1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Peephole optimize the CFG. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetOperations.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/DomTreeUpdater.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemorySSA.h" 33 #include "llvm/Analysis/MemorySSAUpdater.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/IRBuilder.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/NoFolder.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/KnownBits.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include "llvm/Transforms/Utils/ValueMapper.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <climits> 81 #include <cstddef> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <set> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace PatternMatch; 93 94 #define DEBUG_TYPE "simplifycfg" 95 96 cl::opt<bool> llvm::RequireAndPreserveDomTree( 97 "simplifycfg-require-and-preserve-domtree", cl::Hidden, 98 99 cl::desc("Temorary development switch used to gradually uplift SimplifyCFG " 100 "into preserving DomTree,")); 101 102 // Chosen as 2 so as to be cheap, but still to have enough power to fold 103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught. 104 // To catch this, we need to fold a compare and a select, hence '2' being the 105 // minimum reasonable default. 106 static cl::opt<unsigned> PHINodeFoldingThreshold( 107 "phi-node-folding-threshold", cl::Hidden, cl::init(2), 108 cl::desc( 109 "Control the amount of phi node folding to perform (default = 2)")); 110 111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold( 112 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4), 113 cl::desc("Control the maximal total instruction cost that we are willing " 114 "to speculatively execute to fold a 2-entry PHI node into a " 115 "select (default = 4)")); 116 117 static cl::opt<bool> 118 HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true), 119 cl::desc("Hoist common instructions up to the parent block")); 120 121 static cl::opt<bool> HoistLoadsStoresWithCondFaulting( 122 "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden, 123 cl::init(true), 124 cl::desc("Hoist loads/stores if the target supports " 125 "conditional faulting")); 126 127 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold( 128 "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6), 129 cl::desc("Control the maximal conditonal load/store that we are willing " 130 "to speculatively execute to eliminate conditional branch " 131 "(default = 6)")); 132 133 static cl::opt<unsigned> 134 HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden, 135 cl::init(20), 136 cl::desc("Allow reordering across at most this many " 137 "instructions when hoisting")); 138 139 static cl::opt<bool> 140 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), 141 cl::desc("Sink common instructions down to the end block")); 142 143 static cl::opt<bool> HoistCondStores( 144 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), 145 cl::desc("Hoist conditional stores if an unconditional store precedes")); 146 147 static cl::opt<bool> MergeCondStores( 148 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), 149 cl::desc("Hoist conditional stores even if an unconditional store does not " 150 "precede - hoist multiple conditional stores into a single " 151 "predicated store")); 152 153 static cl::opt<bool> MergeCondStoresAggressively( 154 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), 155 cl::desc("When merging conditional stores, do so even if the resultant " 156 "basic blocks are unlikely to be if-converted as a result")); 157 158 static cl::opt<bool> SpeculateOneExpensiveInst( 159 "speculate-one-expensive-inst", cl::Hidden, cl::init(true), 160 cl::desc("Allow exactly one expensive instruction to be speculatively " 161 "executed")); 162 163 static cl::opt<unsigned> MaxSpeculationDepth( 164 "max-speculation-depth", cl::Hidden, cl::init(10), 165 cl::desc("Limit maximum recursion depth when calculating costs of " 166 "speculatively executed instructions")); 167 168 static cl::opt<int> 169 MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden, 170 cl::init(10), 171 cl::desc("Max size of a block which is still considered " 172 "small enough to thread through")); 173 174 // Two is chosen to allow one negation and a logical combine. 