1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/NoFolder.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <set> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "simplifycfg" 95 96 cl::opt<bool> llvm::RequireAndPreserveDomTree( 97 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 98 99 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 100 "into preserving DomTree,")); 101 102 // Chosen as 2 so as to be cheap, but still to have enough power to fold 103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 104 // To catch this, we need to fold a compare and a select, hence '2' being the 105 // minimum reasonable default. 106 static cl::opt<unsigned> PHINodeFoldingThreshold( 107 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 108 cl::desc( 109 "Control the amount of phi node folding to perform (default = 2)")); 110 111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 112 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 113 cl::desc("Control the maximal total instruction cost that we are willing " 114 "to speculatively execute to fold a 2-entry PHI node into a " 115 "select (default = 4)")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> HoistLoadsStoresWithCondFaulting( 122 "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden, 123 cl::init(true), 124 cl::desc("Hoist loads/stores if the target supports " 125 "conditional faulting")); 126 127 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold( 128 "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6), 129 cl::desc("Control the maximal conditonal load/store that we are willing " 130 "to speculatively execute to eliminate conditional branch " 131 "(default = 6)")); 132 133 static cl::opt<unsigned> 134 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 135 cl::init(20), 136 cl::desc("Allow reordering across at most this many " 137 "instructions when hoisting")); 138 139 static cl::opt<bool> 140 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 141 cl::desc("Sink common instructions down to the end block")); 142 143 static cl::opt<bool> HoistCondStores( 144 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 145 cl::desc("Hoist conditional stores if an unconditional store precedes")); 146 147 static cl::opt<bool> MergeCondStores( 148 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 149 cl::desc("Hoist conditional stores even if an unconditional store does not " 150 "precede - hoist multiple conditional stores into a single " 151 "predicated store")); 152 153 static cl::opt<bool> MergeCondStoresAggressively( 154 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 155 cl::desc("When merging conditional stores, do so even if the resultant " 156 "basic blocks are unlikely to be if-converted as a result")); 157 158 static cl::opt<bool> SpeculateOneExpensiveInst( 159 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 160 cl::desc("Allow exactly one expensive instruction to be speculatively " 161 "executed")); 162 163 static cl::opt<unsigned> MaxSpeculationDepth( 164 "max-speculation-depth", cl::Hidden, cl::init(10), 165 cl::desc("Limit maximum recursion depth when calculating costs of " 166 "speculatively executed instructions")); 167 168 static cl::opt<int> 169 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 170 cl::init(10), 171 cl::desc("Max size of a block which is still considered " 172 "small enough to thread through")); 173 174 // Two is chosen to allow one negation and a logical combine. 175 static cl::opt<unsigned> 176 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 177 cl::init(2), 178 cl::desc("Maximum cost of combining conditions when " 179 "folding branches")); 180 181 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 182 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 183 cl::init(2), 184 cl::desc("Multiplier to apply to threshold when determining whether or not " 185 "to fold branch to common destination when vector operations are " 186 "present")); 187 188 static cl::opt<bool> EnableMergeCompatibleInvokes( 189 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 190 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 191 192 static cl::opt<unsigned> MaxSwitchCasesPerResult( 193 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 194 cl::desc("Limit cases to analyze when converting a switch to select")); 195 196 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 197 STATISTIC(NumLinearMaps, 198 "Number of switch instructions turned into linear mapping"); 199 STATISTIC(NumLookupTables, 200 "Number of switch instructions turned into lookup tables"); 201 STATISTIC( 202 NumLookupTablesHoles, 203 "Number of switch instructions turned into lookup tables (holes checked)"); 204 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 205 STATISTIC(NumFoldValueComparisonIntoPredecessors, 206 "Number of value comparisons folded into predecessor basic blocks"); 207 STATISTIC(NumFoldBranchToCommonDest, 208 "Number of branches folded into predecessor basic block"); 209 STATISTIC( 210 NumHoistCommonCode, 211 "Number of common instruction 'blocks' hoisted up to the begin block"); 212 STATISTIC(NumHoistCommonInstrs, 213 "Number of common instructions hoisted up to the begin block"); 214 STATISTIC(NumSinkCommonCode, 215 "Number of common instruction 'blocks' sunk down to the end block"); 216 STATISTIC(NumSinkCommonInstrs, 217 "Number of common instructions sunk down to the end block"); 218 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 219 STATISTIC(NumInvokes, 220 "Number of invokes with empty resume blocks simplified into calls"); 221 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 222 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 223 224 namespace { 225 226 // The first field contains the value that the switch produces when a certain 227 // case group is selected, and the second field is a vector containing the 228 // cases composing the case group. 229 using SwitchCaseResultVectorTy = 230 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 231 232 // The first field contains the phi node that generates a result of the switch 233 // and the second field contains the value generated for a certain case in the 234 // switch for that PHI. 235 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 236 237 /// ValueEqualityComparisonCase - Represents a case of a switch. 238 struct ValueEqualityComparisonCase { 239 ConstantInt *Value; 240 BasicBlock *Dest; 241 242 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 243 : Value(Value), Dest(Dest) {} 244 245 bool operator<(ValueEqualityComparisonCase RHS) const { 246 // Comparing pointers is ok as we only rely on the order for uniquing. 247 return Value < RHS.Value; 248 } 249 250 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 251 }; 252 253 class SimplifyCFGOpt { 254 const TargetTransformInfo &TTI; 255 DomTreeUpdater *DTU; 256 const DataLayout &DL; 257 ArrayRef<WeakVH> LoopHeaders; 258 const SimplifyCFGOptions &Options; 259 bool Resimplify; 260 261 Value *isValueEqualityComparison(Instruction *TI); 262 BasicBlock *getValueEqualityComparisonCases( 263 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 264 bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 265 BasicBlock *Pred, 266 IRBuilder<> &Builder); 267 bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 268 Instruction *PTI, 269 IRBuilder<> &Builder); 270 bool foldValueComparisonIntoPredecessors(Instruction *TI, 271 IRBuilder<> &Builder); 272 273 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 274 bool simplifySingleResume(ResumeInst *RI); 275 bool simplifyCommonResume(ResumeInst *RI); 276 bool simplifyCleanupReturn(CleanupReturnInst *RI); 277 bool simplifyUnreachable(UnreachableInst *UI); 278 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 279 bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU); 280 bool simplifyIndirectBr(IndirectBrInst *IBI); 281 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 282 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 283 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 284 285 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 286 IRBuilder<> &Builder); 287 288 bool hoistCommonCodeFromSuccessors(Instruction *TI, bool AllInstsEqOnly); 289 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 290 Instruction *TI, Instruction *I1, 291 SmallVectorImpl<Instruction *> &OtherSuccTIs); 292 bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 293 bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 294 BasicBlock *TrueBB, BasicBlock *FalseBB, 295 uint32_t TrueWeight, uint32_t FalseWeight); 296 bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 297 const DataLayout &DL); 298 bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 299 bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 300 bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 301 302 public: 303 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 304 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 305 const SimplifyCFGOptions &Opts) 306 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 307 assert((!DTU || !DTU->hasPostDomTree()) && 308 "SimplifyCFG is not yet capable of maintaining validity of a " 309 "PostDomTree, so don't ask for it."); 310 } 311 312 bool simplifyOnce(BasicBlock *BB); 313 bool run(BasicBlock *BB); 314 315 // Helper to set Resimplify and return change indication. 316 bool requestResimplify() { 317 Resimplify = true; 318 return true; 319 } 320 }; 321 322 } // end anonymous namespace 323 324 /// Return true if all the PHI nodes in the basic block \p BB 325 /// receive compatible (identical) incoming values when coming from 326 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 327 /// 328 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 329 /// is provided, and *both* of the values are present in the set, 330 /// then they are considered equal. 331 static bool incomingValuesAreCompatible( 332 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 333 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 334 assert(IncomingBlocks.size() == 2 && 335 "Only for a pair of incoming blocks at the time!"); 336 337 // FIXME: it is okay if one of the incoming values is an `undef` value, 338 // iff the other incoming value is guaranteed to be a non-poison value. 339 // FIXME: it is okay if one of the incoming values is a `poison` value. 340 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 341 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 342 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 343 if (IV0 == IV1) 344 return true; 345 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 346 EquivalenceSet->contains(IV1)) 347 return true; 348 return false; 349 }); 350 } 351 352 /// Return true if it is safe to merge these two 353 /// terminator instructions together. 354 static bool 355 safeToMergeTerminators(Instruction *SI1, Instruction *SI2, 356 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 357 if (SI1 == SI2) 358 return false; // Can't merge with self! 359 360 // It is not safe to merge these two switch instructions if they have a common 361 // successor, and if that successor has a PHI node, and if *that* PHI node has 362 // conflicting incoming values from the two switch blocks. 363 BasicBlock *SI1BB = SI1->getParent(); 364 BasicBlock *SI2BB = SI2->getParent(); 365 366 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 367 bool Fail = false; 368 for (BasicBlock *Succ : successors(SI2BB)) { 369 if (!SI1Succs.count(Succ)) 370 continue; 371 if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 372 continue; 373 Fail = true; 374 if (FailBlocks) 375 FailBlocks->insert(Succ); 376 else 377 break; 378 } 379 380 return !Fail; 381 } 382 383 /// Update PHI nodes in Succ to indicate that there will now be entries in it 384 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 385 /// will be the same as those coming in from ExistPred, an existing predecessor 386 /// of Succ. 387 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 388 BasicBlock *ExistPred, 389 MemorySSAUpdater *MSSAU = nullptr) { 390 for (PHINode &PN : Succ->phis()) 391 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 392 if (MSSAU) 393 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 394 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 395 } 396 397 /// Compute an abstract "cost" of speculating the given instruction, 398 /// which is assumed to be safe to speculate. TCC_Free means cheap, 399 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 400 /// expensive. 401 static InstructionCost computeSpeculationCost(const User *I, 402 const TargetTransformInfo &TTI) { 403 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 404 } 405 406 /// If we have a merge point of an "if condition" as accepted above, 407 /// return true if the specified value dominates the block. We don't handle 408 /// the true generality of domination here, just a special case which works 409 /// well enough for us. 410 /// 411 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 412 /// see if V (which must be an instruction) and its recursive operands 413 /// that do not dominate BB have a combined cost lower than Budget and 414 /// are non-trapping. If both are true, the instruction is inserted into the 415 /// set and true is returned. 416 /// 417 /// The cost for most non-trapping instructions is defined as 1 except for 418 /// Select whose cost is 2. 419 /// 420 /// After this function returns, Cost is increased by the cost of 421 /// V plus its non-dominating operands. If that cost is greater than 422 /// Budget, false is returned and Cost is undefined. 423 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt, 424 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 425 InstructionCost &Cost, InstructionCost Budget, 426 const TargetTransformInfo &TTI, 427 AssumptionCache *AC, unsigned Depth = 0) { 428 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 429 // so limit the recursion depth. 430 // TODO: While this recursion limit does prevent pathological behavior, it 431 // would be better to track visited instructions to avoid cycles. 432 if (Depth == MaxSpeculationDepth) 433 return false; 434 435 Instruction *I = dyn_cast<Instruction>(V); 436 if (!I) { 437 // Non-instructions dominate all instructions and can be executed 438 // unconditionally. 439 return true; 440 } 441 BasicBlock *PBB = I->getParent(); 442 443 // We don't want to allow weird loops that might have the "if condition" in 444 // the bottom of this block. 445 if (PBB == BB) 446 return false; 447 448 // If this instruction is defined in a block that contains an unconditional 449 // branch to BB, then it must be in the 'conditional' part of the "if 450 // statement". If not, it definitely dominates the region. 451 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 452 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 453 return true; 454 455 // If we have seen this instruction before, don't count it again. 456 if (AggressiveInsts.count(I)) 457 return true; 458 459 // Okay, it looks like the instruction IS in the "condition". Check to 460 // see if it's a cheap instruction to unconditionally compute, and if it 461 // only uses stuff defined outside of the condition. If so, hoist it out. 462 if (!isSafeToSpeculativelyExecute(I, InsertPt, AC)) 463 return false; 464 465 Cost += computeSpeculationCost(I, TTI); 466 467 // Allow exactly one instruction to be speculated regardless of its cost 468 // (as long as it is safe to do so). 469 // This is intended to flatten the CFG even if the instruction is a division 470 // or other expensive operation. The speculation of an expensive instruction 471 // is expected to be undone in CodeGenPrepare if the speculation has not 472 // enabled further IR optimizations. 473 if (Cost > Budget && 474 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 475 !Cost.isValid())) 476 return false; 477 478 // Okay, we can only really hoist these out if their operands do 479 // not take us over the cost threshold. 480 for (Use &Op : I->operands()) 481 if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget, 482 TTI, AC, Depth + 1)) 483 return false; 484 // Okay, it's safe to do this! Remember this instruction. 485 AggressiveInsts.insert(I); 486 return true; 487 } 488 489 /// Extract ConstantInt from value, looking through IntToPtr 490 /// and PointerNullValue. Return NULL if value is not a constant int. 491 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) { 492 // Normal constant int. 493 ConstantInt *CI = dyn_cast<ConstantInt>(V); 494 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 495 DL.isNonIntegralPointerType(V->getType())) 496 return CI; 497 498 // This is some kind of pointer constant. Turn it into a pointer-sized 499 // ConstantInt if possible. 500 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 501 502 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 503 if (isa<ConstantPointerNull>(V)) 504 return ConstantInt::get(PtrTy, 0); 505 506 // IntToPtr const int. 507 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 508 if (CE->getOpcode() == Instruction::IntToPtr) 509 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 510 // The constant is very likely to have the right type already. 511 if (CI->getType() == PtrTy) 512 return CI; 513 else 514 return cast<ConstantInt>( 515 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 516 } 517 return nullptr; 518 } 519 520 namespace { 521 522 /// Given a chain of or (||) or and (&&) comparison of a value against a 523 /// constant, this will try to recover the information required for a switch 524 /// structure. 525 /// It will depth-first traverse the chain of comparison, seeking for patterns 526 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 527 /// representing the different cases for the switch. 528 /// Note that if the chain is composed of '||' it will build the set of elements 529 /// that matches the comparisons (i.e. any of this value validate the chain) 530 /// while for a chain of '&&' it will build the set elements that make the test 531 /// fail. 532 struct ConstantComparesGatherer { 533 const DataLayout &DL; 534 535 /// Value found for the switch comparison 536 Value *CompValue = nullptr; 537 538 /// Extra clause to be checked before the switch 539 Value *Extra = nullptr; 540 541 /// Set of integers to match in switch 542 SmallVector<ConstantInt *, 8> Vals; 543 544 /// Number of comparisons matched in the and/or chain 545 unsigned UsedICmps = 0; 546 547 /// Construct and compute the result for the comparison instruction Cond 548 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 549 gather(Cond); 550 } 551 552 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 553 ConstantComparesGatherer & 554 operator=(const ConstantComparesGatherer &) = delete; 555 556 private: 557 /// Try to set the current value used for the comparison, it succeeds only if 558 /// it wasn't set before or if the new value is the same as the old one 559 bool setValueOnce(Value *NewVal) { 560 if (CompValue && CompValue != NewVal) 561 return false; 562 CompValue = NewVal; 563 return (CompValue != nullptr); 564 } 565 566 /// Try to match Instruction "I" as a comparison against a constant and 567 /// populates the array Vals with the set of values that match (or do not 568 /// match depending on isEQ). 569 /// Return false on failure. On success, the Value the comparison matched 570 /// against is placed in CompValue. 571 /// If CompValue is already set, the function is expected to fail if a match 572 /// is found but the value compared to is different. 573 bool matchInstruction(Instruction *I, bool isEQ) { 574 // If this is an icmp against a constant, handle this as one of the cases. 575 ICmpInst *ICI; 576 ConstantInt *C; 577 if (!((ICI = dyn_cast<ICmpInst>(I)) && 578 (C = getConstantInt(I->getOperand(1), DL)))) { 579 return false; 580 } 581 582 Value *RHSVal; 583 const APInt *RHSC; 584 585 // Pattern match a special case 586 // (x & ~2^z) == y --> x == y || x == y|2^z 587 // This undoes a transformation done by instcombine to fuse 2 compares. 588 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 589 // It's a little bit hard to see why the following transformations are 590 // correct. Here is a CVC3 program to verify them for 64-bit values: 591 592 /* 593 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 594 x : BITVECTOR(64); 595 y : BITVECTOR(64); 596 z : BITVECTOR(64); 597 mask : BITVECTOR(64) = BVSHL(ONE, z); 598 QUERY( (y & ~mask = y) => 599 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 600 ); 601 QUERY( (y | mask = y) => 602 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 603 ); 604 */ 605 606 // Please note that each pattern must be a dual implication (<--> or 607 // iff). One directional implication can create spurious matches. If the 608 // implication is only one-way, an unsatisfiable condition on the left 609 // side can imply a satisfiable condition on the right side. Dual 610 // implication ensures that satisfiable conditions are transformed to 611 // other satisfiable conditions and unsatisfiable conditions are 612 // transformed to other unsatisfiable conditions. 613 614 // Here is a concrete example of a unsatisfiable condition on the left 615 // implying a satisfiable condition on the right: 616 // 617 // mask = (1 << z) 618 // (x & ~mask) == y --> (x == y || x == (y | mask)) 619 // 620 // Substituting y = 3, z = 0 yields: 621 // (x & -2) == 3 --> (x == 3 || x == 2) 622 623 // Pattern match a special case: 624 /* 625 QUERY( (y & ~mask = y) => 626 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 627 ); 628 */ 629 if (match(ICI->getOperand(0), 630 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 631 APInt Mask = ~*RHSC; 632 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 633 // If we already have a value for the switch, it has to match! 634 if (!setValueOnce(RHSVal)) 635 return false; 636 637 Vals.push_back(C); 638 Vals.push_back( 639 ConstantInt::get(C->getContext(), 640 C->getValue() | Mask)); 641 UsedICmps++; 642 return true; 643 } 644 } 645 646 // Pattern match a special case: 647 /* 648 QUERY( (y | mask = y) => 649 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 650 ); 651 */ 652 if (match(ICI->getOperand(0), 653 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 654 APInt Mask = *RHSC; 655 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 656 // If we already have a value for the switch, it has to match! 657 if (!setValueOnce(RHSVal)) 658 return false; 659 660 Vals.push_back(C); 661 Vals.push_back(ConstantInt::get(C->getContext(), 662 C->getValue() & ~Mask)); 663 UsedICmps++; 664 return true; 665 } 666 } 667 668 // If we already have a value for the switch, it has to match! 669 if (!setValueOnce(ICI->getOperand(0))) 670 return false; 671 672 UsedICmps++; 673 Vals.push_back(C); 674 return ICI->getOperand(0); 675 } 676 677 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 678 ConstantRange Span = 679 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 680 681 // Shift the range if the compare is fed by an add. This is the range 682 // compare idiom as emitted by instcombine. 683 Value *CandidateVal = I->getOperand(0); 684 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 685 Span = Span.subtract(*RHSC); 686 CandidateVal = RHSVal; 687 } 688 689 // If this is an and/!= check, then we are looking to build the set of 690 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 691 // x != 0 && x != 1. 692 if (!isEQ) 693 Span = Span.inverse(); 694 695 // If there are a ton of values, we don't want to make a ginormous switch. 696 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 697 return false; 698 } 699 700 // If we already have a value for the switch, it has to match! 701 if (!setValueOnce(CandidateVal)) 702 return false; 703 704 // Add all values from the range to the set 705 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 706 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 707 708 UsedICmps++; 709 return true; 710 } 711 712 /// Given a potentially 'or'd or 'and'd together collection of icmp 713 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 714 /// the value being compared, and stick the list constants into the Vals 715 /// vector. 716 /// One "Extra" case is allowed to differ from the other. 717 void gather(Value *V) { 718 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 719 720 // Keep a stack (SmallVector for efficiency) for depth-first traversal 721 SmallVector<Value *, 8> DFT; 722 SmallPtrSet<Value *, 8> Visited; 723 724 // Initialize 725 Visited.insert(V); 726 DFT.push_back(V); 727 728 while (!DFT.empty()) { 729 V = DFT.pop_back_val(); 730 731 if (Instruction *I = dyn_cast<Instruction>(V)) { 732 // If it is a || (or && depending on isEQ), process the operands. 733 Value *Op0, *Op1; 734 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 735 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 736 if (Visited.insert(Op1).second) 737 DFT.push_back(Op1); 738 if (Visited.insert(Op0).second) 739 DFT.push_back(Op0); 740 741 continue; 742 } 743 744 // Try to match the current instruction 745 if (matchInstruction(I, isEQ)) 746 // Match succeed, continue the loop 747 continue; 748 } 749 750 // One element of the sequence of || (or &&) could not be match as a 751 // comparison against the same value as the others. 752 // We allow only one "Extra" case to be checked before the switch 753 if (!Extra) { 754 Extra = V; 755 continue; 756 } 757 // Failed to parse a proper sequence, abort now 758 CompValue = nullptr; 759 break; 760 } 761 } 762 }; 763 764 } // end anonymous namespace 765 766 static void eraseTerminatorAndDCECond(Instruction *TI, 767 MemorySSAUpdater *MSSAU = nullptr) { 768 Instruction *Cond = nullptr; 769 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 770 Cond = dyn_cast<Instruction>(SI->getCondition()); 771 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 772 if (BI->isConditional()) 773 Cond = dyn_cast<Instruction>(BI->getCondition()); 774 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 775 Cond = dyn_cast<Instruction>(IBI->getAddress()); 776 } 777 778 TI->eraseFromParent(); 779 if (Cond) 780 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 781 } 782 783 /// Return true if the specified terminator checks 784 /// to see if a value is equal to constant integer value. 785 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 786 Value *CV = nullptr; 787 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 788 // Do not permit merging of large switch instructions into their 789 // predecessors unless there is only one predecessor. 790 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 791 CV = SI->getCondition(); 792 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 793 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 794 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 795 if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL)) 796 CV = ICI->getOperand(0); 797 } 798 799 // Unwrap any lossless ptrtoint cast. 800 if (CV) { 801 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 802 Value *Ptr = PTII->getPointerOperand(); 803 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 804 CV = Ptr; 805 } 806 } 807 return CV; 808 } 809 810 /// Given a value comparison instruction, 811 /// decode all of the 'cases' that it represents and return the 'default' block. 812 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases( 813 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 814 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 815 Cases.reserve(SI->getNumCases()); 816 for (auto Case : SI->cases()) 817 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 818 Case.getCaseSuccessor())); 819 return SI->getDefaultDest(); 820 } 821 822 BranchInst *BI = cast<BranchInst>(TI); 823 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 824 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 825 Cases.push_back(ValueEqualityComparisonCase( 826 getConstantInt(ICI->getOperand(1), DL), Succ)); 827 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 828 } 829 830 /// Given a vector of bb/value pairs, remove any entries 831 /// in the list that match the specified block. 832 static void 833 eliminateBlockCases(BasicBlock *BB, 834 std::vector<ValueEqualityComparisonCase> &Cases) { 835 llvm::erase(Cases, BB); 836 } 837 838 /// Return true if there are any keys in C1 that exist in C2 as well. 839 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 840 std::vector<ValueEqualityComparisonCase> &C2) { 841 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 842 843 // Make V1 be smaller than V2. 844 if (V1->size() > V2->size()) 845 std::swap(V1, V2); 846 847 if (V1->empty()) 848 return false; 849 if (V1->size() == 1) { 850 // Just scan V2. 851 ConstantInt *TheVal = (*V1)[0].Value; 852 for (const ValueEqualityComparisonCase &VECC : *V2) 853 if (TheVal == VECC.Value) 854 return true; 855 } 856 857 // Otherwise, just sort both lists and compare element by element. 858 array_pod_sort(V1->begin(), V1->end()); 859 array_pod_sort(V2->begin(), V2->end()); 860 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 861 while (i1 != e1 && i2 != e2) { 862 if ((*V1)[i1].Value == (*V2)[i2].Value) 863 return true; 864 if ((*V1)[i1].Value < (*V2)[i2].Value) 865 ++i1; 866 else 867 ++i2; 868 } 869 return false; 870 } 871 872 // Set branch weights on SwitchInst. This sets the metadata if there is at 873 // least one non-zero weight. 874 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights, 875 bool IsExpected) { 876 // Check that there is at least one non-zero weight. Otherwise, pass 877 // nullptr to setMetadata which will erase the existing metadata. 878 MDNode *N = nullptr; 879 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 880 N = MDBuilder(SI->getParent()->getContext()) 881 .createBranchWeights(Weights, IsExpected); 882 SI->setMetadata(LLVMContext::MD_prof, N); 883 } 884 885 // Similar to the above, but for branch and select instructions that take 886 // exactly 2 weights. 887 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 888 uint32_t FalseWeight, bool IsExpected) { 889 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 890 // Check that there is at least one non-zero weight. Otherwise, pass 891 // nullptr to setMetadata which will erase the existing metadata. 892 MDNode *N = nullptr; 893 if (TrueWeight || FalseWeight) 894 N = MDBuilder(I->getParent()->getContext()) 895 .createBranchWeights(TrueWeight, FalseWeight, IsExpected); 896 I->setMetadata(LLVMContext::MD_prof, N); 897 } 898 899 /// If TI is known to be a terminator instruction and its block is known to 900 /// only have a single predecessor block, check to see if that predecessor is 901 /// also a value comparison with the same value, and if that comparison 902 /// determines the outcome of this comparison. If so, simplify TI. This does a 903 /// very limited form of jump threading. 904 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor( 905 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 906 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 907 if (!PredVal) 908 return false; // Not a value comparison in predecessor. 909 910 Value *ThisVal = isValueEqualityComparison(TI); 911 assert(ThisVal && "This isn't a value comparison!!"); 912 if (ThisVal != PredVal) 913 return false; // Different predicates. 914 915 // TODO: Preserve branch weight metadata, similarly to how 916 // foldValueComparisonIntoPredecessors preserves it. 917 918 // Find out information about when control will move from Pred to TI's block. 919 std::vector<ValueEqualityComparisonCase> PredCases; 920 BasicBlock *PredDef = 921 getValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 922 eliminateBlockCases(PredDef, PredCases); // Remove default from cases. 923 924 // Find information about how control leaves this block. 925 std::vector<ValueEqualityComparisonCase> ThisCases; 926 BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases); 927 eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 928 929 // If TI's block is the default block from Pred's comparison, potentially 930 // simplify TI based on this knowledge. 931 if (PredDef == TI->getParent()) { 932 // If we are here, we know that the value is none of those cases listed in 933 // PredCases. If there are any cases in ThisCases that are in PredCases, we 934 // can simplify TI. 935 if (!valuesOverlap(PredCases, ThisCases)) 936 return false; 937 938 if (isa<BranchInst>(TI)) { 939 // Okay, one of the successors of this condbr is dead. Convert it to a 940 // uncond br. 941 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 942 // Insert the new branch. 943 Instruction *NI = Builder.CreateBr(ThisDef); 944 (void)NI; 945 946 // Remove PHI node entries for the dead edge. 947 ThisCases[0].Dest->removePredecessor(PredDef); 948 949 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 950 << "Through successor TI: " << *TI << "Leaving: " << *NI 951 << "\n"); 952 953 eraseTerminatorAndDCECond(TI); 954 955 if (DTU) 956 DTU->applyUpdates( 957 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 958 959 return true; 960 } 961 962 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 963 // Okay, TI has cases that are statically dead, prune them away. 964 SmallPtrSet<Constant *, 16> DeadCases; 965 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 966 DeadCases.insert(PredCases[i].Value); 967 968 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 969 << "Through successor TI: " << *TI); 970 971 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 972 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 973 --i; 974 auto *Successor = i->getCaseSuccessor(); 975 if (DTU) 976 ++NumPerSuccessorCases[Successor]; 977 if (DeadCases.count(i->getCaseValue())) { 978 Successor->removePredecessor(PredDef); 979 SI.removeCase(i); 980 if (DTU) 981 --NumPerSuccessorCases[Successor]; 982 } 983 } 984 985 if (DTU) { 986 std::vector<DominatorTree::UpdateType> Updates; 987 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 988 if (I.second == 0) 989 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 990 DTU->applyUpdates(Updates); 991 } 992 993 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 994 return true; 995 } 996 997 // Otherwise, TI's block must correspond to some matched value. Find out 998 // which value (or set of values) this is. 999 ConstantInt *TIV = nullptr; 1000 BasicBlock *TIBB = TI->getParent(); 1001 for (const auto &[Value, Dest] : PredCases) 1002 if (Dest == TIBB) { 1003 if (TIV) 1004 return false; // Cannot handle multiple values coming to this block. 1005 TIV = Value; 1006 } 1007 assert(TIV && "No edge from pred to succ?"); 1008 1009 // Okay, we found the one constant that our value can be if we get into TI's 1010 // BB. Find out which successor will unconditionally be branched to. 1011 BasicBlock *TheRealDest = nullptr; 1012 for (const auto &[Value, Dest] : ThisCases) 1013 if (Value == TIV) { 1014 TheRealDest = Dest; 1015 break; 1016 } 1017 1018 // If not handled by any explicit cases, it is handled by the default case. 1019 if (!TheRealDest) 1020 TheRealDest = ThisDef; 1021 1022 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1023 1024 // Remove PHI node entries for dead edges. 1025 BasicBlock *CheckEdge = TheRealDest; 1026 for (BasicBlock *Succ : successors(TIBB)) 1027 if (Succ != CheckEdge) { 1028 if (Succ != TheRealDest) 1029 RemovedSuccs.insert(Succ); 1030 Succ->removePredecessor(TIBB); 1031 } else 1032 CheckEdge = nullptr; 1033 1034 // Insert the new branch. 1035 Instruction *NI = Builder.CreateBr(TheRealDest); 1036 (void)NI; 1037 1038 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1039 << "Through successor TI: " << *TI << "Leaving: " << *NI 1040 << "\n"); 1041 1042 eraseTerminatorAndDCECond(TI); 1043 if (DTU) { 1044 SmallVector<DominatorTree::UpdateType, 2> Updates; 1045 Updates.reserve(RemovedSuccs.size()); 1046 for (auto *RemovedSucc : RemovedSuccs) 1047 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1048 DTU->applyUpdates(Updates); 1049 } 1050 return true; 1051 } 1052 1053 namespace { 1054 1055 /// This class implements a stable ordering of constant 1056 /// integers that does not depend on their address. This is important for 1057 /// applications that sort ConstantInt's to ensure uniqueness. 1058 struct ConstantIntOrdering { 1059 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1060 return LHS->getValue().ult(RHS->getValue()); 1061 } 1062 }; 1063 1064 } // end anonymous namespace 1065 1066 static int constantIntSortPredicate(ConstantInt *const *P1, 1067 ConstantInt *const *P2) { 1068 const ConstantInt *LHS = *P1; 1069 const ConstantInt *RHS = *P2; 1070 if (LHS == RHS) 1071 return 0; 1072 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1073 } 1074 1075 /// Get Weights of a given terminator, the default weight is at the front 1076 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1077 /// metadata. 1078 static void getBranchWeights(Instruction *TI, 1079 SmallVectorImpl<uint64_t> &Weights) { 1080 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1081 assert(MD && "Invalid branch-weight metadata"); 1082 extractFromBranchWeightMD64(MD, Weights); 1083 1084 // If TI is a conditional eq, the default case is the false case, 1085 // and the corresponding branch-weight data is at index 2. We swap the 1086 // default weight to be the first entry. 1087 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1088 assert(Weights.size() == 2); 1089 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1090 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1091 std::swap(Weights.front(), Weights.back()); 1092 } 1093 } 1094 1095 /// Keep halving the weights until all can fit in uint32_t. 1096 static void fitWeights(MutableArrayRef<uint64_t> Weights) { 1097 uint64_t Max = *llvm::max_element(Weights); 1098 if (Max > UINT_MAX) { 1099 unsigned Offset = 32 - llvm::countl_zero(Max); 1100 for (uint64_t &I : Weights) 1101 I >>= Offset; 1102 } 1103 } 1104 1105 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1106 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1107 Instruction *PTI = PredBlock->getTerminator(); 1108 1109 // If we have bonus instructions, clone them into the predecessor block. 1110 // Note that there may be multiple predecessor blocks, so we cannot move 1111 // bonus instructions to a predecessor block. 1112 for (Instruction &BonusInst : *BB) { 1113 if (BonusInst.isTerminator()) 1114 continue; 1115 1116 Instruction *NewBonusInst = BonusInst.clone(); 1117 1118 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1119 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1120 // Unless the instruction has the same !dbg location as the original 1121 // branch, drop it. When we fold the bonus instructions we want to make 1122 // sure we reset their debug locations in order to avoid stepping on 1123 // dead code caused by folding dead branches. 1124 NewBonusInst->setDebugLoc(DebugLoc()); 1125 } 1126 1127 RemapInstruction(NewBonusInst, VMap, 1128 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1129 1130 // If we speculated an instruction, we need to drop any metadata that may 1131 // result in undefined behavior, as the metadata might have been valid 1132 // only given the branch precondition. 1133 // Similarly strip attributes on call parameters that may cause UB in 1134 // location the call is moved to. 1135 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1136 1137 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1138 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1139 RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap, 1140 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1141 1142 if (isa<DbgInfoIntrinsic>(BonusInst)) 1143 continue; 1144 1145 NewBonusInst->takeName(&BonusInst); 1146 BonusInst.setName(NewBonusInst->getName() + ".old"); 1147 VMap[&BonusInst] = NewBonusInst; 1148 1149 // Update (liveout) uses of bonus instructions, 1150 // now that the bonus instruction has been cloned into predecessor. 