xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 6b9952759f66c8bc62ef4c6700f586053f009296)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
98 
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
122     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
123     cl::init(true),
124     cl::desc("Hoist loads/stores if the target supports "
125              "conditional faulting"));
126 
127 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
128     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
129     cl::desc("Control the maximal conditonal load/store that we are willing "
130              "to speculatively execute to eliminate conditional branch "
131              "(default = 6)"));
132 
133 static cl::opt<unsigned>
134     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
135                          cl::init(20),
136                          cl::desc("Allow reordering across at most this many "
137                                   "instructions when hoisting"));
138 
139 static cl::opt<bool>
140     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
141                cl::desc("Sink common instructions down to the end block"));
142 
143 static cl::opt<bool> HoistCondStores(
144     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
145     cl::desc("Hoist conditional stores if an unconditional store precedes"));
146 
147 static cl::opt<bool> MergeCondStores(
148     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
149     cl::desc("Hoist conditional stores even if an unconditional store does not "
150              "precede - hoist multiple conditional stores into a single "
151              "predicated store"));
152 
153 static cl::opt<bool> MergeCondStoresAggressively(
154     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
155     cl::desc("When merging conditional stores, do so even if the resultant "
156              "basic blocks are unlikely to be if-converted as a result"));
157 
158 static cl::opt<bool> SpeculateOneExpensiveInst(
159     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
160     cl::desc("Allow exactly one expensive instruction to be speculatively "
161              "executed"));
162 
163 static cl::opt<unsigned> MaxSpeculationDepth(
164     "max-speculation-depth", cl::Hidden, cl::init(10),
165     cl::desc("Limit maximum recursion depth when calculating costs of "
166              "speculatively executed instructions"));
167 
168 static cl::opt<int>
169     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
170                       cl::init(10),
171                       cl::desc("Max size of a block which is still considered "
172                                "small enough to thread through"));
173 
174 // Two is chosen to allow one negation and a logical combine.
175 static cl::opt<unsigned>
176     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
177                         cl::init(2),
178                         cl::desc("Maximum cost of combining conditions when "
179                                  "folding branches"));
180 
181 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
182     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
183     cl::init(2),
184     cl::desc("Multiplier to apply to threshold when determining whether or not "
185              "to fold branch to common destination when vector operations are "
186              "present"));
187 
188 static cl::opt<bool> EnableMergeCompatibleInvokes(
189     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
190     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
191 
192 static cl::opt<unsigned> MaxSwitchCasesPerResult(
193     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
194     cl::desc("Limit cases to analyze when converting a switch to select"));
195 
196 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
197 STATISTIC(NumLinearMaps,
198           "Number of switch instructions turned into linear mapping");
199 STATISTIC(NumLookupTables,
200           "Number of switch instructions turned into lookup tables");
201 STATISTIC(
202     NumLookupTablesHoles,
203     "Number of switch instructions turned into lookup tables (holes checked)");
204 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
205 STATISTIC(NumFoldValueComparisonIntoPredecessors,
206           "Number of value comparisons folded into predecessor basic blocks");
207 STATISTIC(NumFoldBranchToCommonDest,
208           "Number of branches folded into predecessor basic block");
209 STATISTIC(
210     NumHoistCommonCode,
211     "Number of common instruction 'blocks' hoisted up to the begin block");
212 STATISTIC(NumHoistCommonInstrs,
213           "Number of common instructions hoisted up to the begin block");
214 STATISTIC(NumSinkCommonCode,
215           "Number of common instruction 'blocks' sunk down to the end block");
216 STATISTIC(NumSinkCommonInstrs,
217           "Number of common instructions sunk down to the end block");
218 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
219 STATISTIC(NumInvokes,
220           "Number of invokes with empty resume blocks simplified into calls");
221 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
222 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
223 
224 namespace {
225 
226 // The first field contains the value that the switch produces when a certain
227 // case group is selected, and the second field is a vector containing the
228 // cases composing the case group.
229 using SwitchCaseResultVectorTy =
230     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
231 
232 // The first field contains the phi node that generates a result of the switch
233 // and the second field contains the value generated for a certain case in the
234 // switch for that PHI.
235 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
236 
237 /// ValueEqualityComparisonCase - Represents a case of a switch.
238 struct ValueEqualityComparisonCase {
239   ConstantInt *Value;
240   BasicBlock *Dest;
241 
242   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
243       : Value(Value), Dest(Dest) {}
244 
245   bool operator<(ValueEqualityComparisonCase RHS) const {
246     // Comparing pointers is ok as we only rely on the order for uniquing.
247     return Value < RHS.Value;
248   }
249 
250   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
251 };
252 
253 class SimplifyCFGOpt {
254   const TargetTransformInfo &TTI;
255   DomTreeUpdater *DTU;
256   const DataLayout &DL;
257   ArrayRef<WeakVH> LoopHeaders;
258   const SimplifyCFGOptions &Options;
259   bool Resimplify;
260 
261   Value *isValueEqualityComparison(Instruction *TI);
262   BasicBlock *getValueEqualityComparisonCases(
263       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
264   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
265                                                      BasicBlock *Pred,
266                                                      IRBuilder<> &Builder);
267   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
268                                                     Instruction *PTI,
269                                                     IRBuilder<> &Builder);
270   bool foldValueComparisonIntoPredecessors(Instruction *TI,
271                                            IRBuilder<> &Builder);
272 
273   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
274   bool simplifySingleResume(ResumeInst *RI);
275   bool simplifyCommonResume(ResumeInst *RI);
276   bool simplifyCleanupReturn(CleanupReturnInst *RI);
277   bool simplifyUnreachable(UnreachableInst *UI);
278   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
279   bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU);
280   bool simplifyIndirectBr(IndirectBrInst *IBI);
281   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
282   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
283   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
284 
285   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
286                                              IRBuilder<> &Builder);
287 
288   bool hoistCommonCodeFromSuccessors(Instruction *TI, bool EqTermsOnly);
289   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
290       Instruction *TI, Instruction *I1,
291       SmallVectorImpl<Instruction *> &OtherSuccTIs);
292   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
293   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
294                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
295                                   uint32_t TrueWeight, uint32_t FalseWeight);
296   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
297                                  const DataLayout &DL);
298   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
299   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
300   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
301 
302 public:
303   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
304                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
305                  const SimplifyCFGOptions &Opts)
306       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
307     assert((!DTU || !DTU->hasPostDomTree()) &&
308            "SimplifyCFG is not yet capable of maintaining validity of a "
309            "PostDomTree, so don't ask for it.");
310   }
311 
312   bool simplifyOnce(BasicBlock *BB);
313   bool run(BasicBlock *BB);
314 
315   // Helper to set Resimplify and return change indication.
316   bool requestResimplify() {
317     Resimplify = true;
318     return true;
319   }
320 };
321 
322 } // end anonymous namespace
323 
324 /// Return true if all the PHI nodes in the basic block \p BB
325 /// receive compatible (identical) incoming values when coming from
326 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
327 ///
328 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
329 /// is provided, and *both* of the values are present in the set,
330 /// then they are considered equal.
331 static bool incomingValuesAreCompatible(
332     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
333     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
334   assert(IncomingBlocks.size() == 2 &&
335          "Only for a pair of incoming blocks at the time!");
336 
337   // FIXME: it is okay if one of the incoming values is an `undef` value,
338   //        iff the other incoming value is guaranteed to be a non-poison value.
339   // FIXME: it is okay if one of the incoming values is a `poison` value.
340   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
341     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
342     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
343     if (IV0 == IV1)
344       return true;
345     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
346         EquivalenceSet->contains(IV1))
347       return true;
348     return false;
349   });
350 }
351 
352 /// Return true if it is safe to merge these two
353 /// terminator instructions together.
354 static bool
355 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
356                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
357   if (SI1 == SI2)
358     return false; // Can't merge with self!
359 
360   // It is not safe to merge these two switch instructions if they have a common
361   // successor, and if that successor has a PHI node, and if *that* PHI node has
362   // conflicting incoming values from the two switch blocks.
363   BasicBlock *SI1BB = SI1->getParent();
364   BasicBlock *SI2BB = SI2->getParent();
365 
366   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
367   bool Fail = false;
368   for (BasicBlock *Succ : successors(SI2BB)) {
369     if (!SI1Succs.count(Succ))
370       continue;
371     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
372       continue;
373     Fail = true;
374     if (FailBlocks)
375       FailBlocks->insert(Succ);
376     else
377       break;
378   }
379 
380   return !Fail;
381 }
382 
383 /// Update PHI nodes in Succ to indicate that there will now be entries in it
384 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
385 /// will be the same as those coming in from ExistPred, an existing predecessor
386 /// of Succ.
387 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
388                                   BasicBlock *ExistPred,
389                                   MemorySSAUpdater *MSSAU = nullptr) {
390   for (PHINode &PN : Succ->phis())
391     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
392   if (MSSAU)
393     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
394       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
395 }
396 
397 /// Compute an abstract "cost" of speculating the given instruction,
398 /// which is assumed to be safe to speculate. TCC_Free means cheap,
399 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
400 /// expensive.
401 static InstructionCost computeSpeculationCost(const User *I,
402                                               const TargetTransformInfo &TTI) {
403   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
404 }
405 
406 /// If we have a merge point of an "if condition" as accepted above,
407 /// return true if the specified value dominates the block.  We don't handle
408 /// the true generality of domination here, just a special case which works
409 /// well enough for us.
410 ///
411 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
412 /// see if V (which must be an instruction) and its recursive operands
413 /// that do not dominate BB have a combined cost lower than Budget and
414 /// are non-trapping.  If both are true, the instruction is inserted into the
415 /// set and true is returned.
416 ///
417 /// The cost for most non-trapping instructions is defined as 1 except for
418 /// Select whose cost is 2.
419 ///
420 /// After this function returns, Cost is increased by the cost of
421 /// V plus its non-dominating operands.  If that cost is greater than
422 /// Budget, false is returned and Cost is undefined.
423 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
424                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
425                                 InstructionCost &Cost, InstructionCost Budget,
426                                 const TargetTransformInfo &TTI,
427                                 AssumptionCache *AC, unsigned Depth = 0) {
428   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
429   // so limit the recursion depth.
430   // TODO: While this recursion limit does prevent pathological behavior, it
431   // would be better to track visited instructions to avoid cycles.
432   if (Depth == MaxSpeculationDepth)
433     return false;
434 
435   Instruction *I = dyn_cast<Instruction>(V);
436   if (!I) {
437     // Non-instructions dominate all instructions and can be executed
438     // unconditionally.
439     return true;
440   }
441   BasicBlock *PBB = I->getParent();
442 
443   // We don't want to allow weird loops that might have the "if condition" in
444   // the bottom of this block.
445   if (PBB == BB)
446     return false;
447 
448   // If this instruction is defined in a block that contains an unconditional
449   // branch to BB, then it must be in the 'conditional' part of the "if
450   // statement".  If not, it definitely dominates the region.
451   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
452   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
453     return true;
454 
455   // If we have seen this instruction before, don't count it again.
456   if (AggressiveInsts.count(I))
457     return true;
458 
459   // Okay, it looks like the instruction IS in the "condition".  Check to
460   // see if it's a cheap instruction to unconditionally compute, and if it
461   // only uses stuff defined outside of the condition.  If so, hoist it out.
462   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
463     return false;
464 
465   Cost += computeSpeculationCost(I, TTI);
466 
467   // Allow exactly one instruction to be speculated regardless of its cost
468   // (as long as it is safe to do so).
469   // This is intended to flatten the CFG even if the instruction is a division
470   // or other expensive operation. The speculation of an expensive instruction
471   // is expected to be undone in CodeGenPrepare if the speculation has not
472   // enabled further IR optimizations.
473   if (Cost > Budget &&
474       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
475        !Cost.isValid()))
476     return false;
477 
478   // Okay, we can only really hoist these out if their operands do
479   // not take us over the cost threshold.
480   for (Use &Op : I->operands())
481     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
482                              TTI, AC, Depth + 1))
483       return false;
484   // Okay, it's safe to do this!  Remember this instruction.
485   AggressiveInsts.insert(I);
486   return true;
487 }
488 
489 /// Extract ConstantInt from value, looking through IntToPtr
490 /// and PointerNullValue. Return NULL if value is not a constant int.
491 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
492   // Normal constant int.
493   ConstantInt *CI = dyn_cast<ConstantInt>(V);
494   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
495       DL.isNonIntegralPointerType(V->getType()))
496     return CI;
497 
498   // This is some kind of pointer constant. Turn it into a pointer-sized
499   // ConstantInt if possible.
500   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
501 
502   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
503   if (isa<ConstantPointerNull>(V))
504     return ConstantInt::get(PtrTy, 0);
505 
506   // IntToPtr const int.
507   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
508     if (CE->getOpcode() == Instruction::IntToPtr)
509       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
510         // The constant is very likely to have the right type already.
511         if (CI->getType() == PtrTy)
512           return CI;
513         else
514           return cast<ConstantInt>(
515               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
516       }
517   return nullptr;
518 }
519 
520 namespace {
521 
522 /// Given a chain of or (||) or and (&&) comparison of a value against a
523 /// constant, this will try to recover the information required for a switch
524 /// structure.
525 /// It will depth-first traverse the chain of comparison, seeking for patterns
526 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
527 /// representing the different cases for the switch.
528 /// Note that if the chain is composed of '||' it will build the set of elements
529 /// that matches the comparisons (i.e. any of this value validate the chain)
530 /// while for a chain of '&&' it will build the set elements that make the test
531 /// fail.
532 struct ConstantComparesGatherer {
533   const DataLayout &DL;
534 
535   /// Value found for the switch comparison
536   Value *CompValue = nullptr;
537 
538   /// Extra clause to be checked before the switch
539   Value *Extra = nullptr;
540 
541   /// Set of integers to match in switch
542   SmallVector<ConstantInt *, 8> Vals;
543 
544   /// Number of comparisons matched in the and/or chain
545   unsigned UsedICmps = 0;
546 
547   /// Construct and compute the result for the comparison instruction Cond
548   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
549     gather(Cond);
550   }
551 
552   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
553   ConstantComparesGatherer &
554   operator=(const ConstantComparesGatherer &) = delete;
555 
556 private:
557   /// Try to set the current value used for the comparison, it succeeds only if
558   /// it wasn't set before or if the new value is the same as the old one
559   bool setValueOnce(Value *NewVal) {
560     if (CompValue && CompValue != NewVal)
561       return false;
562     CompValue = NewVal;
563     return (CompValue != nullptr);
564   }
565 
566   /// Try to match Instruction "I" as a comparison against a constant and
567   /// populates the array Vals with the set of values that match (or do not
568   /// match depending on isEQ).
569   /// Return false on failure. On success, the Value the comparison matched
570   /// against is placed in CompValue.
571   /// If CompValue is already set, the function is expected to fail if a match
572   /// is found but the value compared to is different.
573   bool matchInstruction(Instruction *I, bool isEQ) {
574     // If this is an icmp against a constant, handle this as one of the cases.
575     ICmpInst *ICI;
576     ConstantInt *C;
577     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
578           (C = getConstantInt(I->getOperand(1), DL)))) {
579       return false;
580     }
581 
582     Value *RHSVal;
583     const APInt *RHSC;
584 
585     // Pattern match a special case
586     // (x & ~2^z) == y --> x == y || x == y|2^z
587     // This undoes a transformation done by instcombine to fuse 2 compares.
588     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
589       // It's a little bit hard to see why the following transformations are
590       // correct. Here is a CVC3 program to verify them for 64-bit values:
591 
592       /*
593          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
594          x    : BITVECTOR(64);
595          y    : BITVECTOR(64);
596          z    : BITVECTOR(64);
597          mask : BITVECTOR(64) = BVSHL(ONE, z);
598          QUERY( (y & ~mask = y) =>
599                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
600          );
601          QUERY( (y |  mask = y) =>
602                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
603          );
604       */
605 
606       // Please note that each pattern must be a dual implication (<--> or
607       // iff). One directional implication can create spurious matches. If the
608       // implication is only one-way, an unsatisfiable condition on the left
609       // side can imply a satisfiable condition on the right side. Dual
610       // implication ensures that satisfiable conditions are transformed to
611       // other satisfiable conditions and unsatisfiable conditions are
612       // transformed to other unsatisfiable conditions.
613 
614       // Here is a concrete example of a unsatisfiable condition on the left
615       // implying a satisfiable condition on the right:
616       //
617       // mask = (1 << z)
618       // (x & ~mask) == y  --> (x == y || x == (y | mask))
619       //
620       // Substituting y = 3, z = 0 yields:
621       // (x & -2) == 3 --> (x == 3 || x == 2)
622 
623       // Pattern match a special case:
624       /*
625         QUERY( (y & ~mask = y) =>
626                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
627         );
628       */
629       if (match(ICI->getOperand(0),
630                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
631         APInt Mask = ~*RHSC;
632         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
633           // If we already have a value for the switch, it has to match!
634           if (!setValueOnce(RHSVal))
635             return false;
636 
637           Vals.push_back(C);
638           Vals.push_back(
639               ConstantInt::get(C->getContext(),
640                                C->getValue() | Mask));
641           UsedICmps++;
642           return true;
643         }
644       }
645 
646       // Pattern match a special case:
647       /*
648         QUERY( (y |  mask = y) =>
649                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
650         );
651       */
652       if (match(ICI->getOperand(0),
653                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
654         APInt Mask = *RHSC;
655         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
656           // If we already have a value for the switch, it has to match!
657           if (!setValueOnce(RHSVal))
658             return false;
659 
660           Vals.push_back(C);
661           Vals.push_back(ConstantInt::get(C->getContext(),
662                                           C->getValue() & ~Mask));
663           UsedICmps++;
664           return true;
665         }
666       }
667 
668       // If we already have a value for the switch, it has to match!
669       if (!setValueOnce(ICI->getOperand(0)))
670         return false;
671 
672       UsedICmps++;
673       Vals.push_back(C);
674       return ICI->getOperand(0);
675     }
676 
677     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
678     ConstantRange Span =
679         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
680 
681     // Shift the range if the compare is fed by an add. This is the range
682     // compare idiom as emitted by instcombine.
683     Value *CandidateVal = I->getOperand(0);
684     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
685       Span = Span.subtract(*RHSC);
686       CandidateVal = RHSVal;
687     }
688 
689     // If this is an and/!= check, then we are looking to build the set of
690     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
691     // x != 0 && x != 1.
692     if (!isEQ)
693       Span = Span.inverse();
694 
695     // If there are a ton of values, we don't want to make a ginormous switch.
696     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
697       return false;
698     }
699 
700     // If we already have a value for the switch, it has to match!
701     if (!setValueOnce(CandidateVal))
702       return false;
703 
704     // Add all values from the range to the set
705     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
706       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
707 
708     UsedICmps++;
709     return true;
710   }
711 
712   /// Given a potentially 'or'd or 'and'd together collection of icmp
713   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
714   /// the value being compared, and stick the list constants into the Vals
715   /// vector.
716   /// One "Extra" case is allowed to differ from the other.
717   void gather(Value *V) {
718     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
719 
720     // Keep a stack (SmallVector for efficiency) for depth-first traversal
721     SmallVector<Value *, 8> DFT;
722     SmallPtrSet<Value *, 8> Visited;
723 
724     // Initialize
725     Visited.insert(V);
726     DFT.push_back(V);
727 
728     while (!DFT.empty()) {
729       V = DFT.pop_back_val();
730 
731       if (Instruction *I = dyn_cast<Instruction>(V)) {
732         // If it is a || (or && depending on isEQ), process the operands.
733         Value *Op0, *Op1;
734         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
735                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736           if (Visited.insert(Op1).second)
737             DFT.push_back(Op1);
738           if (Visited.insert(Op0).second)
739             DFT.push_back(Op0);
740 
741           continue;
742         }
743 
744         // Try to match the current instruction
745         if (matchInstruction(I, isEQ))
746           // Match succeed, continue the loop
747           continue;
748       }
749 
750       // One element of the sequence of || (or &&) could not be match as a
751       // comparison against the same value as the others.
752       // We allow only one "Extra" case to be checked before the switch
753       if (!Extra) {
754         Extra = V;
755         continue;
756       }
757       // Failed to parse a proper sequence, abort now
758       CompValue = nullptr;
759       break;
760     }
761   }
762 };
763 
764 } // end anonymous namespace
765 
766 static void eraseTerminatorAndDCECond(Instruction *TI,
767                                       MemorySSAUpdater *MSSAU = nullptr) {
768   Instruction *Cond = nullptr;
769   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
770     Cond = dyn_cast<Instruction>(SI->getCondition());
771   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
772     if (BI->isConditional())
773       Cond = dyn_cast<Instruction>(BI->getCondition());
774   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
775     Cond = dyn_cast<Instruction>(IBI->getAddress());
776   }
777 
778   TI->eraseFromParent();
779   if (Cond)
780     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
781 }
782 
783 /// Return true if the specified terminator checks
784 /// to see if a value is equal to constant integer value.
785 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
786   Value *CV = nullptr;
787   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
788     // Do not permit merging of large switch instructions into their
789     // predecessors unless there is only one predecessor.
790     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
791       CV = SI->getCondition();
792   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
793     if (BI->isConditional() && BI->getCondition()->hasOneUse())
794       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
795         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
796           CV = ICI->getOperand(0);
797       }
798 
799   // Unwrap any lossless ptrtoint cast.
800   if (CV) {
801     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
802       Value *Ptr = PTII->getPointerOperand();
803       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
804         CV = Ptr;
805     }
806   }
807   return CV;
808 }
809 
810 /// Given a value comparison instruction,
811 /// decode all of the 'cases' that it represents and return the 'default' block.
812 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
813     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
814   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
815     Cases.reserve(SI->getNumCases());
816     for (auto Case : SI->cases())
817       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
818                                                   Case.getCaseSuccessor()));
819     return SI->getDefaultDest();
820   }
821 
822   BranchInst *BI = cast<BranchInst>(TI);
823   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
824   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
825   Cases.push_back(ValueEqualityComparisonCase(
826       getConstantInt(ICI->getOperand(1), DL), Succ));
827   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
828 }
829 
830 /// Given a vector of bb/value pairs, remove any entries
831 /// in the list that match the specified block.
832 static void
833 eliminateBlockCases(BasicBlock *BB,
834                     std::vector<ValueEqualityComparisonCase> &Cases) {
835   llvm::erase(Cases, BB);
836 }
837 
838 /// Return true if there are any keys in C1 that exist in C2 as well.
839 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
840                           std::vector<ValueEqualityComparisonCase> &C2) {
841   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
842 
843   // Make V1 be smaller than V2.
844   if (V1->size() > V2->size())
845     std::swap(V1, V2);
846 
847   if (V1->empty())
848     return false;
849   if (V1->size() == 1) {
850     // Just scan V2.
851     ConstantInt *TheVal = (*V1)[0].Value;
852     for (const ValueEqualityComparisonCase &VECC : *V2)
853       if (TheVal == VECC.Value)
854         return true;
855   }
856 
857   // Otherwise, just sort both lists and compare element by element.
858   array_pod_sort(V1->begin(), V1->end());
859   array_pod_sort(V2->begin(), V2->end());
860   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
861   while (i1 != e1 && i2 != e2) {
862     if ((*V1)[i1].Value == (*V2)[i2].Value)
863       return true;
864     if ((*V1)[i1].Value < (*V2)[i2].Value)
865       ++i1;
866     else
867       ++i2;
868   }
869   return false;
870 }
871 
872 // Set branch weights on SwitchInst. This sets the metadata if there is at
873 // least one non-zero weight.
874 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
875                              bool IsExpected) {
876   // Check that there is at least one non-zero weight. Otherwise, pass
877   // nullptr to setMetadata which will erase the existing metadata.
878   MDNode *N = nullptr;
879   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
880     N = MDBuilder(SI->getParent()->getContext())
881             .createBranchWeights(Weights, IsExpected);
882   SI->setMetadata(LLVMContext::MD_prof, N);
883 }
884 
885 // Similar to the above, but for branch and select instructions that take
886 // exactly 2 weights.
887 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
888                              uint32_t FalseWeight, bool IsExpected) {
889   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
890   // Check that there is at least one non-zero weight. Otherwise, pass
891   // nullptr to setMetadata which will erase the existing metadata.
892   MDNode *N = nullptr;
893   if (TrueWeight || FalseWeight)
894     N = MDBuilder(I->getParent()->getContext())
895             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
896   I->setMetadata(LLVMContext::MD_prof, N);
897 }
898 
899 /// If TI is known to be a terminator instruction and its block is known to
900 /// only have a single predecessor block, check to see if that predecessor is
901 /// also a value comparison with the same value, and if that comparison
902 /// determines the outcome of this comparison. If so, simplify TI. This does a
903 /// very limited form of jump threading.
904 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
905     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
906   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
907   if (!PredVal)
908     return false; // Not a value comparison in predecessor.
909 
910   Value *ThisVal = isValueEqualityComparison(TI);
911   assert(ThisVal && "This isn't a value comparison!!");
912   if (ThisVal != PredVal)
913     return false; // Different predicates.
914 
915   // TODO: Preserve branch weight metadata, similarly to how
916   // foldValueComparisonIntoPredecessors preserves it.
917 
918   // Find out information about when control will move from Pred to TI's block.
919   std::vector<ValueEqualityComparisonCase> PredCases;
920   BasicBlock *PredDef =
921       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
922   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
923 
924   // Find information about how control leaves this block.
925   std::vector<ValueEqualityComparisonCase> ThisCases;
926   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
927   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
928 
929   // If TI's block is the default block from Pred's comparison, potentially
930   // simplify TI based on this knowledge.
931   if (PredDef == TI->getParent()) {
932     // If we are here, we know that the value is none of those cases listed in
933     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
934     // can simplify TI.
935     if (!valuesOverlap(PredCases, ThisCases))
936       return false;
937 
938     if (isa<BranchInst>(TI)) {
939       // Okay, one of the successors of this condbr is dead.  Convert it to a
940       // uncond br.
941       assert(ThisCases.size() == 1 && "Branch can only have one case!");
942       // Insert the new branch.
943       Instruction *NI = Builder.CreateBr(ThisDef);
944       (void)NI;
945 
946       // Remove PHI node entries for the dead edge.
947       ThisCases[0].Dest->removePredecessor(PredDef);
948 
949       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
950                         << "Through successor TI: " << *TI << "Leaving: " << *NI
951                         << "\n");
952 
953       eraseTerminatorAndDCECond(TI);
954 
955       if (DTU)
956         DTU->applyUpdates(
957             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
958 
959       return true;
960     }
961 
962     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
963     // Okay, TI has cases that are statically dead, prune them away.
964     SmallPtrSet<Constant *, 16> DeadCases;
965     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
966       DeadCases.insert(PredCases[i].Value);
967 
968     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
969                       << "Through successor TI: " << *TI);
970 
971     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
972     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
973       --i;
974       auto *Successor = i->getCaseSuccessor();
975       if (DTU)
976         ++NumPerSuccessorCases[Successor];
977       if (DeadCases.count(i->getCaseValue())) {
978         Successor->removePredecessor(PredDef);
979         SI.removeCase(i);
980         if (DTU)
981           --NumPerSuccessorCases[Successor];
982       }
983     }
984 
985     if (DTU) {
986       std::vector<DominatorTree::UpdateType> Updates;
987       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
988         if (I.second == 0)
989           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
990       DTU->applyUpdates(Updates);
991     }
992 
993     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
994     return true;
995   }
996 
997   // Otherwise, TI's block must correspond to some matched value.  Find out
998   // which value (or set of values) this is.
999   ConstantInt *TIV = nullptr;
1000   BasicBlock *TIBB = TI->getParent();
1001   for (const auto &[Value, Dest] : PredCases)
1002     if (Dest == TIBB) {
1003       if (TIV)
1004         return false; // Cannot handle multiple values coming to this block.
1005       TIV = Value;
1006     }
1007   assert(TIV && "No edge from pred to succ?");
1008 
1009   // Okay, we found the one constant that our value can be if we get into TI's
1010   // BB.  Find out which successor will unconditionally be branched to.
1011   BasicBlock *TheRealDest = nullptr;
1012   for (const auto &[Value, Dest] : ThisCases)
1013     if (Value == TIV) {
1014       TheRealDest = Dest;
1015       break;
1016     }
1017 
1018   // If not handled by any explicit cases, it is handled by the default case.
1019   if (!TheRealDest)
1020     TheRealDest = ThisDef;
1021 
1022   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1023 
1024   // Remove PHI node entries for dead edges.
1025   BasicBlock *CheckEdge = TheRealDest;
1026   for (BasicBlock *Succ : successors(TIBB))
1027     if (Succ != CheckEdge) {
1028       if (Succ != TheRealDest)
1029         RemovedSuccs.insert(Succ);
1030       Succ->removePredecessor(TIBB);
1031     } else
1032       CheckEdge = nullptr;
1033 
1034   // Insert the new branch.
1035   Instruction *NI = Builder.CreateBr(TheRealDest);
1036   (void)NI;
1037 
1038   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1039                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1040                     << "\n");
1041 
1042   eraseTerminatorAndDCECond(TI);
1043   if (DTU) {
1044     SmallVector<DominatorTree::UpdateType, 2> Updates;
1045     Updates.reserve(RemovedSuccs.size());
1046     for (auto *RemovedSucc : RemovedSuccs)
1047       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1048     DTU->applyUpdates(Updates);
1049   }
1050   return true;
1051 }
1052 
1053 namespace {
1054 
1055 /// This class implements a stable ordering of constant
1056 /// integers that does not depend on their address.  This is important for
1057 /// applications that sort ConstantInt's to ensure uniqueness.
1058 struct ConstantIntOrdering {
1059   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1060     return LHS->getValue().ult(RHS->getValue());
1061   }
1062 };
1063 
1064 } // end anonymous namespace
1065 
1066 static int constantIntSortPredicate(ConstantInt *const *P1,
1067                                     ConstantInt *const *P2) {
1068   const ConstantInt *LHS = *P1;
1069   const ConstantInt *RHS = *P2;
1070   if (LHS == RHS)
1071     return 0;
1072   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1073 }
1074 
1075 /// Get Weights of a given terminator, the default weight is at the front
1076 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1077 /// metadata.
1078 static void getBranchWeights(Instruction *TI,
1079                              SmallVectorImpl<uint64_t> &Weights) {
1080   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1081   assert(MD && "Invalid branch-weight metadata");
1082   extractFromBranchWeightMD64(MD, Weights);
1083 
1084   // If TI is a conditional eq, the default case is the false case,
1085   // and the corresponding branch-weight data is at index 2. We swap the
1086   // default weight to be the first entry.
1087   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1088     assert(Weights.size() == 2);
1089     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1090     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1091       std::swap(Weights.front(), Weights.back());
1092   }
1093 }
1094 
1095 /// Keep halving the weights until all can fit in uint32_t.
1096 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1097   uint64_t Max = *llvm::max_element(Weights);
1098   if (Max > UINT_MAX) {
1099     unsigned Offset = 32 - llvm::countl_zero(Max);
1100     for (uint64_t &I : Weights)
1101       I >>= Offset;
1102   }
1103 }
1104 
1105 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1106     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1107   Instruction *PTI = PredBlock->getTerminator();
1108 
1109   // If we have bonus instructions, clone them into the predecessor block.
1110   // Note that there may be multiple predecessor blocks, so we cannot move
1111   // bonus instructions to a predecessor block.
1112   for (Instruction &BonusInst : *BB) {
1113     if (BonusInst.isTerminator())
1114       continue;
1115 
1116     Instruction *NewBonusInst = BonusInst.clone();
1117 
1118     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1119         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1120       // Unless the instruction has the same !dbg location as the original
1121       // branch, drop it. When we fold the bonus instructions we want to make
1122       // sure we reset their debug locations in order to avoid stepping on
1123       // dead code caused by folding dead branches.
1124       NewBonusInst->setDebugLoc(DebugLoc());
1125     }
1126 
1127     RemapInstruction(NewBonusInst, VMap,
1128                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1129 
1130     // If we speculated an instruction, we need to drop any metadata that may
1131     // result in undefined behavior, as the metadata might have been valid
1132     // only given the branch precondition.
1133     // Similarly strip attributes on call parameters that may cause UB in
1134     // location the call is moved to.
1135     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1136 
1137     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1138     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1139     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1140                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1141 
1142     if (isa<DbgInfoIntrinsic>(BonusInst))
1143       continue;
1144 
1145     NewBonusInst->takeName(&BonusInst);
1146     BonusInst.setName(NewBonusInst->getName() + ".old");
1147     VMap[&BonusInst] = NewBonusInst;
1148 
1149     // Update (liveout) uses of bonus instructions,
1150     // now that the bonus instruction has been cloned into predecessor.
1151     // Note that we expect to be in a block-closed SSA form for this to work!
1152     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1153       auto *UI = cast<Instruction>(U.getUser());
1154       auto *PN = dyn_cast<PHINode>(UI);
1155       if (!PN) {
1156         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1157                "If the user is not a PHI node, then it should be in the same "
1158                "block as, and come after, the original bonus instruction.");
1159         continue; // Keep using the original bonus instruction.
1160       }
1161       // Is this the block-closed SSA form PHI node?
1162       if (PN->getIncomingBlock(U) == BB)
1163         continue; // Great, keep using the original bonus instruction.
1164       // The only other alternative is an "use" when coming from
1165       // the predecessor block - here we should refer to the cloned bonus instr.
1166       assert(PN->getIncomingBlock(U) == PredBlock &&
1167              "Not in block-closed SSA form?");
1168       U.set(NewBonusInst);
1169     }
1170   }
1171 }
1172 
1173 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1174     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1175   BasicBlock *BB = TI->getParent();
1176   BasicBlock *Pred = PTI->getParent();
1177 
1178   SmallVector<DominatorTree::UpdateType, 32> Updates;
1179 
1180   // Figure out which 'cases' to copy from SI to PSI.
1181   std::vector<ValueEqualityComparisonCase> BBCases;
1182   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1183 
1184   std::vector<ValueEqualityComparisonCase> PredCases;
1185   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1186 
1187   // Based on whether the default edge from PTI goes to BB or not, fill in
1188   // PredCases and PredDefault with the new switch cases we would like to
1189   // build.
