xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 30cdf1e959d2e4dee1c871ff37470dcdb7e8d099)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/MemorySSA.h"
32 #include "llvm/Analysis/MemorySSAUpdater.h"
33 #include "llvm/Analysis/TargetTransformInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/NoFolder.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Use.h"
63 #include "llvm/IR/User.h"
64 #include "llvm/IR/Value.h"
65 #include "llvm/IR/ValueHandle.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
75 #include "llvm/Transforms/Utils/Local.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <climits>
80 #include <cstddef>
81 #include <cstdint>
82 #include <iterator>
83 #include <map>
84 #include <optional>
85 #include <set>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace PatternMatch;
92 
93 #define DEBUG_TYPE "simplifycfg"
94 
95 cl::opt<bool> llvm::RequireAndPreserveDomTree(
96     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
97 
98     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
99              "into preserving DomTree,"));
100 
101 // Chosen as 2 so as to be cheap, but still to have enough power to fold
102 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
103 // To catch this, we need to fold a compare and a select, hence '2' being the
104 // minimum reasonable default.
105 static cl::opt<unsigned> PHINodeFoldingThreshold(
106     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
107     cl::desc(
108         "Control the amount of phi node folding to perform (default = 2)"));
109 
110 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
111     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
112     cl::desc("Control the maximal total instruction cost that we are willing "
113              "to speculatively execute to fold a 2-entry PHI node into a "
114              "select (default = 4)"));
115 
116 static cl::opt<bool>
117     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
118                 cl::desc("Hoist common instructions up to the parent block"));
119 
120 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
121     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
122     cl::init(true),
123     cl::desc("Hoist loads/stores if the target supports "
124              "conditional faulting"));
125 
126 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
127     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
128     cl::desc("Control the maximal conditonal load/store that we are willing "
129              "to speculatively execute to eliminate conditional branch "
130              "(default = 6)"));
131 
132 static cl::opt<unsigned>
133     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
134                          cl::init(20),
135                          cl::desc("Allow reordering across at most this many "
136                                   "instructions when hoisting"));
137 
138 static cl::opt<bool>
139     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
140                cl::desc("Sink common instructions down to the end block"));
141 
142 static cl::opt<bool> HoistCondStores(
143     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
144     cl::desc("Hoist conditional stores if an unconditional store precedes"));
145 
146 static cl::opt<bool> MergeCondStores(
147     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
148     cl::desc("Hoist conditional stores even if an unconditional store does not "
149              "precede - hoist multiple conditional stores into a single "
150              "predicated store"));
151 
152 static cl::opt<bool> MergeCondStoresAggressively(
153     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
154     cl::desc("When merging conditional stores, do so even if the resultant "
155              "basic blocks are unlikely to be if-converted as a result"));
156 
157 static cl::opt<bool> SpeculateOneExpensiveInst(
158     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
159     cl::desc("Allow exactly one expensive instruction to be speculatively "
160              "executed"));
161 
162 static cl::opt<unsigned> MaxSpeculationDepth(
163     "max-speculation-depth", cl::Hidden, cl::init(10),
164     cl::desc("Limit maximum recursion depth when calculating costs of "
165              "speculatively executed instructions"));
166 
167 static cl::opt<int>
168     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
169                       cl::init(10),
170                       cl::desc("Max size of a block which is still considered "
171                                "small enough to thread through"));
172 
173 // Two is chosen to allow one negation and a logical combine.
174 static cl::opt<unsigned>
175     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
176                         cl::init(2),
177                         cl::desc("Maximum cost of combining conditions when "
178                                  "folding branches"));
179 
180 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
181     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
182     cl::init(2),
183     cl::desc("Multiplier to apply to threshold when determining whether or not "
184              "to fold branch to common destination when vector operations are "
185              "present"));
186 
187 static cl::opt<bool> EnableMergeCompatibleInvokes(
188     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
189     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
190 
191 static cl::opt<unsigned> MaxSwitchCasesPerResult(
192     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
193     cl::desc("Limit cases to analyze when converting a switch to select"));
194 
195 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
196 STATISTIC(NumLinearMaps,
197           "Number of switch instructions turned into linear mapping");
198 STATISTIC(NumLookupTables,
199           "Number of switch instructions turned into lookup tables");
200 STATISTIC(
201     NumLookupTablesHoles,
202     "Number of switch instructions turned into lookup tables (holes checked)");
203 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
204 STATISTIC(NumFoldValueComparisonIntoPredecessors,
205           "Number of value comparisons folded into predecessor basic blocks");
206 STATISTIC(NumFoldBranchToCommonDest,
207           "Number of branches folded into predecessor basic block");
208 STATISTIC(
209     NumHoistCommonCode,
210     "Number of common instruction 'blocks' hoisted up to the begin block");
211 STATISTIC(NumHoistCommonInstrs,
212           "Number of common instructions hoisted up to the begin block");
213 STATISTIC(NumSinkCommonCode,
214           "Number of common instruction 'blocks' sunk down to the end block");
215 STATISTIC(NumSinkCommonInstrs,
216           "Number of common instructions sunk down to the end block");
217 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
218 STATISTIC(NumInvokes,
219           "Number of invokes with empty resume blocks simplified into calls");
220 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
221 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
222 
223 namespace {
224 
225 // The first field contains the value that the switch produces when a certain
226 // case group is selected, and the second field is a vector containing the
227 // cases composing the case group.
228 using SwitchCaseResultVectorTy =
229     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
230 
231 // The first field contains the phi node that generates a result of the switch
232 // and the second field contains the value generated for a certain case in the
233 // switch for that PHI.
234 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
235 
236 /// ValueEqualityComparisonCase - Represents a case of a switch.
237 struct ValueEqualityComparisonCase {
238   ConstantInt *Value;
239   BasicBlock *Dest;
240 
241   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
242       : Value(Value), Dest(Dest) {}
243 
244   bool operator<(ValueEqualityComparisonCase RHS) const {
245     // Comparing pointers is ok as we only rely on the order for uniquing.
246     return Value < RHS.Value;
247   }
248 
249   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
250 };
251 
252 class SimplifyCFGOpt {
253   const TargetTransformInfo &TTI;
254   DomTreeUpdater *DTU;
255   const DataLayout &DL;
256   ArrayRef<WeakVH> LoopHeaders;
257   const SimplifyCFGOptions &Options;
258   bool Resimplify;
259 
260   Value *isValueEqualityComparison(Instruction *TI);
261   BasicBlock *getValueEqualityComparisonCases(
262       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
263   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
264                                                      BasicBlock *Pred,
265                                                      IRBuilder<> &Builder);
266   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
267                                                     Instruction *PTI,
268                                                     IRBuilder<> &Builder);
269   bool foldValueComparisonIntoPredecessors(Instruction *TI,
270                                            IRBuilder<> &Builder);
271 
272   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
273   bool simplifySingleResume(ResumeInst *RI);
274   bool simplifyCommonResume(ResumeInst *RI);
275   bool simplifyCleanupReturn(CleanupReturnInst *RI);
276   bool simplifyUnreachable(UnreachableInst *UI);
277   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
278   bool simplifyIndirectBr(IndirectBrInst *IBI);
279   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
280   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
281   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
282 
283   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
284                                              IRBuilder<> &Builder);
285 
286   bool hoistCommonCodeFromSuccessors(BasicBlock *BB, bool EqTermsOnly);
287   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
288       Instruction *TI, Instruction *I1,
289       SmallVectorImpl<Instruction *> &OtherSuccTIs);
290   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
291   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
292                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
293                                   uint32_t TrueWeight, uint32_t FalseWeight);
294   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
295                                  const DataLayout &DL);
296   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
297   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
298   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
299 
300 public:
301   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
302                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
303                  const SimplifyCFGOptions &Opts)
304       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
305     assert((!DTU || !DTU->hasPostDomTree()) &&
306            "SimplifyCFG is not yet capable of maintaining validity of a "
307            "PostDomTree, so don't ask for it.");
308   }
309 
310   bool simplifyOnce(BasicBlock *BB);
311   bool run(BasicBlock *BB);
312 
313   // Helper to set Resimplify and return change indication.
314   bool requestResimplify() {
315     Resimplify = true;
316     return true;
317   }
318 };
319 
320 } // end anonymous namespace
321 
322 /// Return true if all the PHI nodes in the basic block \p BB
323 /// receive compatible (identical) incoming values when coming from
324 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
325 ///
326 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
327 /// is provided, and *both* of the values are present in the set,
328 /// then they are considered equal.
329 static bool incomingValuesAreCompatible(
330     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
331     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
332   assert(IncomingBlocks.size() == 2 &&
333          "Only for a pair of incoming blocks at the time!");
334 
335   // FIXME: it is okay if one of the incoming values is an `undef` value,
336   //        iff the other incoming value is guaranteed to be a non-poison value.
337   // FIXME: it is okay if one of the incoming values is a `poison` value.
338   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
339     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
340     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
341     if (IV0 == IV1)
342       return true;
343     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
344         EquivalenceSet->contains(IV1))
345       return true;
346     return false;
347   });
348 }
349 
350 /// Return true if it is safe to merge these two
351 /// terminator instructions together.
352 static bool
353 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
354                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
355   if (SI1 == SI2)
356     return false; // Can't merge with self!
357 
358   // It is not safe to merge these two switch instructions if they have a common
359   // successor, and if that successor has a PHI node, and if *that* PHI node has
360   // conflicting incoming values from the two switch blocks.
361   BasicBlock *SI1BB = SI1->getParent();
362   BasicBlock *SI2BB = SI2->getParent();
363 
364   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
365   bool Fail = false;
366   for (BasicBlock *Succ : successors(SI2BB)) {
367     if (!SI1Succs.count(Succ))
368       continue;
369     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
370       continue;
371     Fail = true;
372     if (FailBlocks)
373       FailBlocks->insert(Succ);
374     else
375       break;
376   }
377 
378   return !Fail;
379 }
380 
381 /// Update PHI nodes in Succ to indicate that there will now be entries in it
382 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
383 /// will be the same as those coming in from ExistPred, an existing predecessor
384 /// of Succ.
385 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
386                                   BasicBlock *ExistPred,
387                                   MemorySSAUpdater *MSSAU = nullptr) {
388   for (PHINode &PN : Succ->phis())
389     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
390   if (MSSAU)
391     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
392       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
393 }
394 
395 /// Compute an abstract "cost" of speculating the given instruction,
396 /// which is assumed to be safe to speculate. TCC_Free means cheap,
397 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
398 /// expensive.
399 static InstructionCost computeSpeculationCost(const User *I,
400                                               const TargetTransformInfo &TTI) {
401   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
402 }
403 
404 /// If we have a merge point of an "if condition" as accepted above,
405 /// return true if the specified value dominates the block.  We
406 /// don't handle the true generality of domination here, just a special case
407 /// which works well enough for us.
408 ///
409 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
410 /// see if V (which must be an instruction) and its recursive operands
411 /// that do not dominate BB have a combined cost lower than Budget and
412 /// are non-trapping.  If both are true, the instruction is inserted into the
413 /// set and true is returned.
414 ///
415 /// The cost for most non-trapping instructions is defined as 1 except for
416 /// Select whose cost is 2.
417 ///
418 /// After this function returns, Cost is increased by the cost of
419 /// V plus its non-dominating operands.  If that cost is greater than
420 /// Budget, false is returned and Cost is undefined.
421 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
422                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
423                                 InstructionCost &Cost, InstructionCost Budget,
424                                 const TargetTransformInfo &TTI,
425                                 AssumptionCache *AC, unsigned Depth = 0) {
426   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
427   // so limit the recursion depth.
428   // TODO: While this recursion limit does prevent pathological behavior, it
429   // would be better to track visited instructions to avoid cycles.
430   if (Depth == MaxSpeculationDepth)
431     return false;
432 
433   Instruction *I = dyn_cast<Instruction>(V);
434   if (!I) {
435     // Non-instructions dominate all instructions and can be executed
436     // unconditionally.
437     return true;
438   }
439   BasicBlock *PBB = I->getParent();
440 
441   // We don't want to allow weird loops that might have the "if condition" in
442   // the bottom of this block.
443   if (PBB == BB)
444     return false;
445 
446   // If this instruction is defined in a block that contains an unconditional
447   // branch to BB, then it must be in the 'conditional' part of the "if
448   // statement".  If not, it definitely dominates the region.
449   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
450   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
451     return true;
452 
453   // If we have seen this instruction before, don't count it again.
454   if (AggressiveInsts.count(I))
455     return true;
456 
457   // Okay, it looks like the instruction IS in the "condition".  Check to
458   // see if it's a cheap instruction to unconditionally compute, and if it
459   // only uses stuff defined outside of the condition.  If so, hoist it out.
460   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
461     return false;
462 
463   Cost += computeSpeculationCost(I, TTI);
464 
465   // Allow exactly one instruction to be speculated regardless of its cost
466   // (as long as it is safe to do so).
467   // This is intended to flatten the CFG even if the instruction is a division
468   // or other expensive operation. The speculation of an expensive instruction
469   // is expected to be undone in CodeGenPrepare if the speculation has not
470   // enabled further IR optimizations.
471   if (Cost > Budget &&
472       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
473        !Cost.isValid()))
474     return false;
475 
476   // Okay, we can only really hoist these out if their operands do
477   // not take us over the cost threshold.
478   for (Use &Op : I->operands())
479     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
480                              TTI, AC, Depth + 1))
481       return false;
482   // Okay, it's safe to do this!  Remember this instruction.
483   AggressiveInsts.insert(I);
484   return true;
485 }
486 
487 /// Extract ConstantInt from value, looking through IntToPtr
488 /// and PointerNullValue. Return NULL if value is not a constant int.
489 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
490   // Normal constant int.
491   ConstantInt *CI = dyn_cast<ConstantInt>(V);
492   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
493       DL.isNonIntegralPointerType(V->getType()))
494     return CI;
495 
496   // This is some kind of pointer constant. Turn it into a pointer-sized
497   // ConstantInt if possible.
498   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
499 
500   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
501   if (isa<ConstantPointerNull>(V))
502     return ConstantInt::get(PtrTy, 0);
503 
504   // IntToPtr const int.
505   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
506     if (CE->getOpcode() == Instruction::IntToPtr)
507       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
508         // The constant is very likely to have the right type already.
509         if (CI->getType() == PtrTy)
510           return CI;
511         else
512           return cast<ConstantInt>(
513               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
514       }
515   return nullptr;
516 }
517 
518 namespace {
519 
520 /// Given a chain of or (||) or and (&&) comparison of a value against a
521 /// constant, this will try to recover the information required for a switch
522 /// structure.
523 /// It will depth-first traverse the chain of comparison, seeking for patterns
524 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
525 /// representing the different cases for the switch.
526 /// Note that if the chain is composed of '||' it will build the set of elements
527 /// that matches the comparisons (i.e. any of this value validate the chain)
528 /// while for a chain of '&&' it will build the set elements that make the test
529 /// fail.
530 struct ConstantComparesGatherer {
531   const DataLayout &DL;
532 
533   /// Value found for the switch comparison
534   Value *CompValue = nullptr;
535 
536   /// Extra clause to be checked before the switch
537   Value *Extra = nullptr;
538 
539   /// Set of integers to match in switch
540   SmallVector<ConstantInt *, 8> Vals;
541 
542   /// Number of comparisons matched in the and/or chain
543   unsigned UsedICmps = 0;
544 
545   /// Construct and compute the result for the comparison instruction Cond
546   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
547     gather(Cond);
548   }
549 
550   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
551   ConstantComparesGatherer &
552   operator=(const ConstantComparesGatherer &) = delete;
553 
554 private:
555   /// Try to set the current value used for the comparison, it succeeds only if
556   /// it wasn't set before or if the new value is the same as the old one
557   bool setValueOnce(Value *NewVal) {
558     if (CompValue && CompValue != NewVal)
559       return false;
560     CompValue = NewVal;
561     return (CompValue != nullptr);
562   }
563 
564   /// Try to match Instruction "I" as a comparison against a constant and
565   /// populates the array Vals with the set of values that match (or do not
566   /// match depending on isEQ).
567   /// Return false on failure. On success, the Value the comparison matched
568   /// against is placed in CompValue.
569   /// If CompValue is already set, the function is expected to fail if a match
570   /// is found but the value compared to is different.
571   bool matchInstruction(Instruction *I, bool isEQ) {
572     // If this is an icmp against a constant, handle this as one of the cases.
573     ICmpInst *ICI;
574     ConstantInt *C;
575     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
576           (C = getConstantInt(I->getOperand(1), DL)))) {
577       return false;
578     }
579 
580     Value *RHSVal;
581     const APInt *RHSC;
582 
583     // Pattern match a special case
584     // (x & ~2^z) == y --> x == y || x == y|2^z
585     // This undoes a transformation done by instcombine to fuse 2 compares.
586     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
587       // It's a little bit hard to see why the following transformations are
588       // correct. Here is a CVC3 program to verify them for 64-bit values:
589 
590       /*
591          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
592          x    : BITVECTOR(64);
593          y    : BITVECTOR(64);
594          z    : BITVECTOR(64);
595          mask : BITVECTOR(64) = BVSHL(ONE, z);
596          QUERY( (y & ~mask = y) =>
597                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
598          );
599          QUERY( (y |  mask = y) =>
600                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
601          );
602       */
603 
604       // Please note that each pattern must be a dual implication (<--> or
605       // iff). One directional implication can create spurious matches. If the
606       // implication is only one-way, an unsatisfiable condition on the left
607       // side can imply a satisfiable condition on the right side. Dual
608       // implication ensures that satisfiable conditions are transformed to
609       // other satisfiable conditions and unsatisfiable conditions are
610       // transformed to other unsatisfiable conditions.
611 
612       // Here is a concrete example of a unsatisfiable condition on the left
613       // implying a satisfiable condition on the right:
614       //
615       // mask = (1 << z)
616       // (x & ~mask) == y  --> (x == y || x == (y | mask))
617       //
618       // Substituting y = 3, z = 0 yields:
619       // (x & -2) == 3 --> (x == 3 || x == 2)
620 
621       // Pattern match a special case:
622       /*
623         QUERY( (y & ~mask = y) =>
624                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
625         );
626       */
627       if (match(ICI->getOperand(0),
628                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
629         APInt Mask = ~*RHSC;
630         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
631           // If we already have a value for the switch, it has to match!
632           if (!setValueOnce(RHSVal))
633             return false;
634 
635           Vals.push_back(C);
636           Vals.push_back(
637               ConstantInt::get(C->getContext(),
638                                C->getValue() | Mask));
639           UsedICmps++;
640           return true;
641         }
642       }
643 
644       // Pattern match a special case:
645       /*
646         QUERY( (y |  mask = y) =>
647                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
648         );
649       */
650       if (match(ICI->getOperand(0),
651                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
652         APInt Mask = *RHSC;
653         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
654           // If we already have a value for the switch, it has to match!
655           if (!setValueOnce(RHSVal))
656             return false;
657 
658           Vals.push_back(C);
659           Vals.push_back(ConstantInt::get(C->getContext(),
660                                           C->getValue() & ~Mask));
661           UsedICmps++;
662           return true;
663         }
664       }
665 
666       // If we already have a value for the switch, it has to match!
667       if (!setValueOnce(ICI->getOperand(0)))
668         return false;
669 
670       UsedICmps++;
671       Vals.push_back(C);
672       return ICI->getOperand(0);
673     }
674 
675     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
676     ConstantRange Span =
677         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
678 
679     // Shift the range if the compare is fed by an add. This is the range
680     // compare idiom as emitted by instcombine.
681     Value *CandidateVal = I->getOperand(0);
682     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
683       Span = Span.subtract(*RHSC);
684       CandidateVal = RHSVal;
685     }
686 
687     // If this is an and/!= check, then we are looking to build the set of
688     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
689     // x != 0 && x != 1.
690     if (!isEQ)
691       Span = Span.inverse();
692 
693     // If there are a ton of values, we don't want to make a ginormous switch.
694     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
695       return false;
696     }
697 
698     // If we already have a value for the switch, it has to match!
699     if (!setValueOnce(CandidateVal))
700       return false;
701 
702     // Add all values from the range to the set
703     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
704       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
705 
706     UsedICmps++;
707     return true;
708   }
709 
710   /// Given a potentially 'or'd or 'and'd together collection of icmp
711   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
712   /// the value being compared, and stick the list constants into the Vals
713   /// vector.
714   /// One "Extra" case is allowed to differ from the other.
715   void gather(Value *V) {
716     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
717 
718     // Keep a stack (SmallVector for efficiency) for depth-first traversal
719     SmallVector<Value *, 8> DFT;
720     SmallPtrSet<Value *, 8> Visited;
721 
722     // Initialize
723     Visited.insert(V);
724     DFT.push_back(V);
725 
726     while (!DFT.empty()) {
727       V = DFT.pop_back_val();
728 
729       if (Instruction *I = dyn_cast<Instruction>(V)) {
730         // If it is a || (or && depending on isEQ), process the operands.
731         Value *Op0, *Op1;
732         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
733                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
734           if (Visited.insert(Op1).second)
735             DFT.push_back(Op1);
736           if (Visited.insert(Op0).second)
737             DFT.push_back(Op0);
738 
739           continue;
740         }
741 
742         // Try to match the current instruction
743         if (matchInstruction(I, isEQ))
744           // Match succeed, continue the loop
745           continue;
746       }
747 
748       // One element of the sequence of || (or &&) could not be match as a
749       // comparison against the same value as the others.
750       // We allow only one "Extra" case to be checked before the switch
751       if (!Extra) {
752         Extra = V;
753         continue;
754       }
755       // Failed to parse a proper sequence, abort now
756       CompValue = nullptr;
757       break;
758     }
759   }
760 };
761 
762 } // end anonymous namespace
763 
764 static void eraseTerminatorAndDCECond(Instruction *TI,
765                                       MemorySSAUpdater *MSSAU = nullptr) {
766   Instruction *Cond = nullptr;
767   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
768     Cond = dyn_cast<Instruction>(SI->getCondition());
769   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
770     if (BI->isConditional())
771       Cond = dyn_cast<Instruction>(BI->getCondition());
772   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
773     Cond = dyn_cast<Instruction>(IBI->getAddress());
774   }
775 
776   TI->eraseFromParent();
777   if (Cond)
778     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
779 }
780 
781 /// Return true if the specified terminator checks
782 /// to see if a value is equal to constant integer value.
783 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
784   Value *CV = nullptr;
785   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
786     // Do not permit merging of large switch instructions into their
787     // predecessors unless there is only one predecessor.
788     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
789       CV = SI->getCondition();
790   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
791     if (BI->isConditional() && BI->getCondition()->hasOneUse())
792       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
793         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
794           CV = ICI->getOperand(0);
795       }
796 
797   // Unwrap any lossless ptrtoint cast.
798   if (CV) {
799     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
800       Value *Ptr = PTII->getPointerOperand();
801       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
802         CV = Ptr;
803     }
804   }
805   return CV;
806 }
807 
808 /// Given a value comparison instruction,
809 /// decode all of the 'cases' that it represents and return the 'default' block.
810 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
811     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
812   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
813     Cases.reserve(SI->getNumCases());
814     for (auto Case : SI->cases())
815       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
816                                                   Case.getCaseSuccessor()));
817     return SI->getDefaultDest();
818   }
819 
820   BranchInst *BI = cast<BranchInst>(TI);
821   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
822   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
823   Cases.push_back(ValueEqualityComparisonCase(
824       getConstantInt(ICI->getOperand(1), DL), Succ));
825   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
826 }
827 
828 /// Given a vector of bb/value pairs, remove any entries
829 /// in the list that match the specified block.
830 static void
831 eliminateBlockCases(BasicBlock *BB,
832                     std::vector<ValueEqualityComparisonCase> &Cases) {
833   llvm::erase(Cases, BB);
834 }
835 
836 /// Return true if there are any keys in C1 that exist in C2 as well.
837 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
838                           std::vector<ValueEqualityComparisonCase> &C2) {
839   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
840 
841   // Make V1 be smaller than V2.
842   if (V1->size() > V2->size())
843     std::swap(V1, V2);
844 
845   if (V1->empty())
846     return false;
847   if (V1->size() == 1) {
848     // Just scan V2.
849     ConstantInt *TheVal = (*V1)[0].Value;
850     for (const ValueEqualityComparisonCase &VECC : *V2)
851       if (TheVal == VECC.Value)
852         return true;
853   }
854 
855   // Otherwise, just sort both lists and compare element by element.
856   array_pod_sort(V1->begin(), V1->end());
857   array_pod_sort(V2->begin(), V2->end());
858   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
859   while (i1 != e1 && i2 != e2) {
860     if ((*V1)[i1].Value == (*V2)[i2].Value)
861       return true;
862     if ((*V1)[i1].Value < (*V2)[i2].Value)
863       ++i1;
864     else
865       ++i2;
866   }
867   return false;
868 }
869 
870 // Set branch weights on SwitchInst. This sets the metadata if there is at
871 // least one non-zero weight.
872 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
873                              bool IsExpected) {
874   // Check that there is at least one non-zero weight. Otherwise, pass
875   // nullptr to setMetadata which will erase the existing metadata.
876   MDNode *N = nullptr;
877   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
878     N = MDBuilder(SI->getParent()->getContext())
879             .createBranchWeights(Weights, IsExpected);
880   SI->setMetadata(LLVMContext::MD_prof, N);
881 }
882 
883 // Similar to the above, but for branch and select instructions that take
884 // exactly 2 weights.
885 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
886                              uint32_t FalseWeight, bool IsExpected) {
887   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
888   // Check that there is at least one non-zero weight. Otherwise, pass
889   // nullptr to setMetadata which will erase the existing metadata.
890   MDNode *N = nullptr;
891   if (TrueWeight || FalseWeight)
892     N = MDBuilder(I->getParent()->getContext())
893             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
894   I->setMetadata(LLVMContext::MD_prof, N);
895 }
896 
897 /// If TI is known to be a terminator instruction and its block is known to
898 /// only have a single predecessor block, check to see if that predecessor is
899 /// also a value comparison with the same value, and if that comparison
900 /// determines the outcome of this comparison. If so, simplify TI. This does a
901 /// very limited form of jump threading.
902 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
903     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
904   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
905   if (!PredVal)
906     return false; // Not a value comparison in predecessor.
907 
908   Value *ThisVal = isValueEqualityComparison(TI);
909   assert(ThisVal && "This isn't a value comparison!!");
910   if (ThisVal != PredVal)
911     return false; // Different predicates.
912 
913   // TODO: Preserve branch weight metadata, similarly to how
914   // foldValueComparisonIntoPredecessors preserves it.
915 
916   // Find out information about when control will move from Pred to TI's block.
917   std::vector<ValueEqualityComparisonCase> PredCases;
918   BasicBlock *PredDef =
919       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
920   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
921 
922   // Find information about how control leaves this block.
923   std::vector<ValueEqualityComparisonCase> ThisCases;
924   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
925   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
926 
927   // If TI's block is the default block from Pred's comparison, potentially
928   // simplify TI based on this knowledge.
929   if (PredDef == TI->getParent()) {
930     // If we are here, we know that the value is none of those cases listed in
931     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
932     // can simplify TI.
933     if (!valuesOverlap(PredCases, ThisCases))
934       return false;
935 
936     if (isa<BranchInst>(TI)) {
937       // Okay, one of the successors of this condbr is dead.  Convert it to a
938       // uncond br.
939       assert(ThisCases.size() == 1 && "Branch can only have one case!");
940       // Insert the new branch.
941       Instruction *NI = Builder.CreateBr(ThisDef);
942       (void)NI;
943 
944       // Remove PHI node entries for the dead edge.
945       ThisCases[0].Dest->removePredecessor(PredDef);
946 
947       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
948                         << "Through successor TI: " << *TI << "Leaving: " << *NI
949                         << "\n");
950 
951       eraseTerminatorAndDCECond(TI);
952 
953       if (DTU)
954         DTU->applyUpdates(
955             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
956 
957       return true;
958     }
959 
960     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
961     // Okay, TI has cases that are statically dead, prune them away.
962     SmallPtrSet<Constant *, 16> DeadCases;
963     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
964       DeadCases.insert(PredCases[i].Value);
965 
966     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
967                       << "Through successor TI: " << *TI);
968 
969     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
970     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
971       --i;
972       auto *Successor = i->getCaseSuccessor();
973       if (DTU)
974         ++NumPerSuccessorCases[Successor];
975       if (DeadCases.count(i->getCaseValue())) {
976         Successor->removePredecessor(PredDef);
977         SI.removeCase(i);
978         if (DTU)
979           --NumPerSuccessorCases[Successor];
980       }
981     }
982 
983     if (DTU) {
984       std::vector<DominatorTree::UpdateType> Updates;
985       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
986         if (I.second == 0)
987           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
988       DTU->applyUpdates(Updates);
989     }
990 
991     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
992     return true;
993   }
994 
995   // Otherwise, TI's block must correspond to some matched value.  Find out
996   // which value (or set of values) this is.
997   ConstantInt *TIV = nullptr;
998   BasicBlock *TIBB = TI->getParent();
999   for (const auto &[Value, Dest] : PredCases)
1000     if (Dest == TIBB) {
1001       if (TIV)
1002         return false; // Cannot handle multiple values coming to this block.
1003       TIV = Value;
1004     }
1005   assert(TIV && "No edge from pred to succ?");
1006 
1007   // Okay, we found the one constant that our value can be if we get into TI's
1008   // BB.  Find out which successor will unconditionally be branched to.
1009   BasicBlock *TheRealDest = nullptr;
1010   for (const auto &[Value, Dest] : ThisCases)
1011     if (Value == TIV) {
1012       TheRealDest = Dest;
1013       break;
1014     }
1015 
1016   // If not handled by any explicit cases, it is handled by the default case.
1017   if (!TheRealDest)
1018     TheRealDest = ThisDef;
1019 
1020   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1021 
1022   // Remove PHI node entries for dead edges.
1023   BasicBlock *CheckEdge = TheRealDest;
1024   for (BasicBlock *Succ : successors(TIBB))
1025     if (Succ != CheckEdge) {
1026       if (Succ != TheRealDest)
1027         RemovedSuccs.insert(Succ);
1028       Succ->removePredecessor(TIBB);
1029     } else
1030       CheckEdge = nullptr;
1031 
1032   // Insert the new branch.
1033   Instruction *NI = Builder.CreateBr(TheRealDest);
1034   (void)NI;
1035 
1036   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1037                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1038                     << "\n");
1039 
1040   eraseTerminatorAndDCECond(TI);
1041   if (DTU) {
1042     SmallVector<DominatorTree::UpdateType, 2> Updates;
1043     Updates.reserve(RemovedSuccs.size());
1044     for (auto *RemovedSucc : RemovedSuccs)
1045       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1046     DTU->applyUpdates(Updates);
1047   }
1048   return true;
1049 }
1050 
1051 namespace {
1052 
1053 /// This class implements a stable ordering of constant
1054 /// integers that does not depend on their address.  This is important for
1055 /// applications that sort ConstantInt's to ensure uniqueness.
1056 struct ConstantIntOrdering {
1057   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1058     return LHS->getValue().ult(RHS->getValue());
1059   }
1060 };
1061 
1062 } // end anonymous namespace
1063 
1064 static int constantIntSortPredicate(ConstantInt *const *P1,
1065                                     ConstantInt *const *P2) {
1066   const ConstantInt *LHS = *P1;
1067   const ConstantInt *RHS = *P2;
1068   if (LHS == RHS)
1069     return 0;
1070   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1071 }
1072 
1073 /// Get Weights of a given terminator, the default weight is at the front
1074 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1075 /// metadata.
1076 static void getBranchWeights(Instruction *TI,
1077                              SmallVectorImpl<uint64_t> &Weights) {
1078   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1079   assert(MD && "Invalid branch-weight metadata");
1080   extractFromBranchWeightMD64(MD, Weights);
1081 
1082   // If TI is a conditional eq, the default case is the false case,
1083   // and the corresponding branch-weight data is at index 2. We swap the
1084   // default weight to be the first entry.
1085   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1086     assert(Weights.size() == 2);
1087     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1088     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1089       std::swap(Weights.front(), Weights.back());
1090   }
1091 }
1092 
1093 /// Keep halving the weights until all can fit in uint32_t.
1094 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1095   uint64_t Max = *llvm::max_element(Weights);
1096   if (Max > UINT_MAX) {
1097     unsigned Offset = 32 - llvm::countl_zero(Max);
1098     for (uint64_t &I : Weights)
1099       I >>= Offset;
1100   }
1101 }
1102 
1103 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1104     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1105   Instruction *PTI = PredBlock->getTerminator();
1106 
1107   // If we have bonus instructions, clone them into the predecessor block.
1108   // Note that there may be multiple predecessor blocks, so we cannot move
1109   // bonus instructions to a predecessor block.
1110   for (Instruction &BonusInst : *BB) {
1111     if (BonusInst.isTerminator())
1112       continue;
1113 
1114     Instruction *NewBonusInst = BonusInst.clone();
1115 
1116     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1117         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1118       // Unless the instruction has the same !dbg location as the original
1119       // branch, drop it. When we fold the bonus instructions we want to make
1120       // sure we reset their debug locations in order to avoid stepping on
1121       // dead code caused by folding dead branches.