1151 // Note that we expect to be in a block-closed SSA form for this to work! 1152 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1153 auto *UI = cast<Instruction>(U.getUser()); 1154 auto *PN = dyn_cast<PHINode>(UI); 1155 if (!PN) { 1156 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1157 "If the user is not a PHI node, then it should be in the same " 1158 "block as, and come after, the original bonus instruction."); 1159 continue; // Keep using the original bonus instruction. 1160 } 1161 // Is this the block-closed SSA form PHI node? 1162 if (PN->getIncomingBlock(U) == BB) 1163 continue; // Great, keep using the original bonus instruction. 1164 // The only other alternative is an "use" when coming from 1165 // the predecessor block - here we should refer to the cloned bonus instr. 1166 assert(PN->getIncomingBlock(U) == PredBlock && 1167 "Not in block-closed SSA form?"); 1168 U.set(NewBonusInst); 1169 } 1170 } 1171 } 1172 1173 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding( 1174 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1175 BasicBlock *BB = TI->getParent(); 1176 BasicBlock *Pred = PTI->getParent(); 1177 1178 SmallVector<DominatorTree::UpdateType, 32> Updates; 1179 1180 // Figure out which 'cases' to copy from SI to PSI. 1181 std::vector<ValueEqualityComparisonCase> BBCases; 1182 BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases); 1183 1184 std::vector<ValueEqualityComparisonCase> PredCases; 1185 BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases); 1186 1187 // Based on whether the default edge from PTI goes to BB or not, fill in 1188 // PredCases and PredDefault with the new switch cases we would like to 1189 // build. 1190 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1191 1192 // Update the branch weight metadata along the way 1193 SmallVector<uint64_t, 8> Weights; 1194 bool PredHasWeights = hasBranchWeightMD(*PTI); 1195 bool SuccHasWeights = hasBranchWeightMD(*TI); 1196 1197 if (PredHasWeights) { 1198 getBranchWeights(PTI, Weights); 1199 // branch-weight metadata is inconsistent here. 1200 if (Weights.size() != 1 + PredCases.size()) 1201 PredHasWeights = SuccHasWeights = false; 1202 } else if (SuccHasWeights) 1203 // If there are no predecessor weights but there are successor weights, 1204 // populate Weights with 1, which will later be scaled to the sum of 1205 // successor's weights 1206 Weights.assign(1 + PredCases.size(), 1); 1207 1208 SmallVector<uint64_t, 8> SuccWeights; 1209 if (SuccHasWeights) { 1210 getBranchWeights(TI, SuccWeights); 1211 // branch-weight metadata is inconsistent here. 1212 if (SuccWeights.size() != 1 + BBCases.size()) 1213 PredHasWeights = SuccHasWeights = false; 1214 } else if (PredHasWeights) 1215 SuccWeights.assign(1 + BBCases.size(), 1); 1216 1217 if (PredDefault == BB) { 1218 // If this is the default destination from PTI, only the edges in TI 1219 // that don't occur in PTI, or that branch to BB will be activated. 1220 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1221 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1222 if (PredCases[i].Dest != BB) 1223 PTIHandled.insert(PredCases[i].Value); 1224 else { 1225 // The default destination is BB, we don't need explicit targets. 1226 std::swap(PredCases[i], PredCases.back()); 1227 1228 if (PredHasWeights || SuccHasWeights) { 1229 // Increase weight for the default case. 1230 Weights[0] += Weights[i + 1]; 1231 std::swap(Weights[i + 1], Weights.back()); 1232 Weights.pop_back(); 1233 } 1234 1235 PredCases.pop_back(); 1236 --i; 1237 --e; 1238 } 1239 1240 // Reconstruct the new switch statement we will be building. 1241 if (PredDefault != BBDefault) { 1242 PredDefault->removePredecessor(Pred); 1243 if (DTU && PredDefault != BB) 1244 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1245 PredDefault = BBDefault; 1246 ++NewSuccessors[BBDefault]; 1247 } 1248 1249 unsigned CasesFromPred = Weights.size(); 1250 uint64_t ValidTotalSuccWeight = 0; 1251 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1252 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1253 PredCases.push_back(BBCases[i]); 1254 ++NewSuccessors[BBCases[i].Dest]; 1255 if (SuccHasWeights || PredHasWeights) { 1256 // The default weight is at index 0, so weight for the ith case 1257 // should be at index i+1. Scale the cases from successor by 1258 // PredDefaultWeight (Weights[0]). 1259 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1260 ValidTotalSuccWeight += SuccWeights[i + 1]; 1261 } 1262 } 1263 1264 if (SuccHasWeights || PredHasWeights) { 1265 ValidTotalSuccWeight += SuccWeights[0]; 1266 // Scale the cases from predecessor by ValidTotalSuccWeight. 1267 for (unsigned i = 1; i < CasesFromPred; ++i) 1268 Weights[i] *= ValidTotalSuccWeight; 1269 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1270 Weights[0] *= SuccWeights[0]; 1271 } 1272 } else { 1273 // If this is not the default destination from PSI, only the edges 1274 // in SI that occur in PSI with a destination of BB will be 1275 // activated. 1276 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1277 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1278 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1279 if (PredCases[i].Dest == BB) { 1280 PTIHandled.insert(PredCases[i].Value); 1281 1282 if (PredHasWeights || SuccHasWeights) { 1283 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1284 std::swap(Weights[i + 1], Weights.back()); 1285 Weights.pop_back(); 1286 } 1287 1288 std::swap(PredCases[i], PredCases.back()); 1289 PredCases.pop_back(); 1290 --i; 1291 --e; 1292 } 1293 1294 // Okay, now we know which constants were sent to BB from the 1295 // predecessor. Figure out where they will all go now. 1296 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1297 if (PTIHandled.count(BBCases[i].Value)) { 1298 // If this is one we are capable of getting... 1299 if (PredHasWeights || SuccHasWeights) 1300 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1301 PredCases.push_back(BBCases[i]); 1302 ++NewSuccessors[BBCases[i].Dest]; 1303 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1304 } 1305 1306 // If there are any constants vectored to BB that TI doesn't handle, 1307 // they must go to the default destination of TI. 1308 for (ConstantInt *I : PTIHandled) { 1309 if (PredHasWeights || SuccHasWeights) 1310 Weights.push_back(WeightsForHandled[I]); 1311 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1312 ++NewSuccessors[BBDefault]; 1313 } 1314 } 1315 1316 // Okay, at this point, we know which new successor Pred will get. Make 1317 // sure we update the number of entries in the PHI nodes for these 1318 // successors. 1319 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1320 if (DTU) { 1321 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1322 Updates.reserve(Updates.size() + NewSuccessors.size()); 1323 } 1324 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1325 NewSuccessors) { 1326 for (auto I : seq(NewSuccessor.second)) { 1327 (void)I; 1328 addPredecessorToBlock(NewSuccessor.first, Pred, BB); 1329 } 1330 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1331 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1332 } 1333 1334 Builder.SetInsertPoint(PTI); 1335 // Convert pointer to int before we switch. 1336 if (CV->getType()->isPointerTy()) { 1337 CV = 1338 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1339 } 1340 1341 // Now that the successors are updated, create the new Switch instruction. 1342 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1343 NewSI->setDebugLoc(PTI->getDebugLoc()); 1344 for (ValueEqualityComparisonCase &V : PredCases) 1345 NewSI->addCase(V.Value, V.Dest); 1346 1347 if (PredHasWeights || SuccHasWeights) { 1348 // Halve the weights if any of them cannot fit in an uint32_t 1349 fitWeights(Weights); 1350 1351 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1352 1353 setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false); 1354 } 1355 1356 eraseTerminatorAndDCECond(PTI); 1357 1358 // Okay, last check. If BB is still a successor of PSI, then we must 1359 // have an infinite loop case. If so, add an infinitely looping block 1360 // to handle the case to preserve the behavior of the code. 1361 BasicBlock *InfLoopBlock = nullptr; 1362 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1363 if (NewSI->getSuccessor(i) == BB) { 1364 if (!InfLoopBlock) { 1365 // Insert it at the end of the function, because it's either code, 1366 // or it won't matter if it's hot. :) 1367 InfLoopBlock = 1368 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1369 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1370 if (DTU) 1371 Updates.push_back( 1372 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1373 } 1374 NewSI->setSuccessor(i, InfLoopBlock); 1375 } 1376 1377 if (DTU) { 1378 if (InfLoopBlock) 1379 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1380 1381 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1382 1383 DTU->applyUpdates(Updates); 1384 } 1385 1386 ++NumFoldValueComparisonIntoPredecessors; 1387 return true; 1388 } 1389 1390 /// The specified terminator is a value equality comparison instruction 1391 /// (either a switch or a branch on "X == c"). 1392 /// See if any of the predecessors of the terminator block are value comparisons 1393 /// on the same value. If so, and if safe to do so, fold them together. 1394 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI, 1395 IRBuilder<> &Builder) { 1396 BasicBlock *BB = TI->getParent(); 1397 Value *CV = isValueEqualityComparison(TI); // CondVal 1398 assert(CV && "Not a comparison?"); 1399 1400 bool Changed = false; 1401 1402 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1403 while (!Preds.empty()) { 1404 BasicBlock *Pred = Preds.pop_back_val(); 1405 Instruction *PTI = Pred->getTerminator(); 1406 1407 // Don't try to fold into itself. 1408 if (Pred == BB) 1409 continue; 1410 1411 // See if the predecessor is a comparison with the same value. 1412 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1413 if (PCV != CV) 1414 continue; 1415 1416 SmallSetVector<BasicBlock *, 4> FailBlocks; 1417 if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) { 1418 for (auto *Succ : FailBlocks) { 1419 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1420 return false; 1421 } 1422 } 1423 1424 performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1425 Changed = true; 1426 } 1427 return Changed; 1428 } 1429 1430 // If we would need to insert a select that uses the value of this invoke 1431 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1432 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1433 // select in this case. 1434 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1435 Instruction *I1, Instruction *I2) { 1436 for (BasicBlock *Succ : successors(BB1)) { 1437 for (const PHINode &PN : Succ->phis()) { 1438 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1439 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1440 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1441 return false; 1442 } 1443 } 1444 } 1445 return true; 1446 } 1447 1448 // Get interesting characteristics of instructions that 1449 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1450 // instructions can be reordered across. 1451 enum SkipFlags { 1452 SkipReadMem = 1, 1453 SkipSideEffect = 2, 1454 SkipImplicitControlFlow = 4 1455 }; 1456 1457 static unsigned skippedInstrFlags(Instruction *I) { 1458 unsigned Flags = 0; 1459 if (I->mayReadFromMemory()) 1460 Flags |= SkipReadMem; 1461 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1462 // inalloca) across stacksave/stackrestore boundaries. 1463 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1464 Flags |= SkipSideEffect; 1465 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1466 Flags |= SkipImplicitControlFlow; 1467 return Flags; 1468 } 1469 1470 // Returns true if it is safe to reorder an instruction across preceding 1471 // instructions in a basic block. 1472 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1473 // Don't reorder a store over a load. 1474 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1475 return false; 1476 1477 // If we have seen an instruction with side effects, it's unsafe to reorder an 1478 // instruction which reads memory or itself has side effects. 1479 if ((Flags & SkipSideEffect) && 1480 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1481 return false; 1482 1483 // Reordering across an instruction which does not necessarily transfer 1484 // control to the next instruction is speculation. 1485 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1486 return false; 1487 1488 // Hoisting of llvm.deoptimize is only legal together with the next return 1489 // instruction, which this pass is not always able to do. 1490 if (auto *CB = dyn_cast<CallBase>(I)) 1491 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1492 return false; 1493 1494 // It's also unsafe/illegal to hoist an instruction above its instruction 1495 // operands 1496 BasicBlock *BB = I->getParent(); 1497 for (Value *Op : I->operands()) { 1498 if (auto *J = dyn_cast<Instruction>(Op)) 1499 if (J->getParent() == BB) 1500 return false; 1501 } 1502 1503 return true; 1504 } 1505 1506 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1507 1508 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1509 /// instructions \p I1 and \p I2 can and should be hoisted. 1510 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1511 const TargetTransformInfo &TTI) { 1512 // If we're going to hoist a call, make sure that the two instructions 1513 // we're commoning/hoisting are both marked with musttail, or neither of 1514 // them is marked as such. Otherwise, we might end up in a situation where 1515 // we hoist from a block where the terminator is a `ret` to a block where 1516 // the terminator is a `br`, and `musttail` calls expect to be followed by 1517 // a return. 1518 auto *C1 = dyn_cast<CallInst>(I1); 1519 auto *C2 = dyn_cast<CallInst>(I2); 1520 if (C1 && C2) 1521 if (C1->isMustTailCall() != C2->isMustTailCall()) 1522 return false; 1523 1524 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1525 return false; 1526 1527 // If any of the two call sites has nomerge or convergent attribute, stop 1528 // hoisting. 1529 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1530 if (CB1->cannotMerge() || CB1->isConvergent()) 1531 return false; 1532 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1533 if (CB2->cannotMerge() || CB2->isConvergent()) 1534 return false; 1535 1536 return true; 1537 } 1538 1539 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical 1540 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in 1541 /// hoistCommonCodeFromSuccessors. e.g. The input: 1542 /// I1 DVRs: { x, z }, 1543 /// OtherInsts: { I2 DVRs: { x, y, z } } 1544 /// would result in hoisting only DbgVariableRecord x. 1545 static void hoistLockstepIdenticalDbgVariableRecords( 1546 Instruction *TI, Instruction *I1, 1547 SmallVectorImpl<Instruction *> &OtherInsts) { 1548 if (!I1->hasDbgRecords()) 1549 return; 1550 using CurrentAndEndIt = 1551 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>; 1552 // Vector of {Current, End} iterators. 1553 SmallVector<CurrentAndEndIt> Itrs; 1554 Itrs.reserve(OtherInsts.size() + 1); 1555 // Helper lambdas for lock-step checks: 1556 // Return true if this Current == End. 1557 auto atEnd = [](const CurrentAndEndIt &Pair) { 1558 return Pair.first == Pair.second; 1559 }; 1560 // Return true if all Current are identical. 1561 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) { 1562 return all_of(make_first_range(ArrayRef(Itrs).drop_front()), 1563 [&](DbgRecord::self_iterator I) { 1564 return Itrs[0].first->isIdenticalToWhenDefined(*I); 1565 }); 1566 }; 1567 1568 // Collect the iterators. 1569 Itrs.push_back( 1570 {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()}); 1571 for (Instruction *Other : OtherInsts) { 1572 if (!Other->hasDbgRecords()) 1573 return; 1574 Itrs.push_back( 1575 {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()}); 1576 } 1577 1578 // Iterate in lock-step until any of the DbgRecord lists are exausted. If 1579 // the lock-step DbgRecord are identical, hoist all of them to TI. 1580 // This replicates the dbg.* intrinsic behaviour in 1581 // hoistCommonCodeFromSuccessors. 1582 while (none_of(Itrs, atEnd)) { 1583 bool HoistDVRs = allIdentical(Itrs); 1584 for (CurrentAndEndIt &Pair : Itrs) { 1585 // Increment Current iterator now as we may be about to move the 1586 // DbgRecord. 1587 DbgRecord &DR = *Pair.first++; 1588 if (HoistDVRs) { 1589 DR.removeFromParent(); 1590 TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator()); 1591 } 1592 } 1593 } 1594 } 1595 1596 static bool areIdenticalUpToCommutativity(const Instruction *I1, 1597 const Instruction *I2) { 1598 if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true)) 1599 return true; 1600 1601 if (auto *Cmp1 = dyn_cast<CmpInst>(I1)) 1602 if (auto *Cmp2 = dyn_cast<CmpInst>(I2)) 1603 return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() && 1604 Cmp1->getOperand(0) == Cmp2->getOperand(1) && 1605 Cmp1->getOperand(1) == Cmp2->getOperand(0); 1606 1607 if (I1->isCommutative() && I1->isSameOperationAs(I2)) { 1608 return I1->getOperand(0) == I2->getOperand(1) && 1609 I1->getOperand(1) == I2->getOperand(0) && 1610 equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2)); 1611 } 1612 1613 return false; 1614 } 1615 1616 /// If the target supports conditional faulting, 1617 /// we look for the following pattern: 1618 /// \code 1619 /// BB: 1620 /// ... 1621 /// %cond = icmp ult %x, %y 1622 /// br i1 %cond, label %TrueBB, label %FalseBB 1623 /// FalseBB: 1624 /// store i32 1, ptr %q, align 4 1625 /// ... 1626 /// TrueBB: 1627 /// %maskedloadstore = load i32, ptr %b, align 4 1628 /// store i32 %maskedloadstore, ptr %p, align 4 1629 /// ... 1630 /// \endcode 1631 /// 1632 /// and transform it into: 1633 /// 1634 /// \code 1635 /// BB: 1636 /// ... 1637 /// %cond = icmp ult %x, %y 1638 /// %maskedloadstore = cload i32, ptr %b, %cond 1639 /// cstore i32 %maskedloadstore, ptr %p, %cond 1640 /// cstore i32 1, ptr %q, ~%cond 1641 /// br i1 %cond, label %TrueBB, label %FalseBB 1642 /// FalseBB: 1643 /// ... 1644 /// TrueBB: 1645 /// ... 1646 /// \endcode 1647 /// 1648 /// where cload/cstore are represented by llvm.masked.load/store intrinsics, 1649 /// e.g. 1650 /// 1651 /// \code 1652 /// %vcond = bitcast i1 %cond to <1 x i1> 1653 /// %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0 1654 /// (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison) 1655 /// %maskedloadstore = bitcast <1 x i32> %v0 to i32 1656 /// call void @llvm.masked.store.v1i32.p0 1657 /// (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond) 1658 /// %cond.not = xor i1 %cond, true 1659 /// %vcond.not = bitcast i1 %cond.not to <1 x i> 1660 /// call void @llvm.masked.store.v1i32.p0 1661 /// (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not) 1662 /// \endcode 1663 /// 1664 /// So we need to turn hoisted load/store into cload/cstore. 1665 /// 1666 /// \param BI The branch instruction. 1667 /// \param SpeculatedConditionalLoadsStores The load/store instructions that 1668 /// will be speculated. 1669 /// \param Invert indicates if speculates FalseBB. Only used in triangle CFG. 1670 static void hoistConditionalLoadsStores( 1671 BranchInst *BI, 1672 SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores, 1673 std::optional<bool> Invert) { 1674 auto &Context = BI->getParent()->getContext(); 1675 auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1); 1676 auto *Cond = BI->getOperand(0); 1677 // Construct the condition if needed. 1678 BasicBlock *BB = BI->getParent(); 1679 IRBuilder<> Builder( 1680 Invert.has_value() ? SpeculatedConditionalLoadsStores.back() : BI); 1681 Value *Mask = nullptr; 1682 Value *MaskFalse = nullptr; 1683 Value *MaskTrue = nullptr; 1684 if (Invert.has_value()) { 1685 Mask = Builder.CreateBitCast( 1686 *Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond, 1687 VCondTy); 1688 } else { 1689 MaskFalse = Builder.CreateBitCast( 1690 Builder.CreateXor(Cond, ConstantInt::getTrue(Context)), VCondTy); 1691 MaskTrue = Builder.CreateBitCast(Cond, VCondTy); 1692 } 1693 auto PeekThroughBitcasts = [](Value *V) { 1694 while (auto *BitCast = dyn_cast<BitCastInst>(V)) 1695 V = BitCast->getOperand(0); 1696 return V; 1697 }; 1698 for (auto *I : SpeculatedConditionalLoadsStores) { 1699 IRBuilder<> Builder(Invert.has_value() ? I : BI); 1700 if (!Invert.has_value()) 1701 Mask = I->getParent() == BI->getSuccessor(0) ? MaskTrue : MaskFalse; 1702 // We currently assume conditional faulting load/store is supported for 1703 // scalar types only when creating new instructions. This can be easily 1704 // extended for vector types in the future. 1705 assert(!getLoadStoreType(I)->isVectorTy() && "not implemented"); 1706 auto *Op0 = I->getOperand(0); 1707 CallInst *MaskedLoadStore = nullptr; 1708 if (auto *LI = dyn_cast<LoadInst>(I)) { 1709 // Handle Load. 1710 auto *Ty = I->getType(); 1711 PHINode *PN = nullptr; 1712 Value *PassThru = nullptr; 1713 if (Invert.has_value()) 1714 for (User *U : I->users()) 1715 if ((PN = dyn_cast<PHINode>(U))) { 1716 PassThru = Builder.CreateBitCast( 1717 PeekThroughBitcasts(PN->getIncomingValueForBlock(BB)), 1718 FixedVectorType::get(Ty, 1)); 1719 break; 1720 } 1721 MaskedLoadStore = Builder.CreateMaskedLoad( 1722 FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru); 1723 Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty); 1724 if (PN) 1725 PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore); 1726 I->replaceAllUsesWith(NewLoadStore); 1727 } else { 1728 // Handle Store. 1729 auto *StoredVal = Builder.CreateBitCast( 1730 PeekThroughBitcasts(Op0), FixedVectorType::get(Op0->getType(), 1)); 1731 MaskedLoadStore = Builder.CreateMaskedStore( 1732 StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask); 1733 } 1734 // For non-debug metadata, only !annotation, !range, !nonnull and !align are 1735 // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata). 1736 // 1737 // !nonnull, !align : Not support pointer type, no need to keep. 1738 // !range: Load type is changed from scalar to vector, but the metadata on 1739 // vector specifies a per-element range, so the semantics stay the 1740 // same. Keep it. 1741 // !annotation: Not impact semantics. Keep it. 1742 if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1743 MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges)); 1744 I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation}); 1745 // FIXME: DIAssignID is not supported for masked store yet. 1746 // (Verifier::visitDIAssignIDMetadata) 1747 at::deleteAssignmentMarkers(I); 1748 I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) { 1749 return Node->getMetadataID() == Metadata::DIAssignIDKind; 1750 }); 1751 MaskedLoadStore->copyMetadata(*I); 1752 I->eraseFromParent(); 1753 } 1754 } 1755 1756 static bool isSafeCheapLoadStore(const Instruction *I, 1757 const TargetTransformInfo &TTI) { 1758 // Not handle volatile or atomic. 1759 if (auto *L = dyn_cast<LoadInst>(I)) { 1760 if (!L->isSimple()) 1761 return false; 1762 } else if (auto *S = dyn_cast<StoreInst>(I)) { 1763 if (!S->isSimple()) 1764 return false; 1765 } else 1766 return false; 1767 1768 // llvm.masked.load/store use i32 for alignment while load/store use i64. 1769 // That's why we have the alignment limitation. 1770 // FIXME: Update the prototype of the intrinsics? 1771 return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) && 1772 getLoadStoreAlignment(I) < Value::MaximumAlignment; 1773 } 1774 1775 namespace { 1776 1777 // LockstepReverseIterator - Iterates through instructions 1778 // in a set of blocks in reverse order from the first non-terminator. 1779 // For example (assume all blocks have size n): 1780 // LockstepReverseIterator I([B1, B2, B3]); 1781 // *I-- = [B1[n], B2[n], B3[n]]; 1782 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 1783 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 1784 // ... 1785 class LockstepReverseIterator { 1786 ArrayRef<BasicBlock *> Blocks; 1787 SmallVector<Instruction *, 4> Insts; 1788 bool Fail; 1789 1790 public: 1791 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 1792 reset(); 1793 } 1794 1795 void reset() { 1796 Fail = false; 1797 Insts.clear(); 1798 for (auto *BB : Blocks) { 1799 Instruction *Inst = BB->getTerminator(); 1800 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1801 Inst = Inst->getPrevNode(); 1802 if (!Inst) { 1803 // Block wasn't big enough. 1804 Fail = true; 1805 return; 1806 } 1807 Insts.push_back(Inst); 1808 } 1809 } 1810 1811 bool isValid() const { return !Fail; } 1812 1813 void operator--() { 1814 if (Fail) 1815 return; 1816 for (auto *&Inst : Insts) { 1817 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1818 Inst = Inst->getPrevNode(); 1819 // Already at beginning of block. 1820 if (!Inst) { 1821 Fail = true; 1822 return; 1823 } 1824 } 1825 } 1826 1827 void operator++() { 1828 if (Fail) 1829 return; 1830 for (auto *&Inst : Insts) { 1831 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 1832 Inst = Inst->getNextNode(); 1833 // Already at end of block. 1834 if (!Inst) { 1835 Fail = true; 1836 return; 1837 } 1838 } 1839 } 1840 1841 ArrayRef<Instruction *> operator*() const { return Insts; } 1842 }; 1843 1844 } // end anonymous namespace 1845 1846 /// Hoist any common code in the successor blocks up into the block. This 1847 /// function guarantees that BB dominates all successors. If AllInstsEqOnly is 1848 /// given, only perform hoisting in case all successors blocks contain matching 1849 /// instructions only. In that case, all instructions can be hoisted and the 1850 /// original branch will be replaced and selects for PHIs are added. 1851 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI, 1852 bool AllInstsEqOnly) { 1853 // This does very trivial matching, with limited scanning, to find identical 1854 // instructions in the two blocks. In particular, we don't want to get into 1855 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1856 // such, we currently just scan for obviously identical instructions in an 1857 // identical order, possibly separated by the same number of non-identical 1858 // instructions. 1859 BasicBlock *BB = TI->getParent(); 1860 unsigned int SuccSize = succ_size(BB); 1861 if (SuccSize < 2) 1862 return false; 1863 1864 // If either of the blocks has it's address taken, then we can't do this fold, 1865 // because the code we'd hoist would no longer run when we jump into the block 1866 // by it's address. 1867 for (auto *Succ : successors(BB)) 1868 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1869 return false; 1870 1871 // The second of pair is a SkipFlags bitmask. 1872 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1873 SmallVector<SuccIterPair, 8> SuccIterPairs; 1874 for (auto *Succ : successors(BB)) { 1875 BasicBlock::iterator SuccItr = Succ->begin(); 1876 if (isa<PHINode>(*SuccItr)) 1877 return false; 1878 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1879 } 1880 1881 if (AllInstsEqOnly) { 1882 // Check if all instructions in the successor blocks match. This allows 1883 // hoisting all instructions and removing the blocks we are hoisting from, 1884 // so does not add any new instructions. 1885 SmallVector<BasicBlock *> Succs = to_vector(successors(BB)); 1886 // Check if sizes and terminators of all successors match. 1887 bool AllSame = none_of(Succs, [&Succs](BasicBlock *Succ) { 1888 Instruction *Term0 = Succs[0]->getTerminator(); 1889 Instruction *Term = Succ->getTerminator(); 1890 return !Term->isSameOperationAs(Term0) || 1891 !equal(Term->operands(), Term0->operands()) || 1892 Succs[0]->size() != Succ->size(); 1893 }); 1894 if (!AllSame) 1895 return false; 1896 if (AllSame) { 1897 LockstepReverseIterator LRI(Succs); 1898 while (LRI.isValid()) { 1899 Instruction *I0 = (*LRI)[0]; 1900 if (any_of(*LRI, [I0](Instruction *I) { 1901 return !areIdenticalUpToCommutativity(I0, I); 1902 })) { 1903 return false; 1904 } 1905 --LRI; 1906 } 1907 } 1908 // Now we know that all instructions in all successors can be hoisted. Let 1909 // the loop below handle the hoisting. 1910 } 1911 1912 // Count how many instructions were not hoisted so far. There's a limit on how 1913 // many instructions we skip, serving as a compilation time control as well as 1914 // preventing excessive increase of life ranges. 1915 unsigned NumSkipped = 0; 1916 // If we find an unreachable instruction at the beginning of a basic block, we 1917 // can still hoist instructions from the rest of the basic blocks. 1918 if (SuccIterPairs.size() > 2) { 1919 erase_if(SuccIterPairs, 1920 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1921 if (SuccIterPairs.size() < 2) 1922 return false; 1923 } 1924 1925 bool Changed = false; 1926 1927 for (;;) { 1928 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1929 auto &BB1ItrPair = *SuccIterPairBegin++; 1930 auto OtherSuccIterPairRange = 1931 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1932 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1933 1934 Instruction *I1 = &*BB1ItrPair.first; 1935 1936 // Skip debug info if it is not identical. 1937 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1938 Instruction *I2 = &*Iter; 1939 return I1->isIdenticalToWhenDefined(I2); 1940 }); 1941 if (!AllDbgInstsAreIdentical) { 1942 while (isa<DbgInfoIntrinsic>(I1)) 1943 I1 = &*++BB1ItrPair.first; 1944 for (auto &SuccIter : OtherSuccIterRange) { 1945 Instruction *I2 = &*SuccIter; 1946 while (isa<DbgInfoIntrinsic>(I2)) 1947 I2 = &*++SuccIter; 1948 } 1949 } 1950 1951 bool AllInstsAreIdentical = true; 1952 bool HasTerminator = I1->isTerminator(); 1953 for (auto &SuccIter : OtherSuccIterRange) { 1954 Instruction *I2 = &*SuccIter; 1955 HasTerminator |= I2->isTerminator(); 1956 if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) || 1957 MMRAMetadata(*I1) != MMRAMetadata(*I2))) 1958 AllInstsAreIdentical = false; 1959 } 1960 1961 SmallVector<Instruction *, 8> OtherInsts; 1962 for (auto &SuccIter : OtherSuccIterRange) 1963 OtherInsts.push_back(&*SuccIter); 1964 1965 // If we are hoisting the terminator instruction, don't move one (making a 1966 // broken BB), instead clone it, and remove BI. 1967 if (HasTerminator) { 1968 // Even if BB, which contains only one unreachable instruction, is ignored 1969 // at the beginning of the loop, we can hoist the terminator instruction. 1970 // If any instructions remain in the block, we cannot hoist terminators. 1971 if (NumSkipped || !AllInstsAreIdentical) { 1972 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1973 return Changed; 1974 } 1975 1976 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) || 1977 Changed; 1978 } 1979 1980 if (AllInstsAreIdentical) { 1981 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1982 AllInstsAreIdentical = 1983 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1984 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1985 Instruction *I2 = &*Pair.first; 1986 unsigned SkipFlagsBB2 = Pair.second; 1987 // Even if the instructions are identical, it may not 1988 // be safe to hoist them if we have skipped over 1989 // instructions with side effects or their operands 1990 // weren't hoisted. 1991 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1992 shouldHoistCommonInstructions(I1, I2, TTI); 1993 }); 1994 } 1995 1996 if (AllInstsAreIdentical) { 1997 BB1ItrPair.first++; 1998 if (isa<DbgInfoIntrinsic>(I1)) { 1999 // The debug location is an integral part of a debug info intrinsic 2000 // and can't be separated from it or replaced. Instead of attempting 2001 // to merge locations, simply hoist both copies of the intrinsic. 2002 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2003 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 2004 // and leave any that were not hoisted behind (by calling moveBefore 2005 // rather than moveBeforePreserving). 2006 I1->moveBefore(TI); 2007 for (auto &SuccIter : OtherSuccIterRange) { 2008 auto *I2 = &*SuccIter++; 2009 assert(isa<DbgInfoIntrinsic>(I2)); 2010 I2->moveBefore(TI); 2011 } 2012 } else { 2013 // For a normal instruction, we just move one to right before the 2014 // branch, then replace all uses of the other with the first. Finally, 2015 // we remove the now redundant second instruction. 2016 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2017 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 2018 // and leave any that were not hoisted behind (by calling moveBefore 2019 // rather than moveBeforePreserving). 2020 I1->moveBefore(TI); 2021 for (auto &SuccIter : OtherSuccIterRange) { 2022 Instruction *I2 = &*SuccIter++; 2023 assert(I2 != I1); 2024 if (!I2->use_empty()) 2025 I2->replaceAllUsesWith(I1); 2026 I1->andIRFlags(I2); 2027 if (auto *CB = dyn_cast<CallBase>(I1)) { 2028 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2)); 2029 assert(Success && "We should not be trying to hoist callbases " 2030 "with non-intersectable attributes"); 2031 // For NDEBUG Compile. 2032 (void)Success; 2033 } 2034 2035 combineMetadataForCSE(I1, I2, true); 2036 // I1 and I2 are being combined into a single instruction. Its debug 2037 // location is the merged locations of the original instructions. 2038 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 2039 I2->eraseFromParent(); 2040 } 2041 } 2042 if (!Changed) 2043 NumHoistCommonCode += SuccIterPairs.size(); 2044 Changed = true; 2045 NumHoistCommonInstrs += SuccIterPairs.size(); 2046 } else { 2047 if (NumSkipped >= HoistCommonSkipLimit) { 2048 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 2049 return Changed; 2050 } 2051 // We are about to skip over a pair of non-identical instructions. Record 2052 // if any have characteristics that would prevent reordering instructions 2053 // across them. 2054 for (auto &SuccIterPair : SuccIterPairs) { 2055 Instruction *I = &*SuccIterPair.first++; 2056 SuccIterPair.second |= skippedInstrFlags(I); 2057 } 2058 ++NumSkipped; 2059 } 2060 } 2061 } 2062 2063 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 2064 Instruction *TI, Instruction *I1, 2065 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 2066 2067 auto *BI = dyn_cast<BranchInst>(TI); 2068 2069 bool Changed = false; 2070 BasicBlock *TIParent = TI->getParent(); 2071 BasicBlock *BB1 = I1->getParent(); 2072 2073 // Use only for an if statement. 2074 auto *I2 = *OtherSuccTIs.begin(); 2075 auto *BB2 = I2->getParent(); 2076 if (BI) { 2077 assert(OtherSuccTIs.size() == 1); 2078 assert(BI->getSuccessor(0) == I1->getParent()); 2079 assert(BI->getSuccessor(1) == I2->getParent()); 2080 } 2081 2082 // In the case of an if statement, we try to hoist an invoke. 2083 // FIXME: Can we define a safety predicate for CallBr? 2084 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 2085 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 2086 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 2087 return false; 2088 2089 // TODO: callbr hoisting currently disabled pending further study. 2090 if (isa<CallBrInst>(I1)) 2091 return false; 2092 2093 for (BasicBlock *Succ : successors(BB1)) { 2094 for (PHINode &PN : Succ->phis()) { 2095 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2096 for (Instruction *OtherSuccTI : OtherSuccTIs) { 2097 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 2098 if (BB1V == BB2V) 2099 continue; 2100 2101 // In the case of an if statement, check for 2102 // passingValueIsAlwaysUndefined here because we would rather eliminate 2103 // undefined control flow then converting it to a select. 2104 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 2105 passingValueIsAlwaysUndefined(BB2V, &PN)) 2106 return false; 2107 } 2108 } 2109 } 2110 2111 // Hoist DbgVariableRecords attached to the terminator to match dbg.* 2112 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors. 2113 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs); 2114 // Clone the terminator and hoist it into the pred, without any debug info. 2115 Instruction *NT = I1->clone(); 2116 NT->insertInto(TIParent, TI->getIterator()); 2117 if (!NT->getType()->isVoidTy()) { 2118 I1->replaceAllUsesWith(NT); 2119 for (Instruction *OtherSuccTI : OtherSuccTIs) 2120 OtherSuccTI->replaceAllUsesWith(NT); 2121 NT->takeName(I1); 2122 } 2123 Changed = true; 2124 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 2125 2126 // Ensure terminator gets a debug location, even an unknown one, in case 2127 // it involves inlinable calls. 2128 SmallVector<DILocation *, 4> Locs; 2129 Locs.push_back(I1->getDebugLoc()); 2130 for (auto *OtherSuccTI : OtherSuccTIs) 2131 Locs.push_back(OtherSuccTI->getDebugLoc()); 2132 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 2133 2134 // PHIs created below will adopt NT's merged DebugLoc. 2135 IRBuilder<NoFolder> Builder(NT); 2136 2137 // In the case of an if statement, hoisting one of the terminators from our 2138 // successor is a great thing. Unfortunately, the successors of the if/else 2139 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 2140 // must agree for all PHI nodes, so we insert select instruction to compute 2141 // the final result. 2142 if (BI) { 2143 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 2144 for (BasicBlock *Succ : successors(BB1)) { 2145 for (PHINode &PN : Succ->phis()) { 2146 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2147 Value *BB2V = PN.getIncomingValueForBlock(BB2); 2148 if (BB1V == BB2V) 2149 continue; 2150 2151 // These values do not agree. Insert a select instruction before NT 2152 // that determines the right value. 2153 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 2154 if (!SI) { 2155 // Propagate fast-math-flags from phi node to its replacement select. 2156 SI = cast<SelectInst>(Builder.CreateSelectFMF( 2157 BI->getCondition(), BB1V, BB2V, 2158 isa<FPMathOperator>(PN) ? &PN : nullptr, 2159 BB1V->getName() + "." + BB2V->getName(), BI)); 2160 } 2161 2162 // Make the PHI node use the select for all incoming values for BB1/BB2 2163 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2164 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 2165 PN.setIncomingValue(i, SI); 2166 } 2167 } 2168 } 2169 2170 SmallVector<DominatorTree::UpdateType, 4> Updates; 2171 2172 // Update any PHI nodes in our new successors. 2173 for (BasicBlock *Succ : successors(BB1)) { 2174 addPredecessorToBlock(Succ, TIParent, BB1); 2175 if (DTU) 2176 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 2177 } 2178 2179 if (DTU) 2180 for (BasicBlock *Succ : successors(TI)) 2181 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 2182 2183 eraseTerminatorAndDCECond(TI); 2184 if (DTU) 2185 DTU->applyUpdates(Updates); 2186 return Changed; 2187 } 2188 2189 // Check lifetime markers. 2190 static bool isLifeTimeMarker(const Instruction *I) { 2191 if (auto II = dyn_cast<IntrinsicInst>(I)) { 2192 switch (II->getIntrinsicID()) { 2193 default: 2194 break; 2195 case Intrinsic::lifetime_start: 2196 case Intrinsic::lifetime_end: 2197 return true; 2198 } 2199 } 2200 return false; 2201 } 2202 2203 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 2204 // into variables. 2205 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 2206 int OpIdx) { 2207 // Divide/Remainder by constant is typically much cheaper than by variable. 