xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 6f194a6dea4b4067336431e699ea3588417d4b96)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemorySSA.h"
32 #include "llvm/Analysis/MemorySSAUpdater.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97 
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
121     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
122     cl::init(true),
123     cl::desc("Hoist loads/stores if the target supports "
124              "conditional faulting"));
125 
126 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
127     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
128     cl::desc("Control the maximal conditonal load/store that we are willing "
129              "to speculatively execute to eliminate conditional branch "
130              "(default = 6)"));
131 
132 static cl::opt<unsigned>
133     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
134                          cl::init(20),
135                          cl::desc("Allow reordering across at most this many "
136                                   "instructions when hoisting"));
137 
138 static cl::opt<bool>
139     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
140                cl::desc("Sink common instructions down to the end block"));
141 
142 static cl::opt<bool> HoistCondStores(
143     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
144     cl::desc("Hoist conditional stores if an unconditional store precedes"));
145 
146 static cl::opt<bool> MergeCondStores(
147     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
148     cl::desc("Hoist conditional stores even if an unconditional store does not "
149              "precede - hoist multiple conditional stores into a single "
150              "predicated store"));
151 
152 static cl::opt<bool> MergeCondStoresAggressively(
153     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
154     cl::desc("When merging conditional stores, do so even if the resultant "
155              "basic blocks are unlikely to be if-converted as a result"));
156 
157 static cl::opt<bool> SpeculateOneExpensiveInst(
158     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
159     cl::desc("Allow exactly one expensive instruction to be speculatively "
160              "executed"));
161 
162 static cl::opt<unsigned> MaxSpeculationDepth(
163     "max-speculation-depth", cl::Hidden, cl::init(10),
164     cl::desc("Limit maximum recursion depth when calculating costs of "
165              "speculatively executed instructions"));
166 
167 static cl::opt<int>
168     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
169                       cl::init(10),
170                       cl::desc("Max size of a block which is still considered "
171                                "small enough to thread through"));
172 
173 // Two is chosen to allow one negation and a logical combine.
174 static cl::opt<unsigned>
175     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
176                         cl::init(2),
177                         cl::desc("Maximum cost of combining conditions when "
178                                  "folding branches"));
179 
180 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
181     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
182     cl::init(2),
183     cl::desc("Multiplier to apply to threshold when determining whether or not "
184              "to fold branch to common destination when vector operations are "
185              "present"));
186 
187 static cl::opt<bool> EnableMergeCompatibleInvokes(
188     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
189     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
190 
191 static cl::opt<unsigned> MaxSwitchCasesPerResult(
192     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
193     cl::desc("Limit cases to analyze when converting a switch to select"));
194 
195 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
196 STATISTIC(NumLinearMaps,
197           "Number of switch instructions turned into linear mapping");
198 STATISTIC(NumLookupTables,
199           "Number of switch instructions turned into lookup tables");
200 STATISTIC(
201     NumLookupTablesHoles,
202     "Number of switch instructions turned into lookup tables (holes checked)");
203 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
204 STATISTIC(NumFoldValueComparisonIntoPredecessors,
205           "Number of value comparisons folded into predecessor basic blocks");
206 STATISTIC(NumFoldBranchToCommonDest,
207           "Number of branches folded into predecessor basic block");
208 STATISTIC(
209     NumHoistCommonCode,
210     "Number of common instruction 'blocks' hoisted up to the begin block");
211 STATISTIC(NumHoistCommonInstrs,
212           "Number of common instructions hoisted up to the begin block");
213 STATISTIC(NumSinkCommonCode,
214           "Number of common instruction 'blocks' sunk down to the end block");
215 STATISTIC(NumSinkCommonInstrs,
216           "Number of common instructions sunk down to the end block");
217 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
218 STATISTIC(NumInvokes,
219           "Number of invokes with empty resume blocks simplified into calls");
220 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
221 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
222 
223 namespace {
224 
225 // The first field contains the value that the switch produces when a certain
226 // case group is selected, and the second field is a vector containing the
227 // cases composing the case group.
228 using SwitchCaseResultVectorTy =
229     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
230 
231 // The first field contains the phi node that generates a result of the switch
232 // and the second field contains the value generated for a certain case in the
233 // switch for that PHI.
234 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
235 
236 /// ValueEqualityComparisonCase - Represents a case of a switch.
237 struct ValueEqualityComparisonCase {
238   ConstantInt *Value;
239   BasicBlock *Dest;
240 
241   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
242       : Value(Value), Dest(Dest) {}
243 
244   bool operator<(ValueEqualityComparisonCase RHS) const {
245     // Comparing pointers is ok as we only rely on the order for uniquing.
246     return Value < RHS.Value;
247   }
248 
249   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
250 };
251 
252 class SimplifyCFGOpt {
253   const TargetTransformInfo &TTI;
254   DomTreeUpdater *DTU;
255   const DataLayout &DL;
256   ArrayRef<WeakVH> LoopHeaders;
257   const SimplifyCFGOptions &Options;
258   bool Resimplify;
259 
260   Value *isValueEqualityComparison(Instruction *TI);
261   BasicBlock *getValueEqualityComparisonCases(
262       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
263   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
264                                                      BasicBlock *Pred,
265                                                      IRBuilder<> &Builder);
266   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
267                                                     Instruction *PTI,
268                                                     IRBuilder<> &Builder);
269   bool foldValueComparisonIntoPredecessors(Instruction *TI,
270                                            IRBuilder<> &Builder);
271 
272   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
273   bool simplifySingleResume(ResumeInst *RI);
274   bool simplifyCommonResume(ResumeInst *RI);
275   bool simplifyCleanupReturn(CleanupReturnInst *RI);
276   bool simplifyUnreachable(UnreachableInst *UI);
277   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
278   bool simplifyIndirectBr(IndirectBrInst *IBI);
279   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
280   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
281   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
282 
283   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
284                                              IRBuilder<> &Builder);
285 
286   bool hoistCommonCodeFromSuccessors(Instruction *TI, bool EqTermsOnly);
287   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
288       Instruction *TI, Instruction *I1,
289       SmallVectorImpl<Instruction *> &OtherSuccTIs);
290   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
291   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
292                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
293                                   uint32_t TrueWeight, uint32_t FalseWeight);
294   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
295                                  const DataLayout &DL);
296   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
297   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
298   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
299 
300 public:
301   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
302                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
303                  const SimplifyCFGOptions &Opts)
304       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
305     assert((!DTU || !DTU->hasPostDomTree()) &&
306            "SimplifyCFG is not yet capable of maintaining validity of a "
307            "PostDomTree, so don't ask for it.");
308   }
309 
310   bool simplifyOnce(BasicBlock *BB);
311   bool run(BasicBlock *BB);
312 
313   // Helper to set Resimplify and return change indication.
314   bool requestResimplify() {
315     Resimplify = true;
316     return true;
317   }
318 };
319 
320 } // end anonymous namespace
321 
322 /// Return true if all the PHI nodes in the basic block \p BB
323 /// receive compatible (identical) incoming values when coming from
324 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
325 ///
326 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
327 /// is provided, and *both* of the values are present in the set,
328 /// then they are considered equal.
329 static bool incomingValuesAreCompatible(
330     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
331     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
332   assert(IncomingBlocks.size() == 2 &&
333          "Only for a pair of incoming blocks at the time!");
334 
335   // FIXME: it is okay if one of the incoming values is an `undef` value,
336   //        iff the other incoming value is guaranteed to be a non-poison value.
337   // FIXME: it is okay if one of the incoming values is a `poison` value.
338   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
339     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
340     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
341     if (IV0 == IV1)
342       return true;
343     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
344         EquivalenceSet->contains(IV1))
345       return true;
346     return false;
347   });
348 }
349 
350 /// Return true if it is safe to merge these two
351 /// terminator instructions together.
352 static bool
353 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
354                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
355   if (SI1 == SI2)
356     return false; // Can't merge with self!
357 
358   // It is not safe to merge these two switch instructions if they have a common
359   // successor, and if that successor has a PHI node, and if *that* PHI node has
360   // conflicting incoming values from the two switch blocks.
361   BasicBlock *SI1BB = SI1->getParent();
362   BasicBlock *SI2BB = SI2->getParent();
363 
364   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
365   bool Fail = false;
366   for (BasicBlock *Succ : successors(SI2BB)) {
367     if (!SI1Succs.count(Succ))
368       continue;
369     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
370       continue;
371     Fail = true;
372     if (FailBlocks)
373       FailBlocks->insert(Succ);
374     else
375       break;
376   }
377 
378   return !Fail;
379 }
380 
381 /// Update PHI nodes in Succ to indicate that there will now be entries in it
382 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
383 /// will be the same as those coming in from ExistPred, an existing predecessor
384 /// of Succ.
385 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
386                                   BasicBlock *ExistPred,
387                                   MemorySSAUpdater *MSSAU = nullptr) {
388   for (PHINode &PN : Succ->phis())
389     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
390   if (MSSAU)
391     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
392       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
393 }
394 
395 /// Compute an abstract "cost" of speculating the given instruction,
396 /// which is assumed to be safe to speculate. TCC_Free means cheap,
397 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
398 /// expensive.
399 static InstructionCost computeSpeculationCost(const User *I,
400                                               const TargetTransformInfo &TTI) {
401   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
402 }
403 
404 /// If we have a merge point of an "if condition" as accepted above,
405 /// return true if the specified value dominates the block.  We
406 /// don't handle the true generality of domination here, just a special case
407 /// which works well enough for us.
408 ///
409 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
410 /// see if V (which must be an instruction) and its recursive operands
411 /// that do not dominate BB have a combined cost lower than Budget and
412 /// are non-trapping.  If both are true, the instruction is inserted into the
413 /// set and true is returned.
414 ///
415 /// The cost for most non-trapping instructions is defined as 1 except for
416 /// Select whose cost is 2.
417 ///
418 /// After this function returns, Cost is increased by the cost of
419 /// V plus its non-dominating operands.  If that cost is greater than
420 /// Budget, false is returned and Cost is undefined.
421 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
422                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
423                                 InstructionCost &Cost, InstructionCost Budget,
424                                 const TargetTransformInfo &TTI,
425                                 AssumptionCache *AC, unsigned Depth = 0) {
426   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
427   // so limit the recursion depth.
428   // TODO: While this recursion limit does prevent pathological behavior, it
429   // would be better to track visited instructions to avoid cycles.
430   if (Depth == MaxSpeculationDepth)
431     return false;
432 
433   Instruction *I = dyn_cast<Instruction>(V);
434   if (!I) {
435     // Non-instructions dominate all instructions and can be executed
436     // unconditionally.
437     return true;
438   }
439   BasicBlock *PBB = I->getParent();
440 
441   // We don't want to allow weird loops that might have the "if condition" in
442   // the bottom of this block.
443   if (PBB == BB)
444     return false;
445 
446   // If this instruction is defined in a block that contains an unconditional
447   // branch to BB, then it must be in the 'conditional' part of the "if
448   // statement".  If not, it definitely dominates the region.
449   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
450   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
451     return true;
452 
453   // If we have seen this instruction before, don't count it again.
454   if (AggressiveInsts.count(I))
455     return true;
456 
457   // Okay, it looks like the instruction IS in the "condition".  Check to
458   // see if it's a cheap instruction to unconditionally compute, and if it
459   // only uses stuff defined outside of the condition.  If so, hoist it out.
460   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
461     return false;
462 
463   Cost += computeSpeculationCost(I, TTI);
464 
465   // Allow exactly one instruction to be speculated regardless of its cost
466   // (as long as it is safe to do so).
467   // This is intended to flatten the CFG even if the instruction is a division
468   // or other expensive operation. The speculation of an expensive instruction
469   // is expected to be undone in CodeGenPrepare if the speculation has not
470   // enabled further IR optimizations.
471   if (Cost > Budget &&
472       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
473        !Cost.isValid()))
474     return false;
475 
476   // Okay, we can only really hoist these out if their operands do
477   // not take us over the cost threshold.
478   for (Use &Op : I->operands())
479     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
480                              TTI, AC, Depth + 1))
481       return false;
482   // Okay, it's safe to do this!  Remember this instruction.
483   AggressiveInsts.insert(I);
484   return true;
485 }
486 
487 /// Extract ConstantInt from value, looking through IntToPtr
488 /// and PointerNullValue. Return NULL if value is not a constant int.
489 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
490   // Normal constant int.
491   ConstantInt *CI = dyn_cast<ConstantInt>(V);
492   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
493       DL.isNonIntegralPointerType(V->getType()))
494     return CI;
495 
496   // This is some kind of pointer constant. Turn it into a pointer-sized
497   // ConstantInt if possible.
498   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
499 
500   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
501   if (isa<ConstantPointerNull>(V))
502     return ConstantInt::get(PtrTy, 0);
503 
504   // IntToPtr const int.
505   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
506     if (CE->getOpcode() == Instruction::IntToPtr)
507       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
508         // The constant is very likely to have the right type already.
509         if (CI->getType() == PtrTy)
510           return CI;
511         else
512           return cast<ConstantInt>(
513               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
514       }
515   return nullptr;
516 }
517 
518 namespace {
519 
520 /// Given a chain of or (||) or and (&&) comparison of a value against a
521 /// constant, this will try to recover the information required for a switch
522 /// structure.
523 /// It will depth-first traverse the chain of comparison, seeking for patterns
524 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
525 /// representing the different cases for the switch.
526 /// Note that if the chain is composed of '||' it will build the set of elements
527 /// that matches the comparisons (i.e. any of this value validate the chain)
528 /// while for a chain of '&&' it will build the set elements that make the test
529 /// fail.
530 struct ConstantComparesGatherer {
531   const DataLayout &DL;
532 
533   /// Value found for the switch comparison
534   Value *CompValue = nullptr;
535 
536   /// Extra clause to be checked before the switch
537   Value *Extra = nullptr;
538 
539   /// Set of integers to match in switch
540   SmallVector<ConstantInt *, 8> Vals;
541 
542   /// Number of comparisons matched in the and/or chain
543   unsigned UsedICmps = 0;
544 
545   /// Construct and compute the result for the comparison instruction Cond
546   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
547     gather(Cond);
548   }
549 
550   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
551   ConstantComparesGatherer &
552   operator=(const ConstantComparesGatherer &) = delete;
553 
554 private:
555   /// Try to set the current value used for the comparison, it succeeds only if
556   /// it wasn't set before or if the new value is the same as the old one
557   bool setValueOnce(Value *NewVal) {
558     if (CompValue && CompValue != NewVal)
559       return false;
560     CompValue = NewVal;
561     return (CompValue != nullptr);
562   }
563 
564   /// Try to match Instruction "I" as a comparison against a constant and
565   /// populates the array Vals with the set of values that match (or do not
566   /// match depending on isEQ).
567   /// Return false on failure. On success, the Value the comparison matched
568   /// against is placed in CompValue.
569   /// If CompValue is already set, the function is expected to fail if a match
570   /// is found but the value compared to is different.
571   bool matchInstruction(Instruction *I, bool isEQ) {
572     // If this is an icmp against a constant, handle this as one of the cases.
573     ICmpInst *ICI;
574     ConstantInt *C;
575     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
576           (C = getConstantInt(I->getOperand(1), DL)))) {
577       return false;
578     }
579 
580     Value *RHSVal;
581     const APInt *RHSC;
582 
583     // Pattern match a special case
584     // (x & ~2^z) == y --> x == y || x == y|2^z
585     // This undoes a transformation done by instcombine to fuse 2 compares.
586     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
587       // It's a little bit hard to see why the following transformations are
588       // correct. Here is a CVC3 program to verify them for 64-bit values:
589 
590       /*
591          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
592          x    : BITVECTOR(64);
593          y    : BITVECTOR(64);
594          z    : BITVECTOR(64);
595          mask : BITVECTOR(64) = BVSHL(ONE, z);
596          QUERY( (y & ~mask = y) =>
597                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
598          );
599          QUERY( (y |  mask = y) =>
600                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
601          );
602       */
603 
604       // Please note that each pattern must be a dual implication (<--> or
605       // iff). One directional implication can create spurious matches. If the
606       // implication is only one-way, an unsatisfiable condition on the left
607       // side can imply a satisfiable condition on the right side. Dual
608       // implication ensures that satisfiable conditions are transformed to
609       // other satisfiable conditions and unsatisfiable conditions are
610       // transformed to other unsatisfiable conditions.
611 
612       // Here is a concrete example of a unsatisfiable condition on the left
613       // implying a satisfiable condition on the right:
614       //
615       // mask = (1 << z)
616       // (x & ~mask) == y  --> (x == y || x == (y | mask))
617       //
618       // Substituting y = 3, z = 0 yields:
619       // (x & -2) == 3 --> (x == 3 || x == 2)
620 
621       // Pattern match a special case:
622       /*
623         QUERY( (y & ~mask = y) =>
624                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
625         );
626       */
627       if (match(ICI->getOperand(0),
628                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
629         APInt Mask = ~*RHSC;
630         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
631           // If we already have a value for the switch, it has to match!
632           if (!setValueOnce(RHSVal))
633             return false;
634 
635           Vals.push_back(C);
636           Vals.push_back(
637               ConstantInt::get(C->getContext(),
638                                C->getValue() | Mask));
639           UsedICmps++;
640           return true;
641         }
642       }
643 
644       // Pattern match a special case:
645       /*
646         QUERY( (y |  mask = y) =>
647                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
648         );
649       */
650       if (match(ICI->getOperand(0),
651                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
652         APInt Mask = *RHSC;
653         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
654           // If we already have a value for the switch, it has to match!
655           if (!setValueOnce(RHSVal))
656             return false;
657 
658           Vals.push_back(C);
659           Vals.push_back(ConstantInt::get(C->getContext(),
660                                           C->getValue() & ~Mask));
661           UsedICmps++;
662           return true;
663         }
664       }
665 
666       // If we already have a value for the switch, it has to match!
667       if (!setValueOnce(ICI->getOperand(0)))
668         return false;
669 
670       UsedICmps++;
671       Vals.push_back(C);
672       return ICI->getOperand(0);
673     }
674 
675     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
676     ConstantRange Span =
677         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
678 
679     // Shift the range if the compare is fed by an add. This is the range
680     // compare idiom as emitted by instcombine.
681     Value *CandidateVal = I->getOperand(0);
682     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
683       Span = Span.subtract(*RHSC);
684       CandidateVal = RHSVal;
685     }
686 
687     // If this is an and/!= check, then we are looking to build the set of
688     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
689     // x != 0 && x != 1.
690     if (!isEQ)
691       Span = Span.inverse();
692 
693     // If there are a ton of values, we don't want to make a ginormous switch.
694     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
695       return false;
696     }
697 
698     // If we already have a value for the switch, it has to match!
699     if (!setValueOnce(CandidateVal))
700       return false;
701 
702     // Add all values from the range to the set
703     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
704       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
705 
706     UsedICmps++;
707     return true;
708   }
709 
710   /// Given a potentially 'or'd or 'and'd together collection of icmp
711   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
712   /// the value being compared, and stick the list constants into the Vals
713   /// vector.
714   /// One "Extra" case is allowed to differ from the other.
715   void gather(Value *V) {
716     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
717 
718     // Keep a stack (SmallVector for efficiency) for depth-first traversal
719     SmallVector<Value *, 8> DFT;
720     SmallPtrSet<Value *, 8> Visited;
721 
722     // Initialize
723     Visited.insert(V);
724     DFT.push_back(V);
725 
726     while (!DFT.empty()) {
727       V = DFT.pop_back_val();
728 
729       if (Instruction *I = dyn_cast<Instruction>(V)) {
730         // If it is a || (or && depending on isEQ), process the operands.
731         Value *Op0, *Op1;
732         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
733                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
734           if (Visited.insert(Op1).second)
735             DFT.push_back(Op1);
736           if (Visited.insert(Op0).second)
737             DFT.push_back(Op0);
738 
739           continue;
740         }
741 
742         // Try to match the current instruction
743         if (matchInstruction(I, isEQ))
744           // Match succeed, continue the loop
745           continue;
746       }
747 
748       // One element of the sequence of || (or &&) could not be match as a
749       // comparison against the same value as the others.
750       // We allow only one "Extra" case to be checked before the switch
751       if (!Extra) {
752         Extra = V;
753         continue;
754       }
755       // Failed to parse a proper sequence, abort now
756       CompValue = nullptr;
757       break;
758     }
759   }
760 };
761 
762 } // end anonymous namespace
763 
764 static void eraseTerminatorAndDCECond(Instruction *TI,
765                                       MemorySSAUpdater *MSSAU = nullptr) {
766   Instruction *Cond = nullptr;
767   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
768     Cond = dyn_cast<Instruction>(SI->getCondition());
769   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
770     if (BI->isConditional())
771       Cond = dyn_cast<Instruction>(BI->getCondition());
772   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
773     Cond = dyn_cast<Instruction>(IBI->getAddress());
774   }
775 
776   TI->eraseFromParent();
777   if (Cond)
778     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
779 }
780 
781 /// Return true if the specified terminator checks
782 /// to see if a value is equal to constant integer value.
783 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
784   Value *CV = nullptr;
785   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
786     // Do not permit merging of large switch instructions into their
787     // predecessors unless there is only one predecessor.
788     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
789       CV = SI->getCondition();
790   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
791     if (BI->isConditional() && BI->getCondition()->hasOneUse())
792       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
793         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
794           CV = ICI->getOperand(0);
795       }
796 
797   // Unwrap any lossless ptrtoint cast.
798   if (CV) {
799     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
800       Value *Ptr = PTII->getPointerOperand();
801       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
802         CV = Ptr;
803     }
804   }
805   return CV;
806 }
807 
808 /// Given a value comparison instruction,
809 /// decode all of the 'cases' that it represents and return the 'default' block.
810 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
811     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
812   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
813     Cases.reserve(SI->getNumCases());
814     for (auto Case : SI->cases())
815       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
816                                                   Case.getCaseSuccessor()));
817     return SI->getDefaultDest();
818   }
819 
820   BranchInst *BI = cast<BranchInst>(TI);
821   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
822   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
823   Cases.push_back(ValueEqualityComparisonCase(
824       getConstantInt(ICI->getOperand(1), DL), Succ));
825   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
826 }
827 
828 /// Given a vector of bb/value pairs, remove any entries
829 /// in the list that match the specified block.
830 static void
831 eliminateBlockCases(BasicBlock *BB,
832                     std::vector<ValueEqualityComparisonCase> &Cases) {
833   llvm::erase(Cases, BB);
834 }
835 
836 /// Return true if there are any keys in C1 that exist in C2 as well.
837 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
838                           std::vector<ValueEqualityComparisonCase> &C2) {
839   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
840 
841   // Make V1 be smaller than V2.
842   if (V1->size() > V2->size())
843     std::swap(V1, V2);
844 
845   if (V1->empty())
846     return false;
847   if (V1->size() == 1) {
848     // Just scan V2.
849     ConstantInt *TheVal = (*V1)[0].Value;
850     for (const ValueEqualityComparisonCase &VECC : *V2)
851       if (TheVal == VECC.Value)
852         return true;
853   }
854 
855   // Otherwise, just sort both lists and compare element by element.
856   array_pod_sort(V1->begin(), V1->end());
857   array_pod_sort(V2->begin(), V2->end());
858   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
859   while (i1 != e1 && i2 != e2) {
860     if ((*V1)[i1].Value == (*V2)[i2].Value)
861       return true;
862     if ((*V1)[i1].Value < (*V2)[i2].Value)
863       ++i1;
864     else
865       ++i2;
866   }
867   return false;
868 }
869 
870 // Set branch weights on SwitchInst. This sets the metadata if there is at
871 // least one non-zero weight.
872 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
873                              bool IsExpected) {
874   // Check that there is at least one non-zero weight. Otherwise, pass
875   // nullptr to setMetadata which will erase the existing metadata.
876   MDNode *N = nullptr;
877   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
878     N = MDBuilder(SI->getParent()->getContext())
879             .createBranchWeights(Weights, IsExpected);
880   SI->setMetadata(LLVMContext::MD_prof, N);
881 }
882 
883 // Similar to the above, but for branch and select instructions that take
884 // exactly 2 weights.
885 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
886                              uint32_t FalseWeight, bool IsExpected) {
887   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
888   // Check that there is at least one non-zero weight. Otherwise, pass
889   // nullptr to setMetadata which will erase the existing metadata.
890   MDNode *N = nullptr;
891   if (TrueWeight || FalseWeight)
892     N = MDBuilder(I->getParent()->getContext())
893             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
894   I->setMetadata(LLVMContext::MD_prof, N);
895 }
896 
897 /// If TI is known to be a terminator instruction and its block is known to
898 /// only have a single predecessor block, check to see if that predecessor is
899 /// also a value comparison with the same value, and if that comparison
900 /// determines the outcome of this comparison. If so, simplify TI. This does a
901 /// very limited form of jump threading.
902 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
903     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
904   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
905   if (!PredVal)
906     return false; // Not a value comparison in predecessor.
907 
908   Value *ThisVal = isValueEqualityComparison(TI);
909   assert(ThisVal && "This isn't a value comparison!!");
910   if (ThisVal != PredVal)
911     return false; // Different predicates.
912 
913   // TODO: Preserve branch weight metadata, similarly to how
914   // foldValueComparisonIntoPredecessors preserves it.
915 
916   // Find out information about when control will move from Pred to TI's block.
917   std::vector<ValueEqualityComparisonCase> PredCases;
918   BasicBlock *PredDef =
919       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
920   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
921 
922   // Find information about how control leaves this block.
923   std::vector<ValueEqualityComparisonCase> ThisCases;
924   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
925   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
926 
927   // If TI's block is the default block from Pred's comparison, potentially
928   // simplify TI based on this knowledge.
929   if (PredDef == TI->getParent()) {
930     // If we are here, we know that the value is none of those cases listed in
931     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
932     // can simplify TI.
933     if (!valuesOverlap(PredCases, ThisCases))
934       return false;
935 
936     if (isa<BranchInst>(TI)) {
937       // Okay, one of the successors of this condbr is dead.  Convert it to a
938       // uncond br.
939       assert(ThisCases.size() == 1 && "Branch can only have one case!");
940       // Insert the new branch.
941       Instruction *NI = Builder.CreateBr(ThisDef);
942       (void)NI;
943 
944       // Remove PHI node entries for the dead edge.
945       ThisCases[0].Dest->removePredecessor(PredDef);
946 
947       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
948                         << "Through successor TI: " << *TI << "Leaving: " << *NI
949                         << "\n");
950 
951       eraseTerminatorAndDCECond(TI);
952 
953       if (DTU)
954         DTU->applyUpdates(
955             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
956 
957       return true;
958     }
959 
960     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
961     // Okay, TI has cases that are statically dead, prune them away.
962     SmallPtrSet<Constant *, 16> DeadCases;
963     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
964       DeadCases.insert(PredCases[i].Value);
965 
966     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
967                       << "Through successor TI: " << *TI);
968 
969     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
970     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
971       --i;
972       auto *Successor = i->getCaseSuccessor();
973       if (DTU)
974         ++NumPerSuccessorCases[Successor];
975       if (DeadCases.count(i->getCaseValue())) {
976         Successor->removePredecessor(PredDef);
977         SI.removeCase(i);
978         if (DTU)
979           --NumPerSuccessorCases[Successor];
980       }
981     }
982 
983     if (DTU) {
984       std::vector<DominatorTree::UpdateType> Updates;
985       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
986         if (I.second == 0)
987           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
988       DTU->applyUpdates(Updates);
989     }
990 
991     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
992     return true;
993   }
994 
995   // Otherwise, TI's block must correspond to some matched value.  Find out
996   // which value (or set of values) this is.
997   ConstantInt *TIV = nullptr;
998   BasicBlock *TIBB = TI->getParent();
999   for (const auto &[Value, Dest] : PredCases)
1000     if (Dest == TIBB) {
1001       if (TIV)
1002         return false; // Cannot handle multiple values coming to this block.
1003       TIV = Value;
1004     }
1005   assert(TIV && "No edge from pred to succ?");
1006 
1007   // Okay, we found the one constant that our value can be if we get into TI's
1008   // BB.  Find out which successor will unconditionally be branched to.
1009   BasicBlock *TheRealDest = nullptr;
1010   for (const auto &[Value, Dest] : ThisCases)
1011     if (Value == TIV) {
1012       TheRealDest = Dest;
1013       break;
1014     }
1015 
1016   // If not handled by any explicit cases, it is handled by the default case.
1017   if (!TheRealDest)
1018     TheRealDest = ThisDef;
1019 
1020   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1021 
1022   // Remove PHI node entries for dead edges.
1023   BasicBlock *CheckEdge = TheRealDest;
1024   for (BasicBlock *Succ : successors(TIBB))
1025     if (Succ != CheckEdge) {
1026       if (Succ != TheRealDest)
1027         RemovedSuccs.insert(Succ);
1028       Succ->removePredecessor(TIBB);
1029     } else
1030       CheckEdge = nullptr;
1031 
1032   // Insert the new branch.
1033   Instruction *NI = Builder.CreateBr(TheRealDest);
1034   (void)NI;
1035 
1036   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1037                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1038                     << "\n");
1039 
1040   eraseTerminatorAndDCECond(TI);
1041   if (DTU) {
1042     SmallVector<DominatorTree::UpdateType, 2> Updates;
1043     Updates.reserve(RemovedSuccs.size());
1044     for (auto *RemovedSucc : RemovedSuccs)
1045       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1046     DTU->applyUpdates(Updates);
1047   }
1048   return true;
1049 }
1050 
1051 namespace {
1052 
1053 /// This class implements a stable ordering of constant
1054 /// integers that does not depend on their address.  This is important for
1055 /// applications that sort ConstantInt's to ensure uniqueness.
1056 struct ConstantIntOrdering {
1057   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1058     return LHS->getValue().ult(RHS->getValue());
1059   }
1060 };
1061 
1062 } // end anonymous namespace
1063 
1064 static int constantIntSortPredicate(ConstantInt *const *P1,
1065                                     ConstantInt *const *P2) {
1066   const ConstantInt *LHS = *P1;
1067   const ConstantInt *RHS = *P2;
1068   if (LHS == RHS)
1069     return 0;
1070   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1071 }
1072 
1073 /// Get Weights of a given terminator, the default weight is at the front
1074 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1075 /// metadata.
1076 static void getBranchWeights(Instruction *TI,
1077                              SmallVectorImpl<uint64_t> &Weights) {
1078   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1079   assert(MD && "Invalid branch-weight metadata");
1080   extractFromBranchWeightMD64(MD, Weights);
1081 
1082   // If TI is a conditional eq, the default case is the false case,
1083   // and the corresponding branch-weight data is at index 2. We swap the
1084   // default weight to be the first entry.
1085   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1086     assert(Weights.size() == 2);
1087     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1088     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1089       std::swap(Weights.front(), Weights.back());
1090   }
1091 }
1092 
1093 /// Keep halving the weights until all can fit in uint32_t.
1094 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1095   uint64_t Max = *llvm::max_element(Weights);
1096   if (Max > UINT_MAX) {
1097     unsigned Offset = 32 - llvm::countl_zero(Max);
1098     for (uint64_t &I : Weights)
1099       I >>= Offset;
1100   }
1101 }
1102 
1103 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1104     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1105   Instruction *PTI = PredBlock->getTerminator();
1106 
1107   // If we have bonus instructions, clone them into the predecessor block.
1108   // Note that there may be multiple predecessor blocks, so we cannot move
1109   // bonus instructions to a predecessor block.
1110   for (Instruction &BonusInst : *BB) {
1111     if (BonusInst.isTerminator())
1112       continue;
1113 
1114     Instruction *NewBonusInst = BonusInst.clone();
1115 
1116     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1117         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1118       // Unless the instruction has the same !dbg location as the original
1119       // branch, drop it. When we fold the bonus instructions we want to make
1120       // sure we reset their debug locations in order to avoid stepping on
1121       // dead code caused by folding dead branches.
1122       NewBonusInst->setDebugLoc(DebugLoc());
1123     }
1124 
1125     RemapInstruction(NewBonusInst, VMap,
1126                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1127 
1128     // If we speculated an instruction, we need to drop any metadata that may
1129     // result in undefined behavior, as the metadata might have been valid
1130     // only given the branch precondition.
1131     // Similarly strip attributes on call parameters that may cause UB in
1132     // location the call is moved to.
1133     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1134 
1135     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1136     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1137     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1138                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1139 
1140     if (isa<DbgInfoIntrinsic>(BonusInst))
1141       continue;
1142 
1143     NewBonusInst->takeName(&BonusInst);
1144     BonusInst.setName(NewBonusInst->getName() + ".old");
1145     VMap[&BonusInst] = NewBonusInst;
1146 
1147     // Update (liveout) uses of bonus instructions,
1148     // now that the bonus instruction has been cloned into predecessor.
1149     // Note that we expect to be in a block-closed SSA form for this to work!
1150     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1151       auto *UI = cast<Instruction>(U.getUser());
1152       auto *PN = dyn_cast<PHINode>(UI);
1153       if (!PN) {
1154         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1155                "If the user is not a PHI node, then it should be in the same "
1156                "block as, and come after, the original bonus instruction.");
1157         continue; // Keep using the original bonus instruction.