175 static cl::opt<unsigned> 176 BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden, 177 cl::init(2), 178 cl::desc("Maximum cost of combining conditions when " 179 "folding branches")); 180 181 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier( 182 "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden, 183 cl::init(2), 184 cl::desc("Multiplier to apply to threshold when determining whether or not " 185 "to fold branch to common destination when vector operations are " 186 "present")); 187 188 static cl::opt<bool> EnableMergeCompatibleInvokes( 189 "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true), 190 cl::desc("Allow SimplifyCFG to merge invokes together when appropriate")); 191 192 static cl::opt<unsigned> MaxSwitchCasesPerResult( 193 "max-switch-cases-per-result", cl::Hidden, cl::init(16), 194 cl::desc("Limit cases to analyze when converting a switch to select")); 195 196 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); 197 STATISTIC(NumLinearMaps, 198 "Number of switch instructions turned into linear mapping"); 199 STATISTIC(NumLookupTables, 200 "Number of switch instructions turned into lookup tables"); 201 STATISTIC( 202 NumLookupTablesHoles, 203 "Number of switch instructions turned into lookup tables (holes checked)"); 204 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); 205 STATISTIC(NumFoldValueComparisonIntoPredecessors, 206 "Number of value comparisons folded into predecessor basic blocks"); 207 STATISTIC(NumFoldBranchToCommonDest, 208 "Number of branches folded into predecessor basic block"); 209 STATISTIC( 210 NumHoistCommonCode, 211 "Number of common instruction 'blocks' hoisted up to the begin block"); 212 STATISTIC(NumHoistCommonInstrs, 213 "Number of common instructions hoisted up to the begin block"); 214 STATISTIC(NumSinkCommonCode, 215 "Number of common instruction 'blocks' sunk down to the end block"); 216 STATISTIC(NumSinkCommonInstrs, 217 "Number of common instructions sunk down to the end block"); 218 STATISTIC(NumSpeculations, "Number of speculative executed instructions"); 219 STATISTIC(NumInvokes, 220 "Number of invokes with empty resume blocks simplified into calls"); 221 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together"); 222 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed"); 223 224 namespace { 225 226 // The first field contains the value that the switch produces when a certain 227 // case group is selected, and the second field is a vector containing the 228 // cases composing the case group. 229 using SwitchCaseResultVectorTy = 230 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; 231 232 // The first field contains the phi node that generates a result of the switch 233 // and the second field contains the value generated for a certain case in the 234 // switch for that PHI. 235 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 236 237 /// ValueEqualityComparisonCase - Represents a case of a switch. 238 struct ValueEqualityComparisonCase { 239 ConstantInt *Value; 240 BasicBlock *Dest; 241 242 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) 243 : Value(Value), Dest(Dest) {} 244 245 bool operator<(ValueEqualityComparisonCase RHS) const { 246 // Comparing pointers is ok as we only rely on the order for uniquing. 247 return Value < RHS.Value; 248 } 249 250 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } 251 }; 252 253 class SimplifyCFGOpt { 254 const TargetTransformInfo &TTI; 255 DomTreeUpdater *DTU; 256 const DataLayout &DL; 257 ArrayRef<WeakVH> LoopHeaders; 258 const SimplifyCFGOptions &Options; 259 bool Resimplify; 260 261 Value *isValueEqualityComparison(Instruction *TI); 262 BasicBlock *getValueEqualityComparisonCases( 263 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); 264 bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, 265 BasicBlock *Pred, 266 IRBuilder<> &Builder); 267 bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV, 268 Instruction *PTI, 269 IRBuilder<> &Builder); 270 bool foldValueComparisonIntoPredecessors(Instruction *TI, 271 IRBuilder<> &Builder); 272 273 bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder); 274 bool simplifySingleResume(ResumeInst *RI); 275 bool simplifyCommonResume(ResumeInst *RI); 276 bool simplifyCleanupReturn(CleanupReturnInst *RI); 277 bool simplifyUnreachable(UnreachableInst *UI); 278 bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); 279 bool simplifyDuplicateSwitchArms(SwitchInst *SI, DomTreeUpdater *DTU); 280 bool simplifyIndirectBr(IndirectBrInst *IBI); 281 bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder); 282 bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); 283 bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); 284 285 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, 286 IRBuilder<> &Builder); 287 288 bool