back(CaseValue);
7340     else
7341       return false;
7342   }
7343 
7344   // isSwichDense requires case values to be sorted.
7345   llvm::sort(Values);
7346   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7347                                         llvm::countr_zero(Values.front()) + 1))
7348     // Transform is unable to generate dense switch.
7349     return false;
7350 
7351   Builder.SetInsertPoint(SI);
7352 
7353   // Replace each case with its trailing zeros number.
7354   for (auto &Case : SI->cases()) {
7355     auto *OrigValue = Case.getCaseValue();
7356     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7357                                    OrigValue->getValue().countr_zero()));
7358   }
7359 
7360   // Replace condition with its trailing zeros number.
7361   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7362       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7363 
7364   SI->setCondition(ConditionTrailingZeros);
7365 
7366   return true;
7367 }
7368 
7369 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7370 /// the same destination.
7371 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7372                                          DomTreeUpdater *DTU) {
7373   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7374   if (!Cmp || !Cmp->hasOneUse())
7375     return false;
7376 
7377   SmallVector<uint32_t, 4> Weights;
7378   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7379   if (!HasWeights)
7380     Weights.resize(4); // Avoid checking HasWeights everywhere.
7381 
7382   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7383   int64_t Res;
7384   BasicBlock *Succ, *OtherSucc;
7385   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7386   BasicBlock *Unreachable = nullptr;
7387 
7388   if (SI->getNumCases() == 2) {
7389     // Find which of 1, 0 or -1 is missing (handled by default dest).
7390     SmallSet<int64_t, 3> Missing;
7391     Missing.insert(1);
7392     Missing.insert(0);
7393     Missing.insert(-1);
7394 
7395     Succ = SI->getDefaultDest();
7396     SuccWeight = Weights[0];
7397     OtherSucc = nullptr;
7398     for (auto &Case : SI->cases()) {
7399       std::optional<int64_t> Val =
7400           Case.getCaseValue()->getValue().trySExtValue();
7401       if (!Val)
7402         return false;
7403       if (!Missing.erase(*Val))
7404         return false;
7405       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7406         return false;
7407       OtherSucc = Case.getCaseSuccessor();
7408       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7409     }
7410 
7411     assert(Missing.size() == 1 && "Should have one case left");
7412     Res = *Missing.begin();
7413   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7414     // Normalize so that Succ is taken once and OtherSucc twice.
7415     Unreachable = SI->getDefaultDest();
7416     Succ = OtherSucc = nullptr;
7417     for (auto &Case : SI->cases()) {
7418       BasicBlock *NewSucc = Case.getCaseSuccessor();
7419       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7420       if (!OtherSucc || OtherSucc == NewSucc) {
7421         OtherSucc = NewSucc;
7422         OtherSuccWeight += Weight;
7423       } else if (!Succ) {
7424         Succ = NewSucc;
7425         SuccWeight = Weight;
7426       } else if (Succ == NewSucc) {
7427         std::swap(Succ, OtherSucc);
7428         std::swap(SuccWeight, OtherSuccWeight);
7429       } else
7430         return false;
7431     }
7432     for (auto &Case : SI->cases()) {
7433       std::optional<int64_t> Val =
7434           Case.getCaseValue()->getValue().trySExtValue();
7435       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7436         return false;
7437       if (Case.getCaseSuccessor() == Succ) {
7438         Res = *Val;
7439         break;
7440       }
7441     }
7442   } else {
7443     return false;
7444   }
7445 
7446   // Determine predicate for the missing case.
7447   ICmpInst::Predicate Pred;
7448   switch (Res) {
7449   case 1:
7450     Pred = ICmpInst::ICMP_UGT;
7451     break;
7452   case 0:
7453     Pred = ICmpInst::ICMP_EQ;
7454     break;
7455   case -1:
7456     Pred = ICmpInst::ICMP_ULT;
7457     break;
7458   }
7459   if (Cmp->isSigned())
7460     Pred = ICmpInst::getSignedPredicate(Pred);
7461 
7462   MDNode *NewWeights = nullptr;
7463   if (HasWeights)
7464     NewWeights = MDBuilder(SI->getContext())
7465                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7466 
7467   BasicBlock *BB = SI->getParent();
7468   Builder.SetInsertPoint(SI->getIterator());
7469   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7470   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7471                        SI->getMetadata(LLVMContext::MD_unpredictable));
7472   OtherSucc->removePredecessor(BB);
7473   if (Unreachable)
7474     Unreachable->removePredecessor(BB);
7475   SI->eraseFromParent();
7476   Cmp->eraseFromParent();
7477   if (DTU && Unreachable)
7478     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7479   return true;
7480 }
7481 
7482 /// Checking whether two cases of SI are equal depends on the contents of the
7483 /// BasicBlock and the incoming values of their successor PHINodes.
7484 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid
7485 /// calling this function on each BasicBlock every time isEqual is called,
7486 /// especially since the same BasicBlock may be passed as an argument multiple
7487 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock ->
7488 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking
7489 /// of the incoming values.