1158       }
1159       // Is this the block-closed SSA form PHI node?
1160       if (PN->getIncomingBlock(U) == BB)
1161         continue; // Great, keep using the original bonus instruction.
1162       // The only other alternative is an "use" when coming from
1163       // the predecessor block - here we should refer to the cloned bonus instr.
1164       assert(PN->getIncomingBlock(U) == PredBlock &&
1165              "Not in block-closed SSA form?");
1166       U.set(NewBonusInst);
1167     }
1168   }
1169 }
1170 
1171 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1172     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1173   BasicBlock *BB = TI->getParent();
1174   BasicBlock *Pred = PTI->getParent();
1175 
1176   SmallVector<DominatorTree::UpdateType, 32> Updates;
1177 
1178   // Figure out which 'cases' to copy from SI to PSI.
1179   std::vector<ValueEqualityComparisonCase> BBCases;
1180   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1181 
1182   std::vector<ValueEqualityComparisonCase> PredCases;
1183   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1184 
1185   // Based on whether the default edge from PTI goes to BB or not, fill in
1186   // PredCases and PredDefault with the new switch cases we would like to
1187   // build.
1188   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1189 
1190   // Update the branch weight metadata along the way
1191   SmallVector<uint64_t, 8> Weights;
1192   bool PredHasWeights = hasBranchWeightMD(*PTI);
1193   bool SuccHasWeights = hasBranchWeightMD(*TI);
1194 
1195   if (PredHasWeights) {
1196     getBranchWeights(PTI, Weights);
1197     // branch-weight metadata is inconsistent here.
1198     if (Weights.size() != 1 + PredCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (SuccHasWeights)
1201     // If there are no predecessor weights but there are successor weights,
1202     // populate Weights with 1, which will later be scaled to the sum of
1203     // successor's weights
1204     Weights.assign(1 + PredCases.size(), 1);
1205 
1206   SmallVector<uint64_t, 8> SuccWeights;
1207   if (SuccHasWeights) {
1208     getBranchWeights(TI, SuccWeights);
1209     // branch-weight metadata is inconsistent here.
1210     if (SuccWeights.size() != 1 + BBCases.size())
1211       PredHasWeights = SuccHasWeights = false;
1212   } else if (PredHasWeights)
1213     SuccWeights.assign(1 + BBCases.size(), 1);
1214 
1215   if (PredDefault == BB) {
1216     // If this is the default destination from PTI, only the edges in TI
1217     // that don't occur in PTI, or that branch to BB will be activated.
1218     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest != BB)
1221         PTIHandled.insert(PredCases[i].Value);
1222       else {
1223         // The default destination is BB, we don't need explicit targets.
1224         std::swap(PredCases[i], PredCases.back());
1225 
1226         if (PredHasWeights || SuccHasWeights) {
1227           // Increase weight for the default case.
1228           Weights[0] += Weights[i + 1];
1229           std::swap(Weights[i + 1], Weights.back());
1230           Weights.pop_back();
1231         }
1232 
1233         PredCases.pop_back();
1234         --i;
1235         --e;
1236       }
1237 
1238     // Reconstruct the new switch statement we will be building.
1239     if (PredDefault != BBDefault) {
1240       PredDefault->removePredecessor(Pred);
1241       if (DTU && PredDefault != BB)
1242         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1243       PredDefault = BBDefault;
1244       ++NewSuccessors[BBDefault];
1245     }
1246 
1247     unsigned CasesFromPred = Weights.size();
1248     uint64_t ValidTotalSuccWeight = 0;
1249     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1250       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1251         PredCases.push_back(BBCases[i]);
1252         ++NewSuccessors[BBCases[i].Dest];
1253         if (SuccHasWeights || PredHasWeights) {
1254           // The default weight is at index 0, so weight for the ith case
1255           // should be at index i+1. Scale the cases from successor by
1256           // PredDefaultWeight (Weights[0]).
1257           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1258           ValidTotalSuccWeight += SuccWeights[i + 1];
1259         }
1260       }
1261 
1262     if (SuccHasWeights || PredHasWeights) {
1263       ValidTotalSuccWeight += SuccWeights[0];
1264       // Scale the cases from predecessor by ValidTotalSuccWeight.
1265       for (unsigned i = 1; i < CasesFromPred; ++i)
1266         Weights[i] *= ValidTotalSuccWeight;
1267       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1268       Weights[0] *= SuccWeights[0];
1269     }
1270   } else {
1271     // If this is not the default destination from PSI, only the edges
1272     // in SI that occur in PSI with a destination of BB will be
1273     // activated.
1274     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1275     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1276     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1277       if (PredCases[i].Dest == BB) {
1278         PTIHandled.insert(PredCases[i].Value);
1279 
1280         if (PredHasWeights || SuccHasWeights) {
1281           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1282           std::swap(Weights[i + 1], Weights.back());
1283           Weights.pop_back();
1284         }
1285 
1286         std::swap(PredCases[i], PredCases.back());
1287         PredCases.pop_back();
1288         --i;
1289         --e;
1290       }
1291 
1292     // Okay, now we know which constants were sent to BB from the
1293     // predecessor.  Figure out where they will all go now.
1294     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1295       if (PTIHandled.count(BBCases[i].Value)) {
1296         // If this is one we are capable of getting...
1297         if (PredHasWeights || SuccHasWeights)
1298           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1299         PredCases.push_back(BBCases[i]);
1300         ++NewSuccessors[BBCases[i].Dest];
1301         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1302       }
1303 
1304     // If there are any constants vectored to BB that TI doesn't handle,
1305     // they must go to the default destination of TI.
1306     for (ConstantInt *I : PTIHandled) {
1307       if (PredHasWeights || SuccHasWeights)
1308         Weights.push_back(WeightsForHandled[I]);
1309       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1310       ++NewSuccessors[BBDefault];
1311     }
1312   }
1313 
1314   // Okay, at this point, we know which new successor Pred will get.  Make
1315   // sure we update the number of entries in the PHI nodes for these
1316   // successors.
1317   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1318   if (DTU) {
1319     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1320     Updates.reserve(Updates.size() + NewSuccessors.size());
1321   }
1322   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1323        NewSuccessors) {
1324     for (auto I : seq(NewSuccessor.second)) {
1325       (void)I;
1326       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1327     }
1328     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1329       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1330   }
1331 
1332   Builder.SetInsertPoint(PTI);
1333   // Convert pointer to int before we switch.
1334   if (CV->getType()->isPointerTy()) {
1335     CV =
1336         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1337   }
1338 
1339   // Now that the successors are updated, create the new Switch instruction.
1340   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1341   NewSI->setDebugLoc(PTI->getDebugLoc());
1342   for (ValueEqualityComparisonCase &V : PredCases)
1343     NewSI->addCase(V.Value, V.Dest);
1344 
1345   if (PredHasWeights || SuccHasWeights) {
1346     // Halve the weights if any of them cannot fit in an uint32_t
1347     fitWeights(Weights);
1348 
1349     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1350 
1351     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1352   }
1353 
1354   eraseTerminatorAndDCECond(PTI);
1355 
1356   // Okay, last check.  If BB is still a successor of PSI, then we must
1357   // have an infinite loop case.  If so, add an infinitely looping block
1358   // to handle the case to preserve the behavior of the code.
1359   BasicBlock *InfLoopBlock = nullptr;
1360   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1361     if (NewSI->getSuccessor(i) == BB) {
1362       if (!InfLoopBlock) {
1363         // Insert it at the end of the function, because it's either code,
1364         // or it won't matter if it's hot. :)
1365         InfLoopBlock =
1366             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1367         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1368         if (DTU)
1369           Updates.push_back(
1370               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1371       }
1372       NewSI->setSuccessor(i, InfLoopBlock);
1373     }
1374 
1375   if (DTU) {
1376     if (InfLoopBlock)
1377       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1378 
1379     Updates.push_back({DominatorTree::Delete, Pred, BB});
1380 
1381     DTU->applyUpdates(Updates);
1382   }
1383 
1384   ++NumFoldValueComparisonIntoPredecessors;
1385   return true;
1386 }
1387 
1388 /// The specified terminator is a value equality comparison instruction
1389 /// (either a switch or a branch on "X == c").
1390 /// See if any of the predecessors of the terminator block are value comparisons
1391 /// on the same value.  If so, and if safe to do so, fold them together.
1392 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1393                                                          IRBuilder<> &Builder) {
1394   BasicBlock *BB = TI->getParent();
1395   Value *CV = isValueEqualityComparison(TI); // CondVal
1396   assert(CV && "Not a comparison?");
1397 
1398   bool Changed = false;
1399 
1400   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1401   while (!Preds.empty()) {
1402     BasicBlock *Pred = Preds.pop_back_val();
1403     Instruction *PTI = Pred->getTerminator();
1404 
1405     // Don't try to fold into itself.
1406     if (Pred == BB)
1407       continue;
1408 
1409     // See if the predecessor is a comparison with the same value.
1410     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1411     if (PCV != CV)
1412       continue;
1413 
1414     SmallSetVector<BasicBlock *, 4> FailBlocks;
1415     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1416       for (auto *Succ : FailBlocks) {
1417         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1418           return false;
1419       }
1420     }
1421 
1422     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1423     Changed = true;
1424   }
1425   return Changed;
1426 }
1427 
1428 // If we would need to insert a select that uses the value of this invoke
1429 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1430 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1431 // select in this case.
1432 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1433                                 Instruction *I1, Instruction *I2) {
1434   for (BasicBlock *Succ : successors(BB1)) {
1435     for (const PHINode &PN : Succ->phis()) {
1436       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1437       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1438       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1439         return false;
1440       }
1441     }
1442   }
1443   return true;
1444 }
1445 
1446 // Get interesting characteristics of instructions that
1447 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1448 // instructions can be reordered across.
1449 enum SkipFlags {
1450   SkipReadMem = 1,
1451   SkipSideEffect = 2,
1452   SkipImplicitControlFlow = 4
1453 };
1454 
1455 static unsigned skippedInstrFlags(Instruction *I) {
1456   unsigned Flags = 0;
1457   if (I->mayReadFromMemory())
1458     Flags |= SkipReadMem;
1459   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1460   // inalloca) across stacksave/stackrestore boundaries.
1461   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1462     Flags |= SkipSideEffect;
1463   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1464     Flags |= SkipImplicitControlFlow;
1465   return Flags;
1466 }
1467 
1468 // Returns true if it is safe to reorder an instruction across preceding
1469 // instructions in a basic block.
1470 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1471   // Don't reorder a store over a load.
1472   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1473     return false;
1474 
1475   // If we have seen an instruction with side effects, it's unsafe to reorder an
1476   // instruction which reads memory or itself has side effects.
1477   if ((Flags & SkipSideEffect) &&
1478       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1479     return false;
1480 
1481   // Reordering across an instruction which does not necessarily transfer
1482   // control to the next instruction is speculation.
1483   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1484     return false;
1485 
1486   // Hoisting of llvm.deoptimize is only legal together with the next return
1487   // instruction, which this pass is not always able to do.
1488   if (auto *CB = dyn_cast<CallBase>(I))
1489     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1490       return false;
1491 
1492   // It's also unsafe/illegal to hoist an instruction above its instruction
1493   // operands
1494   BasicBlock *BB = I->getParent();
1495   for (Value *Op : I->operands()) {
1496     if (auto *J = dyn_cast<Instruction>(Op))
1497       if (J->getParent() == BB)
1498         return false;
1499   }
1500 
1501   return true;
1502 }
1503 
1504 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1505 
1506 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1507 /// instructions \p I1 and \p I2 can and should be hoisted.
1508 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1509                                           const TargetTransformInfo &TTI) {
1510   // If we're going to hoist a call, make sure that the two instructions
1511   // we're commoning/hoisting are both marked with musttail, or neither of
1512   // them is marked as such. Otherwise, we might end up in a situation where
1513   // we hoist from a block where the terminator is a `ret` to a block where
1514   // the terminator is a `br`, and `musttail` calls expect to be followed by
1515   // a return.
1516   auto *C1 = dyn_cast<CallInst>(I1);
1517   auto *C2 = dyn_cast<CallInst>(I2);
1518   if (C1 && C2)
1519     if (C1->isMustTailCall() != C2->isMustTailCall())
1520       return false;
1521 
1522   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1523     return false;
1524 
1525   // If any of the two call sites has nomerge or convergent attribute, stop
1526   // hoisting.
1527   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1528     if (CB1->cannotMerge() || CB1->isConvergent())
1529       return false;
1530   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1531     if (CB2->cannotMerge() || CB2->isConvergent())
1532       return false;
1533 
1534   return true;
1535 }
1536 
1537 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1538 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1539 /// hoistCommonCodeFromSuccessors. e.g. The input:
1540 ///    I1                DVRs: { x, z },
1541 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1542 /// would result in hoisting only DbgVariableRecord x.
1543 static void hoistLockstepIdenticalDbgVariableRecords(
1544     Instruction *TI, Instruction *I1,
1545     SmallVectorImpl<Instruction *> &OtherInsts) {
1546   if (!I1->hasDbgRecords())
1547     return;
1548   using CurrentAndEndIt =
1549       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1550   // Vector of {Current, End} iterators.
1551   SmallVector<CurrentAndEndIt> Itrs;
1552   Itrs.reserve(OtherInsts.size() + 1);
1553   // Helper lambdas for lock-step checks:
1554   // Return true if this Current == End.
1555   auto atEnd = [](const CurrentAndEndIt &Pair) {
1556     return Pair.first == Pair.second;
1557   };
1558   // Return true if all Current are identical.
1559   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1560     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1561                   [&](DbgRecord::self_iterator I) {
1562                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1563                   });
1564   };
1565 
1566   // Collect the iterators.
1567   Itrs.push_back(
1568       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1569   for (Instruction *Other : OtherInsts) {
1570     if (!Other->hasDbgRecords())
1571       return;
1572     Itrs.push_back(
1573         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1574   }
1575 
1576   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1577   // the lock-step DbgRecord are identical, hoist all of them to TI.
1578   // This replicates the dbg.* intrinsic behaviour in
1579   // hoistCommonCodeFromSuccessors.
1580   while (none_of(Itrs, atEnd)) {
1581     bool HoistDVRs = allIdentical(Itrs);
1582     for (CurrentAndEndIt &Pair : Itrs) {
1583       // Increment Current iterator now as we may be about to move the
1584       // DbgRecord.
1585       DbgRecord &DR = *Pair.first++;
1586       if (HoistDVRs) {
1587         DR.removeFromParent();
1588         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1589       }
1590     }
1591   }
1592 }
1593 
1594 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1595                                           const Instruction *I2) {
1596   if (I1->isIdenticalToWhenDefined(I2))
1597     return true;
1598 
1599   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1600     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1601       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1602              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1603              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1604 
1605   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1606     return I1->getOperand(0) == I2->getOperand(1) &&
1607            I1->getOperand(1) == I2->getOperand(0) &&
1608            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1609   }
1610 
1611   return false;
1612 }
1613 
1614 /// If the target supports conditional faulting,
1615 /// we look for the following pattern:
1616 /// \code
1617 ///   BB:
1618 ///     ...
1619 ///     %cond = icmp ult %x, %y
1620 ///     br i1 %cond, label %TrueBB, label %FalseBB
1621 ///   FalseBB:
1622 ///     store i32 1, ptr %q, align 4
1623 ///     ...
1624 ///   TrueBB:
1625 ///     %maskedloadstore = load i32, ptr %b, align 4
1626 ///     store i32 %maskedloadstore, ptr %p, align 4
1627 ///     ...
1628 /// \endcode
1629 ///
1630 /// and transform it into:
1631 ///
1632 /// \code
1633 ///   BB:
1634 ///     ...
1635 ///     %cond = icmp ult %x, %y
1636 ///     %maskedloadstore = cload i32, ptr %b, %cond
1637 ///     cstore i32 %maskedloadstore, ptr %p, %cond
1638 ///     cstore i32 1, ptr %q, ~%cond
1639 ///     br i1 %cond, label %TrueBB, label %FalseBB
1640 ///   FalseBB:
1641 ///     ...
1642 ///   TrueBB:
1643 ///     ...
1644 /// \endcode
1645 ///
1646 /// where cload/cstore are represented by llvm.masked.load/store intrinsics,
1647 /// e.g.
1648 ///
1649 /// \code
1650 ///   %vcond = bitcast i1 %cond to <1 x i1>
1651 ///   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
1652 ///                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
1653 ///   %maskedloadstore = bitcast <1 x i32> %v0 to i32
1654 ///   call void @llvm.masked.store.v1i32.p0
1655 ///                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
1656 ///   %cond.not = xor i1 %cond, true
1657 ///   %vcond.not = bitcast i1 %cond.not to <1 x i>
1658 ///   call void @llvm.masked.store.v1i32.p0
1659 ///              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
1660 /// \endcode
1661 ///
1662 /// So we need to turn hoisted load/store into cload/cstore.
1663 static void hoistConditionalLoadsStores(
1664     BranchInst *BI,
1665     SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores,
1666     bool Invert) {
1667   auto &Context = BI->getParent()->getContext();
1668   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
1669   auto *Cond = BI->getOperand(0);
1670   // Construct the condition if needed.
1671   BasicBlock *BB = BI->getParent();
1672   IRBuilder<> Builder(SpeculatedConditionalLoadsStores.back());
1673   Value *Mask = Builder.CreateBitCast(
1674       Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
1675       VCondTy);
1676   for (auto *I : SpeculatedConditionalLoadsStores) {
1677     IRBuilder<> Builder(I);
1678     // We currently assume conditional faulting load/store is supported for
1679     // scalar types only when creating new instructions. This can be easily
1680     // extended for vector types in the future.
1681     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
1682     auto *Op0 = I->getOperand(0);
1683     CallInst *MaskedLoadStore = nullptr;
1684     if (auto *LI = dyn_cast<LoadInst>(I)) {
1685       // Handle Load.
1686       auto *Ty = I->getType();
1687       PHINode *PN = nullptr;
1688       Value *PassThru = nullptr;
1689       for (User *U : I->users())
1690         if ((PN = dyn_cast<PHINode>(U))) {
1691           PassThru = Builder.CreateBitCast(PN->getIncomingValueForBlock(BB),
1692                                            FixedVectorType::get(Ty, 1));
1693           break;
1694         }
1695       MaskedLoadStore = Builder.CreateMaskedLoad(
1696           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
1697       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
1698       if (PN)
1699         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
1700       I->replaceAllUsesWith(NewLoadStore);
1701     } else {
1702       // Handle Store.
1703       auto *StoredVal =
1704           Builder.CreateBitCast(Op0, FixedVectorType::get(Op0->getType(), 1));
1705       MaskedLoadStore = Builder.CreateMaskedStore(
1706           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
1707     }
1708     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
1709     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
1710     //
1711     // !nonnull, !align : Not support pointer type, no need to keep.
1712     // !range: Load type is changed from scalar to vector, but the metadata on
1713     //         vector specifies a per-element range, so the semantics stay the
1714     //         same. Keep it.
1715     // !annotation: Not impact semantics. Keep it.
1716     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1717       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
1718     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
1719     // FIXME: DIAssignID is not supported for masked store yet.
1720     // (Verifier::visitDIAssignIDMetadata)
1721     at::deleteAssignmentMarkers(I);
1722     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
1723       return Node->getMetadataID() == Metadata::DIAssignIDKind;
1724     });
1725     MaskedLoadStore->copyMetadata(*I);
1726     I->eraseFromParent();
1727   }
1728 }
1729 
1730 static bool isSafeCheapLoadStore(const Instruction *I,
1731                                  const TargetTransformInfo &TTI) {
1732   // Not handle volatile or atomic.
1733   if (auto *L = dyn_cast<LoadInst>(I)) {
1734     if (!L->isSimple())
1735       return false;
1736   } else if (auto *S = dyn_cast<StoreInst>(I)) {
1737     if (!S->isSimple())
1738       return false;
1739   } else
1740     return false;
1741 
1742   // llvm.masked.load/store use i32 for alignment while load/store use i64.
1743   // That's why we have the alignment limitation.
1744   // FIXME: Update the prototype of the intrinsics?
1745   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
1746          getLoadStoreAlignment(I) < Value::MaximumAlignment;
1747 }
1748 
1749 /// Hoist any common code in the successor blocks up into the block. This
1750 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1751 /// given, only perform hoisting in case both blocks only contain a terminator.
1752 /// In that case, only the original BI will be replaced and selects for PHIs are
1753 /// added.
1754 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI,
1755                                                    bool EqTermsOnly) {
1756   // This does very trivial matching, with limited scanning, to find identical
1757   // instructions in the two blocks. In particular, we don't want to get into
1758   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1759   // such, we currently just scan for obviously identical instructions in an
1760   // identical order, possibly separated by the same number of non-identical
1761   // instructions.
1762   BasicBlock *BB = TI->getParent();
1763   unsigned int SuccSize = succ_size(BB);
1764   if (SuccSize < 2)
1765     return false;
1766 
1767   // If either of the blocks has it's address taken, then we can't do this fold,
1768   // because the code we'd hoist would no longer run when we jump into the block
1769   // by it's address.
1770   for (auto *Succ : successors(BB))
1771     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1772       return false;
1773 
1774   // The second of pair is a SkipFlags bitmask.
1775   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1776   SmallVector<SuccIterPair, 8> SuccIterPairs;
1777   for (auto *Succ : successors(BB)) {
1778     BasicBlock::iterator SuccItr = Succ->begin();
1779     if (isa<PHINode>(*SuccItr))
1780       return false;
1781     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1782   }
1783 
1784   // Check if only hoisting terminators is allowed. This does not add new
1785   // instructions to the hoist location.
1786   if (EqTermsOnly) {
1787     // Skip any debug intrinsics, as they are free to hoist.
1788     for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1789       auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1790       if (!INonDbg->isTerminator())
1791         return false;
1792     }
1793     // Now we know that we only need to hoist debug intrinsics and the
1794     // terminator. Let the loop below handle those 2 cases.
1795   }
1796 
1797   // Count how many instructions were not hoisted so far. There's a limit on how
1798   // many instructions we skip, serving as a compilation time control as well as
1799   // preventing excessive increase of life ranges.
1800   unsigned NumSkipped = 0;
1801   // If we find an unreachable instruction at the beginning of a basic block, we
1802   // can still hoist instructions from the rest of the basic blocks.
1803   if (SuccIterPairs.size() > 2) {
1804     erase_if(SuccIterPairs,
1805              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1806     if (SuccIterPairs.size() < 2)
1807       return false;
1808   }
1809 
1810   bool Changed = false;
1811 
1812   for (;;) {
1813     auto *SuccIterPairBegin = SuccIterPairs.begin();
1814     auto &BB1ItrPair = *SuccIterPairBegin++;
1815     auto OtherSuccIterPairRange =
1816         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1817     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1818 
1819     Instruction *I1 = &*BB1ItrPair.first;
1820 
1821     // Skip debug info if it is not identical.
1822     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1823       Instruction *I2 = &*Iter;
1824       return I1->isIdenticalToWhenDefined(I2);
1825     });
1826     if (!AllDbgInstsAreIdentical) {
1827       while (isa<DbgInfoIntrinsic>(I1))
1828         I1 = &*++BB1ItrPair.first;
1829       for (auto &SuccIter : OtherSuccIterRange) {
1830         Instruction *I2 = &*SuccIter;
1831         while (isa<DbgInfoIntrinsic>(I2))
1832           I2 = &*++SuccIter;
1833       }
1834     }
1835 
1836     bool AllInstsAreIdentical = true;
1837     bool HasTerminator = I1->isTerminator();
1838     for (auto &SuccIter : OtherSuccIterRange) {
1839       Instruction *I2 = &*SuccIter;
1840       HasTerminator |= I2->isTerminator();
1841       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1842                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1843         AllInstsAreIdentical = false;
1844     }
1845 
1846     SmallVector<Instruction *, 8> OtherInsts;
1847     for (auto &SuccIter : OtherSuccIterRange)
1848       OtherInsts.push_back(&*SuccIter);
1849 
1850     // If we are hoisting the terminator instruction, don't move one (making a
1851     // broken BB), instead clone it, and remove BI.
1852     if (HasTerminator) {
1853       // Even if BB, which contains only one unreachable instruction, is ignored
1854       // at the beginning of the loop, we can hoist the terminator instruction.
1855       // If any instructions remain in the block, we cannot hoist terminators.
1856       if (NumSkipped || !AllInstsAreIdentical) {
1857         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1858         return Changed;
1859       }
1860 
1861       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1862              Changed;
1863     }
1864 
1865     if (AllInstsAreIdentical) {
1866       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1867       AllInstsAreIdentical =
1868           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1869           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1870             Instruction *I2 = &*Pair.first;
1871             unsigned SkipFlagsBB2 = Pair.second;
1872             // Even if the instructions are identical, it may not
1873             // be safe to hoist them if we have skipped over
1874             // instructions with side effects or their operands
1875             // weren't hoisted.
1876             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1877                    shouldHoistCommonInstructions(I1, I2, TTI);
1878           });
1879     }
1880 
1881     if (AllInstsAreIdentical) {
1882       BB1ItrPair.first++;
1883       if (isa<DbgInfoIntrinsic>(I1)) {
1884         // The debug location is an integral part of a debug info intrinsic
1885         // and can't be separated from it or replaced.  Instead of attempting
1886         // to merge locations, simply hoist both copies of the intrinsic.
1887         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1888         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1889         // and leave any that were not hoisted behind (by calling moveBefore
1890         // rather than moveBeforePreserving).
1891         I1->moveBefore(TI);
1892         for (auto &SuccIter : OtherSuccIterRange) {
1893           auto *I2 = &*SuccIter++;
1894           assert(isa<DbgInfoIntrinsic>(I2));
1895           I2->moveBefore(TI);
1896         }
1897       } else {
1898         // For a normal instruction, we just move one to right before the
1899         // branch, then replace all uses of the other with the first.  Finally,
1900         // we remove the now redundant second instruction.
1901         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1902         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1903         // and leave any that were not hoisted behind (by calling moveBefore
1904         // rather than moveBeforePreserving).
1905         I1->moveBefore(TI);
1906         for (auto &SuccIter : OtherSuccIterRange) {
1907           Instruction *I2 = &*SuccIter++;
1908           assert(I2 != I1);
1909           if (!I2->use_empty())
1910             I2->replaceAllUsesWith(I1);
1911           I1->andIRFlags(I2);
1912           combineMetadataForCSE(I1, I2, true);
1913           // I1 and I2 are being combined into a single instruction.  Its debug
1914           // location is the merged locations of the original instructions.
1915           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1916           I2->eraseFromParent();
1917         }
1918       }
1919       if (!Changed)
1920         NumHoistCommonCode += SuccIterPairs.size();
1921       Changed = true;
1922       NumHoistCommonInstrs += SuccIterPairs.size();
1923     } else {
1924       if (NumSkipped >= HoistCommonSkipLimit) {
1925         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1926         return Changed;
1927       }
1928       // We are about to skip over a pair of non-identical instructions. Record
1929       // if any have characteristics that would prevent reordering instructions
1930       // across them.
1931       for (auto &SuccIterPair : SuccIterPairs) {
1932         Instruction *I = &*SuccIterPair.first++;
1933         SuccIterPair.second |= skippedInstrFlags(I);
1934       }
1935       ++NumSkipped;
1936     }
1937   }
1938 }
1939 
1940 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1941     Instruction *TI, Instruction *I1,
1942     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1943 
1944   auto *BI = dyn_cast<BranchInst>(TI);
1945 
1946   bool Changed = false;
1947   BasicBlock *TIParent = TI->getParent();
1948   BasicBlock *BB1 = I1->getParent();
1949 
1950   // Use only for an if statement.
1951   auto *I2 = *OtherSuccTIs.begin();
1952   auto *BB2 = I2->getParent();
1953   if (BI) {
1954     assert(OtherSuccTIs.size() == 1);
1955     assert(BI->getSuccessor(0) == I1->getParent());
1956     assert(BI->getSuccessor(1) == I2->getParent());
1957   }
1958 
1959   // In the case of an if statement, we try to hoist an invoke.
1960   // FIXME: Can we define a safety predicate for CallBr?
1961   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1962   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1963   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1964     return false;
1965 
1966   // TODO: callbr hoisting currently disabled pending further study.
1967   if (isa<CallBrInst>(I1))
1968     return false;
1969 
1970   for (BasicBlock *Succ : successors(BB1)) {
1971     for (PHINode &PN : Succ->phis()) {
1972       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1973       for (Instruction *OtherSuccTI : OtherSuccTIs) {
1974         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1975         if (BB1V == BB2V)
1976           continue;
1977 
1978         // In the case of an if statement, check for
1979         // passingValueIsAlwaysUndefined here because we would rather eliminate
1980         // undefined control flow then converting it to a select.
1981         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1982             passingValueIsAlwaysUndefined(BB2V, &PN))
1983           return false;
1984       }
1985     }
1986   }
1987 
1988   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
1989   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
1990   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
1991   // Clone the terminator and hoist it into the pred, without any debug info.
1992   Instruction *NT = I1->clone();
1993   NT->insertInto(TIParent, TI->getIterator());
1994   if (!NT->getType()->isVoidTy()) {
1995     I1->replaceAllUsesWith(NT);
1996     for (Instruction *OtherSuccTI : OtherSuccTIs)
1997       OtherSuccTI->replaceAllUsesWith(NT);
1998     NT->takeName(I1);
1999   }
2000   Changed = true;
2001   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
2002 
2003   // Ensure terminator gets a debug location, even an unknown one, in case
2004   // it involves inlinable calls.
2005   SmallVector<DILocation *, 4> Locs;
2006   Locs.push_back(I1->getDebugLoc());
2007   for (auto *OtherSuccTI : OtherSuccTIs)
2008     Locs.push_back(OtherSuccTI->getDebugLoc());
2009   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
2010 
2011   // PHIs created below will adopt NT's merged DebugLoc.
2012   IRBuilder<NoFolder> Builder(NT);
2013 
2014   // In the case of an if statement, hoisting one of the terminators from our
2015   // successor is a great thing. Unfortunately, the successors of the if/else
2016   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
2017   // must agree for all PHI nodes, so we insert select instruction to compute
2018   // the final result.
2019   if (BI) {
2020     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
2021     for (BasicBlock *Succ : successors(BB1)) {
2022       for (PHINode &PN : Succ->phis()) {
2023         Value *BB1V = PN.getIncomingValueForBlock(BB1);
2024         Value *BB2V = PN.getIncomingValueForBlock(BB2);
2025         if (BB1V == BB2V)
2026           continue;
2027 
2028         // These values do not agree.  Insert a select instruction before NT
2029         // that determines the right value.
2030         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
2031         if (!SI) {
2032           // Propagate fast-math-flags from phi node to its replacement select.
2033           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2034           if (isa<FPMathOperator>(PN))
2035             Builder.setFastMathFlags(PN.getFastMathFlags());
2036 
2037           SI = cast<SelectInst>(Builder.CreateSelect(
2038               BI->getCondition(), BB1V, BB2V,
2039               BB1V->getName() + "." + BB2V->getName(), BI));
2040         }
2041 
2042         // Make the PHI node use the select for all incoming values for BB1/BB2
2043         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2044           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
2045             PN.setIncomingValue(i, SI);
2046       }
2047     }
2048   }
2049 
2050   SmallVector<DominatorTree::UpdateType, 4> Updates;
2051 
2052   // Update any PHI nodes in our new successors.
2053   for (BasicBlock *Succ : successors(BB1)) {
2054     addPredecessorToBlock(Succ, TIParent, BB1);
2055     if (DTU)
2056       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
2057   }
2058 
2059   if (DTU)
2060     for (BasicBlock *Succ : successors(TI))
2061       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
2062 
2063   eraseTerminatorAndDCECond(TI);
2064   if (DTU)
2065     DTU->applyUpdates(Updates);
2066   return Changed;
2067 }
2068 
2069 // Check lifetime markers.
2070 static bool isLifeTimeMarker(const Instruction *I) {
2071   if (auto II = dyn_cast<IntrinsicInst>(I)) {
2072     switch (II->getIntrinsicID()) {
2073     default:
2074       break;
2075     case Intrinsic::lifetime_start:
2076     case Intrinsic::lifetime_end:
2077       return true;
2078     }
2079   }
2080   return false;
2081 }
2082 
2083 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
2084 // into variables.
2085 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
2086                                                 int OpIdx) {
2087   // Divide/Remainder by constant is typically much cheaper than by variable.
2088   if (I->isIntDivRem())
2089     return OpIdx != 1;
2090   return !isa<IntrinsicInst>(I);
2091 }
2092 
2093 // All instructions in Insts belong to different blocks that all unconditionally
2094 // branch to a common successor. Analyze each instruction and return true if it
2095 // would be possible to sink them into their successor, creating one common
2096 // instruction instead. For every value that would be required to be provided by
2097 // PHI node (because an operand varies in each input block), add to PHIOperands.
2098 static bool canSinkInstructions(
2099     ArrayRef<Instruction *> Insts,
2100     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
2101   // Prune out obviously bad instructions to move. Each instruction must have
2102   // the same number of uses, and we check later that the uses are consistent.