2208 if (I->isIntDivRem()) 2209 return OpIdx != 1; 2210 return !isa<IntrinsicInst>(I); 2211 } 2212 2213 // All instructions in Insts belong to different blocks that all unconditionally 2214 // branch to a common successor. Analyze each instruction and return true if it 2215 // would be possible to sink them into their successor, creating one common 2216 // instruction instead. For every value that would be required to be provided by 2217 // PHI node (because an operand varies in each input block), add to PHIOperands. 2218 static bool canSinkInstructions( 2219 ArrayRef<Instruction *> Insts, 2220 DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) { 2221 // Prune out obviously bad instructions to move. Each instruction must have 2222 // the same number of uses, and we check later that the uses are consistent. 2223 std::optional<unsigned> NumUses; 2224 for (auto *I : Insts) { 2225 // These instructions may change or break semantics if moved. 2226 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 2227 I->getType()->isTokenTy()) 2228 return false; 2229 2230 // Do not try to sink an instruction in an infinite loop - it can cause 2231 // this algorithm to infinite loop. 2232 if (I->getParent()->getSingleSuccessor() == I->getParent()) 2233 return false; 2234 2235 // Conservatively return false if I is an inline-asm instruction. Sinking 2236 // and merging inline-asm instructions can potentially create arguments 2237 // that cannot satisfy the inline-asm constraints. 2238 // If the instruction has nomerge or convergent attribute, return false. 2239 if (const auto *C = dyn_cast<CallBase>(I)) 2240 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 2241 return false; 2242 2243 if (!NumUses) 2244 NumUses = I->getNumUses(); 2245 else if (NumUses != I->getNumUses()) 2246 return false; 2247 } 2248 2249 const Instruction *I0 = Insts.front(); 2250 const auto I0MMRA = MMRAMetadata(*I0); 2251 for (auto *I : Insts) { 2252 if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs)) 2253 return false; 2254 2255 // swifterror pointers can only be used by a load or store; sinking a load 2256 // or store would require introducing a select for the pointer operand, 2257 // which isn't allowed for swifterror pointers. 2258 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 2259 return false; 2260 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 2261 return false; 2262 2263 // Treat MMRAs conservatively. This pass can be quite aggressive and 2264 // could drop a lot of MMRAs otherwise. 2265 if (MMRAMetadata(*I) != I0MMRA) 2266 return false; 2267 } 2268 2269 // Uses must be consistent: If I0 is used in a phi node in the sink target, 2270 // then the other phi operands must match the instructions from Insts. This 2271 // also has to hold true for any phi nodes that would be created as a result 2272 // of sinking. Both of these cases are represented by PhiOperands. 2273 for (const Use &U : I0->uses()) { 2274 auto It = PHIOperands.find(&U); 2275 if (It == PHIOperands.end()) 2276 // There may be uses in other blocks when sinking into a loop header. 2277 return false; 2278 if (!equal(Insts, It->second)) 2279 return false; 2280 } 2281 2282 // For calls to be sinkable, they must all be indirect, or have same callee. 2283 // I.e. if we have two direct calls to different callees, we don't want to 2284 // turn that into an indirect call. Likewise, if we have an indirect call, 2285 // and a direct call, we don't actually want to have a single indirect call. 2286 if (isa<CallBase>(I0)) { 2287 auto IsIndirectCall = [](const Instruction *I) { 2288 return cast<CallBase>(I)->isIndirectCall(); 2289 }; 2290 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 2291 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 2292 if (HaveIndirectCalls) { 2293 if (!AllCallsAreIndirect) 2294 return false; 2295 } else { 2296 // All callees must be identical. 2297 Value *Callee = nullptr; 2298 for (const Instruction *I : Insts) { 2299 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 2300 if (!Callee) 2301 Callee = CurrCallee; 2302 else if (Callee != CurrCallee) 2303 return false; 2304 } 2305 } 2306 } 2307 2308 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 2309 Value *Op = I0->getOperand(OI); 2310 if (Op->getType()->isTokenTy()) 2311 // Don't touch any operand of token type. 2312 return false; 2313 2314 auto SameAsI0 = [&I0, OI](const Instruction *I) { 2315 assert(I->getNumOperands() == I0->getNumOperands()); 2316 return I->getOperand(OI) == I0->getOperand(OI); 2317 }; 2318 if (!all_of(Insts, SameAsI0)) { 2319 // SROA can't speculate lifetime markers of selects/phis, and the 2320 // backend may handle such lifetimes incorrectly as well (#104776). 2321 // Don't sink lifetimes if it would introduce a phi on the pointer 2322 // argument. 2323 if (isLifeTimeMarker(I0) && OI == 1 && 2324 any_of(Insts, [](const Instruction *I) { 2325 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2326 })) 2327 return false; 2328 2329 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 2330 !canReplaceOperandWithVariable(I0, OI)) 2331 // We can't create a PHI from this GEP. 2332 return false; 2333 auto &Ops = PHIOperands[&I0->getOperandUse(OI)]; 2334 for (auto *I : Insts) 2335 Ops.push_back(I->getOperand(OI)); 2336 } 2337 } 2338 return true; 2339 } 2340 2341 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 2342 // instruction of every block in Blocks to their common successor, commoning 2343 // into one instruction. 2344 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2345 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2346 2347 // canSinkInstructions returning true guarantees that every block has at 2348 // least one non-terminator instruction. 2349 SmallVector<Instruction*,4> Insts; 2350 for (auto *BB : Blocks) { 2351 Instruction *I = BB->getTerminator(); 2352 do { 2353 I = I->getPrevNode(); 2354 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2355 if (!isa<DbgInfoIntrinsic>(I)) 2356 Insts.push_back(I); 2357 } 2358 2359 // We don't need to do any more checking here; canSinkInstructions should 2360 // have done it all for us. 2361 SmallVector<Value*, 4> NewOperands; 2362 Instruction *I0 = Insts.front(); 2363 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2364 // This check is different to that in canSinkInstructions. There, we 2365 // cared about the global view once simplifycfg (and instcombine) have 2366 // completed - it takes into account PHIs that become trivially 2367 // simplifiable. However here we need a more local view; if an operand 2368 // differs we create a PHI and rely on instcombine to clean up the very 2369 // small mess we may make. 2370 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2371 return I->getOperand(O) != I0->getOperand(O); 2372 }); 2373 if (!NeedPHI) { 2374 NewOperands.push_back(I0->getOperand(O)); 2375 continue; 2376 } 2377 2378 // Create a new PHI in the successor block and populate it. 2379 auto *Op = I0->getOperand(O); 2380 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2381 auto *PN = 2382 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2383 PN->insertBefore(BBEnd->begin()); 2384 for (auto *I : Insts) 2385 PN->addIncoming(I->getOperand(O), I->getParent()); 2386 NewOperands.push_back(PN); 2387 } 2388 2389 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2390 // and move it to the start of the successor block. 2391 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2392 I0->getOperandUse(O).set(NewOperands[O]); 2393 2394 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2395 2396 // Update metadata and IR flags, and merge debug locations. 2397 for (auto *I : Insts) 2398 if (I != I0) { 2399 // The debug location for the "common" instruction is the merged locations 2400 // of all the commoned instructions. We start with the original location 2401 // of the "common" instruction and iteratively merge each location in the 2402 // loop below. 2403 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2404 // However, as N-way merge for CallInst is rare, so we use simplified API 2405 // instead of using complex API for N-way merge. 2406 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2407 combineMetadataForCSE(I0, I, true); 2408 I0->andIRFlags(I); 2409 if (auto *CB = dyn_cast<CallBase>(I0)) { 2410 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I)); 2411 assert(Success && "We should not be trying to sink callbases " 2412 "with non-intersectable attributes"); 2413 // For NDEBUG Compile. 2414 (void)Success; 2415 } 2416 } 2417 2418 for (User *U : make_early_inc_range(I0->users())) { 2419 // canSinkLastInstruction checked that all instructions are only used by 2420 // phi nodes in a way that allows replacing the phi node with the common 2421 // instruction. 2422 auto *PN = cast<PHINode>(U); 2423 PN->replaceAllUsesWith(I0); 2424 PN->eraseFromParent(); 2425 } 2426 2427 // Finally nuke all instructions apart from the common instruction. 2428 for (auto *I : Insts) { 2429 if (I == I0) 2430 continue; 2431 // The remaining uses are debug users, replace those with the common inst. 2432 // In most (all?) cases this just introduces a use-before-def. 2433 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2434 I->replaceAllUsesWith(I0); 2435 I->eraseFromParent(); 2436 } 2437 } 2438 2439 /// Check whether BB's predecessors end with unconditional branches. If it is 2440 /// true, sink any common code from the predecessors to BB. 2441 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB, 2442 DomTreeUpdater *DTU) { 2443 // We support two situations: 2444 // (1) all incoming arcs are unconditional 2445 // (2) there are non-unconditional incoming arcs 2446 // 2447 // (2) is very common in switch defaults and 2448 // else-if patterns; 2449 // 2450 // if (a) f(1); 2451 // else if (b) f(2); 2452 // 2453 // produces: 2454 // 2455 // [if] 2456 // / \ 2457 // [f(1)] [if] 2458 // | | \ 2459 // | | | 2460 // | [f(2)]| 2461 // \ | / 2462 // [ end ] 2463 // 2464 // [end] has two unconditional predecessor arcs and one conditional. The 2465 // conditional refers to the implicit empty 'else' arc. This conditional 2466 // arc can also be caused by an empty default block in a switch. 2467 // 2468 // In this case, we attempt to sink code from all *unconditional* arcs. 2469 // If we can sink instructions from these arcs (determined during the scan 2470 // phase below) we insert a common successor for all unconditional arcs and 2471 // connect that to [end], to enable sinking: 2472 // 2473 // [if] 2474 // / \ 2475 // [x(1)] [if] 2476 // | | \ 2477 // | | \ 2478 // | [x(2)] | 2479 // \ / | 2480 // [sink.split] | 2481 // \ / 2482 // [ end ] 2483 // 2484 SmallVector<BasicBlock*,4> UnconditionalPreds; 2485 bool HaveNonUnconditionalPredecessors = false; 2486 for (auto *PredBB : predecessors(BB)) { 2487 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2488 if (PredBr && PredBr->isUnconditional()) 2489 UnconditionalPreds.push_back(PredBB); 2490 else 2491 HaveNonUnconditionalPredecessors = true; 2492 } 2493 if (UnconditionalPreds.size() < 2) 2494 return false; 2495 2496 // We take a two-step approach to tail sinking. First we scan from the end of 2497 // each block upwards in lockstep. If the n'th instruction from the end of each 2498 // block can be sunk, those instructions are added to ValuesToSink and we 2499 // carry on. If we can sink an instruction but need to PHI-merge some operands 2500 // (because they're not identical in each instruction) we add these to 2501 // PHIOperands. 2502 // We prepopulate PHIOperands with the phis that already exist in BB. 2503 DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands; 2504 for (PHINode &PN : BB->phis()) { 2505 SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals; 2506 for (const Use &U : PN.incoming_values()) 2507 IncomingVals.insert({PN.getIncomingBlock(U), &U}); 2508 auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]]; 2509 for (BasicBlock *Pred : UnconditionalPreds) 2510 Ops.push_back(*IncomingVals[Pred]); 2511 } 2512 2513 int ScanIdx = 0; 2514 SmallPtrSet<Value*,4> InstructionsToSink; 2515 LockstepReverseIterator LRI(UnconditionalPreds); 2516 while (LRI.isValid() && 2517 canSinkInstructions(*LRI, PHIOperands)) { 2518 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2519 << "\n"); 2520 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2521 ++ScanIdx; 2522 --LRI; 2523 } 2524 2525 // If no instructions can be sunk, early-return. 2526 if (ScanIdx == 0) 2527 return false; 2528 2529 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2530 2531 if (!followedByDeoptOrUnreachable) { 2532 // Check whether this is the pointer operand of a load/store. 2533 auto IsMemOperand = [](Use &U) { 2534 auto *I = cast<Instruction>(U.getUser()); 2535 if (isa<LoadInst>(I)) 2536 return U.getOperandNo() == LoadInst::getPointerOperandIndex(); 2537 if (isa<StoreInst>(I)) 2538 return U.getOperandNo() == StoreInst::getPointerOperandIndex(); 2539 return false; 2540 }; 2541 2542 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2543 // actually sink before encountering instruction that is unprofitable to 2544 // sink? 2545 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2546 unsigned NumPHIInsts = 0; 2547 for (Use &U : (*LRI)[0]->operands()) { 2548 auto It = PHIOperands.find(&U); 2549 if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) { 2550 return InstructionsToSink.contains(V); 2551 })) { 2552 ++NumPHIInsts; 2553 // Do not separate a load/store from the gep producing the address. 2554 // The gep can likely be folded into the load/store as an addressing 2555 // mode. Additionally, a load of a gep is easier to analyze than a 2556 // load of a phi. 2557 if (IsMemOperand(U) && 2558 any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); })) 2559 return false; 2560 // FIXME: this check is overly optimistic. We may end up not sinking 2561 // said instruction, due to the very same profitability check. 2562 // See @creating_too_many_phis in sink-common-code.ll. 2563 } 2564 } 2565 LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n"); 2566 return NumPHIInsts <= 1; 2567 }; 2568 2569 // We've determined that we are going to sink last ScanIdx instructions, 2570 // and recorded them in InstructionsToSink. Now, some instructions may be 2571 // unprofitable to sink. But that determination depends on the instructions 2572 // that we are going to sink. 2573 2574 // First, forward scan: find the first instruction unprofitable to sink, 2575 // recording all the ones that are profitable to sink. 2576 // FIXME: would it be better, after we detect that not all are profitable. 2577 // to either record the profitable ones, or erase the unprofitable ones? 2578 // Maybe we need to choose (at runtime) the one that will touch least 2579 // instrs? 2580 LRI.reset(); 2581 int Idx = 0; 2582 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2583 while (Idx < ScanIdx) { 2584 if (!ProfitableToSinkInstruction(LRI)) { 2585 // Too many PHIs would be created. 2586 LLVM_DEBUG( 2587 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2588 break; 2589 } 2590 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2591 --LRI; 2592 ++Idx; 2593 } 2594 2595 // If no instructions can be sunk, early-return. 2596 if (Idx == 0) 2597 return false; 2598 2599 // Did we determine that (only) some instructions are unprofitable to sink? 2600 if (Idx < ScanIdx) { 2601 // Okay, some instructions are unprofitable. 2602 ScanIdx = Idx; 2603 InstructionsToSink = InstructionsProfitableToSink; 2604 2605 // But, that may make other instructions unprofitable, too. 2606 // So, do a backward scan, do any earlier instructions become 2607 // unprofitable? 2608 assert( 2609 !ProfitableToSinkInstruction(LRI) && 2610 "We already know that the last instruction is unprofitable to sink"); 2611 ++LRI; 2612 --Idx; 2613 while (Idx >= 0) { 2614 // If we detect that an instruction becomes unprofitable to sink, 2615 // all earlier instructions won't be sunk either, 2616 // so preemptively keep InstructionsProfitableToSink in sync. 2617 // FIXME: is this the most performant approach? 2618 for (auto *I : *LRI) 2619 InstructionsProfitableToSink.erase(I); 2620 if (!ProfitableToSinkInstruction(LRI)) { 2621 // Everything starting with this instruction won't be sunk. 2622 ScanIdx = Idx; 2623 InstructionsToSink = InstructionsProfitableToSink; 2624 } 2625 ++LRI; 2626 --Idx; 2627 } 2628 } 2629 2630 // If no instructions can be sunk, early-return. 2631 if (ScanIdx == 0) 2632 return false; 2633 } 2634 2635 bool Changed = false; 2636 2637 if (HaveNonUnconditionalPredecessors) { 2638 if (!followedByDeoptOrUnreachable) { 2639 // It is always legal to sink common instructions from unconditional 2640 // predecessors. However, if not all predecessors are unconditional, 2641 // this transformation might be pessimizing. So as a rule of thumb, 2642 // don't do it unless we'd sink at least one non-speculatable instruction. 2643 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2644 LRI.reset(); 2645 int Idx = 0; 2646 bool Profitable = false; 2647 while (Idx < ScanIdx) { 2648 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2649 Profitable = true; 2650 break; 2651 } 2652 --LRI; 2653 ++Idx; 2654 } 2655 if (!Profitable) 2656 return false; 2657 } 2658 2659 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2660 // We have a conditional edge and we're going to sink some instructions. 2661 // Insert a new block postdominating all blocks we're going to sink from. 2662 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2663 // Edges couldn't be split. 2664 return false; 2665 Changed = true; 2666 } 2667 2668 // Now that we've analyzed all potential sinking candidates, perform the 2669 // actual sink. We iteratively sink the last non-terminator of the source 2670 // blocks into their common successor unless doing so would require too 2671 // many PHI instructions to be generated (currently only one PHI is allowed 2672 // per sunk instruction). 2673 // 2674 // We can use InstructionsToSink to discount values needing PHI-merging that will 2675 // actually be sunk in a later iteration. This allows us to be more 2676 // aggressive in what we sink. This does allow a false positive where we 2677 // sink presuming a later value will also be sunk, but stop half way through 2678 // and never actually sink it which means we produce more PHIs than intended. 2679 // This is unlikely in practice though. 2680 int SinkIdx = 0; 2681 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2682 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2683 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2684 << "\n"); 2685 2686 // Because we've sunk every instruction in turn, the current instruction to 2687 // sink is always at index 0. 2688 LRI.reset(); 2689 2690 sinkLastInstruction(UnconditionalPreds); 2691 NumSinkCommonInstrs++; 2692 Changed = true; 2693 } 2694 if (SinkIdx != 0) 2695 ++NumSinkCommonCode; 2696 return Changed; 2697 } 2698 2699 namespace { 2700 2701 struct CompatibleSets { 2702 using SetTy = SmallVector<InvokeInst *, 2>; 2703 2704 SmallVector<SetTy, 1> Sets; 2705 2706 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2707 2708 SetTy &getCompatibleSet(InvokeInst *II); 2709 2710 void insert(InvokeInst *II); 2711 }; 2712 2713 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2714 // Perform a linear scan over all the existing sets, see if the new `invoke` 2715 // is compatible with any particular set. Since we know that all the `invokes` 2716 // within a set are compatible, only check the first `invoke` in each set. 2717 // WARNING: at worst, this has quadratic complexity. 2718 for (CompatibleSets::SetTy &Set : Sets) { 2719 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2720 return Set; 2721 } 2722 2723 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2724 return Sets.emplace_back(); 2725 } 2726 2727 void CompatibleSets::insert(InvokeInst *II) { 2728 getCompatibleSet(II).emplace_back(II); 2729 } 2730 2731 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2732 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2733 2734 // Can we theoretically merge these `invoke`s? 2735 auto IsIllegalToMerge = [](InvokeInst *II) { 2736 return II->cannotMerge() || II->isInlineAsm(); 2737 }; 2738 if (any_of(Invokes, IsIllegalToMerge)) 2739 return false; 2740 2741 // Either both `invoke`s must be direct, 2742 // or both `invoke`s must be indirect. 2743 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2744 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2745 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2746 if (HaveIndirectCalls) { 2747 if (!AllCallsAreIndirect) 2748 return false; 2749 } else { 2750 // All callees must be identical. 2751 Value *Callee = nullptr; 2752 for (InvokeInst *II : Invokes) { 2753 Value *CurrCallee = II->getCalledOperand(); 2754 assert(CurrCallee && "There is always a called operand."); 2755 if (!Callee) 2756 Callee = CurrCallee; 2757 else if (Callee != CurrCallee) 2758 return false; 2759 } 2760 } 2761 2762 // Either both `invoke`s must not have a normal destination, 2763 // or both `invoke`s must have a normal destination, 2764 auto HasNormalDest = [](InvokeInst *II) { 2765 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2766 }; 2767 if (any_of(Invokes, HasNormalDest)) { 2768 // Do not merge `invoke` that does not have a normal destination with one 2769 // that does have a normal destination, even though doing so would be legal. 2770 if (!all_of(Invokes, HasNormalDest)) 2771 return false; 2772 2773 // All normal destinations must be identical. 2774 BasicBlock *NormalBB = nullptr; 2775 for (InvokeInst *II : Invokes) { 2776 BasicBlock *CurrNormalBB = II->getNormalDest(); 2777 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2778 if (!NormalBB) 2779 NormalBB = CurrNormalBB; 2780 else if (NormalBB != CurrNormalBB) 2781 return false; 2782 } 2783 2784 // In the normal destination, the incoming values for these two `invoke`s 2785 // must be compatible. 2786 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2787 if (!incomingValuesAreCompatible( 2788 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2789 &EquivalenceSet)) 2790 return false; 2791 } 2792 2793 #ifndef NDEBUG 2794 // All unwind destinations must be identical. 2795 // We know that because we have started from said unwind destination. 2796 BasicBlock *UnwindBB = nullptr; 2797 for (InvokeInst *II : Invokes) { 2798 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2799 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2800 if (!UnwindBB) 2801 UnwindBB = CurrUnwindBB; 2802 else 2803 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2804 } 2805 #endif 2806 2807 // In the unwind destination, the incoming values for these two `invoke`s 2808 // must be compatible. 2809 if (!incomingValuesAreCompatible( 2810 Invokes.front()->getUnwindDest(), 2811 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2812 return false; 2813 2814 // Ignoring arguments, these `invoke`s must be identical, 2815 // including operand bundles. 2816 const InvokeInst *II0 = Invokes.front(); 2817 for (auto *II : Invokes.drop_front()) 2818 if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs)) 2819 return false; 2820 2821 // Can we theoretically form the data operands for the merged `invoke`? 2822 auto IsIllegalToMergeArguments = [](auto Ops) { 2823 Use &U0 = std::get<0>(Ops); 2824 Use &U1 = std::get<1>(Ops); 2825 if (U0 == U1) 2826 return false; 2827 return U0->getType()->isTokenTy() || 2828 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2829 U0.getOperandNo()); 2830 }; 2831 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2832 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2833 IsIllegalToMergeArguments)) 2834 return false; 2835 2836 return true; 2837 } 2838 2839 } // namespace 2840 2841 // Merge all invokes in the provided set, all of which are compatible 2842 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2843 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2844 DomTreeUpdater *DTU) { 2845 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2846 2847 SmallVector<DominatorTree::UpdateType, 8> Updates; 2848 if (DTU) 2849 Updates.reserve(2 + 3 * Invokes.size()); 2850 2851 bool HasNormalDest = 2852 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2853 2854 // Clone one of the invokes into a new basic block. 2855 // Since they are all compatible, it doesn't matter which invoke is cloned. 2856 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2857 InvokeInst *II0 = Invokes.front(); 2858 BasicBlock *II0BB = II0->getParent(); 2859 BasicBlock *InsertBeforeBlock = 2860 II0->getParent()->getIterator()->getNextNode(); 2861 Function *Func = II0BB->getParent(); 2862 LLVMContext &Ctx = II0->getContext(); 2863 2864 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2865 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2866 2867 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2868 // NOTE: all invokes have the same attributes, so no handling needed. 2869 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2870 2871 if (!HasNormalDest) { 2872 // This set does not have a normal destination, 2873 // so just form a new block with unreachable terminator. 2874 BasicBlock *MergedNormalDest = BasicBlock::Create( 2875 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2876 new UnreachableInst(Ctx, MergedNormalDest); 2877 MergedInvoke->setNormalDest(MergedNormalDest); 2878 } 2879 2880 // The unwind destination, however, remainds identical for all invokes here. 2881 2882 return MergedInvoke; 2883 }(); 2884 2885 if (DTU) { 2886 // Predecessor blocks that contained these invokes will now branch to 2887 // the new block that contains the merged invoke, ... 2888 for (InvokeInst *II : Invokes) 2889 Updates.push_back( 2890 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2891 2892 // ... which has the new `unreachable` block as normal destination, 2893 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2894 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2895 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2896 SuccBBOfMergedInvoke}); 2897 2898 // Since predecessor blocks now unconditionally branch to a new block, 2899 // they no longer branch to their original successors. 2900 for (InvokeInst *II : Invokes) 2901 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2902 Updates.push_back( 2903 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2904 } 2905 2906 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2907 2908 // Form the merged operands for the merged invoke. 2909 for (Use &U : MergedInvoke->operands()) { 2910 // Only PHI together the indirect callees and data operands. 2911 if (MergedInvoke->isCallee(&U)) { 2912 if (!IsIndirectCall) 2913 continue; 2914 } else if (!MergedInvoke->isDataOperand(&U)) 2915 continue; 2916 2917 // Don't create trivial PHI's with all-identical incoming values. 2918 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2919 return II->getOperand(U.getOperandNo()) != U.get(); 2920 }); 2921 if (!NeedPHI) 2922 continue; 2923 2924 // Form a PHI out of all the data ops under this index. 2925 PHINode *PN = PHINode::Create( 2926 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator()); 2927 for (InvokeInst *II : Invokes) 2928 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2929 2930 U.set(PN); 2931 } 2932 2933 // We've ensured that each PHI node has compatible (identical) incoming values 2934 // when coming from each of the `invoke`s in the current merge set, 2935 // so update the PHI nodes accordingly. 2936 for (BasicBlock *Succ : successors(MergedInvoke)) 2937 addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2938 /*ExistPred=*/Invokes.front()->getParent()); 2939 2940 // And finally, replace the original `invoke`s with an unconditional branch 2941 // to the block with the merged `invoke`. Also, give that merged `invoke` 2942 // the merged debugloc of all the original `invoke`s. 2943 DILocation *MergedDebugLoc = nullptr; 2944 for (InvokeInst *II : Invokes) { 2945 // Compute the debug location common to all the original `invoke`s. 2946 if (!MergedDebugLoc) 2947 MergedDebugLoc = II->getDebugLoc(); 2948 else 2949 MergedDebugLoc = 2950 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2951 2952 // And replace the old `invoke` with an unconditionally branch 2953 // to the block with the merged `invoke`. 2954 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2955 OrigSuccBB->removePredecessor(II->getParent()); 2956 auto *BI = BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2957 // The unconditional branch is part of the replacement for the original 2958 // invoke, so should use its DebugLoc. 2959 BI->setDebugLoc(II->getDebugLoc()); 2960 bool Success = MergedInvoke->tryIntersectAttributes(II); 2961 assert(Success && "Merged invokes with incompatible attributes"); 2962 // For NDEBUG Compile 2963 (void)Success; 2964 II->replaceAllUsesWith(MergedInvoke); 2965 II->eraseFromParent(); 2966 ++NumInvokesMerged; 2967 } 2968 MergedInvoke->setDebugLoc(MergedDebugLoc); 2969 ++NumInvokeSetsFormed; 2970 2971 if (DTU) 2972 DTU->applyUpdates(Updates); 2973 } 2974 2975 /// If this block is a `landingpad` exception handling block, categorize all 2976 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2977 /// being "mergeable" together, and then merge invokes in each set together. 2978 /// 2979 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2980 /// [...] [...] 2981 /// | | 2982 /// [invoke0] [invoke1] 2983 /// / \ / \ 2984 /// [cont0] [landingpad] [cont1] 2985 /// to: 2986 /// [...] [...] 2987 /// \ / 2988 /// [invoke] 2989 /// / \ 2990 /// [cont] [landingpad] 2991 /// 2992 /// But of course we can only do that if the invokes share the `landingpad`, 2993 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2994 /// and the invoked functions are "compatible". 2995 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2996 if (!EnableMergeCompatibleInvokes) 2997 return false; 2998 2999 bool Changed = false; 3000 3001 // FIXME: generalize to all exception handling blocks? 3002 if (!BB->isLandingPad()) 3003 return Changed; 3004 3005 CompatibleSets Grouper; 3006 3007 // Record all the predecessors of this `landingpad`. As per verifier, 3008 // the only allowed predecessor is the unwind edge of an `invoke`. 3009 // We want to group "compatible" `invokes` into the same set to be merged. 3010 for (BasicBlock *PredBB : predecessors(BB)) 3011 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 3012 3013 // And now, merge `invoke`s that were grouped togeter. 3014 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 3015 if (Invokes.size() < 2) 3016 continue; 3017 Changed = true; 3018 mergeCompatibleInvokesImpl(Invokes, DTU); 3019 } 3020 3021 return Changed; 3022 } 3023 3024 namespace { 3025 /// Track ephemeral values, which should be ignored for cost-modelling 3026 /// purposes. Requires walking instructions in reverse order. 3027 class EphemeralValueTracker { 3028 SmallPtrSet<const Instruction *, 32> EphValues; 3029 3030 bool isEphemeral(const Instruction *I) { 3031 if (isa<AssumeInst>(I)) 3032 return true; 3033 return !I->mayHaveSideEffects() && !I->isTerminator() && 3034 all_of(I->users(), [&](const User *U) { 3035 return EphValues.count(cast<Instruction>(U)); 3036 }); 3037 } 3038 3039 public: 3040 bool track(const Instruction *I) { 3041 if (isEphemeral(I)) { 3042 EphValues.insert(I); 3043 return true; 3044 } 3045 return false; 3046 } 3047 3048 bool contains(const Instruction *I) const { return EphValues.contains(I); } 3049 }; 3050 } // namespace 3051 3052 /// Determine if we can hoist sink a sole store instruction out of a 3053 /// conditional block. 3054 /// 3055 /// We are looking for code like the following: 3056 /// BrBB: 3057 /// store i32 %add, i32* %arrayidx2 3058 /// ... // No other stores or function calls (we could be calling a memory 3059 /// ... // function). 3060 /// %cmp = icmp ult %x, %y 3061 /// br i1 %cmp, label %EndBB, label %ThenBB 3062 /// ThenBB: 3063 /// store i32 %add5, i32* %arrayidx2 3064 /// br label EndBB 3065 /// EndBB: 3066 /// ... 3067 /// We are going to transform this into: 3068 /// BrBB: 3069 /// store i32 %add, i32* %arrayidx2 3070 /// ... // 3071 /// %cmp = icmp ult %x, %y 3072 /// %add.add5 = select i1 %cmp, i32 %add, %add5 3073 /// store i32 %add.add5, i32* %arrayidx2 3074 /// ... 3075 /// 3076 /// \return The pointer to the value of the previous store if the store can be 3077 /// hoisted into the predecessor block. 0 otherwise. 3078 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 3079 BasicBlock *StoreBB, BasicBlock *EndBB) { 3080 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 3081 if (!StoreToHoist) 3082 return nullptr; 3083 3084 // Volatile or atomic. 3085 if (!StoreToHoist->isSimple()) 3086 return nullptr; 3087 3088 Value *StorePtr = StoreToHoist->getPointerOperand(); 3089 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 3090 3091 // Look for a store to the same pointer in BrBB. 3092 unsigned MaxNumInstToLookAt = 9; 3093 // Skip pseudo probe intrinsic calls which are not really killing any memory 3094 // accesses. 3095 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 3096 if (!MaxNumInstToLookAt) 3097 break; 3098 --MaxNumInstToLookAt; 3099 3100 // Could be calling an instruction that affects memory like free(). 3101 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 3102 return nullptr; 3103 3104 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 3105 // Found the previous store to same location and type. Make sure it is 3106 // simple, to avoid introducing a spurious non-atomic write after an 3107 // atomic write. 3108 if (SI->getPointerOperand() == StorePtr && 3109 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() && 3110 SI->getAlign() >= StoreToHoist->getAlign()) 3111 // Found the previous store, return its value operand. 3112 return SI->getValueOperand(); 3113 return nullptr; // Unknown store. 3114 } 3115 3116 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 3117 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 3118 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) { 3119 Value *Obj = getUnderlyingObject(StorePtr); 3120 bool ExplicitlyDereferenceableOnly; 3121 if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) && 3122 !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false, 3123 /*StoreCaptures=*/true) && 3124 (!ExplicitlyDereferenceableOnly || 3125 isDereferenceablePointer(StorePtr, StoreTy, 3126 LI->getDataLayout()))) { 3127 // Found a previous load, return it. 3128 return LI; 3129 } 3130 } 3131 // The load didn't work out, but we may still find a store. 3132 } 3133 } 3134 3135 return nullptr; 3136 } 3137 3138 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 3139 /// converted to selects. 3140 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 3141 BasicBlock *EndBB, 3142 unsigned &SpeculatedInstructions, 3143 InstructionCost &Cost, 3144 const TargetTransformInfo &TTI) { 3145 TargetTransformInfo::TargetCostKind CostKind = 3146 BB->getParent()->hasMinSize() 3147 ? TargetTransformInfo::TCK_CodeSize 3148 : TargetTransformInfo::TCK_SizeAndLatency; 3149 3150 bool HaveRewritablePHIs = false; 3151 for (PHINode &PN : EndBB->phis()) { 3152 Value *OrigV = PN.getIncomingValueForBlock(BB); 3153 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 3154 3155 // FIXME: Try to remove some of the duplication with 3156 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 3157 if (ThenV == OrigV) 3158 continue; 3159 3160 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 3161 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3162 3163 // Don't convert to selects if we could remove undefined behavior instead. 3164 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 3165 passingValueIsAlwaysUndefined(ThenV, &PN)) 3166 return false; 3167 3168 HaveRewritablePHIs = true; 3169 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 3170 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 3171 if (!OrigCE && !ThenCE) 3172 continue; // Known cheap (FIXME: Maybe not true for aggregates). 3173 3174 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 3175 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 3176 InstructionCost MaxCost = 3177 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3178 if (OrigCost + ThenCost > MaxCost) 3179 return false; 3180 3181 // Account for the cost of an unfolded ConstantExpr which could end up 3182 // getting expanded into Instructions. 3183 // FIXME: This doesn't account for how many operations are combined in the 3184 // constant expression. 3185 ++SpeculatedInstructions; 3186 if (SpeculatedInstructions > 1) 3187 return false; 3188 } 3189 3190 return HaveRewritablePHIs; 3191 } 3192 3193 static bool isProfitableToSpeculate(const BranchInst *BI, 3194 std::optional<bool> Invert, 3195 const TargetTransformInfo &TTI) { 3196 // If the branch is non-unpredictable, and is predicted to *not* branch to 3197 // the `then` block, then avoid speculating it. 3198 if (BI->getMetadata(LLVMContext::MD_unpredictable)) 3199 return true; 3200 3201 uint64_t TWeight, FWeight; 3202 if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0) 3203 return true; 3204 3205 if (!Invert.has_value()) 3206 return false; 3207 3208 uint64_t EndWeight = *Invert ? TWeight : FWeight; 3209 BranchProbability BIEndProb = 3210 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 3211 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3212 return BIEndProb < Likely; 3213 } 3214 3215 /// Speculate a conditional basic block flattening the CFG. 3216 /// 3217 /// Note that this is a very risky transform currently. Speculating 3218 /// instructions like this is most often not desirable. Instead, there is an MI 3219 /// pass which can do it with full awareness of the resource constraints. 3220 /// However, some cases are "obvious" and we should do directly. An example of 3221 /// this is speculating a single, reasonably cheap instruction. 3222 /// 3223 /// There is only one distinct advantage to flattening the CFG at the IR level: 3224 /// it makes very common but simplistic optimizations such as are common in 3225 /// instcombine and the DAG combiner more powerful by removing CFG edges and 3226 /// modeling their effects with easier to reason about SSA value graphs. 3227 /// 3228 /// 3229 /// An illustration of this transform is turning this IR: 3230 /// \code 3231 /// BB: 3232 /// %cmp = icmp ult %x, %y 3233 /// br i1 %cmp, label %EndBB, label %ThenBB 3234 /// ThenBB: 3235 /// %sub = sub %x, %y 3236 /// br label BB2 3237 /// EndBB: 3238 /// %phi = phi [ %sub, %ThenBB ], [ 0, %BB ] 3239 /// ... 3240 /// \endcode 3241 /// 3242 /// Into this IR: 3243 /// \code 3244 /// BB: 3245 /// %cmp = icmp ult %x, %y 3246 /// %sub = sub %x, %y 3247 /// %cond = select i1 %cmp, 0, %sub 3248 /// ... 3249 /// \endcode 3250 /// 3251 /// \returns true if the conditional block is removed. 3252 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI, 3253 BasicBlock *ThenBB) { 3254 if (!Options.SpeculateBlocks) 3255 return false; 3256 3257 // Be conservative for now. FP select instruction can often be expensive. 3258 Value *BrCond = BI->getCondition(); 3259 if (isa<FCmpInst>(BrCond)) 3260 return false; 3261 3262 BasicBlock *BB = BI->getParent(); 3263 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 3264 InstructionCost Budget = 3265 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3266 3267 // If ThenBB is actually on the false edge of the conditional branch, remember 3268 // to swap the select operands later. 3269 bool Invert = false; 3270 if (ThenBB != BI->getSuccessor(0)) { 3271 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 3272 Invert = true; 3273 } 3274 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 3275 3276 if (!isProfitableToSpeculate(BI, Invert, TTI)) 3277 return false; 3278 3279 // Keep a count of how many times instructions are used within ThenBB when 3280 // they are candidates for sinking into ThenBB. Specifically: 3281 // - They are defined in BB, and 3282 // - They have no side effects, and 3283 // - All of their uses are in ThenBB. 