7490 struct SwitchSuccWrapper {
7491   BasicBlock *Dest;
7492   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs;
7493 };
7494 
7495 namespace llvm {
7496 template <> struct DenseMapInfo<const SwitchSuccWrapper *> {
7497   static const SwitchSuccWrapper *getEmptyKey() {
7498     return static_cast<SwitchSuccWrapper *>(
7499         DenseMapInfo<void *>::getEmptyKey());
7500   }
7501   static const SwitchSuccWrapper *getTombstoneKey() {
7502     return static_cast<SwitchSuccWrapper *>(
7503         DenseMapInfo<void *>::getTombstoneKey());
7504   }
7505   static unsigned getHashValue(const SwitchSuccWrapper *SSW) {
7506     BasicBlock *Succ = SSW->Dest;
7507     BranchInst *BI = cast<BranchInst>(Succ->getTerminator());
7508     assert(BI->isUnconditional() &&
7509            "Only supporting unconditional branches for now");
7510     assert(BI->getNumSuccessors() == 1 &&
7511            "Expected unconditional branches to have one successor");
7512     assert(Succ->size() == 1 && "Expected just a single branch in the BB");
7513 
7514     // Since we assume the BB is just a single BranchInst with a single
7515     // successor, we hash as the BB and the incoming Values of its successor
7516     // PHIs. Initially, we tried to just use the successor BB as the hash, but
7517     // including the incoming PHI values leads to better performance.
7518     // We also tried to build a map from BB -> Succs.IncomingValues ahead of
7519     // time and passing it in SwitchSuccWrapper, but this slowed down the
7520     // average compile time without having any impact on the worst case compile
7521     // time.
7522     BasicBlock *BB = BI->getSuccessor(0);
7523     SmallVector<Value *> PhiValsForBB;
7524     for (PHINode &Phi : BB->phis())
7525       PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]);
7526 
7527     return hash_combine(
7528         BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end()));
7529   }
7530   static bool isEqual(const SwitchSuccWrapper *LHS,
7531                       const SwitchSuccWrapper *RHS) {
7532     auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey();
7533     auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey();
7534     if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey)
7535       return LHS == RHS;
7536 
7537     BasicBlock *A = LHS->Dest;
7538     BasicBlock *B = RHS->Dest;
7539 
7540     // FIXME: we checked that the size of A and B are both 1 in
7541     // simplifyDuplicateSwitchArms to make the Case list smaller to
7542     // improve performance. If we decide to support BasicBlocks with more
7543     // than just a single instruction, we need to check that A.size() ==
7544     // B.size() here, and we need to check more than just the BranchInsts
7545     // for equality.
7546 
7547     BranchInst *ABI = cast<BranchInst>(A->getTerminator());
7548     BranchInst *BBI = cast<BranchInst>(B->getTerminator());
7549     assert(ABI->isUnconditional() && BBI->isUnconditional() &&
7550            "Only supporting unconditional branches for now");
7551     if (ABI->getSuccessor(0) != BBI->getSuccessor(0))
7552       return false;
7553 
7554     // Need to check that PHIs in successor have matching values
7555     BasicBlock *Succ = ABI->getSuccessor(0);
7556     for (PHINode &Phi : Succ->phis()) {
7557       auto &PredIVs = (*LHS->PhiPredIVs)[&Phi];
7558       if (PredIVs[A] != PredIVs[B])
7559         return false;
7560     }
7561 
7562     return true;
7563   }
7564 };
7565 } // namespace llvm
7566 
7567 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI,
7568                                                  DomTreeUpdater *DTU) {
7569   // Build Cases. Skip BBs that are not candidates for simplification. Mark
7570   // PHINodes which need to be processed into PhiPredIVs. We decide to process
7571   // an entire PHI at once after the loop, opposed to calling
7572   // getIncomingValueForBlock inside this loop, since each call to
7573   // getIncomingValueForBlock is O(|Preds|).
7574   SmallPtrSet<PHINode *, 8> Phis;
7575   SmallPtrSet<BasicBlock *, 8> Seen;
7576   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs;
7577   DenseMap<BasicBlock *, SmallVector<unsigned, 4>> BBToSuccessorIndexes;
7578   SmallVector<SwitchSuccWrapper> Cases;
7579   Cases.reserve(SI->getNumSuccessors());
7580 
7581   for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) {
7582     BasicBlock *BB = SI->getSuccessor(I);
7583 
7584     // FIXME: Support more than just a single BranchInst. One way we could do
7585     // this is by taking a hashing approach of all insts in BB.
7586     if (BB->size() != 1)
7587       continue;
7588 
7589     // FIXME: This case needs some extra care because the terminators other than
7590     // SI need to be updated. For now, consider only backedges to the SI.