hoistCommonCodeFromSuccessors(Instruction *TI, bool EqTermsOnly); 289 bool hoistSuccIdenticalTerminatorToSwitchOrIf( 290 Instruction *TI, Instruction *I1, 291 SmallVectorImpl<Instruction *> &OtherSuccTIs); 292 bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB); 293 bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, 294 BasicBlock *TrueBB, BasicBlock *FalseBB, 295 uint32_t TrueWeight, uint32_t FalseWeight); 296 bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, 297 const DataLayout &DL); 298 bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select); 299 bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI); 300 bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder); 301 302 public: 303 SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU, 304 const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders, 305 const SimplifyCFGOptions &Opts) 306 : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) { 307 assert((!DTU || !DTU->hasPostDomTree()) && 308 "SimplifyCFG is not yet capable of maintaining validity of a " 309 "PostDomTree, so don't ask for it."); 310 } 311 312 bool simplifyOnce(BasicBlock *BB); 313 bool run(BasicBlock *BB); 314 315 // Helper to set Resimplify and return change indication. 316 bool requestResimplify() { 317 Resimplify = true; 318 return true; 319 } 320 }; 321 322 } // end anonymous namespace 323 324 /// Return true if all the PHI nodes in the basic block \p BB 325 /// receive compatible (identical) incoming values when coming from 326 /// all of the predecessor blocks that are specified in \p IncomingBlocks. 327 /// 328 /// Note that if the values aren't exactly identical, but \p EquivalenceSet 329 /// is provided, and *both* of the values are present in the set, 330 /// then they are considered equal. 331 static bool incomingValuesAreCompatible( 332 BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks, 333 SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) { 334 assert(IncomingBlocks.size() == 2 && 335 "Only for a pair of incoming blocks at the time!"); 336 337 // FIXME: it is okay if one of the incoming values is an `undef` value, 338 // iff the other incoming value is guaranteed to be a non-poison value. 339 // FIXME: it is okay if one of the incoming values is a `poison` value. 340 return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) { 341 Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]); 342 Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]); 343 if (IV0 == IV1) 344 return true; 345 if (EquivalenceSet && EquivalenceSet->contains(IV0) && 346 EquivalenceSet->contains(IV1)) 347 return true; 348 return false; 349 }); 350 } 351 352 /// Return true if it is safe to merge these two 353 /// terminator instructions together. 354 static bool 355 safeToMergeTerminators(Instruction *SI1, Instruction *SI2, 356 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { 357 if (SI1 == SI2) 358 return false; // Can't merge with self! 359 360 // It is not safe to merge these two switch instructions if they have a common 361 // successor, and if that successor has a PHI node, and if *that* PHI node has 362 // conflicting incoming values from the two switch blocks. 363 BasicBlock *SI1BB = SI1->getParent(); 364 BasicBlock *SI2BB = SI2->getParent(); 365 366 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); 367 bool Fail = false; 368 for (BasicBlock *Succ : successors(SI2BB)) { 369 if (!SI1Succs.count(Succ)) 370 continue; 371 if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB})) 372 continue; 373 Fail = true; 374 if (FailBlocks) 375 FailBlocks->insert(Succ); 376 else 377 break; 378 } 379 380 return !Fail; 381 } 382 383 /// Update PHI nodes in Succ to indicate that there will now be entries in it 384 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes 385 /// will be the same as those coming in from ExistPred, an existing predecessor 386 /// of Succ. 387 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, 388 BasicBlock *ExistPred, 389 MemorySSAUpdater *MSSAU = nullptr) { 390 for (PHINode &PN : Succ->phis()) 391 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); 392 if (MSSAU) 393 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) 394 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); 395 } 396 397 /// Compute an abstract "cost" of speculating the given instruction, 398 /// which is assumed to be safe to speculate. TCC_Free means cheap, 399 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively 400 /// expensive. 