2103   std::optional<unsigned> NumUses;
2104   for (auto *I : Insts) {
2105     // These instructions may change or break semantics if moved.
2106     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
2107         I->getType()->isTokenTy())
2108       return false;
2109 
2110     // Do not try to sink an instruction in an infinite loop - it can cause
2111     // this algorithm to infinite loop.
2112     if (I->getParent()->getSingleSuccessor() == I->getParent())
2113       return false;
2114 
2115     // Conservatively return false if I is an inline-asm instruction. Sinking
2116     // and merging inline-asm instructions can potentially create arguments
2117     // that cannot satisfy the inline-asm constraints.
2118     // If the instruction has nomerge or convergent attribute, return false.
2119     if (const auto *C = dyn_cast<CallBase>(I))
2120       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
2121         return false;
2122 
2123     if (!NumUses)
2124       NumUses = I->getNumUses();
2125     else if (NumUses != I->getNumUses())
2126       return false;
2127   }
2128 
2129   const Instruction *I0 = Insts.front();
2130   const auto I0MMRA = MMRAMetadata(*I0);
2131   for (auto *I : Insts) {
2132     if (!I->isSameOperationAs(I0))
2133       return false;
2134 
2135     // swifterror pointers can only be used by a load or store; sinking a load
2136     // or store would require introducing a select for the pointer operand,
2137     // which isn't allowed for swifterror pointers.
2138     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2139       return false;
2140     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2141       return false;
2142 
2143     // Treat MMRAs conservatively. This pass can be quite aggressive and
2144     // could drop a lot of MMRAs otherwise.
2145     if (MMRAMetadata(*I) != I0MMRA)
2146       return false;
2147   }
2148 
2149   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2150   // then the other phi operands must match the instructions from Insts. This
2151   // also has to hold true for any phi nodes that would be created as a result
2152   // of sinking. Both of these cases are represented by PhiOperands.
2153   for (const Use &U : I0->uses()) {
2154     auto It = PHIOperands.find(&U);
2155     if (It == PHIOperands.end())
2156       // There may be uses in other blocks when sinking into a loop header.
2157       return false;
2158     if (!equal(Insts, It->second))
2159       return false;
2160   }
2161 
2162   // For calls to be sinkable, they must all be indirect, or have same callee.
2163   // I.e. if we have two direct calls to different callees, we don't want to
2164   // turn that into an indirect call. Likewise, if we have an indirect call,
2165   // and a direct call, we don't actually want to have a single indirect call.
2166   if (isa<CallBase>(I0)) {
2167     auto IsIndirectCall = [](const Instruction *I) {
2168       return cast<CallBase>(I)->isIndirectCall();
2169     };
2170     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2171     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2172     if (HaveIndirectCalls) {
2173       if (!AllCallsAreIndirect)
2174         return false;
2175     } else {
2176       // All callees must be identical.
2177       Value *Callee = nullptr;
2178       for (const Instruction *I : Insts) {
2179         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2180         if (!Callee)
2181           Callee = CurrCallee;
2182         else if (Callee != CurrCallee)
2183           return false;
2184       }
2185     }
2186   }
2187 
2188   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2189     Value *Op = I0->getOperand(OI);
2190     if (Op->getType()->isTokenTy())
2191       // Don't touch any operand of token type.
2192       return false;
2193 
2194     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2195       assert(I->getNumOperands() == I0->getNumOperands());
2196       return I->getOperand(OI) == I0->getOperand(OI);
2197     };
2198     if (!all_of(Insts, SameAsI0)) {
2199       // SROA can't speculate lifetime markers of selects/phis, and the
2200       // backend may handle such lifetimes incorrectly as well (#104776).
2201       // Don't sink lifetimes if it would introduce a phi on the pointer
2202       // argument.
2203       if (isLifeTimeMarker(I0) && OI == 1 &&
2204           any_of(Insts, [](const Instruction *I) {
2205             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2206           }))
2207         return false;
2208 
2209       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2210           !canReplaceOperandWithVariable(I0, OI))
2211         // We can't create a PHI from this GEP.
2212         return false;
2213       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2214       for (auto *I : Insts)
2215         Ops.push_back(I->getOperand(OI));
2216     }
2217   }
2218   return true;
2219 }
2220 
2221 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2222 // instruction of every block in Blocks to their common successor, commoning
2223 // into one instruction.
2224 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2225   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2226 
2227   // canSinkInstructions returning true guarantees that every block has at
2228   // least one non-terminator instruction.
2229   SmallVector<Instruction*,4> Insts;
2230   for (auto *BB : Blocks) {
2231     Instruction *I = BB->getTerminator();
2232     do {
2233       I = I->getPrevNode();
2234     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2235     if (!isa<DbgInfoIntrinsic>(I))
2236       Insts.push_back(I);
2237   }
2238 
2239   // We don't need to do any more checking here; canSinkInstructions should
2240   // have done it all for us.
2241   SmallVector<Value*, 4> NewOperands;
2242   Instruction *I0 = Insts.front();
2243   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2244     // This check is different to that in canSinkInstructions. There, we
2245     // cared about the global view once simplifycfg (and instcombine) have
2246     // completed - it takes into account PHIs that become trivially
2247     // simplifiable.  However here we need a more local view; if an operand
2248     // differs we create a PHI and rely on instcombine to clean up the very
2249     // small mess we may make.
2250     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2251       return I->getOperand(O) != I0->getOperand(O);
2252     });
2253     if (!NeedPHI) {
2254       NewOperands.push_back(I0->getOperand(O));
2255       continue;
2256     }
2257 
2258     // Create a new PHI in the successor block and populate it.
2259     auto *Op = I0->getOperand(O);
2260     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2261     auto *PN =
2262         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2263     PN->insertBefore(BBEnd->begin());
2264     for (auto *I : Insts)
2265       PN->addIncoming(I->getOperand(O), I->getParent());
2266     NewOperands.push_back(PN);
2267   }
2268 
2269   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2270   // and move it to the start of the successor block.
2271   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2272     I0->getOperandUse(O).set(NewOperands[O]);
2273 
2274   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2275 
2276   // Update metadata and IR flags, and merge debug locations.
2277   for (auto *I : Insts)
2278     if (I != I0) {
2279       // The debug location for the "common" instruction is the merged locations
2280       // of all the commoned instructions.  We start with the original location
2281       // of the "common" instruction and iteratively merge each location in the
2282       // loop below.
2283       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2284       // However, as N-way merge for CallInst is rare, so we use simplified API
2285       // instead of using complex API for N-way merge.
2286       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2287       combineMetadataForCSE(I0, I, true);
2288       I0->andIRFlags(I);
2289     }
2290 
2291   for (User *U : make_early_inc_range(I0->users())) {
2292     // canSinkLastInstruction checked that all instructions are only used by
2293     // phi nodes in a way that allows replacing the phi node with the common
2294     // instruction.
2295     auto *PN = cast<PHINode>(U);
2296     PN->replaceAllUsesWith(I0);
2297     PN->eraseFromParent();
2298   }
2299 
2300   // Finally nuke all instructions apart from the common instruction.
2301   for (auto *I : Insts) {
2302     if (I == I0)
2303       continue;
2304     // The remaining uses are debug users, replace those with the common inst.
2305     // In most (all?) cases this just introduces a use-before-def.
2306     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2307     I->replaceAllUsesWith(I0);
2308     I->eraseFromParent();
2309   }
2310 }
2311 
2312 namespace {
2313 
2314   // LockstepReverseIterator - Iterates through instructions
2315   // in a set of blocks in reverse order from the first non-terminator.
2316   // For example (assume all blocks have size n):
2317   //   LockstepReverseIterator I([B1, B2, B3]);
2318   //   *I-- = [B1[n], B2[n], B3[n]];
2319   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2320   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2321   //   ...
2322   class LockstepReverseIterator {
2323     ArrayRef<BasicBlock*> Blocks;
2324     SmallVector<Instruction*,4> Insts;
2325     bool Fail;
2326 
2327   public:
2328     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2329       reset();
2330     }
2331 
2332     void reset() {
2333       Fail = false;
2334       Insts.clear();
2335       for (auto *BB : Blocks) {
2336         Instruction *Inst = BB->getTerminator();
2337         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2338           Inst = Inst->getPrevNode();
2339         if (!Inst) {
2340           // Block wasn't big enough.
2341           Fail = true;
2342           return;
2343         }
2344         Insts.push_back(Inst);
2345       }
2346     }
2347 
2348     bool isValid() const {
2349       return !Fail;
2350     }
2351 
2352     void operator--() {
2353       if (Fail)
2354         return;
2355       for (auto *&Inst : Insts) {
2356         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2357           Inst = Inst->getPrevNode();
2358         // Already at beginning of block.
2359         if (!Inst) {
2360           Fail = true;
2361           return;
2362         }
2363       }
2364     }
2365 
2366     void operator++() {
2367       if (Fail)
2368         return;
2369       for (auto *&Inst : Insts) {
2370         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2371           Inst = Inst->getNextNode();
2372         // Already at end of block.
2373         if (!Inst) {
2374           Fail = true;
2375           return;
2376         }
2377       }
2378     }
2379 
2380     ArrayRef<Instruction*> operator * () const {
2381       return Insts;
2382     }
2383   };
2384 
2385 } // end anonymous namespace
2386 
2387 /// Check whether BB's predecessors end with unconditional branches. If it is
2388 /// true, sink any common code from the predecessors to BB.
2389 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2390                                            DomTreeUpdater *DTU) {
2391   // We support two situations:
2392   //   (1) all incoming arcs are unconditional
2393   //   (2) there are non-unconditional incoming arcs
2394   //
2395   // (2) is very common in switch defaults and
2396   // else-if patterns;
2397   //
2398   //   if (a) f(1);
2399   //   else if (b) f(2);
2400   //
2401   // produces:
2402   //
2403   //       [if]
2404   //      /    \
2405   //    [f(1)] [if]
2406   //      |     | \
2407   //      |     |  |
2408   //      |  [f(2)]|
2409   //       \    | /
2410   //        [ end ]
2411   //
2412   // [end] has two unconditional predecessor arcs and one conditional. The
2413   // conditional refers to the implicit empty 'else' arc. This conditional
2414   // arc can also be caused by an empty default block in a switch.
2415   //
2416   // In this case, we attempt to sink code from all *unconditional* arcs.
2417   // If we can sink instructions from these arcs (determined during the scan
2418   // phase below) we insert a common successor for all unconditional arcs and
2419   // connect that to [end], to enable sinking:
2420   //
2421   //       [if]
2422   //      /    \
2423   //    [x(1)] [if]
2424   //      |     | \
2425   //      |     |  \
2426   //      |  [x(2)] |
2427   //       \   /    |
2428   //   [sink.split] |
2429   //         \     /
2430   //         [ end ]
2431   //
2432   SmallVector<BasicBlock*,4> UnconditionalPreds;
2433   bool HaveNonUnconditionalPredecessors = false;
2434   for (auto *PredBB : predecessors(BB)) {
2435     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2436     if (PredBr && PredBr->isUnconditional())
2437       UnconditionalPreds.push_back(PredBB);
2438     else
2439       HaveNonUnconditionalPredecessors = true;
2440   }
2441   if (UnconditionalPreds.size() < 2)
2442     return false;
2443 
2444   // We take a two-step approach to tail sinking. First we scan from the end of
2445   // each block upwards in lockstep. If the n'th instruction from the end of each
2446   // block can be sunk, those instructions are added to ValuesToSink and we
2447   // carry on. If we can sink an instruction but need to PHI-merge some operands
2448   // (because they're not identical in each instruction) we add these to
2449   // PHIOperands.
2450   // We prepopulate PHIOperands with the phis that already exist in BB.
2451   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2452   for (PHINode &PN : BB->phis()) {
2453     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2454     for (const Use &U : PN.incoming_values())
2455       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2456     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2457     for (BasicBlock *Pred : UnconditionalPreds)
2458       Ops.push_back(*IncomingVals[Pred]);
2459   }
2460 
2461   int ScanIdx = 0;
2462   SmallPtrSet<Value*,4> InstructionsToSink;
2463   LockstepReverseIterator LRI(UnconditionalPreds);
2464   while (LRI.isValid() &&
2465          canSinkInstructions(*LRI, PHIOperands)) {
2466     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2467                       << "\n");
2468     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2469     ++ScanIdx;
2470     --LRI;
2471   }
2472 
2473   // If no instructions can be sunk, early-return.
2474   if (ScanIdx == 0)
2475     return false;
2476 
2477   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2478 
2479   if (!followedByDeoptOrUnreachable) {
2480     // Check whether this is the pointer operand of a load/store.
2481     auto IsMemOperand = [](Use &U) {
2482       auto *I = cast<Instruction>(U.getUser());
2483       if (isa<LoadInst>(I))
2484         return U.getOperandNo() == LoadInst::getPointerOperandIndex();
2485       if (isa<StoreInst>(I))
2486         return U.getOperandNo() == StoreInst::getPointerOperandIndex();
2487       return false;
2488     };
2489 
2490     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2491     // actually sink before encountering instruction that is unprofitable to
2492     // sink?
2493     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2494       unsigned NumPHIInsts = 0;
2495       for (Use &U : (*LRI)[0]->operands()) {
2496         auto It = PHIOperands.find(&U);
2497         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2498               return InstructionsToSink.contains(V);
2499             })) {
2500           ++NumPHIInsts;
2501           // Do not separate a load/store from the gep producing the address.
2502           // The gep can likely be folded into the load/store as an addressing
2503           // mode. Additionally, a load of a gep is easier to analyze than a
2504           // load of a phi.
2505           if (IsMemOperand(U) &&
2506               any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); }))
2507             return false;
2508           // FIXME: this check is overly optimistic. We may end up not sinking
2509           // said instruction, due to the very same profitability check.
2510           // See @creating_too_many_phis in sink-common-code.ll.
2511         }
2512       }
2513       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2514       return NumPHIInsts <= 1;
2515     };
2516 
2517     // We've determined that we are going to sink last ScanIdx instructions,
2518     // and recorded them in InstructionsToSink. Now, some instructions may be
2519     // unprofitable to sink. But that determination depends on the instructions
2520     // that we are going to sink.
2521 
2522     // First, forward scan: find the first instruction unprofitable to sink,
2523     // recording all the ones that are profitable to sink.
2524     // FIXME: would it be better, after we detect that not all are profitable.
2525     // to either record the profitable ones, or erase the unprofitable ones?
2526     // Maybe we need to choose (at runtime) the one that will touch least
2527     // instrs?
2528     LRI.reset();
2529     int Idx = 0;
2530     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2531     while (Idx < ScanIdx) {
2532       if (!ProfitableToSinkInstruction(LRI)) {
2533         // Too many PHIs would be created.
2534         LLVM_DEBUG(
2535             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2536         break;
2537       }
2538       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2539       --LRI;
2540       ++Idx;
2541     }
2542 
2543     // If no instructions can be sunk, early-return.
2544     if (Idx == 0)
2545       return false;
2546 
2547     // Did we determine that (only) some instructions are unprofitable to sink?
2548     if (Idx < ScanIdx) {
2549       // Okay, some instructions are unprofitable.
2550       ScanIdx = Idx;
2551       InstructionsToSink = InstructionsProfitableToSink;
2552 
2553       // But, that may make other instructions unprofitable, too.
2554       // So, do a backward scan, do any earlier instructions become
2555       // unprofitable?
2556       assert(
2557           !ProfitableToSinkInstruction(LRI) &&
2558           "We already know that the last instruction is unprofitable to sink");
2559       ++LRI;
2560       --Idx;
2561       while (Idx >= 0) {
2562         // If we detect that an instruction becomes unprofitable to sink,
2563         // all earlier instructions won't be sunk either,
2564         // so preemptively keep InstructionsProfitableToSink in sync.
2565         // FIXME: is this the most performant approach?
2566         for (auto *I : *LRI)
2567           InstructionsProfitableToSink.erase(I);
2568         if (!ProfitableToSinkInstruction(LRI)) {
2569           // Everything starting with this instruction won't be sunk.
2570           ScanIdx = Idx;
2571           InstructionsToSink = InstructionsProfitableToSink;
2572         }
2573         ++LRI;
2574         --Idx;
2575       }
2576     }
2577 
2578     // If no instructions can be sunk, early-return.
2579     if (ScanIdx == 0)
2580       return false;
2581   }
2582 
2583   bool Changed = false;
2584 
2585   if (HaveNonUnconditionalPredecessors) {
2586     if (!followedByDeoptOrUnreachable) {
2587       // It is always legal to sink common instructions from unconditional
2588       // predecessors. However, if not all predecessors are unconditional,
2589       // this transformation might be pessimizing. So as a rule of thumb,
2590       // don't do it unless we'd sink at least one non-speculatable instruction.
2591       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2592       LRI.reset();
2593       int Idx = 0;
2594       bool Profitable = false;
2595       while (Idx < ScanIdx) {
2596         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2597           Profitable = true;
2598           break;
2599         }
2600         --LRI;
2601         ++Idx;
2602       }
2603       if (!Profitable)
2604         return false;
2605     }
2606 
2607     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2608     // We have a conditional edge and we're going to sink some instructions.
2609     // Insert a new block postdominating all blocks we're going to sink from.
2610     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2611       // Edges couldn't be split.
2612       return false;
2613     Changed = true;
2614   }
2615 
2616   // Now that we've analyzed all potential sinking candidates, perform the
2617   // actual sink. We iteratively sink the last non-terminator of the source
2618   // blocks into their common successor unless doing so would require too
2619   // many PHI instructions to be generated (currently only one PHI is allowed
2620   // per sunk instruction).
2621   //
2622   // We can use InstructionsToSink to discount values needing PHI-merging that will
2623   // actually be sunk in a later iteration. This allows us to be more
2624   // aggressive in what we sink. This does allow a false positive where we
2625   // sink presuming a later value will also be sunk, but stop half way through
2626   // and never actually sink it which means we produce more PHIs than intended.
2627   // This is unlikely in practice though.
2628   int SinkIdx = 0;
2629   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2630     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2631                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2632                       << "\n");
2633 
2634     // Because we've sunk every instruction in turn, the current instruction to
2635     // sink is always at index 0.
2636     LRI.reset();
2637 
2638     sinkLastInstruction(UnconditionalPreds);
2639     NumSinkCommonInstrs++;
2640     Changed = true;
2641   }
2642   if (SinkIdx != 0)
2643     ++NumSinkCommonCode;
2644   return Changed;
2645 }
2646 
2647 namespace {
2648 
2649 struct CompatibleSets {
2650   using SetTy = SmallVector<InvokeInst *, 2>;
2651 
2652   SmallVector<SetTy, 1> Sets;
2653 
2654   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2655 
2656   SetTy &getCompatibleSet(InvokeInst *II);
2657 
2658   void insert(InvokeInst *II);
2659 };
2660 
2661 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2662   // Perform a linear scan over all the existing sets, see if the new `invoke`
2663   // is compatible with any particular set. Since we know that all the `invokes`
2664   // within a set are compatible, only check the first `invoke` in each set.
2665   // WARNING: at worst, this has quadratic complexity.
2666   for (CompatibleSets::SetTy &Set : Sets) {
2667     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2668       return Set;
2669   }
2670 
2671   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2672   return Sets.emplace_back();
2673 }
2674 
2675 void CompatibleSets::insert(InvokeInst *II) {
2676   getCompatibleSet(II).emplace_back(II);
2677 }
2678 
2679 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2680   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2681 
2682   // Can we theoretically merge these `invoke`s?
2683   auto IsIllegalToMerge = [](InvokeInst *II) {
2684     return II->cannotMerge() || II->isInlineAsm();
2685   };
2686   if (any_of(Invokes, IsIllegalToMerge))
2687     return false;
2688 
2689   // Either both `invoke`s must be   direct,
2690   // or     both `invoke`s must be indirect.
2691   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2692   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2693   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2694   if (HaveIndirectCalls) {
2695     if (!AllCallsAreIndirect)
2696       return false;
2697   } else {
2698     // All callees must be identical.
2699     Value *Callee = nullptr;
2700     for (InvokeInst *II : Invokes) {
2701       Value *CurrCallee = II->getCalledOperand();
2702       assert(CurrCallee && "There is always a called operand.");
2703       if (!Callee)
2704         Callee = CurrCallee;
2705       else if (Callee != CurrCallee)
2706         return false;
2707     }
2708   }
2709 
2710   // Either both `invoke`s must not have a normal destination,
2711   // or     both `invoke`s must     have a normal destination,
2712   auto HasNormalDest = [](InvokeInst *II) {
2713     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2714   };
2715   if (any_of(Invokes, HasNormalDest)) {
2716     // Do not merge `invoke` that does not have a normal destination with one
2717     // that does have a normal destination, even though doing so would be legal.
2718     if (!all_of(Invokes, HasNormalDest))
2719       return false;
2720 
2721     // All normal destinations must be identical.
2722     BasicBlock *NormalBB = nullptr;
2723     for (InvokeInst *II : Invokes) {
2724       BasicBlock *CurrNormalBB = II->getNormalDest();
2725       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2726       if (!NormalBB)
2727         NormalBB = CurrNormalBB;
2728       else if (NormalBB != CurrNormalBB)
2729         return false;
2730     }
2731 
2732     // In the normal destination, the incoming values for these two `invoke`s
2733     // must be compatible.
2734     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2735     if (!incomingValuesAreCompatible(
2736             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2737             &EquivalenceSet))
2738       return false;
2739   }
2740 
2741 #ifndef NDEBUG
2742   // All unwind destinations must be identical.
2743   // We know that because we have started from said unwind destination.
2744   BasicBlock *UnwindBB = nullptr;
2745   for (InvokeInst *II : Invokes) {
2746     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2747     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2748     if (!UnwindBB)
2749       UnwindBB = CurrUnwindBB;
2750     else
2751       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2752   }
2753 #endif
2754 
2755   // In the unwind destination, the incoming values for these two `invoke`s
2756   // must be compatible.
2757   if (!incomingValuesAreCompatible(
2758           Invokes.front()->getUnwindDest(),
2759           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2760     return false;
2761 
2762   // Ignoring arguments, these `invoke`s must be identical,
2763   // including operand bundles.
2764   const InvokeInst *II0 = Invokes.front();
2765   for (auto *II : Invokes.drop_front())
2766     if (!II->isSameOperationAs(II0))
2767       return false;
2768 
2769   // Can we theoretically form the data operands for the merged `invoke`?
2770   auto IsIllegalToMergeArguments = [](auto Ops) {
2771     Use &U0 = std::get<0>(Ops);
2772     Use &U1 = std::get<1>(Ops);
2773     if (U0 == U1)
2774       return false;
2775     return U0->getType()->isTokenTy() ||
2776            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2777                                           U0.getOperandNo());
2778   };
2779   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2780   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2781              IsIllegalToMergeArguments))
2782     return false;
2783 
2784   return true;
2785 }
2786 
2787 } // namespace
2788 
2789 // Merge all invokes in the provided set, all of which are compatible
2790 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2791 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2792                                        DomTreeUpdater *DTU) {
2793   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2794 
2795   SmallVector<DominatorTree::UpdateType, 8> Updates;
2796   if (DTU)
2797     Updates.reserve(2 + 3 * Invokes.size());
2798 
2799   bool HasNormalDest =
2800       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2801 
2802   // Clone one of the invokes into a new basic block.
2803   // Since they are all compatible, it doesn't matter which invoke is cloned.
2804   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2805     InvokeInst *II0 = Invokes.front();
2806     BasicBlock *II0BB = II0->getParent();
2807     BasicBlock *InsertBeforeBlock =
2808         II0->getParent()->getIterator()->getNextNode();
2809     Function *Func = II0BB->getParent();
2810     LLVMContext &Ctx = II0->getContext();
2811 
2812     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2813         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2814 
2815     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2816     // NOTE: all invokes have the same attributes, so no handling needed.
2817     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2818 
2819     if (!HasNormalDest) {
2820       // This set does not have a normal destination,
2821       // so just form a new block with unreachable terminator.
2822       BasicBlock *MergedNormalDest = BasicBlock::Create(
2823           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2824       new UnreachableInst(Ctx, MergedNormalDest);
2825       MergedInvoke->setNormalDest(MergedNormalDest);
2826     }
2827 
2828     // The unwind destination, however, remainds identical for all invokes here.
2829 
2830     return MergedInvoke;
2831   }();
2832 
2833   if (DTU) {
2834     // Predecessor blocks that contained these invokes will now branch to
2835     // the new block that contains the merged invoke, ...
2836     for (InvokeInst *II : Invokes)
2837       Updates.push_back(
2838           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2839 
2840     // ... which has the new `unreachable` block as normal destination,
2841     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2842     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2843       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2844                          SuccBBOfMergedInvoke});
2845 
2846     // Since predecessor blocks now unconditionally branch to a new block,
2847     // they no longer branch to their original successors.
2848     for (InvokeInst *II : Invokes)
2849       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2850         Updates.push_back(
2851             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2852   }
2853 
2854   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2855 
2856   // Form the merged operands for the merged invoke.
2857   for (Use &U : MergedInvoke->operands()) {
2858     // Only PHI together the indirect callees and data operands.
2859     if (MergedInvoke->isCallee(&U)) {
2860       if (!IsIndirectCall)
2861         continue;
2862     } else if (!MergedInvoke->isDataOperand(&U))
2863       continue;
2864 
2865     // Don't create trivial PHI's with all-identical incoming values.
2866     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2867       return II->getOperand(U.getOperandNo()) != U.get();
2868     });
2869     if (!NeedPHI)
2870       continue;
2871 
2872     // Form a PHI out of all the data ops under this index.
2873     PHINode *PN = PHINode::Create(
2874         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2875     for (InvokeInst *II : Invokes)
2876       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2877 
2878     U.set(PN);
2879   }
2880 
2881   // We've ensured that each PHI node has compatible (identical) incoming values
2882   // when coming from each of the `invoke`s in the current merge set,
2883   // so update the PHI nodes accordingly.
2884   for (BasicBlock *Succ : successors(MergedInvoke))
2885     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2886                           /*ExistPred=*/Invokes.front()->getParent());
2887 
2888   // And finally, replace the original `invoke`s with an unconditional branch
2889   // to the block with the merged `invoke`. Also, give that merged `invoke`
2890   // the merged debugloc of all the original `invoke`s.
2891   DILocation *MergedDebugLoc = nullptr;
2892   for (InvokeInst *II : Invokes) {
2893     // Compute the debug location common to all the original `invoke`s.
2894     if (!MergedDebugLoc)
2895       MergedDebugLoc = II->getDebugLoc();
2896     else
2897       MergedDebugLoc =
2898           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2899 
2900     // And replace the old `invoke` with an unconditionally branch
2901     // to the block with the merged `invoke`.
2902     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2903       OrigSuccBB->removePredecessor(II->getParent());
2904     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2905     II->replaceAllUsesWith(MergedInvoke);
2906     II->eraseFromParent();
2907     ++NumInvokesMerged;
2908   }
2909   MergedInvoke->setDebugLoc(MergedDebugLoc);
2910   ++NumInvokeSetsFormed;
2911 
2912   if (DTU)
2913     DTU->applyUpdates(Updates);
2914 }
2915 
2916 /// If this block is a `landingpad` exception handling block, categorize all
2917 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2918 /// being "mergeable" together, and then merge invokes in each set together.
2919 ///
2920 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2921 ///          [...]        [...]
2922 ///            |            |
2923 ///        [invoke0]    [invoke1]
2924 ///           / \          / \
2925 ///     [cont0] [landingpad] [cont1]
2926 /// to:
2927 ///      [...] [...]
2928 ///          \ /
2929 ///       [invoke]
2930 ///          / \
2931 ///     [cont] [landingpad]
2932 ///
2933 /// But of course we can only do that if the invokes share the `landingpad`,
2934 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2935 /// and the invoked functions are "compatible".
2936 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2937   if (!EnableMergeCompatibleInvokes)
2938     return false;
2939 
2940   bool Changed = false;
2941 
2942   // FIXME: generalize to all exception handling blocks?
2943   if (!BB->isLandingPad())
2944     return Changed;
2945 
2946   CompatibleSets Grouper;
2947 
2948   // Record all the predecessors of this `landingpad`. As per verifier,
2949   // the only allowed predecessor is the unwind edge of an `invoke`.
2950   // We want to group "compatible" `invokes` into the same set to be merged.
2951   for (BasicBlock *PredBB : predecessors(BB))
2952     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2953 
2954   // And now, merge `invoke`s that were grouped togeter.
2955   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2956     if (Invokes.size() < 2)
2957       continue;
2958     Changed = true;
2959     mergeCompatibleInvokesImpl(Invokes, DTU);
2960   }
2961 
2962   return Changed;
2963 }
2964 
2965 namespace {
2966 /// Track ephemeral values, which should be ignored for cost-modelling
2967 /// purposes. Requires walking instructions in reverse order.
2968 class EphemeralValueTracker {
2969   SmallPtrSet<const Instruction *, 32> EphValues;
2970 
2971   bool isEphemeral(const Instruction *I) {
2972     if (isa<AssumeInst>(I))
2973       return true;
2974     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2975            all_of(I->users(), [&](const User *U) {
2976              return EphValues.count(cast<Instruction>(U));
2977            });
2978   }
2979 
2980 public:
2981   bool track(const Instruction *I) {
2982     if (isEphemeral(I)) {
2983       EphValues.insert(I);
2984       return true;
2985     }
2986     return false;
2987   }
2988 
2989   bool contains(const Instruction *I) const { return EphValues.contains(I); }
2990 };
2991 } // namespace
2992 
2993 /// Determine if we can hoist sink a sole store instruction out of a
2994 /// conditional block.
2995 ///
2996 /// We are looking for code like the following:
2997 ///   BrBB:
2998 ///     store i32 %add, i32* %arrayidx2
2999 ///     ... // No other stores or function calls (we could be calling a memory
3000 ///     ... // function).
3001 ///     %cmp = icmp ult %x, %y
3002 ///     br i1 %cmp, label %EndBB, label %ThenBB
3003 ///   ThenBB:
3004 ///     store i32 %add5, i32* %arrayidx2
3005 ///     br label EndBB
3006 ///   EndBB:
3007 ///     ...
3008 ///   We are going to transform this into:
3009 ///   BrBB:
3010 ///     store i32 %add, i32* %arrayidx2
3011 ///     ... //
3012 ///     %cmp = icmp ult %x, %y
3013 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
3014 ///     store i32 %add.add5, i32* %arrayidx2
3015 ///     ...
3016 ///
3017 /// \return The pointer to the value of the previous store if the store can be
3018 ///         hoisted into the predecessor block. 0 otherwise.
3019 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
3020                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
3021   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
3022   if (!StoreToHoist)
3023     return nullptr;
3024 
3025   // Volatile or atomic.
3026   if (!StoreToHoist->isSimple())
3027     return nullptr;
3028 
3029   Value *StorePtr = StoreToHoist->getPointerOperand();
3030   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
3031 
3032   // Look for a store to the same pointer in BrBB.
3033   unsigned MaxNumInstToLookAt = 9;
3034   // Skip pseudo probe intrinsic calls which are not really killing any memory
3035   // accesses.
3036   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
3037     if (!MaxNumInstToLookAt)
3038       break;
3039     --MaxNumInstToLookAt;
3040 
3041     // Could be calling an instruction that affects memory like free().
3042     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
3043       return nullptr;
3044 
3045     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
3046       // Found the previous store to same location and type. Make sure it is
3047       // simple, to avoid introducing a spurious non-atomic write after an
3048       // atomic write.
3049       if (SI->getPointerOperand() == StorePtr &&
3050           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
3051           SI->getAlign() >= StoreToHoist->getAlign())
3052         // Found the previous store, return its value operand.
3053         return SI->getValueOperand();
3054       return nullptr; // Unknown store.
3055     }
3056 
3057     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
3058       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
3059           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
3060         // Local objects (created by an `alloca` instruction) are always
3061         // writable, so once we are past a read from a location it is valid to
3062         // also write to that same location.
3063         // If the address of the local object never escapes the function, that
3064         // means it's never concurrently read or written, hence moving the store
3065         // from under the condition will not introduce a data race.
3066         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
3067         if (AI && !PointerMayBeCaptured(AI, false, true))
3068           // Found a previous load, return it.
3069           return LI;
3070       }
3071       // The load didn't work out, but we may still find a store.
3072     }
3073   }
3074 
3075   return nullptr;
3076 }
3077 
3078 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
3079 /// converted to selects.
3080 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
3081                                            BasicBlock *EndBB,
3082                                            unsigned &SpeculatedInstructions,
3083                                            InstructionCost &Cost,
3084                                            const TargetTransformInfo &TTI) {
3085   TargetTransformInfo::TargetCostKind CostKind =
3086     BB->getParent()->hasMinSize()
3087     ? TargetTransformInfo::TCK_CodeSize
3088     : TargetTransformInfo::TCK_SizeAndLatency;
3089 
3090   bool HaveRewritablePHIs = false;
3091   for (PHINode &PN : EndBB->phis()) {
3092     Value *OrigV = PN.getIncomingValueForBlock(BB);
3093     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
3094 
3095     // FIXME: Try to remove some of the duplication with
3096     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
3097     if (ThenV == OrigV)
3098       continue;
3099 
3100     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
3101                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
3102 
3103     // Don't convert to selects if we could remove undefined behavior instead.