7591     if (BB->hasNPredecessorsOrMore(4) ||
7592         BB->getUniquePredecessor() != SI->getParent())
7593       continue;
7594 
7595     // FIXME: Relax that the terminator is a BranchInst by checking for equality
7596     // on other kinds of terminators. We decide to only support unconditional
7597     // branches for now for compile time reasons.
7598     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
7599     if (!BI || BI->isConditional())
7600       continue;
7601 
7602     if (Seen.insert(BB).second) {
7603       // Keep track of which PHIs we need as keys in PhiPredIVs below.
7604       for (BasicBlock *Succ : BI->successors())
7605         for (PHINode &Phi : Succ->phis())
7606           Phis.insert(&Phi);
7607       // Add the successor only if not previously visited.
7608       Cases.emplace_back(SwitchSuccWrapper{BB, &PhiPredIVs});
7609     }
7610 
7611     BBToSuccessorIndexes[BB].emplace_back(I);
7612   }
7613 
7614   // Precompute a data structure to improve performance of isEqual for
7615   // SwitchSuccWrapper.
7616   PhiPredIVs.reserve(Phis.size());
7617   for (PHINode *Phi : Phis) {
7618     PhiPredIVs[Phi] =
7619         SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues());
7620     for (auto &IV : Phi->incoming_values())
7621       PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()});
7622   }
7623 
7624   // Build a set such that if the SwitchSuccWrapper exists in the set and
7625   // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper
7626   // which is not in the set should be replaced with the one in the set. If the
7627   // SwitchSuccWrapper is not in the set, then it should be added to the set so
7628   // other SwitchSuccWrappers can check against it in the same manner. We use
7629   // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass
7630   // around information to isEquality, getHashValue, and when doing the
7631   // replacement with better performance.
7632   DenseSet<const SwitchSuccWrapper *> ReplaceWith;
7633   ReplaceWith.reserve(Cases.size());
7634 
7635   SmallVector<DominatorTree::UpdateType> Updates;
7636   Updates.reserve(ReplaceWith.size());
7637   bool MadeChange = false;
7638   for (auto &SSW : Cases) {
7639     // SSW is a candidate for simplification. If we find a duplicate BB,
7640     // replace it.
7641     const auto [It, Inserted] = ReplaceWith.insert(&SSW);
7642     if (!Inserted) {
7643       // We know that SI's parent BB no longer dominates the old case successor
7644       // since we are making it dead.
7645       Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest});
7646       const auto &Successors = BBToSuccessorIndexes.at(SSW.Dest);
7647       for (unsigned Idx : Successors)
7648         SI->setSuccessor(Idx, (*It)->Dest);
7649       MadeChange = true;
7650     }
7651   }
7652 
7653   if (DTU)
7654     DTU->applyUpdates(Updates);
7655 
7656   return MadeChange;
7657 }
7658 
7659 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7660   BasicBlock *BB = SI->getParent();
7661 
7662   if (isValueEqualityComparison(SI)) {
7663     // If we only have one predecessor, and if it is a branch on this value,
7664     // see if that predecessor totally determines the outcome of this switch.
7665     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7666       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7667         return requestResimplify();
7668 
7669     Value *Cond = SI->getCondition();
7670     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7671       if (simplifySwitchOnSelect(SI, Select))
7672         return requestResimplify();
7673 
7674     // If the block only contains the switch, see if we can fold the block
7675     // away into any preds.
7676     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7677       if (foldValueComparisonIntoPredecessors(SI, Builder))
7678         return requestResimplify();
7679   }
7680 
7681   // Try to transform the switch into an icmp and a branch.
7682   // The conversion from switch to comparison may lose information on
7683   // impossible switch values, so disable it early in the pipeline.
7684   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7685     return requestResimplify();
7686 
7687   // Remove unreachable cases.
7688   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7689     return requestResimplify();
7690 
7691   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7692     return requestResimplify();
7693 
7694   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7695     return requestResimplify();
7696 
7697   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7698     return requestResimplify();
7699 
7700   // The conversion from switch to lookup tables results in difficult-to-analyze
7701   // code and makes pruning branches much harder. This is a problem if the
7702   // switch expression itself can still be restricted as a result of inlining or
7703   // CVP. Therefore, only apply this transformation during late stages of the
7704   // optimisation pipeline.
7705   if (Options.ConvertSwitchToLookupTable &&
7706       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7707     return requestResimplify();
7708 
7709   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7710     return requestResimplify();
7711 
7712   if (reduceSwitchRange(SI, Builder, DL, TTI))
7713     return requestResimplify();
7714 
7715   if (HoistCommon &&
7716       hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts))
7717     return requestResimplify();
7718 
7719   if (simplifyDuplicateSwitchArms(SI, DTU))
7720     return requestResimplify();
7721 
7722   return false;
7723 }
7724 
7725 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7726   BasicBlock *BB = IBI->getParent();
7727   bool Changed = false;
7728 
7729   // Eliminate redundant destinations.