1122       NewBonusInst->setDebugLoc(DebugLoc());
1123     }
1124 
1125     RemapInstruction(NewBonusInst, VMap,
1126                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1127 
1128     // If we speculated an instruction, we need to drop any metadata that may
1129     // result in undefined behavior, as the metadata might have been valid
1130     // only given the branch precondition.
1131     // Similarly strip attributes on call parameters that may cause UB in
1132     // location the call is moved to.
1133     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1134 
1135     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1136     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1137     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1138                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1139 
1140     if (isa<DbgInfoIntrinsic>(BonusInst))
1141       continue;
1142 
1143     NewBonusInst->takeName(&BonusInst);
1144     BonusInst.setName(NewBonusInst->getName() + ".old");
1145     VMap[&BonusInst] = NewBonusInst;
1146 
1147     // Update (liveout) uses of bonus instructions,
1148     // now that the bonus instruction has been cloned into predecessor.
1149     // Note that we expect to be in a block-closed SSA form for this to work!
1150     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1151       auto *UI = cast<Instruction>(U.getUser());
1152       auto *PN = dyn_cast<PHINode>(UI);
1153       if (!PN) {
1154         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1155                "If the user is not a PHI node, then it should be in the same "
1156                "block as, and come after, the original bonus instruction.");
1157         continue; // Keep using the original bonus instruction.
1158       }
1159       // Is this the block-closed SSA form PHI node?
1160       if (PN->getIncomingBlock(U) == BB)
1161         continue; // Great, keep using the original bonus instruction.
1162       // The only other alternative is an "use" when coming from
1163       // the predecessor block - here we should refer to the cloned bonus instr.
1164       assert(PN->getIncomingBlock(U) == PredBlock &&
1165              "Not in block-closed SSA form?");
1166       U.set(NewBonusInst);
1167     }
1168   }
1169 }
1170 
1171 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1172     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1173   BasicBlock *BB = TI->getParent();
1174   BasicBlock *Pred = PTI->getParent();
1175 
1176   SmallVector<DominatorTree::UpdateType, 32> Updates;
1177 
1178   // Figure out which 'cases' to copy from SI to PSI.
1179   std::vector<ValueEqualityComparisonCase> BBCases;
1180   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1181 
1182   std::vector<ValueEqualityComparisonCase> PredCases;
1183   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1184 
1185   // Based on whether the default edge from PTI goes to BB or not, fill in
1186   // PredCases and PredDefault with the new switch cases we would like to
1187   // build.
1188   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1189 
1190   // Update the branch weight metadata along the way
1191   SmallVector<uint64_t, 8> Weights;
1192   bool PredHasWeights = hasBranchWeightMD(*PTI);
1193   bool SuccHasWeights = hasBranchWeightMD(*TI);
1194 
1195   if (PredHasWeights) {
1196     getBranchWeights(PTI, Weights);
1197     // branch-weight metadata is inconsistent here.
1198     if (Weights.size() != 1 + PredCases.size())
1199       PredHasWeights = SuccHasWeights = false;
1200   } else if (SuccHasWeights)
1201     // If there are no predecessor weights but there are successor weights,
1202     // populate Weights with 1, which will later be scaled to the sum of
1203     // successor's weights
1204     Weights.assign(1 + PredCases.size(), 1);
1205 
1206   SmallVector<uint64_t, 8> SuccWeights;
1207   if (SuccHasWeights) {
1208     getBranchWeights(TI, SuccWeights);
1209     // branch-weight metadata is inconsistent here.
1210     if (SuccWeights.size() != 1 + BBCases.size())
1211       PredHasWeights = SuccHasWeights = false;
1212   } else if (PredHasWeights)
1213     SuccWeights.assign(1 + BBCases.size(), 1);
1214 
1215   if (PredDefault == BB) {
1216     // If this is the default destination from PTI, only the edges in TI
1217     // that don't occur in PTI, or that branch to BB will be activated.
1218     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1219     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1220       if (PredCases[i].Dest != BB)
1221         PTIHandled.insert(PredCases[i].Value);
1222       else {
1223         // The default destination is BB, we don't need explicit targets.
1224         std::swap(PredCases[i], PredCases.back());
1225 
1226         if (PredHasWeights || SuccHasWeights) {
1227           // Increase weight for the default case.
1228           Weights[0] += Weights[i + 1];
1229           std::swap(Weights[i + 1], Weights.back());
1230           Weights.pop_back();
1231         }
1232 
1233         PredCases.pop_back();
1234         --i;
1235         --e;
1236       }
1237 
1238     // Reconstruct the new switch statement we will be building.
1239     if (PredDefault != BBDefault) {
1240       PredDefault->removePredecessor(Pred);
1241       if (DTU && PredDefault != BB)
1242         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1243       PredDefault = BBDefault;
1244       ++NewSuccessors[BBDefault];
1245     }
1246 
1247     unsigned CasesFromPred = Weights.size();
1248     uint64_t ValidTotalSuccWeight = 0;
1249     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1250       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1251         PredCases.push_back(BBCases[i]);
1252         ++NewSuccessors[BBCases[i].Dest];
1253         if (SuccHasWeights || PredHasWeights) {
1254           // The default weight is at index 0, so weight for the ith case
1255           // should be at index i+1. Scale the cases from successor by
1256           // PredDefaultWeight (Weights[0]).
1257           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1258           ValidTotalSuccWeight += SuccWeights[i + 1];
1259         }
1260       }
1261 
1262     if (SuccHasWeights || PredHasWeights) {
1263       ValidTotalSuccWeight += SuccWeights[0];
1264       // Scale the cases from predecessor by ValidTotalSuccWeight.
1265       for (unsigned i = 1; i < CasesFromPred; ++i)
1266         Weights[i] *= ValidTotalSuccWeight;
1267       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1268       Weights[0] *= SuccWeights[0];
1269     }
1270   } else {
1271     // If this is not the default destination from PSI, only the edges
1272     // in SI that occur in PSI with a destination of BB will be
1273     // activated.
1274     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1275     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1276     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1277       if (PredCases[i].Dest == BB) {
1278         PTIHandled.insert(PredCases[i].Value);
1279 
1280         if (PredHasWeights || SuccHasWeights) {
1281           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1282           std::swap(Weights[i + 1], Weights.back());
1283           Weights.pop_back();
1284         }
1285 
1286         std::swap(PredCases[i], PredCases.back());
1287         PredCases.pop_back();
1288         --i;
1289         --e;
1290       }
1291 
1292     // Okay, now we know which constants were sent to BB from the
1293     // predecessor.  Figure out where they will all go now.
1294     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1295       if (PTIHandled.count(BBCases[i].Value)) {
1296         // If this is one we are capable of getting...
1297         if (PredHasWeights || SuccHasWeights)
1298           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1299         PredCases.push_back(BBCases[i]);
1300         ++NewSuccessors[BBCases[i].Dest];
1301         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1302       }
1303 
1304     // If there are any constants vectored to BB that TI doesn't handle,
1305     // they must go to the default destination of TI.
1306     for (ConstantInt *I : PTIHandled) {
1307       if (PredHasWeights || SuccHasWeights)
1308         Weights.push_back(WeightsForHandled[I]);
1309       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1310       ++NewSuccessors[BBDefault];
1311     }
1312   }
1313 
1314   // Okay, at this point, we know which new successor Pred will get.  Make
1315   // sure we update the number of entries in the PHI nodes for these
1316   // successors.
1317   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1318   if (DTU) {
1319     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1320     Updates.reserve(Updates.size() + NewSuccessors.size());
1321   }
1322   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1323        NewSuccessors) {
1324     for (auto I : seq(NewSuccessor.second)) {
1325       (void)I;
1326       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1327     }
1328     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1329       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1330   }
1331 
1332   Builder.SetInsertPoint(PTI);
1333   // Convert pointer to int before we switch.
1334   if (CV->getType()->isPointerTy()) {
1335     CV =
1336         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1337   }
1338 
1339   // Now that the successors are updated, create the new Switch instruction.
1340   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1341   NewSI->setDebugLoc(PTI->getDebugLoc());
1342   for (ValueEqualityComparisonCase &V : PredCases)
1343     NewSI->addCase(V.Value, V.Dest);
1344 
1345   if (PredHasWeights || SuccHasWeights) {
1346     // Halve the weights if any of them cannot fit in an uint32_t
1347     fitWeights(Weights);
1348 
1349     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1350 
1351     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1352   }
1353 
1354   eraseTerminatorAndDCECond(PTI);
1355 
1356   // Okay, last check.  If BB is still a successor of PSI, then we must
1357   // have an infinite loop case.  If so, add an infinitely looping block
1358   // to handle the case to preserve the behavior of the code.
1359   BasicBlock *InfLoopBlock = nullptr;
1360   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1361     if (NewSI->getSuccessor(i) == BB) {
1362       if (!InfLoopBlock) {
1363         // Insert it at the end of the function, because it's either code,
1364         // or it won't matter if it's hot. :)
1365         InfLoopBlock =
1366             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1367         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1368         if (DTU)
1369           Updates.push_back(
1370               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1371       }
1372       NewSI->setSuccessor(i, InfLoopBlock);
1373     }
1374 
1375   if (DTU) {
1376     if (InfLoopBlock)
1377       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1378 
1379     Updates.push_back({DominatorTree::Delete, Pred, BB});
1380 
1381     DTU->applyUpdates(Updates);
1382   }
1383 
1384   ++NumFoldValueComparisonIntoPredecessors;
1385   return true;
1386 }
1387 
1388 /// The specified terminator is a value equality comparison instruction
1389 /// (either a switch or a branch on "X == c").
1390 /// See if any of the predecessors of the terminator block are value comparisons
1391 /// on the same value.  If so, and if safe to do so, fold them together.
1392 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1393                                                          IRBuilder<> &Builder) {
1394   BasicBlock *BB = TI->getParent();
1395   Value *CV = isValueEqualityComparison(TI); // CondVal
1396   assert(CV && "Not a comparison?");
1397 
1398   bool Changed = false;
1399 
1400   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1401   while (!Preds.empty()) {
1402     BasicBlock *Pred = Preds.pop_back_val();
1403     Instruction *PTI = Pred->getTerminator();
1404 
1405     // Don't try to fold into itself.
1406     if (Pred == BB)
1407       continue;
1408 
1409     // See if the predecessor is a comparison with the same value.
1410     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1411     if (PCV != CV)
1412       continue;
1413 
1414     SmallSetVector<BasicBlock *, 4> FailBlocks;
1415     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1416       for (auto *Succ : FailBlocks) {
1417         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1418           return false;
1419       }
1420     }
1421 
1422     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1423     Changed = true;
1424   }
1425   return Changed;
1426 }
1427 
1428 // If we would need to insert a select that uses the value of this invoke
1429 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1430 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1431 // select in this case.
1432 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1433                                 Instruction *I1, Instruction *I2) {
1434   for (BasicBlock *Succ : successors(BB1)) {
1435     for (const PHINode &PN : Succ->phis()) {
1436       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1437       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1438       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1439         return false;
1440       }
1441     }
1442   }
1443   return true;
1444 }
1445 
1446 // Get interesting characteristics of instructions that
1447 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1448 // instructions can be reordered across.
1449 enum SkipFlags {
1450   SkipReadMem = 1,
1451   SkipSideEffect = 2,
1452   SkipImplicitControlFlow = 4
1453 };
1454 
1455 static unsigned skippedInstrFlags(Instruction *I) {
1456   unsigned Flags = 0;
1457   if (I->mayReadFromMemory())
1458     Flags |= SkipReadMem;
1459   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1460   // inalloca) across stacksave/stackrestore boundaries.
1461   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1462     Flags |= SkipSideEffect;
1463   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1464     Flags |= SkipImplicitControlFlow;
1465   return Flags;
1466 }
1467 
1468 // Returns true if it is safe to reorder an instruction across preceding
1469 // instructions in a basic block.
1470 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1471   // Don't reorder a store over a load.
1472   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1473     return false;
1474 
1475   // If we have seen an instruction with side effects, it's unsafe to reorder an
1476   // instruction which reads memory or itself has side effects.
1477   if ((Flags & SkipSideEffect) &&
1478       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1479     return false;
1480 
1481   // Reordering across an instruction which does not necessarily transfer
1482   // control to the next instruction is speculation.
1483   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1484     return false;
1485 
1486   // Hoisting of llvm.deoptimize is only legal together with the next return
1487   // instruction, which this pass is not always able to do.
1488   if (auto *CB = dyn_cast<CallBase>(I))
1489     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1490       return false;
1491 
1492   // It's also unsafe/illegal to hoist an instruction above its instruction
1493   // operands
1494   BasicBlock *BB = I->getParent();
1495   for (Value *Op : I->operands()) {
1496     if (auto *J = dyn_cast<Instruction>(Op))
1497       if (J->getParent() == BB)
1498         return false;
1499   }
1500 
1501   return true;
1502 }
1503 
1504 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1505 
1506 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1507 /// instructions \p I1 and \p I2 can and should be hoisted.
1508 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1509                                           const TargetTransformInfo &TTI) {
1510   // If we're going to hoist a call, make sure that the two instructions
1511   // we're commoning/hoisting are both marked with musttail, or neither of
1512   // them is marked as such. Otherwise, we might end up in a situation where
1513   // we hoist from a block where the terminator is a `ret` to a block where
1514   // the terminator is a `br`, and `musttail` calls expect to be followed by
1515   // a return.
1516   auto *C1 = dyn_cast<CallInst>(I1);
1517   auto *C2 = dyn_cast<CallInst>(I2);
1518   if (C1 && C2)
1519     if (C1->isMustTailCall() != C2->isMustTailCall())
1520       return false;
1521 
1522   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1523     return false;
1524 
1525   // If any of the two call sites has nomerge or convergent attribute, stop
1526   // hoisting.
1527   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1528     if (CB1->cannotMerge() || CB1->isConvergent())
1529       return false;
1530   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1531     if (CB2->cannotMerge() || CB2->isConvergent())
1532       return false;
1533 
1534   return true;
1535 }
1536 
1537 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1538 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1539 /// hoistCommonCodeFromSuccessors. e.g. The input:
1540 ///    I1                DVRs: { x, z },
1541 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1542 /// would result in hoisting only DbgVariableRecord x.
1543 static void hoistLockstepIdenticalDbgVariableRecords(
1544     Instruction *TI, Instruction *I1,
1545     SmallVectorImpl<Instruction *> &OtherInsts) {
1546   if (!I1->hasDbgRecords())
1547     return;
1548   using CurrentAndEndIt =
1549       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1550   // Vector of {Current, End} iterators.
1551   SmallVector<CurrentAndEndIt> Itrs;
1552   Itrs.reserve(OtherInsts.size() + 1);
1553   // Helper lambdas for lock-step checks:
1554   // Return true if this Current == End.
1555   auto atEnd = [](const CurrentAndEndIt &Pair) {
1556     return Pair.first == Pair.second;
1557   };
1558   // Return true if all Current are identical.
1559   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1560     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1561                   [&](DbgRecord::self_iterator I) {
1562                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1563                   });
1564   };
1565 
1566   // Collect the iterators.
1567   Itrs.push_back(
1568       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1569   for (Instruction *Other : OtherInsts) {
1570     if (!Other->hasDbgRecords())
1571       return;
1572     Itrs.push_back(
1573         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1574   }
1575 
1576   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1577   // the lock-step DbgRecord are identical, hoist all of them to TI.
1578   // This replicates the dbg.* intrinsic behaviour in
1579   // hoistCommonCodeFromSuccessors.
1580   while (none_of(Itrs, atEnd)) {
1581     bool HoistDVRs = allIdentical(Itrs);
1582     for (CurrentAndEndIt &Pair : Itrs) {
1583       // Increment Current iterator now as we may be about to move the
1584       // DbgRecord.
1585       DbgRecord &DR = *Pair.first++;
1586       if (HoistDVRs) {
1587         DR.removeFromParent();
1588         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1589       }
1590     }
1591   }
1592 }
1593 
1594 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1595                                           const Instruction *I2) {
1596   if (I1->isIdenticalToWhenDefined(I2))
1597     return true;
1598 
1599   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1600     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1601       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1602              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1603              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1604 
1605   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1606     return I1->getOperand(0) == I2->getOperand(1) &&
1607            I1->getOperand(1) == I2->getOperand(0) &&
1608            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1609   }
1610 
1611   return false;
1612 }
1613 
1614 /// Hoist any common code in the successor blocks up into the block. This
1615 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1616 /// given, only perform hoisting in case both blocks only contain a terminator.
1617 /// In that case, only the original BI will be replaced and selects for PHIs are
1618 /// added.
1619 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(BasicBlock *BB,
1620                                                    bool EqTermsOnly) {
1621   // This does very trivial matching, with limited scanning, to find identical
1622   // instructions in the two blocks. In particular, we don't want to get into
1623   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1624   // such, we currently just scan for obviously identical instructions in an
1625   // identical order, possibly separated by the same number of non-identical
1626   // instructions.
1627   unsigned int SuccSize = succ_size(BB);
1628   if (SuccSize < 2)
1629     return false;
1630 
1631   // If either of the blocks has it's address taken, then we can't do this fold,
1632   // because the code we'd hoist would no longer run when we jump into the block
1633   // by it's address.
1634   for (auto *Succ : successors(BB))
1635     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1636       return false;
1637 
1638   auto *TI = BB->getTerminator();
1639 
1640   // The second of pair is a SkipFlags bitmask.
1641   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1642   SmallVector<SuccIterPair, 8> SuccIterPairs;
1643   for (auto *Succ : successors(BB)) {
1644     BasicBlock::iterator SuccItr = Succ->begin();
1645     if (isa<PHINode>(*SuccItr))
1646       return false;
1647     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1648   }
1649 
1650   // Check if only hoisting terminators is allowed. This does not add new
1651   // instructions to the hoist location.
1652   if (EqTermsOnly) {
1653     // Skip any debug intrinsics, as they are free to hoist.
1654     for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1655       auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1656       if (!INonDbg->isTerminator())
1657         return false;
1658     }
1659     // Now we know that we only need to hoist debug intrinsics and the
1660     // terminator. Let the loop below handle those 2 cases.
1661   }
1662 
1663   // Count how many instructions were not hoisted so far. There's a limit on how
1664   // many instructions we skip, serving as a compilation time control as well as
1665   // preventing excessive increase of life ranges.
1666   unsigned NumSkipped = 0;
1667   // If we find an unreachable instruction at the beginning of a basic block, we
1668   // can still hoist instructions from the rest of the basic blocks.
1669   if (SuccIterPairs.size() > 2) {
1670     erase_if(SuccIterPairs,
1671              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1672     if (SuccIterPairs.size() < 2)
1673       return false;
1674   }
1675 
1676   bool Changed = false;
1677 
1678   for (;;) {
1679     auto *SuccIterPairBegin = SuccIterPairs.begin();
1680     auto &BB1ItrPair = *SuccIterPairBegin++;
1681     auto OtherSuccIterPairRange =
1682         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1683     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1684 
1685     Instruction *I1 = &*BB1ItrPair.first;
1686 
1687     // Skip debug info if it is not identical.
1688     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1689       Instruction *I2 = &*Iter;
1690       return I1->isIdenticalToWhenDefined(I2);
1691     });
1692     if (!AllDbgInstsAreIdentical) {
1693       while (isa<DbgInfoIntrinsic>(I1))
1694         I1 = &*++BB1ItrPair.first;
1695       for (auto &SuccIter : OtherSuccIterRange) {
1696         Instruction *I2 = &*SuccIter;
1697         while (isa<DbgInfoIntrinsic>(I2))
1698           I2 = &*++SuccIter;
1699       }
1700     }
1701 
1702     bool AllInstsAreIdentical = true;
1703     bool HasTerminator = I1->isTerminator();
1704     for (auto &SuccIter : OtherSuccIterRange) {
1705       Instruction *I2 = &*SuccIter;
1706       HasTerminator |= I2->isTerminator();
1707       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1708                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1709         AllInstsAreIdentical = false;
1710     }
1711 
1712     SmallVector<Instruction *, 8> OtherInsts;
1713     for (auto &SuccIter : OtherSuccIterRange)
1714       OtherInsts.push_back(&*SuccIter);
1715 
1716     // If we are hoisting the terminator instruction, don't move one (making a
1717     // broken BB), instead clone it, and remove BI.
1718     if (HasTerminator) {
1719       // Even if BB, which contains only one unreachable instruction, is ignored
1720       // at the beginning of the loop, we can hoist the terminator instruction.
1721       // If any instructions remain in the block, we cannot hoist terminators.
1722       if (NumSkipped || !AllInstsAreIdentical) {
1723         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1724         return Changed;
1725       }
1726 
1727       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1728              Changed;
1729     }
1730 
1731     if (AllInstsAreIdentical) {
1732       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1733       AllInstsAreIdentical =
1734           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1735           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1736             Instruction *I2 = &*Pair.first;
1737             unsigned SkipFlagsBB2 = Pair.second;
1738             // Even if the instructions are identical, it may not
1739             // be safe to hoist them if we have skipped over
1740             // instructions with side effects or their operands
1741             // weren't hoisted.
1742             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1743                    shouldHoistCommonInstructions(I1, I2, TTI);
1744           });
1745     }
1746 
1747     if (AllInstsAreIdentical) {
1748       BB1ItrPair.first++;
1749       if (isa<DbgInfoIntrinsic>(I1)) {
1750         // The debug location is an integral part of a debug info intrinsic
1751         // and can't be separated from it or replaced.  Instead of attempting
1752         // to merge locations, simply hoist both copies of the intrinsic.
1753         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1754         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1755         // and leave any that were not hoisted behind (by calling moveBefore
1756         // rather than moveBeforePreserving).
1757         I1->moveBefore(TI);
1758         for (auto &SuccIter : OtherSuccIterRange) {
1759           auto *I2 = &*SuccIter++;
1760           assert(isa<DbgInfoIntrinsic>(I2));
1761           I2->moveBefore(TI);
1762         }
1763       } else {
1764         // For a normal instruction, we just move one to right before the
1765         // branch, then replace all uses of the other with the first.  Finally,
1766         // we remove the now redundant second instruction.
1767         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1768         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1769         // and leave any that were not hoisted behind (by calling moveBefore
1770         // rather than moveBeforePreserving).
1771         I1->moveBefore(TI);
1772         for (auto &SuccIter : OtherSuccIterRange) {
1773           Instruction *I2 = &*SuccIter++;
1774           assert(I2 != I1);
1775           if (!I2->use_empty())
1776             I2->replaceAllUsesWith(I1);
1777           I1->andIRFlags(I2);
1778           combineMetadataForCSE(I1, I2, true);
1779           // I1 and I2 are being combined into a single instruction.  Its debug
1780           // location is the merged locations of the original instructions.
1781           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1782           I2->eraseFromParent();
1783         }
1784       }
1785       if (!Changed)
1786         NumHoistCommonCode += SuccIterPairs.size();
1787       Changed = true;
1788       NumHoistCommonInstrs += SuccIterPairs.size();
1789     } else {
1790       if (NumSkipped >= HoistCommonSkipLimit) {
1791         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1792         return Changed;
1793       }
1794       // We are about to skip over a pair of non-identical instructions. Record
1795       // if any have characteristics that would prevent reordering instructions
1796       // across them.
1797       for (auto &SuccIterPair : SuccIterPairs) {
1798         Instruction *I = &*SuccIterPair.first++;
1799         SuccIterPair.second |= skippedInstrFlags(I);
1800       }
1801       ++NumSkipped;
1802     }
1803   }
1804 }
1805 
1806 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1807     Instruction *TI, Instruction *I1,
1808     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1809 
1810   auto *BI = dyn_cast<BranchInst>(TI);
1811 
1812   bool Changed = false;
1813   BasicBlock *TIParent = TI->getParent();
1814   BasicBlock *BB1 = I1->getParent();
1815 
1816   // Use only for an if statement.
1817   auto *I2 = *OtherSuccTIs.begin();
1818   auto *BB2 = I2->getParent();
1819   if (BI) {
1820     assert(OtherSuccTIs.size() == 1);
1821     assert(BI->getSuccessor(0) == I1->getParent());
1822     assert(BI->getSuccessor(1) == I2->getParent());
1823   }
1824 
1825   // In the case of an if statement, we try to hoist an invoke.
1826   // FIXME: Can we define a safety predicate for CallBr?
1827   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1828   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1829   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1830     return false;
1831 
1832   // TODO: callbr hoisting currently disabled pending further study.
1833   if (isa<CallBrInst>(I1))
1834     return false;
1835 
1836   for (BasicBlock *Succ : successors(BB1)) {
1837     for (PHINode &PN : Succ->phis()) {
1838       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1839       for (Instruction *OtherSuccTI : OtherSuccTIs) {
1840         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1841         if (BB1V == BB2V)
1842           continue;
1843 
1844         // In the case of an if statement, check for
1845         // passingValueIsAlwaysUndefined here because we would rather eliminate
1846         // undefined control flow then converting it to a select.
1847         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1848             passingValueIsAlwaysUndefined(BB2V, &PN))
1849           return false;
1850       }
1851     }
1852   }
1853 
1854   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
1855   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
1856   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
1857   // Clone the terminator and hoist it into the pred, without any debug info.
1858   Instruction *NT = I1->clone();
1859   NT->insertInto(TIParent, TI->getIterator());
1860   if (!NT->getType()->isVoidTy()) {
1861     I1->replaceAllUsesWith(NT);
1862     for (Instruction *OtherSuccTI : OtherSuccTIs)
1863       OtherSuccTI->replaceAllUsesWith(NT);
1864     NT->takeName(I1);
1865   }
1866   Changed = true;
1867   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
1868 
1869   // Ensure terminator gets a debug location, even an unknown one, in case
1870   // it involves inlinable calls.
1871   SmallVector<DILocation *, 4> Locs;
1872   Locs.push_back(I1->getDebugLoc());
1873   for (auto *OtherSuccTI : OtherSuccTIs)
1874     Locs.push_back(OtherSuccTI->getDebugLoc());
1875   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
1876 
1877   // PHIs created below will adopt NT's merged DebugLoc.
1878   IRBuilder<NoFolder> Builder(NT);
1879 
1880   // In the case of an if statement, hoisting one of the terminators from our
1881   // successor is a great thing. Unfortunately, the successors of the if/else
1882   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
1883   // must agree for all PHI nodes, so we insert select instruction to compute
1884   // the final result.
1885   if (BI) {
1886     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1887     for (BasicBlock *Succ : successors(BB1)) {
1888       for (PHINode &PN : Succ->phis()) {
1889         Value *BB1V = PN.getIncomingValueForBlock(BB1);
1890         Value *BB2V = PN.getIncomingValueForBlock(BB2);
1891         if (BB1V == BB2V)
1892           continue;
1893 
1894         // These values do not agree.  Insert a select instruction before NT
1895         // that determines the right value.
1896         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1897         if (!SI) {
1898           // Propagate fast-math-flags from phi node to its replacement select.
1899           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
1900           if (isa<FPMathOperator>(PN))
1901             Builder.setFastMathFlags(PN.getFastMathFlags());
1902 
1903           SI = cast<SelectInst>(Builder.CreateSelect(
1904               BI->getCondition(), BB1V, BB2V,
1905               BB1V->getName() + "." + BB2V->getName(), BI));
1906         }
1907 
1908         // Make the PHI node use the select for all incoming values for BB1/BB2
1909         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1910           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1911             PN.setIncomingValue(i, SI);
1912       }
1913     }
1914   }
1915 
1916   SmallVector<DominatorTree::UpdateType, 4> Updates;
1917 
1918   // Update any PHI nodes in our new successors.
1919   for (BasicBlock *Succ : successors(BB1)) {
1920     addPredecessorToBlock(Succ, TIParent, BB1);
1921     if (DTU)
1922       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
1923   }
1924 
1925   if (DTU)
1926     for (BasicBlock *Succ : successors(TI))
1927       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
1928 
1929   eraseTerminatorAndDCECond(TI);
1930   if (DTU)
1931     DTU->applyUpdates(Updates);
1932   return Changed;
1933 }
1934 
1935 // Check lifetime markers.
1936 static bool isLifeTimeMarker(const Instruction *I) {
1937   if (auto II = dyn_cast<IntrinsicInst>(I)) {
1938     switch (II->getIntrinsicID()) {
1939     default:
1940       break;
1941     case Intrinsic::lifetime_start:
1942     case Intrinsic::lifetime_end:
1943       return true;
1944     }
1945   }
1946   return false;
1947 }
1948 
1949 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
1950 // into variables.
1951 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
1952                                                 int OpIdx) {
1953   // Divide/Remainder by constant is typically much cheaper than by variable.
1954   if (I->isIntDivRem())
1955     return OpIdx != 1;
1956   return !isa<IntrinsicInst>(I);
1957 }
1958 
1959 // All instructions in Insts belong to different blocks that all unconditionally
1960 // branch to a common successor. Analyze each instruction and return true if it
1961 // would be possible to sink them into their successor, creating one common
1962 // instruction instead. For every value that would be required to be provided by
1963 // PHI node (because an operand varies in each input block), add to PHIOperands.
1964 static bool canSinkInstructions(
1965     ArrayRef<Instruction *> Insts,
1966     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
1967   // Prune out obviously bad instructions to move. Each instruction must have
1968   // the same number of uses, and we check later that the uses are consistent.
1969   std::optional<unsigned> NumUses;
1970   for (auto *I : Insts) {
1971     // These instructions may change or break semantics if moved.
1972     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1973         I->getType()->isTokenTy())
1974       return false;
1975 
1976     // Do not try to sink an instruction in an infinite loop - it can cause
1977     // this algorithm to infinite loop.
1978     if (I->getParent()->getSingleSuccessor() == I->getParent())
1979       return false;
1980 
1981     // Conservatively return false if I is an inline-asm instruction. Sinking
1982     // and merging inline-asm instructions can potentially create arguments
1983     // that cannot satisfy the inline-asm constraints.
1984     // If the instruction has nomerge or convergent attribute, return false.
1985     if (const auto *C = dyn_cast<CallBase>(I))
1986       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
1987         return false;
1988 
1989     if (!NumUses)
1990       NumUses = I->getNumUses();
1991     else if (NumUses != I->getNumUses())
1992       return false;
1993   }
1994 
1995   const Instruction *I0 = Insts.front();
1996   const auto I0MMRA = MMRAMetadata(*I0);
1997   for (auto *I : Insts) {
1998     if (!I->isSameOperationAs(I0))
1999       return false;
2000 
2001     // swifterror pointers can only be used by a load or store; sinking a load
2002     // or store would require introducing a select for the pointer operand,
2003     // which isn't allowed for swifterror pointers.
2004     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2005       return false;
2006     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2007       return false;
2008 
2009     // Treat MMRAs conservatively. This pass can be quite aggressive and
2010     // could drop a lot of MMRAs otherwise.
2011     if (MMRAMetadata(*I) != I0MMRA)
2012       return false;
2013   }
2014 
2015   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2016   // then the other phi operands must match the instructions from Insts. This
2017   // also has to hold true for any phi nodes that would be created as a result
2018   // of sinking. Both of these cases are represented by PhiOperands.
2019   for (const Use &U : I0->uses()) {
2020     auto It = PHIOperands.find(&U);
2021     if (It == PHIOperands.end())
2022       // There may be uses in other blocks when sinking into a loop header.
2023       return false;
2024     if (!equal(Insts, It->second))
2025       return false;
2026   }
2027 
2028   // For calls to be sinkable, they must all be indirect, or have same callee.
2029   // I.e. if we have two direct calls to different callees, we don't want to
2030   // turn that into an indirect call. Likewise, if we have an indirect call,
2031   // and a direct call, we don't actually want to have a single indirect call.
2032   if (isa<CallBase>(I0)) {
2033     auto IsIndirectCall = [](const Instruction *I) {
2034       return cast<CallBase>(I)->isIndirectCall();
2035     };
2036     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2037     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2038     if (HaveIndirectCalls) {
2039       if (!AllCallsAreIndirect)
2040         return false;
2041     } else {
2042       // All callees must be identical.
2043       Value *Callee = nullptr;
2044       for (const Instruction *I : Insts) {
2045         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2046         if (!Callee)
2047           Callee = CurrCallee;
2048         else if (Callee != CurrCallee)
2049           return false;
2050       }
2051     }
2052   }
2053 
2054   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2055     Value *Op = I0->getOperand(OI);
2056     if (Op->getType()->isTokenTy())
2057       // Don't touch any operand of token type.
2058       return false;
2059 
2060     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2061       assert(I->getNumOperands() == I0->getNumOperands());
2062       return I->getOperand(OI) == I0->getOperand(OI);
2063     };
2064     if (!all_of(Insts, SameAsI0)) {
2065       // SROA can't speculate lifetime markers of selects/phis, and the
2066       // backend may handle such lifetimes incorrectly as well (#104776).
2067       // Don't sink lifetimes if it would introduce a phi on the pointer
2068       // argument.
2069       if (isLifeTimeMarker(I0) && OI == 1 &&
2070           any_of(Insts, [](const Instruction *I) {
2071             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2072           }))
2073         return false;
2074 
2075       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2076           !canReplaceOperandWithVariable(I0, OI))
2077         // We can't create a PHI from this GEP.