3284 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 3285 3286 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 3287 3288 unsigned SpeculatedInstructions = 0; 3289 bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting && 3290 Options.HoistLoadsStoresWithCondFaulting; 3291 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 3292 Value *SpeculatedStoreValue = nullptr; 3293 StoreInst *SpeculatedStore = nullptr; 3294 EphemeralValueTracker EphTracker; 3295 for (Instruction &I : reverse(drop_end(*ThenBB))) { 3296 // Skip debug info. 3297 if (isa<DbgInfoIntrinsic>(I)) { 3298 SpeculatedDbgIntrinsics.push_back(&I); 3299 continue; 3300 } 3301 3302 // Skip pseudo probes. The consequence is we lose track of the branch 3303 // probability for ThenBB, which is fine since the optimization here takes 3304 // place regardless of the branch probability. 3305 if (isa<PseudoProbeInst>(I)) { 3306 // The probe should be deleted so that it will not be over-counted when 3307 // the samples collected on the non-conditional path are counted towards 3308 // the conditional path. We leave it for the counts inference algorithm to 3309 // figure out a proper count for an unknown probe. 3310 SpeculatedDbgIntrinsics.push_back(&I); 3311 continue; 3312 } 3313 3314 // Ignore ephemeral values, they will be dropped by the transform. 3315 if (EphTracker.track(&I)) 3316 continue; 3317 3318 // Only speculatively execute a single instruction (not counting the 3319 // terminator) for now. 3320 bool IsSafeCheapLoadStore = HoistLoadsStores && 3321 isSafeCheapLoadStore(&I, TTI) && 3322 SpeculatedConditionalLoadsStores.size() < 3323 HoistLoadsStoresWithCondFaultingThreshold; 3324 // Not count load/store into cost if target supports conditional faulting 3325 // b/c it's cheap to speculate it. 3326 if (IsSafeCheapLoadStore) 3327 SpeculatedConditionalLoadsStores.push_back(&I); 3328 else 3329 ++SpeculatedInstructions; 3330 3331 if (SpeculatedInstructions > 1) 3332 return false; 3333 3334 // Don't hoist the instruction if it's unsafe or expensive. 3335 if (!IsSafeCheapLoadStore && 3336 !isSafeToSpeculativelyExecute(&I, BI, Options.AC) && 3337 !(HoistCondStores && !SpeculatedStoreValue && 3338 (SpeculatedStoreValue = 3339 isSafeToSpeculateStore(&I, BB, ThenBB, EndBB)))) 3340 return false; 3341 if (!IsSafeCheapLoadStore && !SpeculatedStoreValue && 3342 computeSpeculationCost(&I, TTI) > 3343 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3344 return false; 3345 3346 // Store the store speculation candidate. 3347 if (!SpeculatedStore && SpeculatedStoreValue) 3348 SpeculatedStore = cast<StoreInst>(&I); 3349 3350 // Do not hoist the instruction if any of its operands are defined but not 3351 // used in BB. The transformation will prevent the operand from 3352 // being sunk into the use block. 3353 for (Use &Op : I.operands()) { 3354 Instruction *OpI = dyn_cast<Instruction>(Op); 3355 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3356 continue; // Not a candidate for sinking. 3357 3358 ++SinkCandidateUseCounts[OpI]; 3359 } 3360 } 3361 3362 // Consider any sink candidates which are only used in ThenBB as costs for 3363 // speculation. Note, while we iterate over a DenseMap here, we are summing 3364 // and so iteration order isn't significant. 3365 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3366 if (Inst->hasNUses(Count)) { 3367 ++SpeculatedInstructions; 3368 if (SpeculatedInstructions > 1) 3369 return false; 3370 } 3371 3372 // Check that we can insert the selects and that it's not too expensive to do 3373 // so. 3374 bool Convert = 3375 SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty(); 3376 InstructionCost Cost = 0; 3377 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3378 SpeculatedInstructions, Cost, TTI); 3379 if (!Convert || Cost > Budget) 3380 return false; 3381 3382 // If we get here, we can hoist the instruction and if-convert. 3383 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3384 3385 // Insert a select of the value of the speculated store. 3386 if (SpeculatedStoreValue) { 3387 IRBuilder<NoFolder> Builder(BI); 3388 Value *OrigV = SpeculatedStore->getValueOperand(); 3389 Value *TrueV = SpeculatedStore->getValueOperand(); 3390 Value *FalseV = SpeculatedStoreValue; 3391 if (Invert) 3392 std::swap(TrueV, FalseV); 3393 Value *S = Builder.CreateSelect( 3394 BrCond, TrueV, FalseV, "spec.store.select", BI); 3395 SpeculatedStore->setOperand(0, S); 3396 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3397 SpeculatedStore->getDebugLoc()); 3398 // The value stored is still conditional, but the store itself is now 3399 // unconditonally executed, so we must be sure that any linked dbg.assign 3400 // intrinsics are tracking the new stored value (the result of the 3401 // select). If we don't, and the store were to be removed by another pass 3402 // (e.g. DSE), then we'd eventually end up emitting a location describing 3403 // the conditional value, unconditionally. 3404 // 3405 // === Before this transformation === 3406 // pred: 3407 // store %one, %x.dest, !DIAssignID !1 3408 // dbg.assign %one, "x", ..., !1, ... 3409 // br %cond if.then 3410 // 3411 // if.then: 3412 // store %two, %x.dest, !DIAssignID !2 3413 // dbg.assign %two, "x", ..., !2, ... 3414 // 3415 // === After this transformation === 3416 // pred: 3417 // store %one, %x.dest, !DIAssignID !1 3418 // dbg.assign %one, "x", ..., !1 3419 /// ... 3420 // %merge = select %cond, %two, %one 3421 // store %merge, %x.dest, !DIAssignID !2 3422 // dbg.assign %merge, "x", ..., !2 3423 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3424 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3425 DbgAssign->replaceVariableLocationOp(OrigV, S); 3426 }; 3427 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3428 for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable); 3429 } 3430 3431 // Metadata can be dependent on the condition we are hoisting above. 3432 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3433 // to avoid making it appear as if the condition is a constant, which would 3434 // be misleading while debugging. 3435 // Similarly strip attributes that maybe dependent on condition we are 3436 // hoisting above. 3437 for (auto &I : make_early_inc_range(*ThenBB)) { 3438 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3439 // Don't update the DILocation of dbg.assign intrinsics. 3440 if (!isa<DbgAssignIntrinsic>(&I)) 3441 I.setDebugLoc(DebugLoc()); 3442 } 3443 I.dropUBImplyingAttrsAndMetadata(); 3444 3445 // Drop ephemeral values. 3446 if (EphTracker.contains(&I)) { 3447 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3448 I.eraseFromParent(); 3449 } 3450 } 3451 3452 // Hoist the instructions. 3453 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached 3454 // to these instructions, in the same way that dbg.value intrinsics are 3455 // dropped at the end of this block. 3456 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3457 for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange())) 3458 // Drop all records except assign-kind DbgVariableRecords (dbg.assign 3459 // equivalent). 3460 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 3461 !DVR || !DVR->isDbgAssign()) 3462 It.dropOneDbgRecord(&DR); 3463 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3464 std::prev(ThenBB->end())); 3465 3466 if (!SpeculatedConditionalLoadsStores.empty()) 3467 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert); 3468 3469 // Insert selects and rewrite the PHI operands. 3470 IRBuilder<NoFolder> Builder(BI); 3471 for (PHINode &PN : EndBB->phis()) { 3472 unsigned OrigI = PN.getBasicBlockIndex(BB); 3473 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3474 Value *OrigV = PN.getIncomingValue(OrigI); 3475 Value *ThenV = PN.getIncomingValue(ThenI); 3476 3477 // Skip PHIs which are trivial. 3478 if (OrigV == ThenV) 3479 continue; 3480 3481 // Create a select whose true value is the speculatively executed value and 3482 // false value is the pre-existing value. Swap them if the branch 3483 // destinations were inverted. 3484 Value *TrueV = ThenV, *FalseV = OrigV; 3485 if (Invert) 3486 std::swap(TrueV, FalseV); 3487 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3488 PN.setIncomingValue(OrigI, V); 3489 PN.setIncomingValue(ThenI, V); 3490 } 3491 3492 // Remove speculated dbg intrinsics. 3493 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3494 // dbg value for the different flows and inserting it after the select. 3495 for (Instruction *I : SpeculatedDbgIntrinsics) { 3496 // We still want to know that an assignment took place so don't remove 3497 // dbg.assign intrinsics. 3498 if (!isa<DbgAssignIntrinsic>(I)) 3499 I->eraseFromParent(); 3500 } 3501 3502 ++NumSpeculations; 3503 return true; 3504 } 3505 3506 /// Return true if we can thread a branch across this block. 3507 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3508 int Size = 0; 3509 EphemeralValueTracker EphTracker; 3510 3511 // Walk the loop in reverse so that we can identify ephemeral values properly 3512 // (values only feeding assumes). 3513 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3514 // Can't fold blocks that contain noduplicate or convergent calls. 3515 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3516 if (CI->cannotDuplicate() || CI->isConvergent()) 3517 return false; 3518 3519 // Ignore ephemeral values which are deleted during codegen. 3520 // We will delete Phis while threading, so Phis should not be accounted in 3521 // block's size. 3522 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3523 if (Size++ > MaxSmallBlockSize) 3524 return false; // Don't clone large BB's. 3525 } 3526 3527 // We can only support instructions that do not define values that are 3528 // live outside of the current basic block. 3529 for (User *U : I.users()) { 3530 Instruction *UI = cast<Instruction>(U); 3531 if (UI->getParent() != BB || isa<PHINode>(UI)) 3532 return false; 3533 } 3534 3535 // Looks ok, continue checking. 3536 } 3537 3538 return true; 3539 } 3540 3541 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3542 BasicBlock *To) { 3543 // Don't look past the block defining the value, we might get the value from 3544 // a previous loop iteration. 3545 auto *I = dyn_cast<Instruction>(V); 3546 if (I && I->getParent() == To) 3547 return nullptr; 3548 3549 // We know the value if the From block branches on it. 3550 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3551 if (BI && BI->isConditional() && BI->getCondition() == V && 3552 BI->getSuccessor(0) != BI->getSuccessor(1)) 3553 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3554 : ConstantInt::getFalse(BI->getContext()); 3555 3556 return nullptr; 3557 } 3558 3559 /// If we have a conditional branch on something for which we know the constant 3560 /// value in predecessors (e.g. a phi node in the current block), thread edges 3561 /// from the predecessor to their ultimate destination. 3562 static std::optional<bool> 3563 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3564 const DataLayout &DL, 3565 AssumptionCache *AC) { 3566 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3567 BasicBlock *BB = BI->getParent(); 3568 Value *Cond = BI->getCondition(); 3569 PHINode *PN = dyn_cast<PHINode>(Cond); 3570 if (PN && PN->getParent() == BB) { 3571 // Degenerate case of a single entry PHI. 3572 if (PN->getNumIncomingValues() == 1) { 3573 FoldSingleEntryPHINodes(PN->getParent()); 3574 return true; 3575 } 3576 3577 for (Use &U : PN->incoming_values()) 3578 if (auto *CB = dyn_cast<ConstantInt>(U)) 3579 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3580 } else { 3581 for (BasicBlock *Pred : predecessors(BB)) { 3582 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3583 KnownValues[CB].insert(Pred); 3584 } 3585 } 3586 3587 if (KnownValues.empty()) 3588 return false; 3589 3590 // Now we know that this block has multiple preds and two succs. 3591 // Check that the block is small enough and values defined in the block are 3592 // not used outside of it. 3593 if (!blockIsSimpleEnoughToThreadThrough(BB)) 3594 return false; 3595 3596 for (const auto &Pair : KnownValues) { 3597 // Okay, we now know that all edges from PredBB should be revectored to 3598 // branch to RealDest. 3599 ConstantInt *CB = Pair.first; 3600 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3601 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3602 3603 if (RealDest == BB) 3604 continue; // Skip self loops. 3605 3606 // Skip if the predecessor's terminator is an indirect branch. 3607 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3608 return isa<IndirectBrInst>(PredBB->getTerminator()); 3609 })) 3610 continue; 3611 3612 LLVM_DEBUG({ 3613 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3614 << " has value " << *Pair.first << " in predecessors:\n"; 3615 for (const BasicBlock *PredBB : Pair.second) 3616 dbgs() << " " << PredBB->getName() << "\n"; 3617 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3618 }); 3619 3620 // Split the predecessors we are threading into a new edge block. We'll 3621 // clone the instructions into this block, and then redirect it to RealDest. 3622 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3623 3624 // TODO: These just exist to reduce test diff, we can drop them if we like. 3625 EdgeBB->setName(RealDest->getName() + ".critedge"); 3626 EdgeBB->moveBefore(RealDest); 3627 3628 // Update PHI nodes. 3629 addPredecessorToBlock(RealDest, EdgeBB, BB); 3630 3631 // BB may have instructions that are being threaded over. Clone these 3632 // instructions into EdgeBB. We know that there will be no uses of the 3633 // cloned instructions outside of EdgeBB. 3634 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3635 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3636 TranslateMap[Cond] = CB; 3637 3638 // RemoveDIs: track instructions that we optimise away while folding, so 3639 // that we can copy DbgVariableRecords from them later. 3640 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3641 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3642 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3643 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3644 continue; 3645 } 3646 // Clone the instruction. 3647 Instruction *N = BBI->clone(); 3648 // Insert the new instruction into its new home. 3649 N->insertInto(EdgeBB, InsertPt); 3650 3651 if (BBI->hasName()) 3652 N->setName(BBI->getName() + ".c"); 3653 3654 // Update operands due to translation. 3655 for (Use &Op : N->operands()) { 3656 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3657 if (PI != TranslateMap.end()) 3658 Op = PI->second; 3659 } 3660 3661 // Check for trivial simplification. 3662 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3663 if (!BBI->use_empty()) 3664 TranslateMap[&*BBI] = V; 3665 if (!N->mayHaveSideEffects()) { 3666 N->eraseFromParent(); // Instruction folded away, don't need actual 3667 // inst 3668 N = nullptr; 3669 } 3670 } else { 3671 if (!BBI->use_empty()) 3672 TranslateMap[&*BBI] = N; 3673 } 3674 if (N) { 3675 // Copy all debug-info attached to instructions from the last we 3676 // successfully clone, up to this instruction (they might have been 3677 // folded away). 3678 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3679 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3680 SrcDbgCursor = std::next(BBI); 3681 // Clone debug-info on this instruction too. 3682 N->cloneDebugInfoFrom(&*BBI); 3683 3684 // Register the new instruction with the assumption cache if necessary. 3685 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3686 if (AC) 3687 AC->registerAssumption(Assume); 3688 } 3689 } 3690 3691 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3692 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3693 InsertPt->cloneDebugInfoFrom(BI); 3694 3695 BB->removePredecessor(EdgeBB); 3696 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3697 EdgeBI->setSuccessor(0, RealDest); 3698 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3699 3700 if (DTU) { 3701 SmallVector<DominatorTree::UpdateType, 2> Updates; 3702 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3703 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3704 DTU->applyUpdates(Updates); 3705 } 3706 3707 // For simplicity, we created a separate basic block for the edge. Merge 3708 // it back into the predecessor if possible. This not only avoids 3709 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3710 // bypass the check for trivial cycles above. 3711 MergeBlockIntoPredecessor(EdgeBB, DTU); 3712 3713 // Signal repeat, simplifying any other constants. 3714 return std::nullopt; 3715 } 3716 3717 return false; 3718 } 3719 3720 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3721 DomTreeUpdater *DTU, 3722 const DataLayout &DL, 3723 AssumptionCache *AC) { 3724 std::optional<bool> Result; 3725 bool EverChanged = false; 3726 do { 3727 // Note that None means "we changed things, but recurse further." 3728 Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3729 EverChanged |= Result == std::nullopt || *Result; 3730 } while (Result == std::nullopt); 3731 return EverChanged; 3732 } 3733 3734 /// Given a BB that starts with the specified two-entry PHI node, 3735 /// see if we can eliminate it. 3736 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3737 DomTreeUpdater *DTU, AssumptionCache *AC, 3738 const DataLayout &DL, 3739 bool SpeculateUnpredictables) { 3740 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3741 // statement", which has a very simple dominance structure. Basically, we 3742 // are trying to find the condition that is being branched on, which 3743 // subsequently causes this merge to happen. We really want control 3744 // dependence information for this check, but simplifycfg can't keep it up 3745 // to date, and this catches most of the cases we care about anyway. 3746 BasicBlock *BB = PN->getParent(); 3747 3748 BasicBlock *IfTrue, *IfFalse; 3749 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3750 if (!DomBI) 3751 return false; 3752 Value *IfCond = DomBI->getCondition(); 3753 // Don't bother if the branch will be constant folded trivially. 3754 if (isa<ConstantInt>(IfCond)) 3755 return false; 3756 3757 BasicBlock *DomBlock = DomBI->getParent(); 3758 SmallVector<BasicBlock *, 2> IfBlocks; 3759 llvm::copy_if( 3760 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3761 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3762 }); 3763 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3764 "Will have either one or two blocks to speculate."); 3765 3766 // If the branch is non-unpredictable, see if we either predictably jump to 3767 // the merge bb (if we have only a single 'then' block), or if we predictably 3768 // jump to one specific 'then' block (if we have two of them). 3769 // It isn't beneficial to speculatively execute the code 3770 // from the block that we know is predictably not entered. 3771 bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable); 3772 if (!IsUnpredictable) { 3773 uint64_t TWeight, FWeight; 3774 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3775 (TWeight + FWeight) != 0) { 3776 BranchProbability BITrueProb = 3777 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3778 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3779 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3780 if (IfBlocks.size() == 1) { 3781 BranchProbability BIBBProb = 3782 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3783 if (BIBBProb >= Likely) 3784 return false; 3785 } else { 3786 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3787 return false; 3788 } 3789 } 3790 } 3791 3792 // Don't try to fold an unreachable block. For example, the phi node itself 3793 // can't be the candidate if-condition for a select that we want to form. 3794 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3795 if (IfCondPhiInst->getParent() == BB) 3796 return false; 3797 3798 // Okay, we found that we can merge this two-entry phi node into a select. 3799 // Doing so would require us to fold *all* two entry phi nodes in this block. 3800 // At some point this becomes non-profitable (particularly if the target 3801 // doesn't support cmov's). Only do this transformation if there are two or 3802 // fewer PHI nodes in this block. 3803 unsigned NumPhis = 0; 3804 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3805 if (NumPhis > 2) 3806 return false; 3807 3808 // Loop over the PHI's seeing if we can promote them all to select 3809 // instructions. While we are at it, keep track of the instructions 3810 // that need to be moved to the dominating block. 3811 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3812 InstructionCost Cost = 0; 3813 InstructionCost Budget = 3814 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3815 if (SpeculateUnpredictables && IsUnpredictable) 3816 Budget += TTI.getBranchMispredictPenalty(); 3817 3818 bool Changed = false; 3819 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3820 PHINode *PN = cast<PHINode>(II++); 3821 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3822 PN->replaceAllUsesWith(V); 3823 PN->eraseFromParent(); 3824 Changed = true; 3825 continue; 3826 } 3827 3828 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI, 3829 AggressiveInsts, Cost, Budget, TTI, AC) || 3830 !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI, 3831 AggressiveInsts, Cost, Budget, TTI, AC)) 3832 return Changed; 3833 } 3834 3835 // If we folded the first phi, PN dangles at this point. Refresh it. If 3836 // we ran out of PHIs then we simplified them all. 3837 PN = dyn_cast<PHINode>(BB->begin()); 3838 if (!PN) 3839 return true; 3840 3841 // Return true if at least one of these is a 'not', and another is either 3842 // a 'not' too, or a constant. 3843 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3844 if (!match(V0, m_Not(m_Value()))) 3845 std::swap(V0, V1); 3846 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3847 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3848 }; 3849 3850 // Don't fold i1 branches on PHIs which contain binary operators or 3851 // (possibly inverted) select form of or/ands, unless one of 3852 // the incoming values is an 'not' and another one is freely invertible. 3853 // These can often be turned into switches and other things. 3854 auto IsBinOpOrAnd = [](Value *V) { 3855 return match( 3856 V, m_CombineOr(m_BinOp(), m_c_Select(m_ImmConstant(), m_Value()))); 3857 }; 3858 if (PN->getType()->isIntegerTy(1) && 3859 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3860 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3861 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3862 PN->getIncomingValue(1))) 3863 return Changed; 3864 3865 // If all PHI nodes are promotable, check to make sure that all instructions 3866 // in the predecessor blocks can be promoted as well. If not, we won't be able 3867 // to get rid of the control flow, so it's not worth promoting to select 3868 // instructions. 3869 for (BasicBlock *IfBlock : IfBlocks) 3870 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3871 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3872 // This is not an aggressive instruction that we can promote. 3873 // Because of this, we won't be able to get rid of the control flow, so 3874 // the xform is not worth it. 3875 return Changed; 3876 } 3877 3878 // If either of the blocks has it's address taken, we can't do this fold. 3879 if (any_of(IfBlocks, 3880 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3881 return Changed; 3882 3883 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond; 3884 if (IsUnpredictable) dbgs() << " (unpredictable)"; 3885 dbgs() << " T: " << IfTrue->getName() 3886 << " F: " << IfFalse->getName() << "\n"); 3887 3888 // If we can still promote the PHI nodes after this gauntlet of tests, 3889 // do all of the PHI's now. 3890 3891 // Move all 'aggressive' instructions, which are defined in the 3892 // conditional parts of the if's up to the dominating block. 3893 for (BasicBlock *IfBlock : IfBlocks) 3894 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3895 3896 IRBuilder<NoFolder> Builder(DomBI); 3897 // Propagate fast-math-flags from phi nodes to replacement selects. 3898 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3899 // Change the PHI node into a select instruction. 3900 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3901 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3902 3903 Value *Sel = Builder.CreateSelectFMF(IfCond, TrueVal, FalseVal, 3904 isa<FPMathOperator>(PN) ? PN : nullptr, 3905 "", DomBI); 3906 PN->replaceAllUsesWith(Sel); 3907 Sel->takeName(PN); 3908 PN->eraseFromParent(); 3909 } 3910 3911 // At this point, all IfBlocks are empty, so our if statement 3912 // has been flattened. Change DomBlock to jump directly to our new block to 3913 // avoid other simplifycfg's kicking in on the diamond. 3914 Builder.CreateBr(BB); 3915 3916 SmallVector<DominatorTree::UpdateType, 3> Updates; 3917 if (DTU) { 3918 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3919 for (auto *Successor : successors(DomBlock)) 3920 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3921 } 3922 3923 DomBI->eraseFromParent(); 3924 if (DTU) 3925 DTU->applyUpdates(Updates); 3926 3927 return true; 3928 } 3929 3930 static Value *createLogicalOp(IRBuilderBase &Builder, 3931 Instruction::BinaryOps Opc, Value *LHS, 3932 Value *RHS, const Twine &Name = "") { 3933 // Try to relax logical op to binary op. 3934 if (impliesPoison(RHS, LHS)) 3935 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3936 if (Opc == Instruction::And) 3937 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3938 if (Opc == Instruction::Or) 3939 return Builder.CreateLogicalOr(LHS, RHS, Name); 3940 llvm_unreachable("Invalid logical opcode"); 3941 } 3942 3943 /// Return true if either PBI or BI has branch weight available, and store 3944 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3945 /// not have branch weight, use 1:1 as its weight. 3946 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3947 uint64_t &PredTrueWeight, 3948 uint64_t &PredFalseWeight, 3949 uint64_t &SuccTrueWeight, 3950 uint64_t &SuccFalseWeight) { 3951 bool PredHasWeights = 3952 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3953 bool SuccHasWeights = 3954 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3955 if (PredHasWeights || SuccHasWeights) { 3956 if (!PredHasWeights) 3957 PredTrueWeight = PredFalseWeight = 1; 3958 if (!SuccHasWeights) 3959 SuccTrueWeight = SuccFalseWeight = 1; 3960 return true; 3961 } else { 3962 return false; 3963 } 3964 } 3965 3966 /// Determine if the two branches share a common destination and deduce a glue 3967 /// that joins the branches' conditions to arrive at the common destination if 3968 /// that would be profitable. 3969 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3970 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3971 const TargetTransformInfo *TTI) { 3972 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3973 "Both blocks must end with a conditional branches."); 3974 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3975 "PredBB must be a predecessor of BB."); 3976 3977 // We have the potential to fold the conditions together, but if the 3978 // predecessor branch is predictable, we may not want to merge them. 3979 uint64_t PTWeight, PFWeight; 3980 BranchProbability PBITrueProb, Likely; 3981 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3982 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3983 (PTWeight + PFWeight) != 0) { 3984 PBITrueProb = 3985 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3986 Likely = TTI->getPredictableBranchThreshold(); 3987 } 3988 3989 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3990 // Speculate the 2nd condition unless the 1st is probably true. 3991 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3992 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3993 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3994 // Speculate the 2nd condition unless the 1st is probably false. 3995 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3996 return {{BI->getSuccessor(1), Instruction::And, false}}; 3997 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3998 // Speculate the 2nd condition unless the 1st is probably true. 3999 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 4000 return {{BI->getSuccessor(1), Instruction::And, true}}; 4001 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4002 // Speculate the 2nd condition unless the 1st is probably false. 4003 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 4004 return {{BI->getSuccessor(0), Instruction::Or, true}}; 4005 } 4006 return std::nullopt; 4007 } 4008 4009 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 4010 DomTreeUpdater *DTU, 4011 MemorySSAUpdater *MSSAU, 4012 const TargetTransformInfo *TTI) { 4013 BasicBlock *BB = BI->getParent(); 4014 BasicBlock *PredBlock = PBI->getParent(); 4015 4016 // Determine if the two branches share a common destination. 4017 BasicBlock *CommonSucc; 4018 Instruction::BinaryOps Opc; 4019 bool InvertPredCond; 4020 std::tie(CommonSucc, Opc, InvertPredCond) = 4021 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 4022 4023 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 4024 4025 IRBuilder<> Builder(PBI); 4026 // The builder is used to create instructions to eliminate the branch in BB. 4027 // If BB's terminator has !annotation metadata, add it to the new 4028 // instructions. 4029 Builder.CollectMetadataToCopy(BB->getTerminator(), 4030 {LLVMContext::MD_annotation}); 4031 4032 // If we need to invert the condition in the pred block to match, do so now. 4033 if (InvertPredCond) { 4034 InvertBranch(PBI, Builder); 4035 } 4036 4037 BasicBlock *UniqueSucc = 4038 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 4039 4040 // Before cloning instructions, notify the successor basic block that it 4041 // is about to have a new predecessor. This will update PHI nodes, 4042 // which will allow us to update live-out uses of bonus instructions. 4043 addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 4044 4045 // Try to update branch weights. 4046 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4047 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4048 SuccTrueWeight, SuccFalseWeight)) { 4049 SmallVector<uint64_t, 8> NewWeights; 4050 4051 if (PBI->getSuccessor(0) == BB) { 4052 // PBI: br i1 %x, BB, FalseDest 4053 // BI: br i1 %y, UniqueSucc, FalseDest 4054 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 4055 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 4056 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 4057 // TrueWeight for PBI * FalseWeight for BI. 4058 // We assume that total weights of a BranchInst can fit into 32 bits. 4059 // Therefore, we will not have overflow using 64-bit arithmetic. 4060 NewWeights.push_back(PredFalseWeight * 4061 (SuccFalseWeight + SuccTrueWeight) + 4062 PredTrueWeight * SuccFalseWeight); 4063 } else { 4064 // PBI: br i1 %x, TrueDest, BB 4065 // BI: br i1 %y, TrueDest, UniqueSucc 4066 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 4067 // FalseWeight for PBI * TrueWeight for BI. 4068 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 4069 PredFalseWeight * SuccTrueWeight); 4070 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 4071 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 4072 } 4073 4074 // Halve the weights if any of them cannot fit in an uint32_t 4075 fitWeights(NewWeights); 4076 4077 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 4078 setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false); 4079 4080 // TODO: If BB is reachable from all paths through PredBlock, then we 4081 // could replace PBI's branch probabilities with BI's. 4082 } else 4083 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 4084 4085 // Now, update the CFG. 4086 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 4087 4088 if (DTU) 4089 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 4090 {DominatorTree::Delete, PredBlock, BB}}); 4091 4092 // If BI was a loop latch, it may have had associated loop metadata. 4093 // We need to copy it to the new latch, that is, PBI. 4094 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 4095 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 4096 4097 ValueToValueMapTy VMap; // maps original values to cloned values 4098 cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 4099 4100 Module *M = BB->getModule(); 4101 4102 if (PredBlock->IsNewDbgInfoFormat) { 4103 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 4104 for (DbgVariableRecord &DVR : 4105 filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) { 4106 RemapDbgRecord(M, &DVR, VMap, 4107 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 4108 } 4109 } 4110 4111 // Now that the Cond was cloned into the predecessor basic block, 4112 // or/and the two conditions together. 4113 Value *BICond = VMap[BI->getCondition()]; 4114 PBI->setCondition( 4115 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 4116 4117 ++NumFoldBranchToCommonDest; 4118 return true; 4119 } 4120 4121 /// Return if an instruction's type or any of its operands' types are a vector 4122 /// type. 4123 static bool isVectorOp(Instruction &I) { 4124 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 4125 return U->getType()->isVectorTy(); 4126 }); 4127 } 4128 4129 /// If this basic block is simple enough, and if a predecessor branches to us 4130 /// and one of our successors, fold the block into the predecessor and use 4131 /// logical operations to pick the right destination. 4132 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 4133 MemorySSAUpdater *MSSAU, 4134 const TargetTransformInfo *TTI, 4135 unsigned BonusInstThreshold) { 4136 // If this block ends with an unconditional branch, 4137 // let speculativelyExecuteBB() deal with it. 4138 if (!BI->isConditional()) 4139 return false; 4140 4141 BasicBlock *BB = BI->getParent(); 4142 TargetTransformInfo::TargetCostKind CostKind = 4143 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 4144 : TargetTransformInfo::TCK_SizeAndLatency; 4145 4146 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4147 4148 if (!Cond || 4149 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 4150 !isa<SelectInst>(Cond)) || 4151 Cond->getParent() != BB || !Cond->hasOneUse()) 4152 return false; 4153 4154 // Finally, don't infinitely unroll conditional loops. 4155 if (is_contained(successors(BB), BB)) 4156 return false; 4157 4158 // With which predecessors will we want to deal with? 4159 SmallVector<BasicBlock *, 8> Preds; 4160 for (BasicBlock *PredBlock : predecessors(BB)) { 4161 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 4162 4163 // Check that we have two conditional branches. If there is a PHI node in 4164 // the common successor, verify that the same value flows in from both 4165 // blocks. 4166 if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI)) 4167 continue; 4168 4169 // Determine if the two branches share a common destination. 4170 BasicBlock *CommonSucc; 4171 Instruction::BinaryOps Opc; 4172 bool InvertPredCond; 4173 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 4174 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 4175 else 4176 continue; 4177 4178 // Check the cost of inserting the necessary logic before performing the 4179 // transformation. 4180 if (TTI) { 4181 Type *Ty = BI->getCondition()->getType(); 4182 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 4183 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 4184 !isa<CmpInst>(PBI->getCondition()))) 4185 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 4186 4187 if (Cost > BranchFoldThreshold) 4188 continue; 4189 } 4190 4191 // Ok, we do want to deal with this predecessor. Record it. 4192 Preds.emplace_back(PredBlock); 4193 } 4194 4195 // If there aren't any predecessors into which we can fold, 4196 // don't bother checking the cost. 4197 if (Preds.empty()) 4198 return false; 4199 4200 // Only allow this transformation if computing the condition doesn't involve 4201 // too many instructions and these involved instructions can be executed 4202 // unconditionally. We denote all involved instructions except the condition 4203 // as "bonus instructions", and only allow this transformation when the 4204 // number of the bonus instructions we'll need to create when cloning into 4205 // each predecessor does not exceed a certain threshold. 4206 unsigned NumBonusInsts = 0; 4207 bool SawVectorOp = false; 4208 const unsigned PredCount = Preds.size(); 4209 for (Instruction &I : *BB) { 4210 // Don't check the branch condition comparison itself. 4211 if (&I == Cond) 4212 continue; 4213 // Ignore dbg intrinsics, and the terminator. 4214 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 4215 continue; 4216 // I must be safe to execute unconditionally. 4217 if (!isSafeToSpeculativelyExecute(&I)) 4218 return false; 4219 SawVectorOp |= isVectorOp(I); 4220 4221 // Account for the cost of duplicating this instruction into each 4222 // predecessor. Ignore free instructions. 4223 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 4224 TargetTransformInfo::TCC_Free) { 4225 NumBonusInsts += PredCount; 4226 4227 // Early exits once we reach the limit. 4228 if (NumBonusInsts > 4229 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 4230 return false; 4231 } 4232 4233 auto IsBCSSAUse = [BB, &I](Use &U) { 4234 auto *UI = cast<Instruction>(U.getUser()); 4235 if (auto *PN = dyn_cast<PHINode>(UI)) 4236 return PN->getIncomingBlock(U) == BB; 4237 return UI->getParent() == BB && I.comesBefore(UI); 4238 }; 4239 4240 // Does this instruction require rewriting of uses? 4241 if (!all_of(I.uses(), IsBCSSAUse)) 4242 return false; 4243 } 4244 if (NumBonusInsts > 4245 BonusInstThreshold * 4246 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 4247 return false; 4248 4249 // Ok, we have the budget. Perform the transformation. 4250 for (BasicBlock *PredBlock : Preds) { 4251 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 4252 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 4253 } 4254 return false; 4255 } 4256 4257 // If there is only one store in BB1 and BB2, return it, otherwise return 4258 // nullptr. 4259 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 4260 StoreInst *S = nullptr; 4261 for (auto *BB : {BB1, BB2}) { 4262 if (!BB) 4263 continue; 4264 for (auto &I : *BB) 4265 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4266 if (S) 4267 // Multiple stores seen. 4268 return nullptr; 4269 else 4270 S = SI; 4271 } 4272 } 4273 return S; 4274 } 4275 4276 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 4277 Value *AlternativeV = nullptr) { 4278 // PHI is going to be a PHI node that allows the value V that is defined in 4279 // BB to be referenced in BB's only successor. 4280 // 4281 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 4282 // doesn't matter to us what the other operand is (it'll never get used). We 4283 // could just create a new PHI with an undef incoming value, but that could 4284 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 4285 // other PHI. So here we directly look for some PHI in BB's successor with V 4286 // as an incoming operand. If we find one, we use it, else we create a new 4287 // one. 4288 // 4289 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 4290 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 4291 // where OtherBB is the single other predecessor of BB's only successor. 