7730   SmallPtrSet<Value *, 8> Succs;
7731   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7732   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7733     BasicBlock *Dest = IBI->getDestination(i);
7734     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7735       if (!Dest->hasAddressTaken())
7736         RemovedSuccs.insert(Dest);
7737       Dest->removePredecessor(BB);
7738       IBI->removeDestination(i);
7739       --i;
7740       --e;
7741       Changed = true;
7742     }
7743   }
7744 
7745   if (DTU) {
7746     std::vector<DominatorTree::UpdateType> Updates;
7747     Updates.reserve(RemovedSuccs.size());
7748     for (auto *RemovedSucc : RemovedSuccs)
7749       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7750     DTU->applyUpdates(Updates);
7751   }
7752 
7753   if (IBI->getNumDestinations() == 0) {
7754     // If the indirectbr has no successors, change it to unreachable.
7755     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7756     eraseTerminatorAndDCECond(IBI);
7757     return true;
7758   }
7759 
7760   if (IBI->getNumDestinations() == 1) {
7761     // If the indirectbr has one successor, change it to a direct branch.
7762     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7763     eraseTerminatorAndDCECond(IBI);
7764     return true;
7765   }
7766 
7767   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7768     if (simplifyIndirectBrOnSelect(IBI, SI))
7769       return requestResimplify();
7770   }
7771   return Changed;
7772 }
7773 
7774 /// Given an block with only a single landing pad and a unconditional branch
7775 /// try to find another basic block which this one can be merged with.  This
7776 /// handles cases where we have multiple invokes with unique landing pads, but
7777 /// a shared handler.
7778 ///
7779 /// We specifically choose to not worry about merging non-empty blocks
7780 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7781 /// practice, the optimizer produces empty landing pad blocks quite frequently
7782 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7783 /// sinking in this file)
7784 ///
7785 /// This is primarily a code size optimization.  We need to avoid performing
7786 /// any transform which might inhibit optimization (such as our ability to
7787 /// specialize a particular handler via tail commoning).  We do this by not
7788 /// merging any blocks which require us to introduce a phi.  Since the same
7789 /// values are flowing through both blocks, we don't lose any ability to
7790 /// specialize.  If anything, we make such specialization more likely.
7791 ///
7792 /// TODO - This transformation could remove entries from a phi in the target
7793 /// block when the inputs in the phi are the same for the two blocks being
7794 /// merged.  In some cases, this could result in removal of the PHI entirely.
7795 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7796                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7797   auto Succ = BB->getUniqueSuccessor();
7798   assert(Succ);
7799   // If there's a phi in the successor block, we'd likely have to introduce
7800   // a phi into the merged landing pad block.
7801   if (isa<PHINode>(*Succ->begin()))
7802     return false;
7803 
7804   for (BasicBlock *OtherPred : predecessors(Succ)) {
7805     if (BB == OtherPred)
7806       continue;
7807     BasicBlock::iterator I = OtherPred->begin();
7808     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7809     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7810       continue;
7811     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7812       ;
7813     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7814     if (!BI2 || !BI2->isIdenticalTo(BI))
7815       continue;
7816 
7817     std::vector<DominatorTree::UpdateType> Updates;
7818 
7819     // We've found an identical block.  Update our predecessors to take that
7820     // path instead and make ourselves dead.
7821     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7822     for (BasicBlock *Pred : UniquePreds) {
7823       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7824       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7825              "unexpected successor");
7826       II->setUnwindDest(OtherPred);
7827       if (DTU) {
7828         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7829         Updates.push_back({DominatorTree::Delete, Pred, BB});
7830       }
7831     }
7832 
7833     // The debug info in OtherPred doesn't cover the merged control flow that
7834     // used to go through BB.  We need to delete it or update it.
7835     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7836       if (isa<DbgInfoIntrinsic>(Inst))
7837         Inst.eraseFromParent();
7838 
7839     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7840     for (BasicBlock *Succ : UniqueSuccs) {
7841       Succ->removePredecessor(BB);
7842       if (DTU)
7843         Updates.push_back({DominatorTree::Delete, BB, Succ});
7844     }
7845 
7846     IRBuilder<> Builder(BI);
7847     Builder.CreateUnreachable();
7848     BI->eraseFromParent();
7849     if (DTU)
7850       DTU->applyUpdates(Updates);
7851     return true;
7852   }
7853   return false;
7854 }
7855 
7856 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7857   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7858                                    : simplifyCondBranch(Branch, Builder);
7859 }
7860 
7861 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7862                                           IRBuilder<> &Builder) {
7863   BasicBlock *BB = BI->getParent();
7864   BasicBlock *Succ = BI->getSuccessor(0);
7865 
7866   // If the Terminator is the only non-phi instruction, simplify the block.
7867   // If LoopHeader is provided, check if the block or its successor is a loop
7868   // header. (This is for early invocations before loop simplify and
7869   // vectorization to keep canonical loop forms for nested loops. These blocks
7870   // can be eliminated when the pass is invoked later in the back-end.)