401 static InstructionCost computeSpeculationCost(const User *I, 402 const TargetTransformInfo &TTI) { 403 return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency); 404 } 405 406 /// If we have a merge point of an "if condition" as accepted above, 407 /// return true if the specified value dominates the block. We don't handle 408 /// the true generality of domination here, just a special case which works 409 /// well enough for us. 410 /// 411 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to 412 /// see if V (which must be an instruction) and its recursive operands 413 /// that do not dominate BB have a combined cost lower than Budget and 414 /// are non-trapping. If both are true, the instruction is inserted into the 415 /// set and true is returned. 416 /// 417 /// The cost for most non-trapping instructions is defined as 1 except for 418 /// Select whose cost is 2. 419 /// 420 /// After this function returns, Cost is increased by the cost of 421 /// V plus its non-dominating operands. If that cost is greater than 422 /// Budget, false is returned and Cost is undefined. 423 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt, 424 SmallPtrSetImpl<Instruction *> &AggressiveInsts, 425 InstructionCost &Cost, InstructionCost Budget, 426 const TargetTransformInfo &TTI, 427 AssumptionCache *AC, unsigned Depth = 0) { 428 // It is possible to hit a zero-cost cycle (phi/gep instructions for example), 429 // so limit the recursion depth. 430 // TODO: While this recursion limit does prevent pathological behavior, it 431 // would be better to track visited instructions to avoid cycles. 432 if (Depth == MaxSpeculationDepth) 433 return false; 434 435 Instruction *I = dyn_cast<Instruction>(V); 436 if (!I) { 437 // Non-instructions dominate all instructions and can be executed 438 // unconditionally. 439 return true; 440 } 441 BasicBlock *PBB = I->getParent(); 442 443 // We don't want to allow weird loops that might have the "if condition" in 444 // the bottom of this block. 445 if (PBB == BB) 446 return false; 447 448 // If this instruction is defined in a block that contains an unconditional 449 // branch to BB, then it must be in the 'conditional' part of the "if 450 // statement". If not, it definitely dominates the region. 451 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); 452 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) 453 return true; 454 455 // If we have seen this instruction before, don't count it again. 456 if (AggressiveInsts.count(I)) 457 return true; 458 459 // Okay, it looks like the instruction IS in the "condition". Check to 460 // see if it's a cheap instruction to unconditionally compute, and if it 461 // only uses stuff defined outside of the condition. If so, hoist it out. 462 if (!isSafeToSpeculativelyExecute(I, InsertPt, AC)) 463 return false; 464 465 Cost += computeSpeculationCost(I, TTI); 466 467 // Allow exactly one instruction to be speculated regardless of its cost 468 // (as long as it is safe to do so). 469 // This is intended to flatten the CFG even if the instruction is a division 470 // or other expensive operation. The speculation of an expensive instruction 471 // is expected to be undone in CodeGenPrepare if the speculation has not 472 // enabled further IR optimizations. 473 if (Cost > Budget && 474 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 || 475 !Cost.isValid())) 476 return false; 477 478 // Okay, we can only really hoist these out if their operands do 479 // not take us over the cost threshold. 480 for (Use &Op : I->operands()) 481 if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget, 482 TTI, AC, Depth + 1)) 483 return false; 484 // Okay, it's safe to do this! Remember this instruction. 485 AggressiveInsts.insert(I); 486 return true; 487 } 488 489 /// Extract ConstantInt from value, looking through IntToPtr 490 /// and PointerNullValue. Return NULL if value is not a constant int. 491 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) { 492 // Normal constant int. 493 ConstantInt *CI = dyn_cast<ConstantInt>(V); 494 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() || 495 DL.isNonIntegralPointerType(V->getType())) 496 return CI; 497 498 // This is some kind of pointer constant. Turn it into a pointer-sized 499 // ConstantInt if possible. 500 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); 501 502 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). 503 if (isa<ConstantPointerNull>(V)) 504 return ConstantInt::get(PtrTy, 0); 505 506 // IntToPtr const int. 507 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 508 if (CE->getOpcode() == Instruction::IntToPtr) 509 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { 510 // The constant is very likely to have the right type already. 