4292 PHINode *PHI = nullptr; 4293 BasicBlock *Succ = BB->getSingleSuccessor(); 4294 4295 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 4296 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 4297 PHI = cast<PHINode>(I); 4298 if (!AlternativeV) 4299 break; 4300 4301 assert(Succ->hasNPredecessors(2)); 4302 auto PredI = pred_begin(Succ); 4303 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 4304 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 4305 break; 4306 PHI = nullptr; 4307 } 4308 if (PHI) 4309 return PHI; 4310 4311 // If V is not an instruction defined in BB, just return it. 4312 if (!AlternativeV && 4313 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 4314 return V; 4315 4316 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 4317 PHI->insertBefore(Succ->begin()); 4318 PHI->addIncoming(V, BB); 4319 for (BasicBlock *PredBB : predecessors(Succ)) 4320 if (PredBB != BB) 4321 PHI->addIncoming( 4322 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4323 return PHI; 4324 } 4325 4326 static bool mergeConditionalStoreToAddress( 4327 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4328 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4329 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4330 // For every pointer, there must be exactly two stores, one coming from 4331 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4332 // store (to any address) in PTB,PFB or QTB,QFB. 4333 // FIXME: We could relax this restriction with a bit more work and performance 4334 // testing. 4335 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4336 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4337 if (!PStore || !QStore) 4338 return false; 4339 4340 // Now check the stores are compatible. 4341 if (!QStore->isUnordered() || !PStore->isUnordered() || 4342 PStore->getValueOperand()->getType() != 4343 QStore->getValueOperand()->getType()) 4344 return false; 4345 4346 // Check that sinking the store won't cause program behavior changes. Sinking 4347 // the store out of the Q blocks won't change any behavior as we're sinking 4348 // from a block to its unconditional successor. But we're moving a store from 4349 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4350 // So we need to check that there are no aliasing loads or stores in 4351 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4352 // operations between PStore and the end of its parent block. 4353 // 4354 // The ideal way to do this is to query AliasAnalysis, but we don't 4355 // preserve AA currently so that is dangerous. Be super safe and just 4356 // check there are no other memory operations at all. 4357 for (auto &I : *QFB->getSinglePredecessor()) 4358 if (I.mayReadOrWriteMemory()) 4359 return false; 4360 for (auto &I : *QFB) 4361 if (&I != QStore && I.mayReadOrWriteMemory()) 4362 return false; 4363 if (QTB) 4364 for (auto &I : *QTB) 4365 if (&I != QStore && I.mayReadOrWriteMemory()) 4366 return false; 4367 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4368 I != E; ++I) 4369 if (&*I != PStore && I->mayReadOrWriteMemory()) 4370 return false; 4371 4372 // If we're not in aggressive mode, we only optimize if we have some 4373 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4374 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4375 if (!BB) 4376 return true; 4377 // Heuristic: if the block can be if-converted/phi-folded and the 4378 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4379 // thread this store. 4380 InstructionCost Cost = 0; 4381 InstructionCost Budget = 4382 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4383 for (auto &I : BB->instructionsWithoutDebug(false)) { 4384 // Consider terminator instruction to be free. 4385 if (I.isTerminator()) 4386 continue; 4387 // If this is one the stores that we want to speculate out of this BB, 4388 // then don't count it's cost, consider it to be free. 4389 if (auto *S = dyn_cast<StoreInst>(&I)) 4390 if (llvm::find(FreeStores, S)) 4391 continue; 4392 // Else, we have a white-list of instructions that we are ak speculating. 4393 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4394 return false; // Not in white-list - not worthwhile folding. 4395 // And finally, if this is a non-free instruction that we are okay 4396 // speculating, ensure that we consider the speculation budget. 4397 Cost += 4398 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4399 if (Cost > Budget) 4400 return false; // Eagerly refuse to fold as soon as we're out of budget. 4401 } 4402 assert(Cost <= Budget && 4403 "When we run out of budget we will eagerly return from within the " 4404 "per-instruction loop."); 4405 return true; 4406 }; 4407 4408 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4409 if (!MergeCondStoresAggressively && 4410 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4411 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4412 return false; 4413 4414 // If PostBB has more than two predecessors, we need to split it so we can 4415 // sink the store. 4416 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4417 // We know that QFB's only successor is PostBB. And QFB has a single 4418 // predecessor. If QTB exists, then its only successor is also PostBB. 4419 // If QTB does not exist, then QFB's only predecessor has a conditional 4420 // branch to QFB and PostBB. 4421 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4422 BasicBlock *NewBB = 4423 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4424 if (!NewBB) 4425 return false; 4426 PostBB = NewBB; 4427 } 4428 4429 // OK, we're going to sink the stores to PostBB. The store has to be 4430 // conditional though, so first create the predicate. 4431 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4432 ->getCondition(); 4433 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4434 ->getCondition(); 4435 4436 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4437 PStore->getParent()); 4438 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4439 QStore->getParent(), PPHI); 4440 4441 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4442 IRBuilder<> QB(PostBB, PostBBFirst); 4443 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4444 4445 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4446 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4447 4448 if (InvertPCond) 4449 PPred = QB.CreateNot(PPred); 4450 if (InvertQCond) 4451 QPred = QB.CreateNot(QPred); 4452 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4453 4454 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4455 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4456 /*Unreachable=*/false, 4457 /*BranchWeights=*/nullptr, DTU); 4458 4459 QB.SetInsertPoint(T); 4460 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4461 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4462 // Choose the minimum alignment. If we could prove both stores execute, we 4463 // could use biggest one. In this case, though, we only know that one of the 4464 // stores executes. And we don't know it's safe to take the alignment from a 4465 // store that doesn't execute. 4466 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4467 4468 QStore->eraseFromParent(); 4469 PStore->eraseFromParent(); 4470 4471 return true; 4472 } 4473 4474 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4475 DomTreeUpdater *DTU, const DataLayout &DL, 4476 const TargetTransformInfo &TTI) { 4477 // The intention here is to find diamonds or triangles (see below) where each 4478 // conditional block contains a store to the same address. Both of these 4479 // stores are conditional, so they can't be unconditionally sunk. But it may 4480 // be profitable to speculatively sink the stores into one merged store at the 4481 // end, and predicate the merged store on the union of the two conditions of 4482 // PBI and QBI. 4483 // 4484 // This can reduce the number of stores executed if both of the conditions are 4485 // true, and can allow the blocks to become small enough to be if-converted. 4486 // This optimization will also chain, so that ladders of test-and-set 4487 // sequences can be if-converted away. 4488 // 4489 // We only deal with simple diamonds or triangles: 4490 // 4491 // PBI or PBI or a combination of the two 4492 // / \ | \ 4493 // PTB PFB | PFB 4494 // \ / | / 4495 // QBI QBI 4496 // / \ | \ 4497 // QTB QFB | QFB 4498 // \ / | / 4499 // PostBB PostBB 4500 // 4501 // We model triangles as a type of diamond with a nullptr "true" block. 4502 // Triangles are canonicalized so that the fallthrough edge is represented by 4503 // a true condition, as in the diagram above. 4504 BasicBlock *PTB = PBI->getSuccessor(0); 4505 BasicBlock *PFB = PBI->getSuccessor(1); 4506 BasicBlock *QTB = QBI->getSuccessor(0); 4507 BasicBlock *QFB = QBI->getSuccessor(1); 4508 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4509 4510 // Make sure we have a good guess for PostBB. If QTB's only successor is 4511 // QFB, then QFB is a better PostBB. 4512 if (QTB->getSingleSuccessor() == QFB) 4513 PostBB = QFB; 4514 4515 // If we couldn't find a good PostBB, stop. 4516 if (!PostBB) 4517 return false; 4518 4519 bool InvertPCond = false, InvertQCond = false; 4520 // Canonicalize fallthroughs to the true branches. 4521 if (PFB == QBI->getParent()) { 4522 std::swap(PFB, PTB); 4523 InvertPCond = true; 4524 } 4525 if (QFB == PostBB) { 4526 std::swap(QFB, QTB); 4527 InvertQCond = true; 4528 } 4529 4530 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4531 // and QFB may not. Model fallthroughs as a nullptr block. 4532 if (PTB == QBI->getParent()) 4533 PTB = nullptr; 4534 if (QTB == PostBB) 4535 QTB = nullptr; 4536 4537 // Legality bailouts. We must have at least the non-fallthrough blocks and 4538 // the post-dominating block, and the non-fallthroughs must only have one 4539 // predecessor. 4540 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4541 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4542 }; 4543 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4544 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4545 return false; 4546 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4547 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4548 return false; 4549 if (!QBI->getParent()->hasNUses(2)) 4550 return false; 4551 4552 // OK, this is a sequence of two diamonds or triangles. 4553 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4554 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4555 for (auto *BB : {PTB, PFB}) { 4556 if (!BB) 4557 continue; 4558 for (auto &I : *BB) 4559 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4560 PStoreAddresses.insert(SI->getPointerOperand()); 4561 } 4562 for (auto *BB : {QTB, QFB}) { 4563 if (!BB) 4564 continue; 4565 for (auto &I : *BB) 4566 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4567 QStoreAddresses.insert(SI->getPointerOperand()); 4568 } 4569 4570 set_intersect(PStoreAddresses, QStoreAddresses); 4571 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4572 // clear what it contains. 4573 auto &CommonAddresses = PStoreAddresses; 4574 4575 bool Changed = false; 4576 for (auto *Address : CommonAddresses) 4577 Changed |= 4578 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4579 InvertPCond, InvertQCond, DTU, DL, TTI); 4580 return Changed; 4581 } 4582 4583 /// If the previous block ended with a widenable branch, determine if reusing 4584 /// the target block is profitable and legal. This will have the effect of 4585 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4586 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4587 DomTreeUpdater *DTU) { 4588 // TODO: This can be generalized in two important ways: 4589 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4590 // values from the PBI edge. 4591 // 2) We can sink side effecting instructions into BI's fallthrough 4592 // successor provided they doesn't contribute to computation of 4593 // BI's condition. 4594 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4595 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4596 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4597 !BI->getParent()->getSinglePredecessor()) 4598 return false; 4599 if (!IfFalseBB->phis().empty()) 4600 return false; // TODO 4601 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4602 // may undo the transform done here. 4603 // TODO: There might be a more fine-grained solution to this. 4604 if (!llvm::succ_empty(IfFalseBB)) 4605 return false; 4606 // Use lambda to lazily compute expensive condition after cheap ones. 4607 auto NoSideEffects = [](BasicBlock &BB) { 4608 return llvm::none_of(BB, [](const Instruction &I) { 4609 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4610 }); 4611 }; 4612 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4613 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4614 NoSideEffects(*BI->getParent())) { 4615 auto *OldSuccessor = BI->getSuccessor(1); 4616 OldSuccessor->removePredecessor(BI->getParent()); 4617 BI->setSuccessor(1, IfFalseBB); 4618 if (DTU) 4619 DTU->applyUpdates( 4620 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4621 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4622 return true; 4623 } 4624 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4625 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4626 NoSideEffects(*BI->getParent())) { 4627 auto *OldSuccessor = BI->getSuccessor(0); 4628 OldSuccessor->removePredecessor(BI->getParent()); 4629 BI->setSuccessor(0, IfFalseBB); 4630 if (DTU) 4631 DTU->applyUpdates( 4632 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4633 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4634 return true; 4635 } 4636 return false; 4637 } 4638 4639 /// If we have a conditional branch as a predecessor of another block, 4640 /// this function tries to simplify it. We know 4641 /// that PBI and BI are both conditional branches, and BI is in one of the 4642 /// successor blocks of PBI - PBI branches to BI. 4643 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4644 DomTreeUpdater *DTU, 4645 const DataLayout &DL, 4646 const TargetTransformInfo &TTI) { 4647 assert(PBI->isConditional() && BI->isConditional()); 4648 BasicBlock *BB = BI->getParent(); 4649 4650 // If this block ends with a branch instruction, and if there is a 4651 // predecessor that ends on a branch of the same condition, make 4652 // this conditional branch redundant. 4653 if (PBI->getCondition() == BI->getCondition() && 4654 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4655 // Okay, the outcome of this conditional branch is statically 4656 // knowable. If this block had a single pred, handle specially, otherwise 4657 // foldCondBranchOnValueKnownInPredecessor() will handle it. 4658 if (BB->getSinglePredecessor()) { 4659 // Turn this into a branch on constant. 4660 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4661 BI->setCondition( 4662 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4663 return true; // Nuke the branch on constant. 4664 } 4665 } 4666 4667 // If the previous block ended with a widenable branch, determine if reusing 4668 // the target block is profitable and legal. This will have the effect of 4669 // "widening" PBI, but doesn't require us to reason about hosting safety. 4670 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4671 return true; 4672 4673 // If both branches are conditional and both contain stores to the same 4674 // address, remove the stores from the conditionals and create a conditional 4675 // merged store at the end. 4676 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4677 return true; 4678 4679 // If this is a conditional branch in an empty block, and if any 4680 // predecessors are a conditional branch to one of our destinations, 4681 // fold the conditions into logical ops and one cond br. 4682 4683 // Ignore dbg intrinsics. 4684 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4685 return false; 4686 4687 int PBIOp, BIOp; 4688 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4689 PBIOp = 0; 4690 BIOp = 0; 4691 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4692 PBIOp = 0; 4693 BIOp = 1; 4694 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4695 PBIOp = 1; 4696 BIOp = 0; 4697 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4698 PBIOp = 1; 4699 BIOp = 1; 4700 } else { 4701 return false; 4702 } 4703 4704 // Check to make sure that the other destination of this branch 4705 // isn't BB itself. If so, this is an infinite loop that will 4706 // keep getting unwound. 4707 if (PBI->getSuccessor(PBIOp) == BB) 4708 return false; 4709 4710 // If predecessor's branch probability to BB is too low don't merge branches. 4711 SmallVector<uint32_t, 2> PredWeights; 4712 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4713 extractBranchWeights(*PBI, PredWeights) && 4714 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4715 4716 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4717 PredWeights[PBIOp], 4718 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4719 4720 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4721 if (CommonDestProb >= Likely) 4722 return false; 4723 } 4724 4725 // Do not perform this transformation if it would require 4726 // insertion of a large number of select instructions. For targets 4727 // without predication/cmovs, this is a big pessimization. 4728 4729 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4730 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4731 unsigned NumPhis = 0; 4732 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4733 ++II, ++NumPhis) { 4734 if (NumPhis > 2) // Disable this xform. 4735 return false; 4736 } 4737 4738 // Finally, if everything is ok, fold the branches to logical ops. 4739 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4740 4741 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4742 << "AND: " << *BI->getParent()); 4743 4744 SmallVector<DominatorTree::UpdateType, 5> Updates; 4745 4746 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4747 // branch in it, where one edge (OtherDest) goes back to itself but the other 4748 // exits. We don't *know* that the program avoids the infinite loop 4749 // (even though that seems likely). If we do this xform naively, we'll end up 4750 // recursively unpeeling the loop. Since we know that (after the xform is 4751 // done) that the block *is* infinite if reached, we just make it an obviously 4752 // infinite loop with no cond branch. 4753 if (OtherDest == BB) { 4754 // Insert it at the end of the function, because it's either code, 4755 // or it won't matter if it's hot. :) 4756 BasicBlock *InfLoopBlock = 4757 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4758 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4759 if (DTU) 4760 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4761 OtherDest = InfLoopBlock; 4762 } 4763 4764 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4765 4766 // BI may have other predecessors. Because of this, we leave 4767 // it alone, but modify PBI. 4768 4769 // Make sure we get to CommonDest on True&True directions. 4770 Value *PBICond = PBI->getCondition(); 4771 IRBuilder<NoFolder> Builder(PBI); 4772 if (PBIOp) 4773 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4774 4775 Value *BICond = BI->getCondition(); 4776 if (BIOp) 4777 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4778 4779 // Merge the conditions. 4780 Value *Cond = 4781 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4782 4783 // Modify PBI to branch on the new condition to the new dests. 4784 PBI->setCondition(Cond); 4785 PBI->setSuccessor(0, CommonDest); 4786 PBI->setSuccessor(1, OtherDest); 4787 4788 if (DTU) { 4789 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4790 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4791 4792 DTU->applyUpdates(Updates); 4793 } 4794 4795 // Update branch weight for PBI. 4796 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4797 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4798 bool HasWeights = 4799 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4800 SuccTrueWeight, SuccFalseWeight); 4801 if (HasWeights) { 4802 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4803 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4804 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4805 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4806 // The weight to CommonDest should be PredCommon * SuccTotal + 4807 // PredOther * SuccCommon. 4808 // The weight to OtherDest should be PredOther * SuccOther. 4809 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4810 PredOther * SuccCommon, 4811 PredOther * SuccOther}; 4812 // Halve the weights if any of them cannot fit in an uint32_t 4813 fitWeights(NewWeights); 4814 4815 setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false); 4816 } 4817 4818 // OtherDest may have phi nodes. If so, add an entry from PBI's 4819 // block that are identical to the entries for BI's block. 4820 addPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4821 4822 // We know that the CommonDest already had an edge from PBI to 4823 // it. If it has PHIs though, the PHIs may have different 4824 // entries for BB and PBI's BB. If so, insert a select to make 4825 // them agree. 4826 for (PHINode &PN : CommonDest->phis()) { 4827 Value *BIV = PN.getIncomingValueForBlock(BB); 4828 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4829 Value *PBIV = PN.getIncomingValue(PBBIdx); 4830 if (BIV != PBIV) { 4831 // Insert a select in PBI to pick the right value. 4832 SelectInst *NV = cast<SelectInst>( 4833 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4834 PN.setIncomingValue(PBBIdx, NV); 4835 // Although the select has the same condition as PBI, the original branch 4836 // weights for PBI do not apply to the new select because the select's 4837 // 'logical' edges are incoming edges of the phi that is eliminated, not 4838 // the outgoing edges of PBI. 4839 if (HasWeights) { 4840 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4841 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4842 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4843 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4844 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4845 // The weight to PredOtherDest should be PredOther * SuccCommon. 4846 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4847 PredOther * SuccCommon}; 4848 4849 fitWeights(NewWeights); 4850 4851 setBranchWeights(NV, NewWeights[0], NewWeights[1], 4852 /*IsExpected=*/false); 4853 } 4854 } 4855 } 4856 4857 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4858 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4859 4860 // This basic block is probably dead. We know it has at least 4861 // one fewer predecessor. 4862 return true; 4863 } 4864 4865 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4866 // true or to FalseBB if Cond is false. 4867 // Takes care of updating the successors and removing the old terminator. 4868 // Also makes sure not to introduce new successors by assuming that edges to 4869 // non-successor TrueBBs and FalseBBs aren't reachable. 4870 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm, 4871 Value *Cond, BasicBlock *TrueBB, 4872 BasicBlock *FalseBB, 4873 uint32_t TrueWeight, 4874 uint32_t FalseWeight) { 4875 auto *BB = OldTerm->getParent(); 4876 // Remove any superfluous successor edges from the CFG. 4877 // First, figure out which successors to preserve. 4878 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4879 // successor. 4880 BasicBlock *KeepEdge1 = TrueBB; 4881 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4882 4883 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4884 4885 // Then remove the rest. 4886 for (BasicBlock *Succ : successors(OldTerm)) { 4887 // Make sure only to keep exactly one copy of each edge. 4888 if (Succ == KeepEdge1) 4889 KeepEdge1 = nullptr; 4890 else if (Succ == KeepEdge2) 4891 KeepEdge2 = nullptr; 4892 else { 4893 Succ->removePredecessor(BB, 4894 /*KeepOneInputPHIs=*/true); 4895 4896 if (Succ != TrueBB && Succ != FalseBB) 4897 RemovedSuccessors.insert(Succ); 4898 } 4899 } 4900 4901 IRBuilder<> Builder(OldTerm); 4902 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4903 4904 // Insert an appropriate new terminator. 4905 if (!KeepEdge1 && !KeepEdge2) { 4906 if (TrueBB == FalseBB) { 4907 // We were only looking for one successor, and it was present. 4908 // Create an unconditional branch to it. 4909 Builder.CreateBr(TrueBB); 4910 } else { 4911 // We found both of the successors we were looking for. 4912 // Create a conditional branch sharing the condition of the select. 4913 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4914 if (TrueWeight != FalseWeight) 4915 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 4916 } 4917 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4918 // Neither of the selected blocks were successors, so this 4919 // terminator must be unreachable. 4920 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator()); 4921 } else { 4922 // One of the selected values was a successor, but the other wasn't. 4923 // Insert an unconditional branch to the one that was found; 4924 // the edge to the one that wasn't must be unreachable. 4925 if (!KeepEdge1) { 4926 // Only TrueBB was found. 4927 Builder.CreateBr(TrueBB); 4928 } else { 4929 // Only FalseBB was found. 4930 Builder.CreateBr(FalseBB); 4931 } 4932 } 4933 4934 eraseTerminatorAndDCECond(OldTerm); 4935 4936 if (DTU) { 4937 SmallVector<DominatorTree::UpdateType, 2> Updates; 4938 Updates.reserve(RemovedSuccessors.size()); 4939 for (auto *RemovedSuccessor : RemovedSuccessors) 4940 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4941 DTU->applyUpdates(Updates); 4942 } 4943 4944 return true; 4945 } 4946 4947 // Replaces 4948 // (switch (select cond, X, Y)) on constant X, Y 4949 // with a branch - conditional if X and Y lead to distinct BBs, 4950 // unconditional otherwise. 4951 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI, 4952 SelectInst *Select) { 4953 // Check for constant integer values in the select. 4954 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4955 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4956 if (!TrueVal || !FalseVal) 4957 return false; 4958 4959 // Find the relevant condition and destinations. 4960 Value *Condition = Select->getCondition(); 4961 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4962 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4963 4964 // Get weight for TrueBB and FalseBB. 4965 uint32_t TrueWeight = 0, FalseWeight = 0; 4966 SmallVector<uint64_t, 8> Weights; 4967 bool HasWeights = hasBranchWeightMD(*SI); 4968 if (HasWeights) { 4969 getBranchWeights(SI, Weights); 4970 if (Weights.size() == 1 + SI->getNumCases()) { 4971 TrueWeight = 4972 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4973 FalseWeight = 4974 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4975 } 4976 } 4977 4978 // Perform the actual simplification. 4979 return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4980 FalseWeight); 4981 } 4982 4983 // Replaces 4984 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4985 // blockaddress(@fn, BlockB))) 4986 // with 4987 // (br cond, BlockA, BlockB). 4988 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4989 SelectInst *SI) { 4990 // Check that both operands of the select are block addresses. 4991 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4992 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4993 if (!TBA || !FBA) 4994 return false; 4995 4996 // Extract the actual blocks. 4997 BasicBlock *TrueBB = TBA->getBasicBlock(); 4998 BasicBlock *FalseBB = FBA->getBasicBlock(); 4999 5000 // Perform the actual simplification. 5001 return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 5002 0); 5003 } 5004 5005 /// This is called when we find an icmp instruction 5006 /// (a seteq/setne with a constant) as the only instruction in a 5007 /// block that ends with an uncond branch. We are looking for a very specific 5008 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 5009 /// this case, we merge the first two "or's of icmp" into a switch, but then the 5010 /// default value goes to an uncond block with a seteq in it, we get something 5011 /// like: 5012 /// 5013 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 5014 /// DEFAULT: 5015 /// %tmp = icmp eq i8 %A, 92 5016 /// br label %end 5017 /// end: 5018 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 5019 /// 5020 /// We prefer to split the edge to 'end' so that there is a true/false entry to 5021 /// the PHI, merging the third icmp into the switch. 5022 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 5023 ICmpInst *ICI, IRBuilder<> &Builder) { 5024 BasicBlock *BB = ICI->getParent(); 5025 5026 // If the block has any PHIs in it or the icmp has multiple uses, it is too 5027 // complex. 5028 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 5029 return false; 5030 5031 Value *V = ICI->getOperand(0); 5032 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 5033 5034 // The pattern we're looking for is where our only predecessor is a switch on 5035 // 'V' and this block is the default case for the switch. In this case we can 5036 // fold the compared value into the switch to simplify things. 5037 BasicBlock *Pred = BB->getSinglePredecessor(); 5038 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 5039 return false; 5040 5041 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 5042 if (SI->getCondition() != V) 5043 return false; 5044 5045 // If BB is reachable on a non-default case, then we simply know the value of 5046 // V in this block. Substitute it and constant fold the icmp instruction 5047 // away. 5048 if (SI->getDefaultDest() != BB) { 5049 ConstantInt *VVal = SI->findCaseDest(BB); 5050 assert(VVal && "Should have a unique destination value"); 5051 ICI->setOperand(0, VVal); 5052 5053 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 5054 ICI->replaceAllUsesWith(V); 5055 ICI->eraseFromParent(); 5056 } 5057 // BB is now empty, so it is likely to simplify away. 5058 return requestResimplify(); 5059 } 5060 5061 // Ok, the block is reachable from the default dest. If the constant we're 5062 // comparing exists in one of the other edges, then we can constant fold ICI 5063 // and zap it. 5064 if (SI->findCaseValue(Cst) != SI->case_default()) { 5065 Value *V; 5066 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5067 V = ConstantInt::getFalse(BB->getContext()); 5068 else 5069 V = ConstantInt::getTrue(BB->getContext()); 5070 5071 ICI->replaceAllUsesWith(V); 5072 ICI->eraseFromParent(); 5073 // BB is now empty, so it is likely to simplify away. 5074 return requestResimplify(); 5075 } 5076 5077 // The use of the icmp has to be in the 'end' block, by the only PHI node in 5078 // the block. 5079 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 5080 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 5081 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 5082 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 5083 return false; 5084 5085 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 5086 // true in the PHI. 5087 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 5088 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 5089 5090 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5091 std::swap(DefaultCst, NewCst); 5092 5093 // Replace ICI (which is used by the PHI for the default value) with true or 5094 // false depending on if it is EQ or NE. 5095 ICI->replaceAllUsesWith(DefaultCst); 5096 ICI->eraseFromParent(); 5097 5098 SmallVector<DominatorTree::UpdateType, 2> Updates; 5099 5100 // Okay, the switch goes to this block on a default value. Add an edge from 5101 // the switch to the merge point on the compared value. 5102 BasicBlock *NewBB = 5103 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 5104 { 5105 SwitchInstProfUpdateWrapper SIW(*SI); 5106 auto W0 = SIW.getSuccessorWeight(0); 5107 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 5108 if (W0) { 5109 NewW = ((uint64_t(*W0) + 1) >> 1); 5110 SIW.setSuccessorWeight(0, *NewW); 5111 } 5112 SIW.addCase(Cst, NewBB, NewW); 5113 if (DTU) 5114 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 5115 } 5116 5117 // NewBB branches to the phi block, add the uncond branch and the phi entry. 5118 Builder.SetInsertPoint(NewBB); 5119 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 5120 Builder.CreateBr(SuccBlock); 5121 PHIUse->addIncoming(NewCst, NewBB); 5122 if (DTU) { 5123 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 5124 DTU->applyUpdates(Updates); 5125 } 5126 return true; 5127 } 5128 5129 /// The specified branch is a conditional branch. 5130 /// Check to see if it is branching on an or/and chain of icmp instructions, and 5131 /// fold it into a switch instruction if so. 5132 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI, 5133 IRBuilder<> &Builder, 5134 const DataLayout &DL) { 5135 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 5136 if (!Cond) 5137 return false; 5138 5139 // Change br (X == 0 | X == 1), T, F into a switch instruction. 5140 // If this is a bunch of seteq's or'd together, or if it's a bunch of 5141 // 'setne's and'ed together, collect them. 5142 5143 // Try to gather values from a chain of and/or to be turned into a switch 5144 ConstantComparesGatherer ConstantCompare(Cond, DL); 5145 // Unpack the result 5146 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 5147 Value *CompVal = ConstantCompare.CompValue; 5148 unsigned UsedICmps = ConstantCompare.UsedICmps; 5149 Value *ExtraCase = ConstantCompare.Extra; 5150 5151 // If we didn't have a multiply compared value, fail. 5152 if (!CompVal) 5153 return false; 5154 5155 // Avoid turning single icmps into a switch. 5156 if (UsedICmps <= 1) 5157 return false; 5158 5159 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 5160 5161 // There might be duplicate constants in the list, which the switch 5162 // instruction can't handle, remove them now. 5163 array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate); 5164 Values.erase(llvm::unique(Values), Values.end()); 5165 5166 // If Extra was used, we require at least two switch values to do the 5167 // transformation. A switch with one value is just a conditional branch. 5168 if (ExtraCase && Values.size() < 2) 5169 return false; 5170 5171 // TODO: Preserve branch weight metadata, similarly to how 5172 // foldValueComparisonIntoPredecessors preserves it. 5173 5174 // Figure out which block is which destination. 5175 BasicBlock *DefaultBB = BI->getSuccessor(1); 5176 BasicBlock *EdgeBB = BI->getSuccessor(0); 5177 if (!TrueWhenEqual) 5178 std::swap(DefaultBB, EdgeBB); 5179 5180 BasicBlock *BB = BI->getParent(); 5181 5182 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 5183 << " cases into SWITCH. BB is:\n" 5184 << *BB); 5185 5186 SmallVector<DominatorTree::UpdateType, 2> Updates; 5187 5188 // If there are any extra values that couldn't be folded into the switch 5189 // then we evaluate them with an explicit branch first. Split the block 5190 // right before the condbr to handle it. 5191 if (ExtraCase) { 5192 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 5193 /*MSSAU=*/nullptr, "switch.early.test"); 5194 5195 // Remove the uncond branch added to the old block. 5196 Instruction *OldTI = BB->getTerminator(); 5197 Builder.SetInsertPoint(OldTI); 5198 5199 // There can be an unintended UB if extra values are Poison. Before the 5200 // transformation, extra values may not be evaluated according to the 5201 // condition, and it will not raise UB. But after transformation, we are 5202 // evaluating extra values before checking the condition, and it will raise 5203 // UB. It can be solved by adding freeze instruction to extra values. 5204 AssumptionCache *AC = Options.AC; 5205 5206 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 5207 ExtraCase = Builder.CreateFreeze(ExtraCase); 5208 5209 if (TrueWhenEqual) 5210 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 5211 else 5212 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 5213 5214 OldTI->eraseFromParent(); 5215 5216 if (DTU) 5217 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 5218 5219 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 5220 // for the edge we just added. 5221 addPredecessorToBlock(EdgeBB, BB, NewBB); 5222 5223 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 5224 << "\nEXTRABB = " << *BB); 5225 BB = NewBB; 5226 } 5227 5228 Builder.SetInsertPoint(BI); 5229 // Convert pointer to int before we switch. 5230 if (CompVal->getType()->isPointerTy()) { 5231 CompVal = Builder.CreatePtrToInt( 5232 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 5233 } 5234 5235 // Create the new switch instruction now. 5236 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 5237 5238 // Add all of the 'cases' to the switch instruction. 5239 for (unsigned i = 0, e = Values.size(); i != e; ++i) 5240 New->addCase(Values[i], EdgeBB); 5241 5242 // We added edges from PI to the EdgeBB. As such, if there were any 5243 // PHI nodes in EdgeBB, they need entries to be added corresponding to 5244 // the number of edges added. 5245 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 5246 PHINode *PN = cast<PHINode>(BBI); 5247 Value *InVal = PN->getIncomingValueForBlock(BB); 5248 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 5249 PN->addIncoming(InVal, BB); 5250 } 5251 5252 // Erase the old branch instruction. 5253 eraseTerminatorAndDCECond(BI); 5254 if (DTU) 5255 DTU->applyUpdates(Updates); 5256 5257 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 5258 return true; 5259 } 5260 5261 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 5262 if (isa<PHINode>(RI->getValue())) 5263 return simplifyCommonResume(RI); 5264 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 5265 RI->getValue() == RI->getParent()->getFirstNonPHI()) 5266 // The resume must unwind the exception that caused control to branch here. 5267 return simplifySingleResume(RI); 5268 5269 return false; 5270 } 5271 5272 // Check if cleanup block is empty 5273 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 5274 for (Instruction &I : R) { 5275 auto *II = dyn_cast<IntrinsicInst>(&I); 5276 if (!II) 5277 return false; 5278 5279 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 5280 switch (IntrinsicID) { 5281 case Intrinsic::dbg_declare: 5282 case Intrinsic::dbg_value: 5283 case Intrinsic::dbg_label: 5284 case Intrinsic::lifetime_end: 5285 break; 5286 default: 5287 return false; 5288 } 5289 } 5290 return true; 5291 } 5292 5293 // Simplify resume that is shared by several landing pads (phi of landing pad). 5294 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 5295 BasicBlock *BB = RI->getParent(); 5296 5297 // Check that there are no other instructions except for debug and lifetime 5298 // intrinsics between the phi's and resume instruction. 5299 if (!isCleanupBlockEmpty( 5300 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 5301 return false; 5302 5303 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 5304 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 5305 5306 // Check incoming blocks to see if any of them are trivial. 5307 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 5308 Idx++) { 5309 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 5310 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 5311 5312 // If the block has other successors, we can not delete it because 5313 // it has other dependents. 5314 if (IncomingBB->getUniqueSuccessor() != BB) 5315 continue; 5316 5317 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 5318 // Not the landing pad that caused the control to branch here. 5319 if (IncomingValue != LandingPad) 5320 continue; 5321 5322 if (isCleanupBlockEmpty( 5323 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5324 TrivialUnwindBlocks.insert(IncomingBB); 5325 } 5326 5327 // If no trivial unwind blocks, don't do any simplifications. 