1190   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1191 
1192   // Update the branch weight metadata along the way
1193   SmallVector<uint64_t, 8> Weights;
1194   bool PredHasWeights = hasBranchWeightMD(*PTI);
1195   bool SuccHasWeights = hasBranchWeightMD(*TI);
1196 
1197   if (PredHasWeights) {
1198     getBranchWeights(PTI, Weights);
1199     // branch-weight metadata is inconsistent here.
1200     if (Weights.size() != 1 + PredCases.size())
1201       PredHasWeights = SuccHasWeights = false;
1202   } else if (SuccHasWeights)
1203     // If there are no predecessor weights but there are successor weights,
1204     // populate Weights with 1, which will later be scaled to the sum of
1205     // successor's weights
1206     Weights.assign(1 + PredCases.size(), 1);
1207 
1208   SmallVector<uint64_t, 8> SuccWeights;
1209   if (SuccHasWeights) {
1210     getBranchWeights(TI, SuccWeights);
1211     // branch-weight metadata is inconsistent here.
1212     if (SuccWeights.size() != 1 + BBCases.size())
1213       PredHasWeights = SuccHasWeights = false;
1214   } else if (PredHasWeights)
1215     SuccWeights.assign(1 + BBCases.size(), 1);
1216 
1217   if (PredDefault == BB) {
1218     // If this is the default destination from PTI, only the edges in TI
1219     // that don't occur in PTI, or that branch to BB will be activated.
1220     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1221     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1222       if (PredCases[i].Dest != BB)
1223         PTIHandled.insert(PredCases[i].Value);
1224       else {
1225         // The default destination is BB, we don't need explicit targets.
1226         std::swap(PredCases[i], PredCases.back());
1227 
1228         if (PredHasWeights || SuccHasWeights) {
1229           // Increase weight for the default case.
1230           Weights[0] += Weights[i + 1];
1231           std::swap(Weights[i + 1], Weights.back());
1232           Weights.pop_back();
1233         }
1234 
1235         PredCases.pop_back();
1236         --i;
1237         --e;
1238       }
1239 
1240     // Reconstruct the new switch statement we will be building.
1241     if (PredDefault != BBDefault) {
1242       PredDefault->removePredecessor(Pred);
1243       if (DTU && PredDefault != BB)
1244         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1245       PredDefault = BBDefault;
1246       ++NewSuccessors[BBDefault];
1247     }
1248 
1249     unsigned CasesFromPred = Weights.size();
1250     uint64_t ValidTotalSuccWeight = 0;
1251     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1252       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1253         PredCases.push_back(BBCases[i]);
1254         ++NewSuccessors[BBCases[i].Dest];
1255         if (SuccHasWeights || PredHasWeights) {
1256           // The default weight is at index 0, so weight for the ith case
1257           // should be at index i+1. Scale the cases from successor by
1258           // PredDefaultWeight (Weights[0]).
1259           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1260           ValidTotalSuccWeight += SuccWeights[i + 1];
1261         }
1262       }
1263 
1264     if (SuccHasWeights || PredHasWeights) {
1265       ValidTotalSuccWeight += SuccWeights[0];
1266       // Scale the cases from predecessor by ValidTotalSuccWeight.
1267       for (unsigned i = 1; i < CasesFromPred; ++i)
1268         Weights[i] *= ValidTotalSuccWeight;
1269       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1270       Weights[0] *= SuccWeights[0];
1271     }
1272   } else {
1273     // If this is not the default destination from PSI, only the edges
1274     // in SI that occur in PSI with a destination of BB will be
1275     // activated.
1276     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1277     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1278     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1279       if (PredCases[i].Dest == BB) {
1280         PTIHandled.insert(PredCases[i].Value);
1281 
1282         if (PredHasWeights || SuccHasWeights) {
1283           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1284           std::swap(Weights[i + 1], Weights.back());
1285           Weights.pop_back();
1286         }
1287 
1288         std::swap(PredCases[i], PredCases.back());
1289         PredCases.pop_back();
1290         --i;
1291         --e;
1292       }
1293 
1294     // Okay, now we know which constants were sent to BB from the
1295     // predecessor.  Figure out where they will all go now.
1296     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1297       if (PTIHandled.count(BBCases[i].Value)) {
1298         // If this is one we are capable of getting...
1299         if (PredHasWeights || SuccHasWeights)
1300           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1301         PredCases.push_back(BBCases[i]);
1302         ++NewSuccessors[BBCases[i].Dest];
1303         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1304       }
1305 
1306     // If there are any constants vectored to BB that TI doesn't handle,
1307     // they must go to the default destination of TI.
1308     for (ConstantInt *I : PTIHandled) {
1309       if (PredHasWeights || SuccHasWeights)
1310         Weights.push_back(WeightsForHandled[I]);
1311       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1312       ++NewSuccessors[BBDefault];
1313     }
1314   }
1315 
1316   // Okay, at this point, we know which new successor Pred will get.  Make
1317   // sure we update the number of entries in the PHI nodes for these
1318   // successors.
1319   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1320   if (DTU) {
1321     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1322     Updates.reserve(Updates.size() + NewSuccessors.size());
1323   }
1324   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1325        NewSuccessors) {
1326     for (auto I : seq(NewSuccessor.second)) {
1327       (void)I;
1328       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1329     }
1330     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1331       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1332   }
1333 
1334   Builder.SetInsertPoint(PTI);
1335   // Convert pointer to int before we switch.
1336   if (CV->getType()->isPointerTy()) {
1337     CV =
1338         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1339   }
1340 
1341   // Now that the successors are updated, create the new Switch instruction.
1342   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1343   NewSI->setDebugLoc(PTI->getDebugLoc());
1344   for (ValueEqualityComparisonCase &V : PredCases)
1345     NewSI->addCase(V.Value, V.Dest);
1346 
1347   if (PredHasWeights || SuccHasWeights) {
1348     // Halve the weights if any of them cannot fit in an uint32_t
1349     fitWeights(Weights);
1350 
1351     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1352 
1353     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1354   }
1355 
1356   eraseTerminatorAndDCECond(PTI);
1357 
1358   // Okay, last check.  If BB is still a successor of PSI, then we must
1359   // have an infinite loop case.  If so, add an infinitely looping block
1360   // to handle the case to preserve the behavior of the code.
1361   BasicBlock *InfLoopBlock = nullptr;
1362   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1363     if (NewSI->getSuccessor(i) == BB) {
1364       if (!InfLoopBlock) {
1365         // Insert it at the end of the function, because it's either code,
1366         // or it won't matter if it's hot. :)
1367         InfLoopBlock =
1368             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1369         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1370         if (DTU)
1371           Updates.push_back(
1372               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1373       }
1374       NewSI->setSuccessor(i, InfLoopBlock);
1375     }
1376 
1377   if (DTU) {
1378     if (InfLoopBlock)
1379       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1380 
1381     Updates.push_back({DominatorTree::Delete, Pred, BB});
1382 
1383     DTU->applyUpdates(Updates);
1384   }
1385 
1386   ++NumFoldValueComparisonIntoPredecessors;
1387   return true;
1388 }
1389 
1390 /// The specified terminator is a value equality comparison instruction
1391 /// (either a switch or a branch on "X == c").
1392 /// See if any of the predecessors of the terminator block are value comparisons
1393 /// on the same value.  If so, and if safe to do so, fold them together.
1394 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1395                                                          IRBuilder<> &Builder) {
1396   BasicBlock *BB = TI->getParent();
1397   Value *CV = isValueEqualityComparison(TI); // CondVal
1398   assert(CV && "Not a comparison?");
1399 
1400   bool Changed = false;
1401 
1402   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1403   while (!Preds.empty()) {
1404     BasicBlock *Pred = Preds.pop_back_val();
1405     Instruction *PTI = Pred->getTerminator();
1406 
1407     // Don't try to fold into itself.
1408     if (Pred == BB)
1409       continue;
1410 
1411     // See if the predecessor is a comparison with the same value.
1412     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1413     if (PCV != CV)
1414       continue;
1415 
1416     SmallSetVector<BasicBlock *, 4> FailBlocks;
1417     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1418       for (auto *Succ : FailBlocks) {
1419         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1420           return false;
1421       }
1422     }
1423 
1424     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1425     Changed = true;
1426   }
1427   return Changed;
1428 }
1429 
1430 // If we would need to insert a select that uses the value of this invoke
1431 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1432 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1433 // select in this case.
1434 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1435                                 Instruction *I1, Instruction *I2) {
1436   for (BasicBlock *Succ : successors(BB1)) {
1437     for (const PHINode &PN : Succ->phis()) {
1438       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1439       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1440       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1441         return false;
1442       }
1443     }
1444   }
1445   return true;
1446 }
1447 
1448 // Get interesting characteristics of instructions that
1449 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1450 // instructions can be reordered across.
1451 enum SkipFlags {
1452   SkipReadMem = 1,
1453   SkipSideEffect = 2,
1454   SkipImplicitControlFlow = 4
1455 };
1456 
1457 static unsigned skippedInstrFlags(Instruction *I) {
1458   unsigned Flags = 0;
1459   if (I->mayReadFromMemory())
1460     Flags |= SkipReadMem;
1461   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1462   // inalloca) across stacksave/stackrestore boundaries.
1463   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1464     Flags |= SkipSideEffect;
1465   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1466     Flags |= SkipImplicitControlFlow;
1467   return Flags;
1468 }
1469 
1470 // Returns true if it is safe to reorder an instruction across preceding
1471 // instructions in a basic block.
1472 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1473   // Don't reorder a store over a load.
1474   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1475     return false;
1476 
1477   // If we have seen an instruction with side effects, it's unsafe to reorder an
1478   // instruction which reads memory or itself has side effects.
1479   if ((Flags & SkipSideEffect) &&
1480       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1481     return false;
1482 
1483   // Reordering across an instruction which does not necessarily transfer
1484   // control to the next instruction is speculation.
1485   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1486     return false;
1487 
1488   // Hoisting of llvm.deoptimize is only legal together with the next return
1489   // instruction, which this pass is not always able to do.
1490   if (auto *CB = dyn_cast<CallBase>(I))
1491     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1492       return false;
1493 
1494   // It's also unsafe/illegal to hoist an instruction above its instruction
1495   // operands
1496   BasicBlock *BB = I->getParent();
1497   for (Value *Op : I->operands()) {
1498     if (auto *J = dyn_cast<Instruction>(Op))
1499       if (J->getParent() == BB)
1500         return false;
1501   }
1502 
1503   return true;
1504 }
1505 
1506 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1507 
1508 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1509 /// instructions \p I1 and \p I2 can and should be hoisted.
1510 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1511                                           const TargetTransformInfo &TTI) {
1512   // If we're going to hoist a call, make sure that the two instructions
1513   // we're commoning/hoisting are both marked with musttail, or neither of
1514   // them is marked as such. Otherwise, we might end up in a situation where
1515   // we hoist from a block where the terminator is a `ret` to a block where
1516   // the terminator is a `br`, and `musttail` calls expect to be followed by
1517   // a return.
1518   auto *C1 = dyn_cast<CallInst>(I1);
1519   auto *C2 = dyn_cast<CallInst>(I2);
1520   if (C1 && C2)
1521     if (C1->isMustTailCall() != C2->isMustTailCall())
1522       return false;
1523 
1524   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1525     return false;
1526 
1527   // If any of the two call sites has nomerge or convergent attribute, stop
1528   // hoisting.
1529   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1530     if (CB1->cannotMerge() || CB1->isConvergent())
1531       return false;
1532   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1533     if (CB2->cannotMerge() || CB2->isConvergent())
1534       return false;
1535 
1536   return true;
1537 }
1538 
1539 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1540 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1541 /// hoistCommonCodeFromSuccessors. e.g. The input:
1542 ///    I1                DVRs: { x, z },
1543 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1544 /// would result in hoisting only DbgVariableRecord x.
1545 static void hoistLockstepIdenticalDbgVariableRecords(
1546     Instruction *TI, Instruction *I1,
1547     SmallVectorImpl<Instruction *> &OtherInsts) {
1548   if (!I1->hasDbgRecords())
1549     return;
1550   using CurrentAndEndIt =
1551       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1552   // Vector of {Current, End} iterators.
1553   SmallVector<CurrentAndEndIt> Itrs;
1554   Itrs.reserve(OtherInsts.size() + 1);
1555   // Helper lambdas for lock-step checks:
1556   // Return true if this Current == End.
1557   auto atEnd = [](const CurrentAndEndIt &Pair) {
1558     return Pair.first == Pair.second;
1559   };
1560   // Return true if all Current are identical.
1561   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1562     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1563                   [&](DbgRecord::self_iterator I) {
1564                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1565                   });
1566   };
1567 
1568   // Collect the iterators.
1569   Itrs.push_back(
1570       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1571   for (Instruction *Other : OtherInsts) {
1572     if (!Other->hasDbgRecords())
1573       return;
1574     Itrs.push_back(
1575         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1576   }
1577 
1578   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1579   // the lock-step DbgRecord are identical, hoist all of them to TI.
1580   // This replicates the dbg.* intrinsic behaviour in
1581   // hoistCommonCodeFromSuccessors.
1582   while (none_of(Itrs, atEnd)) {
1583     bool HoistDVRs = allIdentical(Itrs);
1584     for (CurrentAndEndIt &Pair : Itrs) {
1585       // Increment Current iterator now as we may be about to move the
1586       // DbgRecord.
1587       DbgRecord &DR = *Pair.first++;
1588       if (HoistDVRs) {
1589         DR.removeFromParent();
1590         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1591       }
1592     }
1593   }
1594 }
1595 
1596 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1597                                           const Instruction *I2) {
1598   if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true))
1599     return true;
1600 
1601   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1602     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1603       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1604              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1605              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1606 
1607   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1608     return I1->getOperand(0) == I2->getOperand(1) &&
1609            I1->getOperand(1) == I2->getOperand(0) &&
1610            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1611   }
1612 
1613   return false;
1614 }
1615 
1616 /// If the target supports conditional faulting,
1617 /// we look for the following pattern:
1618 /// \code
1619 ///   BB:
1620 ///     ...
1621 ///     %cond = icmp ult %x, %y
1622 ///     br i1 %cond, label %TrueBB, label %FalseBB
1623 ///   FalseBB:
1624 ///     store i32 1, ptr %q, align 4
1625 ///     ...
1626 ///   TrueBB:
1627 ///     %maskedloadstore = load i32, ptr %b, align 4
1628 ///     store i32 %maskedloadstore, ptr %p, align 4
1629 ///     ...
1630 /// \endcode
1631 ///
1632 /// and transform it into:
1633 ///
1634 /// \code
1635 ///   BB:
1636 ///     ...
1637 ///     %cond = icmp ult %x, %y
1638 ///     %maskedloadstore = cload i32, ptr %b, %cond
1639 ///     cstore i32 %maskedloadstore, ptr %p, %cond
1640 ///     cstore i32 1, ptr %q, ~%cond
1641 ///     br i1 %cond, label %TrueBB, label %FalseBB
1642 ///   FalseBB:
1643 ///     ...
1644 ///   TrueBB:
1645 ///     ...
1646 /// \endcode
1647 ///
1648 /// where cload/cstore are represented by llvm.masked.load/store intrinsics,
1649 /// e.g.
1650 ///
1651 /// \code
1652 ///   %vcond = bitcast i1 %cond to <1 x i1>
1653 ///   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
1654 ///                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
1655 ///   %maskedloadstore = bitcast <1 x i32> %v0 to i32
1656 ///   call void @llvm.masked.store.v1i32.p0
1657 ///                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
1658 ///   %cond.not = xor i1 %cond, true
1659 ///   %vcond.not = bitcast i1 %cond.not to <1 x i>
1660 ///   call void @llvm.masked.store.v1i32.p0
1661 ///              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
1662 /// \endcode
1663 ///
1664 /// So we need to turn hoisted load/store into cload/cstore.
1665 static void hoistConditionalLoadsStores(
1666     BranchInst *BI,
1667     SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores,
1668     bool Invert) {
1669   auto &Context = BI->getParent()->getContext();
1670   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
1671   auto *Cond = BI->getOperand(0);
1672   // Construct the condition if needed.
1673   BasicBlock *BB = BI->getParent();
1674   IRBuilder<> Builder(SpeculatedConditionalLoadsStores.back());
1675   Value *Mask = Builder.CreateBitCast(
1676       Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
1677       VCondTy);
1678   for (auto *I : SpeculatedConditionalLoadsStores) {
1679     IRBuilder<> Builder(I);
1680     // We currently assume conditional faulting load/store is supported for
1681     // scalar types only when creating new instructions. This can be easily
1682     // extended for vector types in the future.
1683     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
1684     auto *Op0 = I->getOperand(0);
1685     CallInst *MaskedLoadStore = nullptr;
1686     if (auto *LI = dyn_cast<LoadInst>(I)) {
1687       // Handle Load.
1688       auto *Ty = I->getType();
1689       PHINode *PN = nullptr;
1690       Value *PassThru = nullptr;
1691       for (User *U : I->users())
1692         if ((PN = dyn_cast<PHINode>(U))) {
1693           PassThru = Builder.CreateBitCast(PN->getIncomingValueForBlock(BB),
1694                                            FixedVectorType::get(Ty, 1));
1695           break;
1696         }
1697       MaskedLoadStore = Builder.CreateMaskedLoad(
1698           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
1699       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
1700       if (PN)
1701         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
1702       I->replaceAllUsesWith(NewLoadStore);
1703     } else {
1704       // Handle Store.
1705       auto *StoredVal =
1706           Builder.CreateBitCast(Op0, FixedVectorType::get(Op0->getType(), 1));
1707       MaskedLoadStore = Builder.CreateMaskedStore(
1708           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
1709     }
1710     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
1711     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
1712     //
1713     // !nonnull, !align : Not support pointer type, no need to keep.
1714     // !range: Load type is changed from scalar to vector, but the metadata on
1715     //         vector specifies a per-element range, so the semantics stay the
1716     //         same. Keep it.
1717     // !annotation: Not impact semantics. Keep it.
1718     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1719       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
1720     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
1721     // FIXME: DIAssignID is not supported for masked store yet.
1722     // (Verifier::visitDIAssignIDMetadata)
1723     at::deleteAssignmentMarkers(I);
1724     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
1725       return Node->getMetadataID() == Metadata::DIAssignIDKind;
1726     });
1727     MaskedLoadStore->copyMetadata(*I);
1728     I->eraseFromParent();
1729   }
1730 }
1731 
1732 static bool isSafeCheapLoadStore(const Instruction *I,
1733                                  const TargetTransformInfo &TTI) {
1734   // Not handle volatile or atomic.
1735   if (auto *L = dyn_cast<LoadInst>(I)) {
1736     if (!L->isSimple())
1737       return false;
1738   } else if (auto *S = dyn_cast<StoreInst>(I)) {
1739     if (!S->isSimple())
1740       return false;
1741   } else
1742     return false;
1743 
1744   // llvm.masked.load/store use i32 for alignment while load/store use i64.
1745   // That's why we have the alignment limitation.
1746   // FIXME: Update the prototype of the intrinsics?
1747   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
1748          getLoadStoreAlignment(I) < Value::MaximumAlignment;
1749 }
1750 
1751 /// Hoist any common code in the successor blocks up into the block. This
1752 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1753 /// given, only perform hoisting in case both blocks only contain a terminator.
1754 /// In that case, only the original BI will be replaced and selects for PHIs are
1755 /// added.
1756 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI,
1757                                                    bool EqTermsOnly) {
1758   // This does very trivial matching, with limited scanning, to find identical
1759   // instructions in the two blocks. In particular, we don't want to get into
1760   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1761   // such, we currently just scan for obviously identical instructions in an
1762   // identical order, possibly separated by the same number of non-identical
1763   // instructions.
1764   BasicBlock *BB = TI->getParent();
1765   unsigned int SuccSize = succ_size(BB);
1766   if (SuccSize < 2)
1767     return false;
1768 
1769   // If either of the blocks has it's address taken, then we can't do this fold,
1770   // because the code we'd hoist would no longer run when we jump into the block
1771   // by it's address.
1772   for (auto *Succ : successors(BB))
1773     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1774       return false;
1775 
1776   // The second of pair is a SkipFlags bitmask.
1777   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1778   SmallVector<SuccIterPair, 8> SuccIterPairs;
1779   for (auto *Succ : successors(BB)) {
1780     BasicBlock::iterator SuccItr = Succ->begin();
1781     if (isa<PHINode>(*SuccItr))
1782       return false;
1783     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1784   }
1785 
1786   // Check if only hoisting terminators is allowed. This does not add new
1787   // instructions to the hoist location.
1788   if (EqTermsOnly) {
1789     // Skip any debug intrinsics, as they are free to hoist.
1790     for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1791       auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1792       if (!INonDbg->isTerminator())
1793         return false;
1794     }
1795     // Now we know that we only need to hoist debug intrinsics and the
1796     // terminator. Let the loop below handle those 2 cases.
1797   }
1798 
1799   // Count how many instructions were not hoisted so far. There's a limit on how
1800   // many instructions we skip, serving as a compilation time control as well as
1801   // preventing excessive increase of life ranges.
1802   unsigned NumSkipped = 0;
1803   // If we find an unreachable instruction at the beginning of a basic block, we
1804   // can still hoist instructions from the rest of the basic blocks.
1805   if (SuccIterPairs.size() > 2) {
1806     erase_if(SuccIterPairs,
1807              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1808     if (SuccIterPairs.size() < 2)
1809       return false;
1810   }
1811 
1812   bool Changed = false;
1813 
1814   for (;;) {
1815     auto *SuccIterPairBegin = SuccIterPairs.begin();
1816     auto &BB1ItrPair = *SuccIterPairBegin++;
1817     auto OtherSuccIterPairRange =
1818         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1819     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1820 
1821     Instruction *I1 = &*BB1ItrPair.first;
1822 
1823     // Skip debug info if it is not identical.
1824     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1825       Instruction *I2 = &*Iter;
1826       return I1->isIdenticalToWhenDefined(I2);
1827     });
1828     if (!AllDbgInstsAreIdentical) {
1829       while (isa<DbgInfoIntrinsic>(I1))
1830         I1 = &*++BB1ItrPair.first;
1831       for (auto &SuccIter : OtherSuccIterRange) {
1832         Instruction *I2 = &*SuccIter;
1833         while (isa<DbgInfoIntrinsic>(I2))
1834           I2 = &*++SuccIter;
1835       }
1836     }
1837 
1838     bool AllInstsAreIdentical = true;
1839     bool HasTerminator = I1->isTerminator();
1840     for (auto &SuccIter : OtherSuccIterRange) {
1841       Instruction *I2 = &*SuccIter;
1842       HasTerminator |= I2->isTerminator();
1843       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1844                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1845         AllInstsAreIdentical = false;
1846     }
1847 
1848     SmallVector<Instruction *, 8> OtherInsts;
1849     for (auto &SuccIter : OtherSuccIterRange)
1850       OtherInsts.push_back(&*SuccIter);
1851 
1852     // If we are hoisting the terminator instruction, don't move one (making a
1853     // broken BB), instead clone it, and remove BI.
1854     if (HasTerminator) {
1855       // Even if BB, which contains only one unreachable instruction, is ignored
1856       // at the beginning of the loop, we can hoist the terminator instruction.
1857       // If any instructions remain in the block, we cannot hoist terminators.
1858       if (NumSkipped || !AllInstsAreIdentical) {
1859         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1860         return Changed;
1861       }
1862 
1863       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1864              Changed;
1865     }
1866 
1867     if (AllInstsAreIdentical) {
1868       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1869       AllInstsAreIdentical =
1870           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1871           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1872             Instruction *I2 = &*Pair.first;
1873             unsigned SkipFlagsBB2 = Pair.second;
1874             // Even if the instructions are identical, it may not
1875             // be safe to hoist them if we have skipped over
1876             // instructions with side effects or their operands
1877             // weren't hoisted.
1878             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1879                    shouldHoistCommonInstructions(I1, I2, TTI);
1880           });
1881     }
1882 
1883     if (AllInstsAreIdentical) {
1884       BB1ItrPair.first++;
1885       if (isa<DbgInfoIntrinsic>(I1)) {
1886         // The debug location is an integral part of a debug info intrinsic
1887         // and can't be separated from it or replaced.  Instead of attempting
1888         // to merge locations, simply hoist both copies of the intrinsic.
1889         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1890         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1891         // and leave any that were not hoisted behind (by calling moveBefore
1892         // rather than moveBeforePreserving).
1893         I1->moveBefore(TI);
1894         for (auto &SuccIter : OtherSuccIterRange) {
1895           auto *I2 = &*SuccIter++;
1896           assert(isa<DbgInfoIntrinsic>(I2));
1897           I2->moveBefore(TI);
1898         }
1899       } else {
1900         // For a normal instruction, we just move one to right before the
1901         // branch, then replace all uses of the other with the first.  Finally,
1902         // we remove the now redundant second instruction.
1903         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1904         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1905         // and leave any that were not hoisted behind (by calling moveBefore
1906         // rather than moveBeforePreserving).
1907         I1->moveBefore(TI);
1908         for (auto &SuccIter : OtherSuccIterRange) {
1909           Instruction *I2 = &*SuccIter++;
1910           assert(I2 != I1);
1911           if (!I2->use_empty())
1912             I2->replaceAllUsesWith(I1);
1913           I1->andIRFlags(I2);
1914           if (auto *CB = dyn_cast<CallBase>(I1)) {
1915             bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2));
1916             assert(Success && "We should not be trying to hoist callbases "
1917                               "with non-intersectable attributes");
1918             // For NDEBUG Compile.
1919             (void)Success;
1920           }
1921 
1922           combineMetadataForCSE(I1, I2, true);
1923           // I1 and I2 are being combined into a single instruction.  Its debug
1924           // location is the merged locations of the original instructions.
1925           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1926           I2->eraseFromParent();
1927         }
1928       }
1929       if (!Changed)
1930         NumHoistCommonCode += SuccIterPairs.size();
1931       Changed = true;
1932       NumHoistCommonInstrs += SuccIterPairs.size();
1933     } else {
1934       if (NumSkipped >= HoistCommonSkipLimit) {
1935         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1936         return Changed;
1937       }
1938       // We are about to skip over a pair of non-identical instructions. Record
1939       // if any have characteristics that would prevent reordering instructions
1940       // across them.
1941       for (auto &SuccIterPair : SuccIterPairs) {
1942         Instruction *I = &*SuccIterPair.first++;
1943         SuccIterPair.second |= skippedInstrFlags(I);
1944       }
1945       ++NumSkipped;
1946     }
1947   }
1948 }
1949 
1950 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1951     Instruction *TI, Instruction *I1,
1952     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1953 
1954   auto *BI = dyn_cast<BranchInst>(TI);
1955 
1956   bool Changed = false;
1957   BasicBlock *TIParent = TI->getParent();
1958   BasicBlock *BB1 = I1->getParent();
1959 
1960   // Use only for an if statement.
1961   auto *I2 = *OtherSuccTIs.begin();
1962   auto *BB2 = I2->getParent();
1963   if (BI) {
1964     assert(OtherSuccTIs.size() == 1);
1965     assert(BI->getSuccessor(0) == I1->getParent());
1966     assert(BI->getSuccessor(1) == I2->getParent());
1967   }
1968 
1969   // In the case of an if statement, we try to hoist an invoke.
1970   // FIXME: Can we define a safety predicate for CallBr?
1971   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1972   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1973   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1974     return false;
1975 
1976   // TODO: callbr hoisting currently disabled pending further study.
1977   if (isa<CallBrInst>(I1))
1978     return false;
1979 
1980   for (BasicBlock *Succ : successors(BB1)) {
1981     for (PHINode &PN : Succ->phis()) {
1982       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1983       for (Instruction *OtherSuccTI : OtherSuccTIs) {
1984         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1985         if (BB1V == BB2V)
1986           continue;
1987 
1988         // In the case of an if statement, check for
1989         // passingValueIsAlwaysUndefined here because we would rather eliminate
1990         // undefined control flow then converting it to a select.
1991         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1992             passingValueIsAlwaysUndefined(BB2V, &PN))
1993           return false;
1994       }
1995     }
1996   }
1997 
1998   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
1999   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
2000   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
2001   // Clone the terminator and hoist it into the pred, without any debug info.
2002   Instruction *NT = I1->clone();
2003   NT->insertInto(TIParent, TI->getIterator());
2004   if (!NT->getType()->isVoidTy()) {
2005     I1->replaceAllUsesWith(NT);
2006     for (Instruction *OtherSuccTI : OtherSuccTIs)
2007       OtherSuccTI->replaceAllUsesWith(NT);
2008     NT->takeName(I1);
2009   }
2010   Changed = true;
2011   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
2012 
2013   // Ensure terminator gets a debug location, even an unknown one, in case
2014   // it involves inlinable calls.
2015   SmallVector<DILocation *, 4> Locs;
2016   Locs.push_back(I1->getDebugLoc());
2017   for (auto *OtherSuccTI : OtherSuccTIs)
2018     Locs.push_back(OtherSuccTI->getDebugLoc());
2019   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
2020 
2021   // PHIs created below will adopt NT's merged DebugLoc.
2022   IRBuilder<NoFolder> Builder(NT);
2023 
2024   // In the case of an if statement, hoisting one of the terminators from our
2025   // successor is a great thing. Unfortunately, the successors of the if/else
2026   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
2027   // must agree for all PHI nodes, so we insert select instruction to compute
2028   // the final result.
2029   if (BI) {
2030     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
2031     for (BasicBlock *Succ : successors(BB1)) {
2032       for (PHINode &PN : Succ->phis()) {
2033         Value *BB1V = PN.getIncomingValueForBlock(BB1);
2034         Value *BB2V = PN.getIncomingValueForBlock(BB2);
2035         if (BB1V == BB2V)
2036           continue;
2037 
2038         // These values do not agree.  Insert a select instruction before NT
2039         // that determines the right value.
2040         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
2041         if (!SI) {
2042           // Propagate fast-math-flags from phi node to its replacement select.
2043           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2044           if (isa<FPMathOperator>(PN))
2045             Builder.setFastMathFlags(PN.getFastMathFlags());
2046 
2047           SI = cast<SelectInst>(Builder.CreateSelect(
2048               BI->getCondition(), BB1V, BB2V,
2049               BB1V->getName() + "." + BB2V->getName(), BI));
2050         }
2051 
2052         // Make the PHI node use the select for all incoming values for BB1/BB2
2053         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2054           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
2055             PN.setIncomingValue(i, SI);
2056       }
2057     }
2058   }
2059 
2060   SmallVector<DominatorTree::UpdateType, 4> Updates;
2061 
2062   // Update any PHI nodes in our new successors.
2063   for (BasicBlock *Succ : successors(BB1)) {
2064     addPredecessorToBlock(Succ, TIParent, BB1);
2065     if (DTU)
2066       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
2067   }
2068 
2069   if (DTU)
2070     for (BasicBlock *Succ : successors(TI))
2071       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
2072 
2073   eraseTerminatorAndDCECond(TI);
2074   if (DTU)
2075     DTU->applyUpdates(Updates);
2076   return Changed;
2077 }
2078 
2079 // Check lifetime markers.
2080 static bool isLifeTimeMarker(const Instruction *I) {
2081   if (auto II = dyn_cast<IntrinsicInst>(I)) {
2082     switch (II->getIntrinsicID()) {
2083     default:
2084       break;
2085     case Intrinsic::lifetime_start:
2086     case Intrinsic::lifetime_end:
2087       return true;
2088     }
2089   }
2090   return false;
2091 }
2092 
2093 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
2094 // into variables.
2095 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
2096                                                 int OpIdx) {
2097   // Divide/Remainder by constant is typically much cheaper than by variable.
2098   if (I->isIntDivRem())
2099     return OpIdx != 1;
2100   return !isa<IntrinsicInst>(I);
2101 }
2102 
2103 // All instructions in Insts belong to different blocks that all unconditionally
2104 // branch to a common successor. Analyze each instruction and return true if it
2105 // would be possible to sink them into their successor, creating one common
2106 // instruction instead. For every value that would be required to be provided by
2107 // PHI node (because an operand varies in each input block), add to PHIOperands.
2108 static bool canSinkInstructions(
2109     ArrayRef<Instruction *> Insts,
2110     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
2111   // Prune out obviously bad instructions to move. Each instruction must have
2112   // the same number of uses, and we check later that the uses are consistent.
2113   std::optional<unsigned> NumUses;
2114   for (auto *I : Insts) {
2115     // These instructions may change or break semantics if moved.
2116     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
2117         I->getType()->isTokenTy())
2118       return false;
2119 
2120     // Do not try to sink an instruction in an infinite loop - it can cause
2121     // this algorithm to infinite loop.
2122     if (I->getParent()->getSingleSuccessor() == I->getParent())
2123       return false;
2124 
2125     // Conservatively return false if I is an inline-asm instruction. Sinking
2126     // and merging inline-asm instructions can potentially create arguments
2127     // that cannot satisfy the inline-asm constraints.
2128     // If the instruction has nomerge or convergent attribute, return false.
2129     if (const auto *C = dyn_cast<CallBase>(I))
2130       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
2131         return false;
2132 
2133     if (!NumUses)
2134       NumUses = I->getNumUses();
2135     else if (NumUses != I->getNumUses())
2136       return false;
2137   }
2138 
2139   const Instruction *I0 = Insts.front();
2140   const auto I0MMRA = MMRAMetadata(*I0);
2141   for (auto *I : Insts) {
2142     if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs))
2143       return false;
2144 
2145     // swifterror pointers can only be used by a load or store; sinking a load
2146     // or store would require introducing a select for the pointer operand,
2147     // which isn't allowed for swifterror pointers.
2148     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2149       return false;
2150     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2151       return false;
2152 
2153     // Treat MMRAs conservatively. This pass can be quite aggressive and
2154     // could drop a lot of MMRAs otherwise.
2155     if (MMRAMetadata(*I) != I0MMRA)
2156       return false;
2157   }
2158 
2159   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2160   // then the other phi operands must match the instructions from Insts. This
2161   // also has to hold true for any phi nodes that would be created as a result
2162   // of sinking. Both of these cases are represented by PhiOperands.
2163   for (const Use &U : I0->uses()) {
2164     auto It = PHIOperands.find(&U);
2165     if (It == PHIOperands.end())
2166       // There may be uses in other blocks when sinking into a loop header.