7871   // Note that if BB has only one predecessor then we do not introduce new
7872   // backedge, so we can eliminate BB.
7873   bool NeedCanonicalLoop =
7874       Options.NeedCanonicalLoop &&
7875       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7876        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7877   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7878   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7879       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7880     return true;
7881 
7882   // If the only instruction in the block is a seteq/setne comparison against a
7883   // constant, try to simplify the block.
7884   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7885     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7886       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7887         ;
7888       if (I->isTerminator() &&
7889           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7890         return true;
7891     }
7892 
7893   // See if we can merge an empty landing pad block with another which is
7894   // equivalent.
7895   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7896     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7897       ;
7898     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7899       return true;
7900   }
7901 
7902   // If this basic block is ONLY a compare and a branch, and if a predecessor
7903   // branches to us and our successor, fold the comparison into the
7904   // predecessor and use logical operations to update the incoming value
7905   // for PHI nodes in common successor.
7906   if (Options.SpeculateBlocks &&
7907       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7908                              Options.BonusInstThreshold))
7909     return requestResimplify();
7910   return false;
7911 }
7912 
7913 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7914   BasicBlock *PredPred = nullptr;
7915   for (auto *P : predecessors(BB)) {
7916     BasicBlock *PPred = P->getSinglePredecessor();
7917     if (!PPred || (PredPred && PredPred != PPred))
7918       return nullptr;
7919     PredPred = PPred;
7920   }
7921   return PredPred;
7922 }
7923 
7924 /// Fold the following pattern:
7925 /// bb0:
7926 ///   br i1 %cond1, label %bb1, label %bb2
7927 /// bb1:
7928 ///   br i1 %cond2, label %bb3, label %bb4
7929 /// bb2:
7930 ///   br i1 %cond2, label %bb4, label %bb3
7931 /// bb3:
7932 ///   ...
7933 /// bb4:
7934 ///   ...
7935 /// into
7936 /// bb0:
7937 ///   %cond = xor i1 %cond1, %cond2
7938 ///   br i1 %cond, label %bb4, label %bb3
7939 /// bb3:
7940 ///   ...
7941 /// bb4:
7942 ///   ...
7943 /// NOTE: %cond2 always dominates the terminator of bb0.
7944 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7945   BasicBlock *BB = BI->getParent();
7946   BasicBlock *BB1 = BI->getSuccessor(0);
7947   BasicBlock *BB2 = BI->getSuccessor(1);
7948   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7949     if (Succ == BB)
7950       return false;
7951     if (&Succ->front() != Succ->getTerminator())
7952       return false;
7953     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7954     if (!SuccBI || !SuccBI->isConditional())
7955       return false;
7956     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7957     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7958     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7959            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7960   };
7961   BranchInst *BB1BI, *BB2BI;
7962   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7963     return false;
7964 
7965   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7966       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7967       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7968     return false;
7969 
7970   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7971   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7972   IRBuilder<> Builder(BI);
7973   BI->setCondition(
7974       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7975   BB1->removePredecessor(BB);
7976   BI->setSuccessor(0, BB4);
7977   BB2->removePredecessor(BB);
7978   BI->setSuccessor(1, BB3);
7979   if (DTU) {
7980     SmallVector<DominatorTree::UpdateType, 4> Updates;
7981     Updates.push_back({DominatorTree::Delete, BB, BB1});
7982     Updates.push_back({DominatorTree::Insert, BB, BB4});
7983     Updates.push_back({DominatorTree::Delete, BB, BB2});
7984     Updates.push_back({DominatorTree::Insert, BB, BB3});
7985 
7986     DTU->applyUpdates(Updates);
7987   }
7988   bool HasWeight = false;
7989   uint64_t BBTWeight, BBFWeight;
7990   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
7991     HasWeight = true;
7992   else
7993     BBTWeight = BBFWeight = 1;
7994   uint64_t BB1TWeight, BB1FWeight;
7995   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
7996     HasWeight = true;
7997   else
7998     BB1TWeight = BB1FWeight = 1;
7999   uint64_t BB2TWeight, BB2FWeight;
8000   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
8001     HasWeight = true;
8002   else
8003     BB2TWeight = BB2FWeight = 1;
8004   if (HasWeight) {
8005     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
8006                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
8007     fitWeights(Weights);
8008     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
8009   }
8010   return true;
8011 }
8012 
8013 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
8014   assert(
8015       !isa<ConstantInt>(BI->getCondition()) &&
8016       BI->getSuccessor(0) != BI->getSuccessor(1) &&
8017       "Tautological conditional branch should have been eliminated already.");
8018 
8019   BasicBlock *BB = BI->getParent();
8020   if (!Options.SimplifyCondBranch ||
8021       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
8022     return false;
8023 
8024   // Conditional branch
8025   if (isValueEqualityComparison(BI)) {
8026     // If we only have one predecessor, and if it is a branch on this value,
8027     // see if that predecessor totally determines the outcome of this
8028     // switch.