2078         return false;
2079       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2080       for (auto *I : Insts)
2081         Ops.push_back(I->getOperand(OI));
2082     }
2083   }
2084   return true;
2085 }
2086 
2087 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2088 // instruction of every block in Blocks to their common successor, commoning
2089 // into one instruction.
2090 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2091   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2092 
2093   // canSinkInstructions returning true guarantees that every block has at
2094   // least one non-terminator instruction.
2095   SmallVector<Instruction*,4> Insts;
2096   for (auto *BB : Blocks) {
2097     Instruction *I = BB->getTerminator();
2098     do {
2099       I = I->getPrevNode();
2100     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2101     if (!isa<DbgInfoIntrinsic>(I))
2102       Insts.push_back(I);
2103   }
2104 
2105   // We don't need to do any more checking here; canSinkInstructions should
2106   // have done it all for us.
2107   SmallVector<Value*, 4> NewOperands;
2108   Instruction *I0 = Insts.front();
2109   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2110     // This check is different to that in canSinkInstructions. There, we
2111     // cared about the global view once simplifycfg (and instcombine) have
2112     // completed - it takes into account PHIs that become trivially
2113     // simplifiable.  However here we need a more local view; if an operand
2114     // differs we create a PHI and rely on instcombine to clean up the very
2115     // small mess we may make.
2116     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2117       return I->getOperand(O) != I0->getOperand(O);
2118     });
2119     if (!NeedPHI) {
2120       NewOperands.push_back(I0->getOperand(O));
2121       continue;
2122     }
2123 
2124     // Create a new PHI in the successor block and populate it.
2125     auto *Op = I0->getOperand(O);
2126     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2127     auto *PN =
2128         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2129     PN->insertBefore(BBEnd->begin());
2130     for (auto *I : Insts)
2131       PN->addIncoming(I->getOperand(O), I->getParent());
2132     NewOperands.push_back(PN);
2133   }
2134 
2135   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2136   // and move it to the start of the successor block.
2137   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2138     I0->getOperandUse(O).set(NewOperands[O]);
2139 
2140   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2141 
2142   // Update metadata and IR flags, and merge debug locations.
2143   for (auto *I : Insts)
2144     if (I != I0) {
2145       // The debug location for the "common" instruction is the merged locations
2146       // of all the commoned instructions.  We start with the original location
2147       // of the "common" instruction and iteratively merge each location in the
2148       // loop below.
2149       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2150       // However, as N-way merge for CallInst is rare, so we use simplified API
2151       // instead of using complex API for N-way merge.
2152       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2153       combineMetadataForCSE(I0, I, true);
2154       I0->andIRFlags(I);
2155     }
2156 
2157   for (User *U : make_early_inc_range(I0->users())) {
2158     // canSinkLastInstruction checked that all instructions are only used by
2159     // phi nodes in a way that allows replacing the phi node with the common
2160     // instruction.
2161     auto *PN = cast<PHINode>(U);
2162     PN->replaceAllUsesWith(I0);
2163     PN->eraseFromParent();
2164   }
2165 
2166   // Finally nuke all instructions apart from the common instruction.
2167   for (auto *I : Insts) {
2168     if (I == I0)
2169       continue;
2170     // The remaining uses are debug users, replace those with the common inst.
2171     // In most (all?) cases this just introduces a use-before-def.
2172     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2173     I->replaceAllUsesWith(I0);
2174     I->eraseFromParent();
2175   }
2176 }
2177 
2178 namespace {
2179 
2180   // LockstepReverseIterator - Iterates through instructions
2181   // in a set of blocks in reverse order from the first non-terminator.
2182   // For example (assume all blocks have size n):
2183   //   LockstepReverseIterator I([B1, B2, B3]);
2184   //   *I-- = [B1[n], B2[n], B3[n]];
2185   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2186   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2187   //   ...
2188   class LockstepReverseIterator {
2189     ArrayRef<BasicBlock*> Blocks;
2190     SmallVector<Instruction*,4> Insts;
2191     bool Fail;
2192 
2193   public:
2194     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2195       reset();
2196     }
2197 
2198     void reset() {
2199       Fail = false;
2200       Insts.clear();
2201       for (auto *BB : Blocks) {
2202         Instruction *Inst = BB->getTerminator();
2203         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2204           Inst = Inst->getPrevNode();
2205         if (!Inst) {
2206           // Block wasn't big enough.
2207           Fail = true;
2208           return;
2209         }
2210         Insts.push_back(Inst);
2211       }
2212     }
2213 
2214     bool isValid() const {
2215       return !Fail;
2216     }
2217 
2218     void operator--() {
2219       if (Fail)
2220         return;
2221       for (auto *&Inst : Insts) {
2222         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2223           Inst = Inst->getPrevNode();
2224         // Already at beginning of block.
2225         if (!Inst) {
2226           Fail = true;
2227           return;
2228         }
2229       }
2230     }
2231 
2232     void operator++() {
2233       if (Fail)
2234         return;
2235       for (auto *&Inst : Insts) {
2236         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2237           Inst = Inst->getNextNode();
2238         // Already at end of block.
2239         if (!Inst) {
2240           Fail = true;
2241           return;
2242         }
2243       }
2244     }
2245 
2246     ArrayRef<Instruction*> operator * () const {
2247       return Insts;
2248     }
2249   };
2250 
2251 } // end anonymous namespace
2252 
2253 /// Check whether BB's predecessors end with unconditional branches. If it is
2254 /// true, sink any common code from the predecessors to BB.
2255 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2256                                            DomTreeUpdater *DTU) {
2257   // We support two situations:
2258   //   (1) all incoming arcs are unconditional
2259   //   (2) there are non-unconditional incoming arcs
2260   //
2261   // (2) is very common in switch defaults and
2262   // else-if patterns;
2263   //
2264   //   if (a) f(1);
2265   //   else if (b) f(2);
2266   //
2267   // produces:
2268   //
2269   //       [if]
2270   //      /    \
2271   //    [f(1)] [if]
2272   //      |     | \
2273   //      |     |  |
2274   //      |  [f(2)]|
2275   //       \    | /
2276   //        [ end ]
2277   //
2278   // [end] has two unconditional predecessor arcs and one conditional. The
2279   // conditional refers to the implicit empty 'else' arc. This conditional
2280   // arc can also be caused by an empty default block in a switch.
2281   //
2282   // In this case, we attempt to sink code from all *unconditional* arcs.
2283   // If we can sink instructions from these arcs (determined during the scan
2284   // phase below) we insert a common successor for all unconditional arcs and
2285   // connect that to [end], to enable sinking:
2286   //
2287   //       [if]
2288   //      /    \
2289   //    [x(1)] [if]
2290   //      |     | \
2291   //      |     |  \
2292   //      |  [x(2)] |
2293   //       \   /    |
2294   //   [sink.split] |
2295   //         \     /
2296   //         [ end ]
2297   //
2298   SmallVector<BasicBlock*,4> UnconditionalPreds;
2299   bool HaveNonUnconditionalPredecessors = false;
2300   for (auto *PredBB : predecessors(BB)) {
2301     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2302     if (PredBr && PredBr->isUnconditional())
2303       UnconditionalPreds.push_back(PredBB);
2304     else
2305       HaveNonUnconditionalPredecessors = true;
2306   }
2307   if (UnconditionalPreds.size() < 2)
2308     return false;
2309 
2310   // We take a two-step approach to tail sinking. First we scan from the end of
2311   // each block upwards in lockstep. If the n'th instruction from the end of each
2312   // block can be sunk, those instructions are added to ValuesToSink and we
2313   // carry on. If we can sink an instruction but need to PHI-merge some operands
2314   // (because they're not identical in each instruction) we add these to
2315   // PHIOperands.
2316   // We prepopulate PHIOperands with the phis that already exist in BB.
2317   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2318   for (PHINode &PN : BB->phis()) {
2319     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2320     for (const Use &U : PN.incoming_values())
2321       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2322     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2323     for (BasicBlock *Pred : UnconditionalPreds)
2324       Ops.push_back(*IncomingVals[Pred]);
2325   }
2326 
2327   int ScanIdx = 0;
2328   SmallPtrSet<Value*,4> InstructionsToSink;
2329   LockstepReverseIterator LRI(UnconditionalPreds);
2330   while (LRI.isValid() &&
2331          canSinkInstructions(*LRI, PHIOperands)) {
2332     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2333                       << "\n");
2334     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2335     ++ScanIdx;
2336     --LRI;
2337   }
2338 
2339   // If no instructions can be sunk, early-return.
2340   if (ScanIdx == 0)
2341     return false;
2342 
2343   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2344 
2345   if (!followedByDeoptOrUnreachable) {
2346     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2347     // actually sink before encountering instruction that is unprofitable to
2348     // sink?
2349     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2350       unsigned NumPHIInsts = 0;
2351       for (Use &U : (*LRI)[0]->operands()) {
2352         auto It = PHIOperands.find(&U);
2353         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2354               return InstructionsToSink.contains(V);
2355             })) {
2356           ++NumPHIInsts;
2357           // FIXME: this check is overly optimistic. We may end up not sinking
2358           // said instruction, due to the very same profitability check.
2359           // See @creating_too_many_phis in sink-common-code.ll.
2360         }
2361       }
2362       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2363       return NumPHIInsts <= 1;
2364     };
2365 
2366     // We've determined that we are going to sink last ScanIdx instructions,
2367     // and recorded them in InstructionsToSink. Now, some instructions may be
2368     // unprofitable to sink. But that determination depends on the instructions
2369     // that we are going to sink.
2370 
2371     // First, forward scan: find the first instruction unprofitable to sink,
2372     // recording all the ones that are profitable to sink.
2373     // FIXME: would it be better, after we detect that not all are profitable.
2374     // to either record the profitable ones, or erase the unprofitable ones?
2375     // Maybe we need to choose (at runtime) the one that will touch least
2376     // instrs?
2377     LRI.reset();
2378     int Idx = 0;
2379     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2380     while (Idx < ScanIdx) {
2381       if (!ProfitableToSinkInstruction(LRI)) {
2382         // Too many PHIs would be created.
2383         LLVM_DEBUG(
2384             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2385         break;
2386       }
2387       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2388       --LRI;
2389       ++Idx;
2390     }
2391 
2392     // If no instructions can be sunk, early-return.
2393     if (Idx == 0)
2394       return false;
2395 
2396     // Did we determine that (only) some instructions are unprofitable to sink?
2397     if (Idx < ScanIdx) {
2398       // Okay, some instructions are unprofitable.
2399       ScanIdx = Idx;
2400       InstructionsToSink = InstructionsProfitableToSink;
2401 
2402       // But, that may make other instructions unprofitable, too.
2403       // So, do a backward scan, do any earlier instructions become
2404       // unprofitable?
2405       assert(
2406           !ProfitableToSinkInstruction(LRI) &&
2407           "We already know that the last instruction is unprofitable to sink");
2408       ++LRI;
2409       --Idx;
2410       while (Idx >= 0) {
2411         // If we detect that an instruction becomes unprofitable to sink,
2412         // all earlier instructions won't be sunk either,
2413         // so preemptively keep InstructionsProfitableToSink in sync.
2414         // FIXME: is this the most performant approach?
2415         for (auto *I : *LRI)
2416           InstructionsProfitableToSink.erase(I);
2417         if (!ProfitableToSinkInstruction(LRI)) {
2418           // Everything starting with this instruction won't be sunk.
2419           ScanIdx = Idx;
2420           InstructionsToSink = InstructionsProfitableToSink;
2421         }
2422         ++LRI;
2423         --Idx;
2424       }
2425     }
2426 
2427     // If no instructions can be sunk, early-return.
2428     if (ScanIdx == 0)
2429       return false;
2430   }
2431 
2432   bool Changed = false;
2433 
2434   if (HaveNonUnconditionalPredecessors) {
2435     if (!followedByDeoptOrUnreachable) {
2436       // It is always legal to sink common instructions from unconditional
2437       // predecessors. However, if not all predecessors are unconditional,
2438       // this transformation might be pessimizing. So as a rule of thumb,
2439       // don't do it unless we'd sink at least one non-speculatable instruction.
2440       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2441       LRI.reset();
2442       int Idx = 0;
2443       bool Profitable = false;
2444       while (Idx < ScanIdx) {
2445         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2446           Profitable = true;
2447           break;
2448         }
2449         --LRI;
2450         ++Idx;
2451       }
2452       if (!Profitable)
2453         return false;
2454     }
2455 
2456     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2457     // We have a conditional edge and we're going to sink some instructions.
2458     // Insert a new block postdominating all blocks we're going to sink from.
2459     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2460       // Edges couldn't be split.
2461       return false;
2462     Changed = true;
2463   }
2464 
2465   // Now that we've analyzed all potential sinking candidates, perform the
2466   // actual sink. We iteratively sink the last non-terminator of the source
2467   // blocks into their common successor unless doing so would require too
2468   // many PHI instructions to be generated (currently only one PHI is allowed
2469   // per sunk instruction).
2470   //
2471   // We can use InstructionsToSink to discount values needing PHI-merging that will
2472   // actually be sunk in a later iteration. This allows us to be more
2473   // aggressive in what we sink. This does allow a false positive where we
2474   // sink presuming a later value will also be sunk, but stop half way through
2475   // and never actually sink it which means we produce more PHIs than intended.
2476   // This is unlikely in practice though.
2477   int SinkIdx = 0;
2478   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2479     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2480                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2481                       << "\n");
2482 
2483     // Because we've sunk every instruction in turn, the current instruction to
2484     // sink is always at index 0.
2485     LRI.reset();
2486 
2487     sinkLastInstruction(UnconditionalPreds);
2488     NumSinkCommonInstrs++;
2489     Changed = true;
2490   }
2491   if (SinkIdx != 0)
2492     ++NumSinkCommonCode;
2493   return Changed;
2494 }
2495 
2496 namespace {
2497 
2498 struct CompatibleSets {
2499   using SetTy = SmallVector<InvokeInst *, 2>;
2500 
2501   SmallVector<SetTy, 1> Sets;
2502 
2503   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2504 
2505   SetTy &getCompatibleSet(InvokeInst *II);
2506 
2507   void insert(InvokeInst *II);
2508 };
2509 
2510 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2511   // Perform a linear scan over all the existing sets, see if the new `invoke`
2512   // is compatible with any particular set. Since we know that all the `invokes`
2513   // within a set are compatible, only check the first `invoke` in each set.
2514   // WARNING: at worst, this has quadratic complexity.
2515   for (CompatibleSets::SetTy &Set : Sets) {
2516     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2517       return Set;
2518   }
2519 
2520   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2521   return Sets.emplace_back();
2522 }
2523 
2524 void CompatibleSets::insert(InvokeInst *II) {
2525   getCompatibleSet(II).emplace_back(II);
2526 }
2527 
2528 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2529   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2530 
2531   // Can we theoretically merge these `invoke`s?
2532   auto IsIllegalToMerge = [](InvokeInst *II) {
2533     return II->cannotMerge() || II->isInlineAsm();
2534   };
2535   if (any_of(Invokes, IsIllegalToMerge))
2536     return false;
2537 
2538   // Either both `invoke`s must be   direct,
2539   // or     both `invoke`s must be indirect.
2540   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2541   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2542   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2543   if (HaveIndirectCalls) {
2544     if (!AllCallsAreIndirect)
2545       return false;
2546   } else {
2547     // All callees must be identical.
2548     Value *Callee = nullptr;
2549     for (InvokeInst *II : Invokes) {
2550       Value *CurrCallee = II->getCalledOperand();
2551       assert(CurrCallee && "There is always a called operand.");
2552       if (!Callee)
2553         Callee = CurrCallee;
2554       else if (Callee != CurrCallee)
2555         return false;
2556     }
2557   }
2558 
2559   // Either both `invoke`s must not have a normal destination,
2560   // or     both `invoke`s must     have a normal destination,
2561   auto HasNormalDest = [](InvokeInst *II) {
2562     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2563   };
2564   if (any_of(Invokes, HasNormalDest)) {
2565     // Do not merge `invoke` that does not have a normal destination with one
2566     // that does have a normal destination, even though doing so would be legal.
2567     if (!all_of(Invokes, HasNormalDest))
2568       return false;
2569 
2570     // All normal destinations must be identical.
2571     BasicBlock *NormalBB = nullptr;
2572     for (InvokeInst *II : Invokes) {
2573       BasicBlock *CurrNormalBB = II->getNormalDest();
2574       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2575       if (!NormalBB)
2576         NormalBB = CurrNormalBB;
2577       else if (NormalBB != CurrNormalBB)
2578         return false;
2579     }
2580 
2581     // In the normal destination, the incoming values for these two `invoke`s
2582     // must be compatible.
2583     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2584     if (!incomingValuesAreCompatible(
2585             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2586             &EquivalenceSet))
2587       return false;
2588   }
2589 
2590 #ifndef NDEBUG
2591   // All unwind destinations must be identical.
2592   // We know that because we have started from said unwind destination.
2593   BasicBlock *UnwindBB = nullptr;
2594   for (InvokeInst *II : Invokes) {
2595     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2596     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2597     if (!UnwindBB)
2598       UnwindBB = CurrUnwindBB;
2599     else
2600       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2601   }
2602 #endif
2603 
2604   // In the unwind destination, the incoming values for these two `invoke`s
2605   // must be compatible.
2606   if (!incomingValuesAreCompatible(
2607           Invokes.front()->getUnwindDest(),
2608           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2609     return false;
2610 
2611   // Ignoring arguments, these `invoke`s must be identical,
2612   // including operand bundles.
2613   const InvokeInst *II0 = Invokes.front();
2614   for (auto *II : Invokes.drop_front())
2615     if (!II->isSameOperationAs(II0))
2616       return false;
2617 
2618   // Can we theoretically form the data operands for the merged `invoke`?
2619   auto IsIllegalToMergeArguments = [](auto Ops) {
2620     Use &U0 = std::get<0>(Ops);
2621     Use &U1 = std::get<1>(Ops);
2622     if (U0 == U1)
2623       return false;
2624     return U0->getType()->isTokenTy() ||
2625            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2626                                           U0.getOperandNo());
2627   };
2628   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2629   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2630              IsIllegalToMergeArguments))
2631     return false;
2632 
2633   return true;
2634 }
2635 
2636 } // namespace
2637 
2638 // Merge all invokes in the provided set, all of which are compatible
2639 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2640 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2641                                        DomTreeUpdater *DTU) {
2642   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2643 
2644   SmallVector<DominatorTree::UpdateType, 8> Updates;
2645   if (DTU)
2646     Updates.reserve(2 + 3 * Invokes.size());
2647 
2648   bool HasNormalDest =
2649       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2650 
2651   // Clone one of the invokes into a new basic block.
2652   // Since they are all compatible, it doesn't matter which invoke is cloned.
2653   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2654     InvokeInst *II0 = Invokes.front();
2655     BasicBlock *II0BB = II0->getParent();
2656     BasicBlock *InsertBeforeBlock =
2657         II0->getParent()->getIterator()->getNextNode();
2658     Function *Func = II0BB->getParent();
2659     LLVMContext &Ctx = II0->getContext();
2660 
2661     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2662         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2663 
2664     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2665     // NOTE: all invokes have the same attributes, so no handling needed.
2666     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2667 
2668     if (!HasNormalDest) {
2669       // This set does not have a normal destination,
2670       // so just form a new block with unreachable terminator.
2671       BasicBlock *MergedNormalDest = BasicBlock::Create(
2672           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2673       new UnreachableInst(Ctx, MergedNormalDest);
2674       MergedInvoke->setNormalDest(MergedNormalDest);
2675     }
2676 
2677     // The unwind destination, however, remainds identical for all invokes here.
2678 
2679     return MergedInvoke;
2680   }();
2681 
2682   if (DTU) {
2683     // Predecessor blocks that contained these invokes will now branch to
2684     // the new block that contains the merged invoke, ...
2685     for (InvokeInst *II : Invokes)
2686       Updates.push_back(
2687           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2688 
2689     // ... which has the new `unreachable` block as normal destination,
2690     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2691     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2692       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2693                          SuccBBOfMergedInvoke});
2694 
2695     // Since predecessor blocks now unconditionally branch to a new block,
2696     // they no longer branch to their original successors.
2697     for (InvokeInst *II : Invokes)
2698       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2699         Updates.push_back(
2700             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2701   }
2702 
2703   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2704 
2705   // Form the merged operands for the merged invoke.
2706   for (Use &U : MergedInvoke->operands()) {
2707     // Only PHI together the indirect callees and data operands.
2708     if (MergedInvoke->isCallee(&U)) {
2709       if (!IsIndirectCall)
2710         continue;
2711     } else if (!MergedInvoke->isDataOperand(&U))
2712       continue;
2713 
2714     // Don't create trivial PHI's with all-identical incoming values.
2715     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2716       return II->getOperand(U.getOperandNo()) != U.get();
2717     });
2718     if (!NeedPHI)
2719       continue;
2720 
2721     // Form a PHI out of all the data ops under this index.
2722     PHINode *PN = PHINode::Create(
2723         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2724     for (InvokeInst *II : Invokes)
2725       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2726 
2727     U.set(PN);
2728   }
2729 
2730   // We've ensured that each PHI node has compatible (identical) incoming values
2731   // when coming from each of the `invoke`s in the current merge set,
2732   // so update the PHI nodes accordingly.
2733   for (BasicBlock *Succ : successors(MergedInvoke))
2734     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2735                           /*ExistPred=*/Invokes.front()->getParent());
2736 
2737   // And finally, replace the original `invoke`s with an unconditional branch
2738   // to the block with the merged `invoke`. Also, give that merged `invoke`
2739   // the merged debugloc of all the original `invoke`s.
2740   DILocation *MergedDebugLoc = nullptr;
2741   for (InvokeInst *II : Invokes) {
2742     // Compute the debug location common to all the original `invoke`s.
2743     if (!MergedDebugLoc)
2744       MergedDebugLoc = II->getDebugLoc();
2745     else
2746       MergedDebugLoc =
2747           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2748 
2749     // And replace the old `invoke` with an unconditionally branch
2750     // to the block with the merged `invoke`.
2751     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2752       OrigSuccBB->removePredecessor(II->getParent());
2753     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2754     II->replaceAllUsesWith(MergedInvoke);
2755     II->eraseFromParent();
2756     ++NumInvokesMerged;
2757   }
2758   MergedInvoke->setDebugLoc(MergedDebugLoc);
2759   ++NumInvokeSetsFormed;
2760 
2761   if (DTU)
2762     DTU->applyUpdates(Updates);
2763 }
2764 
2765 /// If this block is a `landingpad` exception handling block, categorize all
2766 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2767 /// being "mergeable" together, and then merge invokes in each set together.
2768 ///
2769 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2770 ///          [...]        [...]
2771 ///            |            |
2772 ///        [invoke0]    [invoke1]
2773 ///           / \          / \
2774 ///     [cont0] [landingpad] [cont1]
2775 /// to:
2776 ///      [...] [...]
2777 ///          \ /
2778 ///       [invoke]
2779 ///          / \
2780 ///     [cont] [landingpad]
2781 ///
2782 /// But of course we can only do that if the invokes share the `landingpad`,
2783 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2784 /// and the invoked functions are "compatible".
2785 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2786   if (!EnableMergeCompatibleInvokes)
2787     return false;
2788 
2789   bool Changed = false;
2790 
2791   // FIXME: generalize to all exception handling blocks?
2792   if (!BB->isLandingPad())
2793     return Changed;
2794 
2795   CompatibleSets Grouper;
2796 
2797   // Record all the predecessors of this `landingpad`. As per verifier,
2798   // the only allowed predecessor is the unwind edge of an `invoke`.
2799   // We want to group "compatible" `invokes` into the same set to be merged.
2800   for (BasicBlock *PredBB : predecessors(BB))
2801     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2802 
2803   // And now, merge `invoke`s that were grouped togeter.
2804   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2805     if (Invokes.size() < 2)
2806       continue;
2807     Changed = true;
2808     mergeCompatibleInvokesImpl(Invokes, DTU);
2809   }
2810 
2811   return Changed;
2812 }
2813 
2814 namespace {
2815 /// Track ephemeral values, which should be ignored for cost-modelling
2816 /// purposes. Requires walking instructions in reverse order.
2817 class EphemeralValueTracker {
2818   SmallPtrSet<const Instruction *, 32> EphValues;
2819 
2820   bool isEphemeral(const Instruction *I) {
2821     if (isa<AssumeInst>(I))
2822       return true;
2823     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2824            all_of(I->users(), [&](const User *U) {
2825              return EphValues.count(cast<Instruction>(U));
2826            });
2827   }
2828 
2829 public:
2830   bool track(const Instruction *I) {
2831     if (isEphemeral(I)) {
2832       EphValues.insert(I);
2833       return true;
2834     }
2835     return false;
2836   }
2837 
2838   bool contains(const Instruction *I) const { return EphValues.contains(I); }
2839 };
2840 } // namespace
2841 
2842 /// Determine if we can hoist sink a sole store instruction out of a
2843 /// conditional block.
2844 ///
2845 /// We are looking for code like the following:
2846 ///   BrBB:
2847 ///     store i32 %add, i32* %arrayidx2
2848 ///     ... // No other stores or function calls (we could be calling a memory
2849 ///     ... // function).
2850 ///     %cmp = icmp ult %x, %y
2851 ///     br i1 %cmp, label %EndBB, label %ThenBB
2852 ///   ThenBB:
2853 ///     store i32 %add5, i32* %arrayidx2
2854 ///     br label EndBB
2855 ///   EndBB:
2856 ///     ...
2857 ///   We are going to transform this into:
2858 ///   BrBB:
2859 ///     store i32 %add, i32* %arrayidx2
2860 ///     ... //
2861 ///     %cmp = icmp ult %x, %y
2862 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
2863 ///     store i32 %add.add5, i32* %arrayidx2
2864 ///     ...
2865 ///
2866 /// \return The pointer to the value of the previous store if the store can be
2867 ///         hoisted into the predecessor block. 0 otherwise.
2868 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
2869                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
2870   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
2871   if (!StoreToHoist)
2872     return nullptr;
2873 
2874   // Volatile or atomic.
2875   if (!StoreToHoist->isSimple())
2876     return nullptr;
2877 
2878   Value *StorePtr = StoreToHoist->getPointerOperand();
2879   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
2880 
2881   // Look for a store to the same pointer in BrBB.
2882   unsigned MaxNumInstToLookAt = 9;
2883   // Skip pseudo probe intrinsic calls which are not really killing any memory
2884   // accesses.
2885   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
2886     if (!MaxNumInstToLookAt)
2887       break;
2888     --MaxNumInstToLookAt;
2889 
2890     // Could be calling an instruction that affects memory like free().
2891     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
2892       return nullptr;
2893 
2894     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
2895       // Found the previous store to same location and type. Make sure it is
2896       // simple, to avoid introducing a spurious non-atomic write after an
2897       // atomic write.
2898       if (SI->getPointerOperand() == StorePtr &&
2899           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
2900           SI->getAlign() >= StoreToHoist->getAlign())
2901         // Found the previous store, return its value operand.
2902         return SI->getValueOperand();
2903       return nullptr; // Unknown store.
2904     }
2905 
2906     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
2907       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
2908           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
2909         // Local objects (created by an `alloca` instruction) are always
2910         // writable, so once we are past a read from a location it is valid to
2911         // also write to that same location.
2912         // If the address of the local object never escapes the function, that
2913         // means it's never concurrently read or written, hence moving the store
2914         // from under the condition will not introduce a data race.
2915         auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
2916         if (AI && !PointerMayBeCaptured(AI, false, true))
2917           // Found a previous load, return it.
2918           return LI;
2919       }
2920       // The load didn't work out, but we may still find a store.
2921     }
2922   }
2923 
2924   return nullptr;
2925 }
2926 
2927 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
2928 /// converted to selects.
2929 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
2930                                            BasicBlock *EndBB,
2931                                            unsigned &SpeculatedInstructions,
2932                                            InstructionCost &Cost,
2933                                            const TargetTransformInfo &TTI) {
2934   TargetTransformInfo::TargetCostKind CostKind =
2935     BB->getParent()->hasMinSize()
2936     ? TargetTransformInfo::TCK_CodeSize
2937     : TargetTransformInfo::TCK_SizeAndLatency;
2938 
2939   bool HaveRewritablePHIs = false;
2940   for (PHINode &PN : EndBB->phis()) {
2941     Value *OrigV = PN.getIncomingValueForBlock(BB);
2942     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2943 
2944     // FIXME: Try to remove some of the duplication with
2945     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
2946     if (ThenV == OrigV)
2947       continue;
2948 
2949     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
2950                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
2951 
2952     // Don't convert to selects if we could remove undefined behavior instead.
2953     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2954         passingValueIsAlwaysUndefined(ThenV, &PN))
2955       return false;
2956 
2957     HaveRewritablePHIs = true;
2958     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2959     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2960     if (!OrigCE && !ThenCE)
2961       continue; // Known cheap (FIXME: Maybe not true for aggregates).
2962 
2963     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
2964     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
2965     InstructionCost MaxCost =
2966         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2967     if (OrigCost + ThenCost > MaxCost)
2968       return false;
2969 
2970     // Account for the cost of an unfolded ConstantExpr which could end up
2971     // getting expanded into Instructions.
2972     // FIXME: This doesn't account for how many operations are combined in the
2973     // constant expression.
2974     ++SpeculatedInstructions;
2975     if (SpeculatedInstructions > 1)
2976       return false;
2977   }
2978 
2979   return HaveRewritablePHIs;
2980 }
2981 
2982 static bool isProfitableToSpeculate(const BranchInst *BI, bool Invert,
2983                                     const TargetTransformInfo &TTI) {
2984   // If the branch is non-unpredictable, and is predicted to *not* branch to
2985   // the `then` block, then avoid speculating it.
2986   if (BI->getMetadata(LLVMContext::MD_unpredictable))
2987     return true;
2988 
2989   uint64_t TWeight, FWeight;
2990   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
2991     return true;
2992 
2993   uint64_t EndWeight = Invert ? TWeight : FWeight;
2994   BranchProbability BIEndProb =
2995       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
2996   BranchProbability Likely = TTI.getPredictableBranchThreshold();
2997   return BIEndProb < Likely;
2998 }
2999 
3000 static bool isSafeCheapLoadStore(const Instruction *I,
3001                                  const TargetTransformInfo &TTI) {
3002   // Not handle volatile or atomic.
3003   if (auto *L = dyn_cast<LoadInst>(I)) {
3004     if (!L->isSimple())
3005       return false;
3006   } else if (auto *S = dyn_cast<StoreInst>(I)) {
3007     if (!S->isSimple())
3008       return false;
3009   } else
3010     return false;
3011 
3012   // llvm.masked.load/store use i32 for alignment while load/store use i64.
3013   // That's why we have the alignment limitation.
3014   // FIXME: Update the prototype of the intrinsics?
3015   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
3016          getLoadStoreAlignment(I) < Value::MaximumAlignment;
3017 }
3018 
3019 /// Speculate a conditional basic block flattening the CFG.
3020 ///
3021 /// Note that this is a very risky transform currently. Speculating
3022 /// instructions like this is most often not desirable. Instead, there is an MI
3023 /// pass which can do it with full awareness of the resource constraints.
3024 /// However, some cases are "obvious" and we should do directly. An example of
3025 /// this is speculating a single, reasonably cheap instruction.
3026 ///
3027 /// There is only one distinct advantage to flattening the CFG at the IR level:
3028 /// it makes very common but simplistic optimizations such as are common in
3029 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3030 /// modeling their effects with easier to reason about SSA value graphs.
3031 ///
3032 ///
3033 /// An illustration of this transform is turning this IR:
3034 /// \code
3035 ///   BB:
3036 ///     %cmp = icmp ult %x, %y
3037 ///     br i1 %cmp, label %EndBB, label %ThenBB
3038 ///   ThenBB:
3039 ///     %sub = sub %x, %y
3040 ///     br label BB2
3041 ///   EndBB:
3042 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3043 ///     ...
3044 /// \endcode
3045 ///
3046 /// Into this IR:
3047 /// \code
3048 ///   BB:
3049 ///     %cmp = icmp ult %x, %y
3050 ///     %sub = sub %x, %y
3051 ///     %cond = select i1 %cmp, 0, %sub
3052 ///     ...
3053 /// \endcode
3054 ///
3055 /// \returns true if the conditional block is removed.
3056 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3057                                             BasicBlock *ThenBB) {
3058   if (!Options.SpeculateBlocks)
3059     return false;
3060 
3061   // Be conservative for now. FP select instruction can often be expensive.
3062   Value *BrCond = BI->getCondition();
3063   if (isa<FCmpInst>(BrCond))
3064     return false;
3065 
3066   BasicBlock *BB = BI->getParent();
3067   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3068   InstructionCost Budget =
3069       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3070 
3071   // If ThenBB is actually on the false edge of the conditional branch, remember
3072   // to swap the select operands later.
3073   bool Invert = false;
3074   if (ThenBB != BI->getSuccessor(0)) {
3075     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3076     Invert = true;
3077   }
3078   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3079 
3080   if (!isProfitableToSpeculate(BI, Invert, TTI))
3081     return false;
3082 
3083   // Keep a count of how many times instructions are used within ThenBB when
3084   // they are candidates for sinking into ThenBB. Specifically:
3085   // - They are defined in BB, and
3086   // - They have no side effects, and
3087   // - All of their uses are in ThenBB.