3104     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
3105         passingValueIsAlwaysUndefined(ThenV, &PN))
3106       return false;
3107 
3108     HaveRewritablePHIs = true;
3109     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
3110     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
3111     if (!OrigCE && !ThenCE)
3112       continue; // Known cheap (FIXME: Maybe not true for aggregates).
3113 
3114     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
3115     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
3116     InstructionCost MaxCost =
3117         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3118     if (OrigCost + ThenCost > MaxCost)
3119       return false;
3120 
3121     // Account for the cost of an unfolded ConstantExpr which could end up
3122     // getting expanded into Instructions.
3123     // FIXME: This doesn't account for how many operations are combined in the
3124     // constant expression.
3125     ++SpeculatedInstructions;
3126     if (SpeculatedInstructions > 1)
3127       return false;
3128   }
3129 
3130   return HaveRewritablePHIs;
3131 }
3132 
3133 static bool isProfitableToSpeculate(const BranchInst *BI, bool Invert,
3134                                     const TargetTransformInfo &TTI) {
3135   // If the branch is non-unpredictable, and is predicted to *not* branch to
3136   // the `then` block, then avoid speculating it.
3137   if (BI->getMetadata(LLVMContext::MD_unpredictable))
3138     return true;
3139 
3140   uint64_t TWeight, FWeight;
3141   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
3142     return true;
3143 
3144   uint64_t EndWeight = Invert ? TWeight : FWeight;
3145   BranchProbability BIEndProb =
3146       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
3147   BranchProbability Likely = TTI.getPredictableBranchThreshold();
3148   return BIEndProb < Likely;
3149 }
3150 
3151 /// Speculate a conditional basic block flattening the CFG.
3152 ///
3153 /// Note that this is a very risky transform currently. Speculating
3154 /// instructions like this is most often not desirable. Instead, there is an MI
3155 /// pass which can do it with full awareness of the resource constraints.
3156 /// However, some cases are "obvious" and we should do directly. An example of
3157 /// this is speculating a single, reasonably cheap instruction.
3158 ///
3159 /// There is only one distinct advantage to flattening the CFG at the IR level:
3160 /// it makes very common but simplistic optimizations such as are common in
3161 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3162 /// modeling their effects with easier to reason about SSA value graphs.
3163 ///
3164 ///
3165 /// An illustration of this transform is turning this IR:
3166 /// \code
3167 ///   BB:
3168 ///     %cmp = icmp ult %x, %y
3169 ///     br i1 %cmp, label %EndBB, label %ThenBB
3170 ///   ThenBB:
3171 ///     %sub = sub %x, %y
3172 ///     br label BB2
3173 ///   EndBB:
3174 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3175 ///     ...
3176 /// \endcode
3177 ///
3178 /// Into this IR:
3179 /// \code
3180 ///   BB:
3181 ///     %cmp = icmp ult %x, %y
3182 ///     %sub = sub %x, %y
3183 ///     %cond = select i1 %cmp, 0, %sub
3184 ///     ...
3185 /// \endcode
3186 ///
3187 /// \returns true if the conditional block is removed.
3188 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3189                                             BasicBlock *ThenBB) {
3190   if (!Options.SpeculateBlocks)
3191     return false;
3192 
3193   // Be conservative for now. FP select instruction can often be expensive.
3194   Value *BrCond = BI->getCondition();
3195   if (isa<FCmpInst>(BrCond))
3196     return false;
3197 
3198   BasicBlock *BB = BI->getParent();
3199   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3200   InstructionCost Budget =
3201       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3202 
3203   // If ThenBB is actually on the false edge of the conditional branch, remember
3204   // to swap the select operands later.
3205   bool Invert = false;
3206   if (ThenBB != BI->getSuccessor(0)) {
3207     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3208     Invert = true;
3209   }
3210   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3211 
3212   if (!isProfitableToSpeculate(BI, Invert, TTI))
3213     return false;
3214 
3215   // Keep a count of how many times instructions are used within ThenBB when
3216   // they are candidates for sinking into ThenBB. Specifically:
3217   // - They are defined in BB, and
3218   // - They have no side effects, and
3219   // - All of their uses are in ThenBB.
3220   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3221 
3222   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3223 
3224   unsigned SpeculatedInstructions = 0;
3225   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3226                           Options.HoistLoadsStoresWithCondFaulting;
3227   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3228   Value *SpeculatedStoreValue = nullptr;
3229   StoreInst *SpeculatedStore = nullptr;
3230   EphemeralValueTracker EphTracker;
3231   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3232     // Skip debug info.
3233     if (isa<DbgInfoIntrinsic>(I)) {
3234       SpeculatedDbgIntrinsics.push_back(&I);
3235       continue;
3236     }
3237 
3238     // Skip pseudo probes. The consequence is we lose track of the branch
3239     // probability for ThenBB, which is fine since the optimization here takes
3240     // place regardless of the branch probability.
3241     if (isa<PseudoProbeInst>(I)) {
3242       // The probe should be deleted so that it will not be over-counted when
3243       // the samples collected on the non-conditional path are counted towards
3244       // the conditional path. We leave it for the counts inference algorithm to
3245       // figure out a proper count for an unknown probe.
3246       SpeculatedDbgIntrinsics.push_back(&I);
3247       continue;
3248     }
3249 
3250     // Ignore ephemeral values, they will be dropped by the transform.
3251     if (EphTracker.track(&I))
3252       continue;
3253 
3254     // Only speculatively execute a single instruction (not counting the
3255     // terminator) for now.
3256     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3257                                 isSafeCheapLoadStore(&I, TTI) &&
3258                                 SpeculatedConditionalLoadsStores.size() <
3259                                     HoistLoadsStoresWithCondFaultingThreshold;
3260     // Not count load/store into cost if target supports conditional faulting
3261     // b/c it's cheap to speculate it.
3262     if (IsSafeCheapLoadStore)
3263       SpeculatedConditionalLoadsStores.push_back(&I);
3264     else
3265       ++SpeculatedInstructions;
3266 
3267     if (SpeculatedInstructions > 1)
3268       return false;
3269 
3270     // Don't hoist the instruction if it's unsafe or expensive.
3271     if (!IsSafeCheapLoadStore &&
3272         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3273         !(HoistCondStores && !SpeculatedStoreValue &&
3274           (SpeculatedStoreValue =
3275                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3276       return false;
3277     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3278         computeSpeculationCost(&I, TTI) >
3279             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3280       return false;
3281 
3282     // Store the store speculation candidate.
3283     if (!SpeculatedStore && SpeculatedStoreValue)
3284       SpeculatedStore = cast<StoreInst>(&I);
3285 
3286     // Do not hoist the instruction if any of its operands are defined but not
3287     // used in BB. The transformation will prevent the operand from
3288     // being sunk into the use block.
3289     for (Use &Op : I.operands()) {
3290       Instruction *OpI = dyn_cast<Instruction>(Op);
3291       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3292         continue; // Not a candidate for sinking.
3293 
3294       ++SinkCandidateUseCounts[OpI];
3295     }
3296   }
3297 
3298   // Consider any sink candidates which are only used in ThenBB as costs for
3299   // speculation. Note, while we iterate over a DenseMap here, we are summing
3300   // and so iteration order isn't significant.
3301   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3302     if (Inst->hasNUses(Count)) {
3303       ++SpeculatedInstructions;
3304       if (SpeculatedInstructions > 1)
3305         return false;
3306     }
3307 
3308   // Check that we can insert the selects and that it's not too expensive to do
3309   // so.
3310   bool Convert =
3311       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3312   InstructionCost Cost = 0;
3313   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3314                                             SpeculatedInstructions, Cost, TTI);
3315   if (!Convert || Cost > Budget)
3316     return false;
3317 
3318   // If we get here, we can hoist the instruction and if-convert.
3319   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3320 
3321   // Insert a select of the value of the speculated store.
3322   if (SpeculatedStoreValue) {
3323     IRBuilder<NoFolder> Builder(BI);
3324     Value *OrigV = SpeculatedStore->getValueOperand();
3325     Value *TrueV = SpeculatedStore->getValueOperand();
3326     Value *FalseV = SpeculatedStoreValue;
3327     if (Invert)
3328       std::swap(TrueV, FalseV);
3329     Value *S = Builder.CreateSelect(
3330         BrCond, TrueV, FalseV, "spec.store.select", BI);
3331     SpeculatedStore->setOperand(0, S);
3332     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3333                                          SpeculatedStore->getDebugLoc());
3334     // The value stored is still conditional, but the store itself is now
3335     // unconditonally executed, so we must be sure that any linked dbg.assign
3336     // intrinsics are tracking the new stored value (the result of the
3337     // select). If we don't, and the store were to be removed by another pass
3338     // (e.g. DSE), then we'd eventually end up emitting a location describing
3339     // the conditional value, unconditionally.
3340     //
3341     // === Before this transformation ===
3342     // pred:
3343     //   store %one, %x.dest, !DIAssignID !1
3344     //   dbg.assign %one, "x", ..., !1, ...
3345     //   br %cond if.then
3346     //
3347     // if.then:
3348     //   store %two, %x.dest, !DIAssignID !2
3349     //   dbg.assign %two, "x", ..., !2, ...
3350     //
3351     // === After this transformation ===
3352     // pred:
3353     //   store %one, %x.dest, !DIAssignID !1
3354     //   dbg.assign %one, "x", ..., !1
3355     ///  ...
3356     //   %merge = select %cond, %two, %one
3357     //   store %merge, %x.dest, !DIAssignID !2
3358     //   dbg.assign %merge, "x", ..., !2
3359     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3360       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3361         DbgAssign->replaceVariableLocationOp(OrigV, S);
3362     };
3363     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3364     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3365   }
3366 
3367   // Metadata can be dependent on the condition we are hoisting above.
3368   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3369   // to avoid making it appear as if the condition is a constant, which would
3370   // be misleading while debugging.
3371   // Similarly strip attributes that maybe dependent on condition we are
3372   // hoisting above.
3373   for (auto &I : make_early_inc_range(*ThenBB)) {
3374     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3375       // Don't update the DILocation of dbg.assign intrinsics.
3376       if (!isa<DbgAssignIntrinsic>(&I))
3377         I.setDebugLoc(DebugLoc());
3378     }
3379     I.dropUBImplyingAttrsAndMetadata();
3380 
3381     // Drop ephemeral values.
3382     if (EphTracker.contains(&I)) {
3383       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3384       I.eraseFromParent();
3385     }
3386   }
3387 
3388   // Hoist the instructions.
3389   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3390   // to these instructions, in the same way that dbg.value intrinsics are
3391   // dropped at the end of this block.
3392   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3393     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3394       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3395       // equivalent).
3396       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3397           !DVR || !DVR->isDbgAssign())
3398         It.dropOneDbgRecord(&DR);
3399   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3400              std::prev(ThenBB->end()));
3401 
3402   if (!SpeculatedConditionalLoadsStores.empty())
3403     hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert);
3404 
3405   // Insert selects and rewrite the PHI operands.
3406   IRBuilder<NoFolder> Builder(BI);
3407   for (PHINode &PN : EndBB->phis()) {
3408     unsigned OrigI = PN.getBasicBlockIndex(BB);
3409     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3410     Value *OrigV = PN.getIncomingValue(OrigI);
3411     Value *ThenV = PN.getIncomingValue(ThenI);
3412 
3413     // Skip PHIs which are trivial.
3414     if (OrigV == ThenV)
3415       continue;
3416 
3417     // Create a select whose true value is the speculatively executed value and
3418     // false value is the pre-existing value. Swap them if the branch
3419     // destinations were inverted.
3420     Value *TrueV = ThenV, *FalseV = OrigV;
3421     if (Invert)
3422       std::swap(TrueV, FalseV);
3423     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3424     PN.setIncomingValue(OrigI, V);
3425     PN.setIncomingValue(ThenI, V);
3426   }
3427 
3428   // Remove speculated dbg intrinsics.
3429   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3430   // dbg value for the different flows and inserting it after the select.
3431   for (Instruction *I : SpeculatedDbgIntrinsics) {
3432     // We still want to know that an assignment took place so don't remove
3433     // dbg.assign intrinsics.
3434     if (!isa<DbgAssignIntrinsic>(I))
3435       I->eraseFromParent();
3436   }
3437 
3438   ++NumSpeculations;
3439   return true;
3440 }
3441 
3442 /// Return true if we can thread a branch across this block.
3443 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3444   int Size = 0;
3445   EphemeralValueTracker EphTracker;
3446 
3447   // Walk the loop in reverse so that we can identify ephemeral values properly
3448   // (values only feeding assumes).
3449   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3450     // Can't fold blocks that contain noduplicate or convergent calls.
3451     if (CallInst *CI = dyn_cast<CallInst>(&I))
3452       if (CI->cannotDuplicate() || CI->isConvergent())
3453         return false;
3454 
3455     // Ignore ephemeral values which are deleted during codegen.
3456     // We will delete Phis while threading, so Phis should not be accounted in
3457     // block's size.
3458     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3459       if (Size++ > MaxSmallBlockSize)
3460         return false; // Don't clone large BB's.
3461     }
3462 
3463     // We can only support instructions that do not define values that are
3464     // live outside of the current basic block.
3465     for (User *U : I.users()) {
3466       Instruction *UI = cast<Instruction>(U);
3467       if (UI->getParent() != BB || isa<PHINode>(UI))
3468         return false;
3469     }
3470 
3471     // Looks ok, continue checking.
3472   }
3473 
3474   return true;
3475 }
3476 
3477 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3478                                         BasicBlock *To) {
3479   // Don't look past the block defining the value, we might get the value from
3480   // a previous loop iteration.
3481   auto *I = dyn_cast<Instruction>(V);
3482   if (I && I->getParent() == To)
3483     return nullptr;
3484 
3485   // We know the value if the From block branches on it.
3486   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3487   if (BI && BI->isConditional() && BI->getCondition() == V &&
3488       BI->getSuccessor(0) != BI->getSuccessor(1))
3489     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3490                                      : ConstantInt::getFalse(BI->getContext());
3491 
3492   return nullptr;
3493 }
3494 
3495 /// If we have a conditional branch on something for which we know the constant
3496 /// value in predecessors (e.g. a phi node in the current block), thread edges
3497 /// from the predecessor to their ultimate destination.
3498 static std::optional<bool>
3499 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3500                                             const DataLayout &DL,
3501                                             AssumptionCache *AC) {
3502   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3503   BasicBlock *BB = BI->getParent();
3504   Value *Cond = BI->getCondition();
3505   PHINode *PN = dyn_cast<PHINode>(Cond);
3506   if (PN && PN->getParent() == BB) {
3507     // Degenerate case of a single entry PHI.
3508     if (PN->getNumIncomingValues() == 1) {
3509       FoldSingleEntryPHINodes(PN->getParent());
3510       return true;
3511     }
3512 
3513     for (Use &U : PN->incoming_values())
3514       if (auto *CB = dyn_cast<ConstantInt>(U))
3515         KnownValues[CB].insert(PN->getIncomingBlock(U));
3516   } else {
3517     for (BasicBlock *Pred : predecessors(BB)) {
3518       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3519         KnownValues[CB].insert(Pred);
3520     }
3521   }
3522 
3523   if (KnownValues.empty())
3524     return false;
3525 
3526   // Now we know that this block has multiple preds and two succs.
3527   // Check that the block is small enough and values defined in the block are
3528   // not used outside of it.
3529   if (!blockIsSimpleEnoughToThreadThrough(BB))
3530     return false;
3531 
3532   for (const auto &Pair : KnownValues) {
3533     // Okay, we now know that all edges from PredBB should be revectored to
3534     // branch to RealDest.
3535     ConstantInt *CB = Pair.first;
3536     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3537     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3538 
3539     if (RealDest == BB)
3540       continue; // Skip self loops.
3541 
3542     // Skip if the predecessor's terminator is an indirect branch.
3543     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3544           return isa<IndirectBrInst>(PredBB->getTerminator());
3545         }))
3546       continue;
3547 
3548     LLVM_DEBUG({
3549       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3550              << " has value " << *Pair.first << " in predecessors:\n";
3551       for (const BasicBlock *PredBB : Pair.second)
3552         dbgs() << "  " << PredBB->getName() << "\n";
3553       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3554     });
3555 
3556     // Split the predecessors we are threading into a new edge block. We'll
3557     // clone the instructions into this block, and then redirect it to RealDest.
3558     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3559 
3560     // TODO: These just exist to reduce test diff, we can drop them if we like.
3561     EdgeBB->setName(RealDest->getName() + ".critedge");
3562     EdgeBB->moveBefore(RealDest);
3563 
3564     // Update PHI nodes.
3565     addPredecessorToBlock(RealDest, EdgeBB, BB);
3566 
3567     // BB may have instructions that are being threaded over.  Clone these
3568     // instructions into EdgeBB.  We know that there will be no uses of the
3569     // cloned instructions outside of EdgeBB.
3570     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3571     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3572     TranslateMap[Cond] = CB;
3573 
3574     // RemoveDIs: track instructions that we optimise away while folding, so
3575     // that we can copy DbgVariableRecords from them later.
3576     BasicBlock::iterator SrcDbgCursor = BB->begin();
3577     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3578       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3579         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3580         continue;
3581       }
3582       // Clone the instruction.
3583       Instruction *N = BBI->clone();
3584       // Insert the new instruction into its new home.
3585       N->insertInto(EdgeBB, InsertPt);
3586 
3587       if (BBI->hasName())
3588         N->setName(BBI->getName() + ".c");
3589 
3590       // Update operands due to translation.
3591       for (Use &Op : N->operands()) {
3592         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3593         if (PI != TranslateMap.end())
3594           Op = PI->second;
3595       }
3596 
3597       // Check for trivial simplification.
3598       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3599         if (!BBI->use_empty())
3600           TranslateMap[&*BBI] = V;
3601         if (!N->mayHaveSideEffects()) {
3602           N->eraseFromParent(); // Instruction folded away, don't need actual
3603                                 // inst
3604           N = nullptr;
3605         }
3606       } else {
3607         if (!BBI->use_empty())
3608           TranslateMap[&*BBI] = N;
3609       }
3610       if (N) {
3611         // Copy all debug-info attached to instructions from the last we
3612         // successfully clone, up to this instruction (they might have been
3613         // folded away).
3614         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3615           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3616         SrcDbgCursor = std::next(BBI);
3617         // Clone debug-info on this instruction too.
3618         N->cloneDebugInfoFrom(&*BBI);
3619 
3620         // Register the new instruction with the assumption cache if necessary.
3621         if (auto *Assume = dyn_cast<AssumeInst>(N))
3622           if (AC)
3623             AC->registerAssumption(Assume);
3624       }
3625     }
3626 
3627     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3628       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3629     InsertPt->cloneDebugInfoFrom(BI);
3630 
3631     BB->removePredecessor(EdgeBB);
3632     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3633     EdgeBI->setSuccessor(0, RealDest);
3634     EdgeBI->setDebugLoc(BI->getDebugLoc());
3635 
3636     if (DTU) {
3637       SmallVector<DominatorTree::UpdateType, 2> Updates;
3638       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3639       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3640       DTU->applyUpdates(Updates);
3641     }
3642 
3643     // For simplicity, we created a separate basic block for the edge. Merge
3644     // it back into the predecessor if possible. This not only avoids
3645     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3646     // bypass the check for trivial cycles above.
3647     MergeBlockIntoPredecessor(EdgeBB, DTU);
3648 
3649     // Signal repeat, simplifying any other constants.
3650     return std::nullopt;
3651   }
3652 
3653   return false;
3654 }
3655 
3656 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3657                                                     DomTreeUpdater *DTU,
3658                                                     const DataLayout &DL,
3659                                                     AssumptionCache *AC) {
3660   std::optional<bool> Result;
3661   bool EverChanged = false;
3662   do {
3663     // Note that None means "we changed things, but recurse further."
3664     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3665     EverChanged |= Result == std::nullopt || *Result;
3666   } while (Result == std::nullopt);
3667   return EverChanged;
3668 }
3669 
3670 /// Given a BB that starts with the specified two-entry PHI node,
3671 /// see if we can eliminate it.
3672 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3673                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3674                                 const DataLayout &DL,
3675                                 bool SpeculateUnpredictables) {
3676   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3677   // statement", which has a very simple dominance structure.  Basically, we
3678   // are trying to find the condition that is being branched on, which
3679   // subsequently causes this merge to happen.  We really want control
3680   // dependence information for this check, but simplifycfg can't keep it up
3681   // to date, and this catches most of the cases we care about anyway.
3682   BasicBlock *BB = PN->getParent();
3683 
3684   BasicBlock *IfTrue, *IfFalse;
3685   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3686   if (!DomBI)
3687     return false;
3688   Value *IfCond = DomBI->getCondition();
3689   // Don't bother if the branch will be constant folded trivially.
3690   if (isa<ConstantInt>(IfCond))
3691     return false;
3692 
3693   BasicBlock *DomBlock = DomBI->getParent();
3694   SmallVector<BasicBlock *, 2> IfBlocks;
3695   llvm::copy_if(
3696       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3697         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3698       });
3699   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3700          "Will have either one or two blocks to speculate.");
3701 
3702   // If the branch is non-unpredictable, see if we either predictably jump to
3703   // the merge bb (if we have only a single 'then' block), or if we predictably
3704   // jump to one specific 'then' block (if we have two of them).
3705   // It isn't beneficial to speculatively execute the code
3706   // from the block that we know is predictably not entered.
3707   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3708   if (!IsUnpredictable) {
3709     uint64_t TWeight, FWeight;
3710     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3711         (TWeight + FWeight) != 0) {
3712       BranchProbability BITrueProb =
3713           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3714       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3715       BranchProbability BIFalseProb = BITrueProb.getCompl();
3716       if (IfBlocks.size() == 1) {
3717         BranchProbability BIBBProb =
3718             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3719         if (BIBBProb >= Likely)
3720           return false;
3721       } else {
3722         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3723           return false;
3724       }
3725     }
3726   }
3727 
3728   // Don't try to fold an unreachable block. For example, the phi node itself
3729   // can't be the candidate if-condition for a select that we want to form.
3730   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3731     if (IfCondPhiInst->getParent() == BB)
3732       return false;
3733 
3734   // Okay, we found that we can merge this two-entry phi node into a select.
3735   // Doing so would require us to fold *all* two entry phi nodes in this block.
3736   // At some point this becomes non-profitable (particularly if the target
3737   // doesn't support cmov's).  Only do this transformation if there are two or
3738   // fewer PHI nodes in this block.
3739   unsigned NumPhis = 0;
3740   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3741     if (NumPhis > 2)
3742       return false;
3743 
3744   // Loop over the PHI's seeing if we can promote them all to select
3745   // instructions.  While we are at it, keep track of the instructions
3746   // that need to be moved to the dominating block.
3747   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3748   InstructionCost Cost = 0;
3749   InstructionCost Budget =
3750       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3751   if (SpeculateUnpredictables && IsUnpredictable)
3752     Budget += TTI.getBranchMispredictPenalty();
3753 
3754   bool Changed = false;
3755   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3756     PHINode *PN = cast<PHINode>(II++);
3757     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3758       PN->replaceAllUsesWith(V);
3759       PN->eraseFromParent();
3760       Changed = true;
3761       continue;
3762     }
3763 
3764     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3765                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3766         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3767                              AggressiveInsts, Cost, Budget, TTI, AC))
3768       return Changed;
3769   }
3770 
3771   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3772   // we ran out of PHIs then we simplified them all.
3773   PN = dyn_cast<PHINode>(BB->begin());
3774   if (!PN)
3775     return true;
3776 
3777   // Return true if at least one of these is a 'not', and another is either
3778   // a 'not' too, or a constant.
3779   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3780     if (!match(V0, m_Not(m_Value())))
3781       std::swap(V0, V1);
3782     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3783     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3784   };
3785 
3786   // Don't fold i1 branches on PHIs which contain binary operators or
3787   // (possibly inverted) select form of or/ands,  unless one of
3788   // the incoming values is an 'not' and another one is freely invertible.
3789   // These can often be turned into switches and other things.
3790   auto IsBinOpOrAnd = [](Value *V) {
3791     return match(
3792         V, m_CombineOr(
3793                m_BinOp(),
3794                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3795                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3796   };
3797   if (PN->getType()->isIntegerTy(1) &&
3798       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3799        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3800       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3801                                  PN->getIncomingValue(1)))
3802     return Changed;
3803 
3804   // If all PHI nodes are promotable, check to make sure that all instructions
3805   // in the predecessor blocks can be promoted as well. If not, we won't be able
3806   // to get rid of the control flow, so it's not worth promoting to select
3807   // instructions.
3808   for (BasicBlock *IfBlock : IfBlocks)
3809     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3810       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3811         // This is not an aggressive instruction that we can promote.
3812         // Because of this, we won't be able to get rid of the control flow, so
3813         // the xform is not worth it.
3814         return Changed;
3815       }
3816 
3817   // If either of the blocks has it's address taken, we can't do this fold.
3818   if (any_of(IfBlocks,
3819              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3820     return Changed;
3821 
3822   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3823              if (IsUnpredictable) dbgs() << " (unpredictable)";
3824              dbgs() << "  T: " << IfTrue->getName()
3825                     << "  F: " << IfFalse->getName() << "\n");
3826 
3827   // If we can still promote the PHI nodes after this gauntlet of tests,
3828   // do all of the PHI's now.
3829 
3830   // Move all 'aggressive' instructions, which are defined in the
3831   // conditional parts of the if's up to the dominating block.
3832   for (BasicBlock *IfBlock : IfBlocks)
3833       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3834 
3835   IRBuilder<NoFolder> Builder(DomBI);
3836   // Propagate fast-math-flags from phi nodes to replacement selects.
3837   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3838   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3839     if (isa<FPMathOperator>(PN))
3840       Builder.setFastMathFlags(PN->getFastMathFlags());
3841 
3842     // Change the PHI node into a select instruction.
3843     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3844     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3845 
3846     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3847     PN->replaceAllUsesWith(Sel);
3848     Sel->takeName(PN);
3849     PN->eraseFromParent();
3850   }
3851 
3852   // At this point, all IfBlocks are empty, so our if statement
3853   // has been flattened.  Change DomBlock to jump directly to our new block to
3854   // avoid other simplifycfg's kicking in on the diamond.
3855   Builder.CreateBr(BB);
3856 
3857   SmallVector<DominatorTree::UpdateType, 3> Updates;
3858   if (DTU) {
3859     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3860     for (auto *Successor : successors(DomBlock))
3861       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3862   }
3863 
3864   DomBI->eraseFromParent();
3865   if (DTU)
3866     DTU->applyUpdates(Updates);
3867 
3868   return true;
3869 }
3870 
3871 static Value *createLogicalOp(IRBuilderBase &Builder,
3872                               Instruction::BinaryOps Opc, Value *LHS,
3873                               Value *RHS, const Twine &Name = "") {
3874   // Try to relax logical op to binary op.
3875   if (impliesPoison(RHS, LHS))
3876     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3877   if (Opc == Instruction::And)
3878     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3879   if (Opc == Instruction::Or)
3880     return Builder.CreateLogicalOr(LHS, RHS, Name);
3881   llvm_unreachable("Invalid logical opcode");
3882 }
3883 
3884 /// Return true if either PBI or BI has branch weight available, and store
3885 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3886 /// not have branch weight, use 1:1 as its weight.
3887 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3888                                    uint64_t &PredTrueWeight,
3889                                    uint64_t &PredFalseWeight,
3890                                    uint64_t &SuccTrueWeight,
3891                                    uint64_t &SuccFalseWeight) {
3892   bool PredHasWeights =
3893       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3894   bool SuccHasWeights =
3895       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3896   if (PredHasWeights || SuccHasWeights) {
3897     if (!PredHasWeights)
3898       PredTrueWeight = PredFalseWeight = 1;
3899     if (!SuccHasWeights)
3900       SuccTrueWeight = SuccFalseWeight = 1;
3901     return true;
3902   } else {
3903     return false;
3904   }
3905 }
3906 
3907 /// Determine if the two branches share a common destination and deduce a glue
3908 /// that joins the branches' conditions to arrive at the common destination if
3909 /// that would be profitable.
3910 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3911 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3912                                           const TargetTransformInfo *TTI) {
3913   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3914          "Both blocks must end with a conditional branches.");
3915   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3916          "PredBB must be a predecessor of BB.");
3917 
3918   // We have the potential to fold the conditions together, but if the
3919   // predecessor branch is predictable, we may not want to merge them.
3920   uint64_t PTWeight, PFWeight;
3921   BranchProbability PBITrueProb, Likely;
3922   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3923       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3924       (PTWeight + PFWeight) != 0) {
3925     PBITrueProb =
3926         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3927     Likely = TTI->getPredictableBranchThreshold();
3928   }
3929 
3930   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3931     // Speculate the 2nd condition unless the 1st is probably true.
3932     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3933       return {{BI->getSuccessor(0), Instruction::Or, false}};
3934   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3935     // Speculate the 2nd condition unless the 1st is probably false.
3936     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3937       return {{BI->getSuccessor(1), Instruction::And, false}};
3938   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3939     // Speculate the 2nd condition unless the 1st is probably true.
3940     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3941       return {{BI->getSuccessor(1), Instruction::And, true}};
3942   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3943     // Speculate the 2nd condition unless the 1st is probably false.
3944     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3945       return {{BI->getSuccessor(0), Instruction::Or, true}};
3946   }
3947   return std::nullopt;
3948 }
3949 
3950 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3951                                              DomTreeUpdater *DTU,
3952                                              MemorySSAUpdater *MSSAU,
3953                                              const TargetTransformInfo *TTI) {
3954   BasicBlock *BB = BI->getParent();
3955   BasicBlock *PredBlock = PBI->getParent();
3956 
3957   // Determine if the two branches share a common destination.
3958   BasicBlock *CommonSucc;
3959   Instruction::BinaryOps Opc;
3960   bool InvertPredCond;
3961   std::tie(CommonSucc, Opc, InvertPredCond) =
3962       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3963 
3964   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3965 
3966   IRBuilder<> Builder(PBI);
3967   // The builder is used to create instructions to eliminate the branch in BB.
3968   // If BB's terminator has !annotation metadata, add it to the new
3969   // instructions.
3970   Builder.CollectMetadataToCopy(BB->getTerminator(),
3971                                 {LLVMContext::MD_annotation});
3972 
3973   // If we need to invert the condition in the pred block to match, do so now.
3974   if (InvertPredCond) {
3975     InvertBranch(PBI, Builder);
3976   }
3977 
3978   BasicBlock *UniqueSucc =
3979       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3980 
3981   // Before cloning instructions, notify the successor basic block that it
3982   // is about to have a new predecessor. This will update PHI nodes,
3983   // which will allow us to update live-out uses of bonus instructions.
3984   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3985 
3986   // Try to update branch weights.
3987   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3988   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3989                              SuccTrueWeight, SuccFalseWeight)) {
3990     SmallVector<uint64_t, 8> NewWeights;
3991 
3992     if (PBI->getSuccessor(0) == BB) {
3993       // PBI: br i1 %x, BB, FalseDest
3994       // BI:  br i1 %y, UniqueSucc, FalseDest
3995       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3996       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3997       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3998       //               TrueWeight for PBI * FalseWeight for BI.
3999       // We assume that total weights of a BranchInst can fit into 32 bits.
4000       // Therefore, we will not have overflow using 64-bit arithmetic.
4001       NewWeights.push_back(PredFalseWeight *
4002                                (SuccFalseWeight + SuccTrueWeight) +
4003                            PredTrueWeight * SuccFalseWeight);
4004     } else {
4005       // PBI: br i1 %x, TrueDest, BB
4006       // BI:  br i1 %y, TrueDest, UniqueSucc
4007       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
4008       //              FalseWeight for PBI * TrueWeight for BI.
4009       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
4010                            PredFalseWeight * SuccTrueWeight);
4011       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
4012       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
4013     }
4014 
4015     // Halve the weights if any of them cannot fit in an uint32_t
4016     fitWeights(NewWeights);
4017 
4018     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
4019     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
4020 
4021     // TODO: If BB is reachable from all paths through PredBlock, then we
4022     // could replace PBI's branch probabilities with BI's.
4023   } else
4024     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4025 
4026   // Now, update the CFG.
4027   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4028 
4029   if (DTU)
4030     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4031                        {DominatorTree::Delete, PredBlock, BB}});
4032 
4033   // If BI was a loop latch, it may have had associated loop metadata.
4034   // We need to copy it to the new latch, that is, PBI.
4035   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4036     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4037 
4038   ValueToValueMapTy VMap; // maps original values to cloned values
4039   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4040 
4041   Module *M = BB->getModule();
4042 
4043   if (PredBlock->IsNewDbgInfoFormat) {
4044     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4045     for (DbgVariableRecord &DVR :
4046          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4047       RemapDbgRecord(M, &DVR, VMap,
4048                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4049     }
4050   }
4051 
4052   // Now that the Cond was cloned into the predecessor basic block,
4053   // or/and the two conditions together.