5328 if (TrivialUnwindBlocks.empty()) 5329 return false; 5330 5331 // Turn all invokes that unwind here into calls. 5332 for (auto *TrivialBB : TrivialUnwindBlocks) { 5333 // Blocks that will be simplified should be removed from the phi node. 5334 // Note there could be multiple edges to the resume block, and we need 5335 // to remove them all. 5336 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5337 BB->removePredecessor(TrivialBB, true); 5338 5339 for (BasicBlock *Pred : 5340 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5341 removeUnwindEdge(Pred, DTU); 5342 ++NumInvokes; 5343 } 5344 5345 // In each SimplifyCFG run, only the current processed block can be erased. 5346 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5347 // of erasing TrivialBB, we only remove the branch to the common resume 5348 // block so that we can later erase the resume block since it has no 5349 // predecessors. 5350 TrivialBB->getTerminator()->eraseFromParent(); 5351 new UnreachableInst(RI->getContext(), TrivialBB); 5352 if (DTU) 5353 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5354 } 5355 5356 // Delete the resume block if all its predecessors have been removed. 5357 if (pred_empty(BB)) 5358 DeleteDeadBlock(BB, DTU); 5359 5360 return !TrivialUnwindBlocks.empty(); 5361 } 5362 5363 // Simplify resume that is only used by a single (non-phi) landing pad. 5364 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5365 BasicBlock *BB = RI->getParent(); 5366 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 5367 assert(RI->getValue() == LPInst && 5368 "Resume must unwind the exception that caused control to here"); 5369 5370 // Check that there are no other instructions except for debug intrinsics. 5371 if (!isCleanupBlockEmpty( 5372 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5373 return false; 5374 5375 // Turn all invokes that unwind here into calls and delete the basic block. 5376 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5377 removeUnwindEdge(Pred, DTU); 5378 ++NumInvokes; 5379 } 5380 5381 // The landingpad is now unreachable. Zap it. 5382 DeleteDeadBlock(BB, DTU); 5383 return true; 5384 } 5385 5386 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5387 // If this is a trivial cleanup pad that executes no instructions, it can be 5388 // eliminated. If the cleanup pad continues to the caller, any predecessor 5389 // that is an EH pad will be updated to continue to the caller and any 5390 // predecessor that terminates with an invoke instruction will have its invoke 5391 // instruction converted to a call instruction. If the cleanup pad being 5392 // simplified does not continue to the caller, each predecessor will be 5393 // updated to continue to the unwind destination of the cleanup pad being 5394 // simplified. 5395 BasicBlock *BB = RI->getParent(); 5396 CleanupPadInst *CPInst = RI->getCleanupPad(); 5397 if (CPInst->getParent() != BB) 5398 // This isn't an empty cleanup. 5399 return false; 5400 5401 // We cannot kill the pad if it has multiple uses. This typically arises 5402 // from unreachable basic blocks. 5403 if (!CPInst->hasOneUse()) 5404 return false; 5405 5406 // Check that there are no other instructions except for benign intrinsics. 5407 if (!isCleanupBlockEmpty( 5408 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5409 return false; 5410 5411 // If the cleanup return we are simplifying unwinds to the caller, this will 5412 // set UnwindDest to nullptr. 5413 BasicBlock *UnwindDest = RI->getUnwindDest(); 5414 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 5415 5416 // We're about to remove BB from the control flow. Before we do, sink any 5417 // PHINodes into the unwind destination. Doing this before changing the 5418 // control flow avoids some potentially slow checks, since we can currently 5419 // be certain that UnwindDest and BB have no common predecessors (since they 5420 // are both EH pads). 5421 if (UnwindDest) { 5422 // First, go through the PHI nodes in UnwindDest and update any nodes that 5423 // reference the block we are removing 5424 for (PHINode &DestPN : UnwindDest->phis()) { 5425 int Idx = DestPN.getBasicBlockIndex(BB); 5426 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5427 assert(Idx != -1); 5428 // This PHI node has an incoming value that corresponds to a control 5429 // path through the cleanup pad we are removing. If the incoming 5430 // value is in the cleanup pad, it must be a PHINode (because we 5431 // verified above that the block is otherwise empty). Otherwise, the 5432 // value is either a constant or a value that dominates the cleanup 5433 // pad being removed. 5434 // 5435 // Because BB and UnwindDest are both EH pads, all of their 5436 // predecessors must unwind to these blocks, and since no instruction 5437 // can have multiple unwind destinations, there will be no overlap in 5438 // incoming blocks between SrcPN and DestPN. 5439 Value *SrcVal = DestPN.getIncomingValue(Idx); 5440 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5441 5442 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5443 for (auto *Pred : predecessors(BB)) { 5444 Value *Incoming = 5445 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5446 DestPN.addIncoming(Incoming, Pred); 5447 } 5448 } 5449 5450 // Sink any remaining PHI nodes directly into UnwindDest. 5451 Instruction *InsertPt = DestEHPad; 5452 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5453 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5454 // If the PHI node has no uses or all of its uses are in this basic 5455 // block (meaning they are debug or lifetime intrinsics), just leave 5456 // it. It will be erased when we erase BB below. 5457 continue; 5458 5459 // Otherwise, sink this PHI node into UnwindDest. 5460 // Any predecessors to UnwindDest which are not already represented 5461 // must be back edges which inherit the value from the path through 5462 // BB. In this case, the PHI value must reference itself. 5463 for (auto *pred : predecessors(UnwindDest)) 5464 if (pred != BB) 5465 PN.addIncoming(&PN, pred); 5466 PN.moveBefore(InsertPt); 5467 // Also, add a dummy incoming value for the original BB itself, 5468 // so that the PHI is well-formed until we drop said predecessor. 5469 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5470 } 5471 } 5472 5473 std::vector<DominatorTree::UpdateType> Updates; 5474 5475 // We use make_early_inc_range here because we will remove all predecessors. 5476 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5477 if (UnwindDest == nullptr) { 5478 if (DTU) { 5479 DTU->applyUpdates(Updates); 5480 Updates.clear(); 5481 } 5482 removeUnwindEdge(PredBB, DTU); 5483 ++NumInvokes; 5484 } else { 5485 BB->removePredecessor(PredBB); 5486 Instruction *TI = PredBB->getTerminator(); 5487 TI->replaceUsesOfWith(BB, UnwindDest); 5488 if (DTU) { 5489 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5490 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5491 } 5492 } 5493 } 5494 5495 if (DTU) 5496 DTU->applyUpdates(Updates); 5497 5498 DeleteDeadBlock(BB, DTU); 5499 5500 return true; 5501 } 5502 5503 // Try to merge two cleanuppads together. 5504 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5505 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5506 // with. 5507 BasicBlock *UnwindDest = RI->getUnwindDest(); 5508 if (!UnwindDest) 5509 return false; 5510 5511 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5512 // be safe to merge without code duplication. 5513 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5514 return false; 5515 5516 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5517 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5518 if (!SuccessorCleanupPad) 5519 return false; 5520 5521 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5522 // Replace any uses of the successor cleanupad with the predecessor pad 5523 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5524 // funclet bundle operands. 5525 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5526 // Remove the old cleanuppad. 5527 SuccessorCleanupPad->eraseFromParent(); 5528 // Now, we simply replace the cleanupret with a branch to the unwind 5529 // destination. 5530 BranchInst::Create(UnwindDest, RI->getParent()); 5531 RI->eraseFromParent(); 5532 5533 return true; 5534 } 5535 5536 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5537 // It is possible to transiantly have an undef cleanuppad operand because we 5538 // have deleted some, but not all, dead blocks. 5539 // Eventually, this block will be deleted. 5540 if (isa<UndefValue>(RI->getOperand(0))) 5541 return false; 5542 5543 if (mergeCleanupPad(RI)) 5544 return true; 5545 5546 if (removeEmptyCleanup(RI, DTU)) 5547 return true; 5548 5549 return false; 5550 } 5551 5552 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5553 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5554 BasicBlock *BB = UI->getParent(); 5555 5556 bool Changed = false; 5557 5558 // Ensure that any debug-info records that used to occur after the Unreachable 5559 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5560 // the block. 5561 BB->flushTerminatorDbgRecords(); 5562 5563 // Debug-info records on the unreachable inst itself should be deleted, as 5564 // below we delete everything past the final executable instruction. 5565 UI->dropDbgRecords(); 5566 5567 // If there are any instructions immediately before the unreachable that can 5568 // be removed, do so. 5569 while (UI->getIterator() != BB->begin()) { 5570 BasicBlock::iterator BBI = UI->getIterator(); 5571 --BBI; 5572 5573 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5574 break; // Can not drop any more instructions. We're done here. 5575 // Otherwise, this instruction can be freely erased, 5576 // even if it is not side-effect free. 5577 5578 // Note that deleting EH's here is in fact okay, although it involves a bit 5579 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5580 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5581 // and we can therefore guarantee this block will be erased. 5582 5583 // If we're deleting this, we're deleting any subsequent debug info, so 5584 // delete DbgRecords. 5585 BBI->dropDbgRecords(); 5586 5587 // Delete this instruction (any uses are guaranteed to be dead) 5588 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5589 BBI->eraseFromParent(); 5590 Changed = true; 5591 } 5592 5593 // If the unreachable instruction is the first in the block, take a gander 5594 // at all of the predecessors of this instruction, and simplify them. 5595 if (&BB->front() != UI) 5596 return Changed; 5597 5598 std::vector<DominatorTree::UpdateType> Updates; 5599 5600 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5601 for (BasicBlock *Predecessor : Preds) { 5602 Instruction *TI = Predecessor->getTerminator(); 5603 IRBuilder<> Builder(TI); 5604 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5605 // We could either have a proper unconditional branch, 5606 // or a degenerate conditional branch with matching destinations. 5607 if (all_of(BI->successors(), 5608 [BB](auto *Successor) { return Successor == BB; })) { 5609 new UnreachableInst(TI->getContext(), TI->getIterator()); 5610 TI->eraseFromParent(); 5611 Changed = true; 5612 } else { 5613 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5614 Value* Cond = BI->getCondition(); 5615 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5616 "The destinations are guaranteed to be different here."); 5617 CallInst *Assumption; 5618 if (BI->getSuccessor(0) == BB) { 5619 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5620 Builder.CreateBr(BI->getSuccessor(1)); 5621 } else { 5622 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5623 Assumption = Builder.CreateAssumption(Cond); 5624 Builder.CreateBr(BI->getSuccessor(0)); 5625 } 5626 if (Options.AC) 5627 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5628 5629 eraseTerminatorAndDCECond(BI); 5630 Changed = true; 5631 } 5632 if (DTU) 5633 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5634 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5635 SwitchInstProfUpdateWrapper SU(*SI); 5636 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5637 if (i->getCaseSuccessor() != BB) { 5638 ++i; 5639 continue; 5640 } 5641 BB->removePredecessor(SU->getParent()); 5642 i = SU.removeCase(i); 5643 e = SU->case_end(); 5644 Changed = true; 5645 } 5646 // Note that the default destination can't be removed! 5647 if (DTU && SI->getDefaultDest() != BB) 5648 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5649 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5650 if (II->getUnwindDest() == BB) { 5651 if (DTU) { 5652 DTU->applyUpdates(Updates); 5653 Updates.clear(); 5654 } 5655 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5656 if (!CI->doesNotThrow()) 5657 CI->setDoesNotThrow(); 5658 Changed = true; 5659 } 5660 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5661 if (CSI->getUnwindDest() == BB) { 5662 if (DTU) { 5663 DTU->applyUpdates(Updates); 5664 Updates.clear(); 5665 } 5666 removeUnwindEdge(TI->getParent(), DTU); 5667 Changed = true; 5668 continue; 5669 } 5670 5671 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5672 E = CSI->handler_end(); 5673 I != E; ++I) { 5674 if (*I == BB) { 5675 CSI->removeHandler(I); 5676 --I; 5677 --E; 5678 Changed = true; 5679 } 5680 } 5681 if (DTU) 5682 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5683 if (CSI->getNumHandlers() == 0) { 5684 if (CSI->hasUnwindDest()) { 5685 // Redirect all predecessors of the block containing CatchSwitchInst 5686 // to instead branch to the CatchSwitchInst's unwind destination. 5687 if (DTU) { 5688 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5689 Updates.push_back({DominatorTree::Insert, 5690 PredecessorOfPredecessor, 5691 CSI->getUnwindDest()}); 5692 Updates.push_back({DominatorTree::Delete, 5693 PredecessorOfPredecessor, Predecessor}); 5694 } 5695 } 5696 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5697 } else { 5698 // Rewrite all preds to unwind to caller (or from invoke to call). 5699 if (DTU) { 5700 DTU->applyUpdates(Updates); 5701 Updates.clear(); 5702 } 5703 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5704 for (BasicBlock *EHPred : EHPreds) 5705 removeUnwindEdge(EHPred, DTU); 5706 } 5707 // The catchswitch is no longer reachable. 5708 new UnreachableInst(CSI->getContext(), CSI->getIterator()); 5709 CSI->eraseFromParent(); 5710 Changed = true; 5711 } 5712 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5713 (void)CRI; 5714 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5715 "Expected to always have an unwind to BB."); 5716 if (DTU) 5717 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5718 new UnreachableInst(TI->getContext(), TI->getIterator()); 5719 TI->eraseFromParent(); 5720 Changed = true; 5721 } 5722 } 5723 5724 if (DTU) 5725 DTU->applyUpdates(Updates); 5726 5727 // If this block is now dead, remove it. 5728 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5729 DeleteDeadBlock(BB, DTU); 5730 return true; 5731 } 5732 5733 return Changed; 5734 } 5735 5736 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5737 assert(Cases.size() >= 1); 5738 5739 array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate); 5740 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5741 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5742 return false; 5743 } 5744 return true; 5745 } 5746 5747 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5748 DomTreeUpdater *DTU, 5749 bool RemoveOrigDefaultBlock = true) { 5750 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5751 auto *BB = Switch->getParent(); 5752 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5753 if (RemoveOrigDefaultBlock) 5754 OrigDefaultBlock->removePredecessor(BB); 5755 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5756 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5757 OrigDefaultBlock); 5758 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5759 Switch->setDefaultDest(&*NewDefaultBlock); 5760 if (DTU) { 5761 SmallVector<DominatorTree::UpdateType, 2> Updates; 5762 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5763 if (RemoveOrigDefaultBlock && 5764 !is_contained(successors(BB), OrigDefaultBlock)) 5765 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5766 DTU->applyUpdates(Updates); 5767 } 5768 } 5769 5770 /// Turn a switch into an integer range comparison and branch. 5771 /// Switches with more than 2 destinations are ignored. 5772 /// Switches with 1 destination are also ignored. 5773 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI, 5774 IRBuilder<> &Builder) { 5775 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5776 5777 bool HasDefault = 5778 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5779 5780 auto *BB = SI->getParent(); 5781 5782 // Partition the cases into two sets with different destinations. 5783 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5784 BasicBlock *DestB = nullptr; 5785 SmallVector<ConstantInt *, 16> CasesA; 5786 SmallVector<ConstantInt *, 16> CasesB; 5787 5788 for (auto Case : SI->cases()) { 5789 BasicBlock *Dest = Case.getCaseSuccessor(); 5790 if (!DestA) 5791 DestA = Dest; 5792 if (Dest == DestA) { 5793 CasesA.push_back(Case.getCaseValue()); 5794 continue; 5795 } 5796 if (!DestB) 5797 DestB = Dest; 5798 if (Dest == DestB) { 5799 CasesB.push_back(Case.getCaseValue()); 5800 continue; 5801 } 5802 return false; // More than two destinations. 5803 } 5804 if (!DestB) 5805 return false; // All destinations are the same and the default is unreachable 5806 5807 assert(DestA && DestB && 5808 "Single-destination switch should have been folded."); 5809 assert(DestA != DestB); 5810 assert(DestB != SI->getDefaultDest()); 5811 assert(!CasesB.empty() && "There must be non-default cases."); 5812 assert(!CasesA.empty() || HasDefault); 5813 5814 // Figure out if one of the sets of cases form a contiguous range. 5815 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5816 BasicBlock *ContiguousDest = nullptr; 5817 BasicBlock *OtherDest = nullptr; 5818 if (!CasesA.empty() && casesAreContiguous(CasesA)) { 5819 ContiguousCases = &CasesA; 5820 ContiguousDest = DestA; 5821 OtherDest = DestB; 5822 } else if (casesAreContiguous(CasesB)) { 5823 ContiguousCases = &CasesB; 5824 ContiguousDest = DestB; 5825 OtherDest = DestA; 5826 } else 5827 return false; 5828 5829 // Start building the compare and branch. 5830 5831 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5832 Constant *NumCases = 5833 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5834 5835 Value *Sub = SI->getCondition(); 5836 if (!Offset->isNullValue()) 5837 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5838 5839 Value *Cmp; 5840 // If NumCases overflowed, then all possible values jump to the successor. 5841 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5842 Cmp = ConstantInt::getTrue(SI->getContext()); 5843 else 5844 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5845 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5846 5847 // Update weight for the newly-created conditional branch. 5848 if (hasBranchWeightMD(*SI)) { 5849 SmallVector<uint64_t, 8> Weights; 5850 getBranchWeights(SI, Weights); 5851 if (Weights.size() == 1 + SI->getNumCases()) { 5852 uint64_t TrueWeight = 0; 5853 uint64_t FalseWeight = 0; 5854 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5855 if (SI->getSuccessor(I) == ContiguousDest) 5856 TrueWeight += Weights[I]; 5857 else 5858 FalseWeight += Weights[I]; 5859 } 5860 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5861 TrueWeight /= 2; 5862 FalseWeight /= 2; 5863 } 5864 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 5865 } 5866 } 5867 5868 // Prune obsolete incoming values off the successors' PHI nodes. 5869 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5870 unsigned PreviousEdges = ContiguousCases->size(); 5871 if (ContiguousDest == SI->getDefaultDest()) 5872 ++PreviousEdges; 5873 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5874 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5875 } 5876 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5877 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5878 if (OtherDest == SI->getDefaultDest()) 5879 ++PreviousEdges; 5880 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5881 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5882 } 5883 5884 // Clean up the default block - it may have phis or other instructions before 5885 // the unreachable terminator. 5886 if (!HasDefault) 5887 createUnreachableSwitchDefault(SI, DTU); 5888 5889 auto *UnreachableDefault = SI->getDefaultDest(); 5890 5891 // Drop the switch. 5892 SI->eraseFromParent(); 5893 5894 if (!HasDefault && DTU) 5895 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5896 5897 return true; 5898 } 5899 5900 /// Compute masked bits for the condition of a switch 5901 /// and use it to remove dead cases. 5902 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5903 AssumptionCache *AC, 5904 const DataLayout &DL) { 5905 Value *Cond = SI->getCondition(); 5906 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5907 5908 // We can also eliminate cases by determining that their values are outside of 5909 // the limited range of the condition based on how many significant (non-sign) 5910 // bits are in the condition value. 5911 unsigned MaxSignificantBitsInCond = 5912 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5913 5914 // Gather dead cases. 5915 SmallVector<ConstantInt *, 8> DeadCases; 5916 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5917 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5918 for (const auto &Case : SI->cases()) { 5919 auto *Successor = Case.getCaseSuccessor(); 5920 if (DTU) { 5921 if (!NumPerSuccessorCases.count(Successor)) 5922 UniqueSuccessors.push_back(Successor); 5923 ++NumPerSuccessorCases[Successor]; 5924 } 5925 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5926 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5927 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5928 DeadCases.push_back(Case.getCaseValue()); 5929 if (DTU) 5930 --NumPerSuccessorCases[Successor]; 5931 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5932 << " is dead.\n"); 5933 } 5934 } 5935 5936 // If we can prove that the cases must cover all possible values, the 5937 // default destination becomes dead and we can remove it. If we know some 5938 // of the bits in the value, we can use that to more precisely compute the 5939 // number of possible unique case values. 5940 bool HasDefault = 5941 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5942 const unsigned NumUnknownBits = 5943 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5944 assert(NumUnknownBits <= Known.getBitWidth()); 5945 if (HasDefault && DeadCases.empty() && 5946 NumUnknownBits < 64 /* avoid overflow */) { 5947 uint64_t AllNumCases = 1ULL << NumUnknownBits; 5948 if (SI->getNumCases() == AllNumCases) { 5949 createUnreachableSwitchDefault(SI, DTU); 5950 return true; 5951 } 5952 // When only one case value is missing, replace default with that case. 5953 // Eliminating the default branch will provide more opportunities for 5954 // optimization, such as lookup tables. 5955 if (SI->getNumCases() == AllNumCases - 1) { 5956 assert(NumUnknownBits > 1 && "Should be canonicalized to a branch"); 5957 IntegerType *CondTy = cast<IntegerType>(Cond->getType()); 5958 if (CondTy->getIntegerBitWidth() > 64 || 5959 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5960 return false; 5961 5962 uint64_t MissingCaseVal = 0; 5963 for (const auto &Case : SI->cases()) 5964 MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue(); 5965 auto *MissingCase = 5966 cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal)); 5967 SwitchInstProfUpdateWrapper SIW(*SI); 5968 SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0)); 5969 createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false); 5970 SIW.setSuccessorWeight(0, 0); 5971 return true; 5972 } 5973 } 5974 5975 if (DeadCases.empty()) 5976 return false; 5977 5978 SwitchInstProfUpdateWrapper SIW(*SI); 5979 for (ConstantInt *DeadCase : DeadCases) { 5980 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5981 assert(CaseI != SI->case_default() && 5982 "Case was not found. Probably mistake in DeadCases forming."); 5983 // Prune unused values from PHI nodes. 5984 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5985 SIW.removeCase(CaseI); 5986 } 5987 5988 if (DTU) { 5989 std::vector<DominatorTree::UpdateType> Updates; 5990 for (auto *Successor : UniqueSuccessors) 5991 if (NumPerSuccessorCases[Successor] == 0) 5992 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5993 DTU->applyUpdates(Updates); 5994 } 5995 5996 return true; 5997 } 5998 5999 /// If BB would be eligible for simplification by 6000 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 6001 /// by an unconditional branch), look at the phi node for BB in the successor 6002 /// block and see if the incoming value is equal to CaseValue. If so, return 6003 /// the phi node, and set PhiIndex to BB's index in the phi node. 6004 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue, 6005 BasicBlock *BB, int *PhiIndex) { 6006 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 6007 return nullptr; // BB must be empty to be a candidate for simplification. 6008 if (!BB->getSinglePredecessor()) 6009 return nullptr; // BB must be dominated by the switch. 6010 6011 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6012 if (!Branch || !Branch->isUnconditional()) 6013 return nullptr; // Terminator must be unconditional branch. 6014 6015 BasicBlock *Succ = Branch->getSuccessor(0); 6016 6017 for (PHINode &PHI : Succ->phis()) { 6018 int Idx = PHI.getBasicBlockIndex(BB); 6019 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 6020 6021 Value *InValue = PHI.getIncomingValue(Idx); 6022 if (InValue != CaseValue) 6023 continue; 6024 6025 *PhiIndex = Idx; 6026 return &PHI; 6027 } 6028 6029 return nullptr; 6030 } 6031 6032 /// Try to forward the condition of a switch instruction to a phi node 6033 /// dominated by the switch, if that would mean that some of the destination 6034 /// blocks of the switch can be folded away. Return true if a change is made. 6035 static bool forwardSwitchConditionToPHI(SwitchInst *SI) { 6036 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 6037 6038 ForwardingNodesMap ForwardingNodes; 6039 BasicBlock *SwitchBlock = SI->getParent(); 6040 bool Changed = false; 6041 for (const auto &Case : SI->cases()) { 6042 ConstantInt *CaseValue = Case.getCaseValue(); 6043 BasicBlock *CaseDest = Case.getCaseSuccessor(); 6044 6045 // Replace phi operands in successor blocks that are using the constant case 6046 // value rather than the switch condition variable: 6047 // switchbb: 6048 // switch i32 %x, label %default [ 6049 // i32 17, label %succ 6050 // ... 6051 // succ: 6052 // %r = phi i32 ... [ 17, %switchbb ] ... 6053 // --> 6054 // %r = phi i32 ... [ %x, %switchbb ] ... 6055 6056 for (PHINode &Phi : CaseDest->phis()) { 6057 // This only works if there is exactly 1 incoming edge from the switch to 6058 // a phi. If there is >1, that means multiple cases of the switch map to 1 6059 // value in the phi, and that phi value is not the switch condition. Thus, 6060 // this transform would not make sense (the phi would be invalid because 6061 // a phi can't have different incoming values from the same block). 6062 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 6063 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 6064 count(Phi.blocks(), SwitchBlock) == 1) { 6065 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 6066 Changed = true; 6067 } 6068 } 6069 6070 // Collect phi nodes that are indirectly using this switch's case constants. 6071 int PhiIdx; 6072 if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 6073 ForwardingNodes[Phi].push_back(PhiIdx); 6074 } 6075 6076 for (auto &ForwardingNode : ForwardingNodes) { 6077 PHINode *Phi = ForwardingNode.first; 6078 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 6079 // Check if it helps to fold PHI. 6080 if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition())) 6081 continue; 6082 6083 for (int Index : Indexes) 6084 Phi->setIncomingValue(Index, SI->getCondition()); 6085 Changed = true; 6086 } 6087 6088 return Changed; 6089 } 6090 6091 /// Return true if the backend will be able to handle 6092 /// initializing an array of constants like C. 6093 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 6094 if (C->isThreadDependent()) 6095 return false; 6096 if (C->isDLLImportDependent()) 6097 return false; 6098 6099 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 6100 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 6101 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 6102 return false; 6103 6104 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 6105 // Pointer casts and in-bounds GEPs will not prohibit the backend from 6106 // materializing the array of constants. 6107 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 6108 if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI)) 6109 return false; 6110 } 6111 6112 if (!TTI.shouldBuildLookupTablesForConstant(C)) 6113 return false; 6114 6115 return true; 6116 } 6117 6118 /// If V is a Constant, return it. Otherwise, try to look up 6119 /// its constant value in ConstantPool, returning 0 if it's not there. 6120 static Constant * 6121 lookupConstant(Value *V, 6122 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6123 if (Constant *C = dyn_cast<Constant>(V)) 6124 return C; 6125 return ConstantPool.lookup(V); 6126 } 6127 6128 /// Try to fold instruction I into a constant. This works for 6129 /// simple instructions such as binary operations where both operands are 6130 /// constant or can be replaced by constants from the ConstantPool. Returns the 6131 /// resulting constant on success, 0 otherwise. 6132 static Constant * 6133 constantFold(Instruction *I, const DataLayout &DL, 6134 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6135 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 6136 Constant *A = lookupConstant(Select->getCondition(), ConstantPool); 6137 if (!A) 6138 return nullptr; 6139 if (A->isAllOnesValue()) 6140 return lookupConstant(Select->getTrueValue(), ConstantPool); 6141 if (A->isNullValue()) 6142 return lookupConstant(Select->getFalseValue(), ConstantPool); 6143 return nullptr; 6144 } 6145 6146 SmallVector<Constant *, 4> COps; 6147 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 6148 if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool)) 6149 COps.push_back(A); 6150 else 6151 return nullptr; 6152 } 6153 6154 return ConstantFoldInstOperands(I, COps, DL); 6155 } 6156 6157 /// Try to determine the resulting constant values in phi nodes 6158 /// at the common destination basic block, *CommonDest, for one of the case 6159 /// destionations CaseDest corresponding to value CaseVal (0 for the default 6160 /// case), of a switch instruction SI. 6161 static bool 6162 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 6163 BasicBlock **CommonDest, 6164 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 6165 const DataLayout &DL, const TargetTransformInfo &TTI) { 6166 // The block from which we enter the common destination. 6167 BasicBlock *Pred = SI->getParent(); 6168 6169 // If CaseDest is empty except for some side-effect free instructions through 6170 // which we can constant-propagate the CaseVal, continue to its successor. 6171 SmallDenseMap<Value *, Constant *> ConstantPool; 6172 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 6173 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 6174 if (I.isTerminator()) { 6175 // If the terminator is a simple branch, continue to the next block. 6176 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 6177 return false; 6178 Pred = CaseDest; 6179 CaseDest = I.getSuccessor(0); 6180 } else if (Constant *C = constantFold(&I, DL, ConstantPool)) { 6181 // Instruction is side-effect free and constant. 6182 6183 // If the instruction has uses outside this block or a phi node slot for 6184 // the block, it is not safe to bypass the instruction since it would then 6185 // no longer dominate all its uses. 6186 for (auto &Use : I.uses()) { 6187 User *User = Use.getUser(); 6188 if (Instruction *I = dyn_cast<Instruction>(User)) 6189 if (I->getParent() == CaseDest) 6190 continue; 6191 if (PHINode *Phi = dyn_cast<PHINode>(User)) 6192 if (Phi->getIncomingBlock(Use) == CaseDest) 6193 continue; 6194 return false; 6195 } 6196 6197 ConstantPool.insert(std::make_pair(&I, C)); 6198 } else { 6199 break; 6200 } 6201 } 6202 6203 // If we did not have a CommonDest before, use the current one. 6204 if (!*CommonDest) 6205 *CommonDest = CaseDest; 6206 // If the destination isn't the common one, abort. 6207 if (CaseDest != *CommonDest) 6208 return false; 6209 6210 // Get the values for this case from phi nodes in the destination block. 6211 for (PHINode &PHI : (*CommonDest)->phis()) { 6212 int Idx = PHI.getBasicBlockIndex(Pred); 6213 if (Idx == -1) 6214 continue; 6215 6216 Constant *ConstVal = 6217 lookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 6218 if (!ConstVal) 6219 return false; 6220 6221 // Be conservative about which kinds of constants we support. 6222 if (!validLookupTableConstant(ConstVal, TTI)) 6223 return false; 6224 6225 Res.push_back(std::make_pair(&PHI, ConstVal)); 6226 } 6227 6228 return Res.size() > 0; 6229 } 6230 6231 // Helper function used to add CaseVal to the list of cases that generate 6232 // Result. Returns the updated number of cases that generate this result. 6233 static size_t mapCaseToResult(ConstantInt *CaseVal, 6234 SwitchCaseResultVectorTy &UniqueResults, 6235 Constant *Result) { 6236 for (auto &I : UniqueResults) { 6237 if (I.first == Result) { 6238 I.second.push_back(CaseVal); 6239 return I.second.size(); 6240 } 6241 } 6242 UniqueResults.push_back( 6243 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 6244 return 1; 6245 } 6246 6247 // Helper function that initializes a map containing 6248 // results for the PHI node of the common destination block for a switch 6249 // instruction. Returns false if multiple PHI nodes have been found or if 6250 // there is not a common destination block for the switch. 6251 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 6252 BasicBlock *&CommonDest, 6253 SwitchCaseResultVectorTy &UniqueResults, 6254 Constant *&DefaultResult, 6255 const DataLayout &DL, 6256 const TargetTransformInfo &TTI, 6257 uintptr_t MaxUniqueResults) { 6258 for (const auto &I : SI->cases()) { 6259 ConstantInt *CaseVal = I.getCaseValue(); 6260 6261 // Resulting value at phi nodes for this case value. 6262 SwitchCaseResultsTy Results; 6263 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 6264 DL, TTI)) 6265 return false; 6266 6267 // Only one value per case is permitted. 6268 if (Results.size() > 1) 6269 return false; 6270 6271 // Add the case->result mapping to UniqueResults. 6272 const size_t NumCasesForResult = 6273 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 6274 6275 // Early out if there are too many cases for this result. 6276 if (NumCasesForResult > MaxSwitchCasesPerResult) 6277 return false; 6278 6279 // Early out if there are too many unique results. 6280 if (UniqueResults.size() > MaxUniqueResults) 6281 return false; 6282 6283 // Check the PHI consistency. 6284 if (!PHI) 6285 PHI = Results[0].first; 6286 else if (PHI != Results[0].first) 6287 return false; 6288 } 6289 // Find the default result value. 6290 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 6291 BasicBlock *DefaultDest = SI->getDefaultDest(); 6292 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 6293 DL, TTI); 6294 // If the default value is not found abort unless the default destination 6295 // is unreachable. 6296 DefaultResult = 6297 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 6298 if ((!DefaultResult && 6299 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 6300 return false; 6301 6302 return true; 6303 } 6304 6305 // Helper function that checks if it is possible to transform a switch with only 6306 // two cases (or two cases + default) that produces a result into a select. 6307 // TODO: Handle switches with more than 2 cases that map to the same result. 6308 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 6309 Constant *DefaultResult, Value *Condition, 6310 IRBuilder<> &Builder) { 6311 // If we are selecting between only two cases transform into a simple 6312 // select or a two-way select if default is possible. 6313 // Example: 6314 // switch (a) { %0 = icmp eq i32 %a, 10 6315 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 6316 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 6317 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 6318 // } 6319 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 6320 ResultVector[1].second.size() == 1) { 6321 ConstantInt *FirstCase = ResultVector[0].second[0]; 6322 ConstantInt *SecondCase = ResultVector[1].second[0]; 6323 Value *SelectValue = ResultVector[1].first; 6324 if (DefaultResult) { 6325 Value *ValueCompare = 6326 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 6327 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 6328 DefaultResult, "switch.select"); 6329 } 6330 Value *ValueCompare = 6331 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 6332 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 6333 SelectValue, "switch.select"); 6334 } 6335 6336 // Handle the degenerate case where two cases have the same result value. 6337 if (ResultVector.size() == 1 && DefaultResult) { 6338 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 6339 unsigned CaseCount = CaseValues.size(); 6340 // n bits group cases map to the same result: 6341 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 6342 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 6343 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 6344 if (isPowerOf2_32(CaseCount)) { 6345 ConstantInt *MinCaseVal = CaseValues[0]; 6346 // Find mininal value. 6347 for (auto *Case : CaseValues) 6348 if (Case->getValue().slt(MinCaseVal->getValue())) 6349 MinCaseVal = Case; 6350 6351 // Mark the bits case number touched. 6352 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6353 for (auto *Case : CaseValues) 6354 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6355 6356 // Check if cases with the same result can cover all number 6357 // in touched bits. 6358 if (BitMask.popcount() == Log2_32(CaseCount)) { 6359 if (!MinCaseVal->isNullValue()) 6360 Condition = Builder.CreateSub(Condition, MinCaseVal); 6361 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6362 Value *Cmp = Builder.CreateICmpEQ( 6363 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6364 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6365 } 6366 } 6367 6368 // Handle the degenerate case where two cases have the same value. 6369 if (CaseValues.size() == 2) { 6370 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6371 "switch.selectcmp.case1"); 6372 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6373 "switch.selectcmp.case2"); 6374 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6375 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6376 } 6377 } 6378 6379 return nullptr; 6380 } 6381 6382 // Helper function to cleanup a switch instruction that has been converted into 6383 // a select, fixing up PHI nodes and basic blocks. 