3088   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3089 
3090   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3091 
3092   unsigned SpeculatedInstructions = 0;
3093   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3094                           Options.HoistLoadsStoresWithCondFaulting;
3095   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3096   Value *SpeculatedStoreValue = nullptr;
3097   StoreInst *SpeculatedStore = nullptr;
3098   EphemeralValueTracker EphTracker;
3099   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3100     // Skip debug info.
3101     if (isa<DbgInfoIntrinsic>(I)) {
3102       SpeculatedDbgIntrinsics.push_back(&I);
3103       continue;
3104     }
3105 
3106     // Skip pseudo probes. The consequence is we lose track of the branch
3107     // probability for ThenBB, which is fine since the optimization here takes
3108     // place regardless of the branch probability.
3109     if (isa<PseudoProbeInst>(I)) {
3110       // The probe should be deleted so that it will not be over-counted when
3111       // the samples collected on the non-conditional path are counted towards
3112       // the conditional path. We leave it for the counts inference algorithm to
3113       // figure out a proper count for an unknown probe.
3114       SpeculatedDbgIntrinsics.push_back(&I);
3115       continue;
3116     }
3117 
3118     // Ignore ephemeral values, they will be dropped by the transform.
3119     if (EphTracker.track(&I))
3120       continue;
3121 
3122     // Only speculatively execute a single instruction (not counting the
3123     // terminator) for now.
3124     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3125                                 isSafeCheapLoadStore(&I, TTI) &&
3126                                 SpeculatedConditionalLoadsStores.size() <
3127                                     HoistLoadsStoresWithCondFaultingThreshold;
3128     // Not count load/store into cost if target supports conditional faulting
3129     // b/c it's cheap to speculate it.
3130     if (IsSafeCheapLoadStore)
3131       SpeculatedConditionalLoadsStores.push_back(&I);
3132     else
3133       ++SpeculatedInstructions;
3134 
3135     if (SpeculatedInstructions > 1)
3136       return false;
3137 
3138     // Don't hoist the instruction if it's unsafe or expensive.
3139     if (!IsSafeCheapLoadStore &&
3140         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3141         !(HoistCondStores && !SpeculatedStoreValue &&
3142           (SpeculatedStoreValue =
3143                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3144       return false;
3145     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3146         computeSpeculationCost(&I, TTI) >
3147             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3148       return false;
3149 
3150     // Store the store speculation candidate.
3151     if (!SpeculatedStore && SpeculatedStoreValue)
3152       SpeculatedStore = cast<StoreInst>(&I);
3153 
3154     // Do not hoist the instruction if any of its operands are defined but not
3155     // used in BB. The transformation will prevent the operand from
3156     // being sunk into the use block.
3157     for (Use &Op : I.operands()) {
3158       Instruction *OpI = dyn_cast<Instruction>(Op);
3159       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3160         continue; // Not a candidate for sinking.
3161 
3162       ++SinkCandidateUseCounts[OpI];
3163     }
3164   }
3165 
3166   // Consider any sink candidates which are only used in ThenBB as costs for
3167   // speculation. Note, while we iterate over a DenseMap here, we are summing
3168   // and so iteration order isn't significant.
3169   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3170     if (Inst->hasNUses(Count)) {
3171       ++SpeculatedInstructions;
3172       if (SpeculatedInstructions > 1)
3173         return false;
3174     }
3175 
3176   // Check that we can insert the selects and that it's not too expensive to do
3177   // so.
3178   bool Convert =
3179       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3180   InstructionCost Cost = 0;
3181   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3182                                             SpeculatedInstructions, Cost, TTI);
3183   if (!Convert || Cost > Budget)
3184     return false;
3185 
3186   // If we get here, we can hoist the instruction and if-convert.
3187   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3188 
3189   // Insert a select of the value of the speculated store.
3190   if (SpeculatedStoreValue) {
3191     IRBuilder<NoFolder> Builder(BI);
3192     Value *OrigV = SpeculatedStore->getValueOperand();
3193     Value *TrueV = SpeculatedStore->getValueOperand();
3194     Value *FalseV = SpeculatedStoreValue;
3195     if (Invert)
3196       std::swap(TrueV, FalseV);
3197     Value *S = Builder.CreateSelect(
3198         BrCond, TrueV, FalseV, "spec.store.select", BI);
3199     SpeculatedStore->setOperand(0, S);
3200     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3201                                          SpeculatedStore->getDebugLoc());
3202     // The value stored is still conditional, but the store itself is now
3203     // unconditonally executed, so we must be sure that any linked dbg.assign
3204     // intrinsics are tracking the new stored value (the result of the
3205     // select). If we don't, and the store were to be removed by another pass
3206     // (e.g. DSE), then we'd eventually end up emitting a location describing
3207     // the conditional value, unconditionally.
3208     //
3209     // === Before this transformation ===
3210     // pred:
3211     //   store %one, %x.dest, !DIAssignID !1
3212     //   dbg.assign %one, "x", ..., !1, ...
3213     //   br %cond if.then
3214     //
3215     // if.then:
3216     //   store %two, %x.dest, !DIAssignID !2
3217     //   dbg.assign %two, "x", ..., !2, ...
3218     //
3219     // === After this transformation ===
3220     // pred:
3221     //   store %one, %x.dest, !DIAssignID !1
3222     //   dbg.assign %one, "x", ..., !1
3223     ///  ...
3224     //   %merge = select %cond, %two, %one
3225     //   store %merge, %x.dest, !DIAssignID !2
3226     //   dbg.assign %merge, "x", ..., !2
3227     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3228       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3229         DbgAssign->replaceVariableLocationOp(OrigV, S);
3230     };
3231     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3232     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3233   }
3234 
3235   // Metadata can be dependent on the condition we are hoisting above.
3236   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3237   // to avoid making it appear as if the condition is a constant, which would
3238   // be misleading while debugging.
3239   // Similarly strip attributes that maybe dependent on condition we are
3240   // hoisting above.
3241   for (auto &I : make_early_inc_range(*ThenBB)) {
3242     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3243       // Don't update the DILocation of dbg.assign intrinsics.
3244       if (!isa<DbgAssignIntrinsic>(&I))
3245         I.setDebugLoc(DebugLoc());
3246     }
3247     I.dropUBImplyingAttrsAndMetadata();
3248 
3249     // Drop ephemeral values.
3250     if (EphTracker.contains(&I)) {
3251       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3252       I.eraseFromParent();
3253     }
3254   }
3255 
3256   // Hoist the instructions.
3257   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3258   // to these instructions, in the same way that dbg.value intrinsics are
3259   // dropped at the end of this block.
3260   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3261     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3262       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3263       // equivalent).
3264       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3265           !DVR || !DVR->isDbgAssign())
3266         It.dropOneDbgRecord(&DR);
3267   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3268              std::prev(ThenBB->end()));
3269 
3270   // If the target supports conditional faulting,
3271   // we look for the following pattern:
3272   // \code
3273   //   BB:
3274   //     ...
3275   //     %cond = icmp ult %x, %y
3276   //     br i1 %cond, label %TrueBB, label %FalseBB
3277   //   FalseBB:
3278   //     store i32 1, ptr %q, align 4
3279   //     ...
3280   //   TrueBB:
3281   //     %maskedloadstore = load i32, ptr %b, align 4
3282   //     store i32 %maskedloadstore, ptr %p, align 4
3283   //     ...
3284   // \endcode
3285   //
3286   // and transform it into:
3287   //
3288   // \code
3289   //   BB:
3290   //     ...
3291   //     %cond = icmp ult %x, %y
3292   //     %maskedloadstore = cload i32, ptr %b, %cond
3293   //     cstore i32 %maskedloadstore, ptr %p, %cond
3294   //     cstore i32 1, ptr %q, ~%cond
3295   //     br i1 %cond, label %TrueBB, label %FalseBB
3296   //   FalseBB:
3297   //     ...
3298   //   TrueBB:
3299   //     ...
3300   // \endcode
3301   //
3302   // where cload/cstore are represented by llvm.masked.load/store intrinsics,
3303   // e.g.
3304   //
3305   // \code
3306   //   %vcond = bitcast i1 %cond to <1 x i1>
3307   //   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
3308   //                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
3309   //   %maskedloadstore = bitcast <1 x i32> %v0 to i32
3310   //   call void @llvm.masked.store.v1i32.p0
3311   //                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
3312   //   %cond.not = xor i1 %cond, true
3313   //   %vcond.not = bitcast i1 %cond.not to <1 x i>
3314   //   call void @llvm.masked.store.v1i32.p0
3315   //              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
3316   // \endcode
3317   //
3318   // So we need to turn hoisted load/store into cload/cstore.
3319   auto &Context = BI->getParent()->getContext();
3320   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
3321   auto *Cond = BI->getOperand(0);
3322   Value *Mask = nullptr;
3323   // Construct the condition if needed.
3324   if (!SpeculatedConditionalLoadsStores.empty()) {
3325     IRBuilder<> Builder(SpeculatedConditionalLoadsStores.back());
3326     Mask = Builder.CreateBitCast(
3327         Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
3328         VCondTy);
3329   }
3330   for (auto *I : SpeculatedConditionalLoadsStores) {
3331     IRBuilder<> Builder(I);
3332     // We currently assume conditional faulting load/store is supported for
3333     // scalar types only when creating new instructions. This can be easily
3334     // extended for vector types in the future.
3335     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
3336     auto *Op0 = I->getOperand(0);
3337     CallInst *MaskedLoadStore = nullptr;
3338     if (auto *LI = dyn_cast<LoadInst>(I)) {
3339       // Handle Load.
3340       auto *Ty = I->getType();
3341       PHINode *PN = nullptr;
3342       Value *PassThru = nullptr;
3343       for (User *U : I->users())
3344         if ((PN = dyn_cast<PHINode>(U))) {
3345           PassThru = Builder.CreateBitCast(PN->getIncomingValueForBlock(BB),
3346                                            FixedVectorType::get(Ty, 1));
3347           break;
3348         }
3349       MaskedLoadStore = Builder.CreateMaskedLoad(
3350           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
3351       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
3352       if (PN)
3353         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
3354       I->replaceAllUsesWith(NewLoadStore);
3355     } else {
3356       // Handle Store.
3357       auto *StoredVal =
3358           Builder.CreateBitCast(Op0, FixedVectorType::get(Op0->getType(), 1));
3359       MaskedLoadStore = Builder.CreateMaskedStore(
3360           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
3361     }
3362     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
3363     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
3364     //
3365     // !nonnull, !align : Not support pointer type, no need to keep.
3366     // !range: Load type is changed from scalar to vector, but the metadata on
3367     //         vector specifies a per-element range, so the semantics stay the
3368     //         same. Keep it.
3369     // !annotation: Not impact semantics. Keep it.
3370     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
3371       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
3372     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
3373     // FIXME: DIAssignID is not supported for masked store yet.
3374     // (Verifier::visitDIAssignIDMetadata)
3375     at::deleteAssignmentMarkers(I);
3376     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
3377       return Node->getMetadataID() == Metadata::DIAssignIDKind;
3378     });
3379     MaskedLoadStore->copyMetadata(*I);
3380     I->eraseFromParent();
3381   }
3382 
3383   // Insert selects and rewrite the PHI operands.
3384   IRBuilder<NoFolder> Builder(BI);
3385   for (PHINode &PN : EndBB->phis()) {
3386     unsigned OrigI = PN.getBasicBlockIndex(BB);
3387     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3388     Value *OrigV = PN.getIncomingValue(OrigI);
3389     Value *ThenV = PN.getIncomingValue(ThenI);
3390 
3391     // Skip PHIs which are trivial.
3392     if (OrigV == ThenV)
3393       continue;
3394 
3395     // Create a select whose true value is the speculatively executed value and
3396     // false value is the pre-existing value. Swap them if the branch
3397     // destinations were inverted.
3398     Value *TrueV = ThenV, *FalseV = OrigV;
3399     if (Invert)
3400       std::swap(TrueV, FalseV);
3401     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3402     PN.setIncomingValue(OrigI, V);
3403     PN.setIncomingValue(ThenI, V);
3404   }
3405 
3406   // Remove speculated dbg intrinsics.
3407   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3408   // dbg value for the different flows and inserting it after the select.
3409   for (Instruction *I : SpeculatedDbgIntrinsics) {
3410     // We still want to know that an assignment took place so don't remove
3411     // dbg.assign intrinsics.
3412     if (!isa<DbgAssignIntrinsic>(I))
3413       I->eraseFromParent();
3414   }
3415 
3416   ++NumSpeculations;
3417   return true;
3418 }
3419 
3420 /// Return true if we can thread a branch across this block.
3421 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3422   int Size = 0;
3423   EphemeralValueTracker EphTracker;
3424 
3425   // Walk the loop in reverse so that we can identify ephemeral values properly
3426   // (values only feeding assumes).
3427   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3428     // Can't fold blocks that contain noduplicate or convergent calls.
3429     if (CallInst *CI = dyn_cast<CallInst>(&I))
3430       if (CI->cannotDuplicate() || CI->isConvergent())
3431         return false;
3432 
3433     // Ignore ephemeral values which are deleted during codegen.
3434     // We will delete Phis while threading, so Phis should not be accounted in
3435     // block's size.
3436     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3437       if (Size++ > MaxSmallBlockSize)
3438         return false; // Don't clone large BB's.
3439     }
3440 
3441     // We can only support instructions that do not define values that are
3442     // live outside of the current basic block.
3443     for (User *U : I.users()) {
3444       Instruction *UI = cast<Instruction>(U);
3445       if (UI->getParent() != BB || isa<PHINode>(UI))
3446         return false;
3447     }
3448 
3449     // Looks ok, continue checking.
3450   }
3451 
3452   return true;
3453 }
3454 
3455 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3456                                         BasicBlock *To) {
3457   // Don't look past the block defining the value, we might get the value from
3458   // a previous loop iteration.
3459   auto *I = dyn_cast<Instruction>(V);
3460   if (I && I->getParent() == To)
3461     return nullptr;
3462 
3463   // We know the value if the From block branches on it.
3464   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3465   if (BI && BI->isConditional() && BI->getCondition() == V &&
3466       BI->getSuccessor(0) != BI->getSuccessor(1))
3467     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3468                                      : ConstantInt::getFalse(BI->getContext());
3469 
3470   return nullptr;
3471 }
3472 
3473 /// If we have a conditional branch on something for which we know the constant
3474 /// value in predecessors (e.g. a phi node in the current block), thread edges
3475 /// from the predecessor to their ultimate destination.
3476 static std::optional<bool>
3477 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3478                                             const DataLayout &DL,
3479                                             AssumptionCache *AC) {
3480   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3481   BasicBlock *BB = BI->getParent();
3482   Value *Cond = BI->getCondition();
3483   PHINode *PN = dyn_cast<PHINode>(Cond);
3484   if (PN && PN->getParent() == BB) {
3485     // Degenerate case of a single entry PHI.
3486     if (PN->getNumIncomingValues() == 1) {
3487       FoldSingleEntryPHINodes(PN->getParent());
3488       return true;
3489     }
3490 
3491     for (Use &U : PN->incoming_values())
3492       if (auto *CB = dyn_cast<ConstantInt>(U))
3493         KnownValues[CB].insert(PN->getIncomingBlock(U));
3494   } else {
3495     for (BasicBlock *Pred : predecessors(BB)) {
3496       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3497         KnownValues[CB].insert(Pred);
3498     }
3499   }
3500 
3501   if (KnownValues.empty())
3502     return false;
3503 
3504   // Now we know that this block has multiple preds and two succs.
3505   // Check that the block is small enough and values defined in the block are
3506   // not used outside of it.
3507   if (!blockIsSimpleEnoughToThreadThrough(BB))
3508     return false;
3509 
3510   for (const auto &Pair : KnownValues) {
3511     // Okay, we now know that all edges from PredBB should be revectored to
3512     // branch to RealDest.
3513     ConstantInt *CB = Pair.first;
3514     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3515     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3516 
3517     if (RealDest == BB)
3518       continue; // Skip self loops.
3519 
3520     // Skip if the predecessor's terminator is an indirect branch.
3521     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3522           return isa<IndirectBrInst>(PredBB->getTerminator());
3523         }))
3524       continue;
3525 
3526     LLVM_DEBUG({
3527       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3528              << " has value " << *Pair.first << " in predecessors:\n";
3529       for (const BasicBlock *PredBB : Pair.second)
3530         dbgs() << "  " << PredBB->getName() << "\n";
3531       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3532     });
3533 
3534     // Split the predecessors we are threading into a new edge block. We'll
3535     // clone the instructions into this block, and then redirect it to RealDest.
3536     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3537 
3538     // TODO: These just exist to reduce test diff, we can drop them if we like.
3539     EdgeBB->setName(RealDest->getName() + ".critedge");
3540     EdgeBB->moveBefore(RealDest);
3541 
3542     // Update PHI nodes.
3543     addPredecessorToBlock(RealDest, EdgeBB, BB);
3544 
3545     // BB may have instructions that are being threaded over.  Clone these
3546     // instructions into EdgeBB.  We know that there will be no uses of the
3547     // cloned instructions outside of EdgeBB.
3548     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3549     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3550     TranslateMap[Cond] = CB;
3551 
3552     // RemoveDIs: track instructions that we optimise away while folding, so
3553     // that we can copy DbgVariableRecords from them later.
3554     BasicBlock::iterator SrcDbgCursor = BB->begin();
3555     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3556       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3557         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3558         continue;
3559       }
3560       // Clone the instruction.
3561       Instruction *N = BBI->clone();
3562       // Insert the new instruction into its new home.
3563       N->insertInto(EdgeBB, InsertPt);
3564 
3565       if (BBI->hasName())
3566         N->setName(BBI->getName() + ".c");
3567 
3568       // Update operands due to translation.
3569       for (Use &Op : N->operands()) {
3570         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3571         if (PI != TranslateMap.end())
3572           Op = PI->second;
3573       }
3574 
3575       // Check for trivial simplification.
3576       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3577         if (!BBI->use_empty())
3578           TranslateMap[&*BBI] = V;
3579         if (!N->mayHaveSideEffects()) {
3580           N->eraseFromParent(); // Instruction folded away, don't need actual
3581                                 // inst
3582           N = nullptr;
3583         }
3584       } else {
3585         if (!BBI->use_empty())
3586           TranslateMap[&*BBI] = N;
3587       }
3588       if (N) {
3589         // Copy all debug-info attached to instructions from the last we
3590         // successfully clone, up to this instruction (they might have been
3591         // folded away).
3592         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3593           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3594         SrcDbgCursor = std::next(BBI);
3595         // Clone debug-info on this instruction too.
3596         N->cloneDebugInfoFrom(&*BBI);
3597 
3598         // Register the new instruction with the assumption cache if necessary.
3599         if (auto *Assume = dyn_cast<AssumeInst>(N))
3600           if (AC)
3601             AC->registerAssumption(Assume);
3602       }
3603     }
3604 
3605     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3606       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3607     InsertPt->cloneDebugInfoFrom(BI);
3608 
3609     BB->removePredecessor(EdgeBB);
3610     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3611     EdgeBI->setSuccessor(0, RealDest);
3612     EdgeBI->setDebugLoc(BI->getDebugLoc());
3613 
3614     if (DTU) {
3615       SmallVector<DominatorTree::UpdateType, 2> Updates;
3616       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3617       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3618       DTU->applyUpdates(Updates);
3619     }
3620 
3621     // For simplicity, we created a separate basic block for the edge. Merge
3622     // it back into the predecessor if possible. This not only avoids
3623     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3624     // bypass the check for trivial cycles above.
3625     MergeBlockIntoPredecessor(EdgeBB, DTU);
3626 
3627     // Signal repeat, simplifying any other constants.
3628     return std::nullopt;
3629   }
3630 
3631   return false;
3632 }
3633 
3634 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3635                                                     DomTreeUpdater *DTU,
3636                                                     const DataLayout &DL,
3637                                                     AssumptionCache *AC) {
3638   std::optional<bool> Result;
3639   bool EverChanged = false;
3640   do {
3641     // Note that None means "we changed things, but recurse further."
3642     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3643     EverChanged |= Result == std::nullopt || *Result;
3644   } while (Result == std::nullopt);
3645   return EverChanged;
3646 }
3647 
3648 /// Given a BB that starts with the specified two-entry PHI node,
3649 /// see if we can eliminate it.
3650 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3651                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3652                                 const DataLayout &DL,
3653                                 bool SpeculateUnpredictables) {
3654   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3655   // statement", which has a very simple dominance structure.  Basically, we
3656   // are trying to find the condition that is being branched on, which
3657   // subsequently causes this merge to happen.  We really want control
3658   // dependence information for this check, but simplifycfg can't keep it up
3659   // to date, and this catches most of the cases we care about anyway.
3660   BasicBlock *BB = PN->getParent();
3661 
3662   BasicBlock *IfTrue, *IfFalse;
3663   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3664   if (!DomBI)
3665     return false;
3666   Value *IfCond = DomBI->getCondition();
3667   // Don't bother if the branch will be constant folded trivially.
3668   if (isa<ConstantInt>(IfCond))
3669     return false;
3670 
3671   BasicBlock *DomBlock = DomBI->getParent();
3672   SmallVector<BasicBlock *, 2> IfBlocks;
3673   llvm::copy_if(
3674       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3675         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3676       });
3677   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3678          "Will have either one or two blocks to speculate.");
3679 
3680   // If the branch is non-unpredictable, see if we either predictably jump to
3681   // the merge bb (if we have only a single 'then' block), or if we predictably
3682   // jump to one specific 'then' block (if we have two of them).
3683   // It isn't beneficial to speculatively execute the code
3684   // from the block that we know is predictably not entered.
3685   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3686   if (!IsUnpredictable) {
3687     uint64_t TWeight, FWeight;
3688     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3689         (TWeight + FWeight) != 0) {
3690       BranchProbability BITrueProb =
3691           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3692       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3693       BranchProbability BIFalseProb = BITrueProb.getCompl();
3694       if (IfBlocks.size() == 1) {
3695         BranchProbability BIBBProb =
3696             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3697         if (BIBBProb >= Likely)
3698           return false;
3699       } else {
3700         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3701           return false;
3702       }
3703     }
3704   }
3705 
3706   // Don't try to fold an unreachable block. For example, the phi node itself
3707   // can't be the candidate if-condition for a select that we want to form.
3708   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3709     if (IfCondPhiInst->getParent() == BB)
3710       return false;
3711 
3712   // Okay, we found that we can merge this two-entry phi node into a select.
3713   // Doing so would require us to fold *all* two entry phi nodes in this block.
3714   // At some point this becomes non-profitable (particularly if the target
3715   // doesn't support cmov's).  Only do this transformation if there are two or
3716   // fewer PHI nodes in this block.
3717   unsigned NumPhis = 0;
3718   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3719     if (NumPhis > 2)
3720       return false;
3721 
3722   // Loop over the PHI's seeing if we can promote them all to select
3723   // instructions.  While we are at it, keep track of the instructions
3724   // that need to be moved to the dominating block.
3725   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3726   InstructionCost Cost = 0;
3727   InstructionCost Budget =
3728       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3729   if (SpeculateUnpredictables && IsUnpredictable)
3730     Budget += TTI.getBranchMispredictPenalty();
3731 
3732   bool Changed = false;
3733   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3734     PHINode *PN = cast<PHINode>(II++);
3735     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3736       PN->replaceAllUsesWith(V);
3737       PN->eraseFromParent();
3738       Changed = true;
3739       continue;
3740     }
3741 
3742     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3743                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3744         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3745                              AggressiveInsts, Cost, Budget, TTI, AC))
3746       return Changed;
3747   }
3748 
3749   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3750   // we ran out of PHIs then we simplified them all.
3751   PN = dyn_cast<PHINode>(BB->begin());
3752   if (!PN)
3753     return true;
3754 
3755   // Return true if at least one of these is a 'not', and another is either
3756   // a 'not' too, or a constant.
3757   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3758     if (!match(V0, m_Not(m_Value())))
3759       std::swap(V0, V1);
3760     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3761     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3762   };
3763 
3764   // Don't fold i1 branches on PHIs which contain binary operators or
3765   // (possibly inverted) select form of or/ands,  unless one of
3766   // the incoming values is an 'not' and another one is freely invertible.
3767   // These can often be turned into switches and other things.
3768   auto IsBinOpOrAnd = [](Value *V) {
3769     return match(
3770         V, m_CombineOr(
3771                m_BinOp(),
3772                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3773                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3774   };
3775   if (PN->getType()->isIntegerTy(1) &&
3776       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3777        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3778       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3779                                  PN->getIncomingValue(1)))
3780     return Changed;
3781 
3782   // If all PHI nodes are promotable, check to make sure that all instructions
3783   // in the predecessor blocks can be promoted as well. If not, we won't be able
3784   // to get rid of the control flow, so it's not worth promoting to select
3785   // instructions.
3786   for (BasicBlock *IfBlock : IfBlocks)
3787     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3788       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3789         // This is not an aggressive instruction that we can promote.
3790         // Because of this, we won't be able to get rid of the control flow, so
3791         // the xform is not worth it.
3792         return Changed;
3793       }
3794 
3795   // If either of the blocks has it's address taken, we can't do this fold.
3796   if (any_of(IfBlocks,
3797              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3798     return Changed;
3799 
3800   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3801              if (IsUnpredictable) dbgs() << " (unpredictable)";
3802              dbgs() << "  T: " << IfTrue->getName()
3803                     << "  F: " << IfFalse->getName() << "\n");
3804 
3805   // If we can still promote the PHI nodes after this gauntlet of tests,
3806   // do all of the PHI's now.
3807 
3808   // Move all 'aggressive' instructions, which are defined in the
3809   // conditional parts of the if's up to the dominating block.
3810   for (BasicBlock *IfBlock : IfBlocks)
3811       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3812 
3813   IRBuilder<NoFolder> Builder(DomBI);
3814   // Propagate fast-math-flags from phi nodes to replacement selects.
3815   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3816   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3817     if (isa<FPMathOperator>(PN))
3818       Builder.setFastMathFlags(PN->getFastMathFlags());
3819 
3820     // Change the PHI node into a select instruction.
3821     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3822     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3823 
3824     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3825     PN->replaceAllUsesWith(Sel);
3826     Sel->takeName(PN);
3827     PN->eraseFromParent();
3828   }
3829 
3830   // At this point, all IfBlocks are empty, so our if statement
3831   // has been flattened.  Change DomBlock to jump directly to our new block to
3832   // avoid other simplifycfg's kicking in on the diamond.
3833   Builder.CreateBr(BB);
3834 
3835   SmallVector<DominatorTree::UpdateType, 3> Updates;
3836   if (DTU) {
3837     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3838     for (auto *Successor : successors(DomBlock))
3839       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3840   }
3841 
3842   DomBI->eraseFromParent();
3843   if (DTU)
3844     DTU->applyUpdates(Updates);
3845 
3846   return true;
3847 }
3848 
3849 static Value *createLogicalOp(IRBuilderBase &Builder,
3850                               Instruction::BinaryOps Opc, Value *LHS,
3851                               Value *RHS, const Twine &Name = "") {
3852   // Try to relax logical op to binary op.
3853   if (impliesPoison(RHS, LHS))
3854     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3855   if (Opc == Instruction::And)
3856     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3857   if (Opc == Instruction::Or)
3858     return Builder.CreateLogicalOr(LHS, RHS, Name);
3859   llvm_unreachable("Invalid logical opcode");
3860 }
3861 
3862 /// Return true if either PBI or BI has branch weight available, and store
3863 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3864 /// not have branch weight, use 1:1 as its weight.
3865 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3866                                    uint64_t &PredTrueWeight,
3867                                    uint64_t &PredFalseWeight,
3868                                    uint64_t &SuccTrueWeight,
3869                                    uint64_t &SuccFalseWeight) {
3870   bool PredHasWeights =
3871       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3872   bool SuccHasWeights =
3873       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3874   if (PredHasWeights || SuccHasWeights) {
3875     if (!PredHasWeights)
3876       PredTrueWeight = PredFalseWeight = 1;
3877     if (!SuccHasWeights)
3878       SuccTrueWeight = SuccFalseWeight = 1;
3879     return true;
3880   } else {
3881     return false;
3882   }
3883 }
3884 
3885 /// Determine if the two branches share a common destination and deduce a glue
3886 /// that joins the branches' conditions to arrive at the common destination if
3887 /// that would be profitable.
3888 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3889 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3890                                           const TargetTransformInfo *TTI) {
3891   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3892          "Both blocks must end with a conditional branches.");
3893   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3894          "PredBB must be a predecessor of BB.");
3895 
3896   // We have the potential to fold the conditions together, but if the
3897   // predecessor branch is predictable, we may not want to merge them.
3898   uint64_t PTWeight, PFWeight;
3899   BranchProbability PBITrueProb, Likely;
3900   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3901       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3902       (PTWeight + PFWeight) != 0) {
3903     PBITrueProb =
3904         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3905     Likely = TTI->getPredictableBranchThreshold();
3906   }
3907 
3908   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3909     // Speculate the 2nd condition unless the 1st is probably true.
3910     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3911       return {{BI->getSuccessor(0), Instruction::Or, false}};
3912   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3913     // Speculate the 2nd condition unless the 1st is probably false.
3914     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3915       return {{BI->getSuccessor(1), Instruction::And, false}};
3916   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3917     // Speculate the 2nd condition unless the 1st is probably true.
3918     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3919       return {{BI->getSuccessor(1), Instruction::And, true}};
3920   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3921     // Speculate the 2nd condition unless the 1st is probably false.
3922     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3923       return {{BI->getSuccessor(0), Instruction::Or, true}};
3924   }
3925   return std::nullopt;
3926 }
3927 
3928 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3929                                              DomTreeUpdater *DTU,
3930                                              MemorySSAUpdater *MSSAU,
3931                                              const TargetTransformInfo *TTI) {
3932   BasicBlock *BB = BI->getParent();
3933   BasicBlock *PredBlock = PBI->getParent();
3934 
3935   // Determine if the two branches share a common destination.
3936   BasicBlock *CommonSucc;
3937   Instruction::BinaryOps Opc;
3938   bool InvertPredCond;
3939   std::tie(CommonSucc, Opc, InvertPredCond) =
3940       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3941 
3942   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3943 
3944   IRBuilder<> Builder(PBI);
3945   // The builder is used to create instructions to eliminate the branch in BB.
3946   // If BB's terminator has !annotation metadata, add it to the new
3947   // instructions.
3948   Builder.CollectMetadataToCopy(BB->getTerminator(),
3949                                 {LLVMContext::MD_annotation});
3950 
3951   // If we need to invert the condition in the pred block to match, do so now.
3952   if (InvertPredCond) {
3953     InvertBranch(PBI, Builder);
3954   }
3955 
3956   BasicBlock *UniqueSucc =
3957       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
3958 
3959   // Before cloning instructions, notify the successor basic block that it
3960   // is about to have a new predecessor. This will update PHI nodes,
3961   // which will allow us to update live-out uses of bonus instructions.
3962   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
3963 
3964   // Try to update branch weights.
3965   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3966   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3967                              SuccTrueWeight, SuccFalseWeight)) {
3968     SmallVector<uint64_t, 8> NewWeights;
3969 
3970     if (PBI->getSuccessor(0) == BB) {
3971       // PBI: br i1 %x, BB, FalseDest
3972       // BI:  br i1 %y, UniqueSucc, FalseDest
3973       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
3974       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
3975       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
3976       //               TrueWeight for PBI * FalseWeight for BI.
3977       // We assume that total weights of a BranchInst can fit into 32 bits.
3978       // Therefore, we will not have overflow using 64-bit arithmetic.
3979       NewWeights.push_back(PredFalseWeight *
3980                                (SuccFalseWeight + SuccTrueWeight) +
3981                            PredTrueWeight * SuccFalseWeight);
3982     } else {
3983       // PBI: br i1 %x, TrueDest, BB
3984       // BI:  br i1 %y, TrueDest, UniqueSucc
3985       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
3986       //              FalseWeight for PBI * TrueWeight for BI.
3987       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
3988                            PredFalseWeight * SuccTrueWeight);
3989       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
3990       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
3991     }
3992 
3993     // Halve the weights if any of them cannot fit in an uint32_t
3994     fitWeights(NewWeights);
3995 
3996     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
3997     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
3998 
3999     // TODO: If BB is reachable from all paths through PredBlock, then we
4000     // could replace PBI's branch probabilities with BI's.
4001   } else
4002     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4003 
4004   // Now, update the CFG.
4005   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4006 
4007   if (DTU)
4008     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4009                        {DominatorTree::Delete, PredBlock, BB}});
4010 
4011   // If BI was a loop latch, it may have had associated loop metadata.
4012   // We need to copy it to the new latch, that is, PBI.
4013   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4014     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4015 
4016   ValueToValueMapTy VMap; // maps original values to cloned values
4017   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4018 
4019   Module *M = BB->getModule();
4020 
4021   if (PredBlock->IsNewDbgInfoFormat) {
4022     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4023     for (DbgVariableRecord &DVR :
4024          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4025       RemapDbgRecord(M, &DVR, VMap,
4026                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4027     }
4028   }
4029 
4030   // Now that the Cond was cloned into the predecessor basic block,
4031   // or/and the two conditions together.