4054   Value *BICond = VMap[BI->getCondition()];
4055   PBI->setCondition(
4056       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4057 
4058   ++NumFoldBranchToCommonDest;
4059   return true;
4060 }
4061 
4062 /// Return if an instruction's type or any of its operands' types are a vector
4063 /// type.
4064 static bool isVectorOp(Instruction &I) {
4065   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4066            return U->getType()->isVectorTy();
4067          });
4068 }
4069 
4070 /// If this basic block is simple enough, and if a predecessor branches to us
4071 /// and one of our successors, fold the block into the predecessor and use
4072 /// logical operations to pick the right destination.
4073 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4074                                   MemorySSAUpdater *MSSAU,
4075                                   const TargetTransformInfo *TTI,
4076                                   unsigned BonusInstThreshold) {
4077   // If this block ends with an unconditional branch,
4078   // let speculativelyExecuteBB() deal with it.
4079   if (!BI->isConditional())
4080     return false;
4081 
4082   BasicBlock *BB = BI->getParent();
4083   TargetTransformInfo::TargetCostKind CostKind =
4084     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4085                                   : TargetTransformInfo::TCK_SizeAndLatency;
4086 
4087   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4088 
4089   if (!Cond ||
4090       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4091        !isa<SelectInst>(Cond)) ||
4092       Cond->getParent() != BB || !Cond->hasOneUse())
4093     return false;
4094 
4095   // Finally, don't infinitely unroll conditional loops.
4096   if (is_contained(successors(BB), BB))
4097     return false;
4098 
4099   // With which predecessors will we want to deal with?
4100   SmallVector<BasicBlock *, 8> Preds;
4101   for (BasicBlock *PredBlock : predecessors(BB)) {
4102     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4103 
4104     // Check that we have two conditional branches.  If there is a PHI node in
4105     // the common successor, verify that the same value flows in from both
4106     // blocks.
4107     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4108       continue;
4109 
4110     // Determine if the two branches share a common destination.
4111     BasicBlock *CommonSucc;
4112     Instruction::BinaryOps Opc;
4113     bool InvertPredCond;
4114     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4115       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4116     else
4117       continue;
4118 
4119     // Check the cost of inserting the necessary logic before performing the
4120     // transformation.
4121     if (TTI) {
4122       Type *Ty = BI->getCondition()->getType();
4123       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4124       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4125                              !isa<CmpInst>(PBI->getCondition())))
4126         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4127 
4128       if (Cost > BranchFoldThreshold)
4129         continue;
4130     }
4131 
4132     // Ok, we do want to deal with this predecessor. Record it.
4133     Preds.emplace_back(PredBlock);
4134   }
4135 
4136   // If there aren't any predecessors into which we can fold,
4137   // don't bother checking the cost.
4138   if (Preds.empty())
4139     return false;
4140 
4141   // Only allow this transformation if computing the condition doesn't involve
4142   // too many instructions and these involved instructions can be executed
4143   // unconditionally. We denote all involved instructions except the condition
4144   // as "bonus instructions", and only allow this transformation when the
4145   // number of the bonus instructions we'll need to create when cloning into
4146   // each predecessor does not exceed a certain threshold.
4147   unsigned NumBonusInsts = 0;
4148   bool SawVectorOp = false;
4149   const unsigned PredCount = Preds.size();
4150   for (Instruction &I : *BB) {
4151     // Don't check the branch condition comparison itself.
4152     if (&I == Cond)
4153       continue;
4154     // Ignore dbg intrinsics, and the terminator.
4155     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4156       continue;
4157     // I must be safe to execute unconditionally.
4158     if (!isSafeToSpeculativelyExecute(&I))
4159       return false;
4160     SawVectorOp |= isVectorOp(I);
4161 
4162     // Account for the cost of duplicating this instruction into each
4163     // predecessor. Ignore free instructions.
4164     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4165                     TargetTransformInfo::TCC_Free) {
4166       NumBonusInsts += PredCount;
4167 
4168       // Early exits once we reach the limit.
4169       if (NumBonusInsts >
4170           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4171         return false;
4172     }
4173 
4174     auto IsBCSSAUse = [BB, &I](Use &U) {
4175       auto *UI = cast<Instruction>(U.getUser());
4176       if (auto *PN = dyn_cast<PHINode>(UI))
4177         return PN->getIncomingBlock(U) == BB;
4178       return UI->getParent() == BB && I.comesBefore(UI);
4179     };
4180 
4181     // Does this instruction require rewriting of uses?
4182     if (!all_of(I.uses(), IsBCSSAUse))
4183       return false;
4184   }
4185   if (NumBonusInsts >
4186       BonusInstThreshold *
4187           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4188     return false;
4189 
4190   // Ok, we have the budget. Perform the transformation.
4191   for (BasicBlock *PredBlock : Preds) {
4192     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4193     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4194   }
4195   return false;
4196 }
4197 
4198 // If there is only one store in BB1 and BB2, return it, otherwise return
4199 // nullptr.
4200 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4201   StoreInst *S = nullptr;
4202   for (auto *BB : {BB1, BB2}) {
4203     if (!BB)
4204       continue;
4205     for (auto &I : *BB)
4206       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4207         if (S)
4208           // Multiple stores seen.
4209           return nullptr;
4210         else
4211           S = SI;
4212       }
4213   }
4214   return S;
4215 }
4216 
4217 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4218                                               Value *AlternativeV = nullptr) {
4219   // PHI is going to be a PHI node that allows the value V that is defined in
4220   // BB to be referenced in BB's only successor.
4221   //
4222   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4223   // doesn't matter to us what the other operand is (it'll never get used). We
4224   // could just create a new PHI with an undef incoming value, but that could
4225   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4226   // other PHI. So here we directly look for some PHI in BB's successor with V
4227   // as an incoming operand. If we find one, we use it, else we create a new
4228   // one.
4229   //
4230   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4231   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4232   // where OtherBB is the single other predecessor of BB's only successor.
4233   PHINode *PHI = nullptr;
4234   BasicBlock *Succ = BB->getSingleSuccessor();
4235 
4236   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4237     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4238       PHI = cast<PHINode>(I);
4239       if (!AlternativeV)
4240         break;
4241 
4242       assert(Succ->hasNPredecessors(2));
4243       auto PredI = pred_begin(Succ);
4244       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4245       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4246         break;
4247       PHI = nullptr;
4248     }
4249   if (PHI)
4250     return PHI;
4251 
4252   // If V is not an instruction defined in BB, just return it.
4253   if (!AlternativeV &&
4254       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4255     return V;
4256 
4257   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4258   PHI->insertBefore(Succ->begin());
4259   PHI->addIncoming(V, BB);
4260   for (BasicBlock *PredBB : predecessors(Succ))
4261     if (PredBB != BB)
4262       PHI->addIncoming(
4263           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4264   return PHI;
4265 }
4266 
4267 static bool mergeConditionalStoreToAddress(
4268     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4269     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4270     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4271   // For every pointer, there must be exactly two stores, one coming from
4272   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4273   // store (to any address) in PTB,PFB or QTB,QFB.
4274   // FIXME: We could relax this restriction with a bit more work and performance
4275   // testing.
4276   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4277   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4278   if (!PStore || !QStore)
4279     return false;
4280 
4281   // Now check the stores are compatible.
4282   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4283       PStore->getValueOperand()->getType() !=
4284           QStore->getValueOperand()->getType())
4285     return false;
4286 
4287   // Check that sinking the store won't cause program behavior changes. Sinking
4288   // the store out of the Q blocks won't change any behavior as we're sinking
4289   // from a block to its unconditional successor. But we're moving a store from
4290   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4291   // So we need to check that there are no aliasing loads or stores in
4292   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4293   // operations between PStore and the end of its parent block.
4294   //
4295   // The ideal way to do this is to query AliasAnalysis, but we don't
4296   // preserve AA currently so that is dangerous. Be super safe and just
4297   // check there are no other memory operations at all.
4298   for (auto &I : *QFB->getSinglePredecessor())
4299     if (I.mayReadOrWriteMemory())
4300       return false;
4301   for (auto &I : *QFB)
4302     if (&I != QStore && I.mayReadOrWriteMemory())
4303       return false;
4304   if (QTB)
4305     for (auto &I : *QTB)
4306       if (&I != QStore && I.mayReadOrWriteMemory())
4307         return false;
4308   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4309        I != E; ++I)
4310     if (&*I != PStore && I->mayReadOrWriteMemory())
4311       return false;
4312 
4313   // If we're not in aggressive mode, we only optimize if we have some
4314   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4315   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4316     if (!BB)
4317       return true;
4318     // Heuristic: if the block can be if-converted/phi-folded and the
4319     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4320     // thread this store.
4321     InstructionCost Cost = 0;
4322     InstructionCost Budget =
4323         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4324     for (auto &I : BB->instructionsWithoutDebug(false)) {
4325       // Consider terminator instruction to be free.
4326       if (I.isTerminator())
4327         continue;
4328       // If this is one the stores that we want to speculate out of this BB,
4329       // then don't count it's cost, consider it to be free.
4330       if (auto *S = dyn_cast<StoreInst>(&I))
4331         if (llvm::find(FreeStores, S))
4332           continue;
4333       // Else, we have a white-list of instructions that we are ak speculating.
4334       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4335         return false; // Not in white-list - not worthwhile folding.
4336       // And finally, if this is a non-free instruction that we are okay
4337       // speculating, ensure that we consider the speculation budget.
4338       Cost +=
4339           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4340       if (Cost > Budget)
4341         return false; // Eagerly refuse to fold as soon as we're out of budget.
4342     }
4343     assert(Cost <= Budget &&
4344            "When we run out of budget we will eagerly return from within the "
4345            "per-instruction loop.");
4346     return true;
4347   };
4348 
4349   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4350   if (!MergeCondStoresAggressively &&
4351       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4352        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4353     return false;
4354 
4355   // If PostBB has more than two predecessors, we need to split it so we can
4356   // sink the store.
4357   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4358     // We know that QFB's only successor is PostBB. And QFB has a single
4359     // predecessor. If QTB exists, then its only successor is also PostBB.
4360     // If QTB does not exist, then QFB's only predecessor has a conditional
4361     // branch to QFB and PostBB.
4362     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4363     BasicBlock *NewBB =
4364         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4365     if (!NewBB)
4366       return false;
4367     PostBB = NewBB;
4368   }
4369 
4370   // OK, we're going to sink the stores to PostBB. The store has to be
4371   // conditional though, so first create the predicate.
4372   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4373                      ->getCondition();
4374   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4375                      ->getCondition();
4376 
4377   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4378                                                 PStore->getParent());
4379   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4380                                                 QStore->getParent(), PPHI);
4381 
4382   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4383   IRBuilder<> QB(PostBB, PostBBFirst);
4384   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4385 
4386   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4387   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4388 
4389   if (InvertPCond)
4390     PPred = QB.CreateNot(PPred);
4391   if (InvertQCond)
4392     QPred = QB.CreateNot(QPred);
4393   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4394 
4395   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4396   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4397                                       /*Unreachable=*/false,
4398                                       /*BranchWeights=*/nullptr, DTU);
4399 
4400   QB.SetInsertPoint(T);
4401   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4402   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4403   // Choose the minimum alignment. If we could prove both stores execute, we
4404   // could use biggest one.  In this case, though, we only know that one of the
4405   // stores executes.  And we don't know it's safe to take the alignment from a
4406   // store that doesn't execute.
4407   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4408 
4409   QStore->eraseFromParent();
4410   PStore->eraseFromParent();
4411 
4412   return true;
4413 }
4414 
4415 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4416                                    DomTreeUpdater *DTU, const DataLayout &DL,
4417                                    const TargetTransformInfo &TTI) {
4418   // The intention here is to find diamonds or triangles (see below) where each
4419   // conditional block contains a store to the same address. Both of these
4420   // stores are conditional, so they can't be unconditionally sunk. But it may
4421   // be profitable to speculatively sink the stores into one merged store at the
4422   // end, and predicate the merged store on the union of the two conditions of
4423   // PBI and QBI.
4424   //
4425   // This can reduce the number of stores executed if both of the conditions are
4426   // true, and can allow the blocks to become small enough to be if-converted.
4427   // This optimization will also chain, so that ladders of test-and-set
4428   // sequences can be if-converted away.
4429   //
4430   // We only deal with simple diamonds or triangles:
4431   //
4432   //     PBI       or      PBI        or a combination of the two
4433   //    /   \               | \
4434   //   PTB  PFB             |  PFB
4435   //    \   /               | /
4436   //     QBI                QBI
4437   //    /  \                | \
4438   //   QTB  QFB             |  QFB
4439   //    \  /                | /
4440   //    PostBB            PostBB
4441   //
4442   // We model triangles as a type of diamond with a nullptr "true" block.
4443   // Triangles are canonicalized so that the fallthrough edge is represented by
4444   // a true condition, as in the diagram above.
4445   BasicBlock *PTB = PBI->getSuccessor(0);
4446   BasicBlock *PFB = PBI->getSuccessor(1);
4447   BasicBlock *QTB = QBI->getSuccessor(0);
4448   BasicBlock *QFB = QBI->getSuccessor(1);
4449   BasicBlock *PostBB = QFB->getSingleSuccessor();
4450 
4451   // Make sure we have a good guess for PostBB. If QTB's only successor is
4452   // QFB, then QFB is a better PostBB.
4453   if (QTB->getSingleSuccessor() == QFB)
4454     PostBB = QFB;
4455 
4456   // If we couldn't find a good PostBB, stop.
4457   if (!PostBB)
4458     return false;
4459 
4460   bool InvertPCond = false, InvertQCond = false;
4461   // Canonicalize fallthroughs to the true branches.
4462   if (PFB == QBI->getParent()) {
4463     std::swap(PFB, PTB);
4464     InvertPCond = true;
4465   }
4466   if (QFB == PostBB) {
4467     std::swap(QFB, QTB);
4468     InvertQCond = true;
4469   }
4470 
4471   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4472   // and QFB may not. Model fallthroughs as a nullptr block.
4473   if (PTB == QBI->getParent())
4474     PTB = nullptr;
4475   if (QTB == PostBB)
4476     QTB = nullptr;
4477 
4478   // Legality bailouts. We must have at least the non-fallthrough blocks and
4479   // the post-dominating block, and the non-fallthroughs must only have one
4480   // predecessor.
4481   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4482     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4483   };
4484   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4485       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4486     return false;
4487   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4488       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4489     return false;
4490   if (!QBI->getParent()->hasNUses(2))
4491     return false;
4492 
4493   // OK, this is a sequence of two diamonds or triangles.
4494   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4495   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4496   for (auto *BB : {PTB, PFB}) {
4497     if (!BB)
4498       continue;
4499     for (auto &I : *BB)
4500       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4501         PStoreAddresses.insert(SI->getPointerOperand());
4502   }
4503   for (auto *BB : {QTB, QFB}) {
4504     if (!BB)
4505       continue;
4506     for (auto &I : *BB)
4507       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4508         QStoreAddresses.insert(SI->getPointerOperand());
4509   }
4510 
4511   set_intersect(PStoreAddresses, QStoreAddresses);
4512   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4513   // clear what it contains.
4514   auto &CommonAddresses = PStoreAddresses;
4515 
4516   bool Changed = false;
4517   for (auto *Address : CommonAddresses)
4518     Changed |=
4519         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4520                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4521   return Changed;
4522 }
4523 
4524 /// If the previous block ended with a widenable branch, determine if reusing
4525 /// the target block is profitable and legal.  This will have the effect of
4526 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4527 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4528                                            DomTreeUpdater *DTU) {
4529   // TODO: This can be generalized in two important ways:
4530   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4531   //    values from the PBI edge.
4532   // 2) We can sink side effecting instructions into BI's fallthrough
4533   //    successor provided they doesn't contribute to computation of
4534   //    BI's condition.
4535   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4536   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4537   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4538       !BI->getParent()->getSinglePredecessor())
4539     return false;
4540   if (!IfFalseBB->phis().empty())
4541     return false; // TODO
4542   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4543   // may undo the transform done here.
4544   // TODO: There might be a more fine-grained solution to this.
4545   if (!llvm::succ_empty(IfFalseBB))
4546     return false;
4547   // Use lambda to lazily compute expensive condition after cheap ones.
4548   auto NoSideEffects = [](BasicBlock &BB) {
4549     return llvm::none_of(BB, [](const Instruction &I) {
4550         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4551       });
4552   };
4553   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4554       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4555       NoSideEffects(*BI->getParent())) {
4556     auto *OldSuccessor = BI->getSuccessor(1);
4557     OldSuccessor->removePredecessor(BI->getParent());
4558     BI->setSuccessor(1, IfFalseBB);
4559     if (DTU)
4560       DTU->applyUpdates(
4561           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4562            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4563     return true;
4564   }
4565   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4566       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4567       NoSideEffects(*BI->getParent())) {
4568     auto *OldSuccessor = BI->getSuccessor(0);
4569     OldSuccessor->removePredecessor(BI->getParent());
4570     BI->setSuccessor(0, IfFalseBB);
4571     if (DTU)
4572       DTU->applyUpdates(
4573           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4574            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4575     return true;
4576   }
4577   return false;
4578 }
4579 
4580 /// If we have a conditional branch as a predecessor of another block,
4581 /// this function tries to simplify it.  We know
4582 /// that PBI and BI are both conditional branches, and BI is in one of the
4583 /// successor blocks of PBI - PBI branches to BI.
4584 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4585                                            DomTreeUpdater *DTU,
4586                                            const DataLayout &DL,
4587                                            const TargetTransformInfo &TTI) {
4588   assert(PBI->isConditional() && BI->isConditional());
4589   BasicBlock *BB = BI->getParent();
4590 
4591   // If this block ends with a branch instruction, and if there is a
4592   // predecessor that ends on a branch of the same condition, make
4593   // this conditional branch redundant.
4594   if (PBI->getCondition() == BI->getCondition() &&
4595       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4596     // Okay, the outcome of this conditional branch is statically
4597     // knowable.  If this block had a single pred, handle specially, otherwise
4598     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4599     if (BB->getSinglePredecessor()) {
4600       // Turn this into a branch on constant.
4601       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4602       BI->setCondition(
4603           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4604       return true; // Nuke the branch on constant.
4605     }
4606   }
4607 
4608   // If the previous block ended with a widenable branch, determine if reusing
4609   // the target block is profitable and legal.  This will have the effect of
4610   // "widening" PBI, but doesn't require us to reason about hosting safety.
4611   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4612     return true;
4613 
4614   // If both branches are conditional and both contain stores to the same
4615   // address, remove the stores from the conditionals and create a conditional
4616   // merged store at the end.
4617   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4618     return true;
4619 
4620   // If this is a conditional branch in an empty block, and if any
4621   // predecessors are a conditional branch to one of our destinations,
4622   // fold the conditions into logical ops and one cond br.
4623 
4624   // Ignore dbg intrinsics.
4625   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4626     return false;
4627 
4628   int PBIOp, BIOp;
4629   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4630     PBIOp = 0;
4631     BIOp = 0;
4632   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4633     PBIOp = 0;
4634     BIOp = 1;
4635   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4636     PBIOp = 1;
4637     BIOp = 0;
4638   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4639     PBIOp = 1;
4640     BIOp = 1;
4641   } else {
4642     return false;
4643   }
4644 
4645   // Check to make sure that the other destination of this branch
4646   // isn't BB itself.  If so, this is an infinite loop that will
4647   // keep getting unwound.
4648   if (PBI->getSuccessor(PBIOp) == BB)
4649     return false;
4650 
4651   // If predecessor's branch probability to BB is too low don't merge branches.
4652   SmallVector<uint32_t, 2> PredWeights;
4653   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4654       extractBranchWeights(*PBI, PredWeights) &&
4655       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4656 
4657     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4658         PredWeights[PBIOp],
4659         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4660 
4661     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4662     if (CommonDestProb >= Likely)
4663       return false;
4664   }
4665 
4666   // Do not perform this transformation if it would require
4667   // insertion of a large number of select instructions. For targets
4668   // without predication/cmovs, this is a big pessimization.
4669 
4670   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4671   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4672   unsigned NumPhis = 0;
4673   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4674        ++II, ++NumPhis) {
4675     if (NumPhis > 2) // Disable this xform.
4676       return false;
4677   }
4678 
4679   // Finally, if everything is ok, fold the branches to logical ops.
4680   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4681 
4682   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4683                     << "AND: " << *BI->getParent());
4684 
4685   SmallVector<DominatorTree::UpdateType, 5> Updates;
4686 
4687   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4688   // branch in it, where one edge (OtherDest) goes back to itself but the other
4689   // exits.  We don't *know* that the program avoids the infinite loop
4690   // (even though that seems likely).  If we do this xform naively, we'll end up
4691   // recursively unpeeling the loop.  Since we know that (after the xform is
4692   // done) that the block *is* infinite if reached, we just make it an obviously
4693   // infinite loop with no cond branch.
4694   if (OtherDest == BB) {
4695     // Insert it at the end of the function, because it's either code,
4696     // or it won't matter if it's hot. :)
4697     BasicBlock *InfLoopBlock =
4698         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4699     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4700     if (DTU)
4701       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4702     OtherDest = InfLoopBlock;
4703   }
4704 
4705   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4706 
4707   // BI may have other predecessors.  Because of this, we leave
4708   // it alone, but modify PBI.
4709 
4710   // Make sure we get to CommonDest on True&True directions.
4711   Value *PBICond = PBI->getCondition();
4712   IRBuilder<NoFolder> Builder(PBI);
4713   if (PBIOp)
4714     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4715 
4716   Value *BICond = BI->getCondition();
4717   if (BIOp)
4718     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4719 
4720   // Merge the conditions.
4721   Value *Cond =
4722       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4723 
4724   // Modify PBI to branch on the new condition to the new dests.
4725   PBI->setCondition(Cond);
4726   PBI->setSuccessor(0, CommonDest);
4727   PBI->setSuccessor(1, OtherDest);
4728 
4729   if (DTU) {
4730     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4731     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4732 
4733     DTU->applyUpdates(Updates);
4734   }
4735 
4736   // Update branch weight for PBI.
4737   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4738   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4739   bool HasWeights =
4740       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4741                              SuccTrueWeight, SuccFalseWeight);
4742   if (HasWeights) {
4743     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4744     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4745     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4746     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4747     // The weight to CommonDest should be PredCommon * SuccTotal +
4748     //                                    PredOther * SuccCommon.
4749     // The weight to OtherDest should be PredOther * SuccOther.
4750     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4751                                   PredOther * SuccCommon,
4752                               PredOther * SuccOther};
4753     // Halve the weights if any of them cannot fit in an uint32_t
4754     fitWeights(NewWeights);
4755 
4756     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4757   }
4758 
4759   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4760   // block that are identical to the entries for BI's block.
4761   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4762 
4763   // We know that the CommonDest already had an edge from PBI to
4764   // it.  If it has PHIs though, the PHIs may have different
4765   // entries for BB and PBI's BB.  If so, insert a select to make
4766   // them agree.
4767   for (PHINode &PN : CommonDest->phis()) {
4768     Value *BIV = PN.getIncomingValueForBlock(BB);
4769     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4770     Value *PBIV = PN.getIncomingValue(PBBIdx);
4771     if (BIV != PBIV) {
4772       // Insert a select in PBI to pick the right value.
4773       SelectInst *NV = cast<SelectInst>(
4774           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4775       PN.setIncomingValue(PBBIdx, NV);
4776       // Although the select has the same condition as PBI, the original branch
4777       // weights for PBI do not apply to the new select because the select's
4778       // 'logical' edges are incoming edges of the phi that is eliminated, not
4779       // the outgoing edges of PBI.
4780       if (HasWeights) {
4781         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4782         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4783         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4784         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4785         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4786         // The weight to PredOtherDest should be PredOther * SuccCommon.
4787         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4788                                   PredOther * SuccCommon};
4789 
4790         fitWeights(NewWeights);
4791 
4792         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4793                          /*IsExpected=*/false);
4794       }
4795     }
4796   }
4797 
4798   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4799   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4800 
4801   // This basic block is probably dead.  We know it has at least
4802   // one fewer predecessor.
4803   return true;
4804 }
4805 
4806 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4807 // true or to FalseBB if Cond is false.
4808 // Takes care of updating the successors and removing the old terminator.
4809 // Also makes sure not to introduce new successors by assuming that edges to
4810 // non-successor TrueBBs and FalseBBs aren't reachable.
4811 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4812                                                 Value *Cond, BasicBlock *TrueBB,
4813                                                 BasicBlock *FalseBB,
4814                                                 uint32_t TrueWeight,
4815                                                 uint32_t FalseWeight) {
4816   auto *BB = OldTerm->getParent();
4817   // Remove any superfluous successor edges from the CFG.
4818   // First, figure out which successors to preserve.
4819   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4820   // successor.
4821   BasicBlock *KeepEdge1 = TrueBB;
4822   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4823 
4824   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4825 
4826   // Then remove the rest.
4827   for (BasicBlock *Succ : successors(OldTerm)) {
4828     // Make sure only to keep exactly one copy of each edge.
4829     if (Succ == KeepEdge1)
4830       KeepEdge1 = nullptr;
4831     else if (Succ == KeepEdge2)
4832       KeepEdge2 = nullptr;
4833     else {
4834       Succ->removePredecessor(BB,
4835                               /*KeepOneInputPHIs=*/true);
4836 
4837       if (Succ != TrueBB && Succ != FalseBB)
4838         RemovedSuccessors.insert(Succ);
4839     }
4840   }
4841 
4842   IRBuilder<> Builder(OldTerm);
4843   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4844 
4845   // Insert an appropriate new terminator.
4846   if (!KeepEdge1 && !KeepEdge2) {
4847     if (TrueBB == FalseBB) {
4848       // We were only looking for one successor, and it was present.
4849       // Create an unconditional branch to it.
4850       Builder.CreateBr(TrueBB);
4851     } else {
4852       // We found both of the successors we were looking for.
4853       // Create a conditional branch sharing the condition of the select.
4854       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4855       if (TrueWeight != FalseWeight)
4856         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4857     }
4858   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4859     // Neither of the selected blocks were successors, so this
4860     // terminator must be unreachable.
4861     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4862   } else {
4863     // One of the selected values was a successor, but the other wasn't.
4864     // Insert an unconditional branch to the one that was found;
4865     // the edge to the one that wasn't must be unreachable.
4866     if (!KeepEdge1) {
4867       // Only TrueBB was found.
4868       Builder.CreateBr(TrueBB);
4869     } else {
4870       // Only FalseBB was found.
4871       Builder.CreateBr(FalseBB);
4872     }
4873   }
4874 
4875   eraseTerminatorAndDCECond(OldTerm);
4876 
4877   if (DTU) {
4878     SmallVector<DominatorTree::UpdateType, 2> Updates;
4879     Updates.reserve(RemovedSuccessors.size());
4880     for (auto *RemovedSuccessor : RemovedSuccessors)
4881       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4882     DTU->applyUpdates(Updates);
4883   }
4884 
4885   return true;
4886 }
4887 
4888 // Replaces
4889 //   (switch (select cond, X, Y)) on constant X, Y
4890 // with a branch - conditional if X and Y lead to distinct BBs,
4891 // unconditional otherwise.
4892 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4893                                             SelectInst *Select) {
4894   // Check for constant integer values in the select.
4895   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4896   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4897   if (!TrueVal || !FalseVal)
4898     return false;
4899 
4900   // Find the relevant condition and destinations.
4901   Value *Condition = Select->getCondition();
4902   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4903   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4904 
4905   // Get weight for TrueBB and FalseBB.
4906   uint32_t TrueWeight = 0, FalseWeight = 0;
4907   SmallVector<uint64_t, 8> Weights;
4908   bool HasWeights = hasBranchWeightMD(*SI);
4909   if (HasWeights) {
4910     getBranchWeights(SI, Weights);
4911     if (Weights.size() == 1 + SI->getNumCases()) {
4912       TrueWeight =
4913           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4914       FalseWeight =
4915           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4916     }
4917   }
4918 
4919   // Perform the actual simplification.
4920   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4921                                     FalseWeight);
4922 }
4923 
4924 // Replaces
4925 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4926 //                             blockaddress(@fn, BlockB)))
4927 // with
4928 //   (br cond, BlockA, BlockB).
4929 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4930                                                 SelectInst *SI) {
4931   // Check that both operands of the select are block addresses.
4932   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4933   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4934   if (!TBA || !FBA)
4935     return false;
4936 
4937   // Extract the actual blocks.
4938   BasicBlock *TrueBB = TBA->getBasicBlock();
4939   BasicBlock *FalseBB = FBA->getBasicBlock();
4940 
4941   // Perform the actual simplification.
4942   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4943                                     0);
4944 }
4945 
4946 /// This is called when we find an icmp instruction
4947 /// (a seteq/setne with a constant) as the only instruction in a
4948 /// block that ends with an uncond branch.  We are looking for a very specific
4949 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4950 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4951 /// default value goes to an uncond block with a seteq in it, we get something
4952 /// like:
4953 ///
4954 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4955 /// DEFAULT:
4956 ///   %tmp = icmp eq i8 %A, 92
4957 ///   br label %end
4958 /// end:
4959 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4960 ///
4961 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4962 /// the PHI, merging the third icmp into the switch.
4963 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4964     ICmpInst *ICI, IRBuilder<> &Builder) {
4965   BasicBlock *BB = ICI->getParent();
4966 
4967   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4968   // complex.
4969   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4970     return false;
4971 
4972   Value *V = ICI->getOperand(0);
4973   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4974 
4975   // The pattern we're looking for is where our only predecessor is a switch on
4976   // 'V' and this block is the default case for the switch.  In this case we can
4977   // fold the compared value into the switch to simplify things.
4978   BasicBlock *Pred = BB->getSinglePredecessor();
4979   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4980     return false;
4981 
4982   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4983   if (SI->getCondition() != V)
4984     return false;
4985 
4986   // If BB is reachable on a non-default case, then we simply know the value of
4987   // V in this block.  Substitute it and constant fold the icmp instruction
4988   // away.
4989   if (SI->getDefaultDest() != BB) {
4990     ConstantInt *VVal = SI->findCaseDest(BB);
4991     assert(VVal && "Should have a unique destination value");
4992     ICI->setOperand(0, VVal);
4993 
4994     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4995       ICI->replaceAllUsesWith(V);
4996       ICI->eraseFromParent();
4997     }
4998     // BB is now empty, so it is likely to simplify away.
4999     return requestResimplify();
5000   }
5001 
5002   // Ok, the block is reachable from the default dest.  If the constant we're
5003   // comparing exists in one of the other edges, then we can constant fold ICI
5004   // and zap it.
5005   if (SI->findCaseValue(Cst) != SI->case_default()) {
5006     Value *V;
5007     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5008       V = ConstantInt::getFalse(BB->getContext());
5009     else
5010       V = ConstantInt::getTrue(BB->getContext());
5011 
5012     ICI->replaceAllUsesWith(V);
5013     ICI->eraseFromParent();
5014     // BB is now empty, so it is likely to simplify away.
5015     return requestResimplify();
5016   }
5017 
5018   // The use of the icmp has to be in the 'end' block, by the only PHI node in
5019   // the block.
5020   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
5021   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5022   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5023       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5024     return false;
5025 
5026   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5027   // true in the PHI.
5028   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5029   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5030 
5031   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5032     std::swap(DefaultCst, NewCst);
5033 
5034   // Replace ICI (which is used by the PHI for the default value) with true or
5035   // false depending on if it is EQ or NE.
5036   ICI->replaceAllUsesWith(DefaultCst);
5037   ICI->eraseFromParent();
5038 
5039   SmallVector<DominatorTree::UpdateType, 2> Updates;
5040 
5041   // Okay, the switch goes to this block on a default value.  Add an edge from
5042   // the switch to the merge point on the compared value.
5043   BasicBlock *NewBB =
5044       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5045   {
5046     SwitchInstProfUpdateWrapper SIW(*SI);
5047     auto W0 = SIW.getSuccessorWeight(0);
5048     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5049     if (W0) {
5050       NewW = ((uint64_t(*W0) + 1) >> 1);
5051       SIW.setSuccessorWeight(0, *NewW);
5052     }
5053     SIW.addCase(Cst, NewBB, NewW);
5054     if (DTU)
5055       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5056   }
5057 
5058   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5059   Builder.SetInsertPoint(NewBB);
5060   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5061   Builder.CreateBr(SuccBlock);
5062   PHIUse->addIncoming(NewCst, NewBB);
5063   if (DTU) {
5064     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5065     DTU->applyUpdates(Updates);
5066   }
5067   return true;
5068 }
5069 
5070 /// The specified branch is a conditional branch.
5071 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5072 /// fold it into a switch instruction if so.
5073 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5074                                                IRBuilder<> &Builder,
5075                                                const DataLayout &DL) {
5076   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5077   if (!Cond)
5078     return false;
5079 
5080   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5081   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5082   // 'setne's and'ed together, collect them.
5083 
5084   // Try to gather values from a chain of and/or to be turned into a switch
5085   ConstantComparesGatherer ConstantCompare(Cond, DL);
5086   // Unpack the result
5087   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5088   Value *CompVal = ConstantCompare.CompValue;
5089   unsigned UsedICmps = ConstantCompare.UsedICmps;
5090   Value *ExtraCase = ConstantCompare.Extra;
5091 
5092   // If we didn't have a multiply compared value, fail.