8029     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
8030       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
8031         return requestResimplify();
8032 
8033     // This block must be empty, except for the setcond inst, if it exists.
8034     // Ignore dbg and pseudo intrinsics.
8035     auto I = BB->instructionsWithoutDebug(true).begin();
8036     if (&*I == BI) {
8037       if (foldValueComparisonIntoPredecessors(BI, Builder))
8038         return requestResimplify();
8039     } else if (&*I == cast<Instruction>(BI->getCondition())) {
8040       ++I;
8041       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
8042         return requestResimplify();
8043     }
8044   }
8045 
8046   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
8047   if (simplifyBranchOnICmpChain(BI, Builder, DL))
8048     return true;
8049 
8050   // If this basic block has dominating predecessor blocks and the dominating
8051   // blocks' conditions imply BI's condition, we know the direction of BI.
8052   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
8053   if (Imp) {
8054     // Turn this into a branch on constant.
8055     auto *OldCond = BI->getCondition();
8056     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
8057                              : ConstantInt::getFalse(BB->getContext());
8058     BI->setCondition(TorF);
8059     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
8060     return requestResimplify();
8061   }
8062 
8063   // If this basic block is ONLY a compare and a branch, and if a predecessor
8064   // branches to us and one of our successors, fold the comparison into the
8065   // predecessor and use logical operations to pick the right destination.
8066   if (Options.SpeculateBlocks &&
8067       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
8068                              Options.BonusInstThreshold))
8069     return requestResimplify();
8070 
8071   // We have a conditional branch to two blocks that are only reachable
8072   // from BI.  We know that the condbr dominates the two blocks, so see if
8073   // there is any identical code in the "then" and "else" blocks.  If so, we
8074   // can hoist it up to the branching block.
8075   if (BI->getSuccessor(0)->getSinglePredecessor()) {
8076     if (BI->getSuccessor(1)->getSinglePredecessor()) {
8077       if (HoistCommon &&
8078           hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts))
8079         return requestResimplify();
8080 
8081       if (BI && HoistLoadsStoresWithCondFaulting &&
8082           Options.HoistLoadsStoresWithCondFaulting &&
8083           isProfitableToSpeculate(BI, std::nullopt, TTI)) {
8084         SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
8085         auto CanSpeculateConditionalLoadsStores = [&]() {
8086           for (auto *Succ : successors(BB)) {
8087             for (Instruction &I : *Succ) {
8088               if (I.isTerminator()) {
8089                 if (I.getNumSuccessors() > 1)
8090                   return false;
8091                 continue;
8092               } else if (!isSafeCheapLoadStore(&I, TTI) ||
8093                          SpeculatedConditionalLoadsStores.size() ==
8094                              HoistLoadsStoresWithCondFaultingThreshold) {
8095                 return false;
8096               }
8097               SpeculatedConditionalLoadsStores.push_back(&I);
8098             }
8099           }
8100           return !SpeculatedConditionalLoadsStores.empty();
8101         };
8102 
8103         if (CanSpeculateConditionalLoadsStores()) {
8104           hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores,
8105                                       std::nullopt);
8106           return requestResimplify();
8107         }
8108       }
8109     } else {
8110       // If Successor #1 has multiple preds, we may be able to conditionally
8111       // execute Successor #0 if it branches to Successor #1.
8112       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
8113       if (Succ0TI->getNumSuccessors() == 1 &&
8114           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
8115         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
8116           return requestResimplify();
8117     }
8118   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
8119     // If Successor #0 has multiple preds, we may be able to conditionally
8120     // execute Successor #1 if it branches to Successor #0.
8121     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
8122     if (Succ1TI->getNumSuccessors() == 1 &&
8123         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
8124       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
8125         return requestResimplify();
8126   }
8127 
8128   // If this is a branch on something for which we know the constant value in
8129   // predecessors (e.g. a phi node in the current block), thread control
8130   // through this block.
8131   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
8132     return requestResimplify();
8133 
8134   // Scan predecessor blocks for conditional branches.
8135   for (BasicBlock *Pred : predecessors(BB))
8136     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
8137       if (PBI != BI && PBI->isConditional())
8138         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
8139           return requestResimplify();
8140 
8141   // Look for diamond patterns.
8142   if (MergeCondStores)
8143     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
8144       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
8145         if (PBI != BI && PBI->isConditional())
8146           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
8147             return requestResimplify();
8148 
8149   // Look for nested conditional branches.
8150   if (mergeNestedCondBranch(BI, DTU))
8151     return requestResimplify();
8152 
8153   return false;
8154 }
8155 
8156 /// Check if passing a value to an instruction will cause undefined behavior.
8157 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
8158   Constant *C = dyn_cast<Constant>(V);
8159   if (!C)
8160     return false;
8161 
8162   if (I->use_empty())
8163     return false;
8164 
8165   if (C->isNullValue() || isa<UndefValue>(C)) {
8166     // Only look at the first use we can handle, avoid hurting compile time with
8167     // long uselists
8168     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
8169       auto *Use = cast<Instruction>(U);
8170       // Change this list when we want to add new instructions.