6384 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6385 Value *SelectValue, 6386 IRBuilder<> &Builder, 6387 DomTreeUpdater *DTU) { 6388 std::vector<DominatorTree::UpdateType> Updates; 6389 6390 BasicBlock *SelectBB = SI->getParent(); 6391 BasicBlock *DestBB = PHI->getParent(); 6392 6393 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6394 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6395 Builder.CreateBr(DestBB); 6396 6397 // Remove the switch. 6398 6399 PHI->removeIncomingValueIf( 6400 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6401 PHI->addIncoming(SelectValue, SelectBB); 6402 6403 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6404 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6405 BasicBlock *Succ = SI->getSuccessor(i); 6406 6407 if (Succ == DestBB) 6408 continue; 6409 Succ->removePredecessor(SelectBB); 6410 if (DTU && RemovedSuccessors.insert(Succ).second) 6411 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6412 } 6413 SI->eraseFromParent(); 6414 if (DTU) 6415 DTU->applyUpdates(Updates); 6416 } 6417 6418 /// If a switch is only used to initialize one or more phi nodes in a common 6419 /// successor block with only two different constant values, try to replace the 6420 /// switch with a select. Returns true if the fold was made. 6421 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6422 DomTreeUpdater *DTU, const DataLayout &DL, 6423 const TargetTransformInfo &TTI) { 6424 Value *const Cond = SI->getCondition(); 6425 PHINode *PHI = nullptr; 6426 BasicBlock *CommonDest = nullptr; 6427 Constant *DefaultResult; 6428 SwitchCaseResultVectorTy UniqueResults; 6429 // Collect all the cases that will deliver the same value from the switch. 6430 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6431 DL, TTI, /*MaxUniqueResults*/ 2)) 6432 return false; 6433 6434 assert(PHI != nullptr && "PHI for value select not found"); 6435 Builder.SetInsertPoint(SI); 6436 Value *SelectValue = 6437 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6438 if (!SelectValue) 6439 return false; 6440 6441 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6442 return true; 6443 } 6444 6445 namespace { 6446 6447 /// This class represents a lookup table that can be used to replace a switch. 6448 class SwitchLookupTable { 6449 public: 6450 /// Create a lookup table to use as a switch replacement with the contents 6451 /// of Values, using DefaultValue to fill any holes in the table. 6452 SwitchLookupTable( 6453 Module &M, uint64_t TableSize, ConstantInt *Offset, 6454 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6455 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6456 6457 /// Build instructions with Builder to retrieve the value at 6458 /// the position given by Index in the lookup table. 6459 Value *buildLookup(Value *Index, IRBuilder<> &Builder); 6460 6461 /// Return true if a table with TableSize elements of 6462 /// type ElementType would fit in a target-legal register. 6463 static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6464 Type *ElementType); 6465 6466 private: 6467 // Depending on the contents of the table, it can be represented in 6468 // different ways. 6469 enum { 6470 // For tables where each element contains the same value, we just have to 6471 // store that single value and return it for each lookup. 6472 SingleValueKind, 6473 6474 // For tables where there is a linear relationship between table index 6475 // and values. We calculate the result with a simple multiplication 6476 // and addition instead of a table lookup. 6477 LinearMapKind, 6478 6479 // For small tables with integer elements, we can pack them into a bitmap 6480 // that fits into a target-legal register. Values are retrieved by 6481 // shift and mask operations. 6482 BitMapKind, 6483 6484 // The table is stored as an array of values. Values are retrieved by load 6485 // instructions from the table. 6486 ArrayKind 6487 } Kind; 6488 6489 // For SingleValueKind, this is the single value. 6490 Constant *SingleValue = nullptr; 6491 6492 // For BitMapKind, this is the bitmap. 6493 ConstantInt *BitMap = nullptr; 6494 IntegerType *BitMapElementTy = nullptr; 6495 6496 // For LinearMapKind, these are the constants used to derive the value. 6497 ConstantInt *LinearOffset = nullptr; 6498 ConstantInt *LinearMultiplier = nullptr; 6499 bool LinearMapValWrapped = false; 6500 6501 // For ArrayKind, this is the array. 6502 GlobalVariable *Array = nullptr; 6503 }; 6504 6505 } // end anonymous namespace 6506 6507 SwitchLookupTable::SwitchLookupTable( 6508 Module &M, uint64_t TableSize, ConstantInt *Offset, 6509 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6510 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6511 assert(Values.size() && "Can't build lookup table without values!"); 6512 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6513 6514 // If all values in the table are equal, this is that value. 6515 SingleValue = Values.begin()->second; 6516 6517 Type *ValueType = Values.begin()->second->getType(); 6518 6519 // Build up the table contents. 6520 SmallVector<Constant *, 64> TableContents(TableSize); 6521 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6522 ConstantInt *CaseVal = Values[I].first; 6523 Constant *CaseRes = Values[I].second; 6524 assert(CaseRes->getType() == ValueType); 6525 6526 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6527 TableContents[Idx] = CaseRes; 6528 6529 if (SingleValue && !isa<PoisonValue>(CaseRes) && CaseRes != SingleValue) 6530 SingleValue = isa<PoisonValue>(SingleValue) ? CaseRes : nullptr; 6531 } 6532 6533 // Fill in any holes in the table with the default result. 6534 if (Values.size() < TableSize) { 6535 assert(DefaultValue && 6536 "Need a default value to fill the lookup table holes."); 6537 assert(DefaultValue->getType() == ValueType); 6538 for (uint64_t I = 0; I < TableSize; ++I) { 6539 if (!TableContents[I]) 6540 TableContents[I] = DefaultValue; 6541 } 6542 6543 // If the default value is poison, all the holes are poison. 6544 bool DefaultValueIsPoison = isa<PoisonValue>(DefaultValue); 6545 6546 if (DefaultValue != SingleValue && !DefaultValueIsPoison) 6547 SingleValue = nullptr; 6548 } 6549 6550 // If each element in the table contains the same value, we only need to store 6551 // that single value. 6552 if (SingleValue) { 6553 Kind = SingleValueKind; 6554 return; 6555 } 6556 6557 // Check if we can derive the value with a linear transformation from the 6558 // table index. 6559 if (isa<IntegerType>(ValueType)) { 6560 bool LinearMappingPossible = true; 6561 APInt PrevVal; 6562 APInt DistToPrev; 6563 // When linear map is monotonic and signed overflow doesn't happen on 6564 // maximum index, we can attach nsw on Add and Mul. 6565 bool NonMonotonic = false; 6566 assert(TableSize >= 2 && "Should be a SingleValue table."); 6567 // Check if there is the same distance between two consecutive values. 6568 for (uint64_t I = 0; I < TableSize; ++I) { 6569 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6570 6571 if (!ConstVal && isa<PoisonValue>(TableContents[I])) { 6572 // This is an poison, so it's (probably) a lookup table hole. 6573 // To prevent any regressions from before we switched to using poison as 6574 // the default value, holes will fall back to using the first value. 6575 // This can be removed once we add proper handling for poisons in lookup 6576 // tables. 6577 ConstVal = dyn_cast<ConstantInt>(Values[0].second); 6578 } 6579 6580 if (!ConstVal) { 6581 // This is an undef. We could deal with it, but undefs in lookup tables 6582 // are very seldom. It's probably not worth the additional complexity. 6583 LinearMappingPossible = false; 6584 break; 6585 } 6586 const APInt &Val = ConstVal->getValue(); 6587 if (I != 0) { 6588 APInt Dist = Val - PrevVal; 6589 if (I == 1) { 6590 DistToPrev = Dist; 6591 } else if (Dist != DistToPrev) { 6592 LinearMappingPossible = false; 6593 break; 6594 } 6595 NonMonotonic |= 6596 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6597 } 6598 PrevVal = Val; 6599 } 6600 if (LinearMappingPossible) { 6601 LinearOffset = cast<ConstantInt>(TableContents[0]); 6602 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6603 APInt M = LinearMultiplier->getValue(); 6604 bool MayWrap = true; 6605 if (isIntN(M.getBitWidth(), TableSize - 1)) 6606 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6607 LinearMapValWrapped = NonMonotonic || MayWrap; 6608 Kind = LinearMapKind; 6609 ++NumLinearMaps; 6610 return; 6611 } 6612 } 6613 6614 // If the type is integer and the table fits in a register, build a bitmap. 6615 if (wouldFitInRegister(DL, TableSize, ValueType)) { 6616 IntegerType *IT = cast<IntegerType>(ValueType); 6617 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6618 for (uint64_t I = TableSize; I > 0; --I) { 6619 TableInt <<= IT->getBitWidth(); 6620 // Insert values into the bitmap. Undef values are set to zero. 6621 if (!isa<UndefValue>(TableContents[I - 1])) { 6622 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6623 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6624 } 6625 } 6626 BitMap = ConstantInt::get(M.getContext(), TableInt); 6627 BitMapElementTy = IT; 6628 Kind = BitMapKind; 6629 ++NumBitMaps; 6630 return; 6631 } 6632 6633 // Store the table in an array. 6634 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6635 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6636 6637 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6638 GlobalVariable::PrivateLinkage, Initializer, 6639 "switch.table." + FuncName); 6640 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6641 // Set the alignment to that of an array items. We will be only loading one 6642 // value out of it. 6643 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6644 Kind = ArrayKind; 6645 } 6646 6647 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) { 6648 switch (Kind) { 6649 case SingleValueKind: 6650 return SingleValue; 6651 case LinearMapKind: { 6652 // Derive the result value from the input value. 6653 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6654 false, "switch.idx.cast"); 6655 if (!LinearMultiplier->isOne()) 6656 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6657 /*HasNUW = */ false, 6658 /*HasNSW = */ !LinearMapValWrapped); 6659 6660 if (!LinearOffset->isZero()) 6661 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6662 /*HasNUW = */ false, 6663 /*HasNSW = */ !LinearMapValWrapped); 6664 return Result; 6665 } 6666 case BitMapKind: { 6667 // Type of the bitmap (e.g. i59). 6668 IntegerType *MapTy = BitMap->getIntegerType(); 6669 6670 // Cast Index to the same type as the bitmap. 6671 // Note: The Index is <= the number of elements in the table, so 6672 // truncating it to the width of the bitmask is safe. 6673 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6674 6675 // Multiply the shift amount by the element width. NUW/NSW can always be 6676 // set, because wouldFitInRegister guarantees Index * ShiftAmt is in 6677 // BitMap's bit width. 6678 ShiftAmt = Builder.CreateMul( 6679 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6680 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6681 6682 // Shift down. 6683 Value *DownShifted = 6684 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6685 // Mask off. 6686 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6687 } 6688 case ArrayKind: { 6689 // Make sure the table index will not overflow when treated as signed. 6690 IntegerType *IT = cast<IntegerType>(Index->getType()); 6691 uint64_t TableSize = 6692 Array->getInitializer()->getType()->getArrayNumElements(); 6693 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6694 Index = Builder.CreateZExt( 6695 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6696 "switch.tableidx.zext"); 6697 6698 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6699 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6700 GEPIndices, "switch.gep"); 6701 return Builder.CreateLoad( 6702 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6703 "switch.load"); 6704 } 6705 } 6706 llvm_unreachable("Unknown lookup table kind!"); 6707 } 6708 6709 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL, 6710 uint64_t TableSize, 6711 Type *ElementType) { 6712 auto *IT = dyn_cast<IntegerType>(ElementType); 6713 if (!IT) 6714 return false; 6715 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6716 // are <= 15, we could try to narrow the type. 6717 6718 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6719 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6720 return false; 6721 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6722 } 6723 6724 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6725 const DataLayout &DL) { 6726 // Allow any legal type. 6727 if (TTI.isTypeLegal(Ty)) 6728 return true; 6729 6730 auto *IT = dyn_cast<IntegerType>(Ty); 6731 if (!IT) 6732 return false; 6733 6734 // Also allow power of 2 integer types that have at least 8 bits and fit in 6735 // a register. These types are common in frontend languages and targets 6736 // usually support loads of these types. 6737 // TODO: We could relax this to any integer that fits in a register and rely 6738 // on ABI alignment and padding in the table to allow the load to be widened. 6739 // Or we could widen the constants and truncate the load. 6740 unsigned BitWidth = IT->getBitWidth(); 6741 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6742 DL.fitsInLegalInteger(IT->getBitWidth()); 6743 } 6744 6745 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6746 // 40% is the default density for building a jump table in optsize/minsize 6747 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6748 // function was based on. 6749 const uint64_t MinDensity = 40; 6750 6751 if (CaseRange >= UINT64_MAX / 100) 6752 return false; // Avoid multiplication overflows below. 6753 6754 return NumCases * 100 >= CaseRange * MinDensity; 6755 } 6756 6757 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6758 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6759 uint64_t Range = Diff + 1; 6760 if (Range < Diff) 6761 return false; // Overflow. 6762 6763 return isSwitchDense(Values.size(), Range); 6764 } 6765 6766 /// Determine whether a lookup table should be built for this switch, based on 6767 /// the number of cases, size of the table, and the types of the results. 6768 // TODO: We could support larger than legal types by limiting based on the 6769 // number of loads required and/or table size. If the constants are small we 6770 // could use smaller table entries and extend after the load. 6771 static bool 6772 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6773 const TargetTransformInfo &TTI, const DataLayout &DL, 6774 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6775 if (SI->getNumCases() > TableSize) 6776 return false; // TableSize overflowed. 6777 6778 bool AllTablesFitInRegister = true; 6779 bool HasIllegalType = false; 6780 for (const auto &I : ResultTypes) { 6781 Type *Ty = I.second; 6782 6783 // Saturate this flag to true. 6784 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6785 6786 // Saturate this flag to false. 6787 AllTablesFitInRegister = 6788 AllTablesFitInRegister && 6789 SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty); 6790 6791 // If both flags saturate, we're done. NOTE: This *only* works with 6792 // saturating flags, and all flags have to saturate first due to the 6793 // non-deterministic behavior of iterating over a dense map. 6794 if (HasIllegalType && !AllTablesFitInRegister) 6795 break; 6796 } 6797 6798 // If each table would fit in a register, we should build it anyway. 6799 if (AllTablesFitInRegister) 6800 return true; 6801 6802 // Don't build a table that doesn't fit in-register if it has illegal types. 6803 if (HasIllegalType) 6804 return false; 6805 6806 return isSwitchDense(SI->getNumCases(), TableSize); 6807 } 6808 6809 static bool shouldUseSwitchConditionAsTableIndex( 6810 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6811 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6812 const DataLayout &DL, const TargetTransformInfo &TTI) { 6813 if (MinCaseVal.isNullValue()) 6814 return true; 6815 if (MinCaseVal.isNegative() || 6816 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6817 !HasDefaultResults) 6818 return false; 6819 return all_of(ResultTypes, [&](const auto &KV) { 6820 return SwitchLookupTable::wouldFitInRegister( 6821 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6822 KV.second /* ResultType */); 6823 }); 6824 } 6825 6826 /// Try to reuse the switch table index compare. Following pattern: 6827 /// \code 6828 /// if (idx < tablesize) 6829 /// r = table[idx]; // table does not contain default_value 6830 /// else 6831 /// r = default_value; 6832 /// if (r != default_value) 6833 /// ... 6834 /// \endcode 6835 /// Is optimized to: 6836 /// \code 6837 /// cond = idx < tablesize; 6838 /// if (cond) 6839 /// r = table[idx]; 6840 /// else 6841 /// r = default_value; 6842 /// if (cond) 6843 /// ... 6844 /// \endcode 6845 /// Jump threading will then eliminate the second if(cond). 6846 static void reuseTableCompare( 6847 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6848 Constant *DefaultValue, 6849 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6850 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6851 if (!CmpInst) 6852 return; 6853 6854 // We require that the compare is in the same block as the phi so that jump 6855 // threading can do its work afterwards. 6856 if (CmpInst->getParent() != PhiBlock) 6857 return; 6858 6859 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6860 if (!CmpOp1) 6861 return; 6862 6863 Value *RangeCmp = RangeCheckBranch->getCondition(); 6864 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6865 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6866 6867 // Check if the compare with the default value is constant true or false. 6868 const DataLayout &DL = PhiBlock->getDataLayout(); 6869 Constant *DefaultConst = ConstantFoldCompareInstOperands( 6870 CmpInst->getPredicate(), DefaultValue, CmpOp1, DL); 6871 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6872 return; 6873 6874 // Check if the compare with the case values is distinct from the default 6875 // compare result. 6876 for (auto ValuePair : Values) { 6877 Constant *CaseConst = ConstantFoldCompareInstOperands( 6878 CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL); 6879 if (!CaseConst || CaseConst == DefaultConst || 6880 (CaseConst != TrueConst && CaseConst != FalseConst)) 6881 return; 6882 } 6883 6884 // Check if the branch instruction dominates the phi node. It's a simple 6885 // dominance check, but sufficient for our needs. 6886 // Although this check is invariant in the calling loops, it's better to do it 6887 // at this late stage. Practically we do it at most once for a switch. 6888 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6889 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6890 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6891 return; 6892 } 6893 6894 if (DefaultConst == FalseConst) { 6895 // The compare yields the same result. We can replace it. 6896 CmpInst->replaceAllUsesWith(RangeCmp); 6897 ++NumTableCmpReuses; 6898 } else { 6899 // The compare yields the same result, just inverted. We can replace it. 6900 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6901 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6902 RangeCheckBranch->getIterator()); 6903 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6904 ++NumTableCmpReuses; 6905 } 6906 } 6907 6908 /// If the switch is only used to initialize one or more phi nodes in a common 6909 /// successor block with different constant values, replace the switch with 6910 /// lookup tables. 6911 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6912 DomTreeUpdater *DTU, const DataLayout &DL, 6913 const TargetTransformInfo &TTI) { 6914 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6915 6916 BasicBlock *BB = SI->getParent(); 6917 Function *Fn = BB->getParent(); 6918 // Only build lookup table when we have a target that supports it or the 6919 // attribute is not set. 6920 if (!TTI.shouldBuildLookupTables() || 6921 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6922 return false; 6923 6924 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6925 // split off a dense part and build a lookup table for that. 6926 6927 // FIXME: This creates arrays of GEPs to constant strings, which means each 6928 // GEP needs a runtime relocation in PIC code. We should just build one big 6929 // string and lookup indices into that. 6930 6931 // Ignore switches with less than three cases. Lookup tables will not make 6932 // them faster, so we don't analyze them. 6933 if (SI->getNumCases() < 3) 6934 return false; 6935 6936 // Figure out the corresponding result for each case value and phi node in the 6937 // common destination, as well as the min and max case values. 6938 assert(!SI->cases().empty()); 6939 SwitchInst::CaseIt CI = SI->case_begin(); 6940 ConstantInt *MinCaseVal = CI->getCaseValue(); 6941 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6942 6943 BasicBlock *CommonDest = nullptr; 6944 6945 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6946 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6947 6948 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6949 SmallDenseMap<PHINode *, Type *> ResultTypes; 6950 SmallVector<PHINode *, 4> PHIs; 6951 6952 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6953 ConstantInt *CaseVal = CI->getCaseValue(); 6954 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6955 MinCaseVal = CaseVal; 6956 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6957 MaxCaseVal = CaseVal; 6958 6959 // Resulting value at phi nodes for this case value. 6960 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6961 ResultsTy Results; 6962 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6963 Results, DL, TTI)) 6964 return false; 6965 6966 // Append the result from this case to the list for each phi. 6967 for (const auto &I : Results) { 6968 PHINode *PHI = I.first; 6969 Constant *Value = I.second; 6970 if (!ResultLists.count(PHI)) 6971 PHIs.push_back(PHI); 6972 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6973 } 6974 } 6975 6976 // Keep track of the result types. 6977 for (PHINode *PHI : PHIs) { 6978 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6979 } 6980 6981 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6982 6983 // If the table has holes, we need a constant result for the default case 6984 // or a bitmask that fits in a register. 6985 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6986 bool HasDefaultResults = 6987 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6988 DefaultResultsList, DL, TTI); 6989 6990 for (const auto &I : DefaultResultsList) { 6991 PHINode *PHI = I.first; 6992 Constant *Result = I.second; 6993 DefaultResults[PHI] = Result; 6994 } 6995 6996 bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex( 6997 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6998 uint64_t TableSize; 6999 if (UseSwitchConditionAsTableIndex) 7000 TableSize = MaxCaseVal->getLimitedValue() + 1; 7001 else 7002 TableSize = 7003 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 7004 7005 // If the default destination is unreachable, or if the lookup table covers 7006 // all values of the conditional variable, branch directly to the lookup table 7007 // BB. Otherwise, check that the condition is within the case range. 7008 bool DefaultIsReachable = !SI->defaultDestUndefined(); 7009 7010 bool TableHasHoles = (NumResults < TableSize); 7011 7012 // If the table has holes but the default destination doesn't produce any 7013 // constant results, the lookup table entries corresponding to the holes will 7014 // contain poison. 7015 bool AllHolesArePoison = TableHasHoles && !HasDefaultResults; 7016 7017 // If the default destination doesn't produce a constant result but is still 7018 // reachable, and the lookup table has holes, we need to use a mask to 7019 // determine if the current index should load from the lookup table or jump 7020 // to the default case. 7021 // The mask is unnecessary if the table has holes but the default destination 7022 // is unreachable, as in that case the holes must also be unreachable. 7023 bool NeedMask = AllHolesArePoison && DefaultIsReachable; 7024 if (NeedMask) { 7025 // As an extra penalty for the validity test we require more cases. 7026 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 7027 return false; 7028 if (!DL.fitsInLegalInteger(TableSize)) 7029 return false; 7030 } 7031 7032 if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 7033 return false; 7034 7035 std::vector<DominatorTree::UpdateType> Updates; 7036 7037 // Compute the maximum table size representable by the integer type we are 7038 // switching upon. 7039 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 7040 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 7041 assert(MaxTableSize >= TableSize && 7042 "It is impossible for a switch to have more entries than the max " 7043 "representable value of its input integer type's size."); 7044 7045 // Create the BB that does the lookups. 7046 Module &Mod = *CommonDest->getParent()->getParent(); 7047 BasicBlock *LookupBB = BasicBlock::Create( 7048 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 7049 7050 // Compute the table index value. 7051 Builder.SetInsertPoint(SI); 7052 Value *TableIndex; 7053 ConstantInt *TableIndexOffset; 7054 if (UseSwitchConditionAsTableIndex) { 7055 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 7056 TableIndex = SI->getCondition(); 7057 } else { 7058 TableIndexOffset = MinCaseVal; 7059 // If the default is unreachable, all case values are s>= MinCaseVal. Then 7060 // we can try to attach nsw. 7061 bool MayWrap = true; 7062 if (!DefaultIsReachable) { 7063 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 7064 (void)Res; 7065 } 7066 7067 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 7068 "switch.tableidx", /*HasNUW =*/false, 7069 /*HasNSW =*/!MayWrap); 7070 } 7071 7072 BranchInst *RangeCheckBranch = nullptr; 7073 7074 // Grow the table to cover all possible index values to avoid the range check. 7075 // It will use the default result to fill in the table hole later, so make 7076 // sure it exist. 7077 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 7078 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 7079 // Grow the table shouldn't have any size impact by checking 7080 // wouldFitInRegister. 7081 // TODO: Consider growing the table also when it doesn't fit in a register 7082 // if no optsize is specified. 7083 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 7084 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 7085 return SwitchLookupTable::wouldFitInRegister( 7086 DL, UpperBound, KV.second /* ResultType */); 7087 })) { 7088 // There may be some case index larger than the UpperBound (unreachable 7089 // case), so make sure the table size does not get smaller. 7090 TableSize = std::max(UpperBound, TableSize); 7091 // The default branch is unreachable after we enlarge the lookup table. 7092 // Adjust DefaultIsReachable to reuse code path. 7093 DefaultIsReachable = false; 7094 } 7095 } 7096 7097 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 7098 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7099 Builder.CreateBr(LookupBB); 7100 if (DTU) 7101 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7102 // Note: We call removeProdecessor later since we need to be able to get the 7103 // PHI value for the default case in case we're using a bit mask. 7104 } else { 7105 Value *Cmp = Builder.CreateICmpULT( 7106 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 7107 RangeCheckBranch = 7108 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 7109 if (DTU) 7110 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7111 } 7112 7113 // Populate the BB that does the lookups. 7114 Builder.SetInsertPoint(LookupBB); 7115 7116 if (NeedMask) { 7117 // Before doing the lookup, we do the hole check. The LookupBB is therefore 7118 // re-purposed to do the hole check, and we create a new LookupBB. 7119 BasicBlock *MaskBB = LookupBB; 7120 MaskBB->setName("switch.hole_check"); 7121 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 7122 CommonDest->getParent(), CommonDest); 7123 7124 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 7125 // unnecessary illegal types. 7126 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 7127 APInt MaskInt(TableSizePowOf2, 0); 7128 APInt One(TableSizePowOf2, 1); 7129 // Build bitmask; fill in a 1 bit for every case. 7130 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 7131 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 7132 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 7133 .getLimitedValue(); 7134 MaskInt |= One << Idx; 7135 } 7136 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 7137 7138 // Get the TableIndex'th bit of the bitmask. 7139 // If this bit is 0 (meaning hole) jump to the default destination, 7140 // else continue with table lookup. 7141 IntegerType *MapTy = TableMask->getIntegerType(); 7142 Value *MaskIndex = 7143 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 7144 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 7145 Value *LoBit = Builder.CreateTrunc( 7146 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 7147 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 7148 if (DTU) { 7149 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 7150 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 7151 } 7152 Builder.SetInsertPoint(LookupBB); 7153 addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 7154 } 7155 7156 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7157 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 7158 // do not delete PHINodes here. 7159 SI->getDefaultDest()->removePredecessor(BB, 7160 /*KeepOneInputPHIs=*/true); 7161 if (DTU) 7162 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 7163 } 7164 7165 for (PHINode *PHI : PHIs) { 7166 const ResultListTy &ResultList = ResultLists[PHI]; 7167 7168 Type *ResultType = ResultList.begin()->second->getType(); 7169 7170 // Use any value to fill the lookup table holes. 7171 Constant *DV = 7172 AllHolesArePoison ? PoisonValue::get(ResultType) : DefaultResults[PHI]; 7173 StringRef FuncName = Fn->getName(); 7174 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 7175 DL, FuncName); 7176 7177 Value *Result = Table.buildLookup(TableIndex, Builder); 7178 7179 // Do a small peephole optimization: re-use the switch table compare if 7180 // possible. 7181 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 7182 BasicBlock *PhiBlock = PHI->getParent(); 7183 // Search for compare instructions which use the phi. 7184 for (auto *User : PHI->users()) { 7185 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 7186 } 7187 } 7188 7189 PHI->addIncoming(Result, LookupBB); 7190 } 7191 7192 Builder.CreateBr(CommonDest); 7193 if (DTU) 7194 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 7195 7196 // Remove the switch. 7197 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 7198 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 7199 BasicBlock *Succ = SI->getSuccessor(i); 7200 7201 if (Succ == SI->getDefaultDest()) 7202 continue; 7203 Succ->removePredecessor(BB); 7204 if (DTU && RemovedSuccessors.insert(Succ).second) 7205 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7206 } 7207 SI->eraseFromParent(); 7208 7209 if (DTU) 7210 DTU->applyUpdates(Updates); 7211 7212 ++NumLookupTables; 7213 if (NeedMask) 7214 ++NumLookupTablesHoles; 7215 return true; 7216 } 7217 7218 /// Try to transform a switch that has "holes" in it to a contiguous sequence 7219 /// of cases. 7220 /// 7221 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 7222 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 7223 /// 7224 /// This converts a sparse switch into a dense switch which allows better 7225 /// lowering and could also allow transforming into a lookup table. 7226 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 7227 const DataLayout &DL, 7228 const TargetTransformInfo &TTI) { 7229 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 7230 if (CondTy->getIntegerBitWidth() > 64 || 7231 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7232 return false; 7233 // Only bother with this optimization if there are more than 3 switch cases; 7234 // SDAG will only bother creating jump tables for 4 or more cases. 7235 if (SI->getNumCases() < 4) 7236 return false; 7237 7238 // This transform is agnostic to the signedness of the input or case values. We 7239 // can treat the case values as signed or unsigned. We can optimize more common 7240 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 7241 // as signed. 7242 SmallVector<int64_t,4> Values; 7243 for (const auto &C : SI->cases()) 7244 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 7245 llvm::sort(Values); 7246 7247 // If the switch is already dense, there's nothing useful to do here. 7248 if (isSwitchDense(Values)) 7249 return false; 7250 7251 // First, transform the values such that they start at zero and ascend. 7252 int64_t Base = Values[0]; 7253 for (auto &V : Values) 7254 V -= (uint64_t)(Base); 7255 7256 // Now we have signed numbers that have been shifted so that, given enough 7257 // precision, there are no negative values. Since the rest of the transform 7258 // is bitwise only, we switch now to an unsigned representation. 7259 7260 // This transform can be done speculatively because it is so cheap - it 7261 // results in a single rotate operation being inserted. 7262 7263 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 7264 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 7265 // less than 64. 7266 unsigned Shift = 64; 7267 for (auto &V : Values) 7268 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 7269 assert(Shift < 64); 7270 if (Shift > 0) 7271 for (auto &V : Values) 7272 V = (int64_t)((uint64_t)V >> Shift); 7273 7274 if (!isSwitchDense(Values)) 7275 // Transform didn't create a dense switch. 7276 return false; 7277 7278 // The obvious transform is to shift the switch condition right and emit a 7279 // check that the condition actually cleanly divided by GCD, i.e. 7280 // C & (1 << Shift - 1) == 0 7281 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 7282 // 7283 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 7284 // shift and puts the shifted-off bits in the uppermost bits. If any of these 7285 // are nonzero then the switch condition will be very large and will hit the 7286 // default case. 7287 7288 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 7289 Builder.SetInsertPoint(SI); 7290 Value *Sub = 7291 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 7292 Value *Rot = Builder.CreateIntrinsic( 7293 Ty, Intrinsic::fshl, 7294 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 7295 SI->replaceUsesOfWith(SI->getCondition(), Rot); 7296 7297 for (auto Case : SI->cases()) { 7298 auto *Orig = Case.getCaseValue(); 7299 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true); 7300 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 7301 } 7302 return true; 7303 } 7304 7305 /// Tries to transform switch of powers of two to reduce switch range. 7306 /// For example, switch like: 7307 /// switch (C) { case 1: case 2: case 64: case 128: } 7308 /// will be transformed to: 7309 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 7310 /// 7311 /// This transformation allows better lowering and could allow transforming into 7312 /// a lookup table. 7313 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 7314 const DataLayout &DL, 7315 const TargetTransformInfo &TTI) { 7316 Value *Condition = SI->getCondition(); 7317 LLVMContext &Context = SI->getContext(); 7318 auto *CondTy = cast<IntegerType>(Condition->getType()); 7319 7320 if (CondTy->getIntegerBitWidth() > 64 || 7321 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7322 return false; 7323 7324 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 7325 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 7326 {Condition, ConstantInt::getTrue(Context)}), 7327 TTI::TCK_SizeAndLatency); 7328 7329 if (CttzIntrinsicCost > TTI::TCC_Basic) 7330 // Inserting intrinsic is too expensive. 7331 return false; 7332 7333 // Only bother with this optimization if there are more than 3 switch cases. 7334 // SDAG will only bother creating jump tables for 4 or more cases. 7335 if (SI->getNumCases() < 4) 7336 return false; 7337 7338 // We perform this optimization only for switches with 7339 // unreachable default case. 7340 // This assumtion will save us from checking if `Condition` is a power of two. 7341 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 7342 return false; 7343 7344 // Check that switch cases are powers of two. 7345 SmallVector<uint64_t, 4> Values; 7346 for (const auto &Case : SI->cases()) { 7347 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 7348 if (llvm::has_single_bit(CaseValue)) 7349 Values.push_back(CaseValue); 7350 else 7351 return false; 7352 } 7353 7354 // isSwichDense requires case values to be sorted. 7355 llvm::sort(Values); 7356 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 7357 llvm::countr_zero(Values.front()) + 1)) 7358 // Transform is unable to generate dense switch. 7359 return false; 7360 7361 Builder.SetInsertPoint(SI); 7362 7363 // Replace each case with its trailing zeros number. 7364 for (auto &Case : SI->cases()) { 7365 auto *OrigValue = Case.getCaseValue(); 7366 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 7367 OrigValue->getValue().countr_zero())); 7368 } 7369 7370 // Replace condition with its trailing zeros number. 7371 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 7372 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 7373 7374 SI->setCondition(ConditionTrailingZeros); 7375 7376 return true; 7377 } 7378 7379 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have 7380 /// the same destination. 7381 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder, 7382 DomTreeUpdater *DTU) { 7383 auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition()); 7384 if (!Cmp || !Cmp->hasOneUse()) 7385 return false; 7386 7387 SmallVector<uint32_t, 4> Weights; 7388 bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights); 7389 if (!HasWeights) 7390 Weights.resize(4); // Avoid checking HasWeights everywhere. 7391 7392 // Normalize to [us]cmp == Res ? Succ : OtherSucc. 7393 int64_t Res; 7394 BasicBlock *Succ, *OtherSucc; 7395 uint32_t SuccWeight = 0, OtherSuccWeight = 0; 7396 BasicBlock *Unreachable = nullptr; 7397 7398 if (SI->getNumCases() == 2) { 7399 // Find which of 1, 0 or -1 is missing (handled by default dest). 7400 SmallSet<int64_t, 3> Missing; 7401 Missing.insert(1); 7402 Missing.insert(0); 7403 Missing.insert(-1); 7404 7405 Succ = SI->getDefaultDest(); 7406 SuccWeight = Weights[0]; 7407 OtherSucc = nullptr; 7408 for (auto &Case : SI->cases()) { 7409 std::optional<int64_t> Val = 7410 Case.getCaseValue()->getValue().trySExtValue(); 7411 if (!Val) 7412 return false; 7413 if (!Missing.erase(*Val)) 7414 return false; 7415 if (OtherSucc && OtherSucc != Case.getCaseSuccessor()) 7416 return false; 7417 OtherSucc = Case.getCaseSuccessor(); 7418 OtherSuccWeight += Weights[Case.getSuccessorIndex()]; 7419 } 7420 7421 assert(Missing.size() == 1 && "Should have one case left"); 7422 Res = *Missing.begin(); 7423 } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) { 7424 // Normalize so that Succ is taken once and OtherSucc twice. 