2167       return false;
2168     if (!equal(Insts, It->second))
2169       return false;
2170   }
2171 
2172   // For calls to be sinkable, they must all be indirect, or have same callee.
2173   // I.e. if we have two direct calls to different callees, we don't want to
2174   // turn that into an indirect call. Likewise, if we have an indirect call,
2175   // and a direct call, we don't actually want to have a single indirect call.
2176   if (isa<CallBase>(I0)) {
2177     auto IsIndirectCall = [](const Instruction *I) {
2178       return cast<CallBase>(I)->isIndirectCall();
2179     };
2180     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2181     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2182     if (HaveIndirectCalls) {
2183       if (!AllCallsAreIndirect)
2184         return false;
2185     } else {
2186       // All callees must be identical.
2187       Value *Callee = nullptr;
2188       for (const Instruction *I : Insts) {
2189         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2190         if (!Callee)
2191           Callee = CurrCallee;
2192         else if (Callee != CurrCallee)
2193           return false;
2194       }
2195     }
2196   }
2197 
2198   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2199     Value *Op = I0->getOperand(OI);
2200     if (Op->getType()->isTokenTy())
2201       // Don't touch any operand of token type.
2202       return false;
2203 
2204     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2205       assert(I->getNumOperands() == I0->getNumOperands());
2206       return I->getOperand(OI) == I0->getOperand(OI);
2207     };
2208     if (!all_of(Insts, SameAsI0)) {
2209       // SROA can't speculate lifetime markers of selects/phis, and the
2210       // backend may handle such lifetimes incorrectly as well (#104776).
2211       // Don't sink lifetimes if it would introduce a phi on the pointer
2212       // argument.
2213       if (isLifeTimeMarker(I0) && OI == 1 &&
2214           any_of(Insts, [](const Instruction *I) {
2215             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2216           }))
2217         return false;
2218 
2219       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2220           !canReplaceOperandWithVariable(I0, OI))
2221         // We can't create a PHI from this GEP.
2222         return false;
2223       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2224       for (auto *I : Insts)
2225         Ops.push_back(I->getOperand(OI));
2226     }
2227   }
2228   return true;
2229 }
2230 
2231 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2232 // instruction of every block in Blocks to their common successor, commoning
2233 // into one instruction.
2234 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2235   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2236 
2237   // canSinkInstructions returning true guarantees that every block has at
2238   // least one non-terminator instruction.
2239   SmallVector<Instruction*,4> Insts;
2240   for (auto *BB : Blocks) {
2241     Instruction *I = BB->getTerminator();
2242     do {
2243       I = I->getPrevNode();
2244     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2245     if (!isa<DbgInfoIntrinsic>(I))
2246       Insts.push_back(I);
2247   }
2248 
2249   // We don't need to do any more checking here; canSinkInstructions should
2250   // have done it all for us.
2251   SmallVector<Value*, 4> NewOperands;
2252   Instruction *I0 = Insts.front();
2253   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2254     // This check is different to that in canSinkInstructions. There, we
2255     // cared about the global view once simplifycfg (and instcombine) have
2256     // completed - it takes into account PHIs that become trivially
2257     // simplifiable.  However here we need a more local view; if an operand
2258     // differs we create a PHI and rely on instcombine to clean up the very
2259     // small mess we may make.
2260     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2261       return I->getOperand(O) != I0->getOperand(O);
2262     });
2263     if (!NeedPHI) {
2264       NewOperands.push_back(I0->getOperand(O));
2265       continue;
2266     }
2267 
2268     // Create a new PHI in the successor block and populate it.
2269     auto *Op = I0->getOperand(O);
2270     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2271     auto *PN =
2272         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2273     PN->insertBefore(BBEnd->begin());
2274     for (auto *I : Insts)
2275       PN->addIncoming(I->getOperand(O), I->getParent());
2276     NewOperands.push_back(PN);
2277   }
2278 
2279   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2280   // and move it to the start of the successor block.
2281   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2282     I0->getOperandUse(O).set(NewOperands[O]);
2283 
2284   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2285 
2286   // Update metadata and IR flags, and merge debug locations.
2287   for (auto *I : Insts)
2288     if (I != I0) {
2289       // The debug location for the "common" instruction is the merged locations
2290       // of all the commoned instructions.  We start with the original location
2291       // of the "common" instruction and iteratively merge each location in the
2292       // loop below.
2293       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2294       // However, as N-way merge for CallInst is rare, so we use simplified API
2295       // instead of using complex API for N-way merge.
2296       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2297       combineMetadataForCSE(I0, I, true);
2298       I0->andIRFlags(I);
2299       if (auto *CB = dyn_cast<CallBase>(I0)) {
2300         bool Success = CB->tryIntersectAttributes(cast<CallBase>(I));
2301         assert(Success && "We should not be trying to sink callbases "
2302                           "with non-intersectable attributes");
2303         // For NDEBUG Compile.
2304         (void)Success;
2305       }
2306     }
2307 
2308   for (User *U : make_early_inc_range(I0->users())) {
2309     // canSinkLastInstruction checked that all instructions are only used by
2310     // phi nodes in a way that allows replacing the phi node with the common
2311     // instruction.
2312     auto *PN = cast<PHINode>(U);
2313     PN->replaceAllUsesWith(I0);
2314     PN->eraseFromParent();
2315   }
2316 
2317   // Finally nuke all instructions apart from the common instruction.
2318   for (auto *I : Insts) {
2319     if (I == I0)
2320       continue;
2321     // The remaining uses are debug users, replace those with the common inst.
2322     // In most (all?) cases this just introduces a use-before-def.
2323     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2324     I->replaceAllUsesWith(I0);
2325     I->eraseFromParent();
2326   }
2327 }
2328 
2329 namespace {
2330 
2331   // LockstepReverseIterator - Iterates through instructions
2332   // in a set of blocks in reverse order from the first non-terminator.
2333   // For example (assume all blocks have size n):
2334   //   LockstepReverseIterator I([B1, B2, B3]);
2335   //   *I-- = [B1[n], B2[n], B3[n]];
2336   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2337   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2338   //   ...
2339   class LockstepReverseIterator {
2340     ArrayRef<BasicBlock*> Blocks;
2341     SmallVector<Instruction*,4> Insts;
2342     bool Fail;
2343 
2344   public:
2345     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2346       reset();
2347     }
2348 
2349     void reset() {
2350       Fail = false;
2351       Insts.clear();
2352       for (auto *BB : Blocks) {
2353         Instruction *Inst = BB->getTerminator();
2354         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2355           Inst = Inst->getPrevNode();
2356         if (!Inst) {
2357           // Block wasn't big enough.
2358           Fail = true;
2359           return;
2360         }
2361         Insts.push_back(Inst);
2362       }
2363     }
2364 
2365     bool isValid() const {
2366       return !Fail;
2367     }
2368 
2369     void operator--() {
2370       if (Fail)
2371         return;
2372       for (auto *&Inst : Insts) {
2373         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2374           Inst = Inst->getPrevNode();
2375         // Already at beginning of block.
2376         if (!Inst) {
2377           Fail = true;
2378           return;
2379         }
2380       }
2381     }
2382 
2383     void operator++() {
2384       if (Fail)
2385         return;
2386       for (auto *&Inst : Insts) {
2387         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2388           Inst = Inst->getNextNode();
2389         // Already at end of block.
2390         if (!Inst) {
2391           Fail = true;
2392           return;
2393         }
2394       }
2395     }
2396 
2397     ArrayRef<Instruction*> operator * () const {
2398       return Insts;
2399     }
2400   };
2401 
2402 } // end anonymous namespace
2403 
2404 /// Check whether BB's predecessors end with unconditional branches. If it is
2405 /// true, sink any common code from the predecessors to BB.
2406 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2407                                            DomTreeUpdater *DTU) {
2408   // We support two situations:
2409   //   (1) all incoming arcs are unconditional
2410   //   (2) there are non-unconditional incoming arcs
2411   //
2412   // (2) is very common in switch defaults and
2413   // else-if patterns;
2414   //
2415   //   if (a) f(1);
2416   //   else if (b) f(2);
2417   //
2418   // produces:
2419   //
2420   //       [if]
2421   //      /    \
2422   //    [f(1)] [if]
2423   //      |     | \
2424   //      |     |  |
2425   //      |  [f(2)]|
2426   //       \    | /
2427   //        [ end ]
2428   //
2429   // [end] has two unconditional predecessor arcs and one conditional. The
2430   // conditional refers to the implicit empty 'else' arc. This conditional
2431   // arc can also be caused by an empty default block in a switch.
2432   //
2433   // In this case, we attempt to sink code from all *unconditional* arcs.
2434   // If we can sink instructions from these arcs (determined during the scan
2435   // phase below) we insert a common successor for all unconditional arcs and
2436   // connect that to [end], to enable sinking:
2437   //
2438   //       [if]
2439   //      /    \
2440   //    [x(1)] [if]
2441   //      |     | \
2442   //      |     |  \
2443   //      |  [x(2)] |
2444   //       \   /    |
2445   //   [sink.split] |
2446   //         \     /
2447   //         [ end ]
2448   //
2449   SmallVector<BasicBlock*,4> UnconditionalPreds;
2450   bool HaveNonUnconditionalPredecessors = false;
2451   for (auto *PredBB : predecessors(BB)) {
2452     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2453     if (PredBr && PredBr->isUnconditional())
2454       UnconditionalPreds.push_back(PredBB);
2455     else
2456       HaveNonUnconditionalPredecessors = true;
2457   }
2458   if (UnconditionalPreds.size() < 2)
2459     return false;
2460 
2461   // We take a two-step approach to tail sinking. First we scan from the end of
2462   // each block upwards in lockstep. If the n'th instruction from the end of each
2463   // block can be sunk, those instructions are added to ValuesToSink and we
2464   // carry on. If we can sink an instruction but need to PHI-merge some operands
2465   // (because they're not identical in each instruction) we add these to
2466   // PHIOperands.
2467   // We prepopulate PHIOperands with the phis that already exist in BB.
2468   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2469   for (PHINode &PN : BB->phis()) {
2470     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2471     for (const Use &U : PN.incoming_values())
2472       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2473     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2474     for (BasicBlock *Pred : UnconditionalPreds)
2475       Ops.push_back(*IncomingVals[Pred]);
2476   }
2477 
2478   int ScanIdx = 0;
2479   SmallPtrSet<Value*,4> InstructionsToSink;
2480   LockstepReverseIterator LRI(UnconditionalPreds);
2481   while (LRI.isValid() &&
2482          canSinkInstructions(*LRI, PHIOperands)) {
2483     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2484                       << "\n");
2485     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2486     ++ScanIdx;
2487     --LRI;
2488   }
2489 
2490   // If no instructions can be sunk, early-return.
2491   if (ScanIdx == 0)
2492     return false;
2493 
2494   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2495 
2496   if (!followedByDeoptOrUnreachable) {
2497     // Check whether this is the pointer operand of a load/store.
2498     auto IsMemOperand = [](Use &U) {
2499       auto *I = cast<Instruction>(U.getUser());
2500       if (isa<LoadInst>(I))
2501         return U.getOperandNo() == LoadInst::getPointerOperandIndex();
2502       if (isa<StoreInst>(I))
2503         return U.getOperandNo() == StoreInst::getPointerOperandIndex();
2504       return false;
2505     };
2506 
2507     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2508     // actually sink before encountering instruction that is unprofitable to
2509     // sink?
2510     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2511       unsigned NumPHIInsts = 0;
2512       for (Use &U : (*LRI)[0]->operands()) {
2513         auto It = PHIOperands.find(&U);
2514         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2515               return InstructionsToSink.contains(V);
2516             })) {
2517           ++NumPHIInsts;
2518           // Do not separate a load/store from the gep producing the address.
2519           // The gep can likely be folded into the load/store as an addressing
2520           // mode. Additionally, a load of a gep is easier to analyze than a
2521           // load of a phi.
2522           if (IsMemOperand(U) &&
2523               any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); }))
2524             return false;
2525           // FIXME: this check is overly optimistic. We may end up not sinking
2526           // said instruction, due to the very same profitability check.
2527           // See @creating_too_many_phis in sink-common-code.ll.
2528         }
2529       }
2530       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2531       return NumPHIInsts <= 1;
2532     };
2533 
2534     // We've determined that we are going to sink last ScanIdx instructions,
2535     // and recorded them in InstructionsToSink. Now, some instructions may be
2536     // unprofitable to sink. But that determination depends on the instructions
2537     // that we are going to sink.
2538 
2539     // First, forward scan: find the first instruction unprofitable to sink,
2540     // recording all the ones that are profitable to sink.
2541     // FIXME: would it be better, after we detect that not all are profitable.
2542     // to either record the profitable ones, or erase the unprofitable ones?
2543     // Maybe we need to choose (at runtime) the one that will touch least
2544     // instrs?
2545     LRI.reset();
2546     int Idx = 0;
2547     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2548     while (Idx < ScanIdx) {
2549       if (!ProfitableToSinkInstruction(LRI)) {
2550         // Too many PHIs would be created.
2551         LLVM_DEBUG(
2552             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2553         break;
2554       }
2555       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2556       --LRI;
2557       ++Idx;
2558     }
2559 
2560     // If no instructions can be sunk, early-return.
2561     if (Idx == 0)
2562       return false;
2563 
2564     // Did we determine that (only) some instructions are unprofitable to sink?
2565     if (Idx < ScanIdx) {
2566       // Okay, some instructions are unprofitable.
2567       ScanIdx = Idx;
2568       InstructionsToSink = InstructionsProfitableToSink;
2569 
2570       // But, that may make other instructions unprofitable, too.
2571       // So, do a backward scan, do any earlier instructions become
2572       // unprofitable?
2573       assert(
2574           !ProfitableToSinkInstruction(LRI) &&
2575           "We already know that the last instruction is unprofitable to sink");
2576       ++LRI;
2577       --Idx;
2578       while (Idx >= 0) {
2579         // If we detect that an instruction becomes unprofitable to sink,
2580         // all earlier instructions won't be sunk either,
2581         // so preemptively keep InstructionsProfitableToSink in sync.
2582         // FIXME: is this the most performant approach?
2583         for (auto *I : *LRI)
2584           InstructionsProfitableToSink.erase(I);
2585         if (!ProfitableToSinkInstruction(LRI)) {
2586           // Everything starting with this instruction won't be sunk.
2587           ScanIdx = Idx;
2588           InstructionsToSink = InstructionsProfitableToSink;
2589         }
2590         ++LRI;
2591         --Idx;
2592       }
2593     }
2594 
2595     // If no instructions can be sunk, early-return.
2596     if (ScanIdx == 0)
2597       return false;
2598   }
2599 
2600   bool Changed = false;
2601 
2602   if (HaveNonUnconditionalPredecessors) {
2603     if (!followedByDeoptOrUnreachable) {
2604       // It is always legal to sink common instructions from unconditional
2605       // predecessors. However, if not all predecessors are unconditional,
2606       // this transformation might be pessimizing. So as a rule of thumb,
2607       // don't do it unless we'd sink at least one non-speculatable instruction.
2608       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2609       LRI.reset();
2610       int Idx = 0;
2611       bool Profitable = false;
2612       while (Idx < ScanIdx) {
2613         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2614           Profitable = true;
2615           break;
2616         }
2617         --LRI;
2618         ++Idx;
2619       }
2620       if (!Profitable)
2621         return false;
2622     }
2623 
2624     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2625     // We have a conditional edge and we're going to sink some instructions.
2626     // Insert a new block postdominating all blocks we're going to sink from.
2627     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2628       // Edges couldn't be split.
2629       return false;
2630     Changed = true;
2631   }
2632 
2633   // Now that we've analyzed all potential sinking candidates, perform the
2634   // actual sink. We iteratively sink the last non-terminator of the source
2635   // blocks into their common successor unless doing so would require too
2636   // many PHI instructions to be generated (currently only one PHI is allowed
2637   // per sunk instruction).
2638   //
2639   // We can use InstructionsToSink to discount values needing PHI-merging that will
2640   // actually be sunk in a later iteration. This allows us to be more
2641   // aggressive in what we sink. This does allow a false positive where we
2642   // sink presuming a later value will also be sunk, but stop half way through
2643   // and never actually sink it which means we produce more PHIs than intended.
2644   // This is unlikely in practice though.
2645   int SinkIdx = 0;
2646   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2647     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2648                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2649                       << "\n");
2650 
2651     // Because we've sunk every instruction in turn, the current instruction to
2652     // sink is always at index 0.
2653     LRI.reset();
2654 
2655     sinkLastInstruction(UnconditionalPreds);
2656     NumSinkCommonInstrs++;
2657     Changed = true;
2658   }
2659   if (SinkIdx != 0)
2660     ++NumSinkCommonCode;
2661   return Changed;
2662 }
2663 
2664 namespace {
2665 
2666 struct CompatibleSets {
2667   using SetTy = SmallVector<InvokeInst *, 2>;
2668 
2669   SmallVector<SetTy, 1> Sets;
2670 
2671   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2672 
2673   SetTy &getCompatibleSet(InvokeInst *II);
2674 
2675   void insert(InvokeInst *II);
2676 };
2677 
2678 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2679   // Perform a linear scan over all the existing sets, see if the new `invoke`
2680   // is compatible with any particular set. Since we know that all the `invokes`
2681   // within a set are compatible, only check the first `invoke` in each set.
2682   // WARNING: at worst, this has quadratic complexity.
2683   for (CompatibleSets::SetTy &Set : Sets) {
2684     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2685       return Set;
2686   }
2687 
2688   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2689   return Sets.emplace_back();
2690 }
2691 
2692 void CompatibleSets::insert(InvokeInst *II) {
2693   getCompatibleSet(II).emplace_back(II);
2694 }
2695 
2696 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2697   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2698 
2699   // Can we theoretically merge these `invoke`s?
2700   auto IsIllegalToMerge = [](InvokeInst *II) {
2701     return II->cannotMerge() || II->isInlineAsm();
2702   };
2703   if (any_of(Invokes, IsIllegalToMerge))
2704     return false;
2705 
2706   // Either both `invoke`s must be   direct,
2707   // or     both `invoke`s must be indirect.
2708   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2709   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2710   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2711   if (HaveIndirectCalls) {
2712     if (!AllCallsAreIndirect)
2713       return false;
2714   } else {
2715     // All callees must be identical.
2716     Value *Callee = nullptr;
2717     for (InvokeInst *II : Invokes) {
2718       Value *CurrCallee = II->getCalledOperand();
2719       assert(CurrCallee && "There is always a called operand.");
2720       if (!Callee)
2721         Callee = CurrCallee;
2722       else if (Callee != CurrCallee)
2723         return false;
2724     }
2725   }
2726 
2727   // Either both `invoke`s must not have a normal destination,
2728   // or     both `invoke`s must     have a normal destination,
2729   auto HasNormalDest = [](InvokeInst *II) {
2730     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2731   };
2732   if (any_of(Invokes, HasNormalDest)) {
2733     // Do not merge `invoke` that does not have a normal destination with one
2734     // that does have a normal destination, even though doing so would be legal.
2735     if (!all_of(Invokes, HasNormalDest))
2736       return false;
2737 
2738     // All normal destinations must be identical.
2739     BasicBlock *NormalBB = nullptr;
2740     for (InvokeInst *II : Invokes) {
2741       BasicBlock *CurrNormalBB = II->getNormalDest();
2742       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2743       if (!NormalBB)
2744         NormalBB = CurrNormalBB;
2745       else if (NormalBB != CurrNormalBB)
2746         return false;
2747     }
2748 
2749     // In the normal destination, the incoming values for these two `invoke`s
2750     // must be compatible.
2751     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2752     if (!incomingValuesAreCompatible(
2753             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2754             &EquivalenceSet))
2755       return false;
2756   }
2757 
2758 #ifndef NDEBUG
2759   // All unwind destinations must be identical.
2760   // We know that because we have started from said unwind destination.
2761   BasicBlock *UnwindBB = nullptr;
2762   for (InvokeInst *II : Invokes) {
2763     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2764     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2765     if (!UnwindBB)
2766       UnwindBB = CurrUnwindBB;
2767     else
2768       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2769   }
2770 #endif
2771 
2772   // In the unwind destination, the incoming values for these two `invoke`s
2773   // must be compatible.
2774   if (!incomingValuesAreCompatible(
2775           Invokes.front()->getUnwindDest(),
2776           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2777     return false;
2778 
2779   // Ignoring arguments, these `invoke`s must be identical,
2780   // including operand bundles.
2781   const InvokeInst *II0 = Invokes.front();
2782   for (auto *II : Invokes.drop_front())
2783     if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs))
2784       return false;
2785 
2786   // Can we theoretically form the data operands for the merged `invoke`?
2787   auto IsIllegalToMergeArguments = [](auto Ops) {
2788     Use &U0 = std::get<0>(Ops);
2789     Use &U1 = std::get<1>(Ops);
2790     if (U0 == U1)
2791       return false;
2792     return U0->getType()->isTokenTy() ||
2793            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2794                                           U0.getOperandNo());
2795   };
2796   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2797   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2798              IsIllegalToMergeArguments))
2799     return false;
2800 
2801   return true;
2802 }
2803 
2804 } // namespace
2805 
2806 // Merge all invokes in the provided set, all of which are compatible
2807 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2808 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2809                                        DomTreeUpdater *DTU) {
2810   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2811 
2812   SmallVector<DominatorTree::UpdateType, 8> Updates;
2813   if (DTU)
2814     Updates.reserve(2 + 3 * Invokes.size());
2815 
2816   bool HasNormalDest =
2817       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2818 
2819   // Clone one of the invokes into a new basic block.
2820   // Since they are all compatible, it doesn't matter which invoke is cloned.
2821   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2822     InvokeInst *II0 = Invokes.front();
2823     BasicBlock *II0BB = II0->getParent();
2824     BasicBlock *InsertBeforeBlock =
2825         II0->getParent()->getIterator()->getNextNode();
2826     Function *Func = II0BB->getParent();
2827     LLVMContext &Ctx = II0->getContext();
2828 
2829     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2830         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2831 
2832     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2833     // NOTE: all invokes have the same attributes, so no handling needed.
2834     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2835 
2836     if (!HasNormalDest) {
2837       // This set does not have a normal destination,
2838       // so just form a new block with unreachable terminator.
2839       BasicBlock *MergedNormalDest = BasicBlock::Create(
2840           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2841       new UnreachableInst(Ctx, MergedNormalDest);
2842       MergedInvoke->setNormalDest(MergedNormalDest);
2843     }
2844 
2845     // The unwind destination, however, remainds identical for all invokes here.
2846 
2847     return MergedInvoke;
2848   }();
2849 
2850   if (DTU) {
2851     // Predecessor blocks that contained these invokes will now branch to
2852     // the new block that contains the merged invoke, ...
2853     for (InvokeInst *II : Invokes)
2854       Updates.push_back(
2855           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2856 
2857     // ... which has the new `unreachable` block as normal destination,
2858     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2859     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2860       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2861                          SuccBBOfMergedInvoke});
2862 
2863     // Since predecessor blocks now unconditionally branch to a new block,
2864     // they no longer branch to their original successors.
2865     for (InvokeInst *II : Invokes)
2866       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2867         Updates.push_back(
2868             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2869   }
2870 
2871   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2872 
2873   // Form the merged operands for the merged invoke.
2874   for (Use &U : MergedInvoke->operands()) {
2875     // Only PHI together the indirect callees and data operands.
2876     if (MergedInvoke->isCallee(&U)) {
2877       if (!IsIndirectCall)
2878         continue;
2879     } else if (!MergedInvoke->isDataOperand(&U))
2880       continue;
2881 
2882     // Don't create trivial PHI's with all-identical incoming values.
2883     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2884       return II->getOperand(U.getOperandNo()) != U.get();
2885     });
2886     if (!NeedPHI)
2887       continue;
2888 
2889     // Form a PHI out of all the data ops under this index.
2890     PHINode *PN = PHINode::Create(
2891         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2892     for (InvokeInst *II : Invokes)
2893       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2894 
2895     U.set(PN);
2896   }
2897 
2898   // We've ensured that each PHI node has compatible (identical) incoming values
2899   // when coming from each of the `invoke`s in the current merge set,
2900   // so update the PHI nodes accordingly.
2901   for (BasicBlock *Succ : successors(MergedInvoke))
2902     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2903                           /*ExistPred=*/Invokes.front()->getParent());
2904 
2905   // And finally, replace the original `invoke`s with an unconditional branch
2906   // to the block with the merged `invoke`. Also, give that merged `invoke`
2907   // the merged debugloc of all the original `invoke`s.
2908   DILocation *MergedDebugLoc = nullptr;
2909   for (InvokeInst *II : Invokes) {
2910     // Compute the debug location common to all the original `invoke`s.
2911     if (!MergedDebugLoc)
2912       MergedDebugLoc = II->getDebugLoc();
2913     else
2914       MergedDebugLoc =
2915           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2916 
2917     // And replace the old `invoke` with an unconditionally branch
2918     // to the block with the merged `invoke`.
2919     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2920       OrigSuccBB->removePredecessor(II->getParent());
2921     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2922     bool Success = MergedInvoke->tryIntersectAttributes(II);
2923     assert(Success && "Merged invokes with incompatible attributes");
2924     // For NDEBUG Compile
2925     (void)Success;
2926     II->replaceAllUsesWith(MergedInvoke);
2927     II->eraseFromParent();
2928     ++NumInvokesMerged;
2929   }
2930   MergedInvoke->setDebugLoc(MergedDebugLoc);
2931   ++NumInvokeSetsFormed;
2932 
2933   if (DTU)
2934     DTU->applyUpdates(Updates);
2935 }
2936 
2937 /// If this block is a `landingpad` exception handling block, categorize all
2938 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2939 /// being "mergeable" together, and then merge invokes in each set together.
2940 ///
2941 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2942 ///          [...]        [...]
2943 ///            |            |
2944 ///        [invoke0]    [invoke1]
2945 ///           / \          / \
2946 ///     [cont0] [landingpad] [cont1]
2947 /// to:
2948 ///      [...] [...]
2949 ///          \ /
2950 ///       [invoke]
2951 ///          / \
2952 ///     [cont] [landingpad]
2953 ///
2954 /// But of course we can only do that if the invokes share the `landingpad`,
2955 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2956 /// and the invoked functions are "compatible".
2957 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2958   if (!EnableMergeCompatibleInvokes)
2959     return false;
2960 
2961   bool Changed = false;
2962 
2963   // FIXME: generalize to all exception handling blocks?
2964   if (!BB->isLandingPad())
2965     return Changed;
2966 
2967   CompatibleSets Grouper;
2968 
2969   // Record all the predecessors of this `landingpad`. As per verifier,
2970   // the only allowed predecessor is the unwind edge of an `invoke`.
2971   // We want to group "compatible" `invokes` into the same set to be merged.
2972   for (BasicBlock *PredBB : predecessors(BB))
2973     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2974 
2975   // And now, merge `invoke`s that were grouped togeter.
2976   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2977     if (Invokes.size() < 2)
2978       continue;
2979     Changed = true;
2980     mergeCompatibleInvokesImpl(Invokes, DTU);
2981   }
2982 
2983   return Changed;
2984 }
2985 
2986 namespace {
2987 /// Track ephemeral values, which should be ignored for cost-modelling
2988 /// purposes. Requires walking instructions in reverse order.
2989 class EphemeralValueTracker {
2990   SmallPtrSet<const Instruction *, 32> EphValues;
2991 
2992   bool isEphemeral(const Instruction *I) {
2993     if (isa<AssumeInst>(I))
2994       return true;
2995     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2996            all_of(I->users(), [&](const User *U) {
2997              return EphValues.count(cast<Instruction>(U));
2998            });
2999   }
3000 
3001 public:
3002   bool track(const Instruction *I) {
3003     if (isEphemeral(I)) {
3004       EphValues.insert(I);
3005       return true;
3006     }
3007     return false;
3008   }
3009 
3010   bool contains(const Instruction *I) const { return EphValues.contains(I); }
3011 };
3012 } // namespace
3013 
3014 /// Determine if we can hoist sink a sole store instruction out of a
3015 /// conditional block.
3016 ///
3017 /// We are looking for code like the following:
3018 ///   BrBB:
3019 ///     store i32 %add, i32* %arrayidx2
3020 ///     ... // No other stores or function calls (we could be calling a memory
3021 ///     ... // function).
3022 ///     %cmp = icmp ult %x, %y
3023 ///     br i1 %cmp, label %EndBB, label %ThenBB
3024 ///   ThenBB:
3025 ///     store i32 %add5, i32* %arrayidx2
3026 ///     br label EndBB
3027 ///   EndBB:
3028 ///     ...
3029 ///   We are going to transform this into:
3030 ///   BrBB:
3031 ///     store i32 %add, i32* %arrayidx2
3032 ///     ... //
3033 ///     %cmp = icmp ult %x, %y
3034 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
3035 ///     store i32 %add.add5, i32* %arrayidx2
3036 ///     ...
3037 ///
3038 /// \return The pointer to the value of the previous store if the store can be
3039 ///         hoisted into the predecessor block. 0 otherwise.
3040 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
3041                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
3042   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
3043   if (!StoreToHoist)
3044     return nullptr;
3045 
3046   // Volatile or atomic.
3047   if (!StoreToHoist->isSimple())
3048     return nullptr;
3049 
3050   Value *StorePtr = StoreToHoist->getPointerOperand();
3051   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
3052 
3053   // Look for a store to the same pointer in BrBB.
3054   unsigned MaxNumInstToLookAt = 9;
3055   // Skip pseudo probe intrinsic calls which are not really killing any memory
3056   // accesses.
3057   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
3058     if (!MaxNumInstToLookAt)
3059       break;
3060     --MaxNumInstToLookAt;
3061 
3062     // Could be calling an instruction that affects memory like free().
3063     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
3064       return nullptr;
3065 
3066     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
3067       // Found the previous store to same location and type. Make sure it is
3068       // simple, to avoid introducing a spurious non-atomic write after an
3069       // atomic write.
3070       if (SI->getPointerOperand() == StorePtr &&
3071           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
3072           SI->getAlign() >= StoreToHoist->getAlign())
3073         // Found the previous store, return its value operand.
3074         return SI->getValueOperand();
3075       return nullptr; // Unknown store.
3076     }
3077 
3078     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
3079       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
3080           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
3081         Value *Obj = getUnderlyingObject(StorePtr);
3082         bool ExplicitlyDereferenceableOnly;
3083         if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) &&
3084             !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false,
3085                                   /*StoreCaptures=*/true) &&
3086             (!ExplicitlyDereferenceableOnly ||
3087              isDereferenceablePointer(StorePtr, StoreTy,
3088                                       LI->getDataLayout()))) {
3089           // Found a previous load, return it.
3090           return LI;
3091         }
3092       }
3093       // The load didn't work out, but we may still find a store.
3094     }
3095   }
3096 
3097   return nullptr;
3098 }
3099 
3100 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
3101 /// converted to selects.
3102 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
3103                                            BasicBlock *EndBB,
3104                                            unsigned &SpeculatedInstructions,
3105                                            InstructionCost &Cost,
3106                                            const TargetTransformInfo &TTI) {
3107   TargetTransformInfo::TargetCostKind CostKind =
3108     BB->getParent()->hasMinSize()
3109     ? TargetTransformInfo::TCK_CodeSize
3110     : TargetTransformInfo::TCK_SizeAndLatency;
3111 
3112   bool HaveRewritablePHIs = false;
3113   for (PHINode &PN : EndBB->phis()) {
3114     Value *OrigV = PN.getIncomingValueForBlock(BB);
3115     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
3116 
3117     // FIXME: Try to remove some of the duplication with
3118     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
3119     if (ThenV == OrigV)
3120       continue;
3121 
3122     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
3123                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
3124 
3125     // Don't convert to selects if we could remove undefined behavior instead.
3126     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
3127         passingValueIsAlwaysUndefined(ThenV, &PN))
3128       return false;
3129 
3130     HaveRewritablePHIs = true;
3131     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
3132     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
3133     if (!OrigCE && !ThenCE)
3134       continue; // Known cheap (FIXME: Maybe not true for aggregates).
3135 
3136     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
3137     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
3138     InstructionCost MaxCost =
3139         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3140     if (OrigCost + ThenCost > MaxCost)
3141       return false;
3142 
3143     // Account for the cost of an unfolded ConstantExpr which could end up
3144     // getting expanded into Instructions.
3145     // FIXME: This doesn't account for how many operations are combined in the
3146     // constant expression.
3147     ++SpeculatedInstructions;
3148     if (SpeculatedInstructions > 1)
3149       return false;
3150   }
3151 
3152   return HaveRewritablePHIs;
3153 }
3154 
3155 static bool isProfitableToSpeculate(const BranchInst *BI, bool Invert,
3156                                     const TargetTransformInfo &TTI) {
3157   // If the branch is non-unpredictable, and is predicted to *not* branch to
3158   // the `then` block, then avoid speculating it.
3159   if (BI->getMetadata(LLVMContext::MD_unpredictable))
3160     return true;
3161 
3162   uint64_t TWeight, FWeight;
3163   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
3164     return true;
3165 
3166   uint64_t EndWeight = Invert ? TWeight : FWeight;
3167   BranchProbability BIEndProb =
3168       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
3169   BranchProbability Likely = TTI.getPredictableBranchThreshold();
3170   return BIEndProb < Likely;
3171 }
3172 
3173 /// Speculate a conditional basic block flattening the CFG.
3174 ///
3175 /// Note that this is a very risky transform currently. Speculating
3176 /// instructions like this is most often not desirable. Instead, there is an MI
3177 /// pass which can do it with full awareness of the resource constraints.
3178 /// However, some cases are "obvious" and we should do directly. An example of
3179 /// this is speculating a single, reasonably cheap instruction.
3180 ///
3181 /// There is only one distinct advantage to flattening the CFG at the IR level:
3182 /// it makes very common but simplistic optimizations such as are common in
3183 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3184 /// modeling their effects with easier to reason about SSA value graphs.
3185 ///
3186 ///
3187 /// An illustration of this transform is turning this IR:
3188 /// \code
3189 ///   BB:
3190 ///     %cmp = icmp ult %x, %y
3191 ///     br i1 %cmp, label %EndBB, label %ThenBB
3192 ///   ThenBB:
3193 ///     %sub = sub %x, %y
3194 ///     br label BB2
3195 ///   EndBB:
3196 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3197 ///     ...