4032   Value *BICond = VMap[BI->getCondition()];
4033   PBI->setCondition(
4034       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4035 
4036   ++NumFoldBranchToCommonDest;
4037   return true;
4038 }
4039 
4040 /// Return if an instruction's type or any of its operands' types are a vector
4041 /// type.
4042 static bool isVectorOp(Instruction &I) {
4043   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4044            return U->getType()->isVectorTy();
4045          });
4046 }
4047 
4048 /// If this basic block is simple enough, and if a predecessor branches to us
4049 /// and one of our successors, fold the block into the predecessor and use
4050 /// logical operations to pick the right destination.
4051 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4052                                   MemorySSAUpdater *MSSAU,
4053                                   const TargetTransformInfo *TTI,
4054                                   unsigned BonusInstThreshold) {
4055   // If this block ends with an unconditional branch,
4056   // let speculativelyExecuteBB() deal with it.
4057   if (!BI->isConditional())
4058     return false;
4059 
4060   BasicBlock *BB = BI->getParent();
4061   TargetTransformInfo::TargetCostKind CostKind =
4062     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4063                                   : TargetTransformInfo::TCK_SizeAndLatency;
4064 
4065   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4066 
4067   if (!Cond ||
4068       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4069        !isa<SelectInst>(Cond)) ||
4070       Cond->getParent() != BB || !Cond->hasOneUse())
4071     return false;
4072 
4073   // Finally, don't infinitely unroll conditional loops.
4074   if (is_contained(successors(BB), BB))
4075     return false;
4076 
4077   // With which predecessors will we want to deal with?
4078   SmallVector<BasicBlock *, 8> Preds;
4079   for (BasicBlock *PredBlock : predecessors(BB)) {
4080     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4081 
4082     // Check that we have two conditional branches.  If there is a PHI node in
4083     // the common successor, verify that the same value flows in from both
4084     // blocks.
4085     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4086       continue;
4087 
4088     // Determine if the two branches share a common destination.
4089     BasicBlock *CommonSucc;
4090     Instruction::BinaryOps Opc;
4091     bool InvertPredCond;
4092     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4093       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4094     else
4095       continue;
4096 
4097     // Check the cost of inserting the necessary logic before performing the
4098     // transformation.
4099     if (TTI) {
4100       Type *Ty = BI->getCondition()->getType();
4101       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4102       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4103                              !isa<CmpInst>(PBI->getCondition())))
4104         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4105 
4106       if (Cost > BranchFoldThreshold)
4107         continue;
4108     }
4109 
4110     // Ok, we do want to deal with this predecessor. Record it.
4111     Preds.emplace_back(PredBlock);
4112   }
4113 
4114   // If there aren't any predecessors into which we can fold,
4115   // don't bother checking the cost.
4116   if (Preds.empty())
4117     return false;
4118 
4119   // Only allow this transformation if computing the condition doesn't involve
4120   // too many instructions and these involved instructions can be executed
4121   // unconditionally. We denote all involved instructions except the condition
4122   // as "bonus instructions", and only allow this transformation when the
4123   // number of the bonus instructions we'll need to create when cloning into
4124   // each predecessor does not exceed a certain threshold.
4125   unsigned NumBonusInsts = 0;
4126   bool SawVectorOp = false;
4127   const unsigned PredCount = Preds.size();
4128   for (Instruction &I : *BB) {
4129     // Don't check the branch condition comparison itself.
4130     if (&I == Cond)
4131       continue;
4132     // Ignore dbg intrinsics, and the terminator.
4133     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4134       continue;
4135     // I must be safe to execute unconditionally.
4136     if (!isSafeToSpeculativelyExecute(&I))
4137       return false;
4138     SawVectorOp |= isVectorOp(I);
4139 
4140     // Account for the cost of duplicating this instruction into each
4141     // predecessor. Ignore free instructions.
4142     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4143                     TargetTransformInfo::TCC_Free) {
4144       NumBonusInsts += PredCount;
4145 
4146       // Early exits once we reach the limit.
4147       if (NumBonusInsts >
4148           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4149         return false;
4150     }
4151 
4152     auto IsBCSSAUse = [BB, &I](Use &U) {
4153       auto *UI = cast<Instruction>(U.getUser());
4154       if (auto *PN = dyn_cast<PHINode>(UI))
4155         return PN->getIncomingBlock(U) == BB;
4156       return UI->getParent() == BB && I.comesBefore(UI);
4157     };
4158 
4159     // Does this instruction require rewriting of uses?
4160     if (!all_of(I.uses(), IsBCSSAUse))
4161       return false;
4162   }
4163   if (NumBonusInsts >
4164       BonusInstThreshold *
4165           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4166     return false;
4167 
4168   // Ok, we have the budget. Perform the transformation.
4169   for (BasicBlock *PredBlock : Preds) {
4170     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4171     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4172   }
4173   return false;
4174 }
4175 
4176 // If there is only one store in BB1 and BB2, return it, otherwise return
4177 // nullptr.
4178 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4179   StoreInst *S = nullptr;
4180   for (auto *BB : {BB1, BB2}) {
4181     if (!BB)
4182       continue;
4183     for (auto &I : *BB)
4184       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4185         if (S)
4186           // Multiple stores seen.
4187           return nullptr;
4188         else
4189           S = SI;
4190       }
4191   }
4192   return S;
4193 }
4194 
4195 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4196                                               Value *AlternativeV = nullptr) {
4197   // PHI is going to be a PHI node that allows the value V that is defined in
4198   // BB to be referenced in BB's only successor.
4199   //
4200   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4201   // doesn't matter to us what the other operand is (it'll never get used). We
4202   // could just create a new PHI with an undef incoming value, but that could
4203   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4204   // other PHI. So here we directly look for some PHI in BB's successor with V
4205   // as an incoming operand. If we find one, we use it, else we create a new
4206   // one.
4207   //
4208   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4209   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4210   // where OtherBB is the single other predecessor of BB's only successor.
4211   PHINode *PHI = nullptr;
4212   BasicBlock *Succ = BB->getSingleSuccessor();
4213 
4214   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4215     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4216       PHI = cast<PHINode>(I);
4217       if (!AlternativeV)
4218         break;
4219 
4220       assert(Succ->hasNPredecessors(2));
4221       auto PredI = pred_begin(Succ);
4222       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4223       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4224         break;
4225       PHI = nullptr;
4226     }
4227   if (PHI)
4228     return PHI;
4229 
4230   // If V is not an instruction defined in BB, just return it.
4231   if (!AlternativeV &&
4232       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4233     return V;
4234 
4235   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4236   PHI->insertBefore(Succ->begin());
4237   PHI->addIncoming(V, BB);
4238   for (BasicBlock *PredBB : predecessors(Succ))
4239     if (PredBB != BB)
4240       PHI->addIncoming(
4241           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4242   return PHI;
4243 }
4244 
4245 static bool mergeConditionalStoreToAddress(
4246     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4247     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4248     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4249   // For every pointer, there must be exactly two stores, one coming from
4250   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4251   // store (to any address) in PTB,PFB or QTB,QFB.
4252   // FIXME: We could relax this restriction with a bit more work and performance
4253   // testing.
4254   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4255   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4256   if (!PStore || !QStore)
4257     return false;
4258 
4259   // Now check the stores are compatible.
4260   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4261       PStore->getValueOperand()->getType() !=
4262           QStore->getValueOperand()->getType())
4263     return false;
4264 
4265   // Check that sinking the store won't cause program behavior changes. Sinking
4266   // the store out of the Q blocks won't change any behavior as we're sinking
4267   // from a block to its unconditional successor. But we're moving a store from
4268   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4269   // So we need to check that there are no aliasing loads or stores in
4270   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4271   // operations between PStore and the end of its parent block.
4272   //
4273   // The ideal way to do this is to query AliasAnalysis, but we don't
4274   // preserve AA currently so that is dangerous. Be super safe and just
4275   // check there are no other memory operations at all.
4276   for (auto &I : *QFB->getSinglePredecessor())
4277     if (I.mayReadOrWriteMemory())
4278       return false;
4279   for (auto &I : *QFB)
4280     if (&I != QStore && I.mayReadOrWriteMemory())
4281       return false;
4282   if (QTB)
4283     for (auto &I : *QTB)
4284       if (&I != QStore && I.mayReadOrWriteMemory())
4285         return false;
4286   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4287        I != E; ++I)
4288     if (&*I != PStore && I->mayReadOrWriteMemory())
4289       return false;
4290 
4291   // If we're not in aggressive mode, we only optimize if we have some
4292   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4293   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4294     if (!BB)
4295       return true;
4296     // Heuristic: if the block can be if-converted/phi-folded and the
4297     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4298     // thread this store.
4299     InstructionCost Cost = 0;
4300     InstructionCost Budget =
4301         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4302     for (auto &I : BB->instructionsWithoutDebug(false)) {
4303       // Consider terminator instruction to be free.
4304       if (I.isTerminator())
4305         continue;
4306       // If this is one the stores that we want to speculate out of this BB,
4307       // then don't count it's cost, consider it to be free.
4308       if (auto *S = dyn_cast<StoreInst>(&I))
4309         if (llvm::find(FreeStores, S))
4310           continue;
4311       // Else, we have a white-list of instructions that we are ak speculating.
4312       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4313         return false; // Not in white-list - not worthwhile folding.
4314       // And finally, if this is a non-free instruction that we are okay
4315       // speculating, ensure that we consider the speculation budget.
4316       Cost +=
4317           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4318       if (Cost > Budget)
4319         return false; // Eagerly refuse to fold as soon as we're out of budget.
4320     }
4321     assert(Cost <= Budget &&
4322            "When we run out of budget we will eagerly return from within the "
4323            "per-instruction loop.");
4324     return true;
4325   };
4326 
4327   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4328   if (!MergeCondStoresAggressively &&
4329       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4330        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4331     return false;
4332 
4333   // If PostBB has more than two predecessors, we need to split it so we can
4334   // sink the store.
4335   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4336     // We know that QFB's only successor is PostBB. And QFB has a single
4337     // predecessor. If QTB exists, then its only successor is also PostBB.
4338     // If QTB does not exist, then QFB's only predecessor has a conditional
4339     // branch to QFB and PostBB.
4340     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4341     BasicBlock *NewBB =
4342         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4343     if (!NewBB)
4344       return false;
4345     PostBB = NewBB;
4346   }
4347 
4348   // OK, we're going to sink the stores to PostBB. The store has to be
4349   // conditional though, so first create the predicate.
4350   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4351                      ->getCondition();
4352   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4353                      ->getCondition();
4354 
4355   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4356                                                 PStore->getParent());
4357   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4358                                                 QStore->getParent(), PPHI);
4359 
4360   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4361   IRBuilder<> QB(PostBB, PostBBFirst);
4362   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4363 
4364   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4365   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4366 
4367   if (InvertPCond)
4368     PPred = QB.CreateNot(PPred);
4369   if (InvertQCond)
4370     QPred = QB.CreateNot(QPred);
4371   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4372 
4373   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4374   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4375                                       /*Unreachable=*/false,
4376                                       /*BranchWeights=*/nullptr, DTU);
4377 
4378   QB.SetInsertPoint(T);
4379   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4380   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4381   // Choose the minimum alignment. If we could prove both stores execute, we
4382   // could use biggest one.  In this case, though, we only know that one of the
4383   // stores executes.  And we don't know it's safe to take the alignment from a
4384   // store that doesn't execute.
4385   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4386 
4387   QStore->eraseFromParent();
4388   PStore->eraseFromParent();
4389 
4390   return true;
4391 }
4392 
4393 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4394                                    DomTreeUpdater *DTU, const DataLayout &DL,
4395                                    const TargetTransformInfo &TTI) {
4396   // The intention here is to find diamonds or triangles (see below) where each
4397   // conditional block contains a store to the same address. Both of these
4398   // stores are conditional, so they can't be unconditionally sunk. But it may
4399   // be profitable to speculatively sink the stores into one merged store at the
4400   // end, and predicate the merged store on the union of the two conditions of
4401   // PBI and QBI.
4402   //
4403   // This can reduce the number of stores executed if both of the conditions are
4404   // true, and can allow the blocks to become small enough to be if-converted.
4405   // This optimization will also chain, so that ladders of test-and-set
4406   // sequences can be if-converted away.
4407   //
4408   // We only deal with simple diamonds or triangles:
4409   //
4410   //     PBI       or      PBI        or a combination of the two
4411   //    /   \               | \
4412   //   PTB  PFB             |  PFB
4413   //    \   /               | /
4414   //     QBI                QBI
4415   //    /  \                | \
4416   //   QTB  QFB             |  QFB
4417   //    \  /                | /
4418   //    PostBB            PostBB
4419   //
4420   // We model triangles as a type of diamond with a nullptr "true" block.
4421   // Triangles are canonicalized so that the fallthrough edge is represented by
4422   // a true condition, as in the diagram above.
4423   BasicBlock *PTB = PBI->getSuccessor(0);
4424   BasicBlock *PFB = PBI->getSuccessor(1);
4425   BasicBlock *QTB = QBI->getSuccessor(0);
4426   BasicBlock *QFB = QBI->getSuccessor(1);
4427   BasicBlock *PostBB = QFB->getSingleSuccessor();
4428 
4429   // Make sure we have a good guess for PostBB. If QTB's only successor is
4430   // QFB, then QFB is a better PostBB.
4431   if (QTB->getSingleSuccessor() == QFB)
4432     PostBB = QFB;
4433 
4434   // If we couldn't find a good PostBB, stop.
4435   if (!PostBB)
4436     return false;
4437 
4438   bool InvertPCond = false, InvertQCond = false;
4439   // Canonicalize fallthroughs to the true branches.
4440   if (PFB == QBI->getParent()) {
4441     std::swap(PFB, PTB);
4442     InvertPCond = true;
4443   }
4444   if (QFB == PostBB) {
4445     std::swap(QFB, QTB);
4446     InvertQCond = true;
4447   }
4448 
4449   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4450   // and QFB may not. Model fallthroughs as a nullptr block.
4451   if (PTB == QBI->getParent())
4452     PTB = nullptr;
4453   if (QTB == PostBB)
4454     QTB = nullptr;
4455 
4456   // Legality bailouts. We must have at least the non-fallthrough blocks and
4457   // the post-dominating block, and the non-fallthroughs must only have one
4458   // predecessor.
4459   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4460     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4461   };
4462   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4463       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4464     return false;
4465   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4466       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4467     return false;
4468   if (!QBI->getParent()->hasNUses(2))
4469     return false;
4470 
4471   // OK, this is a sequence of two diamonds or triangles.
4472   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4473   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4474   for (auto *BB : {PTB, PFB}) {
4475     if (!BB)
4476       continue;
4477     for (auto &I : *BB)
4478       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4479         PStoreAddresses.insert(SI->getPointerOperand());
4480   }
4481   for (auto *BB : {QTB, QFB}) {
4482     if (!BB)
4483       continue;
4484     for (auto &I : *BB)
4485       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4486         QStoreAddresses.insert(SI->getPointerOperand());
4487   }
4488 
4489   set_intersect(PStoreAddresses, QStoreAddresses);
4490   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4491   // clear what it contains.
4492   auto &CommonAddresses = PStoreAddresses;
4493 
4494   bool Changed = false;
4495   for (auto *Address : CommonAddresses)
4496     Changed |=
4497         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4498                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4499   return Changed;
4500 }
4501 
4502 /// If the previous block ended with a widenable branch, determine if reusing
4503 /// the target block is profitable and legal.  This will have the effect of
4504 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4505 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4506                                            DomTreeUpdater *DTU) {
4507   // TODO: This can be generalized in two important ways:
4508   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4509   //    values from the PBI edge.
4510   // 2) We can sink side effecting instructions into BI's fallthrough
4511   //    successor provided they doesn't contribute to computation of
4512   //    BI's condition.
4513   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4514   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4515   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4516       !BI->getParent()->getSinglePredecessor())
4517     return false;
4518   if (!IfFalseBB->phis().empty())
4519     return false; // TODO
4520   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4521   // may undo the transform done here.
4522   // TODO: There might be a more fine-grained solution to this.
4523   if (!llvm::succ_empty(IfFalseBB))
4524     return false;
4525   // Use lambda to lazily compute expensive condition after cheap ones.
4526   auto NoSideEffects = [](BasicBlock &BB) {
4527     return llvm::none_of(BB, [](const Instruction &I) {
4528         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4529       });
4530   };
4531   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4532       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4533       NoSideEffects(*BI->getParent())) {
4534     auto *OldSuccessor = BI->getSuccessor(1);
4535     OldSuccessor->removePredecessor(BI->getParent());
4536     BI->setSuccessor(1, IfFalseBB);
4537     if (DTU)
4538       DTU->applyUpdates(
4539           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4540            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4541     return true;
4542   }
4543   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4544       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4545       NoSideEffects(*BI->getParent())) {
4546     auto *OldSuccessor = BI->getSuccessor(0);
4547     OldSuccessor->removePredecessor(BI->getParent());
4548     BI->setSuccessor(0, IfFalseBB);
4549     if (DTU)
4550       DTU->applyUpdates(
4551           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4552            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4553     return true;
4554   }
4555   return false;
4556 }
4557 
4558 /// If we have a conditional branch as a predecessor of another block,
4559 /// this function tries to simplify it.  We know
4560 /// that PBI and BI are both conditional branches, and BI is in one of the
4561 /// successor blocks of PBI - PBI branches to BI.
4562 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4563                                            DomTreeUpdater *DTU,
4564                                            const DataLayout &DL,
4565                                            const TargetTransformInfo &TTI) {
4566   assert(PBI->isConditional() && BI->isConditional());
4567   BasicBlock *BB = BI->getParent();
4568 
4569   // If this block ends with a branch instruction, and if there is a
4570   // predecessor that ends on a branch of the same condition, make
4571   // this conditional branch redundant.
4572   if (PBI->getCondition() == BI->getCondition() &&
4573       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4574     // Okay, the outcome of this conditional branch is statically
4575     // knowable.  If this block had a single pred, handle specially, otherwise
4576     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4577     if (BB->getSinglePredecessor()) {
4578       // Turn this into a branch on constant.
4579       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4580       BI->setCondition(
4581           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4582       return true; // Nuke the branch on constant.
4583     }
4584   }
4585 
4586   // If the previous block ended with a widenable branch, determine if reusing
4587   // the target block is profitable and legal.  This will have the effect of
4588   // "widening" PBI, but doesn't require us to reason about hosting safety.
4589   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4590     return true;
4591 
4592   // If both branches are conditional and both contain stores to the same
4593   // address, remove the stores from the conditionals and create a conditional
4594   // merged store at the end.
4595   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4596     return true;
4597 
4598   // If this is a conditional branch in an empty block, and if any
4599   // predecessors are a conditional branch to one of our destinations,
4600   // fold the conditions into logical ops and one cond br.
4601 
4602   // Ignore dbg intrinsics.
4603   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4604     return false;
4605 
4606   int PBIOp, BIOp;
4607   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4608     PBIOp = 0;
4609     BIOp = 0;
4610   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4611     PBIOp = 0;
4612     BIOp = 1;
4613   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4614     PBIOp = 1;
4615     BIOp = 0;
4616   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4617     PBIOp = 1;
4618     BIOp = 1;
4619   } else {
4620     return false;
4621   }
4622 
4623   // Check to make sure that the other destination of this branch
4624   // isn't BB itself.  If so, this is an infinite loop that will
4625   // keep getting unwound.
4626   if (PBI->getSuccessor(PBIOp) == BB)
4627     return false;
4628 
4629   // If predecessor's branch probability to BB is too low don't merge branches.
4630   SmallVector<uint32_t, 2> PredWeights;
4631   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4632       extractBranchWeights(*PBI, PredWeights) &&
4633       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4634 
4635     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4636         PredWeights[PBIOp],
4637         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4638 
4639     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4640     if (CommonDestProb >= Likely)
4641       return false;
4642   }
4643 
4644   // Do not perform this transformation if it would require
4645   // insertion of a large number of select instructions. For targets
4646   // without predication/cmovs, this is a big pessimization.
4647 
4648   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4649   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4650   unsigned NumPhis = 0;
4651   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4652        ++II, ++NumPhis) {
4653     if (NumPhis > 2) // Disable this xform.
4654       return false;
4655   }
4656 
4657   // Finally, if everything is ok, fold the branches to logical ops.
4658   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4659 
4660   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4661                     << "AND: " << *BI->getParent());
4662 
4663   SmallVector<DominatorTree::UpdateType, 5> Updates;
4664 
4665   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4666   // branch in it, where one edge (OtherDest) goes back to itself but the other
4667   // exits.  We don't *know* that the program avoids the infinite loop
4668   // (even though that seems likely).  If we do this xform naively, we'll end up
4669   // recursively unpeeling the loop.  Since we know that (after the xform is
4670   // done) that the block *is* infinite if reached, we just make it an obviously
4671   // infinite loop with no cond branch.
4672   if (OtherDest == BB) {
4673     // Insert it at the end of the function, because it's either code,
4674     // or it won't matter if it's hot. :)
4675     BasicBlock *InfLoopBlock =
4676         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4677     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4678     if (DTU)
4679       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4680     OtherDest = InfLoopBlock;
4681   }
4682 
4683   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4684 
4685   // BI may have other predecessors.  Because of this, we leave
4686   // it alone, but modify PBI.
4687 
4688   // Make sure we get to CommonDest on True&True directions.
4689   Value *PBICond = PBI->getCondition();
4690   IRBuilder<NoFolder> Builder(PBI);
4691   if (PBIOp)
4692     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4693 
4694   Value *BICond = BI->getCondition();
4695   if (BIOp)
4696     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4697 
4698   // Merge the conditions.
4699   Value *Cond =
4700       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4701 
4702   // Modify PBI to branch on the new condition to the new dests.
4703   PBI->setCondition(Cond);
4704   PBI->setSuccessor(0, CommonDest);
4705   PBI->setSuccessor(1, OtherDest);
4706 
4707   if (DTU) {
4708     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4709     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4710 
4711     DTU->applyUpdates(Updates);
4712   }
4713 
4714   // Update branch weight for PBI.
4715   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4716   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4717   bool HasWeights =
4718       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4719                              SuccTrueWeight, SuccFalseWeight);
4720   if (HasWeights) {
4721     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4722     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4723     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4724     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4725     // The weight to CommonDest should be PredCommon * SuccTotal +
4726     //                                    PredOther * SuccCommon.
4727     // The weight to OtherDest should be PredOther * SuccOther.
4728     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4729                                   PredOther * SuccCommon,
4730                               PredOther * SuccOther};
4731     // Halve the weights if any of them cannot fit in an uint32_t
4732     fitWeights(NewWeights);
4733 
4734     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4735   }
4736 
4737   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4738   // block that are identical to the entries for BI's block.
4739   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4740 
4741   // We know that the CommonDest already had an edge from PBI to
4742   // it.  If it has PHIs though, the PHIs may have different
4743   // entries for BB and PBI's BB.  If so, insert a select to make
4744   // them agree.
4745   for (PHINode &PN : CommonDest->phis()) {
4746     Value *BIV = PN.getIncomingValueForBlock(BB);
4747     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4748     Value *PBIV = PN.getIncomingValue(PBBIdx);
4749     if (BIV != PBIV) {
4750       // Insert a select in PBI to pick the right value.
4751       SelectInst *NV = cast<SelectInst>(
4752           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4753       PN.setIncomingValue(PBBIdx, NV);
4754       // Although the select has the same condition as PBI, the original branch
4755       // weights for PBI do not apply to the new select because the select's
4756       // 'logical' edges are incoming edges of the phi that is eliminated, not
4757       // the outgoing edges of PBI.
4758       if (HasWeights) {
4759         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4760         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4761         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4762         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4763         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4764         // The weight to PredOtherDest should be PredOther * SuccCommon.
4765         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4766                                   PredOther * SuccCommon};
4767 
4768         fitWeights(NewWeights);
4769 
4770         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4771                          /*IsExpected=*/false);
4772       }
4773     }
4774   }
4775 
4776   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4777   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4778 
4779   // This basic block is probably dead.  We know it has at least
4780   // one fewer predecessor.
4781   return true;
4782 }
4783 
4784 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4785 // true or to FalseBB if Cond is false.
4786 // Takes care of updating the successors and removing the old terminator.
4787 // Also makes sure not to introduce new successors by assuming that edges to
4788 // non-successor TrueBBs and FalseBBs aren't reachable.
4789 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4790                                                 Value *Cond, BasicBlock *TrueBB,
4791                                                 BasicBlock *FalseBB,
4792                                                 uint32_t TrueWeight,
4793                                                 uint32_t FalseWeight) {
4794   auto *BB = OldTerm->getParent();
4795   // Remove any superfluous successor edges from the CFG.
4796   // First, figure out which successors to preserve.
4797   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4798   // successor.
4799   BasicBlock *KeepEdge1 = TrueBB;
4800   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4801 
4802   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4803 
4804   // Then remove the rest.
4805   for (BasicBlock *Succ : successors(OldTerm)) {
4806     // Make sure only to keep exactly one copy of each edge.
4807     if (Succ == KeepEdge1)
4808       KeepEdge1 = nullptr;
4809     else if (Succ == KeepEdge2)
4810       KeepEdge2 = nullptr;
4811     else {
4812       Succ->removePredecessor(BB,
4813                               /*KeepOneInputPHIs=*/true);
4814 
4815       if (Succ != TrueBB && Succ != FalseBB)
4816         RemovedSuccessors.insert(Succ);
4817     }
4818   }
4819 
4820   IRBuilder<> Builder(OldTerm);
4821   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4822 
4823   // Insert an appropriate new terminator.
4824   if (!KeepEdge1 && !KeepEdge2) {
4825     if (TrueBB == FalseBB) {
4826       // We were only looking for one successor, and it was present.
4827       // Create an unconditional branch to it.
4828       Builder.CreateBr(TrueBB);
4829     } else {
4830       // We found both of the successors we were looking for.
4831       // Create a conditional branch sharing the condition of the select.
4832       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4833       if (TrueWeight != FalseWeight)
4834         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4835     }
4836   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4837     // Neither of the selected blocks were successors, so this
4838     // terminator must be unreachable.
4839     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4840   } else {
4841     // One of the selected values was a successor, but the other wasn't.
4842     // Insert an unconditional branch to the one that was found;
4843     // the edge to the one that wasn't must be unreachable.
4844     if (!KeepEdge1) {
4845       // Only TrueBB was found.
4846       Builder.CreateBr(TrueBB);
4847     } else {
4848       // Only FalseBB was found.
4849       Builder.CreateBr(FalseBB);
4850     }
4851   }
4852 
4853   eraseTerminatorAndDCECond(OldTerm);
4854 
4855   if (DTU) {
4856     SmallVector<DominatorTree::UpdateType, 2> Updates;
4857     Updates.reserve(RemovedSuccessors.size());
4858     for (auto *RemovedSuccessor : RemovedSuccessors)
4859       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4860     DTU->applyUpdates(Updates);
4861   }
4862 
4863   return true;
4864 }
4865 
4866 // Replaces
4867 //   (switch (select cond, X, Y)) on constant X, Y
4868 // with a branch - conditional if X and Y lead to distinct BBs,
4869 // unconditional otherwise.
4870 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4871                                             SelectInst *Select) {
4872   // Check for constant integer values in the select.
4873   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4874   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4875   if (!TrueVal || !FalseVal)
4876     return false;
4877 
4878   // Find the relevant condition and destinations.
4879   Value *Condition = Select->getCondition();
4880   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4881   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4882 
4883   // Get weight for TrueBB and FalseBB.
4884   uint32_t TrueWeight = 0, FalseWeight = 0;
4885   SmallVector<uint64_t, 8> Weights;
4886   bool HasWeights = hasBranchWeightMD(*SI);
4887   if (HasWeights) {
4888     getBranchWeights(SI, Weights);
4889     if (Weights.size() == 1 + SI->getNumCases()) {
4890       TrueWeight =
4891           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4892       FalseWeight =
4893           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4894     }
4895   }
4896 
4897   // Perform the actual simplification.
4898   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4899                                     FalseWeight);
4900 }
4901 
4902 // Replaces
4903 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4904 //                             blockaddress(@fn, BlockB)))
4905 // with
4906 //   (br cond, BlockA, BlockB).
4907 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4908                                                 SelectInst *SI) {
4909   // Check that both operands of the select are block addresses.
4910   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4911   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4912   if (!TBA || !FBA)
4913     return false;
4914 
4915   // Extract the actual blocks.
4916   BasicBlock *TrueBB = TBA->getBasicBlock();
4917   BasicBlock *FalseBB = FBA->getBasicBlock();
4918 
4919   // Perform the actual simplification.
4920   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4921                                     0);
4922 }
4923 
4924 /// This is called when we find an icmp instruction
4925 /// (a seteq/setne with a constant) as the only instruction in a
4926 /// block that ends with an uncond branch.  We are looking for a very specific
4927 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4928 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4929 /// default value goes to an uncond block with a seteq in it, we get something
4930 /// like:
4931 ///
4932 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4933 /// DEFAULT:
4934 ///   %tmp = icmp eq i8 %A, 92
4935 ///   br label %end
4936 /// end:
4937 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4938 ///
4939 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4940 /// the PHI, merging the third icmp into the switch.
4941 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4942     ICmpInst *ICI, IRBuilder<> &Builder) {
4943   BasicBlock *BB = ICI->getParent();
4944 
4945   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4946   // complex.
4947   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4948     return false;
4949 
4950   Value *V = ICI->getOperand(0);
4951   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4952 
4953   // The pattern we're looking for is where our only predecessor is a switch on
4954   // 'V' and this block is the default case for the switch.  In this case we can
4955   // fold the compared value into the switch to simplify things.
4956   BasicBlock *Pred = BB->getSinglePredecessor();
4957   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
4958     return false;
4959 
4960   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
4961   if (SI->getCondition() != V)
4962     return false;
4963 
4964   // If BB is reachable on a non-default case, then we simply know the value of
4965   // V in this block.  Substitute it and constant fold the icmp instruction
4966   // away.
4967   if (SI->getDefaultDest() != BB) {
4968     ConstantInt *VVal = SI->findCaseDest(BB);
4969     assert(VVal && "Should have a unique destination value");
4970     ICI->setOperand(0, VVal);
4971 
4972     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
4973       ICI->replaceAllUsesWith(V);
4974       ICI->eraseFromParent();
4975     }
4976     // BB is now empty, so it is likely to simplify away.
4977     return requestResimplify();
4978   }
4979 
4980   // Ok, the block is reachable from the default dest.  If the constant we're
4981   // comparing exists in one of the other edges, then we can constant fold ICI
4982   // and zap it.
4983   if (SI->findCaseValue(Cst) != SI->case_default()) {
4984     Value *V;
4985     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
4986       V = ConstantInt::getFalse(BB->getContext());
4987     else
4988       V = ConstantInt::getTrue(BB->getContext());
4989 
4990     ICI->replaceAllUsesWith(V);
4991     ICI->eraseFromParent();
4992     // BB is now empty, so it is likely to simplify away.
4993     return requestResimplify();
4994   }
4995 
4996   // The use of the icmp has to be in the 'end' block, by the only PHI node in
4997   // the block.
4998   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
4999   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5000   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5001       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5002     return false;
5003 
5004   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5005   // true in the PHI.
5006   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5007   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5008 
5009   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5010     std::swap(DefaultCst, NewCst);
5011 
5012   // Replace ICI (which is used by the PHI for the default value) with true or
5013   // false depending on if it is EQ or NE.
5014   ICI->replaceAllUsesWith(DefaultCst);
5015   ICI->eraseFromParent();
5016 
5017   SmallVector<DominatorTree::UpdateType, 2> Updates;
5018 
5019   // Okay, the switch goes to this block on a default value.  Add an edge from
5020   // the switch to the merge point on the compared value.
5021   BasicBlock *NewBB =
5022       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5023   {
5024     SwitchInstProfUpdateWrapper SIW(*SI);
5025     auto W0 = SIW.getSuccessorWeight(0);
5026     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5027     if (W0) {
5028       NewW = ((uint64_t(*W0) + 1) >> 1);
5029       SIW.setSuccessorWeight(0, *NewW);
5030     }
5031     SIW.addCase(Cst, NewBB, NewW);
5032     if (DTU)
5033       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5034   }
5035 
5036   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5037   Builder.SetInsertPoint(NewBB);
5038   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5039   Builder.CreateBr(SuccBlock);
5040   PHIUse->addIncoming(NewCst, NewBB);
5041   if (DTU) {
5042     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5043     DTU->applyUpdates(Updates);
5044   }
5045   return true;
5046 }
5047 
5048 /// The specified branch is a conditional branch.
5049 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5050 /// fold it into a switch instruction if so.
5051 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5052                                                IRBuilder<> &Builder,
5053                                                const DataLayout &DL) {
5054   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5055   if (!Cond)
5056     return false;
5057 
5058   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5059   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5060   // 'setne's and'ed together, collect them.
5061 
5062   // Try to gather values from a chain of and/or to be turned into a switch
5063   ConstantComparesGatherer ConstantCompare(Cond, DL);
5064   // Unpack the result
5065   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5066   Value *CompVal = ConstantCompare.CompValue;
5067   unsigned UsedICmps = ConstantCompare.UsedICmps;
5068   Value *ExtraCase = ConstantCompare.Extra;
5069 
5070   // If we didn't have a multiply compared value, fail.