7425 Unreachable = SI->getDefaultDest(); 7426 Succ = OtherSucc = nullptr; 7427 for (auto &Case : SI->cases()) { 7428 BasicBlock *NewSucc = Case.getCaseSuccessor(); 7429 uint32_t Weight = Weights[Case.getSuccessorIndex()]; 7430 if (!OtherSucc || OtherSucc == NewSucc) { 7431 OtherSucc = NewSucc; 7432 OtherSuccWeight += Weight; 7433 } else if (!Succ) { 7434 Succ = NewSucc; 7435 SuccWeight = Weight; 7436 } else if (Succ == NewSucc) { 7437 std::swap(Succ, OtherSucc); 7438 std::swap(SuccWeight, OtherSuccWeight); 7439 } else 7440 return false; 7441 } 7442 for (auto &Case : SI->cases()) { 7443 std::optional<int64_t> Val = 7444 Case.getCaseValue()->getValue().trySExtValue(); 7445 if (!Val || (Val != 1 && Val != 0 && Val != -1)) 7446 return false; 7447 if (Case.getCaseSuccessor() == Succ) { 7448 Res = *Val; 7449 break; 7450 } 7451 } 7452 } else { 7453 return false; 7454 } 7455 7456 // Determine predicate for the missing case. 7457 ICmpInst::Predicate Pred; 7458 switch (Res) { 7459 case 1: 7460 Pred = ICmpInst::ICMP_UGT; 7461 break; 7462 case 0: 7463 Pred = ICmpInst::ICMP_EQ; 7464 break; 7465 case -1: 7466 Pred = ICmpInst::ICMP_ULT; 7467 break; 7468 } 7469 if (Cmp->isSigned()) 7470 Pred = ICmpInst::getSignedPredicate(Pred); 7471 7472 MDNode *NewWeights = nullptr; 7473 if (HasWeights) 7474 NewWeights = MDBuilder(SI->getContext()) 7475 .createBranchWeights(SuccWeight, OtherSuccWeight); 7476 7477 BasicBlock *BB = SI->getParent(); 7478 Builder.SetInsertPoint(SI->getIterator()); 7479 Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS()); 7480 Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights, 7481 SI->getMetadata(LLVMContext::MD_unpredictable)); 7482 OtherSucc->removePredecessor(BB); 7483 if (Unreachable) 7484 Unreachable->removePredecessor(BB); 7485 SI->eraseFromParent(); 7486 Cmp->eraseFromParent(); 7487 if (DTU && Unreachable) 7488 DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}}); 7489 return true; 7490 } 7491 7492 /// Checking whether two cases of SI are equal depends on the contents of the 7493 /// BasicBlock and the incoming values of their successor PHINodes. 7494 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid 7495 /// calling this function on each BasicBlock every time isEqual is called, 7496 /// especially since the same BasicBlock may be passed as an argument multiple 7497 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock -> 7498 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking 7499 /// of the incoming values. 7500 struct SwitchSuccWrapper { 7501 BasicBlock *Dest; 7502 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs; 7503 }; 7504 7505 namespace llvm { 7506 template <> struct DenseMapInfo<const SwitchSuccWrapper *> { 7507 static const SwitchSuccWrapper *getEmptyKey() { 7508 return static_cast<SwitchSuccWrapper *>( 7509 DenseMapInfo<void *>::getEmptyKey()); 7510 } 7511 static const SwitchSuccWrapper *getTombstoneKey() { 7512 return static_cast<SwitchSuccWrapper *>( 7513 DenseMapInfo<void *>::getTombstoneKey()); 7514 } 7515 static unsigned getHashValue(const SwitchSuccWrapper *SSW) { 7516 BasicBlock *Succ = SSW->Dest; 7517 BranchInst *BI = cast<BranchInst>(Succ->getTerminator()); 7518 assert(BI->isUnconditional() && 7519 "Only supporting unconditional branches for now"); 7520 assert(BI->getNumSuccessors() == 1 && 7521 "Expected unconditional branches to have one successor"); 7522 assert(Succ->size() == 1 && "Expected just a single branch in the BB"); 7523 7524 // Since we assume the BB is just a single BranchInst with a single 7525 // successor, we hash as the BB and the incoming Values of its successor 7526 // PHIs. Initially, we tried to just use the successor BB as the hash, but 7527 // including the incoming PHI values leads to better performance. 7528 // We also tried to build a map from BB -> Succs.IncomingValues ahead of 7529 // time and passing it in SwitchSuccWrapper, but this slowed down the 7530 // average compile time without having any impact on the worst case compile 7531 // time. 7532 BasicBlock *BB = BI->getSuccessor(0); 7533 SmallVector<Value *> PhiValsForBB; 7534 for (PHINode &Phi : BB->phis()) 7535 PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]); 7536 7537 return hash_combine( 7538 BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end())); 7539 } 7540 static bool isEqual(const SwitchSuccWrapper *LHS, 7541 const SwitchSuccWrapper *RHS) { 7542 auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey(); 7543 auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey(); 7544 if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey) 7545 return LHS == RHS; 7546 7547 BasicBlock *A = LHS->Dest; 7548 BasicBlock *B = RHS->Dest; 7549 7550 // FIXME: we checked that the size of A and B are both 1 in 7551 // simplifyDuplicateSwitchArms to make the Case list smaller to 7552 // improve performance. If we decide to support BasicBlocks with more 7553 // than just a single instruction, we need to check that A.size() == 7554 // B.size() here, and we need to check more than just the BranchInsts 7555 // for equality. 7556 7557 BranchInst *ABI = cast<BranchInst>(A->getTerminator()); 7558 BranchInst *BBI = cast<BranchInst>(B->getTerminator()); 7559 assert(ABI->isUnconditional() && BBI->isUnconditional() && 7560 "Only supporting unconditional branches for now"); 7561 if (ABI->getSuccessor(0) != BBI->getSuccessor(0)) 7562 return false; 7563 7564 // Need to check that PHIs in successor have matching values 7565 BasicBlock *Succ = ABI->getSuccessor(0); 7566 for (PHINode &Phi : Succ->phis()) { 7567 auto &PredIVs = (*LHS->PhiPredIVs)[&Phi]; 7568 if (PredIVs[A] != PredIVs[B]) 7569 return false; 7570 } 7571 7572 return true; 7573 } 7574 }; 7575 } // namespace llvm 7576 7577 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI, 7578 DomTreeUpdater *DTU) { 7579 // Build Cases. Skip BBs that are not candidates for simplification. Mark 7580 // PHINodes which need to be processed into PhiPredIVs. We decide to process 7581 // an entire PHI at once after the loop, opposed to calling 7582 // getIncomingValueForBlock inside this loop, since each call to 7583 // getIncomingValueForBlock is O(|Preds|). 7584 SmallPtrSet<PHINode *, 8> Phis; 7585 SmallPtrSet<BasicBlock *, 8> Seen; 7586 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs; 7587 DenseMap<BasicBlock *, SmallVector<unsigned, 4>> BBToSuccessorIndexes; 7588 SmallVector<SwitchSuccWrapper> Cases; 7589 Cases.reserve(SI->getNumSuccessors()); 7590 7591 for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) { 7592 BasicBlock *BB = SI->getSuccessor(I); 7593 7594 // FIXME: Support more than just a single BranchInst. One way we could do 7595 // this is by taking a hashing approach of all insts in BB. 7596 if (BB->size() != 1) 7597 continue; 7598 7599 // FIXME: This case needs some extra care because the terminators other than 7600 // SI need to be updated. For now, consider only backedges to the SI. 7601 if (BB->hasNPredecessorsOrMore(4) || 7602 BB->getUniquePredecessor() != SI->getParent()) 7603 continue; 7604 7605 // FIXME: Relax that the terminator is a BranchInst by checking for equality 7606 // on other kinds of terminators. We decide to only support unconditional 7607 // branches for now for compile time reasons. 7608 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 7609 if (!BI || BI->isConditional()) 7610 continue; 7611 7612 if (Seen.insert(BB).second) { 7613 // Keep track of which PHIs we need as keys in PhiPredIVs below. 7614 for (BasicBlock *Succ : BI->successors()) 7615 for (PHINode &Phi : Succ->phis()) 7616 Phis.insert(&Phi); 7617 // Add the successor only if not previously visited. 7618 Cases.emplace_back(SwitchSuccWrapper{BB, &PhiPredIVs}); 7619 } 7620 7621 BBToSuccessorIndexes[BB].emplace_back(I); 7622 } 7623 7624 // Precompute a data structure to improve performance of isEqual for 7625 // SwitchSuccWrapper. 7626 PhiPredIVs.reserve(Phis.size()); 7627 for (PHINode *Phi : Phis) { 7628 PhiPredIVs[Phi] = 7629 SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues()); 7630 for (auto &IV : Phi->incoming_values()) 7631 PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()}); 7632 } 7633 7634 // Build a set such that if the SwitchSuccWrapper exists in the set and 7635 // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper 7636 // which is not in the set should be replaced with the one in the set. If the 7637 // SwitchSuccWrapper is not in the set, then it should be added to the set so 7638 // other SwitchSuccWrappers can check against it in the same manner. We use 7639 // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass 7640 // around information to isEquality, getHashValue, and when doing the 7641 // replacement with better performance. 7642 DenseSet<const SwitchSuccWrapper *> ReplaceWith; 7643 ReplaceWith.reserve(Cases.size()); 7644 7645 SmallVector<DominatorTree::UpdateType> Updates; 7646 Updates.reserve(ReplaceWith.size()); 7647 bool MadeChange = false; 7648 for (auto &SSW : Cases) { 7649 // SSW is a candidate for simplification. If we find a duplicate BB, 7650 // replace it. 7651 const auto [It, Inserted] = ReplaceWith.insert(&SSW); 7652 if (!Inserted) { 7653 // We know that SI's parent BB no longer dominates the old case successor 7654 // since we are making it dead. 7655 Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest}); 7656 const auto &Successors = BBToSuccessorIndexes.at(SSW.Dest); 7657 for (unsigned Idx : Successors) 7658 SI->setSuccessor(Idx, (*It)->Dest); 7659 MadeChange = true; 7660 } 7661 } 7662 7663 if (DTU) 7664 DTU->applyUpdates(Updates); 7665 7666 return MadeChange; 7667 } 7668 7669 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7670 BasicBlock *BB = SI->getParent(); 7671 7672 if (isValueEqualityComparison(SI)) { 7673 // If we only have one predecessor, and if it is a branch on this value, 7674 // see if that predecessor totally determines the outcome of this switch. 7675 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7676 if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7677 return requestResimplify(); 7678 7679 Value *Cond = SI->getCondition(); 7680 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7681 if (simplifySwitchOnSelect(SI, Select)) 7682 return requestResimplify(); 7683 7684 // If the block only contains the switch, see if we can fold the block 7685 // away into any preds. 7686 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7687 if (foldValueComparisonIntoPredecessors(SI, Builder)) 7688 return requestResimplify(); 7689 } 7690 7691 // Try to transform the switch into an icmp and a branch. 7692 // The conversion from switch to comparison may lose information on 7693 // impossible switch values, so disable it early in the pipeline. 7694 if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder)) 7695 return requestResimplify(); 7696 7697 // Remove unreachable cases. 7698 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7699 return requestResimplify(); 7700 7701 if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU)) 7702 return requestResimplify(); 7703 7704 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7705 return requestResimplify(); 7706 7707 if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI)) 7708 return requestResimplify(); 7709 7710 // The conversion from switch to lookup tables results in difficult-to-analyze 7711 // code and makes pruning branches much harder. This is a problem if the 7712 // switch expression itself can still be restricted as a result of inlining or 7713 // CVP. Therefore, only apply this transformation during late stages of the 7714 // optimisation pipeline. 7715 if (Options.ConvertSwitchToLookupTable && 7716 switchToLookupTable(SI, Builder, DTU, DL, TTI)) 7717 return requestResimplify(); 7718 7719 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7720 return requestResimplify(); 7721 7722 if (reduceSwitchRange(SI, Builder, DL, TTI)) 7723 return requestResimplify(); 7724 7725 if (HoistCommon && 7726 hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts)) 7727 return requestResimplify(); 7728 7729 if (simplifyDuplicateSwitchArms(SI, DTU)) 7730 return requestResimplify(); 7731 7732 return false; 7733 } 7734 7735 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7736 BasicBlock *BB = IBI->getParent(); 7737 bool Changed = false; 7738 7739 // Eliminate redundant destinations. 7740 SmallPtrSet<Value *, 8> Succs; 7741 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7742 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7743 BasicBlock *Dest = IBI->getDestination(i); 7744 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7745 if (!Dest->hasAddressTaken()) 7746 RemovedSuccs.insert(Dest); 7747 Dest->removePredecessor(BB); 7748 IBI->removeDestination(i); 7749 --i; 7750 --e; 7751 Changed = true; 7752 } 7753 } 7754 7755 if (DTU) { 7756 std::vector<DominatorTree::UpdateType> Updates; 7757 Updates.reserve(RemovedSuccs.size()); 7758 for (auto *RemovedSucc : RemovedSuccs) 7759 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7760 DTU->applyUpdates(Updates); 7761 } 7762 7763 if (IBI->getNumDestinations() == 0) { 7764 // If the indirectbr has no successors, change it to unreachable. 7765 new UnreachableInst(IBI->getContext(), IBI->getIterator()); 7766 eraseTerminatorAndDCECond(IBI); 7767 return true; 7768 } 7769 7770 if (IBI->getNumDestinations() == 1) { 7771 // If the indirectbr has one successor, change it to a direct branch. 7772 BranchInst::Create(IBI->getDestination(0), IBI->getIterator()); 7773 eraseTerminatorAndDCECond(IBI); 7774 return true; 7775 } 7776 7777 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7778 if (simplifyIndirectBrOnSelect(IBI, SI)) 7779 return requestResimplify(); 7780 } 7781 return Changed; 7782 } 7783 7784 /// Given an block with only a single landing pad and a unconditional branch 7785 /// try to find another basic block which this one can be merged with. This 7786 /// handles cases where we have multiple invokes with unique landing pads, but 7787 /// a shared handler. 7788 /// 7789 /// We specifically choose to not worry about merging non-empty blocks 7790 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7791 /// practice, the optimizer produces empty landing pad blocks quite frequently 7792 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7793 /// sinking in this file) 7794 /// 7795 /// This is primarily a code size optimization. We need to avoid performing 7796 /// any transform which might inhibit optimization (such as our ability to 7797 /// specialize a particular handler via tail commoning). We do this by not 7798 /// merging any blocks which require us to introduce a phi. Since the same 7799 /// values are flowing through both blocks, we don't lose any ability to 7800 /// specialize. If anything, we make such specialization more likely. 7801 /// 7802 /// TODO - This transformation could remove entries from a phi in the target 7803 /// block when the inputs in the phi are the same for the two blocks being 7804 /// merged. In some cases, this could result in removal of the PHI entirely. 7805 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7806 BasicBlock *BB, DomTreeUpdater *DTU) { 7807 auto Succ = BB->getUniqueSuccessor(); 7808 assert(Succ); 7809 // If there's a phi in the successor block, we'd likely have to introduce 7810 // a phi into the merged landing pad block. 7811 if (isa<PHINode>(*Succ->begin())) 7812 return false; 7813 7814 for (BasicBlock *OtherPred : predecessors(Succ)) { 7815 if (BB == OtherPred) 7816 continue; 7817 BasicBlock::iterator I = OtherPred->begin(); 7818 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7819 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7820 continue; 7821 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7822 ; 7823 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7824 if (!BI2 || !BI2->isIdenticalTo(BI)) 7825 continue; 7826 7827 std::vector<DominatorTree::UpdateType> Updates; 7828 7829 // We've found an identical block. Update our predecessors to take that 7830 // path instead and make ourselves dead. 7831 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7832 for (BasicBlock *Pred : UniquePreds) { 7833 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7834 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7835 "unexpected successor"); 7836 II->setUnwindDest(OtherPred); 7837 if (DTU) { 7838 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7839 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7840 } 7841 } 7842 7843 // The debug info in OtherPred doesn't cover the merged control flow that 7844 // used to go through BB. We need to delete it or update it. 7845 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7846 if (isa<DbgInfoIntrinsic>(Inst)) 7847 Inst.eraseFromParent(); 7848 7849 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7850 for (BasicBlock *Succ : UniqueSuccs) { 7851 Succ->removePredecessor(BB); 7852 if (DTU) 7853 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7854 } 7855 7856 IRBuilder<> Builder(BI); 7857 Builder.CreateUnreachable(); 7858 BI->eraseFromParent(); 7859 if (DTU) 7860 DTU->applyUpdates(Updates); 7861 return true; 7862 } 7863 return false; 7864 } 7865 7866 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7867 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7868 : simplifyCondBranch(Branch, Builder); 7869 } 7870 7871 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7872 IRBuilder<> &Builder) { 7873 BasicBlock *BB = BI->getParent(); 7874 BasicBlock *Succ = BI->getSuccessor(0); 7875 7876 // If the Terminator is the only non-phi instruction, simplify the block. 7877 // If LoopHeader is provided, check if the block or its successor is a loop 7878 // header. (This is for early invocations before loop simplify and 7879 // vectorization to keep canonical loop forms for nested loops. These blocks 7880 // can be eliminated when the pass is invoked later in the back-end.) 7881 // Note that if BB has only one predecessor then we do not introduce new 7882 // backedge, so we can eliminate BB. 7883 bool NeedCanonicalLoop = 7884 Options.NeedCanonicalLoop && 7885 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7886 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7887 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 7888 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7889 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7890 return true; 7891 7892 // If the only instruction in the block is a seteq/setne comparison against a 7893 // constant, try to simplify the block. 7894 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7895 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7896 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7897 ; 7898 if (I->isTerminator() && 7899 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7900 return true; 7901 } 7902 7903 // See if we can merge an empty landing pad block with another which is 7904 // equivalent. 7905 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7906 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7907 ; 7908 if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU)) 7909 return true; 7910 } 7911 7912 // If this basic block is ONLY a compare and a branch, and if a predecessor 7913 // branches to us and our successor, fold the comparison into the 7914 // predecessor and use logical operations to update the incoming value 7915 // for PHI nodes in common successor. 7916 if (Options.SpeculateBlocks && 7917 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7918 Options.BonusInstThreshold)) 7919 return requestResimplify(); 7920 return false; 7921 } 7922 7923 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7924 BasicBlock *PredPred = nullptr; 7925 for (auto *P : predecessors(BB)) { 7926 BasicBlock *PPred = P->getSinglePredecessor(); 7927 if (!PPred || (PredPred && PredPred != PPred)) 7928 return nullptr; 7929 PredPred = PPred; 7930 } 7931 return PredPred; 7932 } 7933 7934 /// Fold the following pattern: 7935 /// bb0: 7936 /// br i1 %cond1, label %bb1, label %bb2 7937 /// bb1: 7938 /// br i1 %cond2, label %bb3, label %bb4 7939 /// bb2: 7940 /// br i1 %cond2, label %bb4, label %bb3 7941 /// bb3: 7942 /// ... 7943 /// bb4: 7944 /// ... 7945 /// into 7946 /// bb0: 7947 /// %cond = xor i1 %cond1, %cond2 7948 /// br i1 %cond, label %bb4, label %bb3 7949 /// bb3: 7950 /// ... 7951 /// bb4: 7952 /// ... 7953 /// NOTE: %cond2 always dominates the terminator of bb0. 7954 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) { 7955 BasicBlock *BB = BI->getParent(); 7956 BasicBlock *BB1 = BI->getSuccessor(0); 7957 BasicBlock *BB2 = BI->getSuccessor(1); 7958 auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) { 7959 if (Succ == BB) 7960 return false; 7961 if (&Succ->front() != Succ->getTerminator()) 7962 return false; 7963 SuccBI = dyn_cast<BranchInst>(Succ->getTerminator()); 7964 if (!SuccBI || !SuccBI->isConditional()) 7965 return false; 7966 BasicBlock *Succ1 = SuccBI->getSuccessor(0); 7967 BasicBlock *Succ2 = SuccBI->getSuccessor(1); 7968 return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB && 7969 !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front()); 7970 }; 7971 BranchInst *BB1BI, *BB2BI; 7972 if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI)) 7973 return false; 7974 7975 if (BB1BI->getCondition() != BB2BI->getCondition() || 7976 BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) || 7977 BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0)) 7978 return false; 7979 7980 BasicBlock *BB3 = BB1BI->getSuccessor(0); 7981 BasicBlock *BB4 = BB1BI->getSuccessor(1); 7982 IRBuilder<> Builder(BI); 7983 BI->setCondition( 7984 Builder.CreateXor(BI->getCondition(), BB1BI->getCondition())); 7985 BB1->removePredecessor(BB); 7986 BI->setSuccessor(0, BB4); 7987 BB2->removePredecessor(BB); 7988 BI->setSuccessor(1, BB3); 7989 if (DTU) { 7990 SmallVector<DominatorTree::UpdateType, 4> Updates; 7991 Updates.push_back({DominatorTree::Delete, BB, BB1}); 7992 Updates.push_back({DominatorTree::Insert, BB, BB4}); 7993 Updates.push_back({DominatorTree::Delete, BB, BB2}); 7994 Updates.push_back({DominatorTree::Insert, BB, BB3}); 7995 7996 DTU->applyUpdates(Updates); 7997 } 7998 bool HasWeight = false; 7999 uint64_t BBTWeight, BBFWeight; 8000 if (extractBranchWeights(*BI, BBTWeight, BBFWeight)) 8001 HasWeight = true; 8002 else 8003 BBTWeight = BBFWeight = 1; 8004 uint64_t BB1TWeight, BB1FWeight; 8005 if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight)) 8006 HasWeight = true; 8007 else 8008 BB1TWeight = BB1FWeight = 1; 8009 uint64_t BB2TWeight, BB2FWeight; 8010 if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight)) 8011 HasWeight = true; 8012 else 8013 BB2TWeight = BB2FWeight = 1; 8014 if (HasWeight) { 8015 uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight, 8016 BBTWeight * BB1TWeight + BBFWeight * BB2FWeight}; 8017 fitWeights(Weights); 8018 setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false); 8019 } 8020 return true; 8021 } 8022 8023 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 8024 assert( 8025 !isa<ConstantInt>(BI->getCondition()) && 8026 BI->getSuccessor(0) != BI->getSuccessor(1) && 8027 "Tautological conditional branch should have been eliminated already."); 8028 8029 BasicBlock *BB = BI->getParent(); 8030 if (!Options.SimplifyCondBranch || 8031 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 8032 return false; 8033 8034 // Conditional branch 8035 if (isValueEqualityComparison(BI)) { 8036 // If we only have one predecessor, and if it is a branch on this value, 8037 // see if that predecessor totally determines the outcome of this 8038 // switch. 8039 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 8040 if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 8041 return requestResimplify(); 8042 8043 // This block must be empty, except for the setcond inst, if it exists. 8044 // Ignore dbg and pseudo intrinsics. 8045 auto I = BB->instructionsWithoutDebug(true).begin(); 8046 if (&*I == BI) { 8047 if (foldValueComparisonIntoPredecessors(BI, Builder)) 8048 return requestResimplify(); 8049 } else if (&*I == cast<Instruction>(BI->getCondition())) { 8050 ++I; 8051 if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder)) 8052 return requestResimplify(); 8053 } 8054 } 8055 8056 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 8057 if (simplifyBranchOnICmpChain(BI, Builder, DL)) 8058 return true; 8059 8060 // If this basic block has dominating predecessor blocks and the dominating 8061 // blocks' conditions imply BI's condition, we know the direction of BI. 8062 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 8063 if (Imp) { 8064 // Turn this into a branch on constant. 8065 auto *OldCond = BI->getCondition(); 8066 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 8067 : ConstantInt::getFalse(BB->getContext()); 8068 BI->setCondition(TorF); 8069 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 8070 return requestResimplify(); 8071 } 8072 8073 // If this basic block is ONLY a compare and a branch, and if a predecessor 8074 // branches to us and one of our successors, fold the comparison into the 8075 // predecessor and use logical operations to pick the right destination. 8076 if (Options.SpeculateBlocks && 8077 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 8078 Options.BonusInstThreshold)) 8079 return requestResimplify(); 8080 8081 // We have a conditional branch to two blocks that are only reachable 8082 // from BI. We know that the condbr dominates the two blocks, so see if 8083 // there is any identical code in the "then" and "else" blocks. If so, we 8084 // can hoist it up to the branching block. 8085 if (BI->getSuccessor(0)->getSinglePredecessor()) { 8086 if (BI->getSuccessor(1)->getSinglePredecessor()) { 8087 if (HoistCommon && 8088 hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts)) 8089 return requestResimplify(); 8090 8091 if (BI && HoistLoadsStoresWithCondFaulting && 8092 Options.HoistLoadsStoresWithCondFaulting && 8093 isProfitableToSpeculate(BI, std::nullopt, TTI)) { 8094 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 8095 auto CanSpeculateConditionalLoadsStores = [&]() { 8096 for (auto *Succ : successors(BB)) { 8097 for (Instruction &I : *Succ) { 8098 if (I.isTerminator()) { 8099 if (I.getNumSuccessors() > 1) 8100 return false; 8101 continue; 8102 } else if (!isSafeCheapLoadStore(&I, TTI) || 8103 SpeculatedConditionalLoadsStores.size() == 8104 HoistLoadsStoresWithCondFaultingThreshold) { 8105 return false; 8106 } 8107 SpeculatedConditionalLoadsStores.push_back(&I); 8108 } 8109 } 8110 return !SpeculatedConditionalLoadsStores.empty(); 8111 }; 8112 8113 if (CanSpeculateConditionalLoadsStores()) { 8114 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, 8115 std::nullopt); 8116 return requestResimplify(); 8117 } 8118 } 8119 } else { 8120 // If Successor #1 has multiple preds, we may be able to conditionally 8121 // execute Successor #0 if it branches to Successor #1. 8122 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 8123 if (Succ0TI->getNumSuccessors() == 1 && 8124 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 8125 if (speculativelyExecuteBB(BI, BI->getSuccessor(0))) 8126 return requestResimplify(); 8127 } 8128 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 8129 // If Successor #0 has multiple preds, we may be able to conditionally 8130 // execute Successor #1 if it branches to Successor #0. 8131 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 8132 if (Succ1TI->getNumSuccessors() == 1 && 8133 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 8134 if (speculativelyExecuteBB(BI, BI->getSuccessor(1))) 8135 return requestResimplify(); 8136 } 8137 8138 // If this is a branch on something for which we know the constant value in 8139 // predecessors (e.g. a phi node in the current block), thread control 8140 // through this block. 8141 if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 8142 return requestResimplify(); 8143 8144 // Scan predecessor blocks for conditional branches. 8145 for (BasicBlock *Pred : predecessors(BB)) 8146 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 8147 if (PBI != BI && PBI->isConditional()) 8148 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 8149 return requestResimplify(); 8150 8151 // Look for diamond patterns. 8152 if (MergeCondStores) 8153 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 8154 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 8155 if (PBI != BI && PBI->isConditional()) 8156 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 8157 return requestResimplify(); 8158 8159 // Look for nested conditional branches. 8160 if (mergeNestedCondBranch(BI, DTU)) 8161 return requestResimplify(); 8162 8163 return false; 8164 } 8165 8166 /// Check if passing a value to an instruction will cause undefined behavior. 8167 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 8168 Constant *C = dyn_cast<Constant>(V); 8169 if (!C) 8170 return false; 8171 8172 if (I->use_empty()) 8173 return false; 8174 8175 if (C->isNullValue() || isa<UndefValue>(C)) { 8176 // Only look at the first use we can handle, avoid hurting compile time with 8177 // long uselists 8178 auto FindUse = llvm::find_if(I->users(), [](auto *U) { 8179 auto *Use = cast<Instruction>(U); 8180 // Change this list when we want to add new instructions. 8181 switch (Use->getOpcode()) { 8182 default: 8183 return false; 8184 case Instruction::GetElementPtr: 8185 case Instruction::Ret: 8186 case Instruction::BitCast: 8187 case Instruction::Load: 8188 case Instruction::Store: 8189 case Instruction::Call: 8190 case Instruction::CallBr: 8191 case Instruction::Invoke: 8192 case Instruction::UDiv: 8193 case Instruction::URem: 8194 // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not 8195 // implemented to avoid code complexity as it is unclear how useful such 8196 // logic is. 8197 case Instruction::SDiv: 8198 case Instruction::SRem: 8199 return true; 8200 } 8201 }); 8202 if (FindUse == I->user_end()) 8203 return false; 8204 auto *Use = cast<Instruction>(*FindUse); 8205 // Bail out if Use is not in the same BB as I or Use == I or Use comes 8206 // before I in the block. The latter two can be the case if Use is a 8207 // PHI node. 8208 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 8209 return false; 8210 8211 // Now make sure that there are no instructions in between that can alter 8212 // control flow (eg. calls) 8213 auto InstrRange = 8214 make_range(std::next(I->getIterator()), Use->getIterator()); 8215 if (any_of(InstrRange, [](Instruction &I) { 8216 return !isGuaranteedToTransferExecutionToSuccessor(&I); 8217 })) 8218 return false; 8219 8220 // Look through GEPs. A load from a GEP derived from NULL is still undefined 8221 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 8222 if (GEP->getPointerOperand() == I) { 8223 // The current base address is null, there are four cases to consider: 8224 // getelementptr (TY, null, 0) -> null 8225 // getelementptr (TY, null, not zero) -> may be modified 8226 // getelementptr inbounds (TY, null, 0) -> null 8227 // getelementptr inbounds (TY, null, not zero) -> poison iff null is 8228 // undefined? 8229 if (!GEP->hasAllZeroIndices() && 8230 (!GEP->isInBounds() || 8231 NullPointerIsDefined(GEP->getFunction(), 8232 GEP->getPointerAddressSpace()))) 8233 PtrValueMayBeModified = true; 8234 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 8235 } 8236 8237 // Look through return. 8238 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) { 8239 bool HasNoUndefAttr = 8240 Ret->getFunction()->hasRetAttribute(Attribute::NoUndef); 8241 // Return undefined to a noundef return value is undefined. 8242 if (isa<UndefValue>(C) && HasNoUndefAttr) 8243 return true; 8244 // Return null to a nonnull+noundef return value is undefined. 8245 if (C->isNullValue() && HasNoUndefAttr && 8246 Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) { 8247 return !PtrValueMayBeModified; 8248 } 8249 } 8250 8251 // Load from null is undefined. 8252 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 8253 if (!LI->isVolatile()) 8254 return !NullPointerIsDefined(LI->getFunction(), 8255 LI->getPointerAddressSpace()); 8256 8257 // Store to null is undefined. 8258 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 8259 if (!SI->isVolatile()) 8260 return (!NullPointerIsDefined(SI->getFunction(), 8261 SI->getPointerAddressSpace())) && 8262 SI->getPointerOperand() == I; 8263 8264 // llvm.assume(false/undef) always triggers immediate UB. 8265 if (auto *Assume = dyn_cast<AssumeInst>(Use)) { 8266 // Ignore assume operand bundles. 8267 if (I == Assume->getArgOperand(0)) 8268 return true; 8269 } 8270 8271 if (auto *CB = dyn_cast<CallBase>(Use)) { 8272 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 8273 return false; 8274 // A call to null is undefined. 8275 if (CB->getCalledOperand() == I) 8276 return true; 8277 8278 if (C->isNullValue()) { 8279 for (const llvm::Use &Arg : CB->args()) 8280 if (Arg == I) { 8281 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8282 if (CB->isPassingUndefUB(ArgIdx) && 8283 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 8284 // Passing null to a nonnnull+noundef argument is undefined. 8285 return !PtrValueMayBeModified; 8286 } 8287 } 8288 } else if (isa<UndefValue>(C)) { 8289 // Passing undef to a noundef argument is undefined. 8290 for (const llvm::Use &Arg : CB->args()) 8291 if (Arg == I) { 8292 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8293 if (CB->isPassingUndefUB(ArgIdx)) { 8294 // Passing undef to a noundef argument is undefined. 8295 return true; 8296 } 8297 } 8298 } 8299 } 8300 // Div/Rem by zero is immediate UB 8301 if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem()) 8302 return true; 8303 } 8304 return false; 8305 } 8306 8307 /// If BB has an incoming value that will always trigger undefined behavior 8308 /// (eg. null pointer dereference), remove the branch leading here. 8309 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 8310 DomTreeUpdater *DTU, 8311 AssumptionCache *AC) { 8312 for (PHINode &PHI : BB->phis()) 8313 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 8314 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 8315 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 8316 Instruction *T = Predecessor->getTerminator(); 8317 IRBuilder<> Builder(T); 8318 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 8319 BB->removePredecessor(Predecessor); 8320 // Turn unconditional branches into unreachables and remove the dead 8321 // destination from conditional branches. 8322 if (BI->isUnconditional()) 8323 Builder.CreateUnreachable(); 8324 else { 8325 // Preserve guarding condition in assume, because it might not be 8326 // inferrable from any dominating condition. 8327 Value *Cond = BI->getCondition(); 8328 CallInst *Assumption; 8329 if (BI->getSuccessor(0) == BB) 8330 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 8331 else 8332 Assumption = Builder.CreateAssumption(Cond); 8333 if (AC) 8334 AC->registerAssumption(cast<AssumeInst>(Assumption)); 8335 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 8336 : BI->getSuccessor(0)); 8337 } 8338 BI->eraseFromParent(); 8339 if (DTU) 8340 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 8341 return true; 8342 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 8343 // Redirect all branches leading to UB into 8344 // a newly created unreachable block. 8345 BasicBlock *Unreachable = BasicBlock::Create( 8346 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 8347 Builder.SetInsertPoint(Unreachable); 8348 // The new block contains only one instruction: Unreachable 8349 Builder.CreateUnreachable(); 8350 for (const auto &Case : SI->cases()) 8351 if (Case.getCaseSuccessor() == BB) { 8352 BB->removePredecessor(Predecessor); 8353 Case.setSuccessor(Unreachable); 8354 } 8355 if (SI->getDefaultDest() == BB) { 8356 BB->removePredecessor(Predecessor); 8357 SI->setDefaultDest(Unreachable); 8358 } 8359 8360 if (DTU) 8361 DTU->applyUpdates( 8362 { { DominatorTree::Insert, Predecessor, Unreachable }, 8363 { DominatorTree::Delete, Predecessor, BB } }); 8364 return true; 8365 } 8366 } 8367 8368 return false; 8369 } 8370 8371 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 8372 bool Changed = false; 8373 8374 assert(BB && BB->getParent() && "Block not embedded in function!"); 8375 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 8376 8377 // Remove basic blocks that have no predecessors (except the entry block)... 8378 // or that just have themself as a predecessor. These are unreachable. 8379 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 8380 BB->getSinglePredecessor() == BB) { 8381 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 8382 DeleteDeadBlock(BB, DTU); 8383 return true; 8384 } 8385 8386 // Check to see if we can constant propagate this terminator instruction 8387 // away... 8388 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 8389 /*TLI=*/nullptr, DTU); 8390 8391 // Check for and eliminate duplicate PHI nodes in this block. 8392 Changed |= EliminateDuplicatePHINodes(BB); 8393 8394 // Check for and remove branches that will always cause undefined behavior. 8395 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 8396 return requestResimplify(); 8397 8398 // Merge basic blocks into their predecessor if there is only one distinct 8399 // pred, and if there is only one distinct successor of the predecessor, and 8400 // if there are no PHI nodes. 8401 if (MergeBlockIntoPredecessor(BB, DTU)) 8402 return true; 8403 8404 if (SinkCommon && Options.SinkCommonInsts) 8405 if (sinkCommonCodeFromPredecessors(BB, DTU) || 8406 mergeCompatibleInvokes(BB, DTU)) { 8407 // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 8408 // so we may now how duplicate PHI's. 8409 // Let's rerun EliminateDuplicatePHINodes() first, 8410 // before foldTwoEntryPHINode() potentially converts them into select's, 8411 // after which we'd need a whole EarlyCSE pass run to cleanup them. 8412 return true; 8413 } 8414 8415 IRBuilder<> Builder(BB); 8416 8417 if (Options.SpeculateBlocks && 8418 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 8419 // If there is a trivial two-entry PHI node in this basic block, and we can 8420 // eliminate it, do so now. 8421 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 8422 if (PN->getNumIncomingValues() == 2) 8423 if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL, 8424 Options.SpeculateUnpredictables)) 8425 return true; 8426 } 8427 8428 Instruction *Terminator = BB->getTerminator(); 8429 Builder.SetInsertPoint(Terminator); 8430 switch (Terminator->getOpcode()) { 8431 case Instruction::Br: 8432 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 8433 break; 8434 case Instruction::Resume: 8435 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 8436 break; 8437 case Instruction::CleanupRet: 8438 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 8439 break; 8440 case Instruction::Switch: 8441 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 8442 break; 8443 case Instruction::Unreachable: 8444 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 8445 break; 8446 case Instruction::IndirectBr: 8447 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 8448 break; 8449 } 8450 8451 return Changed; 8452 } 8453 8454 bool SimplifyCFGOpt::run(BasicBlock *BB) { 8455 bool Changed = false; 8456 8457 // Repeated simplify BB as long as resimplification is requested. 8458 do { 8459 Resimplify = false; 8460 8461 // Perform one round of simplifcation. Resimplify flag will be set if 8462 // another iteration is requested. 8463 Changed |= simplifyOnce(BB); 8464 } while (Resimplify); 8465 8466 return Changed; 8467 } 8468 8469 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 8470 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 8471 ArrayRef<WeakVH> LoopHeaders) { 8472 return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders, 8473 Options) 8474 .run(BB); 8475 } 8476