3198 /// \endcode
3199 ///
3200 /// Into this IR:
3201 /// \code
3202 ///   BB:
3203 ///     %cmp = icmp ult %x, %y
3204 ///     %sub = sub %x, %y
3205 ///     %cond = select i1 %cmp, 0, %sub
3206 ///     ...
3207 /// \endcode
3208 ///
3209 /// \returns true if the conditional block is removed.
3210 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3211                                             BasicBlock *ThenBB) {
3212   if (!Options.SpeculateBlocks)
3213     return false;
3214 
3215   // Be conservative for now. FP select instruction can often be expensive.
3216   Value *BrCond = BI->getCondition();
3217   if (isa<FCmpInst>(BrCond))
3218     return false;
3219 
3220   BasicBlock *BB = BI->getParent();
3221   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3222   InstructionCost Budget =
3223       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3224 
3225   // If ThenBB is actually on the false edge of the conditional branch, remember
3226   // to swap the select operands later.
3227   bool Invert = false;
3228   if (ThenBB != BI->getSuccessor(0)) {
3229     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3230     Invert = true;
3231   }
3232   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3233 
3234   if (!isProfitableToSpeculate(BI, Invert, TTI))
3235     return false;
3236 
3237   // Keep a count of how many times instructions are used within ThenBB when
3238   // they are candidates for sinking into ThenBB. Specifically:
3239   // - They are defined in BB, and
3240   // - They have no side effects, and
3241   // - All of their uses are in ThenBB.
3242   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3243 
3244   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3245 
3246   unsigned SpeculatedInstructions = 0;
3247   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3248                           Options.HoistLoadsStoresWithCondFaulting;
3249   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3250   Value *SpeculatedStoreValue = nullptr;
3251   StoreInst *SpeculatedStore = nullptr;
3252   EphemeralValueTracker EphTracker;
3253   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3254     // Skip debug info.
3255     if (isa<DbgInfoIntrinsic>(I)) {
3256       SpeculatedDbgIntrinsics.push_back(&I);
3257       continue;
3258     }
3259 
3260     // Skip pseudo probes. The consequence is we lose track of the branch
3261     // probability for ThenBB, which is fine since the optimization here takes
3262     // place regardless of the branch probability.
3263     if (isa<PseudoProbeInst>(I)) {
3264       // The probe should be deleted so that it will not be over-counted when
3265       // the samples collected on the non-conditional path are counted towards
3266       // the conditional path. We leave it for the counts inference algorithm to
3267       // figure out a proper count for an unknown probe.
3268       SpeculatedDbgIntrinsics.push_back(&I);
3269       continue;
3270     }
3271 
3272     // Ignore ephemeral values, they will be dropped by the transform.
3273     if (EphTracker.track(&I))
3274       continue;
3275 
3276     // Only speculatively execute a single instruction (not counting the
3277     // terminator) for now.
3278     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3279                                 isSafeCheapLoadStore(&I, TTI) &&
3280                                 SpeculatedConditionalLoadsStores.size() <
3281                                     HoistLoadsStoresWithCondFaultingThreshold;
3282     // Not count load/store into cost if target supports conditional faulting
3283     // b/c it's cheap to speculate it.
3284     if (IsSafeCheapLoadStore)
3285       SpeculatedConditionalLoadsStores.push_back(&I);
3286     else
3287       ++SpeculatedInstructions;
3288 
3289     if (SpeculatedInstructions > 1)
3290       return false;
3291 
3292     // Don't hoist the instruction if it's unsafe or expensive.
3293     if (!IsSafeCheapLoadStore &&
3294         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3295         !(HoistCondStores && !SpeculatedStoreValue &&
3296           (SpeculatedStoreValue =
3297                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3298       return false;
3299     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3300         computeSpeculationCost(&I, TTI) >
3301             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3302       return false;
3303 
3304     // Store the store speculation candidate.
3305     if (!SpeculatedStore && SpeculatedStoreValue)
3306       SpeculatedStore = cast<StoreInst>(&I);
3307 
3308     // Do not hoist the instruction if any of its operands are defined but not
3309     // used in BB. The transformation will prevent the operand from
3310     // being sunk into the use block.
3311     for (Use &Op : I.operands()) {
3312       Instruction *OpI = dyn_cast<Instruction>(Op);
3313       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3314         continue; // Not a candidate for sinking.
3315 
3316       ++SinkCandidateUseCounts[OpI];
3317     }
3318   }
3319 
3320   // Consider any sink candidates which are only used in ThenBB as costs for
3321   // speculation. Note, while we iterate over a DenseMap here, we are summing
3322   // and so iteration order isn't significant.
3323   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3324     if (Inst->hasNUses(Count)) {
3325       ++SpeculatedInstructions;
3326       if (SpeculatedInstructions > 1)
3327         return false;
3328     }
3329 
3330   // Check that we can insert the selects and that it's not too expensive to do
3331   // so.
3332   bool Convert =
3333       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3334   InstructionCost Cost = 0;
3335   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3336                                             SpeculatedInstructions, Cost, TTI);
3337   if (!Convert || Cost > Budget)
3338     return false;
3339 
3340   // If we get here, we can hoist the instruction and if-convert.
3341   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3342 
3343   // Insert a select of the value of the speculated store.
3344   if (SpeculatedStoreValue) {
3345     IRBuilder<NoFolder> Builder(BI);
3346     Value *OrigV = SpeculatedStore->getValueOperand();
3347     Value *TrueV = SpeculatedStore->getValueOperand();
3348     Value *FalseV = SpeculatedStoreValue;
3349     if (Invert)
3350       std::swap(TrueV, FalseV);
3351     Value *S = Builder.CreateSelect(
3352         BrCond, TrueV, FalseV, "spec.store.select", BI);
3353     SpeculatedStore->setOperand(0, S);
3354     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3355                                          SpeculatedStore->getDebugLoc());
3356     // The value stored is still conditional, but the store itself is now
3357     // unconditonally executed, so we must be sure that any linked dbg.assign
3358     // intrinsics are tracking the new stored value (the result of the
3359     // select). If we don't, and the store were to be removed by another pass
3360     // (e.g. DSE), then we'd eventually end up emitting a location describing
3361     // the conditional value, unconditionally.
3362     //
3363     // === Before this transformation ===
3364     // pred:
3365     //   store %one, %x.dest, !DIAssignID !1
3366     //   dbg.assign %one, "x", ..., !1, ...
3367     //   br %cond if.then
3368     //
3369     // if.then:
3370     //   store %two, %x.dest, !DIAssignID !2
3371     //   dbg.assign %two, "x", ..., !2, ...
3372     //
3373     // === After this transformation ===
3374     // pred:
3375     //   store %one, %x.dest, !DIAssignID !1
3376     //   dbg.assign %one, "x", ..., !1
3377     ///  ...
3378     //   %merge = select %cond, %two, %one
3379     //   store %merge, %x.dest, !DIAssignID !2
3380     //   dbg.assign %merge, "x", ..., !2
3381     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3382       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3383         DbgAssign->replaceVariableLocationOp(OrigV, S);
3384     };
3385     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3386     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3387   }
3388 
3389   // Metadata can be dependent on the condition we are hoisting above.
3390   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3391   // to avoid making it appear as if the condition is a constant, which would
3392   // be misleading while debugging.
3393   // Similarly strip attributes that maybe dependent on condition we are
3394   // hoisting above.
3395   for (auto &I : make_early_inc_range(*ThenBB)) {
3396     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3397       // Don't update the DILocation of dbg.assign intrinsics.
3398       if (!isa<DbgAssignIntrinsic>(&I))
3399         I.setDebugLoc(DebugLoc());
3400     }
3401     I.dropUBImplyingAttrsAndMetadata();
3402 
3403     // Drop ephemeral values.
3404     if (EphTracker.contains(&I)) {
3405       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3406       I.eraseFromParent();
3407     }
3408   }
3409 
3410   // Hoist the instructions.
3411   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3412   // to these instructions, in the same way that dbg.value intrinsics are
3413   // dropped at the end of this block.
3414   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3415     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3416       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3417       // equivalent).
3418       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3419           !DVR || !DVR->isDbgAssign())
3420         It.dropOneDbgRecord(&DR);
3421   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3422              std::prev(ThenBB->end()));
3423 
3424   if (!SpeculatedConditionalLoadsStores.empty())
3425     hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert);
3426 
3427   // Insert selects and rewrite the PHI operands.
3428   IRBuilder<NoFolder> Builder(BI);
3429   for (PHINode &PN : EndBB->phis()) {
3430     unsigned OrigI = PN.getBasicBlockIndex(BB);
3431     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3432     Value *OrigV = PN.getIncomingValue(OrigI);
3433     Value *ThenV = PN.getIncomingValue(ThenI);
3434 
3435     // Skip PHIs which are trivial.
3436     if (OrigV == ThenV)
3437       continue;
3438 
3439     // Create a select whose true value is the speculatively executed value and
3440     // false value is the pre-existing value. Swap them if the branch
3441     // destinations were inverted.
3442     Value *TrueV = ThenV, *FalseV = OrigV;
3443     if (Invert)
3444       std::swap(TrueV, FalseV);
3445     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3446     PN.setIncomingValue(OrigI, V);
3447     PN.setIncomingValue(ThenI, V);
3448   }
3449 
3450   // Remove speculated dbg intrinsics.
3451   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3452   // dbg value for the different flows and inserting it after the select.
3453   for (Instruction *I : SpeculatedDbgIntrinsics) {
3454     // We still want to know that an assignment took place so don't remove
3455     // dbg.assign intrinsics.
3456     if (!isa<DbgAssignIntrinsic>(I))
3457       I->eraseFromParent();
3458   }
3459 
3460   ++NumSpeculations;
3461   return true;
3462 }
3463 
3464 /// Return true if we can thread a branch across this block.
3465 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3466   int Size = 0;
3467   EphemeralValueTracker EphTracker;
3468 
3469   // Walk the loop in reverse so that we can identify ephemeral values properly
3470   // (values only feeding assumes).
3471   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3472     // Can't fold blocks that contain noduplicate or convergent calls.
3473     if (CallInst *CI = dyn_cast<CallInst>(&I))
3474       if (CI->cannotDuplicate() || CI->isConvergent())
3475         return false;
3476 
3477     // Ignore ephemeral values which are deleted during codegen.
3478     // We will delete Phis while threading, so Phis should not be accounted in
3479     // block's size.
3480     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3481       if (Size++ > MaxSmallBlockSize)
3482         return false; // Don't clone large BB's.
3483     }
3484 
3485     // We can only support instructions that do not define values that are
3486     // live outside of the current basic block.
3487     for (User *U : I.users()) {
3488       Instruction *UI = cast<Instruction>(U);
3489       if (UI->getParent() != BB || isa<PHINode>(UI))
3490         return false;
3491     }
3492 
3493     // Looks ok, continue checking.
3494   }
3495 
3496   return true;
3497 }
3498 
3499 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3500                                         BasicBlock *To) {
3501   // Don't look past the block defining the value, we might get the value from
3502   // a previous loop iteration.
3503   auto *I = dyn_cast<Instruction>(V);
3504   if (I && I->getParent() == To)
3505     return nullptr;
3506 
3507   // We know the value if the From block branches on it.
3508   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3509   if (BI && BI->isConditional() && BI->getCondition() == V &&
3510       BI->getSuccessor(0) != BI->getSuccessor(1))
3511     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3512                                      : ConstantInt::getFalse(BI->getContext());
3513 
3514   return nullptr;
3515 }
3516 
3517 /// If we have a conditional branch on something for which we know the constant
3518 /// value in predecessors (e.g. a phi node in the current block), thread edges
3519 /// from the predecessor to their ultimate destination.
3520 static std::optional<bool>
3521 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3522                                             const DataLayout &DL,
3523                                             AssumptionCache *AC) {
3524   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3525   BasicBlock *BB = BI->getParent();
3526   Value *Cond = BI->getCondition();
3527   PHINode *PN = dyn_cast<PHINode>(Cond);
3528   if (PN && PN->getParent() == BB) {
3529     // Degenerate case of a single entry PHI.
3530     if (PN->getNumIncomingValues() == 1) {
3531       FoldSingleEntryPHINodes(PN->getParent());
3532       return true;
3533     }
3534 
3535     for (Use &U : PN->incoming_values())
3536       if (auto *CB = dyn_cast<ConstantInt>(U))
3537         KnownValues[CB].insert(PN->getIncomingBlock(U));
3538   } else {
3539     for (BasicBlock *Pred : predecessors(BB)) {
3540       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3541         KnownValues[CB].insert(Pred);
3542     }
3543   }
3544 
3545   if (KnownValues.empty())
3546     return false;
3547 
3548   // Now we know that this block has multiple preds and two succs.
3549   // Check that the block is small enough and values defined in the block are
3550   // not used outside of it.
3551   if (!blockIsSimpleEnoughToThreadThrough(BB))
3552     return false;
3553 
3554   for (const auto &Pair : KnownValues) {
3555     // Okay, we now know that all edges from PredBB should be revectored to
3556     // branch to RealDest.
3557     ConstantInt *CB = Pair.first;
3558     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3559     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3560 
3561     if (RealDest == BB)
3562       continue; // Skip self loops.
3563 
3564     // Skip if the predecessor's terminator is an indirect branch.
3565     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3566           return isa<IndirectBrInst>(PredBB->getTerminator());
3567         }))
3568       continue;
3569 
3570     LLVM_DEBUG({
3571       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3572              << " has value " << *Pair.first << " in predecessors:\n";
3573       for (const BasicBlock *PredBB : Pair.second)
3574         dbgs() << "  " << PredBB->getName() << "\n";
3575       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3576     });
3577 
3578     // Split the predecessors we are threading into a new edge block. We'll
3579     // clone the instructions into this block, and then redirect it to RealDest.
3580     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3581 
3582     // TODO: These just exist to reduce test diff, we can drop them if we like.
3583     EdgeBB->setName(RealDest->getName() + ".critedge");
3584     EdgeBB->moveBefore(RealDest);
3585 
3586     // Update PHI nodes.
3587     addPredecessorToBlock(RealDest, EdgeBB, BB);
3588 
3589     // BB may have instructions that are being threaded over.  Clone these
3590     // instructions into EdgeBB.  We know that there will be no uses of the
3591     // cloned instructions outside of EdgeBB.
3592     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3593     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3594     TranslateMap[Cond] = CB;
3595 
3596     // RemoveDIs: track instructions that we optimise away while folding, so
3597     // that we can copy DbgVariableRecords from them later.
3598     BasicBlock::iterator SrcDbgCursor = BB->begin();
3599     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3600       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3601         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3602         continue;
3603       }
3604       // Clone the instruction.
3605       Instruction *N = BBI->clone();
3606       // Insert the new instruction into its new home.
3607       N->insertInto(EdgeBB, InsertPt);
3608 
3609       if (BBI->hasName())
3610         N->setName(BBI->getName() + ".c");
3611 
3612       // Update operands due to translation.
3613       for (Use &Op : N->operands()) {
3614         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3615         if (PI != TranslateMap.end())
3616           Op = PI->second;
3617       }
3618 
3619       // Check for trivial simplification.
3620       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3621         if (!BBI->use_empty())
3622           TranslateMap[&*BBI] = V;
3623         if (!N->mayHaveSideEffects()) {
3624           N->eraseFromParent(); // Instruction folded away, don't need actual
3625                                 // inst
3626           N = nullptr;
3627         }
3628       } else {
3629         if (!BBI->use_empty())
3630           TranslateMap[&*BBI] = N;
3631       }
3632       if (N) {
3633         // Copy all debug-info attached to instructions from the last we
3634         // successfully clone, up to this instruction (they might have been
3635         // folded away).
3636         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3637           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3638         SrcDbgCursor = std::next(BBI);
3639         // Clone debug-info on this instruction too.
3640         N->cloneDebugInfoFrom(&*BBI);
3641 
3642         // Register the new instruction with the assumption cache if necessary.
3643         if (auto *Assume = dyn_cast<AssumeInst>(N))
3644           if (AC)
3645             AC->registerAssumption(Assume);
3646       }
3647     }
3648 
3649     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3650       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3651     InsertPt->cloneDebugInfoFrom(BI);
3652 
3653     BB->removePredecessor(EdgeBB);
3654     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3655     EdgeBI->setSuccessor(0, RealDest);
3656     EdgeBI->setDebugLoc(BI->getDebugLoc());
3657 
3658     if (DTU) {
3659       SmallVector<DominatorTree::UpdateType, 2> Updates;
3660       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3661       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3662       DTU->applyUpdates(Updates);
3663     }
3664 
3665     // For simplicity, we created a separate basic block for the edge. Merge
3666     // it back into the predecessor if possible. This not only avoids
3667     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3668     // bypass the check for trivial cycles above.
3669     MergeBlockIntoPredecessor(EdgeBB, DTU);
3670 
3671     // Signal repeat, simplifying any other constants.
3672     return std::nullopt;
3673   }
3674 
3675   return false;
3676 }
3677 
3678 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3679                                                     DomTreeUpdater *DTU,
3680                                                     const DataLayout &DL,
3681                                                     AssumptionCache *AC) {
3682   std::optional<bool> Result;
3683   bool EverChanged = false;
3684   do {
3685     // Note that None means "we changed things, but recurse further."
3686     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3687     EverChanged |= Result == std::nullopt || *Result;
3688   } while (Result == std::nullopt);
3689   return EverChanged;
3690 }
3691 
3692 /// Given a BB that starts with the specified two-entry PHI node,
3693 /// see if we can eliminate it.
3694 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3695                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3696                                 const DataLayout &DL,
3697                                 bool SpeculateUnpredictables) {
3698   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3699   // statement", which has a very simple dominance structure.  Basically, we
3700   // are trying to find the condition that is being branched on, which
3701   // subsequently causes this merge to happen.  We really want control
3702   // dependence information for this check, but simplifycfg can't keep it up
3703   // to date, and this catches most of the cases we care about anyway.
3704   BasicBlock *BB = PN->getParent();
3705 
3706   BasicBlock *IfTrue, *IfFalse;
3707   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3708   if (!DomBI)
3709     return false;
3710   Value *IfCond = DomBI->getCondition();
3711   // Don't bother if the branch will be constant folded trivially.
3712   if (isa<ConstantInt>(IfCond))
3713     return false;
3714 
3715   BasicBlock *DomBlock = DomBI->getParent();
3716   SmallVector<BasicBlock *, 2> IfBlocks;
3717   llvm::copy_if(
3718       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3719         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3720       });
3721   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3722          "Will have either one or two blocks to speculate.");
3723 
3724   // If the branch is non-unpredictable, see if we either predictably jump to
3725   // the merge bb (if we have only a single 'then' block), or if we predictably
3726   // jump to one specific 'then' block (if we have two of them).
3727   // It isn't beneficial to speculatively execute the code
3728   // from the block that we know is predictably not entered.
3729   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3730   if (!IsUnpredictable) {
3731     uint64_t TWeight, FWeight;
3732     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3733         (TWeight + FWeight) != 0) {
3734       BranchProbability BITrueProb =
3735           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3736       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3737       BranchProbability BIFalseProb = BITrueProb.getCompl();
3738       if (IfBlocks.size() == 1) {
3739         BranchProbability BIBBProb =
3740             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3741         if (BIBBProb >= Likely)
3742           return false;
3743       } else {
3744         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3745           return false;
3746       }
3747     }
3748   }
3749 
3750   // Don't try to fold an unreachable block. For example, the phi node itself
3751   // can't be the candidate if-condition for a select that we want to form.
3752   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3753     if (IfCondPhiInst->getParent() == BB)
3754       return false;
3755 
3756   // Okay, we found that we can merge this two-entry phi node into a select.
3757   // Doing so would require us to fold *all* two entry phi nodes in this block.
3758   // At some point this becomes non-profitable (particularly if the target
3759   // doesn't support cmov's).  Only do this transformation if there are two or
3760   // fewer PHI nodes in this block.
3761   unsigned NumPhis = 0;
3762   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3763     if (NumPhis > 2)
3764       return false;
3765 
3766   // Loop over the PHI's seeing if we can promote them all to select
3767   // instructions.  While we are at it, keep track of the instructions
3768   // that need to be moved to the dominating block.
3769   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3770   InstructionCost Cost = 0;
3771   InstructionCost Budget =
3772       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3773   if (SpeculateUnpredictables && IsUnpredictable)
3774     Budget += TTI.getBranchMispredictPenalty();
3775 
3776   bool Changed = false;
3777   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3778     PHINode *PN = cast<PHINode>(II++);
3779     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3780       PN->replaceAllUsesWith(V);
3781       PN->eraseFromParent();
3782       Changed = true;
3783       continue;
3784     }
3785 
3786     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3787                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3788         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3789                              AggressiveInsts, Cost, Budget, TTI, AC))
3790       return Changed;
3791   }
3792 
3793   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3794   // we ran out of PHIs then we simplified them all.
3795   PN = dyn_cast<PHINode>(BB->begin());
3796   if (!PN)
3797     return true;
3798 
3799   // Return true if at least one of these is a 'not', and another is either
3800   // a 'not' too, or a constant.
3801   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3802     if (!match(V0, m_Not(m_Value())))
3803       std::swap(V0, V1);
3804     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3805     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3806   };
3807 
3808   // Don't fold i1 branches on PHIs which contain binary operators or
3809   // (possibly inverted) select form of or/ands,  unless one of
3810   // the incoming values is an 'not' and another one is freely invertible.
3811   // These can often be turned into switches and other things.
3812   auto IsBinOpOrAnd = [](Value *V) {
3813     return match(
3814         V, m_CombineOr(
3815                m_BinOp(),
3816                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3817                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3818   };
3819   if (PN->getType()->isIntegerTy(1) &&
3820       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3821        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3822       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3823                                  PN->getIncomingValue(1)))
3824     return Changed;
3825 
3826   // If all PHI nodes are promotable, check to make sure that all instructions
3827   // in the predecessor blocks can be promoted as well. If not, we won't be able
3828   // to get rid of the control flow, so it's not worth promoting to select
3829   // instructions.
3830   for (BasicBlock *IfBlock : IfBlocks)
3831     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3832       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3833         // This is not an aggressive instruction that we can promote.
3834         // Because of this, we won't be able to get rid of the control flow, so
3835         // the xform is not worth it.
3836         return Changed;
3837       }
3838 
3839   // If either of the blocks has it's address taken, we can't do this fold.
3840   if (any_of(IfBlocks,
3841              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3842     return Changed;
3843 
3844   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3845              if (IsUnpredictable) dbgs() << " (unpredictable)";
3846              dbgs() << "  T: " << IfTrue->getName()
3847                     << "  F: " << IfFalse->getName() << "\n");
3848 
3849   // If we can still promote the PHI nodes after this gauntlet of tests,
3850   // do all of the PHI's now.
3851 
3852   // Move all 'aggressive' instructions, which are defined in the
3853   // conditional parts of the if's up to the dominating block.
3854   for (BasicBlock *IfBlock : IfBlocks)
3855       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3856 
3857   IRBuilder<NoFolder> Builder(DomBI);
3858   // Propagate fast-math-flags from phi nodes to replacement selects.
3859   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3860   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3861     if (isa<FPMathOperator>(PN))
3862       Builder.setFastMathFlags(PN->getFastMathFlags());
3863 
3864     // Change the PHI node into a select instruction.
3865     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3866     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3867 
3868     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3869     PN->replaceAllUsesWith(Sel);
3870     Sel->takeName(PN);
3871     PN->eraseFromParent();
3872   }
3873 
3874   // At this point, all IfBlocks are empty, so our if statement
3875   // has been flattened.  Change DomBlock to jump directly to our new block to
3876   // avoid other simplifycfg's kicking in on the diamond.
3877   Builder.CreateBr(BB);
3878 
3879   SmallVector<DominatorTree::UpdateType, 3> Updates;
3880   if (DTU) {
3881     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3882     for (auto *Successor : successors(DomBlock))
3883       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3884   }
3885 
3886   DomBI->eraseFromParent();
3887   if (DTU)
3888     DTU->applyUpdates(Updates);
3889 
3890   return true;
3891 }
3892 
3893 static Value *createLogicalOp(IRBuilderBase &Builder,
3894                               Instruction::BinaryOps Opc, Value *LHS,
3895                               Value *RHS, const Twine &Name = "") {
3896   // Try to relax logical op to binary op.
3897   if (impliesPoison(RHS, LHS))
3898     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3899   if (Opc == Instruction::And)
3900     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3901   if (Opc == Instruction::Or)
3902     return Builder.CreateLogicalOr(LHS, RHS, Name);
3903   llvm_unreachable("Invalid logical opcode");
3904 }
3905 
3906 /// Return true if either PBI or BI has branch weight available, and store
3907 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3908 /// not have branch weight, use 1:1 as its weight.
3909 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3910                                    uint64_t &PredTrueWeight,
3911                                    uint64_t &PredFalseWeight,
3912                                    uint64_t &SuccTrueWeight,
3913                                    uint64_t &SuccFalseWeight) {
3914   bool PredHasWeights =
3915       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3916   bool SuccHasWeights =
3917       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3918   if (PredHasWeights || SuccHasWeights) {
3919     if (!PredHasWeights)
3920       PredTrueWeight = PredFalseWeight = 1;
3921     if (!SuccHasWeights)
3922       SuccTrueWeight = SuccFalseWeight = 1;
3923     return true;
3924   } else {
3925     return false;
3926   }
3927 }
3928 
3929 /// Determine if the two branches share a common destination and deduce a glue
3930 /// that joins the branches' conditions to arrive at the common destination if
3931 /// that would be profitable.
3932 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3933 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3934                                           const TargetTransformInfo *TTI) {
3935   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3936          "Both blocks must end with a conditional branches.");
3937   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3938          "PredBB must be a predecessor of BB.");
3939 
3940   // We have the potential to fold the conditions together, but if the
3941   // predecessor branch is predictable, we may not want to merge them.
3942   uint64_t PTWeight, PFWeight;
3943   BranchProbability PBITrueProb, Likely;
3944   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3945       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3946       (PTWeight + PFWeight) != 0) {
3947     PBITrueProb =
3948         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3949     Likely = TTI->getPredictableBranchThreshold();
3950   }
3951 
3952   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3953     // Speculate the 2nd condition unless the 1st is probably true.
3954     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3955       return {{BI->getSuccessor(0), Instruction::Or, false}};
3956   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3957     // Speculate the 2nd condition unless the 1st is probably false.
3958     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3959       return {{BI->getSuccessor(1), Instruction::And, false}};
3960   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3961     // Speculate the 2nd condition unless the 1st is probably true.
3962     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3963       return {{BI->getSuccessor(1), Instruction::And, true}};
3964   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3965     // Speculate the 2nd condition unless the 1st is probably false.
3966     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3967       return {{BI->getSuccessor(0), Instruction::Or, true}};
3968   }
3969   return std::nullopt;
3970 }
3971 
3972 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3973                                              DomTreeUpdater *DTU,
3974                                              MemorySSAUpdater *MSSAU,
3975                                              const TargetTransformInfo *TTI) {
3976   BasicBlock *BB = BI->getParent();
3977   BasicBlock *PredBlock = PBI->getParent();
3978 
3979   // Determine if the two branches share a common destination.
3980   BasicBlock *CommonSucc;
3981   Instruction::BinaryOps Opc;
3982   bool InvertPredCond;
3983   std::tie(CommonSucc, Opc, InvertPredCond) =
3984       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3985 
3986   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3987 
3988   IRBuilder<> Builder(PBI);
3989   // The builder is used to create instructions to eliminate the branch in BB.
3990   // If BB's terminator has !annotation metadata, add it to the new
3991   // instructions.
3992   Builder.CollectMetadataToCopy(BB->getTerminator(),
3993                                 {LLVMContext::MD_annotation});
3994 
3995   // If we need to invert the condition in the pred block to match, do so now.
3996   if (InvertPredCond) {
3997     InvertBranch(PBI, Builder);
3998   }
3999 
4000   BasicBlock *UniqueSucc =
4001       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
4002 
4003   // Before cloning instructions, notify the successor basic block that it
4004   // is about to have a new predecessor. This will update PHI nodes,
4005   // which will allow us to update live-out uses of bonus instructions.
4006   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
4007 
4008   // Try to update branch weights.
4009   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4010   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4011                              SuccTrueWeight, SuccFalseWeight)) {
4012     SmallVector<uint64_t, 8> NewWeights;
4013 
4014     if (PBI->getSuccessor(0) == BB) {
4015       // PBI: br i1 %x, BB, FalseDest
4016       // BI:  br i1 %y, UniqueSucc, FalseDest
4017       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
4018       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
4019       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
4020       //               TrueWeight for PBI * FalseWeight for BI.
4021       // We assume that total weights of a BranchInst can fit into 32 bits.
4022       // Therefore, we will not have overflow using 64-bit arithmetic.
4023       NewWeights.push_back(PredFalseWeight *
4024                                (SuccFalseWeight + SuccTrueWeight) +
4025                            PredTrueWeight * SuccFalseWeight);
4026     } else {
4027       // PBI: br i1 %x, TrueDest, BB
4028       // BI:  br i1 %y, TrueDest, UniqueSucc
4029       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
4030       //              FalseWeight for PBI * TrueWeight for BI.
4031       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
4032                            PredFalseWeight * SuccTrueWeight);
4033       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
4034       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
4035     }
4036 
4037     // Halve the weights if any of them cannot fit in an uint32_t
4038     fitWeights(NewWeights);
4039 
4040     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
4041     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
4042 
4043     // TODO: If BB is reachable from all paths through PredBlock, then we
4044     // could replace PBI's branch probabilities with BI's.
4045   } else
4046     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4047 
4048   // Now, update the CFG.
4049   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4050 
4051   if (DTU)
4052     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4053                        {DominatorTree::Delete, PredBlock, BB}});
4054 
4055   // If BI was a loop latch, it may have had associated loop metadata.
4056   // We need to copy it to the new latch, that is, PBI.
4057   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4058     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4059 
4060   ValueToValueMapTy VMap; // maps original values to cloned values
4061   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4062 
4063   Module *M = BB->getModule();
4064 
4065   if (PredBlock->IsNewDbgInfoFormat) {
4066     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4067     for (DbgVariableRecord &DVR :
4068          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4069       RemapDbgRecord(M, &DVR, VMap,
4070                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4071     }
4072   }
4073 
4074   // Now that the Cond was cloned into the predecessor basic block,
4075   // or/and the two conditions together.
4076   Value *BICond = VMap[BI->getCondition()];
4077   PBI->setCondition(
4078       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4079 
4080   ++NumFoldBranchToCommonDest;
4081   return true;
4082 }
4083 
4084 /// Return if an instruction's type or any of its operands' types are a vector
4085 /// type.
4086 static bool isVectorOp(Instruction &I) {
4087   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4088            return U->getType()->isVectorTy();
4089          });
4090 }
4091 
4092 /// If this basic block is simple enough, and if a predecessor branches to us
4093 /// and one of our successors, fold the block into the predecessor and use
4094 /// logical operations to pick the right destination.
4095 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4096                                   MemorySSAUpdater *MSSAU,
4097                                   const TargetTransformInfo *TTI,
4098                                   unsigned BonusInstThreshold) {
4099   // If this block ends with an unconditional branch,
4100   // let speculativelyExecuteBB() deal with it.
4101   if (!BI->isConditional())
4102     return false;
4103 
4104   BasicBlock *BB = BI->getParent();
4105   TargetTransformInfo::TargetCostKind CostKind =
4106     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4107                                   : TargetTransformInfo::TCK_SizeAndLatency;
4108 
4109   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4110 
4111   if (!Cond ||
4112       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4113        !isa<SelectInst>(Cond)) ||
4114       Cond->getParent() != BB || !Cond->hasOneUse())
4115     return false;
4116 
4117   // Finally, don't infinitely unroll conditional loops.
4118   if (is_contained(successors(BB), BB))
4119     return false;
4120 
4121   // With which predecessors will we want to deal with?
4122   SmallVector<BasicBlock *, 8> Preds;
4123   for (BasicBlock *PredBlock : predecessors(BB)) {
4124     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4125 
4126     // Check that we have two conditional branches.  If there is a PHI node in
4127     // the common successor, verify that the same value flows in from both
4128     // blocks.
4129     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4130       continue;
4131 
4132     // Determine if the two branches share a common destination.
4133     BasicBlock *CommonSucc;
4134     Instruction::BinaryOps Opc;
4135     bool InvertPredCond;
4136     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4137       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4138     else
4139       continue;
4140 
4141     // Check the cost of inserting the necessary logic before performing the
4142     // transformation.
4143     if (TTI) {
4144       Type *Ty = BI->getCondition()->getType();
4145       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4146       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4147                              !isa<CmpInst>(PBI->getCondition())))
4148         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4149 
4150       if (Cost > BranchFoldThreshold)
4151         continue;
4152     }
4153 
4154     // Ok, we do want to deal with this predecessor. Record it.
4155     Preds.emplace_back(PredBlock);
4156   }
4157 
4158   // If there aren't any predecessors into which we can fold,
4159   // don't bother checking the cost.
4160   if (Preds.empty())
4161     return false;
4162 
4163   // Only allow this transformation if computing the condition doesn't involve
4164   // too many instructions and these involved instructions can be executed
4165   // unconditionally. We denote all involved instructions except the condition
4166   // as "bonus instructions", and only allow this transformation when the
4167   // number of the bonus instructions we'll need to create when cloning into
4168   // each predecessor does not exceed a certain threshold.
4169   unsigned NumBonusInsts = 0;
4170   bool SawVectorOp = false;
4171   const unsigned PredCount = Preds.size();
4172   for (Instruction &I : *BB) {
4173     // Don't check the branch condition comparison itself.
4174     if (&I == Cond)
4175       continue;
4176     // Ignore dbg intrinsics, and the terminator.
4177     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4178       continue;
4179     // I must be safe to execute unconditionally.
4180     if (!isSafeToSpeculativelyExecute(&I))
4181       return false;
4182     SawVectorOp |= isVectorOp(I);
4183 
4184     // Account for the cost of duplicating this instruction into each
4185     // predecessor. Ignore free instructions.