5071   if (!CompVal)
5072     return false;
5073 
5074   // Avoid turning single icmps into a switch.
5075   if (UsedICmps <= 1)
5076     return false;
5077 
5078   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5079 
5080   // There might be duplicate constants in the list, which the switch
5081   // instruction can't handle, remove them now.
5082   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5083   Values.erase(llvm::unique(Values), Values.end());
5084 
5085   // If Extra was used, we require at least two switch values to do the
5086   // transformation.  A switch with one value is just a conditional branch.
5087   if (ExtraCase && Values.size() < 2)
5088     return false;
5089 
5090   // TODO: Preserve branch weight metadata, similarly to how
5091   // foldValueComparisonIntoPredecessors preserves it.
5092 
5093   // Figure out which block is which destination.
5094   BasicBlock *DefaultBB = BI->getSuccessor(1);
5095   BasicBlock *EdgeBB = BI->getSuccessor(0);
5096   if (!TrueWhenEqual)
5097     std::swap(DefaultBB, EdgeBB);
5098 
5099   BasicBlock *BB = BI->getParent();
5100 
5101   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5102                     << " cases into SWITCH.  BB is:\n"
5103                     << *BB);
5104 
5105   SmallVector<DominatorTree::UpdateType, 2> Updates;
5106 
5107   // If there are any extra values that couldn't be folded into the switch
5108   // then we evaluate them with an explicit branch first. Split the block
5109   // right before the condbr to handle it.
5110   if (ExtraCase) {
5111     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5112                                    /*MSSAU=*/nullptr, "switch.early.test");
5113 
5114     // Remove the uncond branch added to the old block.
5115     Instruction *OldTI = BB->getTerminator();
5116     Builder.SetInsertPoint(OldTI);
5117 
5118     // There can be an unintended UB if extra values are Poison. Before the
5119     // transformation, extra values may not be evaluated according to the
5120     // condition, and it will not raise UB. But after transformation, we are
5121     // evaluating extra values before checking the condition, and it will raise
5122     // UB. It can be solved by adding freeze instruction to extra values.
5123     AssumptionCache *AC = Options.AC;
5124 
5125     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5126       ExtraCase = Builder.CreateFreeze(ExtraCase);
5127 
5128     if (TrueWhenEqual)
5129       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5130     else
5131       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5132 
5133     OldTI->eraseFromParent();
5134 
5135     if (DTU)
5136       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5137 
5138     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5139     // for the edge we just added.
5140     addPredecessorToBlock(EdgeBB, BB, NewBB);
5141 
5142     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5143                       << "\nEXTRABB = " << *BB);
5144     BB = NewBB;
5145   }
5146 
5147   Builder.SetInsertPoint(BI);
5148   // Convert pointer to int before we switch.
5149   if (CompVal->getType()->isPointerTy()) {
5150     CompVal = Builder.CreatePtrToInt(
5151         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5152   }
5153 
5154   // Create the new switch instruction now.
5155   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5156 
5157   // Add all of the 'cases' to the switch instruction.
5158   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5159     New->addCase(Values[i], EdgeBB);
5160 
5161   // We added edges from PI to the EdgeBB.  As such, if there were any
5162   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5163   // the number of edges added.
5164   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5165     PHINode *PN = cast<PHINode>(BBI);
5166     Value *InVal = PN->getIncomingValueForBlock(BB);
5167     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5168       PN->addIncoming(InVal, BB);
5169   }
5170 
5171   // Erase the old branch instruction.
5172   eraseTerminatorAndDCECond(BI);
5173   if (DTU)
5174     DTU->applyUpdates(Updates);
5175 
5176   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5177   return true;
5178 }
5179 
5180 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5181   if (isa<PHINode>(RI->getValue()))
5182     return simplifyCommonResume(RI);
5183   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
5184            RI->getValue() == RI->getParent()->getFirstNonPHI())
5185     // The resume must unwind the exception that caused control to branch here.
5186     return simplifySingleResume(RI);
5187 
5188   return false;
5189 }
5190 
5191 // Check if cleanup block is empty
5192 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5193   for (Instruction &I : R) {
5194     auto *II = dyn_cast<IntrinsicInst>(&I);
5195     if (!II)
5196       return false;
5197 
5198     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5199     switch (IntrinsicID) {
5200     case Intrinsic::dbg_declare:
5201     case Intrinsic::dbg_value:
5202     case Intrinsic::dbg_label:
5203     case Intrinsic::lifetime_end:
5204       break;
5205     default:
5206       return false;
5207     }
5208   }
5209   return true;
5210 }
5211 
5212 // Simplify resume that is shared by several landing pads (phi of landing pad).
5213 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5214   BasicBlock *BB = RI->getParent();
5215 
5216   // Check that there are no other instructions except for debug and lifetime
5217   // intrinsics between the phi's and resume instruction.
5218   if (!isCleanupBlockEmpty(
5219           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
5220     return false;
5221 
5222   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5223   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5224 
5225   // Check incoming blocks to see if any of them are trivial.
5226   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5227        Idx++) {
5228     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5229     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5230 
5231     // If the block has other successors, we can not delete it because
5232     // it has other dependents.
5233     if (IncomingBB->getUniqueSuccessor() != BB)
5234       continue;
5235 
5236     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
5237     // Not the landing pad that caused the control to branch here.
5238     if (IncomingValue != LandingPad)
5239       continue;
5240 
5241     if (isCleanupBlockEmpty(
5242             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5243       TrivialUnwindBlocks.insert(IncomingBB);
5244   }
5245 
5246   // If no trivial unwind blocks, don't do any simplifications.
5247   if (TrivialUnwindBlocks.empty())
5248     return false;
5249 
5250   // Turn all invokes that unwind here into calls.
5251   for (auto *TrivialBB : TrivialUnwindBlocks) {
5252     // Blocks that will be simplified should be removed from the phi node.
5253     // Note there could be multiple edges to the resume block, and we need
5254     // to remove them all.
5255     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5256       BB->removePredecessor(TrivialBB, true);
5257 
5258     for (BasicBlock *Pred :
5259          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5260       removeUnwindEdge(Pred, DTU);
5261       ++NumInvokes;
5262     }
5263 
5264     // In each SimplifyCFG run, only the current processed block can be erased.
5265     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5266     // of erasing TrivialBB, we only remove the branch to the common resume
5267     // block so that we can later erase the resume block since it has no
5268     // predecessors.
5269     TrivialBB->getTerminator()->eraseFromParent();
5270     new UnreachableInst(RI->getContext(), TrivialBB);
5271     if (DTU)
5272       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5273   }
5274 
5275   // Delete the resume block if all its predecessors have been removed.
5276   if (pred_empty(BB))
5277     DeleteDeadBlock(BB, DTU);
5278 
5279   return !TrivialUnwindBlocks.empty();
5280 }
5281 
5282 // Simplify resume that is only used by a single (non-phi) landing pad.
5283 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5284   BasicBlock *BB = RI->getParent();
5285   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5286   assert(RI->getValue() == LPInst &&
5287          "Resume must unwind the exception that caused control to here");
5288 
5289   // Check that there are no other instructions except for debug intrinsics.
5290   if (!isCleanupBlockEmpty(
5291           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5292     return false;
5293 
5294   // Turn all invokes that unwind here into calls and delete the basic block.
5295   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5296     removeUnwindEdge(Pred, DTU);
5297     ++NumInvokes;
5298   }
5299 
5300   // The landingpad is now unreachable.  Zap it.
5301   DeleteDeadBlock(BB, DTU);
5302   return true;
5303 }
5304 
5305 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5306   // If this is a trivial cleanup pad that executes no instructions, it can be
5307   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5308   // that is an EH pad will be updated to continue to the caller and any
5309   // predecessor that terminates with an invoke instruction will have its invoke
5310   // instruction converted to a call instruction.  If the cleanup pad being
5311   // simplified does not continue to the caller, each predecessor will be
5312   // updated to continue to the unwind destination of the cleanup pad being
5313   // simplified.
5314   BasicBlock *BB = RI->getParent();
5315   CleanupPadInst *CPInst = RI->getCleanupPad();
5316   if (CPInst->getParent() != BB)
5317     // This isn't an empty cleanup.
5318     return false;
5319 
5320   // We cannot kill the pad if it has multiple uses.  This typically arises
5321   // from unreachable basic blocks.
5322   if (!CPInst->hasOneUse())
5323     return false;
5324 
5325   // Check that there are no other instructions except for benign intrinsics.
5326   if (!isCleanupBlockEmpty(
5327           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5328     return false;
5329 
5330   // If the cleanup return we are simplifying unwinds to the caller, this will
5331   // set UnwindDest to nullptr.
5332   BasicBlock *UnwindDest = RI->getUnwindDest();
5333   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5334 
5335   // We're about to remove BB from the control flow.  Before we do, sink any
5336   // PHINodes into the unwind destination.  Doing this before changing the
5337   // control flow avoids some potentially slow checks, since we can currently
5338   // be certain that UnwindDest and BB have no common predecessors (since they
5339   // are both EH pads).
5340   if (UnwindDest) {
5341     // First, go through the PHI nodes in UnwindDest and update any nodes that
5342     // reference the block we are removing
5343     for (PHINode &DestPN : UnwindDest->phis()) {
5344       int Idx = DestPN.getBasicBlockIndex(BB);
5345       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5346       assert(Idx != -1);
5347       // This PHI node has an incoming value that corresponds to a control
5348       // path through the cleanup pad we are removing.  If the incoming
5349       // value is in the cleanup pad, it must be a PHINode (because we
5350       // verified above that the block is otherwise empty).  Otherwise, the
5351       // value is either a constant or a value that dominates the cleanup
5352       // pad being removed.
5353       //
5354       // Because BB and UnwindDest are both EH pads, all of their
5355       // predecessors must unwind to these blocks, and since no instruction
5356       // can have multiple unwind destinations, there will be no overlap in
5357       // incoming blocks between SrcPN and DestPN.
5358       Value *SrcVal = DestPN.getIncomingValue(Idx);
5359       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5360 
5361       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5362       for (auto *Pred : predecessors(BB)) {
5363         Value *Incoming =
5364             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5365         DestPN.addIncoming(Incoming, Pred);
5366       }
5367     }
5368 
5369     // Sink any remaining PHI nodes directly into UnwindDest.
5370     Instruction *InsertPt = DestEHPad;
5371     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5372       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5373         // If the PHI node has no uses or all of its uses are in this basic
5374         // block (meaning they are debug or lifetime intrinsics), just leave
5375         // it.  It will be erased when we erase BB below.
5376         continue;
5377 
5378       // Otherwise, sink this PHI node into UnwindDest.
5379       // Any predecessors to UnwindDest which are not already represented
5380       // must be back edges which inherit the value from the path through
5381       // BB.  In this case, the PHI value must reference itself.
5382       for (auto *pred : predecessors(UnwindDest))
5383         if (pred != BB)
5384           PN.addIncoming(&PN, pred);
5385       PN.moveBefore(InsertPt);
5386       // Also, add a dummy incoming value for the original BB itself,
5387       // so that the PHI is well-formed until we drop said predecessor.
5388       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5389     }
5390   }
5391 
5392   std::vector<DominatorTree::UpdateType> Updates;
5393 
5394   // We use make_early_inc_range here because we will remove all predecessors.
5395   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5396     if (UnwindDest == nullptr) {
5397       if (DTU) {
5398         DTU->applyUpdates(Updates);
5399         Updates.clear();
5400       }
5401       removeUnwindEdge(PredBB, DTU);
5402       ++NumInvokes;
5403     } else {
5404       BB->removePredecessor(PredBB);
5405       Instruction *TI = PredBB->getTerminator();
5406       TI->replaceUsesOfWith(BB, UnwindDest);
5407       if (DTU) {
5408         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5409         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5410       }
5411     }
5412   }
5413 
5414   if (DTU)
5415     DTU->applyUpdates(Updates);
5416 
5417   DeleteDeadBlock(BB, DTU);
5418 
5419   return true;
5420 }
5421 
5422 // Try to merge two cleanuppads together.
5423 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5424   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5425   // with.
5426   BasicBlock *UnwindDest = RI->getUnwindDest();
5427   if (!UnwindDest)
5428     return false;
5429 
5430   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5431   // be safe to merge without code duplication.
5432   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5433     return false;
5434 
5435   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5436   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5437   if (!SuccessorCleanupPad)
5438     return false;
5439 
5440   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5441   // Replace any uses of the successor cleanupad with the predecessor pad
5442   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5443   // funclet bundle operands.
5444   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5445   // Remove the old cleanuppad.
5446   SuccessorCleanupPad->eraseFromParent();
5447   // Now, we simply replace the cleanupret with a branch to the unwind
5448   // destination.
5449   BranchInst::Create(UnwindDest, RI->getParent());
5450   RI->eraseFromParent();
5451 
5452   return true;
5453 }
5454 
5455 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5456   // It is possible to transiantly have an undef cleanuppad operand because we
5457   // have deleted some, but not all, dead blocks.
5458   // Eventually, this block will be deleted.
5459   if (isa<UndefValue>(RI->getOperand(0)))
5460     return false;
5461 
5462   if (mergeCleanupPad(RI))
5463     return true;
5464 
5465   if (removeEmptyCleanup(RI, DTU))
5466     return true;
5467 
5468   return false;
5469 }
5470 
5471 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5472 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5473   BasicBlock *BB = UI->getParent();
5474 
5475   bool Changed = false;
5476 
5477   // Ensure that any debug-info records that used to occur after the Unreachable
5478   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5479   // the block.
5480   BB->flushTerminatorDbgRecords();
5481 
5482   // Debug-info records on the unreachable inst itself should be deleted, as
5483   // below we delete everything past the final executable instruction.
5484   UI->dropDbgRecords();
5485 
5486   // If there are any instructions immediately before the unreachable that can
5487   // be removed, do so.
5488   while (UI->getIterator() != BB->begin()) {
5489     BasicBlock::iterator BBI = UI->getIterator();
5490     --BBI;
5491 
5492     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5493       break; // Can not drop any more instructions. We're done here.
5494     // Otherwise, this instruction can be freely erased,
5495     // even if it is not side-effect free.
5496 
5497     // Note that deleting EH's here is in fact okay, although it involves a bit
5498     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5499     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5500     // and we can therefore guarantee this block will be erased.
5501 
5502     // If we're deleting this, we're deleting any subsequent debug info, so
5503     // delete DbgRecords.
5504     BBI->dropDbgRecords();
5505 
5506     // Delete this instruction (any uses are guaranteed to be dead)
5507     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5508     BBI->eraseFromParent();
5509     Changed = true;
5510   }
5511 
5512   // If the unreachable instruction is the first in the block, take a gander
5513   // at all of the predecessors of this instruction, and simplify them.
5514   if (&BB->front() != UI)
5515     return Changed;
5516 
5517   std::vector<DominatorTree::UpdateType> Updates;
5518 
5519   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5520   for (BasicBlock *Predecessor : Preds) {
5521     Instruction *TI = Predecessor->getTerminator();
5522     IRBuilder<> Builder(TI);
5523     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5524       // We could either have a proper unconditional branch,
5525       // or a degenerate conditional branch with matching destinations.
5526       if (all_of(BI->successors(),
5527                  [BB](auto *Successor) { return Successor == BB; })) {
5528         new UnreachableInst(TI->getContext(), TI->getIterator());
5529         TI->eraseFromParent();
5530         Changed = true;
5531       } else {
5532         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5533         Value* Cond = BI->getCondition();
5534         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5535                "The destinations are guaranteed to be different here.");
5536         CallInst *Assumption;
5537         if (BI->getSuccessor(0) == BB) {
5538           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5539           Builder.CreateBr(BI->getSuccessor(1));
5540         } else {
5541           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5542           Assumption = Builder.CreateAssumption(Cond);
5543           Builder.CreateBr(BI->getSuccessor(0));
5544         }
5545         if (Options.AC)
5546           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5547 
5548         eraseTerminatorAndDCECond(BI);
5549         Changed = true;
5550       }
5551       if (DTU)
5552         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5553     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5554       SwitchInstProfUpdateWrapper SU(*SI);
5555       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5556         if (i->getCaseSuccessor() != BB) {
5557           ++i;
5558           continue;
5559         }
5560         BB->removePredecessor(SU->getParent());
5561         i = SU.removeCase(i);
5562         e = SU->case_end();
5563         Changed = true;
5564       }
5565       // Note that the default destination can't be removed!
5566       if (DTU && SI->getDefaultDest() != BB)
5567         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5568     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5569       if (II->getUnwindDest() == BB) {
5570         if (DTU) {
5571           DTU->applyUpdates(Updates);
5572           Updates.clear();
5573         }
5574         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5575         if (!CI->doesNotThrow())
5576           CI->setDoesNotThrow();
5577         Changed = true;
5578       }
5579     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5580       if (CSI->getUnwindDest() == BB) {
5581         if (DTU) {
5582           DTU->applyUpdates(Updates);
5583           Updates.clear();
5584         }
5585         removeUnwindEdge(TI->getParent(), DTU);
5586         Changed = true;
5587         continue;
5588       }
5589 
5590       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5591                                              E = CSI->handler_end();
5592            I != E; ++I) {
5593         if (*I == BB) {
5594           CSI->removeHandler(I);
5595           --I;
5596           --E;
5597           Changed = true;
5598         }
5599       }
5600       if (DTU)
5601         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5602       if (CSI->getNumHandlers() == 0) {
5603         if (CSI->hasUnwindDest()) {
5604           // Redirect all predecessors of the block containing CatchSwitchInst
5605           // to instead branch to the CatchSwitchInst's unwind destination.
5606           if (DTU) {
5607             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5608               Updates.push_back({DominatorTree::Insert,
5609                                  PredecessorOfPredecessor,
5610                                  CSI->getUnwindDest()});
5611               Updates.push_back({DominatorTree::Delete,
5612                                  PredecessorOfPredecessor, Predecessor});
5613             }
5614           }
5615           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5616         } else {
5617           // Rewrite all preds to unwind to caller (or from invoke to call).
5618           if (DTU) {
5619             DTU->applyUpdates(Updates);
5620             Updates.clear();
5621           }
5622           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5623           for (BasicBlock *EHPred : EHPreds)
5624             removeUnwindEdge(EHPred, DTU);
5625         }
5626         // The catchswitch is no longer reachable.
5627         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5628         CSI->eraseFromParent();
5629         Changed = true;
5630       }
5631     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5632       (void)CRI;
5633       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5634              "Expected to always have an unwind to BB.");
5635       if (DTU)
5636         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5637       new UnreachableInst(TI->getContext(), TI->getIterator());
5638       TI->eraseFromParent();
5639       Changed = true;
5640     }
5641   }
5642 
5643   if (DTU)
5644     DTU->applyUpdates(Updates);
5645 
5646   // If this block is now dead, remove it.
5647   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5648     DeleteDeadBlock(BB, DTU);
5649     return true;
5650   }
5651 
5652   return Changed;
5653 }
5654 
5655 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5656   assert(Cases.size() >= 1);
5657 
5658   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5659   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5660     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5661       return false;
5662   }
5663   return true;
5664 }
5665 
5666 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5667                                            DomTreeUpdater *DTU,
5668                                            bool RemoveOrigDefaultBlock = true) {
5669   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5670   auto *BB = Switch->getParent();
5671   auto *OrigDefaultBlock = Switch->getDefaultDest();
5672   if (RemoveOrigDefaultBlock)
5673     OrigDefaultBlock->removePredecessor(BB);
5674   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5675       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5676       OrigDefaultBlock);
5677   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5678   Switch->setDefaultDest(&*NewDefaultBlock);
5679   if (DTU) {
5680     SmallVector<DominatorTree::UpdateType, 2> Updates;
5681     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5682     if (RemoveOrigDefaultBlock &&
5683         !is_contained(successors(BB), OrigDefaultBlock))
5684       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5685     DTU->applyUpdates(Updates);
5686   }
5687 }
5688 
5689 /// Turn a switch into an integer range comparison and branch.
5690 /// Switches with more than 2 destinations are ignored.
5691 /// Switches with 1 destination are also ignored.
5692 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5693                                              IRBuilder<> &Builder) {
5694   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5695 
5696   bool HasDefault =
5697       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5698 
5699   auto *BB = SI->getParent();
5700 
5701   // Partition the cases into two sets with different destinations.
5702   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5703   BasicBlock *DestB = nullptr;
5704   SmallVector<ConstantInt *, 16> CasesA;
5705   SmallVector<ConstantInt *, 16> CasesB;
5706 
5707   for (auto Case : SI->cases()) {
5708     BasicBlock *Dest = Case.getCaseSuccessor();
5709     if (!DestA)
5710       DestA = Dest;
5711     if (Dest == DestA) {
5712       CasesA.push_back(Case.getCaseValue());
5713       continue;
5714     }
5715     if (!DestB)
5716       DestB = Dest;
5717     if (Dest == DestB) {
5718       CasesB.push_back(Case.getCaseValue());
5719       continue;
5720     }
5721     return false; // More than two destinations.
5722   }
5723   if (!DestB)
5724     return false; // All destinations are the same and the default is unreachable
5725 
5726   assert(DestA && DestB &&
5727          "Single-destination switch should have been folded.");
5728   assert(DestA != DestB);
5729   assert(DestB != SI->getDefaultDest());
5730   assert(!CasesB.empty() && "There must be non-default cases.");
5731   assert(!CasesA.empty() || HasDefault);
5732 
5733   // Figure out if one of the sets of cases form a contiguous range.
5734   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5735   BasicBlock *ContiguousDest = nullptr;
5736   BasicBlock *OtherDest = nullptr;
5737   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5738     ContiguousCases = &CasesA;
5739     ContiguousDest = DestA;
5740     OtherDest = DestB;
5741   } else if (casesAreContiguous(CasesB)) {
5742     ContiguousCases = &CasesB;
5743     ContiguousDest = DestB;
5744     OtherDest = DestA;
5745   } else
5746     return false;
5747 
5748   // Start building the compare and branch.
5749 
5750   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5751   Constant *NumCases =
5752       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5753 
5754   Value *Sub = SI->getCondition();
5755   if (!Offset->isNullValue())
5756     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5757 
5758   Value *Cmp;
5759   // If NumCases overflowed, then all possible values jump to the successor.
5760   if (NumCases->isNullValue() && !ContiguousCases->empty())
5761     Cmp = ConstantInt::getTrue(SI->getContext());
5762   else
5763     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5764   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5765 
5766   // Update weight for the newly-created conditional branch.
5767   if (hasBranchWeightMD(*SI)) {
5768     SmallVector<uint64_t, 8> Weights;
5769     getBranchWeights(SI, Weights);
5770     if (Weights.size() == 1 + SI->getNumCases()) {
5771       uint64_t TrueWeight = 0;
5772       uint64_t FalseWeight = 0;
5773       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5774         if (SI->getSuccessor(I) == ContiguousDest)
5775           TrueWeight += Weights[I];
5776         else
5777           FalseWeight += Weights[I];
5778       }
5779       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5780         TrueWeight /= 2;
5781         FalseWeight /= 2;
5782       }
5783       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5784     }
5785   }
5786 
5787   // Prune obsolete incoming values off the successors' PHI nodes.
5788   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5789     unsigned PreviousEdges = ContiguousCases->size();
5790     if (ContiguousDest == SI->getDefaultDest())
5791       ++PreviousEdges;
5792     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5793       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5794   }
5795   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5796     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5797     if (OtherDest == SI->getDefaultDest())
5798       ++PreviousEdges;
5799     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5800       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5801   }
5802 
5803   // Clean up the default block - it may have phis or other instructions before
5804   // the unreachable terminator.
5805   if (!HasDefault)
5806     createUnreachableSwitchDefault(SI, DTU);
5807 
5808   auto *UnreachableDefault = SI->getDefaultDest();
5809 
5810   // Drop the switch.
5811   SI->eraseFromParent();
5812 
5813   if (!HasDefault && DTU)
5814     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5815 
5816   return true;
5817 }
5818 
5819 /// Compute masked bits for the condition of a switch
5820 /// and use it to remove dead cases.
5821 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5822                                      AssumptionCache *AC,
5823                                      const DataLayout &DL) {
5824   Value *Cond = SI->getCondition();
5825   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5826 
5827   // We can also eliminate cases by determining that their values are outside of
5828   // the limited range of the condition based on how many significant (non-sign)
5829   // bits are in the condition value.
5830   unsigned MaxSignificantBitsInCond =
5831       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5832 
5833   // Gather dead cases.
5834   SmallVector<ConstantInt *, 8> DeadCases;
5835   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5836   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5837   for (const auto &Case : SI->cases()) {
5838     auto *Successor = Case.getCaseSuccessor();
5839     if (DTU) {
5840       if (!NumPerSuccessorCases.count(Successor))
5841         UniqueSuccessors.push_back(Successor);
5842       ++NumPerSuccessorCases[Successor];
5843     }
5844     const APInt &CaseVal = Case.getCaseValue()->getValue();
5845     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5846         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5847       DeadCases.push_back(Case.getCaseValue());
5848       if (DTU)
5849         --NumPerSuccessorCases[Successor];
5850       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5851                         << " is dead.\n");
5852     }
5853   }
5854 
5855   // If we can prove that the cases must cover all possible values, the
5856   // default destination becomes dead and we can remove it.  If we know some
5857   // of the bits in the value, we can use that to more precisely compute the
5858   // number of possible unique case values.
5859   bool HasDefault =
5860       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5861   const unsigned NumUnknownBits =
5862       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5863   assert(NumUnknownBits <= Known.getBitWidth());
5864   if (HasDefault && DeadCases.empty() &&
5865       NumUnknownBits < 64 /* avoid overflow */) {
5866     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5867     if (SI->getNumCases() == AllNumCases) {
5868       createUnreachableSwitchDefault(SI, DTU);
5869       return true;
5870     }
5871     // When only one case value is missing, replace default with that case.
5872     // Eliminating the default branch will provide more opportunities for
5873     // optimization, such as lookup tables.
5874     if (SI->getNumCases() == AllNumCases - 1) {
5875       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5876       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5877       if (CondTy->getIntegerBitWidth() > 64 ||
5878           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5879         return false;
5880 
5881       uint64_t MissingCaseVal = 0;
5882       for (const auto &Case : SI->cases())
5883         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5884       auto *MissingCase =
5885           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5886       SwitchInstProfUpdateWrapper SIW(*SI);
5887       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5888       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5889       SIW.setSuccessorWeight(0, 0);
5890       return true;
5891     }
5892   }
5893 
5894   if (DeadCases.empty())
5895     return false;
5896 
5897   SwitchInstProfUpdateWrapper SIW(*SI);
5898   for (ConstantInt *DeadCase : DeadCases) {
5899     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5900     assert(CaseI != SI->case_default() &&
5901            "Case was not found. Probably mistake in DeadCases forming.");
5902     // Prune unused values from PHI nodes.
5903     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5904     SIW.removeCase(CaseI);
5905   }
5906 
5907   if (DTU) {
5908     std::vector<DominatorTree::UpdateType> Updates;
5909     for (auto *Successor : UniqueSuccessors)
5910       if (NumPerSuccessorCases[Successor] == 0)
5911         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5912     DTU->applyUpdates(Updates);
5913   }
5914 
5915   return true;
5916 }
5917 
5918 /// If BB would be eligible for simplification by
5919 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5920 /// by an unconditional branch), look at the phi node for BB in the successor
5921 /// block and see if the incoming value is equal to CaseValue. If so, return
5922 /// the phi node, and set PhiIndex to BB's index in the phi node.
5923 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
5924                                               BasicBlock *BB, int *PhiIndex) {
5925   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5926     return nullptr; // BB must be empty to be a candidate for simplification.
5927   if (!BB->getSinglePredecessor())
5928     return nullptr; // BB must be dominated by the switch.
5929 
5930   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5931   if (!Branch || !Branch->isUnconditional())
5932     return nullptr; // Terminator must be unconditional branch.
5933 
5934   BasicBlock *Succ = Branch->getSuccessor(0);
5935 
5936   for (PHINode &PHI : Succ->phis()) {
5937     int Idx = PHI.getBasicBlockIndex(BB);
5938     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5939 
5940     Value *InValue = PHI.getIncomingValue(Idx);
5941     if (InValue != CaseValue)
5942       continue;
5943 
5944     *PhiIndex = Idx;
5945     return &PHI;
5946   }
5947 
5948   return nullptr;
5949 }
5950 
5951 /// Try to forward the condition of a switch instruction to a phi node
5952 /// dominated by the switch, if that would mean that some of the destination
5953 /// blocks of the switch can be folded away. Return true if a change is made.
5954 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
5955   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5956 
5957   ForwardingNodesMap ForwardingNodes;
5958   BasicBlock *SwitchBlock = SI->getParent();
5959   bool Changed = false;
5960   for (const auto &Case : SI->cases()) {
5961     ConstantInt *CaseValue = Case.getCaseValue();
5962     BasicBlock *CaseDest = Case.getCaseSuccessor();
5963 
5964     // Replace phi operands in successor blocks that are using the constant case
5965     // value rather than the switch condition variable:
5966     //   switchbb:
5967     //   switch i32 %x, label %default [
5968     //     i32 17, label %succ
5969     //   ...
5970     //   succ:
5971     //     %r = phi i32 ... [ 17, %switchbb ] ...
5972     // -->
5973     //     %r = phi i32 ... [ %x, %switchbb ] ...
5974 
5975     for (PHINode &Phi : CaseDest->phis()) {
5976       // This only works if there is exactly 1 incoming edge from the switch to
5977       // a phi. If there is >1, that means multiple cases of the switch map to 1
5978       // value in the phi, and that phi value is not the switch condition. Thus,
5979       // this transform would not make sense (the phi would be invalid because
5980       // a phi can't have different incoming values from the same block).
5981       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
5982       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
5983           count(Phi.blocks(), SwitchBlock) == 1) {
5984         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
5985         Changed = true;
5986       }
5987     }
5988 
5989     // Collect phi nodes that are indirectly using this switch's case constants.
5990     int PhiIdx;
5991     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
5992       ForwardingNodes[Phi].push_back(PhiIdx);
5993   }
5994 
5995   for (auto &ForwardingNode : ForwardingNodes) {
5996     PHINode *Phi = ForwardingNode.first;
5997     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
5998     // Check if it helps to fold PHI.
5999     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6000       continue;
6001 
6002     for (int Index : Indexes)
6003       Phi->setIncomingValue(Index, SI->getCondition());
6004     Changed = true;
6005   }
6006 
6007   return Changed;
6008 }
6009 
6010 /// Return true if the backend will be able to handle
6011 /// initializing an array of constants like C.
6012 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6013   if (C->isThreadDependent())
6014     return false;
6015   if (C->isDLLImportDependent())
6016     return false;
6017 
6018   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6019       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6020       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6021     return false;
6022 
6023   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6024     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6025     // materializing the array of constants.
6026     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6027     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6028       return false;
6029   }
6030 
6031   if (!TTI.shouldBuildLookupTablesForConstant(C))
6032     return false;
6033 
6034   return true;
6035 }
6036 
6037 /// If V is a Constant, return it. Otherwise, try to look up
6038 /// its constant value in ConstantPool, returning 0 if it's not there.
6039 static Constant *
6040 lookupConstant(Value *V,
6041                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6042   if (Constant *C = dyn_cast<Constant>(V))
6043     return C;
6044   return ConstantPool.lookup(V);
6045 }
6046 
6047 /// Try to fold instruction I into a constant. This works for
6048 /// simple instructions such as binary operations where both operands are
6049 /// constant or can be replaced by constants from the ConstantPool. Returns the
6050 /// resulting constant on success, 0 otherwise.
6051 static Constant *
6052 constantFold(Instruction *I, const DataLayout &DL,
6053              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6054   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6055     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6056     if (!A)
6057       return nullptr;
6058     if (A->isAllOnesValue())
6059       return lookupConstant(Select->getTrueValue(), ConstantPool);
6060     if (A->isNullValue())
6061       return lookupConstant(Select->getFalseValue(), ConstantPool);
6062     return nullptr;
6063   }
6064 
6065   SmallVector<Constant *, 4> COps;
6066   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6067     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6068       COps.push_back(A);
6069     else
6070       return nullptr;
6071   }
6072 
6073   return ConstantFoldInstOperands(I, COps, DL);
6074 }
6075 
6076 /// Try to determine the resulting constant values in phi nodes
6077 /// at the common destination basic block, *CommonDest, for one of the case
6078 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6079 /// case), of a switch instruction SI.
6080 static bool
6081 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6082                BasicBlock **CommonDest,
6083                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6084                const DataLayout &DL, const TargetTransformInfo &TTI) {
6085   // The block from which we enter the common destination.
6086   BasicBlock *Pred = SI->getParent();
6087 
6088   // If CaseDest is empty except for some side-effect free instructions through
6089   // which we can constant-propagate the CaseVal, continue to its successor.
6090   SmallDenseMap<Value *, Constant *> ConstantPool;
6091   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6092   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6093     if (I.isTerminator()) {
6094       // If the terminator is a simple branch, continue to the next block.