8171       switch (Use->getOpcode()) {
8172       default:
8173         return false;
8174       case Instruction::GetElementPtr:
8175       case Instruction::Ret:
8176       case Instruction::BitCast:
8177       case Instruction::Load:
8178       case Instruction::Store:
8179       case Instruction::Call:
8180       case Instruction::CallBr:
8181       case Instruction::Invoke:
8182       case Instruction::UDiv:
8183       case Instruction::URem:
8184         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
8185         // implemented to avoid code complexity as it is unclear how useful such
8186         // logic is.
8187       case Instruction::SDiv:
8188       case Instruction::SRem:
8189         return true;
8190       }
8191     });
8192     if (FindUse == I->user_end())
8193       return false;
8194     auto *Use = cast<Instruction>(*FindUse);
8195     // Bail out if Use is not in the same BB as I or Use == I or Use comes
8196     // before I in the block. The latter two can be the case if Use is a
8197     // PHI node.
8198     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
8199       return false;
8200 
8201     // Now make sure that there are no instructions in between that can alter
8202     // control flow (eg. calls)
8203     auto InstrRange =
8204         make_range(std::next(I->getIterator()), Use->getIterator());
8205     if (any_of(InstrRange, [](Instruction &I) {
8206           return !isGuaranteedToTransferExecutionToSuccessor(&I);
8207         }))
8208       return false;
8209 
8210     // Look through GEPs. A load from a GEP derived from NULL is still undefined
8211     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
8212       if (GEP->getPointerOperand() == I) {
8213         // The current base address is null, there are four cases to consider:
8214         // getelementptr (TY, null, 0)                 -> null
8215         // getelementptr (TY, null, not zero)          -> may be modified
8216         // getelementptr inbounds (TY, null, 0)        -> null
8217         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
8218         // undefined?
8219         if (!GEP->hasAllZeroIndices() &&
8220             (!GEP->isInBounds() ||
8221              NullPointerIsDefined(GEP->getFunction(),
8222                                   GEP->getPointerAddressSpace())))
8223           PtrValueMayBeModified = true;
8224         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
8225       }
8226 
8227     // Look through return.
8228     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
8229       bool HasNoUndefAttr =
8230           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
8231       // Return undefined to a noundef return value is undefined.
8232       if (isa<UndefValue>(C) && HasNoUndefAttr)
8233         return true;
8234       // Return null to a nonnull+noundef return value is undefined.
8235       if (C->isNullValue() && HasNoUndefAttr &&
8236           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
8237         return !PtrValueMayBeModified;
8238       }
8239     }
8240 
8241     // Load from null is undefined.
8242     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
8243       if (!LI->isVolatile())
8244         return !NullPointerIsDefined(LI->getFunction(),
8245                                      LI->getPointerAddressSpace());
8246 
8247     // Store to null is undefined.
8248     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
8249       if (!SI->isVolatile())
8250         return (!NullPointerIsDefined(SI->getFunction(),
8251                                       SI->getPointerAddressSpace())) &&
8252                SI->getPointerOperand() == I;
8253 
8254     // llvm.assume(false/undef) always triggers immediate UB.
8255     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
8256       // Ignore assume operand bundles.
8257       if (I == Assume->getArgOperand(0))
8258         return true;
8259     }
8260 
8261     if (auto *CB = dyn_cast<CallBase>(Use)) {
8262       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
8263         return false;
8264       // A call to null is undefined.
8265       if (CB->getCalledOperand() == I)
8266         return true;
8267 
8268       if (C->isNullValue()) {
8269         for (const llvm::Use &Arg : CB->args())
8270           if (Arg == I) {
8271             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8272             if (CB->isPassingUndefUB(ArgIdx) &&
8273                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
8274               // Passing null to a nonnnull+noundef argument is undefined.
8275               return !PtrValueMayBeModified;
8276             }
8277           }
8278       } else if (isa<UndefValue>(C)) {
8279         // Passing undef to a noundef argument is undefined.
8280         for (const llvm::Use &Arg : CB->args())
8281           if (Arg == I) {
8282             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8283             if (CB->isPassingUndefUB(ArgIdx)) {
8284               // Passing undef to a noundef argument is undefined.
8285               return true;
8286             }
8287           }
8288       }
8289     }
8290     // Div/Rem by zero is immediate UB
8291     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
8292       return true;
8293   }
8294   return false;
8295 }
8296 
8297 /// If BB has an incoming value that will always trigger undefined behavior
8298 /// (eg. null pointer dereference), remove the branch leading here.
8299 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8300                                               DomTreeUpdater *DTU,
8301                                               AssumptionCache *AC) {
8302   for (PHINode &PHI : BB->phis())
8303     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8304       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8305         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8306         Instruction *T = Predecessor->getTerminator();
8307         IRBuilder<> Builder(T);
8308         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8309           BB->removePredecessor(Predecessor);
8310           // Turn unconditional branches into unreachables and remove the dead
8311           // destination from conditional branches.