4186     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4187                     TargetTransformInfo::TCC_Free) {
4188       NumBonusInsts += PredCount;
4189 
4190       // Early exits once we reach the limit.
4191       if (NumBonusInsts >
4192           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4193         return false;
4194     }
4195 
4196     auto IsBCSSAUse = [BB, &I](Use &U) {
4197       auto *UI = cast<Instruction>(U.getUser());
4198       if (auto *PN = dyn_cast<PHINode>(UI))
4199         return PN->getIncomingBlock(U) == BB;
4200       return UI->getParent() == BB && I.comesBefore(UI);
4201     };
4202 
4203     // Does this instruction require rewriting of uses?
4204     if (!all_of(I.uses(), IsBCSSAUse))
4205       return false;
4206   }
4207   if (NumBonusInsts >
4208       BonusInstThreshold *
4209           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4210     return false;
4211 
4212   // Ok, we have the budget. Perform the transformation.
4213   for (BasicBlock *PredBlock : Preds) {
4214     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4215     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4216   }
4217   return false;
4218 }
4219 
4220 // If there is only one store in BB1 and BB2, return it, otherwise return
4221 // nullptr.
4222 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4223   StoreInst *S = nullptr;
4224   for (auto *BB : {BB1, BB2}) {
4225     if (!BB)
4226       continue;
4227     for (auto &I : *BB)
4228       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4229         if (S)
4230           // Multiple stores seen.
4231           return nullptr;
4232         else
4233           S = SI;
4234       }
4235   }
4236   return S;
4237 }
4238 
4239 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4240                                               Value *AlternativeV = nullptr) {
4241   // PHI is going to be a PHI node that allows the value V that is defined in
4242   // BB to be referenced in BB's only successor.
4243   //
4244   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4245   // doesn't matter to us what the other operand is (it'll never get used). We
4246   // could just create a new PHI with an undef incoming value, but that could
4247   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4248   // other PHI. So here we directly look for some PHI in BB's successor with V
4249   // as an incoming operand. If we find one, we use it, else we create a new
4250   // one.
4251   //
4252   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4253   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4254   // where OtherBB is the single other predecessor of BB's only successor.
4255   PHINode *PHI = nullptr;
4256   BasicBlock *Succ = BB->getSingleSuccessor();
4257 
4258   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4259     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4260       PHI = cast<PHINode>(I);
4261       if (!AlternativeV)
4262         break;
4263 
4264       assert(Succ->hasNPredecessors(2));
4265       auto PredI = pred_begin(Succ);
4266       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4267       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4268         break;
4269       PHI = nullptr;
4270     }
4271   if (PHI)
4272     return PHI;
4273 
4274   // If V is not an instruction defined in BB, just return it.
4275   if (!AlternativeV &&
4276       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4277     return V;
4278 
4279   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4280   PHI->insertBefore(Succ->begin());
4281   PHI->addIncoming(V, BB);
4282   for (BasicBlock *PredBB : predecessors(Succ))
4283     if (PredBB != BB)
4284       PHI->addIncoming(
4285           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4286   return PHI;
4287 }
4288 
4289 static bool mergeConditionalStoreToAddress(
4290     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4291     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4292     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4293   // For every pointer, there must be exactly two stores, one coming from
4294   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4295   // store (to any address) in PTB,PFB or QTB,QFB.
4296   // FIXME: We could relax this restriction with a bit more work and performance
4297   // testing.
4298   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4299   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4300   if (!PStore || !QStore)
4301     return false;
4302 
4303   // Now check the stores are compatible.
4304   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4305       PStore->getValueOperand()->getType() !=
4306           QStore->getValueOperand()->getType())
4307     return false;
4308 
4309   // Check that sinking the store won't cause program behavior changes. Sinking
4310   // the store out of the Q blocks won't change any behavior as we're sinking
4311   // from a block to its unconditional successor. But we're moving a store from
4312   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4313   // So we need to check that there are no aliasing loads or stores in
4314   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4315   // operations between PStore and the end of its parent block.
4316   //
4317   // The ideal way to do this is to query AliasAnalysis, but we don't
4318   // preserve AA currently so that is dangerous. Be super safe and just
4319   // check there are no other memory operations at all.
4320   for (auto &I : *QFB->getSinglePredecessor())
4321     if (I.mayReadOrWriteMemory())
4322       return false;
4323   for (auto &I : *QFB)
4324     if (&I != QStore && I.mayReadOrWriteMemory())
4325       return false;
4326   if (QTB)
4327     for (auto &I : *QTB)
4328       if (&I != QStore && I.mayReadOrWriteMemory())
4329         return false;
4330   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4331        I != E; ++I)
4332     if (&*I != PStore && I->mayReadOrWriteMemory())
4333       return false;
4334 
4335   // If we're not in aggressive mode, we only optimize if we have some
4336   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4337   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4338     if (!BB)
4339       return true;
4340     // Heuristic: if the block can be if-converted/phi-folded and the
4341     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4342     // thread this store.
4343     InstructionCost Cost = 0;
4344     InstructionCost Budget =
4345         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4346     for (auto &I : BB->instructionsWithoutDebug(false)) {
4347       // Consider terminator instruction to be free.
4348       if (I.isTerminator())
4349         continue;
4350       // If this is one the stores that we want to speculate out of this BB,
4351       // then don't count it's cost, consider it to be free.
4352       if (auto *S = dyn_cast<StoreInst>(&I))
4353         if (llvm::find(FreeStores, S))
4354           continue;
4355       // Else, we have a white-list of instructions that we are ak speculating.
4356       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4357         return false; // Not in white-list - not worthwhile folding.
4358       // And finally, if this is a non-free instruction that we are okay
4359       // speculating, ensure that we consider the speculation budget.
4360       Cost +=
4361           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4362       if (Cost > Budget)
4363         return false; // Eagerly refuse to fold as soon as we're out of budget.
4364     }
4365     assert(Cost <= Budget &&
4366            "When we run out of budget we will eagerly return from within the "
4367            "per-instruction loop.");
4368     return true;
4369   };
4370 
4371   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4372   if (!MergeCondStoresAggressively &&
4373       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4374        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4375     return false;
4376 
4377   // If PostBB has more than two predecessors, we need to split it so we can
4378   // sink the store.
4379   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4380     // We know that QFB's only successor is PostBB. And QFB has a single
4381     // predecessor. If QTB exists, then its only successor is also PostBB.
4382     // If QTB does not exist, then QFB's only predecessor has a conditional
4383     // branch to QFB and PostBB.
4384     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4385     BasicBlock *NewBB =
4386         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4387     if (!NewBB)
4388       return false;
4389     PostBB = NewBB;
4390   }
4391 
4392   // OK, we're going to sink the stores to PostBB. The store has to be
4393   // conditional though, so first create the predicate.
4394   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4395                      ->getCondition();
4396   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4397                      ->getCondition();
4398 
4399   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4400                                                 PStore->getParent());
4401   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4402                                                 QStore->getParent(), PPHI);
4403 
4404   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4405   IRBuilder<> QB(PostBB, PostBBFirst);
4406   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4407 
4408   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4409   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4410 
4411   if (InvertPCond)
4412     PPred = QB.CreateNot(PPred);
4413   if (InvertQCond)
4414     QPred = QB.CreateNot(QPred);
4415   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4416 
4417   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4418   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4419                                       /*Unreachable=*/false,
4420                                       /*BranchWeights=*/nullptr, DTU);
4421 
4422   QB.SetInsertPoint(T);
4423   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4424   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4425   // Choose the minimum alignment. If we could prove both stores execute, we
4426   // could use biggest one.  In this case, though, we only know that one of the
4427   // stores executes.  And we don't know it's safe to take the alignment from a
4428   // store that doesn't execute.
4429   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4430 
4431   QStore->eraseFromParent();
4432   PStore->eraseFromParent();
4433 
4434   return true;
4435 }
4436 
4437 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4438                                    DomTreeUpdater *DTU, const DataLayout &DL,
4439                                    const TargetTransformInfo &TTI) {
4440   // The intention here is to find diamonds or triangles (see below) where each
4441   // conditional block contains a store to the same address. Both of these
4442   // stores are conditional, so they can't be unconditionally sunk. But it may
4443   // be profitable to speculatively sink the stores into one merged store at the
4444   // end, and predicate the merged store on the union of the two conditions of
4445   // PBI and QBI.
4446   //
4447   // This can reduce the number of stores executed if both of the conditions are
4448   // true, and can allow the blocks to become small enough to be if-converted.
4449   // This optimization will also chain, so that ladders of test-and-set
4450   // sequences can be if-converted away.
4451   //
4452   // We only deal with simple diamonds or triangles:
4453   //
4454   //     PBI       or      PBI        or a combination of the two
4455   //    /   \               | \
4456   //   PTB  PFB             |  PFB
4457   //    \   /               | /
4458   //     QBI                QBI
4459   //    /  \                | \
4460   //   QTB  QFB             |  QFB
4461   //    \  /                | /
4462   //    PostBB            PostBB
4463   //
4464   // We model triangles as a type of diamond with a nullptr "true" block.
4465   // Triangles are canonicalized so that the fallthrough edge is represented by
4466   // a true condition, as in the diagram above.
4467   BasicBlock *PTB = PBI->getSuccessor(0);
4468   BasicBlock *PFB = PBI->getSuccessor(1);
4469   BasicBlock *QTB = QBI->getSuccessor(0);
4470   BasicBlock *QFB = QBI->getSuccessor(1);
4471   BasicBlock *PostBB = QFB->getSingleSuccessor();
4472 
4473   // Make sure we have a good guess for PostBB. If QTB's only successor is
4474   // QFB, then QFB is a better PostBB.
4475   if (QTB->getSingleSuccessor() == QFB)
4476     PostBB = QFB;
4477 
4478   // If we couldn't find a good PostBB, stop.
4479   if (!PostBB)
4480     return false;
4481 
4482   bool InvertPCond = false, InvertQCond = false;
4483   // Canonicalize fallthroughs to the true branches.
4484   if (PFB == QBI->getParent()) {
4485     std::swap(PFB, PTB);
4486     InvertPCond = true;
4487   }
4488   if (QFB == PostBB) {
4489     std::swap(QFB, QTB);
4490     InvertQCond = true;
4491   }
4492 
4493   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4494   // and QFB may not. Model fallthroughs as a nullptr block.
4495   if (PTB == QBI->getParent())
4496     PTB = nullptr;
4497   if (QTB == PostBB)
4498     QTB = nullptr;
4499 
4500   // Legality bailouts. We must have at least the non-fallthrough blocks and
4501   // the post-dominating block, and the non-fallthroughs must only have one
4502   // predecessor.
4503   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4504     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4505   };
4506   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4507       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4508     return false;
4509   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4510       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4511     return false;
4512   if (!QBI->getParent()->hasNUses(2))
4513     return false;
4514 
4515   // OK, this is a sequence of two diamonds or triangles.
4516   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4517   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4518   for (auto *BB : {PTB, PFB}) {
4519     if (!BB)
4520       continue;
4521     for (auto &I : *BB)
4522       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4523         PStoreAddresses.insert(SI->getPointerOperand());
4524   }
4525   for (auto *BB : {QTB, QFB}) {
4526     if (!BB)
4527       continue;
4528     for (auto &I : *BB)
4529       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4530         QStoreAddresses.insert(SI->getPointerOperand());
4531   }
4532 
4533   set_intersect(PStoreAddresses, QStoreAddresses);
4534   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4535   // clear what it contains.
4536   auto &CommonAddresses = PStoreAddresses;
4537 
4538   bool Changed = false;
4539   for (auto *Address : CommonAddresses)
4540     Changed |=
4541         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4542                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4543   return Changed;
4544 }
4545 
4546 /// If the previous block ended with a widenable branch, determine if reusing
4547 /// the target block is profitable and legal.  This will have the effect of
4548 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4549 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4550                                            DomTreeUpdater *DTU) {
4551   // TODO: This can be generalized in two important ways:
4552   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4553   //    values from the PBI edge.
4554   // 2) We can sink side effecting instructions into BI's fallthrough
4555   //    successor provided they doesn't contribute to computation of
4556   //    BI's condition.
4557   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4558   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4559   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4560       !BI->getParent()->getSinglePredecessor())
4561     return false;
4562   if (!IfFalseBB->phis().empty())
4563     return false; // TODO
4564   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4565   // may undo the transform done here.
4566   // TODO: There might be a more fine-grained solution to this.
4567   if (!llvm::succ_empty(IfFalseBB))
4568     return false;
4569   // Use lambda to lazily compute expensive condition after cheap ones.
4570   auto NoSideEffects = [](BasicBlock &BB) {
4571     return llvm::none_of(BB, [](const Instruction &I) {
4572         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4573       });
4574   };
4575   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4576       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4577       NoSideEffects(*BI->getParent())) {
4578     auto *OldSuccessor = BI->getSuccessor(1);
4579     OldSuccessor->removePredecessor(BI->getParent());
4580     BI->setSuccessor(1, IfFalseBB);
4581     if (DTU)
4582       DTU->applyUpdates(
4583           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4584            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4585     return true;
4586   }
4587   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4588       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4589       NoSideEffects(*BI->getParent())) {
4590     auto *OldSuccessor = BI->getSuccessor(0);
4591     OldSuccessor->removePredecessor(BI->getParent());
4592     BI->setSuccessor(0, IfFalseBB);
4593     if (DTU)
4594       DTU->applyUpdates(
4595           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4596            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4597     return true;
4598   }
4599   return false;
4600 }
4601 
4602 /// If we have a conditional branch as a predecessor of another block,
4603 /// this function tries to simplify it.  We know
4604 /// that PBI and BI are both conditional branches, and BI is in one of the
4605 /// successor blocks of PBI - PBI branches to BI.
4606 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4607                                            DomTreeUpdater *DTU,
4608                                            const DataLayout &DL,
4609                                            const TargetTransformInfo &TTI) {
4610   assert(PBI->isConditional() && BI->isConditional());
4611   BasicBlock *BB = BI->getParent();
4612 
4613   // If this block ends with a branch instruction, and if there is a
4614   // predecessor that ends on a branch of the same condition, make
4615   // this conditional branch redundant.
4616   if (PBI->getCondition() == BI->getCondition() &&
4617       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4618     // Okay, the outcome of this conditional branch is statically
4619     // knowable.  If this block had a single pred, handle specially, otherwise
4620     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4621     if (BB->getSinglePredecessor()) {
4622       // Turn this into a branch on constant.
4623       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4624       BI->setCondition(
4625           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4626       return true; // Nuke the branch on constant.
4627     }
4628   }
4629 
4630   // If the previous block ended with a widenable branch, determine if reusing
4631   // the target block is profitable and legal.  This will have the effect of
4632   // "widening" PBI, but doesn't require us to reason about hosting safety.
4633   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4634     return true;
4635 
4636   // If both branches are conditional and both contain stores to the same
4637   // address, remove the stores from the conditionals and create a conditional
4638   // merged store at the end.
4639   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4640     return true;
4641 
4642   // If this is a conditional branch in an empty block, and if any
4643   // predecessors are a conditional branch to one of our destinations,
4644   // fold the conditions into logical ops and one cond br.
4645 
4646   // Ignore dbg intrinsics.
4647   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4648     return false;
4649 
4650   int PBIOp, BIOp;
4651   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4652     PBIOp = 0;
4653     BIOp = 0;
4654   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4655     PBIOp = 0;
4656     BIOp = 1;
4657   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4658     PBIOp = 1;
4659     BIOp = 0;
4660   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4661     PBIOp = 1;
4662     BIOp = 1;
4663   } else {
4664     return false;
4665   }
4666 
4667   // Check to make sure that the other destination of this branch
4668   // isn't BB itself.  If so, this is an infinite loop that will
4669   // keep getting unwound.
4670   if (PBI->getSuccessor(PBIOp) == BB)
4671     return false;
4672 
4673   // If predecessor's branch probability to BB is too low don't merge branches.
4674   SmallVector<uint32_t, 2> PredWeights;
4675   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4676       extractBranchWeights(*PBI, PredWeights) &&
4677       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4678 
4679     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4680         PredWeights[PBIOp],
4681         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4682 
4683     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4684     if (CommonDestProb >= Likely)
4685       return false;
4686   }
4687 
4688   // Do not perform this transformation if it would require
4689   // insertion of a large number of select instructions. For targets
4690   // without predication/cmovs, this is a big pessimization.
4691 
4692   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4693   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4694   unsigned NumPhis = 0;
4695   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4696        ++II, ++NumPhis) {
4697     if (NumPhis > 2) // Disable this xform.
4698       return false;
4699   }
4700 
4701   // Finally, if everything is ok, fold the branches to logical ops.
4702   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4703 
4704   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4705                     << "AND: " << *BI->getParent());
4706 
4707   SmallVector<DominatorTree::UpdateType, 5> Updates;
4708 
4709   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4710   // branch in it, where one edge (OtherDest) goes back to itself but the other
4711   // exits.  We don't *know* that the program avoids the infinite loop
4712   // (even though that seems likely).  If we do this xform naively, we'll end up
4713   // recursively unpeeling the loop.  Since we know that (after the xform is
4714   // done) that the block *is* infinite if reached, we just make it an obviously
4715   // infinite loop with no cond branch.
4716   if (OtherDest == BB) {
4717     // Insert it at the end of the function, because it's either code,
4718     // or it won't matter if it's hot. :)
4719     BasicBlock *InfLoopBlock =
4720         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4721     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4722     if (DTU)
4723       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4724     OtherDest = InfLoopBlock;
4725   }
4726 
4727   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4728 
4729   // BI may have other predecessors.  Because of this, we leave
4730   // it alone, but modify PBI.
4731 
4732   // Make sure we get to CommonDest on True&True directions.
4733   Value *PBICond = PBI->getCondition();
4734   IRBuilder<NoFolder> Builder(PBI);
4735   if (PBIOp)
4736     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4737 
4738   Value *BICond = BI->getCondition();
4739   if (BIOp)
4740     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4741 
4742   // Merge the conditions.
4743   Value *Cond =
4744       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4745 
4746   // Modify PBI to branch on the new condition to the new dests.
4747   PBI->setCondition(Cond);
4748   PBI->setSuccessor(0, CommonDest);
4749   PBI->setSuccessor(1, OtherDest);
4750 
4751   if (DTU) {
4752     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4753     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4754 
4755     DTU->applyUpdates(Updates);
4756   }
4757 
4758   // Update branch weight for PBI.
4759   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4760   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4761   bool HasWeights =
4762       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4763                              SuccTrueWeight, SuccFalseWeight);
4764   if (HasWeights) {
4765     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4766     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4767     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4768     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4769     // The weight to CommonDest should be PredCommon * SuccTotal +
4770     //                                    PredOther * SuccCommon.
4771     // The weight to OtherDest should be PredOther * SuccOther.
4772     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4773                                   PredOther * SuccCommon,
4774                               PredOther * SuccOther};
4775     // Halve the weights if any of them cannot fit in an uint32_t
4776     fitWeights(NewWeights);
4777 
4778     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4779   }
4780 
4781   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4782   // block that are identical to the entries for BI's block.
4783   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4784 
4785   // We know that the CommonDest already had an edge from PBI to
4786   // it.  If it has PHIs though, the PHIs may have different
4787   // entries for BB and PBI's BB.  If so, insert a select to make
4788   // them agree.
4789   for (PHINode &PN : CommonDest->phis()) {
4790     Value *BIV = PN.getIncomingValueForBlock(BB);
4791     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4792     Value *PBIV = PN.getIncomingValue(PBBIdx);
4793     if (BIV != PBIV) {
4794       // Insert a select in PBI to pick the right value.
4795       SelectInst *NV = cast<SelectInst>(
4796           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4797       PN.setIncomingValue(PBBIdx, NV);
4798       // Although the select has the same condition as PBI, the original branch
4799       // weights for PBI do not apply to the new select because the select's
4800       // 'logical' edges are incoming edges of the phi that is eliminated, not
4801       // the outgoing edges of PBI.
4802       if (HasWeights) {
4803         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4804         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4805         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4806         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4807         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4808         // The weight to PredOtherDest should be PredOther * SuccCommon.
4809         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4810                                   PredOther * SuccCommon};
4811 
4812         fitWeights(NewWeights);
4813 
4814         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4815                          /*IsExpected=*/false);
4816       }
4817     }
4818   }
4819 
4820   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4821   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4822 
4823   // This basic block is probably dead.  We know it has at least
4824   // one fewer predecessor.
4825   return true;
4826 }
4827 
4828 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4829 // true or to FalseBB if Cond is false.
4830 // Takes care of updating the successors and removing the old terminator.
4831 // Also makes sure not to introduce new successors by assuming that edges to
4832 // non-successor TrueBBs and FalseBBs aren't reachable.
4833 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4834                                                 Value *Cond, BasicBlock *TrueBB,
4835                                                 BasicBlock *FalseBB,
4836                                                 uint32_t TrueWeight,
4837                                                 uint32_t FalseWeight) {
4838   auto *BB = OldTerm->getParent();
4839   // Remove any superfluous successor edges from the CFG.
4840   // First, figure out which successors to preserve.
4841   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4842   // successor.
4843   BasicBlock *KeepEdge1 = TrueBB;
4844   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4845 
4846   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4847 
4848   // Then remove the rest.
4849   for (BasicBlock *Succ : successors(OldTerm)) {
4850     // Make sure only to keep exactly one copy of each edge.
4851     if (Succ == KeepEdge1)
4852       KeepEdge1 = nullptr;
4853     else if (Succ == KeepEdge2)
4854       KeepEdge2 = nullptr;
4855     else {
4856       Succ->removePredecessor(BB,
4857                               /*KeepOneInputPHIs=*/true);
4858 
4859       if (Succ != TrueBB && Succ != FalseBB)
4860         RemovedSuccessors.insert(Succ);
4861     }
4862   }
4863 
4864   IRBuilder<> Builder(OldTerm);
4865   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4866 
4867   // Insert an appropriate new terminator.
4868   if (!KeepEdge1 && !KeepEdge2) {
4869     if (TrueBB == FalseBB) {
4870       // We were only looking for one successor, and it was present.
4871       // Create an unconditional branch to it.
4872       Builder.CreateBr(TrueBB);
4873     } else {
4874       // We found both of the successors we were looking for.
4875       // Create a conditional branch sharing the condition of the select.
4876       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4877       if (TrueWeight != FalseWeight)
4878         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4879     }
4880   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4881     // Neither of the selected blocks were successors, so this
4882     // terminator must be unreachable.
4883     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4884   } else {
4885     // One of the selected values was a successor, but the other wasn't.
4886     // Insert an unconditional branch to the one that was found;
4887     // the edge to the one that wasn't must be unreachable.
4888     if (!KeepEdge1) {
4889       // Only TrueBB was found.
4890       Builder.CreateBr(TrueBB);
4891     } else {
4892       // Only FalseBB was found.
4893       Builder.CreateBr(FalseBB);
4894     }
4895   }
4896 
4897   eraseTerminatorAndDCECond(OldTerm);
4898 
4899   if (DTU) {
4900     SmallVector<DominatorTree::UpdateType, 2> Updates;
4901     Updates.reserve(RemovedSuccessors.size());
4902     for (auto *RemovedSuccessor : RemovedSuccessors)
4903       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4904     DTU->applyUpdates(Updates);
4905   }
4906 
4907   return true;
4908 }
4909 
4910 // Replaces
4911 //   (switch (select cond, X, Y)) on constant X, Y
4912 // with a branch - conditional if X and Y lead to distinct BBs,
4913 // unconditional otherwise.
4914 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4915                                             SelectInst *Select) {
4916   // Check for constant integer values in the select.
4917   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4918   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4919   if (!TrueVal || !FalseVal)
4920     return false;
4921 
4922   // Find the relevant condition and destinations.
4923   Value *Condition = Select->getCondition();
4924   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4925   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4926 
4927   // Get weight for TrueBB and FalseBB.
4928   uint32_t TrueWeight = 0, FalseWeight = 0;
4929   SmallVector<uint64_t, 8> Weights;
4930   bool HasWeights = hasBranchWeightMD(*SI);
4931   if (HasWeights) {
4932     getBranchWeights(SI, Weights);
4933     if (Weights.size() == 1 + SI->getNumCases()) {
4934       TrueWeight =
4935           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4936       FalseWeight =
4937           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4938     }
4939   }
4940 
4941   // Perform the actual simplification.
4942   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4943                                     FalseWeight);
4944 }
4945 
4946 // Replaces
4947 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4948 //                             blockaddress(@fn, BlockB)))
4949 // with
4950 //   (br cond, BlockA, BlockB).
4951 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4952                                                 SelectInst *SI) {
4953   // Check that both operands of the select are block addresses.
4954   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4955   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4956   if (!TBA || !FBA)
4957     return false;
4958 
4959   // Extract the actual blocks.
4960   BasicBlock *TrueBB = TBA->getBasicBlock();
4961   BasicBlock *FalseBB = FBA->getBasicBlock();
4962 
4963   // Perform the actual simplification.
4964   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4965                                     0);
4966 }
4967 
4968 /// This is called when we find an icmp instruction
4969 /// (a seteq/setne with a constant) as the only instruction in a
4970 /// block that ends with an uncond branch.  We are looking for a very specific
4971 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4972 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4973 /// default value goes to an uncond block with a seteq in it, we get something
4974 /// like:
4975 ///
4976 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4977 /// DEFAULT:
4978 ///   %tmp = icmp eq i8 %A, 92
4979 ///   br label %end
4980 /// end:
4981 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4982 ///
4983 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4984 /// the PHI, merging the third icmp into the switch.
4985 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4986     ICmpInst *ICI, IRBuilder<> &Builder) {
4987   BasicBlock *BB = ICI->getParent();
4988 
4989   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4990   // complex.
4991   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4992     return false;
4993 
4994   Value *V = ICI->getOperand(0);
4995   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4996 
4997   // The pattern we're looking for is where our only predecessor is a switch on
4998   // 'V' and this block is the default case for the switch.  In this case we can
4999   // fold the compared value into the switch to simplify things.
5000   BasicBlock *Pred = BB->getSinglePredecessor();
5001   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
5002     return false;
5003 
5004   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
5005   if (SI->getCondition() != V)
5006     return false;
5007 
5008   // If BB is reachable on a non-default case, then we simply know the value of
5009   // V in this block.  Substitute it and constant fold the icmp instruction
5010   // away.
5011   if (SI->getDefaultDest() != BB) {
5012     ConstantInt *VVal = SI->findCaseDest(BB);
5013     assert(VVal && "Should have a unique destination value");
5014     ICI->setOperand(0, VVal);
5015 
5016     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
5017       ICI->replaceAllUsesWith(V);
5018       ICI->eraseFromParent();
5019     }
5020     // BB is now empty, so it is likely to simplify away.
5021     return requestResimplify();
5022   }
5023 
5024   // Ok, the block is reachable from the default dest.  If the constant we're
5025   // comparing exists in one of the other edges, then we can constant fold ICI
5026   // and zap it.
5027   if (SI->findCaseValue(Cst) != SI->case_default()) {
5028     Value *V;
5029     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5030       V = ConstantInt::getFalse(BB->getContext());
5031     else
5032       V = ConstantInt::getTrue(BB->getContext());
5033 
5034     ICI->replaceAllUsesWith(V);
5035     ICI->eraseFromParent();
5036     // BB is now empty, so it is likely to simplify away.
5037     return requestResimplify();
5038   }
5039 
5040   // The use of the icmp has to be in the 'end' block, by the only PHI node in
5041   // the block.
5042   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
5043   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5044   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5045       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5046     return false;
5047 
5048   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5049   // true in the PHI.
5050   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5051   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5052 
5053   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5054     std::swap(DefaultCst, NewCst);
5055 
5056   // Replace ICI (which is used by the PHI for the default value) with true or
5057   // false depending on if it is EQ or NE.
5058   ICI->replaceAllUsesWith(DefaultCst);
5059   ICI->eraseFromParent();
5060 
5061   SmallVector<DominatorTree::UpdateType, 2> Updates;
5062 
5063   // Okay, the switch goes to this block on a default value.  Add an edge from
5064   // the switch to the merge point on the compared value.
5065   BasicBlock *NewBB =
5066       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5067   {
5068     SwitchInstProfUpdateWrapper SIW(*SI);
5069     auto W0 = SIW.getSuccessorWeight(0);
5070     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5071     if (W0) {
5072       NewW = ((uint64_t(*W0) + 1) >> 1);
5073       SIW.setSuccessorWeight(0, *NewW);
5074     }
5075     SIW.addCase(Cst, NewBB, NewW);
5076     if (DTU)
5077       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5078   }
5079 
5080   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5081   Builder.SetInsertPoint(NewBB);
5082   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5083   Builder.CreateBr(SuccBlock);
5084   PHIUse->addIncoming(NewCst, NewBB);
5085   if (DTU) {
5086     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5087     DTU->applyUpdates(Updates);
5088   }
5089   return true;
5090 }
5091 
5092 /// The specified branch is a conditional branch.
5093 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5094 /// fold it into a switch instruction if so.
5095 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5096                                                IRBuilder<> &Builder,
5097                                                const DataLayout &DL) {
5098   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5099   if (!Cond)
5100     return false;
5101 
5102   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5103   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5104   // 'setne's and'ed together, collect them.
5105 
5106   // Try to gather values from a chain of and/or to be turned into a switch
5107   ConstantComparesGatherer ConstantCompare(Cond, DL);
5108   // Unpack the result
5109   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5110   Value *CompVal = ConstantCompare.CompValue;
5111   unsigned UsedICmps = ConstantCompare.UsedICmps;
5112   Value *ExtraCase = ConstantCompare.Extra;
5113 
5114   // If we didn't have a multiply compared value, fail.
5115   if (!CompVal)
5116     return false;
5117 
5118   // Avoid turning single icmps into a switch.
5119   if (UsedICmps <= 1)
5120     return false;
5121 
5122   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5123 
5124   // There might be duplicate constants in the list, which the switch
5125   // instruction can't handle, remove them now.
5126   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5127   Values.erase(llvm::unique(Values), Values.end());
5128 
5129   // If Extra was used, we require at least two switch values to do the
5130   // transformation.  A switch with one value is just a conditional branch.
5131   if (ExtraCase && Values.size() < 2)
5132     return false;
5133 
5134   // TODO: Preserve branch weight metadata, similarly to how
5135   // foldValueComparisonIntoPredecessors preserves it.
5136 
5137   // Figure out which block is which destination.
5138   BasicBlock *DefaultBB = BI->getSuccessor(1);
5139   BasicBlock *EdgeBB = BI->getSuccessor(0);
5140   if (!TrueWhenEqual)
5141     std::swap(DefaultBB, EdgeBB);
5142 
5143   BasicBlock *BB = BI->getParent();
5144 
5145   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5146                     << " cases into SWITCH.  BB is:\n"
5147                     << *BB);
5148 
5149   SmallVector<DominatorTree::UpdateType, 2> Updates;
5150 
5151   // If there are any extra values that couldn't be folded into the switch
5152   // then we evaluate them with an explicit branch first. Split the block
5153   // right before the condbr to handle it.
5154   if (ExtraCase) {
5155     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5156                                    /*MSSAU=*/nullptr, "switch.early.test");
5157 
5158     // Remove the uncond branch added to the old block.
5159     Instruction *OldTI = BB->getTerminator();
5160     Builder.SetInsertPoint(OldTI);
5161 
5162     // There can be an unintended UB if extra values are Poison. Before the
5163     // transformation, extra values may not be evaluated according to the
5164     // condition, and it will not raise UB. But after transformation, we are
5165     // evaluating extra values before checking the condition, and it will raise
5166     // UB. It can be solved by adding freeze instruction to extra values.
5167     AssumptionCache *AC = Options.AC;
5168 
5169     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5170       ExtraCase = Builder.CreateFreeze(ExtraCase);
5171 
5172     if (TrueWhenEqual)
5173       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5174     else
5175       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5176 
5177     OldTI->eraseFromParent();
5178 
5179     if (DTU)
5180       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5181 
5182     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5183     // for the edge we just added.
5184     addPredecessorToBlock(EdgeBB, BB, NewBB);
5185 
5186     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5187                       << "\nEXTRABB = " << *BB);
5188     BB = NewBB;
5189   }
5190 
5191   Builder.SetInsertPoint(BI);
5192   // Convert pointer to int before we switch.
5193   if (CompVal->getType()->isPointerTy()) {
5194     CompVal = Builder.CreatePtrToInt(
5195         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5196   }
5197 
5198   // Create the new switch instruction now.
5199   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5200 
5201   // Add all of the 'cases' to the switch instruction.
5202   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5203     New->addCase(Values[i], EdgeBB);
5204 
5205   // We added edges from PI to the EdgeBB.  As such, if there were any
5206   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5207   // the number of edges added.
5208   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5209     PHINode *PN = cast<PHINode>(BBI);
5210     Value *InVal = PN->getIncomingValueForBlock(BB);
5211     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5212       PN->addIncoming(InVal, BB);
5213   }
5214 
5215   // Erase the old branch instruction.
5216   eraseTerminatorAndDCECond(BI);
5217   if (DTU)
5218     DTU->applyUpdates(Updates);
5219 
5220   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5221   return true;
5222 }
5223 
5224 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5225   if (isa<PHINode>(RI->getValue()))
5226     return simplifyCommonResume(RI);
5227   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
5228            RI->getValue() == RI->getParent()->getFirstNonPHI())
5229     // The resume must unwind the exception that caused control to branch here.
5230     return simplifySingleResume(RI);
5231 
5232   return false;
5233 }
5234 
5235 // Check if cleanup block is empty
5236 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5237   for (Instruction &I : R) {
5238     auto *II = dyn_cast<IntrinsicInst>(&I);
5239     if (!II)
5240       return false;
5241 
5242     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5243     switch (IntrinsicID) {
5244     case Intrinsic::dbg_declare:
5245     case Intrinsic::dbg_value:
5246     case Intrinsic::dbg_label:
5247     case Intrinsic::lifetime_end:
5248       break;
5249     default:
5250       return false;
5251     }
5252   }
5253   return true;
5254 }
5255 
5256 // Simplify resume that is shared by several landing pads (phi of landing pad).