5093   if (!CompVal)
5094     return false;
5095 
5096   // Avoid turning single icmps into a switch.
5097   if (UsedICmps <= 1)
5098     return false;
5099 
5100   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5101 
5102   // There might be duplicate constants in the list, which the switch
5103   // instruction can't handle, remove them now.
5104   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5105   Values.erase(llvm::unique(Values), Values.end());
5106 
5107   // If Extra was used, we require at least two switch values to do the
5108   // transformation.  A switch with one value is just a conditional branch.
5109   if (ExtraCase && Values.size() < 2)
5110     return false;
5111 
5112   // TODO: Preserve branch weight metadata, similarly to how
5113   // foldValueComparisonIntoPredecessors preserves it.
5114 
5115   // Figure out which block is which destination.
5116   BasicBlock *DefaultBB = BI->getSuccessor(1);
5117   BasicBlock *EdgeBB = BI->getSuccessor(0);
5118   if (!TrueWhenEqual)
5119     std::swap(DefaultBB, EdgeBB);
5120 
5121   BasicBlock *BB = BI->getParent();
5122 
5123   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5124                     << " cases into SWITCH.  BB is:\n"
5125                     << *BB);
5126 
5127   SmallVector<DominatorTree::UpdateType, 2> Updates;
5128 
5129   // If there are any extra values that couldn't be folded into the switch
5130   // then we evaluate them with an explicit branch first. Split the block
5131   // right before the condbr to handle it.
5132   if (ExtraCase) {
5133     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5134                                    /*MSSAU=*/nullptr, "switch.early.test");
5135 
5136     // Remove the uncond branch added to the old block.
5137     Instruction *OldTI = BB->getTerminator();
5138     Builder.SetInsertPoint(OldTI);
5139 
5140     // There can be an unintended UB if extra values are Poison. Before the
5141     // transformation, extra values may not be evaluated according to the
5142     // condition, and it will not raise UB. But after transformation, we are
5143     // evaluating extra values before checking the condition, and it will raise
5144     // UB. It can be solved by adding freeze instruction to extra values.
5145     AssumptionCache *AC = Options.AC;
5146 
5147     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5148       ExtraCase = Builder.CreateFreeze(ExtraCase);
5149 
5150     if (TrueWhenEqual)
5151       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5152     else
5153       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5154 
5155     OldTI->eraseFromParent();
5156 
5157     if (DTU)
5158       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5159 
5160     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5161     // for the edge we just added.
5162     addPredecessorToBlock(EdgeBB, BB, NewBB);
5163 
5164     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5165                       << "\nEXTRABB = " << *BB);
5166     BB = NewBB;
5167   }
5168 
5169   Builder.SetInsertPoint(BI);
5170   // Convert pointer to int before we switch.
5171   if (CompVal->getType()->isPointerTy()) {
5172     CompVal = Builder.CreatePtrToInt(
5173         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5174   }
5175 
5176   // Create the new switch instruction now.
5177   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5178 
5179   // Add all of the 'cases' to the switch instruction.
5180   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5181     New->addCase(Values[i], EdgeBB);
5182 
5183   // We added edges from PI to the EdgeBB.  As such, if there were any
5184   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5185   // the number of edges added.
5186   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5187     PHINode *PN = cast<PHINode>(BBI);
5188     Value *InVal = PN->getIncomingValueForBlock(BB);
5189     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5190       PN->addIncoming(InVal, BB);
5191   }
5192 
5193   // Erase the old branch instruction.
5194   eraseTerminatorAndDCECond(BI);
5195   if (DTU)
5196     DTU->applyUpdates(Updates);
5197 
5198   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5199   return true;
5200 }
5201 
5202 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5203   if (isa<PHINode>(RI->getValue()))
5204     return simplifyCommonResume(RI);
5205   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
5206            RI->getValue() == RI->getParent()->getFirstNonPHI())
5207     // The resume must unwind the exception that caused control to branch here.
5208     return simplifySingleResume(RI);
5209 
5210   return false;
5211 }
5212 
5213 // Check if cleanup block is empty
5214 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5215   for (Instruction &I : R) {
5216     auto *II = dyn_cast<IntrinsicInst>(&I);
5217     if (!II)
5218       return false;
5219 
5220     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5221     switch (IntrinsicID) {
5222     case Intrinsic::dbg_declare:
5223     case Intrinsic::dbg_value:
5224     case Intrinsic::dbg_label:
5225     case Intrinsic::lifetime_end:
5226       break;
5227     default:
5228       return false;
5229     }
5230   }
5231   return true;
5232 }
5233 
5234 // Simplify resume that is shared by several landing pads (phi of landing pad).
5235 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5236   BasicBlock *BB = RI->getParent();
5237 
5238   // Check that there are no other instructions except for debug and lifetime
5239   // intrinsics between the phi's and resume instruction.
5240   if (!isCleanupBlockEmpty(
5241           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
5242     return false;
5243 
5244   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5245   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5246 
5247   // Check incoming blocks to see if any of them are trivial.
5248   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5249        Idx++) {
5250     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5251     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5252 
5253     // If the block has other successors, we can not delete it because
5254     // it has other dependents.
5255     if (IncomingBB->getUniqueSuccessor() != BB)
5256       continue;
5257 
5258     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
5259     // Not the landing pad that caused the control to branch here.
5260     if (IncomingValue != LandingPad)
5261       continue;
5262 
5263     if (isCleanupBlockEmpty(
5264             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5265       TrivialUnwindBlocks.insert(IncomingBB);
5266   }
5267 
5268   // If no trivial unwind blocks, don't do any simplifications.
5269   if (TrivialUnwindBlocks.empty())
5270     return false;
5271 
5272   // Turn all invokes that unwind here into calls.
5273   for (auto *TrivialBB : TrivialUnwindBlocks) {
5274     // Blocks that will be simplified should be removed from the phi node.
5275     // Note there could be multiple edges to the resume block, and we need
5276     // to remove them all.
5277     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5278       BB->removePredecessor(TrivialBB, true);
5279 
5280     for (BasicBlock *Pred :
5281          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5282       removeUnwindEdge(Pred, DTU);
5283       ++NumInvokes;
5284     }
5285 
5286     // In each SimplifyCFG run, only the current processed block can be erased.
5287     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5288     // of erasing TrivialBB, we only remove the branch to the common resume
5289     // block so that we can later erase the resume block since it has no
5290     // predecessors.
5291     TrivialBB->getTerminator()->eraseFromParent();
5292     new UnreachableInst(RI->getContext(), TrivialBB);
5293     if (DTU)
5294       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5295   }
5296 
5297   // Delete the resume block if all its predecessors have been removed.
5298   if (pred_empty(BB))
5299     DeleteDeadBlock(BB, DTU);
5300 
5301   return !TrivialUnwindBlocks.empty();
5302 }
5303 
5304 // Simplify resume that is only used by a single (non-phi) landing pad.
5305 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5306   BasicBlock *BB = RI->getParent();
5307   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5308   assert(RI->getValue() == LPInst &&
5309          "Resume must unwind the exception that caused control to here");
5310 
5311   // Check that there are no other instructions except for debug intrinsics.
5312   if (!isCleanupBlockEmpty(
5313           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5314     return false;
5315 
5316   // Turn all invokes that unwind here into calls and delete the basic block.
5317   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5318     removeUnwindEdge(Pred, DTU);
5319     ++NumInvokes;
5320   }
5321 
5322   // The landingpad is now unreachable.  Zap it.
5323   DeleteDeadBlock(BB, DTU);
5324   return true;
5325 }
5326 
5327 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5328   // If this is a trivial cleanup pad that executes no instructions, it can be
5329   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5330   // that is an EH pad will be updated to continue to the caller and any
5331   // predecessor that terminates with an invoke instruction will have its invoke
5332   // instruction converted to a call instruction.  If the cleanup pad being
5333   // simplified does not continue to the caller, each predecessor will be
5334   // updated to continue to the unwind destination of the cleanup pad being
5335   // simplified.
5336   BasicBlock *BB = RI->getParent();
5337   CleanupPadInst *CPInst = RI->getCleanupPad();
5338   if (CPInst->getParent() != BB)
5339     // This isn't an empty cleanup.
5340     return false;
5341 
5342   // We cannot kill the pad if it has multiple uses.  This typically arises
5343   // from unreachable basic blocks.
5344   if (!CPInst->hasOneUse())
5345     return false;
5346 
5347   // Check that there are no other instructions except for benign intrinsics.
5348   if (!isCleanupBlockEmpty(
5349           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5350     return false;
5351 
5352   // If the cleanup return we are simplifying unwinds to the caller, this will
5353   // set UnwindDest to nullptr.
5354   BasicBlock *UnwindDest = RI->getUnwindDest();
5355   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5356 
5357   // We're about to remove BB from the control flow.  Before we do, sink any
5358   // PHINodes into the unwind destination.  Doing this before changing the
5359   // control flow avoids some potentially slow checks, since we can currently
5360   // be certain that UnwindDest and BB have no common predecessors (since they
5361   // are both EH pads).
5362   if (UnwindDest) {
5363     // First, go through the PHI nodes in UnwindDest and update any nodes that
5364     // reference the block we are removing
5365     for (PHINode &DestPN : UnwindDest->phis()) {
5366       int Idx = DestPN.getBasicBlockIndex(BB);
5367       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5368       assert(Idx != -1);
5369       // This PHI node has an incoming value that corresponds to a control
5370       // path through the cleanup pad we are removing.  If the incoming
5371       // value is in the cleanup pad, it must be a PHINode (because we
5372       // verified above that the block is otherwise empty).  Otherwise, the
5373       // value is either a constant or a value that dominates the cleanup
5374       // pad being removed.
5375       //
5376       // Because BB and UnwindDest are both EH pads, all of their
5377       // predecessors must unwind to these blocks, and since no instruction
5378       // can have multiple unwind destinations, there will be no overlap in
5379       // incoming blocks between SrcPN and DestPN.
5380       Value *SrcVal = DestPN.getIncomingValue(Idx);
5381       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5382 
5383       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5384       for (auto *Pred : predecessors(BB)) {
5385         Value *Incoming =
5386             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5387         DestPN.addIncoming(Incoming, Pred);
5388       }
5389     }
5390 
5391     // Sink any remaining PHI nodes directly into UnwindDest.
5392     Instruction *InsertPt = DestEHPad;
5393     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5394       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5395         // If the PHI node has no uses or all of its uses are in this basic
5396         // block (meaning they are debug or lifetime intrinsics), just leave
5397         // it.  It will be erased when we erase BB below.
5398         continue;
5399 
5400       // Otherwise, sink this PHI node into UnwindDest.
5401       // Any predecessors to UnwindDest which are not already represented
5402       // must be back edges which inherit the value from the path through
5403       // BB.  In this case, the PHI value must reference itself.
5404       for (auto *pred : predecessors(UnwindDest))
5405         if (pred != BB)
5406           PN.addIncoming(&PN, pred);
5407       PN.moveBefore(InsertPt);
5408       // Also, add a dummy incoming value for the original BB itself,
5409       // so that the PHI is well-formed until we drop said predecessor.
5410       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5411     }
5412   }
5413 
5414   std::vector<DominatorTree::UpdateType> Updates;
5415 
5416   // We use make_early_inc_range here because we will remove all predecessors.
5417   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5418     if (UnwindDest == nullptr) {
5419       if (DTU) {
5420         DTU->applyUpdates(Updates);
5421         Updates.clear();
5422       }
5423       removeUnwindEdge(PredBB, DTU);
5424       ++NumInvokes;
5425     } else {
5426       BB->removePredecessor(PredBB);
5427       Instruction *TI = PredBB->getTerminator();
5428       TI->replaceUsesOfWith(BB, UnwindDest);
5429       if (DTU) {
5430         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5431         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5432       }
5433     }
5434   }
5435 
5436   if (DTU)
5437     DTU->applyUpdates(Updates);
5438 
5439   DeleteDeadBlock(BB, DTU);
5440 
5441   return true;
5442 }
5443 
5444 // Try to merge two cleanuppads together.
5445 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5446   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5447   // with.
5448   BasicBlock *UnwindDest = RI->getUnwindDest();
5449   if (!UnwindDest)
5450     return false;
5451 
5452   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5453   // be safe to merge without code duplication.
5454   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5455     return false;
5456 
5457   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5458   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5459   if (!SuccessorCleanupPad)
5460     return false;
5461 
5462   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5463   // Replace any uses of the successor cleanupad with the predecessor pad
5464   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5465   // funclet bundle operands.
5466   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5467   // Remove the old cleanuppad.
5468   SuccessorCleanupPad->eraseFromParent();
5469   // Now, we simply replace the cleanupret with a branch to the unwind
5470   // destination.
5471   BranchInst::Create(UnwindDest, RI->getParent());
5472   RI->eraseFromParent();
5473 
5474   return true;
5475 }
5476 
5477 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5478   // It is possible to transiantly have an undef cleanuppad operand because we
5479   // have deleted some, but not all, dead blocks.
5480   // Eventually, this block will be deleted.
5481   if (isa<UndefValue>(RI->getOperand(0)))
5482     return false;
5483 
5484   if (mergeCleanupPad(RI))
5485     return true;
5486 
5487   if (removeEmptyCleanup(RI, DTU))
5488     return true;
5489 
5490   return false;
5491 }
5492 
5493 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5494 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5495   BasicBlock *BB = UI->getParent();
5496 
5497   bool Changed = false;
5498 
5499   // Ensure that any debug-info records that used to occur after the Unreachable
5500   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5501   // the block.
5502   BB->flushTerminatorDbgRecords();
5503 
5504   // Debug-info records on the unreachable inst itself should be deleted, as
5505   // below we delete everything past the final executable instruction.
5506   UI->dropDbgRecords();
5507 
5508   // If there are any instructions immediately before the unreachable that can
5509   // be removed, do so.
5510   while (UI->getIterator() != BB->begin()) {
5511     BasicBlock::iterator BBI = UI->getIterator();
5512     --BBI;
5513 
5514     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5515       break; // Can not drop any more instructions. We're done here.
5516     // Otherwise, this instruction can be freely erased,
5517     // even if it is not side-effect free.
5518 
5519     // Note that deleting EH's here is in fact okay, although it involves a bit
5520     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5521     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5522     // and we can therefore guarantee this block will be erased.
5523 
5524     // If we're deleting this, we're deleting any subsequent debug info, so
5525     // delete DbgRecords.
5526     BBI->dropDbgRecords();
5527 
5528     // Delete this instruction (any uses are guaranteed to be dead)
5529     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5530     BBI->eraseFromParent();
5531     Changed = true;
5532   }
5533 
5534   // If the unreachable instruction is the first in the block, take a gander
5535   // at all of the predecessors of this instruction, and simplify them.
5536   if (&BB->front() != UI)
5537     return Changed;
5538 
5539   std::vector<DominatorTree::UpdateType> Updates;
5540 
5541   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5542   for (BasicBlock *Predecessor : Preds) {
5543     Instruction *TI = Predecessor->getTerminator();
5544     IRBuilder<> Builder(TI);
5545     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5546       // We could either have a proper unconditional branch,
5547       // or a degenerate conditional branch with matching destinations.
5548       if (all_of(BI->successors(),
5549                  [BB](auto *Successor) { return Successor == BB; })) {
5550         new UnreachableInst(TI->getContext(), TI->getIterator());
5551         TI->eraseFromParent();
5552         Changed = true;
5553       } else {
5554         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5555         Value* Cond = BI->getCondition();
5556         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5557                "The destinations are guaranteed to be different here.");
5558         CallInst *Assumption;
5559         if (BI->getSuccessor(0) == BB) {
5560           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5561           Builder.CreateBr(BI->getSuccessor(1));
5562         } else {
5563           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5564           Assumption = Builder.CreateAssumption(Cond);
5565           Builder.CreateBr(BI->getSuccessor(0));
5566         }
5567         if (Options.AC)
5568           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5569 
5570         eraseTerminatorAndDCECond(BI);
5571         Changed = true;
5572       }
5573       if (DTU)
5574         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5575     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5576       SwitchInstProfUpdateWrapper SU(*SI);
5577       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5578         if (i->getCaseSuccessor() != BB) {
5579           ++i;
5580           continue;
5581         }
5582         BB->removePredecessor(SU->getParent());
5583         i = SU.removeCase(i);
5584         e = SU->case_end();
5585         Changed = true;
5586       }
5587       // Note that the default destination can't be removed!
5588       if (DTU && SI->getDefaultDest() != BB)
5589         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5590     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5591       if (II->getUnwindDest() == BB) {
5592         if (DTU) {
5593           DTU->applyUpdates(Updates);
5594           Updates.clear();
5595         }
5596         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5597         if (!CI->doesNotThrow())
5598           CI->setDoesNotThrow();
5599         Changed = true;
5600       }
5601     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5602       if (CSI->getUnwindDest() == BB) {
5603         if (DTU) {
5604           DTU->applyUpdates(Updates);
5605           Updates.clear();
5606         }
5607         removeUnwindEdge(TI->getParent(), DTU);
5608         Changed = true;
5609         continue;
5610       }
5611 
5612       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5613                                              E = CSI->handler_end();
5614            I != E; ++I) {
5615         if (*I == BB) {
5616           CSI->removeHandler(I);
5617           --I;
5618           --E;
5619           Changed = true;
5620         }
5621       }
5622       if (DTU)
5623         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5624       if (CSI->getNumHandlers() == 0) {
5625         if (CSI->hasUnwindDest()) {
5626           // Redirect all predecessors of the block containing CatchSwitchInst
5627           // to instead branch to the CatchSwitchInst's unwind destination.
5628           if (DTU) {
5629             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5630               Updates.push_back({DominatorTree::Insert,
5631                                  PredecessorOfPredecessor,
5632                                  CSI->getUnwindDest()});
5633               Updates.push_back({DominatorTree::Delete,
5634                                  PredecessorOfPredecessor, Predecessor});
5635             }
5636           }
5637           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5638         } else {
5639           // Rewrite all preds to unwind to caller (or from invoke to call).
5640           if (DTU) {
5641             DTU->applyUpdates(Updates);
5642             Updates.clear();
5643           }
5644           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5645           for (BasicBlock *EHPred : EHPreds)
5646             removeUnwindEdge(EHPred, DTU);
5647         }
5648         // The catchswitch is no longer reachable.
5649         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5650         CSI->eraseFromParent();
5651         Changed = true;
5652       }
5653     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5654       (void)CRI;
5655       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5656              "Expected to always have an unwind to BB.");
5657       if (DTU)
5658         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5659       new UnreachableInst(TI->getContext(), TI->getIterator());
5660       TI->eraseFromParent();
5661       Changed = true;
5662     }
5663   }
5664 
5665   if (DTU)
5666     DTU->applyUpdates(Updates);
5667 
5668   // If this block is now dead, remove it.
5669   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5670     DeleteDeadBlock(BB, DTU);
5671     return true;
5672   }
5673 
5674   return Changed;
5675 }
5676 
5677 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5678   assert(Cases.size() >= 1);
5679 
5680   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5681   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5682     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5683       return false;
5684   }
5685   return true;
5686 }
5687 
5688 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5689                                            DomTreeUpdater *DTU,
5690                                            bool RemoveOrigDefaultBlock = true) {
5691   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5692   auto *BB = Switch->getParent();
5693   auto *OrigDefaultBlock = Switch->getDefaultDest();
5694   if (RemoveOrigDefaultBlock)
5695     OrigDefaultBlock->removePredecessor(BB);
5696   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5697       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5698       OrigDefaultBlock);
5699   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5700   Switch->setDefaultDest(&*NewDefaultBlock);
5701   if (DTU) {
5702     SmallVector<DominatorTree::UpdateType, 2> Updates;
5703     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5704     if (RemoveOrigDefaultBlock &&
5705         !is_contained(successors(BB), OrigDefaultBlock))
5706       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5707     DTU->applyUpdates(Updates);
5708   }
5709 }
5710 
5711 /// Turn a switch into an integer range comparison and branch.
5712 /// Switches with more than 2 destinations are ignored.
5713 /// Switches with 1 destination are also ignored.
5714 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5715                                              IRBuilder<> &Builder) {
5716   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5717 
5718   bool HasDefault =
5719       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5720 
5721   auto *BB = SI->getParent();
5722 
5723   // Partition the cases into two sets with different destinations.
5724   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5725   BasicBlock *DestB = nullptr;
5726   SmallVector<ConstantInt *, 16> CasesA;
5727   SmallVector<ConstantInt *, 16> CasesB;
5728 
5729   for (auto Case : SI->cases()) {
5730     BasicBlock *Dest = Case.getCaseSuccessor();
5731     if (!DestA)
5732       DestA = Dest;
5733     if (Dest == DestA) {
5734       CasesA.push_back(Case.getCaseValue());
5735       continue;
5736     }
5737     if (!DestB)
5738       DestB = Dest;
5739     if (Dest == DestB) {
5740       CasesB.push_back(Case.getCaseValue());
5741       continue;
5742     }
5743     return false; // More than two destinations.
5744   }
5745   if (!DestB)
5746     return false; // All destinations are the same and the default is unreachable
5747 
5748   assert(DestA && DestB &&
5749          "Single-destination switch should have been folded.");
5750   assert(DestA != DestB);
5751   assert(DestB != SI->getDefaultDest());
5752   assert(!CasesB.empty() && "There must be non-default cases.");
5753   assert(!CasesA.empty() || HasDefault);
5754 
5755   // Figure out if one of the sets of cases form a contiguous range.
5756   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5757   BasicBlock *ContiguousDest = nullptr;
5758   BasicBlock *OtherDest = nullptr;
5759   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5760     ContiguousCases = &CasesA;
5761     ContiguousDest = DestA;
5762     OtherDest = DestB;
5763   } else if (casesAreContiguous(CasesB)) {
5764     ContiguousCases = &CasesB;
5765     ContiguousDest = DestB;
5766     OtherDest = DestA;
5767   } else
5768     return false;
5769 
5770   // Start building the compare and branch.
5771 
5772   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5773   Constant *NumCases =
5774       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5775 
5776   Value *Sub = SI->getCondition();
5777   if (!Offset->isNullValue())
5778     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5779 
5780   Value *Cmp;
5781   // If NumCases overflowed, then all possible values jump to the successor.
5782   if (NumCases->isNullValue() && !ContiguousCases->empty())
5783     Cmp = ConstantInt::getTrue(SI->getContext());
5784   else
5785     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5786   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5787 
5788   // Update weight for the newly-created conditional branch.
5789   if (hasBranchWeightMD(*SI)) {
5790     SmallVector<uint64_t, 8> Weights;
5791     getBranchWeights(SI, Weights);
5792     if (Weights.size() == 1 + SI->getNumCases()) {
5793       uint64_t TrueWeight = 0;
5794       uint64_t FalseWeight = 0;
5795       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5796         if (SI->getSuccessor(I) == ContiguousDest)
5797           TrueWeight += Weights[I];
5798         else
5799           FalseWeight += Weights[I];
5800       }
5801       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5802         TrueWeight /= 2;
5803         FalseWeight /= 2;
5804       }
5805       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5806     }
5807   }
5808 
5809   // Prune obsolete incoming values off the successors' PHI nodes.
5810   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5811     unsigned PreviousEdges = ContiguousCases->size();
5812     if (ContiguousDest == SI->getDefaultDest())
5813       ++PreviousEdges;
5814     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5815       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5816   }
5817   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5818     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5819     if (OtherDest == SI->getDefaultDest())
5820       ++PreviousEdges;
5821     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5822       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5823   }
5824 
5825   // Clean up the default block - it may have phis or other instructions before
5826   // the unreachable terminator.
5827   if (!HasDefault)
5828     createUnreachableSwitchDefault(SI, DTU);
5829 
5830   auto *UnreachableDefault = SI->getDefaultDest();
5831 
5832   // Drop the switch.
5833   SI->eraseFromParent();
5834 
5835   if (!HasDefault && DTU)
5836     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5837 
5838   return true;
5839 }
5840 
5841 /// Compute masked bits for the condition of a switch
5842 /// and use it to remove dead cases.
5843 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5844                                      AssumptionCache *AC,
5845                                      const DataLayout &DL) {
5846   Value *Cond = SI->getCondition();
5847   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5848 
5849   // We can also eliminate cases by determining that their values are outside of
5850   // the limited range of the condition based on how many significant (non-sign)
5851   // bits are in the condition value.
5852   unsigned MaxSignificantBitsInCond =
5853       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5854 
5855   // Gather dead cases.
5856   SmallVector<ConstantInt *, 8> DeadCases;
5857   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5858   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5859   for (const auto &Case : SI->cases()) {
5860     auto *Successor = Case.getCaseSuccessor();
5861     if (DTU) {
5862       if (!NumPerSuccessorCases.count(Successor))
5863         UniqueSuccessors.push_back(Successor);
5864       ++NumPerSuccessorCases[Successor];
5865     }
5866     const APInt &CaseVal = Case.getCaseValue()->getValue();
5867     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5868         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5869       DeadCases.push_back(Case.getCaseValue());
5870       if (DTU)
5871         --NumPerSuccessorCases[Successor];
5872       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5873                         << " is dead.\n");
5874     }
5875   }
5876 
5877   // If we can prove that the cases must cover all possible values, the
5878   // default destination becomes dead and we can remove it.  If we know some
5879   // of the bits in the value, we can use that to more precisely compute the
5880   // number of possible unique case values.
5881   bool HasDefault =
5882       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5883   const unsigned NumUnknownBits =
5884       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5885   assert(NumUnknownBits <= Known.getBitWidth());
5886   if (HasDefault && DeadCases.empty() &&
5887       NumUnknownBits < 64 /* avoid overflow */) {
5888     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5889     if (SI->getNumCases() == AllNumCases) {
5890       createUnreachableSwitchDefault(SI, DTU);
5891       return true;
5892     }
5893     // When only one case value is missing, replace default with that case.
5894     // Eliminating the default branch will provide more opportunities for
5895     // optimization, such as lookup tables.
5896     if (SI->getNumCases() == AllNumCases - 1) {
5897       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5898       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5899       if (CondTy->getIntegerBitWidth() > 64 ||
5900           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5901         return false;
5902 
5903       uint64_t MissingCaseVal = 0;
5904       for (const auto &Case : SI->cases())
5905         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5906       auto *MissingCase =
5907           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5908       SwitchInstProfUpdateWrapper SIW(*SI);
5909       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5910       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5911       SIW.setSuccessorWeight(0, 0);
5912       return true;
5913     }
5914   }
5915 
5916   if (DeadCases.empty())
5917     return false;
5918 
5919   SwitchInstProfUpdateWrapper SIW(*SI);
5920   for (ConstantInt *DeadCase : DeadCases) {
5921     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5922     assert(CaseI != SI->case_default() &&
5923            "Case was not found. Probably mistake in DeadCases forming.");
5924     // Prune unused values from PHI nodes.
5925     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5926     SIW.removeCase(CaseI);
5927   }
5928 
5929   if (DTU) {
5930     std::vector<DominatorTree::UpdateType> Updates;
5931     for (auto *Successor : UniqueSuccessors)
5932       if (NumPerSuccessorCases[Successor] == 0)
5933         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5934     DTU->applyUpdates(Updates);
5935   }
5936 
5937   return true;
5938 }
5939 
5940 /// If BB would be eligible for simplification by
5941 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5942 /// by an unconditional branch), look at the phi node for BB in the successor
5943 /// block and see if the incoming value is equal to CaseValue. If so, return
5944 /// the phi node, and set PhiIndex to BB's index in the phi node.
5945 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
5946                                               BasicBlock *BB, int *PhiIndex) {
5947   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5948     return nullptr; // BB must be empty to be a candidate for simplification.
5949   if (!BB->getSinglePredecessor())
5950     return nullptr; // BB must be dominated by the switch.
5951 
5952   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5953   if (!Branch || !Branch->isUnconditional())
5954     return nullptr; // Terminator must be unconditional branch.
5955 
5956   BasicBlock *Succ = Branch->getSuccessor(0);
5957 
5958   for (PHINode &PHI : Succ->phis()) {
5959     int Idx = PHI.getBasicBlockIndex(BB);
5960     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5961 
5962     Value *InValue = PHI.getIncomingValue(Idx);
5963     if (InValue != CaseValue)
5964       continue;
5965 
5966     *PhiIndex = Idx;
5967     return &PHI;
5968   }
5969 
5970   return nullptr;
5971 }
5972 
5973 /// Try to forward the condition of a switch instruction to a phi node
5974 /// dominated by the switch, if that would mean that some of the destination
5975 /// blocks of the switch can be folded away. Return true if a change is made.
5976 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
5977   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5978 
5979   ForwardingNodesMap ForwardingNodes;
5980   BasicBlock *SwitchBlock = SI->getParent();
5981   bool Changed = false;
5982   for (const auto &Case : SI->cases()) {
5983     ConstantInt *CaseValue = Case.getCaseValue();
5984     BasicBlock *CaseDest = Case.getCaseSuccessor();
5985 
5986     // Replace phi operands in successor blocks that are using the constant case
5987     // value rather than the switch condition variable:
5988     //   switchbb:
5989     //   switch i32 %x, label %default [
5990     //     i32 17, label %succ
5991     //   ...
5992     //   succ:
5993     //     %r = phi i32 ... [ 17, %switchbb ] ...
5994     // -->
5995     //     %r = phi i32 ... [ %x, %switchbb ] ...
5996 
5997     for (PHINode &Phi : CaseDest->phis()) {
5998       // This only works if there is exactly 1 incoming edge from the switch to
5999       // a phi. If there is >1, that means multiple cases of the switch map to 1
6000       // value in the phi, and that phi value is not the switch condition. Thus,
6001       // this transform would not make sense (the phi would be invalid because
6002       // a phi can't have different incoming values from the same block).
6003       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
6004       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
6005           count(Phi.blocks(), SwitchBlock) == 1) {
6006         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
6007         Changed = true;
6008       }
6009     }
6010 
6011     // Collect phi nodes that are indirectly using this switch's case constants.
6012     int PhiIdx;
6013     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
6014       ForwardingNodes[Phi].push_back(PhiIdx);
6015   }
6016 
6017   for (auto &ForwardingNode : ForwardingNodes) {
6018     PHINode *Phi = ForwardingNode.first;
6019     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
6020     // Check if it helps to fold PHI.
6021     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6022       continue;
6023 
6024     for (int Index : Indexes)
6025       Phi->setIncomingValue(Index, SI->getCondition());
6026     Changed = true;
6027   }
6028 
6029   return Changed;
6030 }
6031 
6032 /// Return true if the backend will be able to handle
6033 /// initializing an array of constants like C.
6034 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6035   if (C->isThreadDependent())
6036     return false;
6037   if (C->isDLLImportDependent())
6038     return false;
6039 
6040   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6041       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6042       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6043     return false;
6044 
6045   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6046     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6047     // materializing the array of constants.
6048     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6049     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6050       return false;
6051   }
6052 
6053   if (!TTI.shouldBuildLookupTablesForConstant(C))
6054     return false;
6055 
6056   return true;
6057 }
6058 
6059 /// If V is a Constant, return it. Otherwise, try to look up
6060 /// its constant value in ConstantPool, returning 0 if it's not there.
6061 static Constant *
6062 lookupConstant(Value *V,
6063                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6064   if (Constant *C = dyn_cast<Constant>(V))
6065     return C;
6066   return ConstantPool.lookup(V);
6067 }
6068 
6069 /// Try to fold instruction I into a constant. This works for
6070 /// simple instructions such as binary operations where both operands are
6071 /// constant or can be replaced by constants from the ConstantPool. Returns the
6072 /// resulting constant on success, 0 otherwise.
6073 static Constant *
6074 constantFold(Instruction *I, const DataLayout &DL,
6075              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6076   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6077     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6078     if (!A)
6079       return nullptr;
6080     if (A->isAllOnesValue())
6081       return lookupConstant(Select->getTrueValue(), ConstantPool);
6082     if (A->isNullValue())
6083       return lookupConstant(Select->getFalseValue(), ConstantPool);
6084     return nullptr;
6085   }
6086 
6087   SmallVector<Constant *, 4> COps;
6088   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6089     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6090       COps.push_back(A);
6091     else
6092       return nullptr;
6093   }
6094 
6095   return ConstantFoldInstOperands(I, COps, DL);
6096 }
6097 
6098 /// Try to determine the resulting constant values in phi nodes
6099 /// at the common destination basic block, *CommonDest, for one of the case
6100 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6101 /// case), of a switch instruction SI.
6102 static bool
6103 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6104                BasicBlock **CommonDest,
6105                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6106                const DataLayout &DL, const TargetTransformInfo &TTI) {
6107   // The block from which we enter the common destination.
6108   BasicBlock *Pred = SI->getParent();
6109 
6110   // If CaseDest is empty except for some side-effect free instructions through
6111   // which we can constant-propagate the CaseVal, continue to its successor.
6112   SmallDenseMap<Value *, Constant *> ConstantPool;
6113   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6114   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6115     if (I.isTerminator()) {
6116       // If the terminator is a simple branch, continue to the next block.
6117       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6118         return false;
6119       Pred = CaseDest;
6120       CaseDest = I.getSuccessor(0);
6121     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6122       // Instruction is side-effect free and constant.