6095       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6096         return false;
6097       Pred = CaseDest;
6098       CaseDest = I.getSuccessor(0);
6099     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6100       // Instruction is side-effect free and constant.
6101 
6102       // If the instruction has uses outside this block or a phi node slot for
6103       // the block, it is not safe to bypass the instruction since it would then
6104       // no longer dominate all its uses.
6105       for (auto &Use : I.uses()) {
6106         User *User = Use.getUser();
6107         if (Instruction *I = dyn_cast<Instruction>(User))
6108           if (I->getParent() == CaseDest)
6109             continue;
6110         if (PHINode *Phi = dyn_cast<PHINode>(User))
6111           if (Phi->getIncomingBlock(Use) == CaseDest)
6112             continue;
6113         return false;
6114       }
6115 
6116       ConstantPool.insert(std::make_pair(&I, C));
6117     } else {
6118       break;
6119     }
6120   }
6121 
6122   // If we did not have a CommonDest before, use the current one.
6123   if (!*CommonDest)
6124     *CommonDest = CaseDest;
6125   // If the destination isn't the common one, abort.
6126   if (CaseDest != *CommonDest)
6127     return false;
6128 
6129   // Get the values for this case from phi nodes in the destination block.
6130   for (PHINode &PHI : (*CommonDest)->phis()) {
6131     int Idx = PHI.getBasicBlockIndex(Pred);
6132     if (Idx == -1)
6133       continue;
6134 
6135     Constant *ConstVal =
6136         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6137     if (!ConstVal)
6138       return false;
6139 
6140     // Be conservative about which kinds of constants we support.
6141     if (!validLookupTableConstant(ConstVal, TTI))
6142       return false;
6143 
6144     Res.push_back(std::make_pair(&PHI, ConstVal));
6145   }
6146 
6147   return Res.size() > 0;
6148 }
6149 
6150 // Helper function used to add CaseVal to the list of cases that generate
6151 // Result. Returns the updated number of cases that generate this result.
6152 static size_t mapCaseToResult(ConstantInt *CaseVal,
6153                               SwitchCaseResultVectorTy &UniqueResults,
6154                               Constant *Result) {
6155   for (auto &I : UniqueResults) {
6156     if (I.first == Result) {
6157       I.second.push_back(CaseVal);
6158       return I.second.size();
6159     }
6160   }
6161   UniqueResults.push_back(
6162       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6163   return 1;
6164 }
6165 
6166 // Helper function that initializes a map containing
6167 // results for the PHI node of the common destination block for a switch
6168 // instruction. Returns false if multiple PHI nodes have been found or if
6169 // there is not a common destination block for the switch.
6170 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6171                                   BasicBlock *&CommonDest,
6172                                   SwitchCaseResultVectorTy &UniqueResults,
6173                                   Constant *&DefaultResult,
6174                                   const DataLayout &DL,
6175                                   const TargetTransformInfo &TTI,
6176                                   uintptr_t MaxUniqueResults) {
6177   for (const auto &I : SI->cases()) {
6178     ConstantInt *CaseVal = I.getCaseValue();
6179 
6180     // Resulting value at phi nodes for this case value.
6181     SwitchCaseResultsTy Results;
6182     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6183                         DL, TTI))
6184       return false;
6185 
6186     // Only one value per case is permitted.
6187     if (Results.size() > 1)
6188       return false;
6189 
6190     // Add the case->result mapping to UniqueResults.
6191     const size_t NumCasesForResult =
6192         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6193 
6194     // Early out if there are too many cases for this result.
6195     if (NumCasesForResult > MaxSwitchCasesPerResult)
6196       return false;
6197 
6198     // Early out if there are too many unique results.
6199     if (UniqueResults.size() > MaxUniqueResults)
6200       return false;
6201 
6202     // Check the PHI consistency.
6203     if (!PHI)
6204       PHI = Results[0].first;
6205     else if (PHI != Results[0].first)
6206       return false;
6207   }
6208   // Find the default result value.
6209   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6210   BasicBlock *DefaultDest = SI->getDefaultDest();
6211   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6212                  DL, TTI);
6213   // If the default value is not found abort unless the default destination
6214   // is unreachable.
6215   DefaultResult =
6216       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6217   if ((!DefaultResult &&
6218        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6219     return false;
6220 
6221   return true;
6222 }
6223 
6224 // Helper function that checks if it is possible to transform a switch with only
6225 // two cases (or two cases + default) that produces a result into a select.
6226 // TODO: Handle switches with more than 2 cases that map to the same result.
6227 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6228                                  Constant *DefaultResult, Value *Condition,
6229                                  IRBuilder<> &Builder) {
6230   // If we are selecting between only two cases transform into a simple
6231   // select or a two-way select if default is possible.
6232   // Example:
6233   // switch (a) {                  %0 = icmp eq i32 %a, 10
6234   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6235   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6236   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6237   // }
6238   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6239       ResultVector[1].second.size() == 1) {
6240     ConstantInt *FirstCase = ResultVector[0].second[0];
6241     ConstantInt *SecondCase = ResultVector[1].second[0];
6242     Value *SelectValue = ResultVector[1].first;
6243     if (DefaultResult) {
6244       Value *ValueCompare =
6245           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6246       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6247                                          DefaultResult, "switch.select");
6248     }
6249     Value *ValueCompare =
6250         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6251     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6252                                 SelectValue, "switch.select");
6253   }
6254 
6255   // Handle the degenerate case where two cases have the same result value.
6256   if (ResultVector.size() == 1 && DefaultResult) {
6257     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6258     unsigned CaseCount = CaseValues.size();
6259     // n bits group cases map to the same result:
6260     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6261     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6262     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6263     if (isPowerOf2_32(CaseCount)) {
6264       ConstantInt *MinCaseVal = CaseValues[0];
6265       // Find mininal value.
6266       for (auto *Case : CaseValues)
6267         if (Case->getValue().slt(MinCaseVal->getValue()))
6268           MinCaseVal = Case;
6269 
6270       // Mark the bits case number touched.
6271       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6272       for (auto *Case : CaseValues)
6273         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6274 
6275       // Check if cases with the same result can cover all number
6276       // in touched bits.
6277       if (BitMask.popcount() == Log2_32(CaseCount)) {
6278         if (!MinCaseVal->isNullValue())
6279           Condition = Builder.CreateSub(Condition, MinCaseVal);
6280         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6281         Value *Cmp = Builder.CreateICmpEQ(
6282             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6283         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6284       }
6285     }
6286 
6287     // Handle the degenerate case where two cases have the same value.
6288     if (CaseValues.size() == 2) {
6289       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6290                                          "switch.selectcmp.case1");
6291       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6292                                          "switch.selectcmp.case2");
6293       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6294       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6295     }
6296   }
6297 
6298   return nullptr;
6299 }
6300 
6301 // Helper function to cleanup a switch instruction that has been converted into
6302 // a select, fixing up PHI nodes and basic blocks.
6303 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6304                                         Value *SelectValue,
6305                                         IRBuilder<> &Builder,
6306                                         DomTreeUpdater *DTU) {
6307   std::vector<DominatorTree::UpdateType> Updates;
6308 
6309   BasicBlock *SelectBB = SI->getParent();
6310   BasicBlock *DestBB = PHI->getParent();
6311 
6312   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6313     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6314   Builder.CreateBr(DestBB);
6315 
6316   // Remove the switch.
6317 
6318   PHI->removeIncomingValueIf(
6319       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6320   PHI->addIncoming(SelectValue, SelectBB);
6321 
6322   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6323   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6324     BasicBlock *Succ = SI->getSuccessor(i);
6325 
6326     if (Succ == DestBB)
6327       continue;
6328     Succ->removePredecessor(SelectBB);
6329     if (DTU && RemovedSuccessors.insert(Succ).second)
6330       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6331   }
6332   SI->eraseFromParent();
6333   if (DTU)
6334     DTU->applyUpdates(Updates);
6335 }
6336 
6337 /// If a switch is only used to initialize one or more phi nodes in a common
6338 /// successor block with only two different constant values, try to replace the
6339 /// switch with a select. Returns true if the fold was made.
6340 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6341                               DomTreeUpdater *DTU, const DataLayout &DL,
6342                               const TargetTransformInfo &TTI) {
6343   Value *const Cond = SI->getCondition();
6344   PHINode *PHI = nullptr;
6345   BasicBlock *CommonDest = nullptr;
6346   Constant *DefaultResult;
6347   SwitchCaseResultVectorTy UniqueResults;
6348   // Collect all the cases that will deliver the same value from the switch.
6349   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6350                              DL, TTI, /*MaxUniqueResults*/ 2))
6351     return false;
6352 
6353   assert(PHI != nullptr && "PHI for value select not found");
6354   Builder.SetInsertPoint(SI);
6355   Value *SelectValue =
6356       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6357   if (!SelectValue)
6358     return false;
6359 
6360   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6361   return true;
6362 }
6363 
6364 namespace {
6365 
6366 /// This class represents a lookup table that can be used to replace a switch.
6367 class SwitchLookupTable {
6368 public:
6369   /// Create a lookup table to use as a switch replacement with the contents
6370   /// of Values, using DefaultValue to fill any holes in the table.
6371   SwitchLookupTable(
6372       Module &M, uint64_t TableSize, ConstantInt *Offset,
6373       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6374       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6375 
6376   /// Build instructions with Builder to retrieve the value at
6377   /// the position given by Index in the lookup table.
6378   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6379 
6380   /// Return true if a table with TableSize elements of
6381   /// type ElementType would fit in a target-legal register.
6382   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6383                                  Type *ElementType);
6384 
6385 private:
6386   // Depending on the contents of the table, it can be represented in
6387   // different ways.
6388   enum {
6389     // For tables where each element contains the same value, we just have to
6390     // store that single value and return it for each lookup.
6391     SingleValueKind,
6392 
6393     // For tables where there is a linear relationship between table index
6394     // and values. We calculate the result with a simple multiplication
6395     // and addition instead of a table lookup.
6396     LinearMapKind,
6397 
6398     // For small tables with integer elements, we can pack them into a bitmap
6399     // that fits into a target-legal register. Values are retrieved by
6400     // shift and mask operations.
6401     BitMapKind,
6402 
6403     // The table is stored as an array of values. Values are retrieved by load
6404     // instructions from the table.
6405     ArrayKind
6406   } Kind;
6407 
6408   // For SingleValueKind, this is the single value.
6409   Constant *SingleValue = nullptr;
6410 
6411   // For BitMapKind, this is the bitmap.
6412   ConstantInt *BitMap = nullptr;
6413   IntegerType *BitMapElementTy = nullptr;
6414 
6415   // For LinearMapKind, these are the constants used to derive the value.
6416   ConstantInt *LinearOffset = nullptr;
6417   ConstantInt *LinearMultiplier = nullptr;
6418   bool LinearMapValWrapped = false;
6419 
6420   // For ArrayKind, this is the array.
6421   GlobalVariable *Array = nullptr;
6422 };
6423 
6424 } // end anonymous namespace
6425 
6426 SwitchLookupTable::SwitchLookupTable(
6427     Module &M, uint64_t TableSize, ConstantInt *Offset,
6428     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6429     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6430   assert(Values.size() && "Can't build lookup table without values!");
6431   assert(TableSize >= Values.size() && "Can't fit values in table!");
6432 
6433   // If all values in the table are equal, this is that value.
6434   SingleValue = Values.begin()->second;
6435 
6436   Type *ValueType = Values.begin()->second->getType();
6437 
6438   // Build up the table contents.
6439   SmallVector<Constant *, 64> TableContents(TableSize);
6440   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6441     ConstantInt *CaseVal = Values[I].first;
6442     Constant *CaseRes = Values[I].second;
6443     assert(CaseRes->getType() == ValueType);
6444 
6445     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6446     TableContents[Idx] = CaseRes;
6447 
6448     if (CaseRes != SingleValue)
6449       SingleValue = nullptr;
6450   }
6451 
6452   // Fill in any holes in the table with the default result.
6453   if (Values.size() < TableSize) {
6454     assert(DefaultValue &&
6455            "Need a default value to fill the lookup table holes.");
6456     assert(DefaultValue->getType() == ValueType);
6457     for (uint64_t I = 0; I < TableSize; ++I) {
6458       if (!TableContents[I])
6459         TableContents[I] = DefaultValue;
6460     }
6461 
6462     if (DefaultValue != SingleValue)
6463       SingleValue = nullptr;
6464   }
6465 
6466   // If each element in the table contains the same value, we only need to store
6467   // that single value.
6468   if (SingleValue) {
6469     Kind = SingleValueKind;
6470     return;
6471   }
6472 
6473   // Check if we can derive the value with a linear transformation from the
6474   // table index.
6475   if (isa<IntegerType>(ValueType)) {
6476     bool LinearMappingPossible = true;
6477     APInt PrevVal;
6478     APInt DistToPrev;
6479     // When linear map is monotonic and signed overflow doesn't happen on
6480     // maximum index, we can attach nsw on Add and Mul.
6481     bool NonMonotonic = false;
6482     assert(TableSize >= 2 && "Should be a SingleValue table.");
6483     // Check if there is the same distance between two consecutive values.
6484     for (uint64_t I = 0; I < TableSize; ++I) {
6485       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6486       if (!ConstVal) {
6487         // This is an undef. We could deal with it, but undefs in lookup tables
6488         // are very seldom. It's probably not worth the additional complexity.
6489         LinearMappingPossible = false;
6490         break;
6491       }
6492       const APInt &Val = ConstVal->getValue();
6493       if (I != 0) {
6494         APInt Dist = Val - PrevVal;
6495         if (I == 1) {
6496           DistToPrev = Dist;
6497         } else if (Dist != DistToPrev) {
6498           LinearMappingPossible = false;
6499           break;
6500         }
6501         NonMonotonic |=
6502             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6503       }
6504       PrevVal = Val;
6505     }
6506     if (LinearMappingPossible) {
6507       LinearOffset = cast<ConstantInt>(TableContents[0]);
6508       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6509       bool MayWrap = false;
6510       APInt M = LinearMultiplier->getValue();
6511       (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6512       LinearMapValWrapped = NonMonotonic || MayWrap;
6513       Kind = LinearMapKind;
6514       ++NumLinearMaps;
6515       return;
6516     }
6517   }
6518 
6519   // If the type is integer and the table fits in a register, build a bitmap.
6520   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6521     IntegerType *IT = cast<IntegerType>(ValueType);
6522     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6523     for (uint64_t I = TableSize; I > 0; --I) {
6524       TableInt <<= IT->getBitWidth();
6525       // Insert values into the bitmap. Undef values are set to zero.
6526       if (!isa<UndefValue>(TableContents[I - 1])) {
6527         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6528         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6529       }
6530     }
6531     BitMap = ConstantInt::get(M.getContext(), TableInt);
6532     BitMapElementTy = IT;
6533     Kind = BitMapKind;
6534     ++NumBitMaps;
6535     return;
6536   }
6537 
6538   // Store the table in an array.
6539   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6540   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6541 
6542   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6543                              GlobalVariable::PrivateLinkage, Initializer,
6544                              "switch.table." + FuncName);
6545   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6546   // Set the alignment to that of an array items. We will be only loading one
6547   // value out of it.
6548   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6549   Kind = ArrayKind;
6550 }
6551 
6552 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6553   switch (Kind) {
6554   case SingleValueKind:
6555     return SingleValue;
6556   case LinearMapKind: {
6557     // Derive the result value from the input value.
6558     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6559                                           false, "switch.idx.cast");
6560     if (!LinearMultiplier->isOne())
6561       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6562                                  /*HasNUW = */ false,
6563                                  /*HasNSW = */ !LinearMapValWrapped);
6564 
6565     if (!LinearOffset->isZero())
6566       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6567                                  /*HasNUW = */ false,
6568                                  /*HasNSW = */ !LinearMapValWrapped);
6569     return Result;
6570   }
6571   case BitMapKind: {
6572     // Type of the bitmap (e.g. i59).
6573     IntegerType *MapTy = BitMap->getIntegerType();
6574 
6575     // Cast Index to the same type as the bitmap.
6576     // Note: The Index is <= the number of elements in the table, so
6577     // truncating it to the width of the bitmask is safe.
6578     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6579 
6580     // Multiply the shift amount by the element width. NUW/NSW can always be
6581     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6582     // BitMap's bit width.
6583     ShiftAmt = Builder.CreateMul(
6584         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6585         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6586 
6587     // Shift down.
6588     Value *DownShifted =
6589         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6590     // Mask off.
6591     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6592   }
6593   case ArrayKind: {
6594     // Make sure the table index will not overflow when treated as signed.
6595     IntegerType *IT = cast<IntegerType>(Index->getType());
6596     uint64_t TableSize =
6597         Array->getInitializer()->getType()->getArrayNumElements();
6598     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6599       Index = Builder.CreateZExt(
6600           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6601           "switch.tableidx.zext");
6602 
6603     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6604     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6605                                            GEPIndices, "switch.gep");
6606     return Builder.CreateLoad(
6607         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6608         "switch.load");
6609   }
6610   }
6611   llvm_unreachable("Unknown lookup table kind!");
6612 }
6613 
6614 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6615                                            uint64_t TableSize,
6616                                            Type *ElementType) {
6617   auto *IT = dyn_cast<IntegerType>(ElementType);
6618   if (!IT)
6619     return false;
6620   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6621   // are <= 15, we could try to narrow the type.
6622 
6623   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6624   if (TableSize >= UINT_MAX / IT->getBitWidth())
6625     return false;
6626   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6627 }
6628 
6629 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6630                                       const DataLayout &DL) {
6631   // Allow any legal type.
6632   if (TTI.isTypeLegal(Ty))
6633     return true;
6634 
6635   auto *IT = dyn_cast<IntegerType>(Ty);
6636   if (!IT)
6637     return false;
6638 
6639   // Also allow power of 2 integer types that have at least 8 bits and fit in
6640   // a register. These types are common in frontend languages and targets
6641   // usually support loads of these types.
6642   // TODO: We could relax this to any integer that fits in a register and rely
6643   // on ABI alignment and padding in the table to allow the load to be widened.
6644   // Or we could widen the constants and truncate the load.
6645   unsigned BitWidth = IT->getBitWidth();
6646   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6647          DL.fitsInLegalInteger(IT->getBitWidth());
6648 }
6649 
6650 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6651   // 40% is the default density for building a jump table in optsize/minsize
6652   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6653   // function was based on.
6654   const uint64_t MinDensity = 40;
6655 
6656   if (CaseRange >= UINT64_MAX / 100)
6657     return false; // Avoid multiplication overflows below.
6658 
6659   return NumCases * 100 >= CaseRange * MinDensity;
6660 }
6661 
6662 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6663   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6664   uint64_t Range = Diff + 1;
6665   if (Range < Diff)
6666     return false; // Overflow.
6667 
6668   return isSwitchDense(Values.size(), Range);
6669 }
6670 
6671 /// Determine whether a lookup table should be built for this switch, based on
6672 /// the number of cases, size of the table, and the types of the results.
6673 // TODO: We could support larger than legal types by limiting based on the
6674 // number of loads required and/or table size. If the constants are small we
6675 // could use smaller table entries and extend after the load.
6676 static bool
6677 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6678                        const TargetTransformInfo &TTI, const DataLayout &DL,
6679                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6680   if (SI->getNumCases() > TableSize)
6681     return false; // TableSize overflowed.
6682 
6683   bool AllTablesFitInRegister = true;
6684   bool HasIllegalType = false;
6685   for (const auto &I : ResultTypes) {
6686     Type *Ty = I.second;
6687 
6688     // Saturate this flag to true.
6689     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6690 
6691     // Saturate this flag to false.
6692     AllTablesFitInRegister =
6693         AllTablesFitInRegister &&
6694         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6695 
6696     // If both flags saturate, we're done. NOTE: This *only* works with
6697     // saturating flags, and all flags have to saturate first due to the
6698     // non-deterministic behavior of iterating over a dense map.
6699     if (HasIllegalType && !AllTablesFitInRegister)
6700       break;
6701   }
6702 
6703   // If each table would fit in a register, we should build it anyway.
6704   if (AllTablesFitInRegister)
6705     return true;
6706 
6707   // Don't build a table that doesn't fit in-register if it has illegal types.
6708   if (HasIllegalType)
6709     return false;
6710 
6711   return isSwitchDense(SI->getNumCases(), TableSize);
6712 }
6713 
6714 static bool shouldUseSwitchConditionAsTableIndex(
6715     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6716     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6717     const DataLayout &DL, const TargetTransformInfo &TTI) {
6718   if (MinCaseVal.isNullValue())
6719     return true;
6720   if (MinCaseVal.isNegative() ||
6721       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6722       !HasDefaultResults)
6723     return false;
6724   return all_of(ResultTypes, [&](const auto &KV) {
6725     return SwitchLookupTable::wouldFitInRegister(
6726         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6727         KV.second /* ResultType */);
6728   });
6729 }
6730 
6731 /// Try to reuse the switch table index compare. Following pattern:
6732 /// \code
6733 ///     if (idx < tablesize)
6734 ///        r = table[idx]; // table does not contain default_value
6735 ///     else
6736 ///        r = default_value;
6737 ///     if (r != default_value)
6738 ///        ...
6739 /// \endcode
6740 /// Is optimized to:
6741 /// \code
6742 ///     cond = idx < tablesize;
6743 ///     if (cond)
6744 ///        r = table[idx];
6745 ///     else
6746 ///        r = default_value;
6747 ///     if (cond)
6748 ///        ...
6749 /// \endcode
6750 /// Jump threading will then eliminate the second if(cond).
6751 static void reuseTableCompare(
6752     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6753     Constant *DefaultValue,
6754     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6755   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6756   if (!CmpInst)
6757     return;
6758 
6759   // We require that the compare is in the same block as the phi so that jump
6760   // threading can do its work afterwards.
6761   if (CmpInst->getParent() != PhiBlock)
6762     return;
6763 
6764   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6765   if (!CmpOp1)
6766     return;
6767 
6768   Value *RangeCmp = RangeCheckBranch->getCondition();
6769   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6770   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6771 
6772   // Check if the compare with the default value is constant true or false.
6773   const DataLayout &DL = PhiBlock->getDataLayout();
6774   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6775       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6776   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6777     return;
6778 
6779   // Check if the compare with the case values is distinct from the default
6780   // compare result.
6781   for (auto ValuePair : Values) {
6782     Constant *CaseConst = ConstantFoldCompareInstOperands(
6783         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6784     if (!CaseConst || CaseConst == DefaultConst ||
6785         (CaseConst != TrueConst && CaseConst != FalseConst))
6786       return;
6787   }
6788 
6789   // Check if the branch instruction dominates the phi node. It's a simple
6790   // dominance check, but sufficient for our needs.
6791   // Although this check is invariant in the calling loops, it's better to do it
6792   // at this late stage. Practically we do it at most once for a switch.
6793   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6794   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6795     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6796       return;
6797   }
6798 
6799   if (DefaultConst == FalseConst) {
6800     // The compare yields the same result. We can replace it.
6801     CmpInst->replaceAllUsesWith(RangeCmp);
6802     ++NumTableCmpReuses;
6803   } else {
6804     // The compare yields the same result, just inverted. We can replace it.
6805     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6806         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6807         RangeCheckBranch->getIterator());
6808     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6809     ++NumTableCmpReuses;
6810   }
6811 }
6812 
6813 /// If the switch is only used to initialize one or more phi nodes in a common
6814 /// successor block with different constant values, replace the switch with
6815 /// lookup tables.
6816 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6817                                 DomTreeUpdater *DTU, const DataLayout &DL,
6818                                 const TargetTransformInfo &TTI) {
6819   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6820 
6821   BasicBlock *BB = SI->getParent();
6822   Function *Fn = BB->getParent();
6823   // Only build lookup table when we have a target that supports it or the
6824   // attribute is not set.
6825   if (!TTI.shouldBuildLookupTables() ||
6826       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6827     return false;
6828 
6829   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6830   // split off a dense part and build a lookup table for that.
6831 
6832   // FIXME: This creates arrays of GEPs to constant strings, which means each
6833   // GEP needs a runtime relocation in PIC code. We should just build one big
6834   // string and lookup indices into that.
6835 
6836   // Ignore switches with less than three cases. Lookup tables will not make
6837   // them faster, so we don't analyze them.
6838   if (SI->getNumCases() < 3)
6839     return false;
6840 
6841   // Figure out the corresponding result for each case value and phi node in the
6842   // common destination, as well as the min and max case values.
6843   assert(!SI->cases().empty());
6844   SwitchInst::CaseIt CI = SI->case_begin();
6845   ConstantInt *MinCaseVal = CI->getCaseValue();
6846   ConstantInt *MaxCaseVal = CI->getCaseValue();
6847 
6848   BasicBlock *CommonDest = nullptr;
6849 
6850   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6851   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6852 
6853   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6854   SmallDenseMap<PHINode *, Type *> ResultTypes;
6855   SmallVector<PHINode *, 4> PHIs;
6856 
6857   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6858     ConstantInt *CaseVal = CI->getCaseValue();
6859     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6860       MinCaseVal = CaseVal;
6861     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6862       MaxCaseVal = CaseVal;
6863 
6864     // Resulting value at phi nodes for this case value.
6865     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6866     ResultsTy Results;
6867     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6868                         Results, DL, TTI))
6869       return false;
6870 
6871     // Append the result from this case to the list for each phi.
6872     for (const auto &I : Results) {
6873       PHINode *PHI = I.first;
6874       Constant *Value = I.second;
6875       if (!ResultLists.count(PHI))
6876         PHIs.push_back(PHI);
6877       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6878     }
6879   }
6880 
6881   // Keep track of the result types.
6882   for (PHINode *PHI : PHIs) {
6883     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6884   }
6885 
6886   uint64_t NumResults = ResultLists[PHIs[0]].size();
6887 
6888   // If the table has holes, we need a constant result for the default case
6889   // or a bitmask that fits in a register.
6890   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6891   bool HasDefaultResults =
6892       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6893                      DefaultResultsList, DL, TTI);
6894 
6895   for (const auto &I : DefaultResultsList) {
6896     PHINode *PHI = I.first;
6897     Constant *Result = I.second;
6898     DefaultResults[PHI] = Result;
6899   }
6900 
6901   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6902       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6903   uint64_t TableSize;
6904   if (UseSwitchConditionAsTableIndex)
6905     TableSize = MaxCaseVal->getLimitedValue() + 1;
6906   else
6907     TableSize =
6908         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6909 
6910   // If the default destination is unreachable, or if the lookup table covers
6911   // all values of the conditional variable, branch directly to the lookup table
6912   // BB. Otherwise, check that the condition is within the case range.
6913   bool DefaultIsReachable = !SI->defaultDestUndefined();
6914 
6915   bool TableHasHoles = (NumResults < TableSize);
6916 
6917   // If the table has holes but the default destination doesn't produce any
6918   // constant results, the lookup table entries corresponding to the holes will
6919   // contain undefined values.
6920   bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults;
6921 
6922   // If the default destination doesn't produce a constant result but is still
6923   // reachable, and the lookup table has holes, we need to use a mask to
6924   // determine if the current index should load from the lookup table or jump
6925   // to the default case.
6926   // The mask is unnecessary if the table has holes but the default destination
6927   // is unreachable, as in that case the holes must also be unreachable.
6928   bool NeedMask = AllHolesAreUndefined && DefaultIsReachable;
6929   if (NeedMask) {
6930     // As an extra penalty for the validity test we require more cases.
6931     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6932       return false;
6933     if (!DL.fitsInLegalInteger(TableSize))
6934       return false;
6935   }
6936 
6937   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6938     return false;
6939 
6940   std::vector<DominatorTree::UpdateType> Updates;
6941 
6942   // Compute the maximum table size representable by the integer type we are
6943   // switching upon.
6944   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6945   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6946   assert(MaxTableSize >= TableSize &&
6947          "It is impossible for a switch to have more entries than the max "
6948          "representable value of its input integer type's size.");
6949 
6950   // Create the BB that does the lookups.
6951   Module &Mod = *CommonDest->getParent()->getParent();
6952   BasicBlock *LookupBB = BasicBlock::Create(
6953       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6954 
6955   // Compute the table index value.
6956   Builder.SetInsertPoint(SI);
6957   Value *TableIndex;
6958   ConstantInt *TableIndexOffset;
6959   if (UseSwitchConditionAsTableIndex) {
6960     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
6961     TableIndex = SI->getCondition();
6962   } else {
6963     TableIndexOffset = MinCaseVal;
6964     // If the default is unreachable, all case values are s>= MinCaseVal. Then
6965     // we can try to attach nsw.
6966     bool MayWrap = true;
6967     if (!DefaultIsReachable) {
6968       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
6969       (void)Res;
6970     }
6971 
6972     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
6973                                    "switch.tableidx", /*HasNUW =*/false,
6974                                    /*HasNSW =*/!MayWrap);
6975   }
6976 
6977   BranchInst *RangeCheckBranch = nullptr;
6978 
6979   // Grow the table to cover all possible index values to avoid the range check.
6980   // It will use the default result to fill in the table hole later, so make
6981   // sure it exist.
6982   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
6983     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
6984     // Grow the table shouldn't have any size impact by checking
6985     // wouldFitInRegister.
6986     // TODO: Consider growing the table also when it doesn't fit in a register
6987     // if no optsize is specified.
6988     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
6989     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
6990           return SwitchLookupTable::wouldFitInRegister(
6991               DL, UpperBound, KV.second /* ResultType */);
6992         })) {
6993       // There may be some case index larger than the UpperBound (unreachable
6994       // case), so make sure the table size does not get smaller.
6995       TableSize = std::max(UpperBound, TableSize);
6996       // The default branch is unreachable after we enlarge the lookup table.
6997       // Adjust DefaultIsReachable to reuse code path.
6998       DefaultIsReachable = false;
6999     }
7000   }
7001 
7002   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7003   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7004     Builder.CreateBr(LookupBB);
7005     if (DTU)
7006       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7007     // Note: We call removeProdecessor later since we need to be able to get the
7008     // PHI value for the default case in case we're using a bit mask.
7009   } else {
7010     Value *Cmp = Builder.CreateICmpULT(
7011         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7012     RangeCheckBranch =
7013         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7014     if (DTU)
7015       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7016   }
7017 
7018   // Populate the BB that does the lookups.
7019   Builder.SetInsertPoint(LookupBB);
7020 
7021   if (NeedMask) {
7022     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7023     // re-purposed to do the hole check, and we create a new LookupBB.
7024     BasicBlock *MaskBB = LookupBB;
7025     MaskBB->setName("switch.hole_check");
7026     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7027                                   CommonDest->getParent(), CommonDest);
7028 
7029     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7030     // unnecessary illegal types.
7031     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7032     APInt MaskInt(TableSizePowOf2, 0);
7033     APInt One(TableSizePowOf2, 1);
7034     // Build bitmask; fill in a 1 bit for every case.
7035     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7036     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7037       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7038                          .getLimitedValue();
7039       MaskInt |= One << Idx;
7040     }
7041     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7042 
7043     // Get the TableIndex'th bit of the bitmask.
7044     // If this bit is 0 (meaning hole) jump to the default destination,
7045     // else continue with table lookup.
7046     IntegerType *MapTy = TableMask->getIntegerType();
7047     Value *MaskIndex =
7048         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7049     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7050     Value *LoBit = Builder.CreateTrunc(
7051         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7052     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7053     if (DTU) {
7054       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7055       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7056     }
7057     Builder.SetInsertPoint(LookupBB);
7058     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7059   }
7060 
7061   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7062     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7063     // do not delete PHINodes here.
7064     SI->getDefaultDest()->removePredecessor(BB,
7065                                             /*KeepOneInputPHIs=*/true);
7066     if (DTU)
7067       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7068   }
7069 
7070   for (PHINode *PHI : PHIs) {
7071     const ResultListTy &ResultList = ResultLists[PHI];
7072 
7073     // Use any value to fill the lookup table holes.
7074     Constant *DV =
7075         AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI];
7076     StringRef FuncName = Fn->getName();
7077     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7078                             DL, FuncName);
7079 
7080     Value *Result = Table.buildLookup(TableIndex, Builder);
7081 
7082     // Do a small peephole optimization: re-use the switch table compare if
7083     // possible.
7084     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7085       BasicBlock *PhiBlock = PHI->getParent();
7086       // Search for compare instructions which use the phi.
7087       for (auto *User : PHI->users()) {
7088         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7089       }
7090     }
7091 
7092     PHI->addIncoming(Result, LookupBB);
7093   }
7094 
7095   Builder.CreateBr(CommonDest);
7096   if (DTU)
7097     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7098 
7099   // Remove the switch.
7100   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7101   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7102     BasicBlock *Succ = SI->getSuccessor(i);
7103 
7104     if (Succ == SI->getDefaultDest())
7105       continue;
7106     Succ->removePredecessor(BB);
7107     if (DTU && RemovedSuccessors.insert(Succ).second)
7108       Updates.push_back({DominatorTree::Delete, BB, Succ});
7109   }
7110   SI->eraseFromParent();
7111 
7112   if (DTU)
7113     DTU->applyUpdates(Updates);
7114 
7115   ++NumLookupTables;
7116   if (NeedMask)
7117     ++NumLookupTablesHoles;
7118   return true;
7119 }
7120 
7121 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7122 /// of cases.