5257 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5258   BasicBlock *BB = RI->getParent();
5259 
5260   // Check that there are no other instructions except for debug and lifetime
5261   // intrinsics between the phi's and resume instruction.
5262   if (!isCleanupBlockEmpty(
5263           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
5264     return false;
5265 
5266   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5267   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5268 
5269   // Check incoming blocks to see if any of them are trivial.
5270   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5271        Idx++) {
5272     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5273     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5274 
5275     // If the block has other successors, we can not delete it because
5276     // it has other dependents.
5277     if (IncomingBB->getUniqueSuccessor() != BB)
5278       continue;
5279 
5280     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
5281     // Not the landing pad that caused the control to branch here.
5282     if (IncomingValue != LandingPad)
5283       continue;
5284 
5285     if (isCleanupBlockEmpty(
5286             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5287       TrivialUnwindBlocks.insert(IncomingBB);
5288   }
5289 
5290   // If no trivial unwind blocks, don't do any simplifications.
5291   if (TrivialUnwindBlocks.empty())
5292     return false;
5293 
5294   // Turn all invokes that unwind here into calls.
5295   for (auto *TrivialBB : TrivialUnwindBlocks) {
5296     // Blocks that will be simplified should be removed from the phi node.
5297     // Note there could be multiple edges to the resume block, and we need
5298     // to remove them all.
5299     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5300       BB->removePredecessor(TrivialBB, true);
5301 
5302     for (BasicBlock *Pred :
5303          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5304       removeUnwindEdge(Pred, DTU);
5305       ++NumInvokes;
5306     }
5307 
5308     // In each SimplifyCFG run, only the current processed block can be erased.
5309     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5310     // of erasing TrivialBB, we only remove the branch to the common resume
5311     // block so that we can later erase the resume block since it has no
5312     // predecessors.
5313     TrivialBB->getTerminator()->eraseFromParent();
5314     new UnreachableInst(RI->getContext(), TrivialBB);
5315     if (DTU)
5316       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5317   }
5318 
5319   // Delete the resume block if all its predecessors have been removed.
5320   if (pred_empty(BB))
5321     DeleteDeadBlock(BB, DTU);
5322 
5323   return !TrivialUnwindBlocks.empty();
5324 }
5325 
5326 // Simplify resume that is only used by a single (non-phi) landing pad.
5327 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5328   BasicBlock *BB = RI->getParent();
5329   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5330   assert(RI->getValue() == LPInst &&
5331          "Resume must unwind the exception that caused control to here");
5332 
5333   // Check that there are no other instructions except for debug intrinsics.
5334   if (!isCleanupBlockEmpty(
5335           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5336     return false;
5337 
5338   // Turn all invokes that unwind here into calls and delete the basic block.
5339   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5340     removeUnwindEdge(Pred, DTU);
5341     ++NumInvokes;
5342   }
5343 
5344   // The landingpad is now unreachable.  Zap it.
5345   DeleteDeadBlock(BB, DTU);
5346   return true;
5347 }
5348 
5349 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5350   // If this is a trivial cleanup pad that executes no instructions, it can be
5351   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5352   // that is an EH pad will be updated to continue to the caller and any
5353   // predecessor that terminates with an invoke instruction will have its invoke
5354   // instruction converted to a call instruction.  If the cleanup pad being
5355   // simplified does not continue to the caller, each predecessor will be
5356   // updated to continue to the unwind destination of the cleanup pad being
5357   // simplified.
5358   BasicBlock *BB = RI->getParent();
5359   CleanupPadInst *CPInst = RI->getCleanupPad();
5360   if (CPInst->getParent() != BB)
5361     // This isn't an empty cleanup.
5362     return false;
5363 
5364   // We cannot kill the pad if it has multiple uses.  This typically arises
5365   // from unreachable basic blocks.
5366   if (!CPInst->hasOneUse())
5367     return false;
5368 
5369   // Check that there are no other instructions except for benign intrinsics.
5370   if (!isCleanupBlockEmpty(
5371           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5372     return false;
5373 
5374   // If the cleanup return we are simplifying unwinds to the caller, this will
5375   // set UnwindDest to nullptr.
5376   BasicBlock *UnwindDest = RI->getUnwindDest();
5377   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5378 
5379   // We're about to remove BB from the control flow.  Before we do, sink any
5380   // PHINodes into the unwind destination.  Doing this before changing the
5381   // control flow avoids some potentially slow checks, since we can currently
5382   // be certain that UnwindDest and BB have no common predecessors (since they
5383   // are both EH pads).
5384   if (UnwindDest) {
5385     // First, go through the PHI nodes in UnwindDest and update any nodes that
5386     // reference the block we are removing
5387     for (PHINode &DestPN : UnwindDest->phis()) {
5388       int Idx = DestPN.getBasicBlockIndex(BB);
5389       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5390       assert(Idx != -1);
5391       // This PHI node has an incoming value that corresponds to a control
5392       // path through the cleanup pad we are removing.  If the incoming
5393       // value is in the cleanup pad, it must be a PHINode (because we
5394       // verified above that the block is otherwise empty).  Otherwise, the
5395       // value is either a constant or a value that dominates the cleanup
5396       // pad being removed.
5397       //
5398       // Because BB and UnwindDest are both EH pads, all of their
5399       // predecessors must unwind to these blocks, and since no instruction
5400       // can have multiple unwind destinations, there will be no overlap in
5401       // incoming blocks between SrcPN and DestPN.
5402       Value *SrcVal = DestPN.getIncomingValue(Idx);
5403       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5404 
5405       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5406       for (auto *Pred : predecessors(BB)) {
5407         Value *Incoming =
5408             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5409         DestPN.addIncoming(Incoming, Pred);
5410       }
5411     }
5412 
5413     // Sink any remaining PHI nodes directly into UnwindDest.
5414     Instruction *InsertPt = DestEHPad;
5415     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5416       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5417         // If the PHI node has no uses or all of its uses are in this basic
5418         // block (meaning they are debug or lifetime intrinsics), just leave
5419         // it.  It will be erased when we erase BB below.
5420         continue;
5421 
5422       // Otherwise, sink this PHI node into UnwindDest.
5423       // Any predecessors to UnwindDest which are not already represented
5424       // must be back edges which inherit the value from the path through
5425       // BB.  In this case, the PHI value must reference itself.
5426       for (auto *pred : predecessors(UnwindDest))
5427         if (pred != BB)
5428           PN.addIncoming(&PN, pred);
5429       PN.moveBefore(InsertPt);
5430       // Also, add a dummy incoming value for the original BB itself,
5431       // so that the PHI is well-formed until we drop said predecessor.
5432       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5433     }
5434   }
5435 
5436   std::vector<DominatorTree::UpdateType> Updates;
5437 
5438   // We use make_early_inc_range here because we will remove all predecessors.
5439   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5440     if (UnwindDest == nullptr) {
5441       if (DTU) {
5442         DTU->applyUpdates(Updates);
5443         Updates.clear();
5444       }
5445       removeUnwindEdge(PredBB, DTU);
5446       ++NumInvokes;
5447     } else {
5448       BB->removePredecessor(PredBB);
5449       Instruction *TI = PredBB->getTerminator();
5450       TI->replaceUsesOfWith(BB, UnwindDest);
5451       if (DTU) {
5452         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5453         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5454       }
5455     }
5456   }
5457 
5458   if (DTU)
5459     DTU->applyUpdates(Updates);
5460 
5461   DeleteDeadBlock(BB, DTU);
5462 
5463   return true;
5464 }
5465 
5466 // Try to merge two cleanuppads together.
5467 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5468   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5469   // with.
5470   BasicBlock *UnwindDest = RI->getUnwindDest();
5471   if (!UnwindDest)
5472     return false;
5473 
5474   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5475   // be safe to merge without code duplication.
5476   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5477     return false;
5478 
5479   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5480   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5481   if (!SuccessorCleanupPad)
5482     return false;
5483 
5484   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5485   // Replace any uses of the successor cleanupad with the predecessor pad
5486   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5487   // funclet bundle operands.
5488   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5489   // Remove the old cleanuppad.
5490   SuccessorCleanupPad->eraseFromParent();
5491   // Now, we simply replace the cleanupret with a branch to the unwind
5492   // destination.
5493   BranchInst::Create(UnwindDest, RI->getParent());
5494   RI->eraseFromParent();
5495 
5496   return true;
5497 }
5498 
5499 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5500   // It is possible to transiantly have an undef cleanuppad operand because we
5501   // have deleted some, but not all, dead blocks.
5502   // Eventually, this block will be deleted.
5503   if (isa<UndefValue>(RI->getOperand(0)))
5504     return false;
5505 
5506   if (mergeCleanupPad(RI))
5507     return true;
5508 
5509   if (removeEmptyCleanup(RI, DTU))
5510     return true;
5511 
5512   return false;
5513 }
5514 
5515 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5516 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5517   BasicBlock *BB = UI->getParent();
5518 
5519   bool Changed = false;
5520 
5521   // Ensure that any debug-info records that used to occur after the Unreachable
5522   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5523   // the block.
5524   BB->flushTerminatorDbgRecords();
5525 
5526   // Debug-info records on the unreachable inst itself should be deleted, as
5527   // below we delete everything past the final executable instruction.
5528   UI->dropDbgRecords();
5529 
5530   // If there are any instructions immediately before the unreachable that can
5531   // be removed, do so.
5532   while (UI->getIterator() != BB->begin()) {
5533     BasicBlock::iterator BBI = UI->getIterator();
5534     --BBI;
5535 
5536     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5537       break; // Can not drop any more instructions. We're done here.
5538     // Otherwise, this instruction can be freely erased,
5539     // even if it is not side-effect free.
5540 
5541     // Note that deleting EH's here is in fact okay, although it involves a bit
5542     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5543     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5544     // and we can therefore guarantee this block will be erased.
5545 
5546     // If we're deleting this, we're deleting any subsequent debug info, so
5547     // delete DbgRecords.
5548     BBI->dropDbgRecords();
5549 
5550     // Delete this instruction (any uses are guaranteed to be dead)
5551     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5552     BBI->eraseFromParent();
5553     Changed = true;
5554   }
5555 
5556   // If the unreachable instruction is the first in the block, take a gander
5557   // at all of the predecessors of this instruction, and simplify them.
5558   if (&BB->front() != UI)
5559     return Changed;
5560 
5561   std::vector<DominatorTree::UpdateType> Updates;
5562 
5563   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5564   for (BasicBlock *Predecessor : Preds) {
5565     Instruction *TI = Predecessor->getTerminator();
5566     IRBuilder<> Builder(TI);
5567     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5568       // We could either have a proper unconditional branch,
5569       // or a degenerate conditional branch with matching destinations.
5570       if (all_of(BI->successors(),
5571                  [BB](auto *Successor) { return Successor == BB; })) {
5572         new UnreachableInst(TI->getContext(), TI->getIterator());
5573         TI->eraseFromParent();
5574         Changed = true;
5575       } else {
5576         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5577         Value* Cond = BI->getCondition();
5578         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5579                "The destinations are guaranteed to be different here.");
5580         CallInst *Assumption;
5581         if (BI->getSuccessor(0) == BB) {
5582           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5583           Builder.CreateBr(BI->getSuccessor(1));
5584         } else {
5585           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5586           Assumption = Builder.CreateAssumption(Cond);
5587           Builder.CreateBr(BI->getSuccessor(0));
5588         }
5589         if (Options.AC)
5590           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5591 
5592         eraseTerminatorAndDCECond(BI);
5593         Changed = true;
5594       }
5595       if (DTU)
5596         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5597     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5598       SwitchInstProfUpdateWrapper SU(*SI);
5599       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5600         if (i->getCaseSuccessor() != BB) {
5601           ++i;
5602           continue;
5603         }
5604         BB->removePredecessor(SU->getParent());
5605         i = SU.removeCase(i);
5606         e = SU->case_end();
5607         Changed = true;
5608       }
5609       // Note that the default destination can't be removed!
5610       if (DTU && SI->getDefaultDest() != BB)
5611         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5612     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5613       if (II->getUnwindDest() == BB) {
5614         if (DTU) {
5615           DTU->applyUpdates(Updates);
5616           Updates.clear();
5617         }
5618         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5619         if (!CI->doesNotThrow())
5620           CI->setDoesNotThrow();
5621         Changed = true;
5622       }
5623     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5624       if (CSI->getUnwindDest() == BB) {
5625         if (DTU) {
5626           DTU->applyUpdates(Updates);
5627           Updates.clear();
5628         }
5629         removeUnwindEdge(TI->getParent(), DTU);
5630         Changed = true;
5631         continue;
5632       }
5633 
5634       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5635                                              E = CSI->handler_end();
5636            I != E; ++I) {
5637         if (*I == BB) {
5638           CSI->removeHandler(I);
5639           --I;
5640           --E;
5641           Changed = true;
5642         }
5643       }
5644       if (DTU)
5645         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5646       if (CSI->getNumHandlers() == 0) {
5647         if (CSI->hasUnwindDest()) {
5648           // Redirect all predecessors of the block containing CatchSwitchInst
5649           // to instead branch to the CatchSwitchInst's unwind destination.
5650           if (DTU) {
5651             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5652               Updates.push_back({DominatorTree::Insert,
5653                                  PredecessorOfPredecessor,
5654                                  CSI->getUnwindDest()});
5655               Updates.push_back({DominatorTree::Delete,
5656                                  PredecessorOfPredecessor, Predecessor});
5657             }
5658           }
5659           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5660         } else {
5661           // Rewrite all preds to unwind to caller (or from invoke to call).
5662           if (DTU) {
5663             DTU->applyUpdates(Updates);
5664             Updates.clear();
5665           }
5666           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5667           for (BasicBlock *EHPred : EHPreds)
5668             removeUnwindEdge(EHPred, DTU);
5669         }
5670         // The catchswitch is no longer reachable.
5671         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5672         CSI->eraseFromParent();
5673         Changed = true;
5674       }
5675     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5676       (void)CRI;
5677       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5678              "Expected to always have an unwind to BB.");
5679       if (DTU)
5680         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5681       new UnreachableInst(TI->getContext(), TI->getIterator());
5682       TI->eraseFromParent();
5683       Changed = true;
5684     }
5685   }
5686 
5687   if (DTU)
5688     DTU->applyUpdates(Updates);
5689 
5690   // If this block is now dead, remove it.
5691   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5692     DeleteDeadBlock(BB, DTU);
5693     return true;
5694   }
5695 
5696   return Changed;
5697 }
5698 
5699 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5700   assert(Cases.size() >= 1);
5701 
5702   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5703   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5704     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5705       return false;
5706   }
5707   return true;
5708 }
5709 
5710 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5711                                            DomTreeUpdater *DTU,
5712                                            bool RemoveOrigDefaultBlock = true) {
5713   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5714   auto *BB = Switch->getParent();
5715   auto *OrigDefaultBlock = Switch->getDefaultDest();
5716   if (RemoveOrigDefaultBlock)
5717     OrigDefaultBlock->removePredecessor(BB);
5718   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5719       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5720       OrigDefaultBlock);
5721   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5722   Switch->setDefaultDest(&*NewDefaultBlock);
5723   if (DTU) {
5724     SmallVector<DominatorTree::UpdateType, 2> Updates;
5725     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5726     if (RemoveOrigDefaultBlock &&
5727         !is_contained(successors(BB), OrigDefaultBlock))
5728       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5729     DTU->applyUpdates(Updates);
5730   }
5731 }
5732 
5733 /// Turn a switch into an integer range comparison and branch.
5734 /// Switches with more than 2 destinations are ignored.
5735 /// Switches with 1 destination are also ignored.
5736 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5737                                              IRBuilder<> &Builder) {
5738   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5739 
5740   bool HasDefault =
5741       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5742 
5743   auto *BB = SI->getParent();
5744 
5745   // Partition the cases into two sets with different destinations.
5746   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5747   BasicBlock *DestB = nullptr;
5748   SmallVector<ConstantInt *, 16> CasesA;
5749   SmallVector<ConstantInt *, 16> CasesB;
5750 
5751   for (auto Case : SI->cases()) {
5752     BasicBlock *Dest = Case.getCaseSuccessor();
5753     if (!DestA)
5754       DestA = Dest;
5755     if (Dest == DestA) {
5756       CasesA.push_back(Case.getCaseValue());
5757       continue;
5758     }
5759     if (!DestB)
5760       DestB = Dest;
5761     if (Dest == DestB) {
5762       CasesB.push_back(Case.getCaseValue());
5763       continue;
5764     }
5765     return false; // More than two destinations.
5766   }
5767   if (!DestB)
5768     return false; // All destinations are the same and the default is unreachable
5769 
5770   assert(DestA && DestB &&
5771          "Single-destination switch should have been folded.");
5772   assert(DestA != DestB);
5773   assert(DestB != SI->getDefaultDest());
5774   assert(!CasesB.empty() && "There must be non-default cases.");
5775   assert(!CasesA.empty() || HasDefault);
5776 
5777   // Figure out if one of the sets of cases form a contiguous range.
5778   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5779   BasicBlock *ContiguousDest = nullptr;
5780   BasicBlock *OtherDest = nullptr;
5781   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5782     ContiguousCases = &CasesA;
5783     ContiguousDest = DestA;
5784     OtherDest = DestB;
5785   } else if (casesAreContiguous(CasesB)) {
5786     ContiguousCases = &CasesB;
5787     ContiguousDest = DestB;
5788     OtherDest = DestA;
5789   } else
5790     return false;
5791 
5792   // Start building the compare and branch.
5793 
5794   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5795   Constant *NumCases =
5796       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5797 
5798   Value *Sub = SI->getCondition();
5799   if (!Offset->isNullValue())
5800     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5801 
5802   Value *Cmp;
5803   // If NumCases overflowed, then all possible values jump to the successor.
5804   if (NumCases->isNullValue() && !ContiguousCases->empty())
5805     Cmp = ConstantInt::getTrue(SI->getContext());
5806   else
5807     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5808   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5809 
5810   // Update weight for the newly-created conditional branch.
5811   if (hasBranchWeightMD(*SI)) {
5812     SmallVector<uint64_t, 8> Weights;
5813     getBranchWeights(SI, Weights);
5814     if (Weights.size() == 1 + SI->getNumCases()) {
5815       uint64_t TrueWeight = 0;
5816       uint64_t FalseWeight = 0;
5817       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5818         if (SI->getSuccessor(I) == ContiguousDest)
5819           TrueWeight += Weights[I];
5820         else
5821           FalseWeight += Weights[I];
5822       }
5823       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5824         TrueWeight /= 2;
5825         FalseWeight /= 2;
5826       }
5827       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5828     }
5829   }
5830 
5831   // Prune obsolete incoming values off the successors' PHI nodes.
5832   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5833     unsigned PreviousEdges = ContiguousCases->size();
5834     if (ContiguousDest == SI->getDefaultDest())
5835       ++PreviousEdges;
5836     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5837       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5838   }
5839   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5840     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5841     if (OtherDest == SI->getDefaultDest())
5842       ++PreviousEdges;
5843     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5844       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5845   }
5846 
5847   // Clean up the default block - it may have phis or other instructions before
5848   // the unreachable terminator.
5849   if (!HasDefault)
5850     createUnreachableSwitchDefault(SI, DTU);
5851 
5852   auto *UnreachableDefault = SI->getDefaultDest();
5853 
5854   // Drop the switch.
5855   SI->eraseFromParent();
5856 
5857   if (!HasDefault && DTU)
5858     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5859 
5860   return true;
5861 }
5862 
5863 /// Compute masked bits for the condition of a switch
5864 /// and use it to remove dead cases.
5865 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5866                                      AssumptionCache *AC,
5867                                      const DataLayout &DL) {
5868   Value *Cond = SI->getCondition();
5869   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5870 
5871   // We can also eliminate cases by determining that their values are outside of
5872   // the limited range of the condition based on how many significant (non-sign)
5873   // bits are in the condition value.
5874   unsigned MaxSignificantBitsInCond =
5875       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5876 
5877   // Gather dead cases.
5878   SmallVector<ConstantInt *, 8> DeadCases;
5879   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5880   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5881   for (const auto &Case : SI->cases()) {
5882     auto *Successor = Case.getCaseSuccessor();
5883     if (DTU) {
5884       if (!NumPerSuccessorCases.count(Successor))
5885         UniqueSuccessors.push_back(Successor);
5886       ++NumPerSuccessorCases[Successor];
5887     }
5888     const APInt &CaseVal = Case.getCaseValue()->getValue();
5889     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5890         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5891       DeadCases.push_back(Case.getCaseValue());
5892       if (DTU)
5893         --NumPerSuccessorCases[Successor];
5894       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5895                         << " is dead.\n");
5896     }
5897   }
5898 
5899   // If we can prove that the cases must cover all possible values, the
5900   // default destination becomes dead and we can remove it.  If we know some
5901   // of the bits in the value, we can use that to more precisely compute the
5902   // number of possible unique case values.
5903   bool HasDefault =
5904       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5905   const unsigned NumUnknownBits =
5906       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5907   assert(NumUnknownBits <= Known.getBitWidth());
5908   if (HasDefault && DeadCases.empty() &&
5909       NumUnknownBits < 64 /* avoid overflow */) {
5910     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5911     if (SI->getNumCases() == AllNumCases) {
5912       createUnreachableSwitchDefault(SI, DTU);
5913       return true;
5914     }
5915     // When only one case value is missing, replace default with that case.
5916     // Eliminating the default branch will provide more opportunities for
5917     // optimization, such as lookup tables.
5918     if (SI->getNumCases() == AllNumCases - 1) {
5919       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5920       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5921       if (CondTy->getIntegerBitWidth() > 64 ||
5922           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5923         return false;
5924 
5925       uint64_t MissingCaseVal = 0;
5926       for (const auto &Case : SI->cases())
5927         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5928       auto *MissingCase =
5929           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5930       SwitchInstProfUpdateWrapper SIW(*SI);
5931       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5932       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5933       SIW.setSuccessorWeight(0, 0);
5934       return true;
5935     }
5936   }
5937 
5938   if (DeadCases.empty())
5939     return false;
5940 
5941   SwitchInstProfUpdateWrapper SIW(*SI);
5942   for (ConstantInt *DeadCase : DeadCases) {
5943     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5944     assert(CaseI != SI->case_default() &&
5945            "Case was not found. Probably mistake in DeadCases forming.");
5946     // Prune unused values from PHI nodes.
5947     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5948     SIW.removeCase(CaseI);
5949   }
5950 
5951   if (DTU) {
5952     std::vector<DominatorTree::UpdateType> Updates;
5953     for (auto *Successor : UniqueSuccessors)
5954       if (NumPerSuccessorCases[Successor] == 0)
5955         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5956     DTU->applyUpdates(Updates);
5957   }
5958 
5959   return true;
5960 }
5961 
5962 /// If BB would be eligible for simplification by
5963 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5964 /// by an unconditional branch), look at the phi node for BB in the successor
5965 /// block and see if the incoming value is equal to CaseValue. If so, return
5966 /// the phi node, and set PhiIndex to BB's index in the phi node.
5967 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
5968                                               BasicBlock *BB, int *PhiIndex) {
5969   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5970     return nullptr; // BB must be empty to be a candidate for simplification.
5971   if (!BB->getSinglePredecessor())
5972     return nullptr; // BB must be dominated by the switch.
5973 
5974   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5975   if (!Branch || !Branch->isUnconditional())
5976     return nullptr; // Terminator must be unconditional branch.
5977 
5978   BasicBlock *Succ = Branch->getSuccessor(0);
5979 
5980   for (PHINode &PHI : Succ->phis()) {
5981     int Idx = PHI.getBasicBlockIndex(BB);
5982     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5983 
5984     Value *InValue = PHI.getIncomingValue(Idx);
5985     if (InValue != CaseValue)
5986       continue;
5987 
5988     *PhiIndex = Idx;
5989     return &PHI;
5990   }
5991 
5992   return nullptr;
5993 }
5994 
5995 /// Try to forward the condition of a switch instruction to a phi node
5996 /// dominated by the switch, if that would mean that some of the destination
5997 /// blocks of the switch can be folded away. Return true if a change is made.
5998 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
5999   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
6000 
6001   ForwardingNodesMap ForwardingNodes;
6002   BasicBlock *SwitchBlock = SI->getParent();
6003   bool Changed = false;
6004   for (const auto &Case : SI->cases()) {
6005     ConstantInt *CaseValue = Case.getCaseValue();
6006     BasicBlock *CaseDest = Case.getCaseSuccessor();
6007 
6008     // Replace phi operands in successor blocks that are using the constant case
6009     // value rather than the switch condition variable:
6010     //   switchbb:
6011     //   switch i32 %x, label %default [
6012     //     i32 17, label %succ
6013     //   ...
6014     //   succ:
6015     //     %r = phi i32 ... [ 17, %switchbb ] ...
6016     // -->
6017     //     %r = phi i32 ... [ %x, %switchbb ] ...
6018 
6019     for (PHINode &Phi : CaseDest->phis()) {
6020       // This only works if there is exactly 1 incoming edge from the switch to
6021       // a phi. If there is >1, that means multiple cases of the switch map to 1
6022       // value in the phi, and that phi value is not the switch condition. Thus,
6023       // this transform would not make sense (the phi would be invalid because
6024       // a phi can't have different incoming values from the same block).
6025       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
6026       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
6027           count(Phi.blocks(), SwitchBlock) == 1) {
6028         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
6029         Changed = true;
6030       }
6031     }
6032 
6033     // Collect phi nodes that are indirectly using this switch's case constants.
6034     int PhiIdx;
6035     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
6036       ForwardingNodes[Phi].push_back(PhiIdx);
6037   }
6038 
6039   for (auto &ForwardingNode : ForwardingNodes) {
6040     PHINode *Phi = ForwardingNode.first;
6041     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
6042     // Check if it helps to fold PHI.
6043     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6044       continue;
6045 
6046     for (int Index : Indexes)
6047       Phi->setIncomingValue(Index, SI->getCondition());
6048     Changed = true;
6049   }
6050 
6051   return Changed;
6052 }
6053 
6054 /// Return true if the backend will be able to handle
6055 /// initializing an array of constants like C.
6056 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6057   if (C->isThreadDependent())
6058     return false;
6059   if (C->isDLLImportDependent())
6060     return false;
6061 
6062   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6063       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6064       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6065     return false;
6066 
6067   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6068     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6069     // materializing the array of constants.
6070     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6071     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6072       return false;
6073   }
6074 
6075   if (!TTI.shouldBuildLookupTablesForConstant(C))
6076     return false;
6077 
6078   return true;
6079 }
6080 
6081 /// If V is a Constant, return it. Otherwise, try to look up
6082 /// its constant value in ConstantPool, returning 0 if it's not there.
6083 static Constant *
6084 lookupConstant(Value *V,
6085                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6086   if (Constant *C = dyn_cast<Constant>(V))
6087     return C;
6088   return ConstantPool.lookup(V);
6089 }
6090 
6091 /// Try to fold instruction I into a constant. This works for
6092 /// simple instructions such as binary operations where both operands are
6093 /// constant or can be replaced by constants from the ConstantPool. Returns the
6094 /// resulting constant on success, 0 otherwise.
6095 static Constant *
6096 constantFold(Instruction *I, const DataLayout &DL,
6097              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6098   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6099     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6100     if (!A)
6101       return nullptr;
6102     if (A->isAllOnesValue())
6103       return lookupConstant(Select->getTrueValue(), ConstantPool);
6104     if (A->isNullValue())
6105       return lookupConstant(Select->getFalseValue(), ConstantPool);
6106     return nullptr;
6107   }
6108 
6109   SmallVector<Constant *, 4> COps;
6110   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6111     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6112       COps.push_back(A);
6113     else
6114       return nullptr;
6115   }
6116 
6117   return ConstantFoldInstOperands(I, COps, DL);
6118 }
6119 
6120 /// Try to determine the resulting constant values in phi nodes
6121 /// at the common destination basic block, *CommonDest, for one of the case
6122 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6123 /// case), of a switch instruction SI.
6124 static bool
6125 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6126                BasicBlock **CommonDest,
6127                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6128                const DataLayout &DL, const TargetTransformInfo &TTI) {
6129   // The block from which we enter the common destination.
6130   BasicBlock *Pred = SI->getParent();
6131 
6132   // If CaseDest is empty except for some side-effect free instructions through
6133   // which we can constant-propagate the CaseVal, continue to its successor.
6134   SmallDenseMap<Value *, Constant *> ConstantPool;
6135   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6136   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6137     if (I.isTerminator()) {
6138       // If the terminator is a simple branch, continue to the next block.
6139       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6140         return false;
6141       Pred = CaseDest;
6142       CaseDest = I.getSuccessor(0);
6143     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6144       // Instruction is side-effect free and constant.
6145 
6146       // If the instruction has uses outside this block or a phi node slot for
6147       // the block, it is not safe to bypass the instruction since it would then
6148       // no longer dominate all its uses.
6149       for (auto &Use : I.uses()) {
6150         User *User = Use.getUser();
6151         if (Instruction *I = dyn_cast<Instruction>(User))
6152           if (I->getParent() == CaseDest)
6153             continue;
6154         if (PHINode *Phi = dyn_cast<PHINode>(User))
6155           if (Phi->getIncomingBlock(Use) == CaseDest)
6156             continue;
6157         return false;
6158       }
6159 
6160       ConstantPool.insert(std::make_pair(&I, C));
6161     } else {
6162       break;
6163     }
6164   }
6165 
6166   // If we did not have a CommonDest before, use the current one.
6167   if (!*CommonDest)
6168     *CommonDest = CaseDest;
6169   // If the destination isn't the common one, abort.
6170   if (CaseDest != *CommonDest)
6171     return false;
6172 
6173   // Get the values for this case from phi nodes in the destination block.
6174   for (PHINode &PHI : (*CommonDest)->phis()) {
6175     int Idx = PHI.getBasicBlockIndex(Pred);
6176     if (Idx == -1)
6177       continue;
6178 
6179     Constant *ConstVal =
6180         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6181     if (!ConstVal)
6182       return false;
6183 
6184     // Be conservative about which kinds of constants we support.
6185     if (!validLookupTableConstant(ConstVal, TTI))
6186       return false;
6187 
6188     Res.push_back(std::make_pair(&PHI, ConstVal));
6189   }
6190 
6191   return Res.size() > 0;
6192 }
6193 
6194 // Helper function used to add CaseVal to the list of cases that generate
6195 // Result. Returns the updated number of cases that generate this result.
6196 static size_t mapCaseToResult(ConstantInt *CaseVal,
6197                               SwitchCaseResultVectorTy &UniqueResults,
6198                               Constant *Result) {
6199   for (auto &I : UniqueResults) {
6200     if (I.first == Result) {
6201       I.second.push_back(CaseVal);
6202       return I.second.size();
6203     }
6204   }
6205   UniqueResults.push_back(
6206       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6207   return 1;
6208 }
6209 
6210 // Helper function that initializes a map containing
6211 // results for the PHI node of the common destination block for a switch
6212 // instruction. Returns false if multiple PHI nodes have been found or if
6213 // there is not a common destination block for the switch.
6214 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6215                                   BasicBlock *&CommonDest,
6216                                   SwitchCaseResultVectorTy &UniqueResults,
6217                                   Constant *&DefaultResult,
6218                                   const DataLayout &DL,
6219                                   const TargetTransformInfo &TTI,
6220                                   uintptr_t MaxUniqueResults) {
6221   for (const auto &I : SI->cases()) {
6222     ConstantInt *CaseVal = I.getCaseValue();
6223 
6224     // Resulting value at phi nodes for this case value.
6225     SwitchCaseResultsTy Results;
6226     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6227                         DL, TTI))
6228       return false;
6229 
6230     // Only one value per case is permitted.
6231     if (Results.size() > 1)
6232       return false;
6233 
6234     // Add the case->result mapping to UniqueResults.
6235     const size_t NumCasesForResult =
6236         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6237 
6238     // Early out if there are too many cases for this result.
6239     if (NumCasesForResult > MaxSwitchCasesPerResult)
6240       return false;
6241 
6242     // Early out if there are too many unique results.
6243     if (UniqueResults.size() > MaxUniqueResults)
6244       return false;
6245 
6246     // Check the PHI consistency.
6247     if (!PHI)
6248       PHI = Results[0].first;
6249     else if (PHI != Results[0].first)
6250       return false;
6251   }
6252   // Find the default result value.
6253   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6254   BasicBlock *DefaultDest = SI->getDefaultDest();
6255   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6256                  DL, TTI);
6257   // If the default value is not found abort unless the default destination
6258   // is unreachable.
6259   DefaultResult =
6260       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6261   if ((!DefaultResult &&
6262        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6263     return false;
6264 
6265   return true;
6266 }
6267 
6268 // Helper function that checks if it is possible to transform a switch with only
6269 // two cases (or two cases + default) that produces a result into a select.
6270 // TODO: Handle switches with more than 2 cases that map to the same result.
6271 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6272                                  Constant *DefaultResult, Value *Condition,
6273                                  IRBuilder<> &Builder) {
6274   // If we are selecting between only two cases transform into a simple
6275   // select or a two-way select if default is possible.
6276   // Example:
6277   // switch (a) {                  %0 = icmp eq i32 %a, 10
6278   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6279   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6280   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6281   // }
6282   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6283       ResultVector[1].second.size() == 1) {
6284     ConstantInt *FirstCase = ResultVector[0].second[0];
6285     ConstantInt *SecondCase = ResultVector[1].second[0];
6286     Value *SelectValue = ResultVector[1].first;
6287     if (DefaultResult) {
6288       Value *ValueCompare =
6289           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6290       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6291                                          DefaultResult, "switch.select");
6292     }
6293     Value *ValueCompare =
6294         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6295     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6296                                 SelectValue, "switch.select");
6297   }
6298 
6299   // Handle the degenerate case where two cases have the same result value.
6300   if (ResultVector.size() == 1 && DefaultResult) {
6301     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6302     unsigned CaseCount = CaseValues.size();
6303     // n bits group cases map to the same result:
6304     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6305     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6306     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6307     if (isPowerOf2_32(CaseCount)) {
6308       ConstantInt *MinCaseVal = CaseValues[0];
6309       // Find mininal value.
6310       for (auto *Case : CaseValues)
6311         if (Case->getValue().slt(MinCaseVal->getValue()))
6312           MinCaseVal = Case;
6313 
6314       // Mark the bits case number touched.