6123 
6124       // If the instruction has uses outside this block or a phi node slot for
6125       // the block, it is not safe to bypass the instruction since it would then
6126       // no longer dominate all its uses.
6127       for (auto &Use : I.uses()) {
6128         User *User = Use.getUser();
6129         if (Instruction *I = dyn_cast<Instruction>(User))
6130           if (I->getParent() == CaseDest)
6131             continue;
6132         if (PHINode *Phi = dyn_cast<PHINode>(User))
6133           if (Phi->getIncomingBlock(Use) == CaseDest)
6134             continue;
6135         return false;
6136       }
6137 
6138       ConstantPool.insert(std::make_pair(&I, C));
6139     } else {
6140       break;
6141     }
6142   }
6143 
6144   // If we did not have a CommonDest before, use the current one.
6145   if (!*CommonDest)
6146     *CommonDest = CaseDest;
6147   // If the destination isn't the common one, abort.
6148   if (CaseDest != *CommonDest)
6149     return false;
6150 
6151   // Get the values for this case from phi nodes in the destination block.
6152   for (PHINode &PHI : (*CommonDest)->phis()) {
6153     int Idx = PHI.getBasicBlockIndex(Pred);
6154     if (Idx == -1)
6155       continue;
6156 
6157     Constant *ConstVal =
6158         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6159     if (!ConstVal)
6160       return false;
6161 
6162     // Be conservative about which kinds of constants we support.
6163     if (!validLookupTableConstant(ConstVal, TTI))
6164       return false;
6165 
6166     Res.push_back(std::make_pair(&PHI, ConstVal));
6167   }
6168 
6169   return Res.size() > 0;
6170 }
6171 
6172 // Helper function used to add CaseVal to the list of cases that generate
6173 // Result. Returns the updated number of cases that generate this result.
6174 static size_t mapCaseToResult(ConstantInt *CaseVal,
6175                               SwitchCaseResultVectorTy &UniqueResults,
6176                               Constant *Result) {
6177   for (auto &I : UniqueResults) {
6178     if (I.first == Result) {
6179       I.second.push_back(CaseVal);
6180       return I.second.size();
6181     }
6182   }
6183   UniqueResults.push_back(
6184       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6185   return 1;
6186 }
6187 
6188 // Helper function that initializes a map containing
6189 // results for the PHI node of the common destination block for a switch
6190 // instruction. Returns false if multiple PHI nodes have been found or if
6191 // there is not a common destination block for the switch.
6192 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6193                                   BasicBlock *&CommonDest,
6194                                   SwitchCaseResultVectorTy &UniqueResults,
6195                                   Constant *&DefaultResult,
6196                                   const DataLayout &DL,
6197                                   const TargetTransformInfo &TTI,
6198                                   uintptr_t MaxUniqueResults) {
6199   for (const auto &I : SI->cases()) {
6200     ConstantInt *CaseVal = I.getCaseValue();
6201 
6202     // Resulting value at phi nodes for this case value.
6203     SwitchCaseResultsTy Results;
6204     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6205                         DL, TTI))
6206       return false;
6207 
6208     // Only one value per case is permitted.
6209     if (Results.size() > 1)
6210       return false;
6211 
6212     // Add the case->result mapping to UniqueResults.
6213     const size_t NumCasesForResult =
6214         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6215 
6216     // Early out if there are too many cases for this result.
6217     if (NumCasesForResult > MaxSwitchCasesPerResult)
6218       return false;
6219 
6220     // Early out if there are too many unique results.
6221     if (UniqueResults.size() > MaxUniqueResults)
6222       return false;
6223 
6224     // Check the PHI consistency.
6225     if (!PHI)
6226       PHI = Results[0].first;
6227     else if (PHI != Results[0].first)
6228       return false;
6229   }
6230   // Find the default result value.
6231   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6232   BasicBlock *DefaultDest = SI->getDefaultDest();
6233   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6234                  DL, TTI);
6235   // If the default value is not found abort unless the default destination
6236   // is unreachable.
6237   DefaultResult =
6238       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6239   if ((!DefaultResult &&
6240        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6241     return false;
6242 
6243   return true;
6244 }
6245 
6246 // Helper function that checks if it is possible to transform a switch with only
6247 // two cases (or two cases + default) that produces a result into a select.
6248 // TODO: Handle switches with more than 2 cases that map to the same result.
6249 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6250                                  Constant *DefaultResult, Value *Condition,
6251                                  IRBuilder<> &Builder) {
6252   // If we are selecting between only two cases transform into a simple
6253   // select or a two-way select if default is possible.
6254   // Example:
6255   // switch (a) {                  %0 = icmp eq i32 %a, 10
6256   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6257   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6258   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6259   // }
6260   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6261       ResultVector[1].second.size() == 1) {
6262     ConstantInt *FirstCase = ResultVector[0].second[0];
6263     ConstantInt *SecondCase = ResultVector[1].second[0];
6264     Value *SelectValue = ResultVector[1].first;
6265     if (DefaultResult) {
6266       Value *ValueCompare =
6267           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6268       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6269                                          DefaultResult, "switch.select");
6270     }
6271     Value *ValueCompare =
6272         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6273     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6274                                 SelectValue, "switch.select");
6275   }
6276 
6277   // Handle the degenerate case where two cases have the same result value.
6278   if (ResultVector.size() == 1 && DefaultResult) {
6279     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6280     unsigned CaseCount = CaseValues.size();
6281     // n bits group cases map to the same result:
6282     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6283     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6284     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6285     if (isPowerOf2_32(CaseCount)) {
6286       ConstantInt *MinCaseVal = CaseValues[0];
6287       // Find mininal value.
6288       for (auto *Case : CaseValues)
6289         if (Case->getValue().slt(MinCaseVal->getValue()))
6290           MinCaseVal = Case;
6291 
6292       // Mark the bits case number touched.
6293       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6294       for (auto *Case : CaseValues)
6295         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6296 
6297       // Check if cases with the same result can cover all number
6298       // in touched bits.
6299       if (BitMask.popcount() == Log2_32(CaseCount)) {
6300         if (!MinCaseVal->isNullValue())
6301           Condition = Builder.CreateSub(Condition, MinCaseVal);
6302         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6303         Value *Cmp = Builder.CreateICmpEQ(
6304             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6305         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6306       }
6307     }
6308 
6309     // Handle the degenerate case where two cases have the same value.
6310     if (CaseValues.size() == 2) {
6311       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6312                                          "switch.selectcmp.case1");
6313       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6314                                          "switch.selectcmp.case2");
6315       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6316       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6317     }
6318   }
6319 
6320   return nullptr;
6321 }
6322 
6323 // Helper function to cleanup a switch instruction that has been converted into
6324 // a select, fixing up PHI nodes and basic blocks.
6325 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6326                                         Value *SelectValue,
6327                                         IRBuilder<> &Builder,
6328                                         DomTreeUpdater *DTU) {
6329   std::vector<DominatorTree::UpdateType> Updates;
6330 
6331   BasicBlock *SelectBB = SI->getParent();
6332   BasicBlock *DestBB = PHI->getParent();
6333 
6334   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6335     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6336   Builder.CreateBr(DestBB);
6337 
6338   // Remove the switch.
6339 
6340   PHI->removeIncomingValueIf(
6341       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6342   PHI->addIncoming(SelectValue, SelectBB);
6343 
6344   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6345   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6346     BasicBlock *Succ = SI->getSuccessor(i);
6347 
6348     if (Succ == DestBB)
6349       continue;
6350     Succ->removePredecessor(SelectBB);
6351     if (DTU && RemovedSuccessors.insert(Succ).second)
6352       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6353   }
6354   SI->eraseFromParent();
6355   if (DTU)
6356     DTU->applyUpdates(Updates);
6357 }
6358 
6359 /// If a switch is only used to initialize one or more phi nodes in a common
6360 /// successor block with only two different constant values, try to replace the
6361 /// switch with a select. Returns true if the fold was made.
6362 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6363                               DomTreeUpdater *DTU, const DataLayout &DL,
6364                               const TargetTransformInfo &TTI) {
6365   Value *const Cond = SI->getCondition();
6366   PHINode *PHI = nullptr;
6367   BasicBlock *CommonDest = nullptr;
6368   Constant *DefaultResult;
6369   SwitchCaseResultVectorTy UniqueResults;
6370   // Collect all the cases that will deliver the same value from the switch.
6371   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6372                              DL, TTI, /*MaxUniqueResults*/ 2))
6373     return false;
6374 
6375   assert(PHI != nullptr && "PHI for value select not found");
6376   Builder.SetInsertPoint(SI);
6377   Value *SelectValue =
6378       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6379   if (!SelectValue)
6380     return false;
6381 
6382   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6383   return true;
6384 }
6385 
6386 namespace {
6387 
6388 /// This class represents a lookup table that can be used to replace a switch.
6389 class SwitchLookupTable {
6390 public:
6391   /// Create a lookup table to use as a switch replacement with the contents
6392   /// of Values, using DefaultValue to fill any holes in the table.
6393   SwitchLookupTable(
6394       Module &M, uint64_t TableSize, ConstantInt *Offset,
6395       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6396       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6397 
6398   /// Build instructions with Builder to retrieve the value at
6399   /// the position given by Index in the lookup table.
6400   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6401 
6402   /// Return true if a table with TableSize elements of
6403   /// type ElementType would fit in a target-legal register.
6404   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6405                                  Type *ElementType);
6406 
6407 private:
6408   // Depending on the contents of the table, it can be represented in
6409   // different ways.
6410   enum {
6411     // For tables where each element contains the same value, we just have to
6412     // store that single value and return it for each lookup.
6413     SingleValueKind,
6414 
6415     // For tables where there is a linear relationship between table index
6416     // and values. We calculate the result with a simple multiplication
6417     // and addition instead of a table lookup.
6418     LinearMapKind,
6419 
6420     // For small tables with integer elements, we can pack them into a bitmap
6421     // that fits into a target-legal register. Values are retrieved by
6422     // shift and mask operations.
6423     BitMapKind,
6424 
6425     // The table is stored as an array of values. Values are retrieved by load
6426     // instructions from the table.
6427     ArrayKind
6428   } Kind;
6429 
6430   // For SingleValueKind, this is the single value.
6431   Constant *SingleValue = nullptr;
6432 
6433   // For BitMapKind, this is the bitmap.
6434   ConstantInt *BitMap = nullptr;
6435   IntegerType *BitMapElementTy = nullptr;
6436 
6437   // For LinearMapKind, these are the constants used to derive the value.
6438   ConstantInt *LinearOffset = nullptr;
6439   ConstantInt *LinearMultiplier = nullptr;
6440   bool LinearMapValWrapped = false;
6441 
6442   // For ArrayKind, this is the array.
6443   GlobalVariable *Array = nullptr;
6444 };
6445 
6446 } // end anonymous namespace
6447 
6448 SwitchLookupTable::SwitchLookupTable(
6449     Module &M, uint64_t TableSize, ConstantInt *Offset,
6450     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6451     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6452   assert(Values.size() && "Can't build lookup table without values!");
6453   assert(TableSize >= Values.size() && "Can't fit values in table!");
6454 
6455   // If all values in the table are equal, this is that value.
6456   SingleValue = Values.begin()->second;
6457 
6458   Type *ValueType = Values.begin()->second->getType();
6459 
6460   // Build up the table contents.
6461   SmallVector<Constant *, 64> TableContents(TableSize);
6462   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6463     ConstantInt *CaseVal = Values[I].first;
6464     Constant *CaseRes = Values[I].second;
6465     assert(CaseRes->getType() == ValueType);
6466 
6467     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6468     TableContents[Idx] = CaseRes;
6469 
6470     if (CaseRes != SingleValue)
6471       SingleValue = nullptr;
6472   }
6473 
6474   // Fill in any holes in the table with the default result.
6475   if (Values.size() < TableSize) {
6476     assert(DefaultValue &&
6477            "Need a default value to fill the lookup table holes.");
6478     assert(DefaultValue->getType() == ValueType);
6479     for (uint64_t I = 0; I < TableSize; ++I) {
6480       if (!TableContents[I])
6481         TableContents[I] = DefaultValue;
6482     }
6483 
6484     if (DefaultValue != SingleValue)
6485       SingleValue = nullptr;
6486   }
6487 
6488   // If each element in the table contains the same value, we only need to store
6489   // that single value.
6490   if (SingleValue) {
6491     Kind = SingleValueKind;
6492     return;
6493   }
6494 
6495   // Check if we can derive the value with a linear transformation from the
6496   // table index.
6497   if (isa<IntegerType>(ValueType)) {
6498     bool LinearMappingPossible = true;
6499     APInt PrevVal;
6500     APInt DistToPrev;
6501     // When linear map is monotonic and signed overflow doesn't happen on
6502     // maximum index, we can attach nsw on Add and Mul.
6503     bool NonMonotonic = false;
6504     assert(TableSize >= 2 && "Should be a SingleValue table.");
6505     // Check if there is the same distance between two consecutive values.
6506     for (uint64_t I = 0; I < TableSize; ++I) {
6507       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6508       if (!ConstVal) {
6509         // This is an undef. We could deal with it, but undefs in lookup tables
6510         // are very seldom. It's probably not worth the additional complexity.
6511         LinearMappingPossible = false;
6512         break;
6513       }
6514       const APInt &Val = ConstVal->getValue();
6515       if (I != 0) {
6516         APInt Dist = Val - PrevVal;
6517         if (I == 1) {
6518           DistToPrev = Dist;
6519         } else if (Dist != DistToPrev) {
6520           LinearMappingPossible = false;
6521           break;
6522         }
6523         NonMonotonic |=
6524             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6525       }
6526       PrevVal = Val;
6527     }
6528     if (LinearMappingPossible) {
6529       LinearOffset = cast<ConstantInt>(TableContents[0]);
6530       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6531       APInt M = LinearMultiplier->getValue();
6532       bool MayWrap = true;
6533       if (isIntN(M.getBitWidth(), TableSize - 1))
6534         (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6535       LinearMapValWrapped = NonMonotonic || MayWrap;
6536       Kind = LinearMapKind;
6537       ++NumLinearMaps;
6538       return;
6539     }
6540   }
6541 
6542   // If the type is integer and the table fits in a register, build a bitmap.
6543   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6544     IntegerType *IT = cast<IntegerType>(ValueType);
6545     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6546     for (uint64_t I = TableSize; I > 0; --I) {
6547       TableInt <<= IT->getBitWidth();
6548       // Insert values into the bitmap. Undef values are set to zero.
6549       if (!isa<UndefValue>(TableContents[I - 1])) {
6550         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6551         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6552       }
6553     }
6554     BitMap = ConstantInt::get(M.getContext(), TableInt);
6555     BitMapElementTy = IT;
6556     Kind = BitMapKind;
6557     ++NumBitMaps;
6558     return;
6559   }
6560 
6561   // Store the table in an array.
6562   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6563   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6564 
6565   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6566                              GlobalVariable::PrivateLinkage, Initializer,
6567                              "switch.table." + FuncName);
6568   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6569   // Set the alignment to that of an array items. We will be only loading one
6570   // value out of it.
6571   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6572   Kind = ArrayKind;
6573 }
6574 
6575 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6576   switch (Kind) {
6577   case SingleValueKind:
6578     return SingleValue;
6579   case LinearMapKind: {
6580     // Derive the result value from the input value.
6581     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6582                                           false, "switch.idx.cast");
6583     if (!LinearMultiplier->isOne())
6584       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6585                                  /*HasNUW = */ false,
6586                                  /*HasNSW = */ !LinearMapValWrapped);
6587 
6588     if (!LinearOffset->isZero())
6589       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6590                                  /*HasNUW = */ false,
6591                                  /*HasNSW = */ !LinearMapValWrapped);
6592     return Result;
6593   }
6594   case BitMapKind: {
6595     // Type of the bitmap (e.g. i59).
6596     IntegerType *MapTy = BitMap->getIntegerType();
6597 
6598     // Cast Index to the same type as the bitmap.
6599     // Note: The Index is <= the number of elements in the table, so
6600     // truncating it to the width of the bitmask is safe.
6601     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6602 
6603     // Multiply the shift amount by the element width. NUW/NSW can always be
6604     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6605     // BitMap's bit width.
6606     ShiftAmt = Builder.CreateMul(
6607         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6608         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6609 
6610     // Shift down.
6611     Value *DownShifted =
6612         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6613     // Mask off.
6614     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6615   }
6616   case ArrayKind: {
6617     // Make sure the table index will not overflow when treated as signed.
6618     IntegerType *IT = cast<IntegerType>(Index->getType());
6619     uint64_t TableSize =
6620         Array->getInitializer()->getType()->getArrayNumElements();
6621     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6622       Index = Builder.CreateZExt(
6623           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6624           "switch.tableidx.zext");
6625 
6626     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6627     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6628                                            GEPIndices, "switch.gep");
6629     return Builder.CreateLoad(
6630         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6631         "switch.load");
6632   }
6633   }
6634   llvm_unreachable("Unknown lookup table kind!");
6635 }
6636 
6637 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6638                                            uint64_t TableSize,
6639                                            Type *ElementType) {
6640   auto *IT = dyn_cast<IntegerType>(ElementType);
6641   if (!IT)
6642     return false;
6643   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6644   // are <= 15, we could try to narrow the type.
6645 
6646   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6647   if (TableSize >= UINT_MAX / IT->getBitWidth())
6648     return false;
6649   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6650 }
6651 
6652 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6653                                       const DataLayout &DL) {
6654   // Allow any legal type.
6655   if (TTI.isTypeLegal(Ty))
6656     return true;
6657 
6658   auto *IT = dyn_cast<IntegerType>(Ty);
6659   if (!IT)
6660     return false;
6661 
6662   // Also allow power of 2 integer types that have at least 8 bits and fit in
6663   // a register. These types are common in frontend languages and targets
6664   // usually support loads of these types.
6665   // TODO: We could relax this to any integer that fits in a register and rely
6666   // on ABI alignment and padding in the table to allow the load to be widened.
6667   // Or we could widen the constants and truncate the load.
6668   unsigned BitWidth = IT->getBitWidth();
6669   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6670          DL.fitsInLegalInteger(IT->getBitWidth());
6671 }
6672 
6673 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6674   // 40% is the default density for building a jump table in optsize/minsize
6675   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6676   // function was based on.
6677   const uint64_t MinDensity = 40;
6678 
6679   if (CaseRange >= UINT64_MAX / 100)
6680     return false; // Avoid multiplication overflows below.
6681 
6682   return NumCases * 100 >= CaseRange * MinDensity;
6683 }
6684 
6685 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6686   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6687   uint64_t Range = Diff + 1;
6688   if (Range < Diff)
6689     return false; // Overflow.
6690 
6691   return isSwitchDense(Values.size(), Range);
6692 }
6693 
6694 /// Determine whether a lookup table should be built for this switch, based on
6695 /// the number of cases, size of the table, and the types of the results.
6696 // TODO: We could support larger than legal types by limiting based on the
6697 // number of loads required and/or table size. If the constants are small we
6698 // could use smaller table entries and extend after the load.
6699 static bool
6700 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6701                        const TargetTransformInfo &TTI, const DataLayout &DL,
6702                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6703   if (SI->getNumCases() > TableSize)
6704     return false; // TableSize overflowed.
6705 
6706   bool AllTablesFitInRegister = true;
6707   bool HasIllegalType = false;
6708   for (const auto &I : ResultTypes) {
6709     Type *Ty = I.second;
6710 
6711     // Saturate this flag to true.
6712     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6713 
6714     // Saturate this flag to false.
6715     AllTablesFitInRegister =
6716         AllTablesFitInRegister &&
6717         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6718 
6719     // If both flags saturate, we're done. NOTE: This *only* works with
6720     // saturating flags, and all flags have to saturate first due to the
6721     // non-deterministic behavior of iterating over a dense map.
6722     if (HasIllegalType && !AllTablesFitInRegister)
6723       break;
6724   }
6725 
6726   // If each table would fit in a register, we should build it anyway.
6727   if (AllTablesFitInRegister)
6728     return true;
6729 
6730   // Don't build a table that doesn't fit in-register if it has illegal types.
6731   if (HasIllegalType)
6732     return false;
6733 
6734   return isSwitchDense(SI->getNumCases(), TableSize);
6735 }
6736 
6737 static bool shouldUseSwitchConditionAsTableIndex(
6738     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6739     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6740     const DataLayout &DL, const TargetTransformInfo &TTI) {
6741   if (MinCaseVal.isNullValue())
6742     return true;
6743   if (MinCaseVal.isNegative() ||
6744       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6745       !HasDefaultResults)
6746     return false;
6747   return all_of(ResultTypes, [&](const auto &KV) {
6748     return SwitchLookupTable::wouldFitInRegister(
6749         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6750         KV.second /* ResultType */);
6751   });
6752 }
6753 
6754 /// Try to reuse the switch table index compare. Following pattern:
6755 /// \code
6756 ///     if (idx < tablesize)
6757 ///        r = table[idx]; // table does not contain default_value
6758 ///     else
6759 ///        r = default_value;
6760 ///     if (r != default_value)
6761 ///        ...
6762 /// \endcode
6763 /// Is optimized to:
6764 /// \code
6765 ///     cond = idx < tablesize;
6766 ///     if (cond)
6767 ///        r = table[idx];
6768 ///     else
6769 ///        r = default_value;
6770 ///     if (cond)
6771 ///        ...
6772 /// \endcode
6773 /// Jump threading will then eliminate the second if(cond).
6774 static void reuseTableCompare(
6775     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6776     Constant *DefaultValue,
6777     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6778   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6779   if (!CmpInst)
6780     return;
6781 
6782   // We require that the compare is in the same block as the phi so that jump
6783   // threading can do its work afterwards.
6784   if (CmpInst->getParent() != PhiBlock)
6785     return;
6786 
6787   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6788   if (!CmpOp1)
6789     return;
6790 
6791   Value *RangeCmp = RangeCheckBranch->getCondition();
6792   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6793   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6794 
6795   // Check if the compare with the default value is constant true or false.
6796   const DataLayout &DL = PhiBlock->getDataLayout();
6797   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6798       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6799   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6800     return;
6801 
6802   // Check if the compare with the case values is distinct from the default
6803   // compare result.
6804   for (auto ValuePair : Values) {
6805     Constant *CaseConst = ConstantFoldCompareInstOperands(
6806         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6807     if (!CaseConst || CaseConst == DefaultConst ||
6808         (CaseConst != TrueConst && CaseConst != FalseConst))
6809       return;
6810   }
6811 
6812   // Check if the branch instruction dominates the phi node. It's a simple
6813   // dominance check, but sufficient for our needs.
6814   // Although this check is invariant in the calling loops, it's better to do it
6815   // at this late stage. Practically we do it at most once for a switch.
6816   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6817   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6818     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6819       return;
6820   }
6821 
6822   if (DefaultConst == FalseConst) {
6823     // The compare yields the same result. We can replace it.
6824     CmpInst->replaceAllUsesWith(RangeCmp);
6825     ++NumTableCmpReuses;
6826   } else {
6827     // The compare yields the same result, just inverted. We can replace it.
6828     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6829         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6830         RangeCheckBranch->getIterator());
6831     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6832     ++NumTableCmpReuses;
6833   }
6834 }
6835 
6836 /// If the switch is only used to initialize one or more phi nodes in a common
6837 /// successor block with different constant values, replace the switch with
6838 /// lookup tables.
6839 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6840                                 DomTreeUpdater *DTU, const DataLayout &DL,
6841                                 const TargetTransformInfo &TTI) {
6842   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6843 
6844   BasicBlock *BB = SI->getParent();
6845   Function *Fn = BB->getParent();
6846   // Only build lookup table when we have a target that supports it or the
6847   // attribute is not set.
6848   if (!TTI.shouldBuildLookupTables() ||
6849       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6850     return false;
6851 
6852   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6853   // split off a dense part and build a lookup table for that.
6854 
6855   // FIXME: This creates arrays of GEPs to constant strings, which means each
6856   // GEP needs a runtime relocation in PIC code. We should just build one big
6857   // string and lookup indices into that.
6858 
6859   // Ignore switches with less than three cases. Lookup tables will not make
6860   // them faster, so we don't analyze them.
6861   if (SI->getNumCases() < 3)
6862     return false;
6863 
6864   // Figure out the corresponding result for each case value and phi node in the
6865   // common destination, as well as the min and max case values.
6866   assert(!SI->cases().empty());
6867   SwitchInst::CaseIt CI = SI->case_begin();
6868   ConstantInt *MinCaseVal = CI->getCaseValue();
6869   ConstantInt *MaxCaseVal = CI->getCaseValue();
6870 
6871   BasicBlock *CommonDest = nullptr;
6872 
6873   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6874   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6875 
6876   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6877   SmallDenseMap<PHINode *, Type *> ResultTypes;
6878   SmallVector<PHINode *, 4> PHIs;
6879 
6880   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6881     ConstantInt *CaseVal = CI->getCaseValue();
6882     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6883       MinCaseVal = CaseVal;
6884     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6885       MaxCaseVal = CaseVal;
6886 
6887     // Resulting value at phi nodes for this case value.
6888     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6889     ResultsTy Results;
6890     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6891                         Results, DL, TTI))
6892       return false;
6893 
6894     // Append the result from this case to the list for each phi.
6895     for (const auto &I : Results) {
6896       PHINode *PHI = I.first;
6897       Constant *Value = I.second;
6898       if (!ResultLists.count(PHI))
6899         PHIs.push_back(PHI);
6900       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6901     }
6902   }
6903 
6904   // Keep track of the result types.
6905   for (PHINode *PHI : PHIs) {
6906     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6907   }
6908 
6909   uint64_t NumResults = ResultLists[PHIs[0]].size();
6910 
6911   // If the table has holes, we need a constant result for the default case
6912   // or a bitmask that fits in a register.
6913   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6914   bool HasDefaultResults =
6915       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6916                      DefaultResultsList, DL, TTI);
6917 
6918   for (const auto &I : DefaultResultsList) {
6919     PHINode *PHI = I.first;
6920     Constant *Result = I.second;
6921     DefaultResults[PHI] = Result;
6922   }
6923 
6924   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6925       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6926   uint64_t TableSize;
6927   if (UseSwitchConditionAsTableIndex)
6928     TableSize = MaxCaseVal->getLimitedValue() + 1;
6929   else
6930     TableSize =
6931         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6932 
6933   // If the default destination is unreachable, or if the lookup table covers
6934   // all values of the conditional variable, branch directly to the lookup table
6935   // BB. Otherwise, check that the condition is within the case range.
6936   bool DefaultIsReachable = !SI->defaultDestUndefined();
6937 
6938   bool TableHasHoles = (NumResults < TableSize);
6939 
6940   // If the table has holes but the default destination doesn't produce any
6941   // constant results, the lookup table entries corresponding to the holes will
6942   // contain undefined values.
6943   bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults;
6944 
6945   // If the default destination doesn't produce a constant result but is still
6946   // reachable, and the lookup table has holes, we need to use a mask to
6947   // determine if the current index should load from the lookup table or jump
6948   // to the default case.
6949   // The mask is unnecessary if the table has holes but the default destination
6950   // is unreachable, as in that case the holes must also be unreachable.
6951   bool NeedMask = AllHolesAreUndefined && DefaultIsReachable;
6952   if (NeedMask) {
6953     // As an extra penalty for the validity test we require more cases.
6954     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6955       return false;
6956     if (!DL.fitsInLegalInteger(TableSize))
6957       return false;
6958   }
6959 
6960   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6961     return false;
6962 
6963   std::vector<DominatorTree::UpdateType> Updates;
6964 
6965   // Compute the maximum table size representable by the integer type we are
6966   // switching upon.
6967   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6968   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6969   assert(MaxTableSize >= TableSize &&
6970          "It is impossible for a switch to have more entries than the max "
6971          "representable value of its input integer type's size.");
6972 
6973   // Create the BB that does the lookups.
6974   Module &Mod = *CommonDest->getParent()->getParent();
6975   BasicBlock *LookupBB = BasicBlock::Create(
6976       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6977 
6978   // Compute the table index value.
6979   Builder.SetInsertPoint(SI);
6980   Value *TableIndex;
6981   ConstantInt *TableIndexOffset;
6982   if (UseSwitchConditionAsTableIndex) {
6983     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
6984     TableIndex = SI->getCondition();
6985   } else {
6986     TableIndexOffset = MinCaseVal;
6987     // If the default is unreachable, all case values are s>= MinCaseVal. Then
6988     // we can try to attach nsw.
6989     bool MayWrap = true;
6990     if (!DefaultIsReachable) {
6991       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
6992       (void)Res;
6993     }
6994 
6995     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
6996                                    "switch.tableidx", /*HasNUW =*/false,
6997                                    /*HasNSW =*/!MayWrap);
6998   }
6999 
7000   BranchInst *RangeCheckBranch = nullptr;
7001 
7002   // Grow the table to cover all possible index values to avoid the range check.
7003   // It will use the default result to fill in the table hole later, so make
7004   // sure it exist.
7005   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
7006     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
7007     // Grow the table shouldn't have any size impact by checking
7008     // wouldFitInRegister.
7009     // TODO: Consider growing the table also when it doesn't fit in a register
7010     // if no optsize is specified.
7011     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
7012     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
7013           return SwitchLookupTable::wouldFitInRegister(
7014               DL, UpperBound, KV.second /* ResultType */);
7015         })) {
7016       // There may be some case index larger than the UpperBound (unreachable
7017       // case), so make sure the table size does not get smaller.
7018       TableSize = std::max(UpperBound, TableSize);
7019       // The default branch is unreachable after we enlarge the lookup table.
7020       // Adjust DefaultIsReachable to reuse code path.
7021       DefaultIsReachable = false;
7022     }
7023   }
7024 
7025   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7026   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7027     Builder.CreateBr(LookupBB);
7028     if (DTU)
7029       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7030     // Note: We call removeProdecessor later since we need to be able to get the
7031     // PHI value for the default case in case we're using a bit mask.
7032   } else {
7033     Value *Cmp = Builder.CreateICmpULT(
7034         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7035     RangeCheckBranch =
7036         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7037     if (DTU)
7038       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7039   }
7040 
7041   // Populate the BB that does the lookups.
7042   Builder.SetInsertPoint(LookupBB);
7043 
7044   if (NeedMask) {
7045     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7046     // re-purposed to do the hole check, and we create a new LookupBB.
7047     BasicBlock *MaskBB = LookupBB;
7048     MaskBB->setName("switch.hole_check");
7049     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7050                                   CommonDest->getParent(), CommonDest);
7051 
7052     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7053     // unnecessary illegal types.
7054     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7055     APInt MaskInt(TableSizePowOf2, 0);
7056     APInt One(TableSizePowOf2, 1);
7057     // Build bitmask; fill in a 1 bit for every case.
7058     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7059     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7060       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7061                          .getLimitedValue();
7062       MaskInt |= One << Idx;
7063     }
7064     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7065 
7066     // Get the TableIndex'th bit of the bitmask.
7067     // If this bit is 0 (meaning hole) jump to the default destination,
7068     // else continue with table lookup.
7069     IntegerType *MapTy = TableMask->getIntegerType();
7070     Value *MaskIndex =
7071         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7072     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7073     Value *LoBit = Builder.CreateTrunc(
7074         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7075     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7076     if (DTU) {
7077       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7078       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7079     }
7080     Builder.SetInsertPoint(LookupBB);
7081     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7082   }
7083 
7084   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7085     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7086     // do not delete PHINodes here.
7087     SI->getDefaultDest()->removePredecessor(BB,
7088                                             /*KeepOneInputPHIs=*/true);
7089     if (DTU)
7090       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7091   }
7092 
7093   for (PHINode *PHI : PHIs) {
7094     const ResultListTy &ResultList = ResultLists[PHI];
7095 
7096     // Use any value to fill the lookup table holes.
7097     Constant *DV =
7098         AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI];
7099     StringRef FuncName = Fn->getName();
7100     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7101                             DL, FuncName);
7102 
7103     Value *Result = Table.buildLookup(TableIndex, Builder);
7104 
7105     // Do a small peephole optimization: re-use the switch table compare if
7106     // possible.
7107     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7108       BasicBlock *PhiBlock = PHI->getParent();
7109       // Search for compare instructions which use the phi.
7110       for (auto *User : PHI->users()) {
7111         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7112       }
7113     }
7114 
7115     PHI->addIncoming(Result, LookupBB);
7116   }
7117 
7118   Builder.CreateBr(CommonDest);
7119   if (DTU)
7120     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7121 
7122   // Remove the switch.
7123   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7124   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7125     BasicBlock *Succ = SI->getSuccessor(i);
7126 
7127     if (Succ == SI->getDefaultDest())
7128       continue;
7129     Succ->removePredecessor(BB);
7130     if (DTU && RemovedSuccessors.insert(Succ).second)
7131       Updates.push_back({DominatorTree::Delete, BB, Succ});
7132   }
7133   SI->eraseFromParent();
7134 
7135   if (DTU)
7136     DTU->applyUpdates(Updates);
7137 
7138   ++NumLookupTables;
7139   if (NeedMask)
7140     ++NumLookupTablesHoles;
7141   return true;
7142 }
7143 
7144 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7145 /// of cases.