8312           if (BI->isUnconditional())
8313             Builder.CreateUnreachable();
8314           else {
8315             // Preserve guarding condition in assume, because it might not be
8316             // inferrable from any dominating condition.
8317             Value *Cond = BI->getCondition();
8318             CallInst *Assumption;
8319             if (BI->getSuccessor(0) == BB)
8320               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8321             else
8322               Assumption = Builder.CreateAssumption(Cond);
8323             if (AC)
8324               AC->registerAssumption(cast<AssumeInst>(Assumption));
8325             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8326                                                        : BI->getSuccessor(0));
8327           }
8328           BI->eraseFromParent();
8329           if (DTU)
8330             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8331           return true;
8332         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8333           // Redirect all branches leading to UB into
8334           // a newly created unreachable block.
8335           BasicBlock *Unreachable = BasicBlock::Create(
8336               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8337           Builder.SetInsertPoint(Unreachable);
8338           // The new block contains only one instruction: Unreachable
8339           Builder.CreateUnreachable();
8340           for (const auto &Case : SI->cases())
8341             if (Case.getCaseSuccessor() == BB) {
8342               BB->removePredecessor(Predecessor);
8343               Case.setSuccessor(Unreachable);
8344             }
8345           if (SI->getDefaultDest() == BB) {
8346             BB->removePredecessor(Predecessor);
8347             SI->setDefaultDest(Unreachable);
8348           }
8349 
8350           if (DTU)
8351             DTU->applyUpdates(
8352                 { { DominatorTree::Insert, Predecessor, Unreachable },
8353                   { DominatorTree::Delete, Predecessor, BB } });
8354           return true;
8355         }
8356       }
8357 
8358   return false;
8359 }
8360 
8361 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8362   bool Changed = false;
8363 
8364   assert(BB && BB->getParent() && "Block not embedded in function!");
8365   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8366 
8367   // Remove basic blocks that have no predecessors (except the entry block)...
8368   // or that just have themself as a predecessor.  These are unreachable.
8369   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8370       BB->getSinglePredecessor() == BB) {
8371     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8372     DeleteDeadBlock(BB, DTU);
8373     return true;
8374   }
8375 
8376   // Check to see if we can constant propagate this terminator instruction
8377   // away...
8378   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8379                                     /*TLI=*/nullptr, DTU);
8380 
8381   // Check for and eliminate duplicate PHI nodes in this block.
8382   Changed |= EliminateDuplicatePHINodes(BB);
8383 
8384   // Check for and remove branches that will always cause undefined behavior.
8385   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8386     return requestResimplify();
8387 
8388   // Merge basic blocks into their predecessor if there is only one distinct
8389   // pred, and if there is only one distinct successor of the predecessor, and
8390   // if there are no PHI nodes.
8391   if (MergeBlockIntoPredecessor(BB, DTU))
8392     return true;
8393 
8394   if (SinkCommon && Options.SinkCommonInsts)
8395     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8396         mergeCompatibleInvokes(BB, DTU)) {
8397       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8398       // so we may now how duplicate PHI's.
8399       // Let's rerun EliminateDuplicatePHINodes() first,
8400       // before foldTwoEntryPHINode() potentially converts them into select's,
8401       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8402       return true;
8403     }
8404 
8405   IRBuilder<> Builder(BB);
8406 
8407   if (Options.SpeculateBlocks &&
8408       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8409     // If there is a trivial two-entry PHI node in this basic block, and we can
8410     // eliminate it, do so now.
8411     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8412       if (PN->getNumIncomingValues() == 2)
8413         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8414                                 Options.SpeculateUnpredictables))
8415           return true;
8416   }
8417 
8418   Instruction *Terminator = BB->getTerminator();
8419   Builder.SetInsertPoint(Terminator);
8420   switch (Terminator->getOpcode()) {
8421   case Instruction::Br:
8422     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8423     break;
8424   case Instruction::Resume:
8425     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8426     break;
8427   case Instruction::CleanupRet:
8428     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8429     break;
8430   case Instruction::Switch:
8431     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8432     break;
8433   case Instruction::Unreachable:
8434     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8435     break;
8436   case Instruction::IndirectBr:
8437     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8438     break;
8439   }
8440 
8441   return Changed;
8442 }
8443 
8444 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8445   bool Changed = false;
8446 
8447   // Repeated simplify BB as long as resimplification is requested.
8448   do {
8449     Resimplify = false;
8450 
8451     // Perform one round of simplifcation. Resimplify flag will be set if
8452     // another iteration is requested.
8453     Changed |= simplifyOnce(BB);
8454   } while (Resimplify);
8455 
8456   return Changed;
8457 }
8458 
8459 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8460                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8461                        ArrayRef<WeakVH> LoopHeaders) {
8462   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8463                         Options)
8464       .run(BB);
8465 }
8466