7123 ///
7124 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7125 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7126 ///
7127 /// This converts a sparse switch into a dense switch which allows better
7128 /// lowering and could also allow transforming into a lookup table.
7129 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7130                               const DataLayout &DL,
7131                               const TargetTransformInfo &TTI) {
7132   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7133   if (CondTy->getIntegerBitWidth() > 64 ||
7134       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7135     return false;
7136   // Only bother with this optimization if there are more than 3 switch cases;
7137   // SDAG will only bother creating jump tables for 4 or more cases.
7138   if (SI->getNumCases() < 4)
7139     return false;
7140 
7141   // This transform is agnostic to the signedness of the input or case values. We
7142   // can treat the case values as signed or unsigned. We can optimize more common
7143   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7144   // as signed.
7145   SmallVector<int64_t,4> Values;
7146   for (const auto &C : SI->cases())
7147     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7148   llvm::sort(Values);
7149 
7150   // If the switch is already dense, there's nothing useful to do here.
7151   if (isSwitchDense(Values))
7152     return false;
7153 
7154   // First, transform the values such that they start at zero and ascend.
7155   int64_t Base = Values[0];
7156   for (auto &V : Values)
7157     V -= (uint64_t)(Base);
7158 
7159   // Now we have signed numbers that have been shifted so that, given enough
7160   // precision, there are no negative values. Since the rest of the transform
7161   // is bitwise only, we switch now to an unsigned representation.
7162 
7163   // This transform can be done speculatively because it is so cheap - it
7164   // results in a single rotate operation being inserted.
7165 
7166   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7167   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7168   // less than 64.
7169   unsigned Shift = 64;
7170   for (auto &V : Values)
7171     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7172   assert(Shift < 64);
7173   if (Shift > 0)
7174     for (auto &V : Values)
7175       V = (int64_t)((uint64_t)V >> Shift);
7176 
7177   if (!isSwitchDense(Values))
7178     // Transform didn't create a dense switch.
7179     return false;
7180 
7181   // The obvious transform is to shift the switch condition right and emit a
7182   // check that the condition actually cleanly divided by GCD, i.e.
7183   //   C & (1 << Shift - 1) == 0
7184   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7185   //
7186   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7187   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7188   // are nonzero then the switch condition will be very large and will hit the
7189   // default case.
7190 
7191   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7192   Builder.SetInsertPoint(SI);
7193   Value *Sub =
7194       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7195   Value *Rot = Builder.CreateIntrinsic(
7196       Ty, Intrinsic::fshl,
7197       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7198   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7199 
7200   for (auto Case : SI->cases()) {
7201     auto *Orig = Case.getCaseValue();
7202     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
7203     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7204   }
7205   return true;
7206 }
7207 
7208 /// Tries to transform switch of powers of two to reduce switch range.
7209 /// For example, switch like:
7210 /// switch (C) { case 1: case 2: case 64: case 128: }
7211 /// will be transformed to:
7212 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7213 ///
7214 /// This transformation allows better lowering and could allow transforming into
7215 /// a lookup table.
7216 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7217                                         const DataLayout &DL,
7218                                         const TargetTransformInfo &TTI) {
7219   Value *Condition = SI->getCondition();
7220   LLVMContext &Context = SI->getContext();
7221   auto *CondTy = cast<IntegerType>(Condition->getType());
7222 
7223   if (CondTy->getIntegerBitWidth() > 64 ||
7224       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7225     return false;
7226 
7227   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7228       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7229                               {Condition, ConstantInt::getTrue(Context)}),
7230       TTI::TCK_SizeAndLatency);
7231 
7232   if (CttzIntrinsicCost > TTI::TCC_Basic)
7233     // Inserting intrinsic is too expensive.
7234     return false;
7235 
7236   // Only bother with this optimization if there are more than 3 switch cases.
7237   // SDAG will only bother creating jump tables for 4 or more cases.
7238   if (SI->getNumCases() < 4)
7239     return false;
7240 
7241   // We perform this optimization only for switches with
7242   // unreachable default case.
7243   // This assumtion will save us from checking if `Condition` is a power of two.
7244   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7245     return false;
7246 
7247   // Check that switch cases are powers of two.
7248   SmallVector<uint64_t, 4> Values;
7249   for (const auto &Case : SI->cases()) {
7250     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7251     if (llvm::has_single_bit(CaseValue))
7252       Values.push_back(CaseValue);
7253     else
7254       return false;
7255   }
7256 
7257   // isSwichDense requires case values to be sorted.
7258   llvm::sort(Values);
7259   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7260                                         llvm::countr_zero(Values.front()) + 1))
7261     // Transform is unable to generate dense switch.
7262     return false;
7263 
7264   Builder.SetInsertPoint(SI);
7265 
7266   // Replace each case with its trailing zeros number.
7267   for (auto &Case : SI->cases()) {
7268     auto *OrigValue = Case.getCaseValue();
7269     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7270                                    OrigValue->getValue().countr_zero()));
7271   }
7272 
7273   // Replace condition with its trailing zeros number.
7274   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7275       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7276 
7277   SI->setCondition(ConditionTrailingZeros);
7278 
7279   return true;
7280 }
7281 
7282 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7283 /// the same destination.
7284 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7285                                          DomTreeUpdater *DTU) {
7286   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7287   if (!Cmp || !Cmp->hasOneUse())
7288     return false;
7289 
7290   SmallVector<uint32_t, 4> Weights;
7291   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7292   if (!HasWeights)
7293     Weights.resize(4); // Avoid checking HasWeights everywhere.
7294 
7295   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7296   int64_t Res;
7297   BasicBlock *Succ, *OtherSucc;
7298   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7299   BasicBlock *Unreachable = nullptr;
7300 
7301   if (SI->getNumCases() == 2) {
7302     // Find which of 1, 0 or -1 is missing (handled by default dest).
7303     SmallSet<int64_t, 3> Missing;
7304     Missing.insert(1);
7305     Missing.insert(0);
7306     Missing.insert(-1);
7307 
7308     Succ = SI->getDefaultDest();
7309     SuccWeight = Weights[0];
7310     OtherSucc = nullptr;
7311     for (auto &Case : SI->cases()) {
7312       std::optional<int64_t> Val =
7313           Case.getCaseValue()->getValue().trySExtValue();
7314       if (!Val)
7315         return false;
7316       if (!Missing.erase(*Val))
7317         return false;
7318       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7319         return false;
7320       OtherSucc = Case.getCaseSuccessor();
7321       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7322     }
7323 
7324     assert(Missing.size() == 1 && "Should have one case left");
7325     Res = *Missing.begin();
7326   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7327     // Normalize so that Succ is taken once and OtherSucc twice.
7328     Unreachable = SI->getDefaultDest();
7329     Succ = OtherSucc = nullptr;
7330     for (auto &Case : SI->cases()) {
7331       BasicBlock *NewSucc = Case.getCaseSuccessor();
7332       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7333       if (!OtherSucc || OtherSucc == NewSucc) {
7334         OtherSucc = NewSucc;
7335         OtherSuccWeight += Weight;
7336       } else if (!Succ) {
7337         Succ = NewSucc;
7338         SuccWeight = Weight;
7339       } else if (Succ == NewSucc) {
7340         std::swap(Succ, OtherSucc);
7341         std::swap(SuccWeight, OtherSuccWeight);
7342       } else
7343         return false;
7344     }
7345     for (auto &Case : SI->cases()) {
7346       std::optional<int64_t> Val =
7347           Case.getCaseValue()->getValue().trySExtValue();
7348       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7349         return false;
7350       if (Case.getCaseSuccessor() == Succ) {
7351         Res = *Val;
7352         break;
7353       }
7354     }
7355   } else {
7356     return false;
7357   }
7358 
7359   // Determine predicate for the missing case.
7360   ICmpInst::Predicate Pred;
7361   switch (Res) {
7362   case 1:
7363     Pred = ICmpInst::ICMP_UGT;
7364     break;
7365   case 0:
7366     Pred = ICmpInst::ICMP_EQ;
7367     break;
7368   case -1:
7369     Pred = ICmpInst::ICMP_ULT;
7370     break;
7371   }
7372   if (Cmp->isSigned())
7373     Pred = ICmpInst::getSignedPredicate(Pred);
7374 
7375   MDNode *NewWeights = nullptr;
7376   if (HasWeights)
7377     NewWeights = MDBuilder(SI->getContext())
7378                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7379 
7380   BasicBlock *BB = SI->getParent();
7381   Builder.SetInsertPoint(SI->getIterator());
7382   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7383   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7384                        SI->getMetadata(LLVMContext::MD_unpredictable));
7385   OtherSucc->removePredecessor(BB);
7386   if (Unreachable)
7387     Unreachable->removePredecessor(BB);
7388   SI->eraseFromParent();
7389   Cmp->eraseFromParent();
7390   if (DTU && Unreachable)
7391     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7392   return true;
7393 }
7394 
7395 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7396   BasicBlock *BB = SI->getParent();
7397 
7398   if (isValueEqualityComparison(SI)) {
7399     // If we only have one predecessor, and if it is a branch on this value,
7400     // see if that predecessor totally determines the outcome of this switch.
7401     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7402       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7403         return requestResimplify();
7404 
7405     Value *Cond = SI->getCondition();
7406     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7407       if (simplifySwitchOnSelect(SI, Select))
7408         return requestResimplify();
7409 
7410     // If the block only contains the switch, see if we can fold the block
7411     // away into any preds.
7412     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7413       if (foldValueComparisonIntoPredecessors(SI, Builder))
7414         return requestResimplify();
7415   }
7416 
7417   // Try to transform the switch into an icmp and a branch.
7418   // The conversion from switch to comparison may lose information on
7419   // impossible switch values, so disable it early in the pipeline.
7420   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7421     return requestResimplify();
7422 
7423   // Remove unreachable cases.
7424   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7425     return requestResimplify();
7426 
7427   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7428     return requestResimplify();
7429 
7430   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7431     return requestResimplify();
7432 
7433   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7434     return requestResimplify();
7435 
7436   // The conversion from switch to lookup tables results in difficult-to-analyze
7437   // code and makes pruning branches much harder. This is a problem if the
7438   // switch expression itself can still be restricted as a result of inlining or
7439   // CVP. Therefore, only apply this transformation during late stages of the
7440   // optimisation pipeline.
7441   if (Options.ConvertSwitchToLookupTable &&
7442       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7443     return requestResimplify();
7444 
7445   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7446     return requestResimplify();
7447 
7448   if (reduceSwitchRange(SI, Builder, DL, TTI))
7449     return requestResimplify();
7450 
7451   if (HoistCommon &&
7452       hoistCommonCodeFromSuccessors(SI->getParent(), !Options.HoistCommonInsts))
7453     return requestResimplify();
7454 
7455   return false;
7456 }
7457 
7458 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7459   BasicBlock *BB = IBI->getParent();
7460   bool Changed = false;
7461 
7462   // Eliminate redundant destinations.
7463   SmallPtrSet<Value *, 8> Succs;
7464   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7465   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7466     BasicBlock *Dest = IBI->getDestination(i);
7467     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7468       if (!Dest->hasAddressTaken())
7469         RemovedSuccs.insert(Dest);
7470       Dest->removePredecessor(BB);
7471       IBI->removeDestination(i);
7472       --i;
7473       --e;
7474       Changed = true;
7475     }
7476   }
7477 
7478   if (DTU) {
7479     std::vector<DominatorTree::UpdateType> Updates;
7480     Updates.reserve(RemovedSuccs.size());
7481     for (auto *RemovedSucc : RemovedSuccs)
7482       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7483     DTU->applyUpdates(Updates);
7484   }
7485 
7486   if (IBI->getNumDestinations() == 0) {
7487     // If the indirectbr has no successors, change it to unreachable.
7488     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7489     eraseTerminatorAndDCECond(IBI);
7490     return true;
7491   }
7492 
7493   if (IBI->getNumDestinations() == 1) {
7494     // If the indirectbr has one successor, change it to a direct branch.
7495     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7496     eraseTerminatorAndDCECond(IBI);
7497     return true;
7498   }
7499 
7500   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7501     if (simplifyIndirectBrOnSelect(IBI, SI))
7502       return requestResimplify();
7503   }
7504   return Changed;
7505 }
7506 
7507 /// Given an block with only a single landing pad and a unconditional branch
7508 /// try to find another basic block which this one can be merged with.  This
7509 /// handles cases where we have multiple invokes with unique landing pads, but
7510 /// a shared handler.
7511 ///
7512 /// We specifically choose to not worry about merging non-empty blocks
7513 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7514 /// practice, the optimizer produces empty landing pad blocks quite frequently
7515 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7516 /// sinking in this file)
7517 ///
7518 /// This is primarily a code size optimization.  We need to avoid performing
7519 /// any transform which might inhibit optimization (such as our ability to
7520 /// specialize a particular handler via tail commoning).  We do this by not
7521 /// merging any blocks which require us to introduce a phi.  Since the same
7522 /// values are flowing through both blocks, we don't lose any ability to
7523 /// specialize.  If anything, we make such specialization more likely.
7524 ///
7525 /// TODO - This transformation could remove entries from a phi in the target
7526 /// block when the inputs in the phi are the same for the two blocks being
7527 /// merged.  In some cases, this could result in removal of the PHI entirely.
7528 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7529                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7530   auto Succ = BB->getUniqueSuccessor();
7531   assert(Succ);
7532   // If there's a phi in the successor block, we'd likely have to introduce
7533   // a phi into the merged landing pad block.
7534   if (isa<PHINode>(*Succ->begin()))
7535     return false;
7536 
7537   for (BasicBlock *OtherPred : predecessors(Succ)) {
7538     if (BB == OtherPred)
7539       continue;
7540     BasicBlock::iterator I = OtherPred->begin();
7541     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7542     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7543       continue;
7544     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7545       ;
7546     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7547     if (!BI2 || !BI2->isIdenticalTo(BI))
7548       continue;
7549 
7550     std::vector<DominatorTree::UpdateType> Updates;
7551 
7552     // We've found an identical block.  Update our predecessors to take that
7553     // path instead and make ourselves dead.
7554     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7555     for (BasicBlock *Pred : UniquePreds) {
7556       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7557       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7558              "unexpected successor");
7559       II->setUnwindDest(OtherPred);
7560       if (DTU) {
7561         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7562         Updates.push_back({DominatorTree::Delete, Pred, BB});
7563       }
7564     }
7565 
7566     // The debug info in OtherPred doesn't cover the merged control flow that
7567     // used to go through BB.  We need to delete it or update it.
7568     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7569       if (isa<DbgInfoIntrinsic>(Inst))
7570         Inst.eraseFromParent();
7571 
7572     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7573     for (BasicBlock *Succ : UniqueSuccs) {
7574       Succ->removePredecessor(BB);
7575       if (DTU)
7576         Updates.push_back({DominatorTree::Delete, BB, Succ});
7577     }
7578 
7579     IRBuilder<> Builder(BI);
7580     Builder.CreateUnreachable();
7581     BI->eraseFromParent();
7582     if (DTU)
7583       DTU->applyUpdates(Updates);
7584     return true;
7585   }
7586   return false;
7587 }
7588 
7589 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7590   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7591                                    : simplifyCondBranch(Branch, Builder);
7592 }
7593 
7594 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7595                                           IRBuilder<> &Builder) {
7596   BasicBlock *BB = BI->getParent();
7597   BasicBlock *Succ = BI->getSuccessor(0);
7598 
7599   // If the Terminator is the only non-phi instruction, simplify the block.
7600   // If LoopHeader is provided, check if the block or its successor is a loop
7601   // header. (This is for early invocations before loop simplify and
7602   // vectorization to keep canonical loop forms for nested loops. These blocks
7603   // can be eliminated when the pass is invoked later in the back-end.)
7604   // Note that if BB has only one predecessor then we do not introduce new
7605   // backedge, so we can eliminate BB.
7606   bool NeedCanonicalLoop =
7607       Options.NeedCanonicalLoop &&
7608       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7609        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7610   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7611   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7612       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7613     return true;
7614 
7615   // If the only instruction in the block is a seteq/setne comparison against a
7616   // constant, try to simplify the block.
7617   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7618     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7619       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7620         ;
7621       if (I->isTerminator() &&
7622           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7623         return true;
7624     }
7625 
7626   // See if we can merge an empty landing pad block with another which is
7627   // equivalent.
7628   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7629     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7630       ;
7631     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7632       return true;
7633   }
7634 
7635   // If this basic block is ONLY a compare and a branch, and if a predecessor
7636   // branches to us and our successor, fold the comparison into the
7637   // predecessor and use logical operations to update the incoming value
7638   // for PHI nodes in common successor.
7639   if (Options.SpeculateBlocks &&
7640       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7641                              Options.BonusInstThreshold))
7642     return requestResimplify();
7643   return false;
7644 }
7645 
7646 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7647   BasicBlock *PredPred = nullptr;
7648   for (auto *P : predecessors(BB)) {
7649     BasicBlock *PPred = P->getSinglePredecessor();
7650     if (!PPred || (PredPred && PredPred != PPred))
7651       return nullptr;
7652     PredPred = PPred;
7653   }
7654   return PredPred;
7655 }
7656 
7657 /// Fold the following pattern:
7658 /// bb0:
7659 ///   br i1 %cond1, label %bb1, label %bb2
7660 /// bb1:
7661 ///   br i1 %cond2, label %bb3, label %bb4
7662 /// bb2:
7663 ///   br i1 %cond2, label %bb4, label %bb3
7664 /// bb3:
7665 ///   ...
7666 /// bb4:
7667 ///   ...
7668 /// into
7669 /// bb0:
7670 ///   %cond = xor i1 %cond1, %cond2
7671 ///   br i1 %cond, label %bb4, label %bb3
7672 /// bb3:
7673 ///   ...
7674 /// bb4:
7675 ///   ...
7676 /// NOTE: %cond2 always dominates the terminator of bb0.
7677 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7678   BasicBlock *BB = BI->getParent();
7679   BasicBlock *BB1 = BI->getSuccessor(0);
7680   BasicBlock *BB2 = BI->getSuccessor(1);
7681   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7682     if (Succ == BB)
7683       return false;
7684     if (&Succ->front() != Succ->getTerminator())
7685       return false;
7686     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7687     if (!SuccBI || !SuccBI->isConditional())
7688       return false;
7689     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7690     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7691     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7692            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7693   };
7694   BranchInst *BB1BI, *BB2BI;
7695   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7696     return false;
7697 
7698   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7699       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7700       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7701     return false;
7702 
7703   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7704   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7705   IRBuilder<> Builder(BI);
7706   BI->setCondition(
7707       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7708   BB1->removePredecessor(BB);
7709   BI->setSuccessor(0, BB4);
7710   BB2->removePredecessor(BB);
7711   BI->setSuccessor(1, BB3);
7712   if (DTU) {
7713     SmallVector<DominatorTree::UpdateType, 4> Updates;
7714     Updates.push_back({DominatorTree::Delete, BB, BB1});
7715     Updates.push_back({DominatorTree::Insert, BB, BB4});
7716     Updates.push_back({DominatorTree::Delete, BB, BB2});
7717     Updates.push_back({DominatorTree::Insert, BB, BB3});
7718 
7719     DTU->applyUpdates(Updates);
7720   }
7721   bool HasWeight = false;
7722   uint64_t BBTWeight, BBFWeight;
7723   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
7724     HasWeight = true;
7725   else
7726     BBTWeight = BBFWeight = 1;
7727   uint64_t BB1TWeight, BB1FWeight;
7728   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
7729     HasWeight = true;
7730   else
7731     BB1TWeight = BB1FWeight = 1;
7732   uint64_t BB2TWeight, BB2FWeight;
7733   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
7734     HasWeight = true;
7735   else
7736     BB2TWeight = BB2FWeight = 1;
7737   if (HasWeight) {
7738     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
7739                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
7740     fitWeights(Weights);
7741     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
7742   }
7743   return true;
7744 }
7745 
7746 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7747   assert(
7748       !isa<ConstantInt>(BI->getCondition()) &&
7749       BI->getSuccessor(0) != BI->getSuccessor(1) &&
7750       "Tautological conditional branch should have been eliminated already.");
7751 
7752   BasicBlock *BB = BI->getParent();
7753   if (!Options.SimplifyCondBranch ||
7754       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7755     return false;
7756 
7757   // Conditional branch
7758   if (isValueEqualityComparison(BI)) {
7759     // If we only have one predecessor, and if it is a branch on this value,
7760     // see if that predecessor totally determines the outcome of this
7761     // switch.
7762     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7763       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7764         return requestResimplify();
7765 
7766     // This block must be empty, except for the setcond inst, if it exists.
7767     // Ignore dbg and pseudo intrinsics.
7768     auto I = BB->instructionsWithoutDebug(true).begin();
7769     if (&*I == BI) {
7770       if (foldValueComparisonIntoPredecessors(BI, Builder))
7771         return requestResimplify();
7772     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7773       ++I;
7774       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
7775         return requestResimplify();
7776     }
7777   }
7778 
7779   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7780   if (simplifyBranchOnICmpChain(BI, Builder, DL))
7781     return true;
7782 
7783   // If this basic block has dominating predecessor blocks and the dominating
7784   // blocks' conditions imply BI's condition, we know the direction of BI.
7785   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7786   if (Imp) {
7787     // Turn this into a branch on constant.
7788     auto *OldCond = BI->getCondition();
7789     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7790                              : ConstantInt::getFalse(BB->getContext());
7791     BI->setCondition(TorF);
7792     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7793     return requestResimplify();
7794   }
7795 
7796   // If this basic block is ONLY a compare and a branch, and if a predecessor
7797   // branches to us and one of our successors, fold the comparison into the
7798   // predecessor and use logical operations to pick the right destination.
7799   if (Options.SpeculateBlocks &&
7800       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7801                              Options.BonusInstThreshold))
7802     return requestResimplify();
7803 
7804   // We have a conditional branch to two blocks that are only reachable
7805   // from BI.  We know that the condbr dominates the two blocks, so see if
7806   // there is any identical code in the "then" and "else" blocks.  If so, we
7807   // can hoist it up to the branching block.
7808   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7809     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7810       if (HoistCommon && hoistCommonCodeFromSuccessors(
7811                              BI->getParent(), !Options.HoistCommonInsts))
7812         return requestResimplify();
7813     } else {
7814       // If Successor #1 has multiple preds, we may be able to conditionally
7815       // execute Successor #0 if it branches to Successor #1.
7816       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7817       if (Succ0TI->getNumSuccessors() == 1 &&
7818           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7819         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
7820           return requestResimplify();
7821     }
7822   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7823     // If Successor #0 has multiple preds, we may be able to conditionally
7824     // execute Successor #1 if it branches to Successor #0.
7825     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7826     if (Succ1TI->getNumSuccessors() == 1 &&
7827         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7828       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
7829         return requestResimplify();
7830   }
7831 
7832   // If this is a branch on something for which we know the constant value in
7833   // predecessors (e.g. a phi node in the current block), thread control
7834   // through this block.
7835   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7836     return requestResimplify();
7837 
7838   // Scan predecessor blocks for conditional branches.
7839   for (BasicBlock *Pred : predecessors(BB))
7840     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7841       if (PBI != BI && PBI->isConditional())
7842         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7843           return requestResimplify();
7844 
7845   // Look for diamond patterns.
7846   if (MergeCondStores)
7847     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7848       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7849         if (PBI != BI && PBI->isConditional())
7850           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7851             return requestResimplify();
7852 
7853   // Look for nested conditional branches.
7854   if (mergeNestedCondBranch(BI, DTU))
7855     return requestResimplify();
7856 
7857   return false;
7858 }
7859 
7860 /// Check if passing a value to an instruction will cause undefined behavior.
7861 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7862   Constant *C = dyn_cast<Constant>(V);
7863   if (!C)
7864     return false;
7865 
7866   if (I->use_empty())
7867     return false;
7868 
7869   if (C->isNullValue() || isa<UndefValue>(C)) {
7870     // Only look at the first use we can handle, avoid hurting compile time with
7871     // long uselists
7872     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
7873       auto *Use = cast<Instruction>(U);
7874       // Change this list when we want to add new instructions.
7875       switch (Use->getOpcode()) {
7876       default:
7877         return false;
7878       case Instruction::GetElementPtr:
7879       case Instruction::Ret:
7880       case Instruction::BitCast:
7881       case Instruction::Load:
7882       case Instruction::Store:
7883       case Instruction::Call:
7884       case Instruction::CallBr:
7885       case Instruction::Invoke:
7886       case Instruction::UDiv:
7887       case Instruction::URem:
7888         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
7889         // implemented to avoid code complexity as it is unclear how useful such
7890         // logic is.
7891       case Instruction::SDiv:
7892       case Instruction::SRem:
7893         return true;
7894       }
7895     });
7896     if (FindUse == I->user_end())
7897       return false;
7898     auto *Use = cast<Instruction>(*FindUse);
7899     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7900     // before I in the block. The latter two can be the case if Use is a
7901     // PHI node.
7902     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7903       return false;
7904 
7905     // Now make sure that there are no instructions in between that can alter
7906     // control flow (eg. calls)
7907     auto InstrRange =
7908         make_range(std::next(I->getIterator()), Use->getIterator());
7909     if (any_of(InstrRange, [](Instruction &I) {
7910           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7911         }))
7912       return false;
7913 
7914     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7915     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7916       if (GEP->getPointerOperand() == I) {
7917         // The current base address is null, there are four cases to consider:
7918         // getelementptr (TY, null, 0)                 -> null
7919         // getelementptr (TY, null, not zero)          -> may be modified
7920         // getelementptr inbounds (TY, null, 0)        -> null
7921         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
7922         // undefined?
7923         if (!GEP->hasAllZeroIndices() &&
7924             (!GEP->isInBounds() ||
7925              NullPointerIsDefined(GEP->getFunction(),
7926                                   GEP->getPointerAddressSpace())))
7927           PtrValueMayBeModified = true;
7928         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7929       }
7930 
7931     // Look through return.
7932     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
7933       bool HasNoUndefAttr =
7934           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
7935       // Return undefined to a noundef return value is undefined.
7936       if (isa<UndefValue>(C) && HasNoUndefAttr)
7937         return true;
7938       // Return null to a nonnull+noundef return value is undefined.
7939       if (C->isNullValue() && HasNoUndefAttr &&
7940           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
7941         return !PtrValueMayBeModified;
7942       }
7943     }
7944 
7945     // Load from null is undefined.
7946     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7947       if (!LI->isVolatile())
7948         return !NullPointerIsDefined(LI->getFunction(),
7949                                      LI->getPointerAddressSpace());
7950 
7951     // Store to null is undefined.
7952     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7953       if (!SI->isVolatile())
7954         return (!NullPointerIsDefined(SI->getFunction(),
7955                                       SI->getPointerAddressSpace())) &&
7956                SI->getPointerOperand() == I;
7957 
7958     // llvm.assume(false/undef) always triggers immediate UB.
7959     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
7960       // Ignore assume operand bundles.
7961       if (I == Assume->getArgOperand(0))
7962         return true;
7963     }
7964 
7965     if (auto *CB = dyn_cast<CallBase>(Use)) {
7966       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
7967         return false;
7968       // A call to null is undefined.
7969       if (CB->getCalledOperand() == I)
7970         return true;
7971 
7972       if (C->isNullValue()) {
7973         for (const llvm::Use &Arg : CB->args())
7974           if (Arg == I) {
7975             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7976             if (CB->isPassingUndefUB(ArgIdx) &&
7977                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
7978               // Passing null to a nonnnull+noundef argument is undefined.
7979               return !PtrValueMayBeModified;
7980             }
7981           }
7982       } else if (isa<UndefValue>(C)) {
7983         // Passing undef to a noundef argument is undefined.
7984         for (const llvm::Use &Arg : CB->args())
7985           if (Arg == I) {
7986             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
7987             if (CB->isPassingUndefUB(ArgIdx)) {
7988               // Passing undef to a noundef argument is undefined.
7989               return true;
7990             }
7991           }
7992       }
7993     }
7994     // Div/Rem by zero is immediate UB
7995     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
7996       return true;
7997   }
7998   return false;
7999 }
8000 
8001 /// If BB has an incoming value that will always trigger undefined behavior
8002 /// (eg. null pointer dereference), remove the branch leading here.
8003 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8004                                               DomTreeUpdater *DTU,
8005                                               AssumptionCache *AC) {
8006   for (PHINode &PHI : BB->phis())
8007     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8008       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8009         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8010         Instruction *T = Predecessor->getTerminator();
8011         IRBuilder<> Builder(T);
8012         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8013           BB->removePredecessor(Predecessor);
8014           // Turn unconditional branches into unreachables and remove the dead
8015           // destination from conditional branches.
8016           if (BI->isUnconditional())
8017             Builder.CreateUnreachable();
8018           else {
8019             // Preserve guarding condition in assume, because it might not be
8020             // inferrable from any dominating condition.
8021             Value *Cond = BI->getCondition();
8022             CallInst *Assumption;
8023             if (BI->getSuccessor(0) == BB)
8024               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8025             else
8026               Assumption = Builder.CreateAssumption(Cond);
8027             if (AC)
8028               AC->registerAssumption(cast<AssumeInst>(Assumption));
8029             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8030                                                        : BI->getSuccessor(0));
8031           }
8032           BI->eraseFromParent();
8033           if (DTU)
8034             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8035           return true;
8036         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8037           // Redirect all branches leading to UB into
8038           // a newly created unreachable block.
8039           BasicBlock *Unreachable = BasicBlock::Create(
8040               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8041           Builder.SetInsertPoint(Unreachable);
8042           // The new block contains only one instruction: Unreachable
8043           Builder.CreateUnreachable();
8044           for (const auto &Case : SI->cases())
8045             if (Case.getCaseSuccessor() == BB) {
8046               BB->removePredecessor(Predecessor);
8047               Case.setSuccessor(Unreachable);
8048             }
8049           if (SI->getDefaultDest() == BB) {
8050             BB->removePredecessor(Predecessor);
8051             SI->setDefaultDest(Unreachable);
8052           }
8053 
8054           if (DTU)
8055             DTU->applyUpdates(
8056                 { { DominatorTree::Insert, Predecessor, Unreachable },
8057                   { DominatorTree::Delete, Predecessor, BB } });
8058           return true;
8059         }
8060       }
8061 
8062   return false;
8063 }
8064 
8065 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8066   bool Changed = false;
8067 
8068   assert(BB && BB->getParent() && "Block not embedded in function!");
8069   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8070 
8071   // Remove basic blocks that have no predecessors (except the entry block)...
8072   // or that just have themself as a predecessor.  These are unreachable.
8073   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8074       BB->getSinglePredecessor() == BB) {
8075     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8076     DeleteDeadBlock(BB, DTU);
8077     return true;
8078   }
8079 
8080   // Check to see if we can constant propagate this terminator instruction
8081   // away...
8082   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8083                                     /*TLI=*/nullptr, DTU);
8084 
8085   // Check for and eliminate duplicate PHI nodes in this block.
8086   Changed |= EliminateDuplicatePHINodes(BB);
8087 
8088   // Check for and remove branches that will always cause undefined behavior.
8089   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8090     return requestResimplify();
8091 
8092   // Merge basic blocks into their predecessor if there is only one distinct
8093   // pred, and if there is only one distinct successor of the predecessor, and
8094   // if there are no PHI nodes.
8095   if (MergeBlockIntoPredecessor(BB, DTU))
8096     return true;
8097 
8098   if (SinkCommon && Options.SinkCommonInsts)
8099     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8100         mergeCompatibleInvokes(BB, DTU)) {
8101       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8102       // so we may now how duplicate PHI's.
8103       // Let's rerun EliminateDuplicatePHINodes() first,
8104       // before foldTwoEntryPHINode() potentially converts them into select's,
8105       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8106       return true;
8107     }
8108 
8109   IRBuilder<> Builder(BB);
8110 
8111   if (Options.SpeculateBlocks &&
8112       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8113     // If there is a trivial two-entry PHI node in this basic block, and we can
8114     // eliminate it, do so now.
8115     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8116       if (PN->getNumIncomingValues() == 2)
8117         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8118                                 Options.SpeculateUnpredictables))
8119           return true;
8120   }
8121 
8122   Instruction *Terminator = BB->getTerminator();
8123   Builder.SetInsertPoint(Terminator);
8124   switch (Terminator->getOpcode()) {
8125   case Instruction::Br:
8126     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8127     break;
8128   case Instruction::Resume:
8129     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8130     break;
8131   case Instruction::CleanupRet:
8132     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8133     break;
8134   case Instruction::Switch:
8135     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8136     break;
8137   case Instruction::Unreachable:
8138     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8139     break;
8140   case Instruction::IndirectBr:
8141     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8142     break;
8143   }
8144 
8145   return Changed;
8146 }
8147 
8148 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8149   bool Changed = false;
8150 
8151   // Repeated simplify BB as long as resimplification is requested.
8152   do {
8153     Resimplify = false;
8154 
8155     // Perform one round of simplifcation. Resimplify flag will be set if
8156     // another iteration is requested.
8157     Changed |= simplifyOnce(BB);
8158   } while (Resimplify);
8159 
8160   return Changed;
8161 }
8162 
8163 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8164                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8165                        ArrayRef<WeakVH> LoopHeaders) {
8166   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8167                         Options)
8168       .run(BB);
8169 }
8170