7146 ///
7147 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7148 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7149 ///
7150 /// This converts a sparse switch into a dense switch which allows better
7151 /// lowering and could also allow transforming into a lookup table.
7152 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7153                               const DataLayout &DL,
7154                               const TargetTransformInfo &TTI) {
7155   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7156   if (CondTy->getIntegerBitWidth() > 64 ||
7157       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7158     return false;
7159   // Only bother with this optimization if there are more than 3 switch cases;
7160   // SDAG will only bother creating jump tables for 4 or more cases.
7161   if (SI->getNumCases() < 4)
7162     return false;
7163 
7164   // This transform is agnostic to the signedness of the input or case values. We
7165   // can treat the case values as signed or unsigned. We can optimize more common
7166   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7167   // as signed.
7168   SmallVector<int64_t,4> Values;
7169   for (const auto &C : SI->cases())
7170     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7171   llvm::sort(Values);
7172 
7173   // If the switch is already dense, there's nothing useful to do here.
7174   if (isSwitchDense(Values))
7175     return false;
7176 
7177   // First, transform the values such that they start at zero and ascend.
7178   int64_t Base = Values[0];
7179   for (auto &V : Values)
7180     V -= (uint64_t)(Base);
7181 
7182   // Now we have signed numbers that have been shifted so that, given enough
7183   // precision, there are no negative values. Since the rest of the transform
7184   // is bitwise only, we switch now to an unsigned representation.
7185 
7186   // This transform can be done speculatively because it is so cheap - it
7187   // results in a single rotate operation being inserted.
7188 
7189   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7190   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7191   // less than 64.
7192   unsigned Shift = 64;
7193   for (auto &V : Values)
7194     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7195   assert(Shift < 64);
7196   if (Shift > 0)
7197     for (auto &V : Values)
7198       V = (int64_t)((uint64_t)V >> Shift);
7199 
7200   if (!isSwitchDense(Values))
7201     // Transform didn't create a dense switch.
7202     return false;
7203 
7204   // The obvious transform is to shift the switch condition right and emit a
7205   // check that the condition actually cleanly divided by GCD, i.e.
7206   //   C & (1 << Shift - 1) == 0
7207   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7208   //
7209   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7210   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7211   // are nonzero then the switch condition will be very large and will hit the
7212   // default case.
7213 
7214   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7215   Builder.SetInsertPoint(SI);
7216   Value *Sub =
7217       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7218   Value *Rot = Builder.CreateIntrinsic(
7219       Ty, Intrinsic::fshl,
7220       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7221   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7222 
7223   for (auto Case : SI->cases()) {
7224     auto *Orig = Case.getCaseValue();
7225     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
7226     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7227   }
7228   return true;
7229 }
7230 
7231 /// Tries to transform switch of powers of two to reduce switch range.
7232 /// For example, switch like:
7233 /// switch (C) { case 1: case 2: case 64: case 128: }
7234 /// will be transformed to:
7235 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7236 ///
7237 /// This transformation allows better lowering and could allow transforming into
7238 /// a lookup table.
7239 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7240                                         const DataLayout &DL,
7241                                         const TargetTransformInfo &TTI) {
7242   Value *Condition = SI->getCondition();
7243   LLVMContext &Context = SI->getContext();
7244   auto *CondTy = cast<IntegerType>(Condition->getType());
7245 
7246   if (CondTy->getIntegerBitWidth() > 64 ||
7247       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7248     return false;
7249 
7250   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7251       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7252                               {Condition, ConstantInt::getTrue(Context)}),
7253       TTI::TCK_SizeAndLatency);
7254 
7255   if (CttzIntrinsicCost > TTI::TCC_Basic)
7256     // Inserting intrinsic is too expensive.
7257     return false;
7258 
7259   // Only bother with this optimization if there are more than 3 switch cases.
7260   // SDAG will only bother creating jump tables for 4 or more cases.
7261   if (SI->getNumCases() < 4)
7262     return false;
7263 
7264   // We perform this optimization only for switches with
7265   // unreachable default case.
7266   // This assumtion will save us from checking if `Condition` is a power of two.
7267   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7268     return false;
7269 
7270   // Check that switch cases are powers of two.
7271   SmallVector<uint64_t, 4> Values;
7272   for (const auto &Case : SI->cases()) {
7273     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7274     if (llvm::has_single_bit(CaseValue))
7275       Values.push_back(CaseValue);
7276     else
7277       return false;
7278   }
7279 
7280   // isSwichDense requires case values to be sorted.
7281   llvm::sort(Values);
7282   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7283                                         llvm::countr_zero(Values.front()) + 1))
7284     // Transform is unable to generate dense switch.
7285     return false;
7286 
7287   Builder.SetInsertPoint(SI);
7288 
7289   // Replace each case with its trailing zeros number.
7290   for (auto &Case : SI->cases()) {
7291     auto *OrigValue = Case.getCaseValue();
7292     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7293                                    OrigValue->getValue().countr_zero()));
7294   }
7295 
7296   // Replace condition with its trailing zeros number.
7297   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7298       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7299 
7300   SI->setCondition(ConditionTrailingZeros);
7301 
7302   return true;
7303 }
7304 
7305 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7306 /// the same destination.
7307 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7308                                          DomTreeUpdater *DTU) {
7309   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7310   if (!Cmp || !Cmp->hasOneUse())
7311     return false;
7312 
7313   SmallVector<uint32_t, 4> Weights;
7314   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7315   if (!HasWeights)
7316     Weights.resize(4); // Avoid checking HasWeights everywhere.
7317 
7318   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7319   int64_t Res;
7320   BasicBlock *Succ, *OtherSucc;
7321   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7322   BasicBlock *Unreachable = nullptr;
7323 
7324   if (SI->getNumCases() == 2) {
7325     // Find which of 1, 0 or -1 is missing (handled by default dest).
7326     SmallSet<int64_t, 3> Missing;
7327     Missing.insert(1);
7328     Missing.insert(0);
7329     Missing.insert(-1);
7330 
7331     Succ = SI->getDefaultDest();
7332     SuccWeight = Weights[0];
7333     OtherSucc = nullptr;
7334     for (auto &Case : SI->cases()) {
7335       std::optional<int64_t> Val =
7336           Case.getCaseValue()->getValue().trySExtValue();
7337       if (!Val)
7338         return false;
7339       if (!Missing.erase(*Val))
7340         return false;
7341       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7342         return false;
7343       OtherSucc = Case.getCaseSuccessor();
7344       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7345     }
7346 
7347     assert(Missing.size() == 1 && "Should have one case left");
7348     Res = *Missing.begin();
7349   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7350     // Normalize so that Succ is taken once and OtherSucc twice.
7351     Unreachable = SI->getDefaultDest();
7352     Succ = OtherSucc = nullptr;
7353     for (auto &Case : SI->cases()) {
7354       BasicBlock *NewSucc = Case.getCaseSuccessor();
7355       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7356       if (!OtherSucc || OtherSucc == NewSucc) {
7357         OtherSucc = NewSucc;
7358         OtherSuccWeight += Weight;
7359       } else if (!Succ) {
7360         Succ = NewSucc;
7361         SuccWeight = Weight;
7362       } else if (Succ == NewSucc) {
7363         std::swap(Succ, OtherSucc);
7364         std::swap(SuccWeight, OtherSuccWeight);
7365       } else
7366         return false;
7367     }
7368     for (auto &Case : SI->cases()) {
7369       std::optional<int64_t> Val =
7370           Case.getCaseValue()->getValue().trySExtValue();
7371       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7372         return false;
7373       if (Case.getCaseSuccessor() == Succ) {
7374         Res = *Val;
7375         break;
7376       }
7377     }
7378   } else {
7379     return false;
7380   }
7381 
7382   // Determine predicate for the missing case.
7383   ICmpInst::Predicate Pred;
7384   switch (Res) {
7385   case 1:
7386     Pred = ICmpInst::ICMP_UGT;
7387     break;
7388   case 0:
7389     Pred = ICmpInst::ICMP_EQ;
7390     break;
7391   case -1:
7392     Pred = ICmpInst::ICMP_ULT;
7393     break;
7394   }
7395   if (Cmp->isSigned())
7396     Pred = ICmpInst::getSignedPredicate(Pred);
7397 
7398   MDNode *NewWeights = nullptr;
7399   if (HasWeights)
7400     NewWeights = MDBuilder(SI->getContext())
7401                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7402 
7403   BasicBlock *BB = SI->getParent();
7404   Builder.SetInsertPoint(SI->getIterator());
7405   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7406   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7407                        SI->getMetadata(LLVMContext::MD_unpredictable));
7408   OtherSucc->removePredecessor(BB);
7409   if (Unreachable)
7410     Unreachable->removePredecessor(BB);
7411   SI->eraseFromParent();
7412   Cmp->eraseFromParent();
7413   if (DTU && Unreachable)
7414     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7415   return true;
7416 }
7417 
7418 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7419   BasicBlock *BB = SI->getParent();
7420 
7421   if (isValueEqualityComparison(SI)) {
7422     // If we only have one predecessor, and if it is a branch on this value,
7423     // see if that predecessor totally determines the outcome of this switch.
7424     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7425       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7426         return requestResimplify();
7427 
7428     Value *Cond = SI->getCondition();
7429     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7430       if (simplifySwitchOnSelect(SI, Select))
7431         return requestResimplify();
7432 
7433     // If the block only contains the switch, see if we can fold the block
7434     // away into any preds.
7435     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7436       if (foldValueComparisonIntoPredecessors(SI, Builder))
7437         return requestResimplify();
7438   }
7439 
7440   // Try to transform the switch into an icmp and a branch.
7441   // The conversion from switch to comparison may lose information on
7442   // impossible switch values, so disable it early in the pipeline.
7443   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7444     return requestResimplify();
7445 
7446   // Remove unreachable cases.
7447   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7448     return requestResimplify();
7449 
7450   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7451     return requestResimplify();
7452 
7453   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7454     return requestResimplify();
7455 
7456   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7457     return requestResimplify();
7458 
7459   // The conversion from switch to lookup tables results in difficult-to-analyze
7460   // code and makes pruning branches much harder. This is a problem if the
7461   // switch expression itself can still be restricted as a result of inlining or
7462   // CVP. Therefore, only apply this transformation during late stages of the
7463   // optimisation pipeline.
7464   if (Options.ConvertSwitchToLookupTable &&
7465       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7466     return requestResimplify();
7467 
7468   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7469     return requestResimplify();
7470 
7471   if (reduceSwitchRange(SI, Builder, DL, TTI))
7472     return requestResimplify();
7473 
7474   if (HoistCommon &&
7475       hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts))
7476     return requestResimplify();
7477 
7478   return false;
7479 }
7480 
7481 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7482   BasicBlock *BB = IBI->getParent();
7483   bool Changed = false;
7484 
7485   // Eliminate redundant destinations.
7486   SmallPtrSet<Value *, 8> Succs;
7487   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7488   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7489     BasicBlock *Dest = IBI->getDestination(i);
7490     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7491       if (!Dest->hasAddressTaken())
7492         RemovedSuccs.insert(Dest);
7493       Dest->removePredecessor(BB);
7494       IBI->removeDestination(i);
7495       --i;
7496       --e;
7497       Changed = true;
7498     }
7499   }
7500 
7501   if (DTU) {
7502     std::vector<DominatorTree::UpdateType> Updates;
7503     Updates.reserve(RemovedSuccs.size());
7504     for (auto *RemovedSucc : RemovedSuccs)
7505       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7506     DTU->applyUpdates(Updates);
7507   }
7508 
7509   if (IBI->getNumDestinations() == 0) {
7510     // If the indirectbr has no successors, change it to unreachable.
7511     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7512     eraseTerminatorAndDCECond(IBI);
7513     return true;
7514   }
7515 
7516   if (IBI->getNumDestinations() == 1) {
7517     // If the indirectbr has one successor, change it to a direct branch.
7518     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7519     eraseTerminatorAndDCECond(IBI);
7520     return true;
7521   }
7522 
7523   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7524     if (simplifyIndirectBrOnSelect(IBI, SI))
7525       return requestResimplify();
7526   }
7527   return Changed;
7528 }
7529 
7530 /// Given an block with only a single landing pad and a unconditional branch
7531 /// try to find another basic block which this one can be merged with.  This
7532 /// handles cases where we have multiple invokes with unique landing pads, but
7533 /// a shared handler.
7534 ///
7535 /// We specifically choose to not worry about merging non-empty blocks
7536 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7537 /// practice, the optimizer produces empty landing pad blocks quite frequently
7538 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7539 /// sinking in this file)
7540 ///
7541 /// This is primarily a code size optimization.  We need to avoid performing
7542 /// any transform which might inhibit optimization (such as our ability to
7543 /// specialize a particular handler via tail commoning).  We do this by not
7544 /// merging any blocks which require us to introduce a phi.  Since the same
7545 /// values are flowing through both blocks, we don't lose any ability to
7546 /// specialize.  If anything, we make such specialization more likely.
7547 ///
7548 /// TODO - This transformation could remove entries from a phi in the target
7549 /// block when the inputs in the phi are the same for the two blocks being
7550 /// merged.  In some cases, this could result in removal of the PHI entirely.
7551 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7552                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7553   auto Succ = BB->getUniqueSuccessor();
7554   assert(Succ);
7555   // If there's a phi in the successor block, we'd likely have to introduce
7556   // a phi into the merged landing pad block.
7557   if (isa<PHINode>(*Succ->begin()))
7558     return false;
7559 
7560   for (BasicBlock *OtherPred : predecessors(Succ)) {
7561     if (BB == OtherPred)
7562       continue;
7563     BasicBlock::iterator I = OtherPred->begin();
7564     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7565     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7566       continue;
7567     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7568       ;
7569     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7570     if (!BI2 || !BI2->isIdenticalTo(BI))
7571       continue;
7572 
7573     std::vector<DominatorTree::UpdateType> Updates;
7574 
7575     // We've found an identical block.  Update our predecessors to take that
7576     // path instead and make ourselves dead.
7577     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7578     for (BasicBlock *Pred : UniquePreds) {
7579       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7580       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7581              "unexpected successor");
7582       II->setUnwindDest(OtherPred);
7583       if (DTU) {
7584         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7585         Updates.push_back({DominatorTree::Delete, Pred, BB});
7586       }
7587     }
7588 
7589     // The debug info in OtherPred doesn't cover the merged control flow that
7590     // used to go through BB.  We need to delete it or update it.
7591     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7592       if (isa<DbgInfoIntrinsic>(Inst))
7593         Inst.eraseFromParent();
7594 
7595     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7596     for (BasicBlock *Succ : UniqueSuccs) {
7597       Succ->removePredecessor(BB);
7598       if (DTU)
7599         Updates.push_back({DominatorTree::Delete, BB, Succ});
7600     }
7601 
7602     IRBuilder<> Builder(BI);
7603     Builder.CreateUnreachable();
7604     BI->eraseFromParent();
7605     if (DTU)
7606       DTU->applyUpdates(Updates);
7607     return true;
7608   }
7609   return false;
7610 }
7611 
7612 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7613   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7614                                    : simplifyCondBranch(Branch, Builder);
7615 }
7616 
7617 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7618                                           IRBuilder<> &Builder) {
7619   BasicBlock *BB = BI->getParent();
7620   BasicBlock *Succ = BI->getSuccessor(0);
7621 
7622   // If the Terminator is the only non-phi instruction, simplify the block.
7623   // If LoopHeader is provided, check if the block or its successor is a loop
7624   // header. (This is for early invocations before loop simplify and
7625   // vectorization to keep canonical loop forms for nested loops. These blocks
7626   // can be eliminated when the pass is invoked later in the back-end.)
7627   // Note that if BB has only one predecessor then we do not introduce new
7628   // backedge, so we can eliminate BB.
7629   bool NeedCanonicalLoop =
7630       Options.NeedCanonicalLoop &&
7631       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7632        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7633   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7634   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7635       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7636     return true;
7637 
7638   // If the only instruction in the block is a seteq/setne comparison against a
7639   // constant, try to simplify the block.
7640   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7641     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7642       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7643         ;
7644       if (I->isTerminator() &&
7645           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7646         return true;
7647     }
7648 
7649   // See if we can merge an empty landing pad block with another which is
7650   // equivalent.
7651   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7652     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7653       ;
7654     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7655       return true;
7656   }
7657 
7658   // If this basic block is ONLY a compare and a branch, and if a predecessor
7659   // branches to us and our successor, fold the comparison into the
7660   // predecessor and use logical operations to update the incoming value
7661   // for PHI nodes in common successor.
7662   if (Options.SpeculateBlocks &&
7663       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7664                              Options.BonusInstThreshold))
7665     return requestResimplify();
7666   return false;
7667 }
7668 
7669 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7670   BasicBlock *PredPred = nullptr;
7671   for (auto *P : predecessors(BB)) {
7672     BasicBlock *PPred = P->getSinglePredecessor();
7673     if (!PPred || (PredPred && PredPred != PPred))
7674       return nullptr;
7675     PredPred = PPred;
7676   }
7677   return PredPred;
7678 }
7679 
7680 /// Fold the following pattern:
7681 /// bb0:
7682 ///   br i1 %cond1, label %bb1, label %bb2
7683 /// bb1:
7684 ///   br i1 %cond2, label %bb3, label %bb4
7685 /// bb2:
7686 ///   br i1 %cond2, label %bb4, label %bb3
7687 /// bb3:
7688 ///   ...
7689 /// bb4:
7690 ///   ...
7691 /// into
7692 /// bb0:
7693 ///   %cond = xor i1 %cond1, %cond2
7694 ///   br i1 %cond, label %bb4, label %bb3
7695 /// bb3:
7696 ///   ...
7697 /// bb4:
7698 ///   ...
7699 /// NOTE: %cond2 always dominates the terminator of bb0.
7700 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7701   BasicBlock *BB = BI->getParent();
7702   BasicBlock *BB1 = BI->getSuccessor(0);
7703   BasicBlock *BB2 = BI->getSuccessor(1);
7704   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7705     if (Succ == BB)
7706       return false;
7707     if (&Succ->front() != Succ->getTerminator())
7708       return false;
7709     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7710     if (!SuccBI || !SuccBI->isConditional())
7711       return false;
7712     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7713     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7714     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7715            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7716   };
7717   BranchInst *BB1BI, *BB2BI;
7718   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7719     return false;
7720 
7721   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7722       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7723       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7724     return false;
7725 
7726   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7727   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7728   IRBuilder<> Builder(BI);
7729   BI->setCondition(
7730       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7731   BB1->removePredecessor(BB);
7732   BI->setSuccessor(0, BB4);
7733   BB2->removePredecessor(BB);
7734   BI->setSuccessor(1, BB3);
7735   if (DTU) {
7736     SmallVector<DominatorTree::UpdateType, 4> Updates;
7737     Updates.push_back({DominatorTree::Delete, BB, BB1});
7738     Updates.push_back({DominatorTree::Insert, BB, BB4});
7739     Updates.push_back({DominatorTree::Delete, BB, BB2});
7740     Updates.push_back({DominatorTree::Insert, BB, BB3});
7741 
7742     DTU->applyUpdates(Updates);
7743   }
7744   bool HasWeight = false;
7745   uint64_t BBTWeight, BBFWeight;
7746   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
7747     HasWeight = true;
7748   else
7749     BBTWeight = BBFWeight = 1;
7750   uint64_t BB1TWeight, BB1FWeight;
7751   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
7752     HasWeight = true;
7753   else
7754     BB1TWeight = BB1FWeight = 1;
7755   uint64_t BB2TWeight, BB2FWeight;
7756   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
7757     HasWeight = true;
7758   else
7759     BB2TWeight = BB2FWeight = 1;
7760   if (HasWeight) {
7761     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
7762                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
7763     fitWeights(Weights);
7764     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
7765   }
7766   return true;
7767 }
7768 
7769 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7770   assert(
7771       !isa<ConstantInt>(BI->getCondition()) &&
7772       BI->getSuccessor(0) != BI->getSuccessor(1) &&
7773       "Tautological conditional branch should have been eliminated already.");
7774 
7775   BasicBlock *BB = BI->getParent();
7776   if (!Options.SimplifyCondBranch ||
7777       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7778     return false;
7779 
7780   // Conditional branch
7781   if (isValueEqualityComparison(BI)) {
7782     // If we only have one predecessor, and if it is a branch on this value,
7783     // see if that predecessor totally determines the outcome of this
7784     // switch.
7785     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7786       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7787         return requestResimplify();
7788 
7789     // This block must be empty, except for the setcond inst, if it exists.
7790     // Ignore dbg and pseudo intrinsics.
7791     auto I = BB->instructionsWithoutDebug(true).begin();
7792     if (&*I == BI) {
7793       if (foldValueComparisonIntoPredecessors(BI, Builder))
7794         return requestResimplify();
7795     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7796       ++I;
7797       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
7798         return requestResimplify();
7799     }
7800   }
7801 
7802   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7803   if (simplifyBranchOnICmpChain(BI, Builder, DL))
7804     return true;
7805 
7806   // If this basic block has dominating predecessor blocks and the dominating
7807   // blocks' conditions imply BI's condition, we know the direction of BI.
7808   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7809   if (Imp) {
7810     // Turn this into a branch on constant.
7811     auto *OldCond = BI->getCondition();
7812     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7813                              : ConstantInt::getFalse(BB->getContext());
7814     BI->setCondition(TorF);
7815     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7816     return requestResimplify();
7817   }
7818 
7819   // If this basic block is ONLY a compare and a branch, and if a predecessor
7820   // branches to us and one of our successors, fold the comparison into the
7821   // predecessor and use logical operations to pick the right destination.
7822   if (Options.SpeculateBlocks &&
7823       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7824                              Options.BonusInstThreshold))
7825     return requestResimplify();
7826 
7827   // We have a conditional branch to two blocks that are only reachable
7828   // from BI.  We know that the condbr dominates the two blocks, so see if
7829   // there is any identical code in the "then" and "else" blocks.  If so, we
7830   // can hoist it up to the branching block.
7831   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7832     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7833       if (HoistCommon &&
7834           hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts))
7835         return requestResimplify();
7836     } else {
7837       // If Successor #1 has multiple preds, we may be able to conditionally
7838       // execute Successor #0 if it branches to Successor #1.
7839       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7840       if (Succ0TI->getNumSuccessors() == 1 &&
7841           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7842         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
7843           return requestResimplify();
7844     }
7845   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7846     // If Successor #0 has multiple preds, we may be able to conditionally
7847     // execute Successor #1 if it branches to Successor #0.
7848     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7849     if (Succ1TI->getNumSuccessors() == 1 &&
7850         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7851       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
7852         return requestResimplify();
7853   }
7854 
7855   // If this is a branch on something for which we know the constant value in
7856   // predecessors (e.g. a phi node in the current block), thread control
7857   // through this block.
7858   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7859     return requestResimplify();
7860 
7861   // Scan predecessor blocks for conditional branches.
7862   for (BasicBlock *Pred : predecessors(BB))
7863     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7864       if (PBI != BI && PBI->isConditional())
7865         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7866           return requestResimplify();
7867 
7868   // Look for diamond patterns.
7869   if (MergeCondStores)
7870     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7871       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7872         if (PBI != BI && PBI->isConditional())
7873           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7874             return requestResimplify();
7875 
7876   // Look for nested conditional branches.
7877   if (mergeNestedCondBranch(BI, DTU))
7878     return requestResimplify();
7879 
7880   return false;
7881 }
7882 
7883 /// Check if passing a value to an instruction will cause undefined behavior.
7884 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7885   Constant *C = dyn_cast<Constant>(V);
7886   if (!C)
7887     return false;
7888 
7889   if (I->use_empty())
7890     return false;
7891 
7892   if (C->isNullValue() || isa<UndefValue>(C)) {
7893     // Only look at the first use we can handle, avoid hurting compile time with
7894     // long uselists
7895     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
7896       auto *Use = cast<Instruction>(U);
7897       // Change this list when we want to add new instructions.
7898       switch (Use->getOpcode()) {
7899       default:
7900         return false;
7901       case Instruction::GetElementPtr:
7902       case Instruction::Ret:
7903       case Instruction::BitCast:
7904       case Instruction::Load:
7905       case Instruction::Store:
7906       case Instruction::Call:
7907       case Instruction::CallBr:
7908       case Instruction::Invoke:
7909       case Instruction::UDiv:
7910       case Instruction::URem:
7911         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
7912         // implemented to avoid code complexity as it is unclear how useful such
7913         // logic is.
7914       case Instruction::SDiv:
7915       case Instruction::SRem:
7916         return true;
7917       }
7918     });
7919     if (FindUse == I->user_end())
7920       return false;
7921     auto *Use = cast<Instruction>(*FindUse);
7922     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7923     // before I in the block. The latter two can be the case if Use is a
7924     // PHI node.
7925     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7926       return false;
7927 
7928     // Now make sure that there are no instructions in between that can alter
7929     // control flow (eg. calls)
7930     auto InstrRange =
7931         make_range(std::next(I->getIterator()), Use->getIterator());
7932     if (any_of(InstrRange, [](Instruction &I) {
7933           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7934         }))
7935       return false;
7936 
7937     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7938     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7939       if (GEP->getPointerOperand() == I) {
7940         // The current base address is null, there are four cases to consider:
7941         // getelementptr (TY, null, 0)                 -> null
7942         // getelementptr (TY, null, not zero)          -> may be modified
7943         // getelementptr inbounds (TY, null, 0)        -> null
7944         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
7945         // undefined?
7946         if (!GEP->hasAllZeroIndices() &&
7947             (!GEP->isInBounds() ||
7948              NullPointerIsDefined(GEP->getFunction(),
7949                                   GEP->getPointerAddressSpace())))
7950           PtrValueMayBeModified = true;
7951         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7952       }
7953 
7954     // Look through return.
7955     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
7956       bool HasNoUndefAttr =
7957           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
7958       // Return undefined to a noundef return value is undefined.
7959       if (isa<UndefValue>(C) && HasNoUndefAttr)
7960         return true;
7961       // Return null to a nonnull+noundef return value is undefined.
7962       if (C->isNullValue() && HasNoUndefAttr &&
7963           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
7964         return !PtrValueMayBeModified;
7965       }
7966     }
7967 
7968     // Load from null is undefined.
7969     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7970       if (!LI->isVolatile())
7971         return !NullPointerIsDefined(LI->getFunction(),
7972                                      LI->getPointerAddressSpace());
7973 
7974     // Store to null is undefined.
7975     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7976       if (!SI->isVolatile())
7977         return (!NullPointerIsDefined(SI->getFunction(),
7978                                       SI->getPointerAddressSpace())) &&
7979                SI->getPointerOperand() == I;
7980 
7981     // llvm.assume(false/undef) always triggers immediate UB.
7982     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
7983       // Ignore assume operand bundles.
7984       if (I == Assume->getArgOperand(0))
7985         return true;
7986     }
7987 
7988     if (auto *CB = dyn_cast<CallBase>(Use)) {
7989       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7990         return false;
7991       // A call to null is undefined.
7992       if (CB->getCalledOperand() == I)
7993         return true;
7994 
7995       if (C->isNullValue()) {
7996         for (const llvm::Use &Arg : CB->args())
7997           if (Arg == I) {
7998             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7999             if (CB->isPassingUndefUB(ArgIdx) &&
8000                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
8001               // Passing null to a nonnnull+noundef argument is undefined.
8002               return !PtrValueMayBeModified;
8003             }
8004           }
8005       } else if (isa<UndefValue>(C)) {
8006         // Passing undef to a noundef argument is undefined.
8007         for (const llvm::Use &Arg : CB->args())
8008           if (Arg == I) {
8009             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8010             if (CB->isPassingUndefUB(ArgIdx)) {
8011               // Passing undef to a noundef argument is undefined.
8012               return true;
8013             }
8014           }
8015       }
8016     }
8017     // Div/Rem by zero is immediate UB
8018     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
8019       return true;
8020   }
8021   return false;
8022 }
8023 
8024 /// If BB has an incoming value that will always trigger undefined behavior
8025 /// (eg. null pointer dereference), remove the branch leading here.
8026 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8027                                               DomTreeUpdater *DTU,
8028                                               AssumptionCache *AC) {
8029   for (PHINode &PHI : BB->phis())
8030     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8031       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8032         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8033         Instruction *T = Predecessor->getTerminator();
8034         IRBuilder<> Builder(T);
8035         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8036           BB->removePredecessor(Predecessor);
8037           // Turn unconditional branches into unreachables and remove the dead
8038           // destination from conditional branches.
8039           if (BI->isUnconditional())
8040             Builder.CreateUnreachable();
8041           else {
8042             // Preserve guarding condition in assume, because it might not be
8043             // inferrable from any dominating condition.
8044             Value *Cond = BI->getCondition();
8045             CallInst *Assumption;
8046             if (BI->getSuccessor(0) == BB)
8047               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8048             else
8049               Assumption = Builder.CreateAssumption(Cond);
8050             if (AC)
8051               AC->registerAssumption(cast<AssumeInst>(Assumption));
8052             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8053                                                        : BI->getSuccessor(0));
8054           }
8055           BI->eraseFromParent();
8056           if (DTU)
8057             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8058           return true;
8059         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8060           // Redirect all branches leading to UB into
8061           // a newly created unreachable block.
8062           BasicBlock *Unreachable = BasicBlock::Create(
8063               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8064           Builder.SetInsertPoint(Unreachable);
8065           // The new block contains only one instruction: Unreachable
8066           Builder.CreateUnreachable();
8067           for (const auto &Case : SI->cases())
8068             if (Case.getCaseSuccessor() == BB) {
8069               BB->removePredecessor(Predecessor);
8070               Case.setSuccessor(Unreachable);
8071             }
8072           if (SI->getDefaultDest() == BB) {
8073             BB->removePredecessor(Predecessor);
8074             SI->setDefaultDest(Unreachable);
8075           }
8076 
8077           if (DTU)
8078             DTU->applyUpdates(
8079                 { { DominatorTree::Insert, Predecessor, Unreachable },
8080                   { DominatorTree::Delete, Predecessor, BB } });
8081           return true;
8082         }
8083       }
8084 
8085   return false;
8086 }
8087 
8088 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8089   bool Changed = false;
8090 
8091   assert(BB && BB->getParent() && "Block not embedded in function!");
8092   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8093 
8094   // Remove basic blocks that have no predecessors (except the entry block)...
8095   // or that just have themself as a predecessor.  These are unreachable.
8096   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8097       BB->getSinglePredecessor() == BB) {
8098     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8099     DeleteDeadBlock(BB, DTU);
8100     return true;
8101   }
8102 
8103   // Check to see if we can constant propagate this terminator instruction
8104   // away...
8105   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8106                                     /*TLI=*/nullptr, DTU);
8107 
8108   // Check for and eliminate duplicate PHI nodes in this block.
8109   Changed |= EliminateDuplicatePHINodes(BB);
8110 
8111   // Check for and remove branches that will always cause undefined behavior.
8112   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8113     return requestResimplify();
8114 
8115   // Merge basic blocks into their predecessor if there is only one distinct
8116   // pred, and if there is only one distinct successor of the predecessor, and
8117   // if there are no PHI nodes.
8118   if (MergeBlockIntoPredecessor(BB, DTU))
8119     return true;
8120 
8121   if (SinkCommon && Options.SinkCommonInsts)
8122     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8123         mergeCompatibleInvokes(BB, DTU)) {
8124       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8125       // so we may now how duplicate PHI's.
8126       // Let's rerun EliminateDuplicatePHINodes() first,
8127       // before foldTwoEntryPHINode() potentially converts them into select's,
8128       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8129       return true;
8130     }
8131 
8132   IRBuilder<> Builder(BB);
8133 
8134   if (Options.SpeculateBlocks &&
8135       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8136     // If there is a trivial two-entry PHI node in this basic block, and we can
8137     // eliminate it, do so now.
8138     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8139       if (PN->getNumIncomingValues() == 2)
8140         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8141                                 Options.SpeculateUnpredictables))
8142           return true;
8143   }
8144 
8145   Instruction *Terminator = BB->getTerminator();
8146   Builder.SetInsertPoint(Terminator);
8147   switch (Terminator->getOpcode()) {
8148   case Instruction::Br:
8149     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8150     break;
8151   case Instruction::Resume:
8152     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8153     break;
8154   case Instruction::CleanupRet:
8155     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8156     break;
8157   case Instruction::Switch:
8158     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8159     break;
8160   case Instruction::Unreachable:
8161     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8162     break;
8163   case Instruction::IndirectBr:
8164     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8165     break;
8166   }
8167 
8168   return Changed;
8169 }
8170 
8171 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8172   bool Changed = false;
8173 
8174   // Repeated simplify BB as long as resimplification is requested.
8175   do {
8176     Resimplify = false;
8177 
8178     // Perform one round of simplifcation. Resimplify flag will be set if
8179     // another iteration is requested.
8180     Changed |= simplifyOnce(BB);
8181   } while (Resimplify);
8182 
8183   return Changed;
8184 }
8185 
8186 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8187                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8188                        ArrayRef<WeakVH> LoopHeaders) {
8189   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8190                         Options)
8191       .run(BB);
8192 }
8193