6315       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6316       for (auto *Case : CaseValues)
6317         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6318 
6319       // Check if cases with the same result can cover all number
6320       // in touched bits.
6321       if (BitMask.popcount() == Log2_32(CaseCount)) {
6322         if (!MinCaseVal->isNullValue())
6323           Condition = Builder.CreateSub(Condition, MinCaseVal);
6324         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6325         Value *Cmp = Builder.CreateICmpEQ(
6326             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6327         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6328       }
6329     }
6330 
6331     // Handle the degenerate case where two cases have the same value.
6332     if (CaseValues.size() == 2) {
6333       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6334                                          "switch.selectcmp.case1");
6335       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6336                                          "switch.selectcmp.case2");
6337       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6338       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6339     }
6340   }
6341 
6342   return nullptr;
6343 }
6344 
6345 // Helper function to cleanup a switch instruction that has been converted into
6346 // a select, fixing up PHI nodes and basic blocks.
6347 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6348                                         Value *SelectValue,
6349                                         IRBuilder<> &Builder,
6350                                         DomTreeUpdater *DTU) {
6351   std::vector<DominatorTree::UpdateType> Updates;
6352 
6353   BasicBlock *SelectBB = SI->getParent();
6354   BasicBlock *DestBB = PHI->getParent();
6355 
6356   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6357     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6358   Builder.CreateBr(DestBB);
6359 
6360   // Remove the switch.
6361 
6362   PHI->removeIncomingValueIf(
6363       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6364   PHI->addIncoming(SelectValue, SelectBB);
6365 
6366   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6367   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6368     BasicBlock *Succ = SI->getSuccessor(i);
6369 
6370     if (Succ == DestBB)
6371       continue;
6372     Succ->removePredecessor(SelectBB);
6373     if (DTU && RemovedSuccessors.insert(Succ).second)
6374       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6375   }
6376   SI->eraseFromParent();
6377   if (DTU)
6378     DTU->applyUpdates(Updates);
6379 }
6380 
6381 /// If a switch is only used to initialize one or more phi nodes in a common
6382 /// successor block with only two different constant values, try to replace the
6383 /// switch with a select. Returns true if the fold was made.
6384 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6385                               DomTreeUpdater *DTU, const DataLayout &DL,
6386                               const TargetTransformInfo &TTI) {
6387   Value *const Cond = SI->getCondition();
6388   PHINode *PHI = nullptr;
6389   BasicBlock *CommonDest = nullptr;
6390   Constant *DefaultResult;
6391   SwitchCaseResultVectorTy UniqueResults;
6392   // Collect all the cases that will deliver the same value from the switch.
6393   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6394                              DL, TTI, /*MaxUniqueResults*/ 2))
6395     return false;
6396 
6397   assert(PHI != nullptr && "PHI for value select not found");
6398   Builder.SetInsertPoint(SI);
6399   Value *SelectValue =
6400       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6401   if (!SelectValue)
6402     return false;
6403 
6404   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6405   return true;
6406 }
6407 
6408 namespace {
6409 
6410 /// This class represents a lookup table that can be used to replace a switch.
6411 class SwitchLookupTable {
6412 public:
6413   /// Create a lookup table to use as a switch replacement with the contents
6414   /// of Values, using DefaultValue to fill any holes in the table.
6415   SwitchLookupTable(
6416       Module &M, uint64_t TableSize, ConstantInt *Offset,
6417       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6418       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6419 
6420   /// Build instructions with Builder to retrieve the value at
6421   /// the position given by Index in the lookup table.
6422   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6423 
6424   /// Return true if a table with TableSize elements of
6425   /// type ElementType would fit in a target-legal register.
6426   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6427                                  Type *ElementType);
6428 
6429 private:
6430   // Depending on the contents of the table, it can be represented in
6431   // different ways.
6432   enum {
6433     // For tables where each element contains the same value, we just have to
6434     // store that single value and return it for each lookup.
6435     SingleValueKind,
6436 
6437     // For tables where there is a linear relationship between table index
6438     // and values. We calculate the result with a simple multiplication
6439     // and addition instead of a table lookup.
6440     LinearMapKind,
6441 
6442     // For small tables with integer elements, we can pack them into a bitmap
6443     // that fits into a target-legal register. Values are retrieved by
6444     // shift and mask operations.
6445     BitMapKind,
6446 
6447     // The table is stored as an array of values. Values are retrieved by load
6448     // instructions from the table.
6449     ArrayKind
6450   } Kind;
6451 
6452   // For SingleValueKind, this is the single value.
6453   Constant *SingleValue = nullptr;
6454 
6455   // For BitMapKind, this is the bitmap.
6456   ConstantInt *BitMap = nullptr;
6457   IntegerType *BitMapElementTy = nullptr;
6458 
6459   // For LinearMapKind, these are the constants used to derive the value.
6460   ConstantInt *LinearOffset = nullptr;
6461   ConstantInt *LinearMultiplier = nullptr;
6462   bool LinearMapValWrapped = false;
6463 
6464   // For ArrayKind, this is the array.
6465   GlobalVariable *Array = nullptr;
6466 };
6467 
6468 } // end anonymous namespace
6469 
6470 SwitchLookupTable::SwitchLookupTable(
6471     Module &M, uint64_t TableSize, ConstantInt *Offset,
6472     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6473     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6474   assert(Values.size() && "Can't build lookup table without values!");
6475   assert(TableSize >= Values.size() && "Can't fit values in table!");
6476 
6477   // If all values in the table are equal, this is that value.
6478   SingleValue = Values.begin()->second;
6479 
6480   Type *ValueType = Values.begin()->second->getType();
6481 
6482   // Build up the table contents.
6483   SmallVector<Constant *, 64> TableContents(TableSize);
6484   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6485     ConstantInt *CaseVal = Values[I].first;
6486     Constant *CaseRes = Values[I].second;
6487     assert(CaseRes->getType() == ValueType);
6488 
6489     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6490     TableContents[Idx] = CaseRes;
6491 
6492     if (CaseRes != SingleValue)
6493       SingleValue = nullptr;
6494   }
6495 
6496   // Fill in any holes in the table with the default result.
6497   if (Values.size() < TableSize) {
6498     assert(DefaultValue &&
6499            "Need a default value to fill the lookup table holes.");
6500     assert(DefaultValue->getType() == ValueType);
6501     for (uint64_t I = 0; I < TableSize; ++I) {
6502       if (!TableContents[I])
6503         TableContents[I] = DefaultValue;
6504     }
6505 
6506     if (DefaultValue != SingleValue)
6507       SingleValue = nullptr;
6508   }
6509 
6510   // If each element in the table contains the same value, we only need to store
6511   // that single value.
6512   if (SingleValue) {
6513     Kind = SingleValueKind;
6514     return;
6515   }
6516 
6517   // Check if we can derive the value with a linear transformation from the
6518   // table index.
6519   if (isa<IntegerType>(ValueType)) {
6520     bool LinearMappingPossible = true;
6521     APInt PrevVal;
6522     APInt DistToPrev;
6523     // When linear map is monotonic and signed overflow doesn't happen on
6524     // maximum index, we can attach nsw on Add and Mul.
6525     bool NonMonotonic = false;
6526     assert(TableSize >= 2 && "Should be a SingleValue table.");
6527     // Check if there is the same distance between two consecutive values.
6528     for (uint64_t I = 0; I < TableSize; ++I) {
6529       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6530       if (!ConstVal) {
6531         // This is an undef. We could deal with it, but undefs in lookup tables
6532         // are very seldom. It's probably not worth the additional complexity.
6533         LinearMappingPossible = false;
6534         break;
6535       }
6536       const APInt &Val = ConstVal->getValue();
6537       if (I != 0) {
6538         APInt Dist = Val - PrevVal;
6539         if (I == 1) {
6540           DistToPrev = Dist;
6541         } else if (Dist != DistToPrev) {
6542           LinearMappingPossible = false;
6543           break;
6544         }
6545         NonMonotonic |=
6546             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6547       }
6548       PrevVal = Val;
6549     }
6550     if (LinearMappingPossible) {
6551       LinearOffset = cast<ConstantInt>(TableContents[0]);
6552       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6553       APInt M = LinearMultiplier->getValue();
6554       bool MayWrap = true;
6555       if (isIntN(M.getBitWidth(), TableSize - 1))
6556         (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6557       LinearMapValWrapped = NonMonotonic || MayWrap;
6558       Kind = LinearMapKind;
6559       ++NumLinearMaps;
6560       return;
6561     }
6562   }
6563 
6564   // If the type is integer and the table fits in a register, build a bitmap.
6565   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6566     IntegerType *IT = cast<IntegerType>(ValueType);
6567     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6568     for (uint64_t I = TableSize; I > 0; --I) {
6569       TableInt <<= IT->getBitWidth();
6570       // Insert values into the bitmap. Undef values are set to zero.
6571       if (!isa<UndefValue>(TableContents[I - 1])) {
6572         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6573         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6574       }
6575     }
6576     BitMap = ConstantInt::get(M.getContext(), TableInt);
6577     BitMapElementTy = IT;
6578     Kind = BitMapKind;
6579     ++NumBitMaps;
6580     return;
6581   }
6582 
6583   // Store the table in an array.
6584   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6585   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6586 
6587   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6588                              GlobalVariable::PrivateLinkage, Initializer,
6589                              "switch.table." + FuncName);
6590   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6591   // Set the alignment to that of an array items. We will be only loading one
6592   // value out of it.
6593   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6594   Kind = ArrayKind;
6595 }
6596 
6597 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6598   switch (Kind) {
6599   case SingleValueKind:
6600     return SingleValue;
6601   case LinearMapKind: {
6602     // Derive the result value from the input value.
6603     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6604                                           false, "switch.idx.cast");
6605     if (!LinearMultiplier->isOne())
6606       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6607                                  /*HasNUW = */ false,
6608                                  /*HasNSW = */ !LinearMapValWrapped);
6609 
6610     if (!LinearOffset->isZero())
6611       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6612                                  /*HasNUW = */ false,
6613                                  /*HasNSW = */ !LinearMapValWrapped);
6614     return Result;
6615   }
6616   case BitMapKind: {
6617     // Type of the bitmap (e.g. i59).
6618     IntegerType *MapTy = BitMap->getIntegerType();
6619 
6620     // Cast Index to the same type as the bitmap.
6621     // Note: The Index is <= the number of elements in the table, so
6622     // truncating it to the width of the bitmask is safe.
6623     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6624 
6625     // Multiply the shift amount by the element width. NUW/NSW can always be
6626     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6627     // BitMap's bit width.
6628     ShiftAmt = Builder.CreateMul(
6629         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6630         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6631 
6632     // Shift down.
6633     Value *DownShifted =
6634         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6635     // Mask off.
6636     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6637   }
6638   case ArrayKind: {
6639     // Make sure the table index will not overflow when treated as signed.
6640     IntegerType *IT = cast<IntegerType>(Index->getType());
6641     uint64_t TableSize =
6642         Array->getInitializer()->getType()->getArrayNumElements();
6643     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6644       Index = Builder.CreateZExt(
6645           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6646           "switch.tableidx.zext");
6647 
6648     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6649     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6650                                            GEPIndices, "switch.gep");
6651     return Builder.CreateLoad(
6652         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6653         "switch.load");
6654   }
6655   }
6656   llvm_unreachable("Unknown lookup table kind!");
6657 }
6658 
6659 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6660                                            uint64_t TableSize,
6661                                            Type *ElementType) {
6662   auto *IT = dyn_cast<IntegerType>(ElementType);
6663   if (!IT)
6664     return false;
6665   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6666   // are <= 15, we could try to narrow the type.
6667 
6668   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6669   if (TableSize >= UINT_MAX / IT->getBitWidth())
6670     return false;
6671   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6672 }
6673 
6674 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6675                                       const DataLayout &DL) {
6676   // Allow any legal type.
6677   if (TTI.isTypeLegal(Ty))
6678     return true;
6679 
6680   auto *IT = dyn_cast<IntegerType>(Ty);
6681   if (!IT)
6682     return false;
6683 
6684   // Also allow power of 2 integer types that have at least 8 bits and fit in
6685   // a register. These types are common in frontend languages and targets
6686   // usually support loads of these types.
6687   // TODO: We could relax this to any integer that fits in a register and rely
6688   // on ABI alignment and padding in the table to allow the load to be widened.
6689   // Or we could widen the constants and truncate the load.
6690   unsigned BitWidth = IT->getBitWidth();
6691   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6692          DL.fitsInLegalInteger(IT->getBitWidth());
6693 }
6694 
6695 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6696   // 40% is the default density for building a jump table in optsize/minsize
6697   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6698   // function was based on.
6699   const uint64_t MinDensity = 40;
6700 
6701   if (CaseRange >= UINT64_MAX / 100)
6702     return false; // Avoid multiplication overflows below.
6703 
6704   return NumCases * 100 >= CaseRange * MinDensity;
6705 }
6706 
6707 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6708   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6709   uint64_t Range = Diff + 1;
6710   if (Range < Diff)
6711     return false; // Overflow.
6712 
6713   return isSwitchDense(Values.size(), Range);
6714 }
6715 
6716 /// Determine whether a lookup table should be built for this switch, based on
6717 /// the number of cases, size of the table, and the types of the results.
6718 // TODO: We could support larger than legal types by limiting based on the
6719 // number of loads required and/or table size. If the constants are small we
6720 // could use smaller table entries and extend after the load.
6721 static bool
6722 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6723                        const TargetTransformInfo &TTI, const DataLayout &DL,
6724                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6725   if (SI->getNumCases() > TableSize)
6726     return false; // TableSize overflowed.
6727 
6728   bool AllTablesFitInRegister = true;
6729   bool HasIllegalType = false;
6730   for (const auto &I : ResultTypes) {
6731     Type *Ty = I.second;
6732 
6733     // Saturate this flag to true.
6734     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6735 
6736     // Saturate this flag to false.
6737     AllTablesFitInRegister =
6738         AllTablesFitInRegister &&
6739         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6740 
6741     // If both flags saturate, we're done. NOTE: This *only* works with
6742     // saturating flags, and all flags have to saturate first due to the
6743     // non-deterministic behavior of iterating over a dense map.
6744     if (HasIllegalType && !AllTablesFitInRegister)
6745       break;
6746   }
6747 
6748   // If each table would fit in a register, we should build it anyway.
6749   if (AllTablesFitInRegister)
6750     return true;
6751 
6752   // Don't build a table that doesn't fit in-register if it has illegal types.
6753   if (HasIllegalType)
6754     return false;
6755 
6756   return isSwitchDense(SI->getNumCases(), TableSize);
6757 }
6758 
6759 static bool shouldUseSwitchConditionAsTableIndex(
6760     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6761     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6762     const DataLayout &DL, const TargetTransformInfo &TTI) {
6763   if (MinCaseVal.isNullValue())
6764     return true;
6765   if (MinCaseVal.isNegative() ||
6766       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6767       !HasDefaultResults)
6768     return false;
6769   return all_of(ResultTypes, [&](const auto &KV) {
6770     return SwitchLookupTable::wouldFitInRegister(
6771         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6772         KV.second /* ResultType */);
6773   });
6774 }
6775 
6776 /// Try to reuse the switch table index compare. Following pattern:
6777 /// \code
6778 ///     if (idx < tablesize)
6779 ///        r = table[idx]; // table does not contain default_value
6780 ///     else
6781 ///        r = default_value;
6782 ///     if (r != default_value)
6783 ///        ...
6784 /// \endcode
6785 /// Is optimized to:
6786 /// \code
6787 ///     cond = idx < tablesize;
6788 ///     if (cond)
6789 ///        r = table[idx];
6790 ///     else
6791 ///        r = default_value;
6792 ///     if (cond)
6793 ///        ...
6794 /// \endcode
6795 /// Jump threading will then eliminate the second if(cond).
6796 static void reuseTableCompare(
6797     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6798     Constant *DefaultValue,
6799     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6800   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6801   if (!CmpInst)
6802     return;
6803 
6804   // We require that the compare is in the same block as the phi so that jump
6805   // threading can do its work afterwards.
6806   if (CmpInst->getParent() != PhiBlock)
6807     return;
6808 
6809   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6810   if (!CmpOp1)
6811     return;
6812 
6813   Value *RangeCmp = RangeCheckBranch->getCondition();
6814   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6815   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6816 
6817   // Check if the compare with the default value is constant true or false.
6818   const DataLayout &DL = PhiBlock->getDataLayout();
6819   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6820       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6821   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6822     return;
6823 
6824   // Check if the compare with the case values is distinct from the default
6825   // compare result.
6826   for (auto ValuePair : Values) {
6827     Constant *CaseConst = ConstantFoldCompareInstOperands(
6828         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6829     if (!CaseConst || CaseConst == DefaultConst ||
6830         (CaseConst != TrueConst && CaseConst != FalseConst))
6831       return;
6832   }
6833 
6834   // Check if the branch instruction dominates the phi node. It's a simple
6835   // dominance check, but sufficient for our needs.
6836   // Although this check is invariant in the calling loops, it's better to do it
6837   // at this late stage. Practically we do it at most once for a switch.
6838   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6839   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6840     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6841       return;
6842   }
6843 
6844   if (DefaultConst == FalseConst) {
6845     // The compare yields the same result. We can replace it.
6846     CmpInst->replaceAllUsesWith(RangeCmp);
6847     ++NumTableCmpReuses;
6848   } else {
6849     // The compare yields the same result, just inverted. We can replace it.
6850     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6851         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6852         RangeCheckBranch->getIterator());
6853     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6854     ++NumTableCmpReuses;
6855   }
6856 }
6857 
6858 /// If the switch is only used to initialize one or more phi nodes in a common
6859 /// successor block with different constant values, replace the switch with
6860 /// lookup tables.
6861 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6862                                 DomTreeUpdater *DTU, const DataLayout &DL,
6863                                 const TargetTransformInfo &TTI) {
6864   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6865 
6866   BasicBlock *BB = SI->getParent();
6867   Function *Fn = BB->getParent();
6868   // Only build lookup table when we have a target that supports it or the
6869   // attribute is not set.
6870   if (!TTI.shouldBuildLookupTables() ||
6871       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6872     return false;
6873 
6874   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6875   // split off a dense part and build a lookup table for that.
6876 
6877   // FIXME: This creates arrays of GEPs to constant strings, which means each
6878   // GEP needs a runtime relocation in PIC code. We should just build one big
6879   // string and lookup indices into that.
6880 
6881   // Ignore switches with less than three cases. Lookup tables will not make
6882   // them faster, so we don't analyze them.
6883   if (SI->getNumCases() < 3)
6884     return false;
6885 
6886   // Figure out the corresponding result for each case value and phi node in the
6887   // common destination, as well as the min and max case values.
6888   assert(!SI->cases().empty());
6889   SwitchInst::CaseIt CI = SI->case_begin();
6890   ConstantInt *MinCaseVal = CI->getCaseValue();
6891   ConstantInt *MaxCaseVal = CI->getCaseValue();
6892 
6893   BasicBlock *CommonDest = nullptr;
6894 
6895   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6896   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6897 
6898   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6899   SmallDenseMap<PHINode *, Type *> ResultTypes;
6900   SmallVector<PHINode *, 4> PHIs;
6901 
6902   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6903     ConstantInt *CaseVal = CI->getCaseValue();
6904     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6905       MinCaseVal = CaseVal;
6906     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6907       MaxCaseVal = CaseVal;
6908 
6909     // Resulting value at phi nodes for this case value.
6910     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6911     ResultsTy Results;
6912     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6913                         Results, DL, TTI))
6914       return false;
6915 
6916     // Append the result from this case to the list for each phi.
6917     for (const auto &I : Results) {
6918       PHINode *PHI = I.first;
6919       Constant *Value = I.second;
6920       if (!ResultLists.count(PHI))
6921         PHIs.push_back(PHI);
6922       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6923     }
6924   }
6925 
6926   // Keep track of the result types.
6927   for (PHINode *PHI : PHIs) {
6928     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6929   }
6930 
6931   uint64_t NumResults = ResultLists[PHIs[0]].size();
6932 
6933   // If the table has holes, we need a constant result for the default case
6934   // or a bitmask that fits in a register.
6935   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6936   bool HasDefaultResults =
6937       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6938                      DefaultResultsList, DL, TTI);
6939 
6940   for (const auto &I : DefaultResultsList) {
6941     PHINode *PHI = I.first;
6942     Constant *Result = I.second;
6943     DefaultResults[PHI] = Result;
6944   }
6945 
6946   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6947       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6948   uint64_t TableSize;
6949   if (UseSwitchConditionAsTableIndex)
6950     TableSize = MaxCaseVal->getLimitedValue() + 1;
6951   else
6952     TableSize =
6953         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6954 
6955   // If the default destination is unreachable, or if the lookup table covers
6956   // all values of the conditional variable, branch directly to the lookup table
6957   // BB. Otherwise, check that the condition is within the case range.
6958   bool DefaultIsReachable = !SI->defaultDestUndefined();
6959 
6960   bool TableHasHoles = (NumResults < TableSize);
6961 
6962   // If the table has holes but the default destination doesn't produce any
6963   // constant results, the lookup table entries corresponding to the holes will
6964   // contain undefined values.
6965   bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults;
6966 
6967   // If the default destination doesn't produce a constant result but is still
6968   // reachable, and the lookup table has holes, we need to use a mask to
6969   // determine if the current index should load from the lookup table or jump
6970   // to the default case.
6971   // The mask is unnecessary if the table has holes but the default destination
6972   // is unreachable, as in that case the holes must also be unreachable.
6973   bool NeedMask = AllHolesAreUndefined && DefaultIsReachable;
6974   if (NeedMask) {
6975     // As an extra penalty for the validity test we require more cases.
6976     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6977       return false;
6978     if (!DL.fitsInLegalInteger(TableSize))
6979       return false;
6980   }
6981 
6982   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6983     return false;
6984 
6985   std::vector<DominatorTree::UpdateType> Updates;
6986 
6987   // Compute the maximum table size representable by the integer type we are
6988   // switching upon.
6989   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6990   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6991   assert(MaxTableSize >= TableSize &&
6992          "It is impossible for a switch to have more entries than the max "
6993          "representable value of its input integer type's size.");
6994 
6995   // Create the BB that does the lookups.
6996   Module &Mod = *CommonDest->getParent()->getParent();
6997   BasicBlock *LookupBB = BasicBlock::Create(
6998       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6999 
7000   // Compute the table index value.
7001   Builder.SetInsertPoint(SI);
7002   Value *TableIndex;
7003   ConstantInt *TableIndexOffset;
7004   if (UseSwitchConditionAsTableIndex) {
7005     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
7006     TableIndex = SI->getCondition();
7007   } else {
7008     TableIndexOffset = MinCaseVal;
7009     // If the default is unreachable, all case values are s>= MinCaseVal. Then
7010     // we can try to attach nsw.
7011     bool MayWrap = true;
7012     if (!DefaultIsReachable) {
7013       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
7014       (void)Res;
7015     }
7016 
7017     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
7018                                    "switch.tableidx", /*HasNUW =*/false,
7019                                    /*HasNSW =*/!MayWrap);
7020   }
7021 
7022   BranchInst *RangeCheckBranch = nullptr;
7023 
7024   // Grow the table to cover all possible index values to avoid the range check.
7025   // It will use the default result to fill in the table hole later, so make
7026   // sure it exist.
7027   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
7028     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
7029     // Grow the table shouldn't have any size impact by checking
7030     // wouldFitInRegister.
7031     // TODO: Consider growing the table also when it doesn't fit in a register
7032     // if no optsize is specified.
7033     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
7034     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
7035           return SwitchLookupTable::wouldFitInRegister(
7036               DL, UpperBound, KV.second /* ResultType */);
7037         })) {
7038       // There may be some case index larger than the UpperBound (unreachable
7039       // case), so make sure the table size does not get smaller.
7040       TableSize = std::max(UpperBound, TableSize);
7041       // The default branch is unreachable after we enlarge the lookup table.
7042       // Adjust DefaultIsReachable to reuse code path.
7043       DefaultIsReachable = false;
7044     }
7045   }
7046 
7047   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7048   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7049     Builder.CreateBr(LookupBB);
7050     if (DTU)
7051       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7052     // Note: We call removeProdecessor later since we need to be able to get the
7053     // PHI value for the default case in case we're using a bit mask.
7054   } else {
7055     Value *Cmp = Builder.CreateICmpULT(
7056         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7057     RangeCheckBranch =
7058         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7059     if (DTU)
7060       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7061   }
7062 
7063   // Populate the BB that does the lookups.
7064   Builder.SetInsertPoint(LookupBB);
7065 
7066   if (NeedMask) {
7067     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7068     // re-purposed to do the hole check, and we create a new LookupBB.
7069     BasicBlock *MaskBB = LookupBB;
7070     MaskBB->setName("switch.hole_check");
7071     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7072                                   CommonDest->getParent(), CommonDest);
7073 
7074     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7075     // unnecessary illegal types.
7076     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7077     APInt MaskInt(TableSizePowOf2, 0);
7078     APInt One(TableSizePowOf2, 1);
7079     // Build bitmask; fill in a 1 bit for every case.
7080     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7081     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7082       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7083                          .getLimitedValue();
7084       MaskInt |= One << Idx;
7085     }
7086     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7087 
7088     // Get the TableIndex'th bit of the bitmask.
7089     // If this bit is 0 (meaning hole) jump to the default destination,
7090     // else continue with table lookup.
7091     IntegerType *MapTy = TableMask->getIntegerType();
7092     Value *MaskIndex =
7093         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7094     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7095     Value *LoBit = Builder.CreateTrunc(
7096         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7097     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7098     if (DTU) {
7099       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7100       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7101     }
7102     Builder.SetInsertPoint(LookupBB);
7103     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7104   }
7105 
7106   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7107     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7108     // do not delete PHINodes here.
7109     SI->getDefaultDest()->removePredecessor(BB,
7110                                             /*KeepOneInputPHIs=*/true);
7111     if (DTU)
7112       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7113   }
7114 
7115   for (PHINode *PHI : PHIs) {
7116     const ResultListTy &ResultList = ResultLists[PHI];
7117 
7118     // Use any value to fill the lookup table holes.
7119     Constant *DV =
7120         AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI];
7121     StringRef FuncName = Fn->getName();
7122     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7123                             DL, FuncName);
7124 
7125     Value *Result = Table.buildLookup(TableIndex, Builder);
7126 
7127     // Do a small peephole optimization: re-use the switch table compare if
7128     // possible.
7129     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7130       BasicBlock *PhiBlock = PHI->getParent();
7131       // Search for compare instructions which use the phi.
7132       for (auto *User : PHI->users()) {
7133         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7134       }
7135     }
7136 
7137     PHI->addIncoming(Result, LookupBB);
7138   }
7139 
7140   Builder.CreateBr(CommonDest);
7141   if (DTU)
7142     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7143 
7144   // Remove the switch.
7145   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7146   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7147     BasicBlock *Succ = SI->getSuccessor(i);
7148 
7149     if (Succ == SI->getDefaultDest())
7150       continue;
7151     Succ->removePredecessor(BB);
7152     if (DTU && RemovedSuccessors.insert(Succ).second)
7153       Updates.push_back({DominatorTree::Delete, BB, Succ});
7154   }
7155   SI->eraseFromParent();
7156 
7157   if (DTU)
7158     DTU->applyUpdates(Updates);
7159 
7160   ++NumLookupTables;
7161   if (NeedMask)
7162     ++NumLookupTablesHoles;
7163   return true;
7164 }
7165 
7166 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7167 /// of cases.
7168 ///
7169 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7170 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7171 ///
7172 /// This converts a sparse switch into a dense switch which allows better
7173 /// lowering and could also allow transforming into a lookup table.
7174 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7175                               const DataLayout &DL,
7176                               const TargetTransformInfo &TTI) {
7177   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7178   if (CondTy->getIntegerBitWidth() > 64 ||
7179       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7180     return false;
7181   // Only bother with this optimization if there are more than 3 switch cases;
7182   // SDAG will only bother creating jump tables for 4 or more cases.
7183   if (SI->getNumCases() < 4)
7184     return false;
7185 
7186   // This transform is agnostic to the signedness of the input or case values. We
7187   // can treat the case values as signed or unsigned. We can optimize more common
7188   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7189   // as signed.
7190   SmallVector<int64_t,4> Values;
7191   for (const auto &C : SI->cases())
7192     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7193   llvm::sort(Values);
7194 
7195   // If the switch is already dense, there's nothing useful to do here.
7196   if (isSwitchDense(Values))
7197     return false;
7198 
7199   // First, transform the values such that they start at zero and ascend.
7200   int64_t Base = Values[0];
7201   for (auto &V : Values)
7202     V -= (uint64_t)(Base);
7203 
7204   // Now we have signed numbers that have been shifted so that, given enough
7205   // precision, there are no negative values. Since the rest of the transform
7206   // is bitwise only, we switch now to an unsigned representation.
7207 
7208   // This transform can be done speculatively because it is so cheap - it
7209   // results in a single rotate operation being inserted.
7210 
7211   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7212   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7213   // less than 64.
7214   unsigned Shift = 64;
7215   for (auto &V : Values)
7216     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7217   assert(Shift < 64);
7218   if (Shift > 0)
7219     for (auto &V : Values)
7220       V = (int64_t)((uint64_t)V >> Shift);
7221 
7222   if (!isSwitchDense(Values))
7223     // Transform didn't create a dense switch.
7224     return false;
7225 
7226   // The obvious transform is to shift the switch condition right and emit a
7227   // check that the condition actually cleanly divided by GCD, i.e.
7228   //   C & (1 << Shift - 1) == 0
7229   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7230   //
7231   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7232   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7233   // are nonzero then the switch condition will be very large and will hit the
7234   // default case.
7235 
7236   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7237   Builder.SetInsertPoint(SI);
7238   Value *Sub =
7239       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7240   Value *Rot = Builder.CreateIntrinsic(
7241       Ty, Intrinsic::fshl,
7242       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7243   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7244 
7245   for (auto Case : SI->cases()) {
7246     auto *Orig = Case.getCaseValue();
7247     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true);
7248     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7249   }
7250   return true;
7251 }
7252 
7253 /// Tries to transform switch of powers of two to reduce switch range.
7254 /// For example, switch like:
7255 /// switch (C) { case 1: case 2: case 64: case 128: }
7256 /// will be transformed to:
7257 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7258 ///
7259 /// This transformation allows better lowering and could allow transforming into
7260 /// a lookup table.
7261 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7262                                         const DataLayout &DL,
7263                                         const TargetTransformInfo &TTI) {
7264   Value *Condition = SI->getCondition();
7265   LLVMContext &Context = SI->getContext();
7266   auto *CondTy = cast<IntegerType>(Condition->getType());
7267 
7268   if (CondTy->getIntegerBitWidth() > 64 ||
7269       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7270     return false;
7271 
7272   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7273       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7274                               {Condition, ConstantInt::getTrue(Context)}),
7275       TTI::TCK_SizeAndLatency);
7276 
7277   if (CttzIntrinsicCost > TTI::TCC_Basic)
7278     // Inserting intrinsic is too expensive.
7279     return false;
7280 
7281   // Only bother with this optimization if there are more than 3 switch cases.
7282   // SDAG will only bother creating jump tables for 4 or more cases.
7283   if (SI->getNumCases() < 4)
7284     return false;
7285 
7286   // We perform this optimization only for switches with
7287   // unreachable default case.
7288   // This assumtion will save us from checking if `Condition` is a power of two.
7289   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7290     return false;
7291 
7292   // Check that switch cases are powers of two.
7293   SmallVector<uint64_t, 4> Values;
7294   for (const auto &Case : SI->cases()) {
7295     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7296     if (llvm::has_single_bit(CaseValue))
7297       Values.push_back(CaseValue);
7298     else
7299       return false;
7300   }
7301 
7302   // isSwichDense requires case values to be sorted.
7303   llvm::sort(Values);
7304   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7305                                         llvm::countr_zero(Values.front()) + 1))
7306     // Transform is unable to generate dense switch.
7307     return false;
7308 
7309   Builder.SetInsertPoint(SI);
7310 
7311   // Replace each case with its trailing zeros number.
7312   for (auto &Case : SI->cases()) {
7313     auto *OrigValue = Case.getCaseValue();
7314     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7315                                    OrigValue->getValue().countr_zero()));
7316   }
7317 
7318   // Replace condition with its trailing zeros number.
7319   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7320       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7321 
7322   SI->setCondition(ConditionTrailingZeros);
7323 
7324   return true;
7325 }
7326 
7327 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7328 /// the same destination.
7329 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7330                                          DomTreeUpdater *DTU) {
7331   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7332   if (!Cmp || !Cmp->hasOneUse())
7333     return false;
7334 
7335   SmallVector<uint32_t, 4> Weights;
7336   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7337   if (!HasWeights)
7338     Weights.resize(4); // Avoid checking HasWeights everywhere.
7339 
7340   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7341   int64_t Res;
7342   BasicBlock *Succ, *OtherSucc;
7343   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7344   BasicBlock *Unreachable = nullptr;
7345 
7346   if (SI->getNumCases() == 2) {
7347     // Find which of 1, 0 or -1 is missing (handled by default dest).
7348     SmallSet<int64_t, 3> Missing;
7349     Missing.insert(1);
7350     Missing.insert(0);
7351     Missing.insert(-1);
7352 
7353     Succ = SI->getDefaultDest();
7354     SuccWeight = Weights[0];
7355     OtherSucc = nullptr;
7356     for (auto &Case : SI->cases()) {
7357       std::optional<int64_t> Val =
7358           Case.getCaseValue()->getValue().trySExtValue();
7359       if (!Val)
7360         return false;
7361       if (!Missing.erase(*Val))
7362         return false;
7363       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7364         return false;
7365       OtherSucc = Case.getCaseSuccessor();
7366       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7367     }
7368 
7369     assert(Missing.size() == 1 && "Should have one case left");
7370     Res = *Missing.begin();
7371   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7372     // Normalize so that Succ is taken once and OtherSucc twice.
7373     Unreachable = SI->getDefaultDest();
7374     Succ = OtherSucc = nullptr;
7375     for (auto &Case : SI->cases()) {
7376       BasicBlock *NewSucc = Case.getCaseSuccessor();
7377       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7378       if (!OtherSucc || OtherSucc == NewSucc) {
7379         OtherSucc = NewSucc;
7380         OtherSuccWeight += Weight;
7381       } else if (!Succ) {
7382         Succ = NewSucc;
7383         SuccWeight = Weight;
7384       } else if (Succ == NewSucc) {
7385         std::swap(Succ, OtherSucc);
7386         std::swap(SuccWeight, OtherSuccWeight);
7387       } else
7388         return false;
7389     }
7390     for (auto &Case : SI->cases()) {
7391       std::optional<int64_t> Val =
7392           Case.getCaseValue()->getValue().trySExtValue();
7393       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7394         return false;
7395       if (Case.getCaseSuccessor() == Succ) {
7396         Res = *Val;
7397         break;
7398       }
7399     }
7400   } else {
7401     return false;
7402   }
7403 
7404   // Determine predicate for the missing case.
7405   ICmpInst::Predicate Pred;
7406   switch (Res) {
7407   case 1:
7408     Pred = ICmpInst::ICMP_UGT;
7409     break;
7410   case 0:
7411     Pred = ICmpInst::ICMP_EQ;
7412     break;
7413   case -1:
7414     Pred = ICmpInst::ICMP_ULT;
7415     break;
7416   }
7417   if (Cmp->isSigned())
7418     Pred = ICmpInst::getSignedPredicate(Pred);
7419 
7420   MDNode *NewWeights = nullptr;
7421   if (HasWeights)
7422     NewWeights = MDBuilder(SI->getContext())
7423                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7424 
7425   BasicBlock *BB = SI->getParent();
7426   Builder.SetInsertPoint(SI->getIterator());
7427   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7428   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7429                        SI->getMetadata(LLVMContext::MD_unpredictable));
7430   OtherSucc->removePredecessor(BB);
7431   if (Unreachable)
7432     Unreachable->removePredecessor(BB);
7433   SI->eraseFromParent();
7434   Cmp->eraseFromParent();
7435   if (DTU && Unreachable)
7436     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7437   return true;
7438 }
7439 
7440 /// Checking whether two cases of SI are equal depends on the contents of the
7441 /// BasicBlock and the incoming values of their successor PHINodes.
7442 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid
7443 /// calling this function on each BasicBlock every time isEqual is called,
7444 /// especially since the same BasicBlock may be passed as an argument multiple
7445 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock ->
7446 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking
7447 /// of the incoming values.
7448 struct SwitchSuccWrapper {
7449   // Keep so we can use SwitchInst::setSuccessor to do the replacement. It won't
7450   // be important to equality though.
7451   unsigned SuccNum;
7452   BasicBlock *Dest;
7453   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs;
7454 };
7455 
7456 namespace llvm {
7457 template <> struct DenseMapInfo<const SwitchSuccWrapper *> {
7458   static const SwitchSuccWrapper *getEmptyKey() {
7459     return static_cast<SwitchSuccWrapper *>(
7460         DenseMapInfo<void *>::getEmptyKey());
7461   }
7462   static const SwitchSuccWrapper *getTombstoneKey() {
7463     return static_cast<SwitchSuccWrapper *>(
7464         DenseMapInfo<void *>::getTombstoneKey());
7465   }
7466   static unsigned getHashValue(const SwitchSuccWrapper *SSW) {
7467     BasicBlock *Succ = SSW->Dest;
7468     BranchInst *BI = cast<BranchInst>(Succ->getTerminator());
7469     assert(BI->isUnconditional() &&
7470            "Only supporting unconditional branches for now");
7471     assert(BI->getNumSuccessors() == 1 &&
7472            "Expected unconditional branches to have one successor");
7473     assert(Succ->size() == 1 && "Expected just a single branch in the BB");
7474 
7475     // Since we assume the BB is just a single BranchInst with a single
7476     // successor, we hash as the BB and the incoming Values of its successor
7477     // PHIs. Initially, we tried to just use the successor BB as the hash, but
7478     // including the incoming PHI values leads to better performance.
7479     // We also tried to build a map from BB -> Succs.IncomingValues ahead of
7480     // time and passing it in SwitchSuccWrapper, but this slowed down the
7481     // average compile time without having any impact on the worst case compile
7482     // time.
7483     BasicBlock *BB = BI->getSuccessor(0);
7484     SmallVector<Value *> PhiValsForBB;
7485     for (PHINode &Phi : BB->phis())
7486       PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]);
7487 
7488     return hash_combine(
7489         BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end()));
7490   }
7491   static bool isEqual(const SwitchSuccWrapper *LHS,
7492                       const SwitchSuccWrapper *RHS) {
7493     auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey();
7494     auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey();
7495     if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey)
7496       return LHS == RHS;
7497 
7498     BasicBlock *A = LHS->Dest;
7499     BasicBlock *B = RHS->Dest;
7500 
7501     // FIXME: we checked that the size of A and B are both 1 in
7502     // simplifyDuplicateSwitchArms to make the Case list smaller to
7503     // improve performance. If we decide to support BasicBlocks with more
7504     // than just a single instruction, we need to check that A.size() ==
7505     // B.size() here, and we need to check more than just the BranchInsts
7506     // for equality.
7507 
7508     BranchInst *ABI = cast<BranchInst>(A->getTerminator());
7509     BranchInst *BBI = cast<BranchInst>(B->getTerminator());
7510     assert(ABI->isUnconditional() && BBI->isUnconditional() &&
7511            "Only supporting unconditional branches for now");
7512     if (ABI->getSuccessor(0) != BBI->getSuccessor(0))
7513       return false;
7514 
7515     // Need to check that PHIs in successor have matching values
7516     BasicBlock *Succ = ABI->getSuccessor(0);
7517     for (PHINode &Phi : Succ->phis()) {
7518       auto &PredIVs = (*LHS->PhiPredIVs)[&Phi];
7519       if (PredIVs[A] != PredIVs[B])
7520         return false;
7521     }
7522 
7523     return true;
7524   }
7525 };
7526 } // namespace llvm
7527 
7528 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI,
7529                                                  DomTreeUpdater *DTU) {
7530   // Build Cases. Skip BBs that are not candidates for simplification. Mark
7531   // PHINodes which need to be processed into PhiPredIVs. We decide to process
7532   // an entire PHI at once after the loop, opposed to calling
7533   // getIncomingValueForBlock inside this loop, since each call to
7534   // getIncomingValueForBlock is O(|Preds|).
7535   SmallPtrSet<PHINode *, 8> Phis;
7536   SmallPtrSet<BasicBlock *, 8> Seen;
7537   DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs;
7538   SmallVector<SwitchSuccWrapper> Cases;
7539   Cases.reserve(SI->getNumSuccessors());
7540 
7541   for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) {
7542     BasicBlock *BB = SI->getSuccessor(I);
7543 
7544     // FIXME: Support more than just a single BranchInst. One way we could do
7545     // this is by taking a hashing approach of all insts in BB.
7546     if (BB->size() != 1)
7547       continue;
7548 
7549     // FIXME: This case needs some extra care because the terminators other than
7550     // SI need to be updated.
7551     if (BB->hasNPredecessorsOrMore(2))
7552       continue;
7553 
7554     // FIXME: Relax that the terminator is a BranchInst by checking for equality
7555     // on other kinds of terminators. We decide to only support unconditional
7556     // branches for now for compile time reasons.
7557     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
7558     if (!BI || BI->isConditional())
7559       continue;
7560 
7561     if (Seen.insert(BB).second) {
7562       // Keep track of which PHIs we need as keys in PhiPredIVs below.
7563       for (BasicBlock *Succ : BI->successors())
7564         for (PHINode &Phi : Succ->phis())
7565           Phis.insert(&Phi);
7566     }
7567     Cases.emplace_back(SwitchSuccWrapper{I, BB, &PhiPredIVs});
7568   }
7569 
7570   // Precompute a data structure to improve performance of isEqual for
7571   // SwitchSuccWrapper.
7572   PhiPredIVs.reserve(Phis.size());
7573   for (PHINode *Phi : Phis) {
7574     PhiPredIVs[Phi] =
7575         SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues());
7576     for (auto &IV : Phi->incoming_values())
7577       PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()});
7578   }
7579 
7580   // Build a set such that if the SwitchSuccWrapper exists in the set and
7581   // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper
7582   // which is not in the set should be replaced with the one in the set. If the
7583   // SwitchSuccWrapper is not in the set, then it should be added to the set so
7584   // other SwitchSuccWrappers can check against it in the same manner. We use
7585   // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass
7586   // around information to isEquality, getHashValue, and when doing the
7587   // replacement with better performance.
7588   DenseSet<const SwitchSuccWrapper *> ReplaceWith;
7589   ReplaceWith.reserve(Cases.size());
7590 
7591   SmallVector<DominatorTree::UpdateType> Updates;
7592   Updates.reserve(ReplaceWith.size());
7593   bool MadeChange = false;
7594   for (auto &SSW : Cases) {
7595     // SSW is a candidate for simplification. If we find a duplicate BB,
7596     // replace it.
7597     const auto [It, Inserted] = ReplaceWith.insert(&SSW);
7598     if (!Inserted) {
7599       // We know that SI's parent BB no longer dominates the old case successor
7600       // since we are making it dead.
7601       Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest});
7602       SI->setSuccessor(SSW.SuccNum, (*It)->Dest);
7603       MadeChange = true;
7604     }
7605   }
7606 
7607   if (DTU)
7608     DTU->applyUpdates(Updates);
7609 
7610   return MadeChange;
7611 }
7612 
7613 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7614   BasicBlock *BB = SI->getParent();
7615 
7616   if (isValueEqualityComparison(SI)) {
7617     // If we only have one predecessor, and if it is a branch on this value,
7618     // see if that predecessor totally determines the outcome of this switch.
7619     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7620       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7621         return requestResimplify();
7622 
7623     Value *Cond = SI->getCondition();
7624     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7625       if (simplifySwitchOnSelect(SI, Select))
7626         return requestResimplify();
7627 
7628     // If the block only contains the switch, see if we can fold the block
7629     // away into any preds.
7630     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7631       if (foldValueComparisonIntoPredecessors(SI, Builder))
7632         return requestResimplify();
7633   }
7634 
7635   // Try to transform the switch into an icmp and a branch.
7636   // The conversion from switch to comparison may lose information on
7637   // impossible switch values, so disable it early in the pipeline.
7638   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7639     return requestResimplify();
7640 
7641   // Remove unreachable cases.
7642   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7643     return requestResimplify();
7644 
7645   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7646     return requestResimplify();
7647 
7648   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7649     return requestResimplify();
7650 
7651   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7652     return requestResimplify();
7653 
7654   // The conversion from switch to lookup tables results in difficult-to-analyze
7655   // code and makes pruning branches much harder. This is a problem if the
7656   // switch expression itself can still be restricted as a result of inlining or
7657   // CVP. Therefore, only apply this transformation during late stages of the
7658   // optimisation pipeline.
7659   if (Options.ConvertSwitchToLookupTable &&
7660       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7661     return requestResimplify();
7662 
7663   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7664     return requestResimplify();
7665 
7666   if (reduceSwitchRange(SI, Builder, DL, TTI))
7667     return requestResimplify();
7668 
7669   if (HoistCommon &&
7670       hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts))
7671     return requestResimplify();
7672 
7673   if (simplifyDuplicateSwitchArms(SI, DTU))
7674     return requestResimplify();
7675 
7676   return false;
7677 }
7678 
7679 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7680   BasicBlock *BB = IBI->getParent();
7681   bool Changed = false;
7682 
7683   // Eliminate redundant destinations.
7684   SmallPtrSet<Value *, 8> Succs;
7685   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7686   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7687     BasicBlock *Dest = IBI->getDestination(i);
7688     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7689       if (!Dest->hasAddressTaken())
7690         RemovedSuccs.insert(Dest);
7691       Dest->removePredecessor(BB);
7692       IBI->removeDestination(i);
7693       --i;
7694       --e;
7695       Changed = true;
7696     }
7697   }
7698 
7699   if (DTU) {
7700     std::vector<DominatorTree::UpdateType> Updates;
7701     Updates.reserve(RemovedSuccs.size());
7702     for (auto *RemovedSucc : RemovedSuccs)
7703       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7704     DTU->applyUpdates(Updates);
7705   }
7706 
7707   if (IBI->getNumDestinations() == 0) {
7708     // If the indirectbr has no successors, change it to unreachable.
7709     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7710     eraseTerminatorAndDCECond(IBI);
7711     return true;
7712   }
7713 
7714   if (IBI->getNumDestinations() == 1) {
7715     // If the indirectbr has one successor, change it to a direct branch.
7716     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7717     eraseTerminatorAndDCECond(IBI);
7718     return true;
7719   }
7720 
7721   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7722     if (simplifyIndirectBrOnSelect(IBI, SI))
7723       return requestResimplify();
7724   }
7725   return Changed;
7726 }
7727 
7728 /// Given an block with only a single landing pad and a unconditional branch
7729 /// try to find another basic block which this one can be merged with.  This
7730 /// handles cases where we have multiple invokes with unique landing pads, but
7731 /// a shared handler.
7732 ///
7733 /// We specifically choose to not worry about merging non-empty blocks
7734 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7735 /// practice, the optimizer produces empty landing pad blocks quite frequently
7736 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7737 /// sinking in this file)
7738 ///
7739 /// This is primarily a code size optimization.  We need to avoid performing
7740 /// any transform which might inhibit optimization (such as our ability to
7741 /// specialize a particular handler via tail commoning).  We do this by not
7742 /// merging any blocks which require us to introduce a phi.  Since the same
7743 /// values are flowing through both blocks, we don't lose any ability to
7744 /// specialize.  If anything, we make such specialization more likely.
7745 ///
7746 /// TODO - This transformation could remove entries from a phi in the target
7747 /// block when the inputs in the phi are the same for the two blocks being
7748 /// merged.  In some cases, this could result in removal of the PHI entirely.
7749 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7750                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7751   auto Succ = BB->getUniqueSuccessor();
7752   assert(Succ);
7753   // If there's a phi in the successor block, we'd likely have to introduce
7754   // a phi into the merged landing pad block.
7755   if (isa<PHINode>(*Succ->begin()))
7756     return false;
7757 
7758   for (BasicBlock *OtherPred : predecessors(Succ)) {
7759     if (BB == OtherPred)
7760       continue;
7761     BasicBlock::iterator I = OtherPred->begin();
7762     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7763     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7764       continue;
7765     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7766       ;
7767     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7768     if (!BI2 || !BI2->isIdenticalTo(BI))
7769       continue;
7770 
7771     std::vector<DominatorTree::UpdateType> Updates;
7772 
7773     // We've found an identical block.  Update our predecessors to take that
7774     // path instead and make ourselves dead.
7775     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7776     for (BasicBlock *Pred : UniquePreds) {
7777       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7778       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7779              "unexpected successor");
7780       II->setUnwindDest(OtherPred);
7781       if (DTU) {
7782         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7783         Updates.push_back({DominatorTree::Delete, Pred, BB});
7784       }
7785     }
7786 
7787     // The debug info in OtherPred doesn't cover the merged control flow that
7788     // used to go through BB.  We need to delete it or update it.
7789     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7790       if (isa<DbgInfoIntrinsic>(Inst))
7791         Inst.eraseFromParent();
7792 
7793     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7794     for (BasicBlock *Succ : UniqueSuccs) {
7795       Succ->removePredecessor(BB);
7796       if (DTU)
7797         Updates.push_back({DominatorTree::Delete, BB, Succ});
7798     }
7799 
7800     IRBuilder<> Builder(BI);
7801     Builder.CreateUnreachable();
7802     BI->eraseFromParent();
7803     if (DTU)
7804       DTU->applyUpdates(Updates);
7805     return true;
7806   }
7807   return false;
7808 }
7809 
7810 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7811   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7812                                    : simplifyCondBranch(Branch, Builder);
7813 }
7814 
7815 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7816                                           IRBuilder<> &Builder) {
7817   BasicBlock *BB = BI->getParent();
7818   BasicBlock *Succ = BI->getSuccessor(0);
7819 
7820   // If the Terminator is the only non-phi instruction, simplify the block.
7821   // If LoopHeader is provided, check if the block or its successor is a loop
7822   // header. (This is for early invocations before loop simplify and
7823   // vectorization to keep canonical loop forms for nested loops. These blocks
7824   // can be eliminated when the pass is invoked later in the back-end.)
7825   // Note that if BB has only one predecessor then we do not introduce new
7826   // backedge, so we can eliminate BB.
7827   bool NeedCanonicalLoop =
7828       Options.NeedCanonicalLoop &&
7829       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7830        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7831   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7832   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7833       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7834     return true;
7835 
7836   // If the only instruction in the block is a seteq/setne comparison against a
7837   // constant, try to simplify the block.
7838   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7839     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7840       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7841         ;
7842       if (I->isTerminator() &&
7843           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7844         return true;
7845     }
7846 
7847   // See if we can merge an empty landing pad block with another which is
7848   // equivalent.
7849   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7850     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7851       ;
7852     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7853       return true;
7854   }
7855 
7856   // If this basic block is ONLY a compare and a branch, and if a predecessor
7857   // branches to us and our successor, fold the comparison into the
7858   // predecessor and use logical operations to update the incoming value
7859   // for PHI nodes in common successor.
7860   if (Options.SpeculateBlocks &&
7861       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7862                              Options.BonusInstThreshold))
7863     return requestResimplify();
7864   return false;
7865 }
7866 
7867 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7868   BasicBlock *PredPred = nullptr;
7869   for (auto *P : predecessors(BB)) {
7870     BasicBlock *PPred = P->getSinglePredecessor();
7871     if (!PPred || (PredPred && PredPred != PPred))
7872       return nullptr;
7873     PredPred = PPred;
7874   }
7875   return PredPred;
7876 }
7877 
7878 /// Fold the following pattern:
7879 /// bb0:
7880 ///   br i1 %cond1, label %bb1, label %bb2
7881 /// bb1:
7882 ///   br i1 %cond2, label %bb3, label %bb4
7883 /// bb2:
7884 ///   br i1 %cond2, label %bb4, label %bb3
7885 /// bb3:
7886 ///   ...
7887 /// bb4:
7888 ///   ...
7889 /// into
7890 /// bb0:
7891 ///   %cond = xor i1 %cond1, %cond2
7892 ///   br i1 %cond, label %bb4, label %bb3
7893 /// bb3:
7894 ///   ...
7895 /// bb4:
7896 ///   ...
7897 /// NOTE: %cond2 always dominates the terminator of bb0.
7898 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7899   BasicBlock *BB = BI->getParent();
7900   BasicBlock *BB1 = BI->getSuccessor(0);
7901   BasicBlock *BB2 = BI->getSuccessor(1);
7902   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7903     if (Succ == BB)
7904       return false;
7905     if (&Succ->front() != Succ->getTerminator())
7906       return false;
7907     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7908     if (!SuccBI || !SuccBI->isConditional())
7909       return false;
7910     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7911     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7912     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7913            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7914   };
7915   BranchInst *BB1BI, *BB2BI;
7916   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7917     return false;
7918 
7919   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7920       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7921       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7922     return false;
7923 
7924   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7925   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7926   IRBuilder<> Builder(BI);
7927   BI->setCondition(
7928       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7929   BB1->removePredecessor(BB);
7930   BI->setSuccessor(0, BB4);
7931   BB2->removePredecessor(BB);
7932   BI->setSuccessor(1, BB3);
7933   if (DTU) {
7934     SmallVector<DominatorTree::UpdateType, 4> Updates;
7935     Updates.push_back({DominatorTree::Delete, BB, BB1});
7936     Updates.push_back({DominatorTree::Insert, BB, BB4});
7937     Updates.push_back({DominatorTree::Delete, BB, BB2});
7938     Updates.push_back({DominatorTree::Insert, BB, BB3});
7939 
7940     DTU->applyUpdates(Updates);
7941   }
7942   bool HasWeight = false;
7943   uint64_t BBTWeight, BBFWeight;
7944   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
7945     HasWeight = true;
7946   else
7947     BBTWeight = BBFWeight = 1;
7948   uint64_t BB1TWeight, BB1FWeight;
7949   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
7950     HasWeight = true;
7951   else
7952     BB1TWeight = BB1FWeight = 1;
7953   uint64_t BB2TWeight, BB2FWeight;
7954   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
7955     HasWeight = true;
7956   else
7957     BB2TWeight = BB2FWeight = 1;
7958   if (HasWeight) {
7959     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
7960                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
7961     fitWeights(Weights);
7962     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
7963   }
7964   return true;
7965 }
7966 
7967 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7968   assert(
7969       !isa<ConstantInt>(BI->getCondition()) &&
7970       BI->getSuccessor(0) != BI->getSuccessor(1) &&
7971       "Tautological conditional branch should have been eliminated already.");
7972 
7973   BasicBlock *BB = BI->getParent();
7974   if (!Options.SimplifyCondBranch ||
7975       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7976     return false;
7977 
7978   // Conditional branch
7979   if (isValueEqualityComparison(BI)) {
7980     // If we only have one predecessor, and if it is a branch on this value,
7981     // see if that predecessor totally determines the outcome of this
7982     // switch.
7983     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7984       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7985         return requestResimplify();
7986 
7987     // This block must be empty, except for the setcond inst, if it exists.
7988     // Ignore dbg and pseudo intrinsics.
7989     auto I = BB->instructionsWithoutDebug(true).begin();
7990     if (&*I == BI) {
7991       if (foldValueComparisonIntoPredecessors(BI, Builder))
7992         return requestResimplify();
7993     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7994       ++I;
7995       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
7996         return requestResimplify();
7997     }
7998   }
7999 
8000   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
8001   if (simplifyBranchOnICmpChain(BI, Builder, DL))
8002     return true;
8003 
8004   // If this basic block has dominating predecessor blocks and the dominating
8005   // blocks' conditions imply BI's condition, we know the direction of BI.
8006   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
8007   if (Imp) {
8008     // Turn this into a branch on constant.
8009     auto *OldCond = BI->getCondition();
8010     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
8011                              : ConstantInt::getFalse(BB->getContext());
8012     BI->setCondition(TorF);
8013     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
8014     return requestResimplify();
8015   }
8016 
8017   // If this basic block is ONLY a compare and a branch, and if a predecessor
8018   // branches to us and one of our successors, fold the comparison into the
8019   // predecessor and use logical operations to pick the right destination.
8020   if (Options.SpeculateBlocks &&
8021       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
8022                              Options.BonusInstThreshold))
8023     return requestResimplify();
8024 
8025   // We have a conditional branch to two blocks that are only reachable
8026   // from BI.  We know that the condbr dominates the two blocks, so see if
8027   // there is any identical code in the "then" and "else" blocks.  If so, we
8028   // can hoist it up to the branching block.
8029   if (BI->getSuccessor(0)->getSinglePredecessor()) {
8030     if (BI->getSuccessor(1)->getSinglePredecessor()) {
8031       if (HoistCommon &&
8032           hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts))
8033         return requestResimplify();
8034     } else {
8035       // If Successor #1 has multiple preds, we may be able to conditionally
8036       // execute Successor #0 if it branches to Successor #1.
8037       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
8038       if (Succ0TI->getNumSuccessors() == 1 &&
8039           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
8040         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
8041           return requestResimplify();
8042     }
8043   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
8044     // If Successor #0 has multiple preds, we may be able to conditionally
8045     // execute Successor #1 if it branches to Successor #0.
8046     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
8047     if (Succ1TI->getNumSuccessors() == 1 &&
8048         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
8049       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
8050         return requestResimplify();
8051   }
8052 
8053   // If this is a branch on something for which we know the constant value in
8054   // predecessors (e.g. a phi node in the current block), thread control
8055   // through this block.
8056   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
8057     return requestResimplify();
8058 
8059   // Scan predecessor blocks for conditional branches.
8060   for (BasicBlock *Pred : predecessors(BB))
8061     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
8062       if (PBI != BI && PBI->isConditional())
8063         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
8064           return requestResimplify();
8065 
8066   // Look for diamond patterns.
8067   if (MergeCondStores)
8068     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
8069       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
8070         if (PBI != BI && PBI->isConditional())
8071           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
8072             return requestResimplify();
8073 
8074   // Look for nested conditional branches.
8075   if (mergeNestedCondBranch(BI, DTU))
8076     return requestResimplify();
8077 
8078   return false;
8079 }
8080 
8081 /// Check if passing a value to an instruction will cause undefined behavior.
8082 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
8083   Constant *C = dyn_cast<Constant>(V);
8084   if (!C)
8085     return false;
8086 
8087   if (I->use_empty())
8088     return false;
8089 
8090   if (C->isNullValue() || isa<UndefValue>(C)) {
8091     // Only look at the first use we can handle, avoid hurting compile time with
8092     // long uselists
8093     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
8094       auto *Use = cast<Instruction>(U);
8095       // Change this list when we want to add new instructions.
8096       switch (Use->getOpcode()) {
8097       default:
8098         return false;
8099       case Instruction::GetElementPtr:
8100       case Instruction::Ret:
8101       case Instruction::BitCast:
8102       case Instruction::Load:
8103       case Instruction::Store:
8104       case Instruction::Call:
8105       case Instruction::CallBr:
8106       case Instruction::Invoke:
8107       case Instruction::UDiv:
8108       case Instruction::URem:
8109         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
8110         // implemented to avoid code complexity as it is unclear how useful such
8111         // logic is.
8112       case Instruction::SDiv:
8113       case Instruction::SRem:
8114         return true;
8115       }
8116     });
8117     if (FindUse == I->user_end())
8118       return false;
8119     auto *Use = cast<Instruction>(*FindUse);
8120     // Bail out if Use is not in the same BB as I or Use == I or Use comes
8121     // before I in the block. The latter two can be the case if Use is a
8122     // PHI node.
8123     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
8124       return false;
8125 
8126     // Now make sure that there are no instructions in between that can alter
8127     // control flow (eg. calls)
8128     auto InstrRange =
8129         make_range(std::next(I->getIterator()), Use->getIterator());
8130     if (any_of(InstrRange, [](Instruction &I) {
8131           return !isGuaranteedToTransferExecutionToSuccessor(&I);
8132         }))
8133       return false;
8134 
8135     // Look through GEPs. A load from a GEP derived from NULL is still undefined
8136     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
8137       if (GEP->getPointerOperand() == I) {
8138         // The current base address is null, there are four cases to consider:
8139         // getelementptr (TY, null, 0)                 -> null
8140         // getelementptr (TY, null, not zero)          -> may be modified
8141         // getelementptr inbounds (TY, null, 0)        -> null
8142         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
8143         // undefined?
8144         if (!GEP->hasAllZeroIndices() &&
8145             (!GEP->isInBounds() ||
8146              NullPointerIsDefined(GEP->getFunction(),
8147                                   GEP->getPointerAddressSpace())))
8148           PtrValueMayBeModified = true;
8149         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
8150       }
8151 
8152     // Look through return.
8153     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
8154       bool HasNoUndefAttr =
8155           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
8156       // Return undefined to a noundef return value is undefined.
8157       if (isa<UndefValue>(C) && HasNoUndefAttr)
8158         return true;
8159       // Return null to a nonnull+noundef return value is undefined.
8160       if (C->isNullValue() && HasNoUndefAttr &&
8161           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
8162         return !PtrValueMayBeModified;
8163       }
8164     }
8165 
8166     // Load from null is undefined.
8167     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
8168       if (!LI->isVolatile())
8169         return !NullPointerIsDefined(LI->getFunction(),
8170                                      LI->getPointerAddressSpace());
8171 
8172     // Store to null is undefined.
8173     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
8174       if (!SI->isVolatile())
8175         return (!NullPointerIsDefined(SI->getFunction(),
8176                                       SI->getPointerAddressSpace())) &&
8177                SI->getPointerOperand() == I;
8178 
8179     // llvm.assume(false/undef) always triggers immediate UB.
8180     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
8181       // Ignore assume operand bundles.
8182       if (I == Assume->getArgOperand(0))
8183         return true;
8184     }
8185 
8186     if (auto *CB = dyn_cast<CallBase>(Use)) {
8187       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
8188         return false;
8189       // A call to null is undefined.
8190       if (CB->getCalledOperand() == I)
8191         return true;
8192 
8193       if (C->isNullValue()) {
8194         for (const llvm::Use &Arg : CB->args())
8195           if (Arg == I) {
8196             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8197             if (CB->isPassingUndefUB(ArgIdx) &&
8198                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
8199               // Passing null to a nonnnull+noundef argument is undefined.
8200               return !PtrValueMayBeModified;
8201             }
8202           }
8203       } else if (isa<UndefValue>(C)) {
8204         // Passing undef to a noundef argument is undefined.
8205         for (const llvm::Use &Arg : CB->args())
8206           if (Arg == I) {
8207             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8208             if (CB->isPassingUndefUB(ArgIdx)) {
8209               // Passing undef to a noundef argument is undefined.
8210               return true;
8211             }
8212           }
8213       }
8214     }
8215     // Div/Rem by zero is immediate UB
8216     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
8217       return true;
8218   }
8219   return false;
8220 }
8221 
8222 /// If BB has an incoming value that will always trigger undefined behavior
8223 /// (eg. null pointer dereference), remove the branch leading here.
8224 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8225                                               DomTreeUpdater *DTU,
8226                                               AssumptionCache *AC) {
8227   for (PHINode &PHI : BB->phis())
8228     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8229       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8230         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8231         Instruction *T = Predecessor->getTerminator();
8232         IRBuilder<> Builder(T);
8233         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8234           BB->removePredecessor(Predecessor);
8235           // Turn unconditional branches into unreachables and remove the dead
8236           // destination from conditional branches.
8237           if (BI->isUnconditional())
8238             Builder.CreateUnreachable();
8239           else {
8240             // Preserve guarding condition in assume, because it might not be
8241             // inferrable from any dominating condition.
8242             Value *Cond = BI->getCondition();
8243             CallInst *Assumption;
8244             if (BI->getSuccessor(0) == BB)
8245               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8246             else
8247               Assumption = Builder.CreateAssumption(Cond);
8248             if (AC)
8249               AC->registerAssumption(cast<AssumeInst>(Assumption));
8250             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8251                                                        : BI->getSuccessor(0));
8252           }
8253           BI->eraseFromParent();
8254           if (DTU)
8255             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8256           return true;
8257         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8258           // Redirect all branches leading to UB into
8259           // a newly created unreachable block.
8260           BasicBlock *Unreachable = BasicBlock::Create(
8261               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8262           Builder.SetInsertPoint(Unreachable);
8263           // The new block contains only one instruction: Unreachable
8264           Builder.CreateUnreachable();
8265           for (const auto &Case : SI->cases())
8266             if (Case.getCaseSuccessor() == BB) {
8267               BB->removePredecessor(Predecessor);
8268               Case.setSuccessor(Unreachable);
8269             }
8270           if (SI->getDefaultDest() == BB) {
8271             BB->removePredecessor(Predecessor);
8272             SI->setDefaultDest(Unreachable);
8273           }
8274 
8275           if (DTU)
8276             DTU->applyUpdates(
8277                 { { DominatorTree::Insert, Predecessor, Unreachable },
8278                   { DominatorTree::Delete, Predecessor, BB } });
8279           return true;
8280         }
8281       }
8282 
8283   return false;
8284 }
8285 
8286 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8287   bool Changed = false;
8288 
8289   assert(BB && BB->getParent() && "Block not embedded in function!");
8290   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8291 
8292   // Remove basic blocks that have no predecessors (except the entry block)...
8293   // or that just have themself as a predecessor.  These are unreachable.
8294   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8295       BB->getSinglePredecessor() == BB) {
8296     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8297     DeleteDeadBlock(BB, DTU);
8298     return true;
8299   }
8300 
8301   // Check to see if we can constant propagate this terminator instruction
8302   // away...
8303   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8304                                     /*TLI=*/nullptr, DTU);
8305 
8306   // Check for and eliminate duplicate PHI nodes in this block.
8307   Changed |= EliminateDuplicatePHINodes(BB);
8308 
8309   // Check for and remove branches that will always cause undefined behavior.
8310   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8311     return requestResimplify();
8312 
8313   // Merge basic blocks into their predecessor if there is only one distinct
8314   // pred, and if there is only one distinct successor of the predecessor, and
8315   // if there are no PHI nodes.
8316   if (MergeBlockIntoPredecessor(BB, DTU))
8317     return true;
8318 
8319   if (SinkCommon && Options.SinkCommonInsts)
8320     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8321         mergeCompatibleInvokes(BB, DTU)) {
8322       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8323       // so we may now how duplicate PHI's.
8324       // Let's rerun EliminateDuplicatePHINodes() first,
8325       // before foldTwoEntryPHINode() potentially converts them into select's,
8326       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8327       return true;
8328     }
8329 
8330   IRBuilder<> Builder(BB);
8331 
8332   if (Options.SpeculateBlocks &&
8333       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8334     // If there is a trivial two-entry PHI node in this basic block, and we can
8335     // eliminate it, do so now.
8336     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8337       if (PN->getNumIncomingValues() == 2)
8338         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8339                                 Options.SpeculateUnpredictables))
8340           return true;
8341   }
8342 
8343   Instruction *Terminator = BB->getTerminator();
8344   Builder.SetInsertPoint(Terminator);
8345   switch (Terminator->getOpcode()) {
8346   case Instruction::Br:
8347     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8348     break;
8349   case Instruction::Resume:
8350     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8351     break;
8352   case Instruction::CleanupRet:
8353     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8354     break;
8355   case Instruction::Switch:
8356     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8357     break;
8358   case Instruction::Unreachable:
8359     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8360     break;
8361   case Instruction::IndirectBr:
8362     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8363     break;
8364   }
8365 
8366   return Changed;
8367 }
8368 
8369 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8370   bool Changed = false;
8371 
8372   // Repeated simplify BB as long as resimplification is requested.
8373   do {
8374     Resimplify = false;
8375 
8376     // Perform one round of simplifcation. Resimplify flag will be set if
8377     // another iteration is requested.
8378     Changed |= simplifyOnce(BB);
8379   } while (Resimplify);
8380 
8381   return Changed;
8382 }
8383 
8384 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8385                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8386                        ArrayRef<WeakVH> LoopHeaders) {
8387   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8388                         Options)
8389       .run(BB);
8390 }
8391