511 if (CI->getType() == PtrTy) 512 return CI; 513 else 514 return cast<ConstantInt>( 515 ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL)); 516 } 517 return nullptr; 518 } 519 520 namespace { 521 522 /// Given a chain of or (||) or and (&&) comparison of a value against a 523 /// constant, this will try to recover the information required for a switch 524 /// structure. 525 /// It will depth-first traverse the chain of comparison, seeking for patterns 526 /// like %a == 12 or %a < 4 and combine them to produce a set of integer 527 /// representing the different cases for the switch. 528 /// Note that if the chain is composed of '||' it will build the set of elements 529 /// that matches the comparisons (i.e. any of this value validate the chain) 530 /// while for a chain of '&&' it will build the set elements that make the test 531 /// fail. 532 struct ConstantComparesGatherer { 533 const DataLayout &DL; 534 535 /// Value found for the switch comparison 536 Value *CompValue = nullptr; 537 538 /// Extra clause to be checked before the switch 539 Value *Extra = nullptr; 540 541 /// Set of integers to match in switch 542 SmallVector<ConstantInt *, 8> Vals; 543 544 /// Number of comparisons matched in the and/or chain 545 unsigned UsedICmps = 0; 546 547 /// Construct and compute the result for the comparison instruction Cond 548 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { 549 gather(Cond); 550 } 551 552 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; 553 ConstantComparesGatherer & 554 operator=(const ConstantComparesGatherer &) = delete; 555 556 private: 557 /// Try to set the current value used for the comparison, it succeeds only if 558 /// it wasn't set before or if the new value is the same as the old one 559 bool setValueOnce(Value *NewVal) { 560 if (CompValue && CompValue != NewVal) 561 return false; 562 CompValue = NewVal; 563 return (CompValue != nullptr); 564 } 565 566 /// Try to match Instruction "I" as a comparison against a constant and 567 /// populates the array Vals with the set of values that match (or do not 568 /// match depending on isEQ). 569 /// Return false on failure. On success, the Value the comparison matched 570 /// against is placed in CompValue. 571 /// If CompValue is already set, the function is expected to fail if a match 572 /// is found but the value compared to is different. 573 bool matchInstruction(Instruction *I, bool isEQ) { 574 // If this is an icmp against a constant, handle this as one of the cases. 575 ICmpInst *ICI; 576 ConstantInt *C; 577 if (!((ICI = dyn_cast<ICmpInst>(I)) && 578 (C = getConstantInt(I->getOperand(1), DL)))) { 579 return false; 580 } 581 582 Value *RHSVal; 583 const APInt *RHSC; 584 585 // Pattern match a special case 586 // (x & ~2^z) == y --> x == y || x == y|2^z 587 // This undoes a transformation done by instcombine to fuse 2 compares. 588 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 589 // It's a little bit hard to see why the following transformations are 590 // correct. Here is a CVC3 program to verify them for 64-bit values: 591 592 /* 593 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); 594 x : BITVECTOR(64); 595 y : BITVECTOR(64); 596 z : BITVECTOR(64); 597 mask : BITVECTOR(64) = BVSHL(ONE, z); 598 QUERY( (y & ~mask = y) => 599 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 600 ); 601 QUERY( (y | mask = y) => 602 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 603 ); 604 */ 605 606 // Please note that each pattern must be a dual implication (<--> or 607 // iff). One directional implication can create spurious matches. If the 608 // implication is only one-way, an unsatisfiable condition on the left 609 // side can imply a satisfiable condition on the right side. Dual 610 // implication ensures that satisfiable conditions are transformed to 611 // other satisfiable conditions and unsatisfiable conditions are 612 // transformed to other unsatisfiable conditions. 613 614 // Here is a concrete example of a unsatisfiable condition on the left 615 // implying a satisfiable condition on the right: 616 // 617 // mask = (1 << z) 618 // (x & ~mask) == y --> (x == y || x == (y | mask)) 619 // 620 // Substituting y = 3, z = 0 yields: 621 // (x & -2) == 3 --> (x == 3 || x == 2) 622 623 // Pattern match a special case: 624 /* 625 QUERY( (y & ~mask = y) => 626 ((x & ~mask = y) <=> (x = y OR x = (y | mask))) 627 ); 628 */ 629 if (match(ICI->getOperand(0), 630 m_And(m_Value(RHSVal), m_APInt(RHSC)))) { 631 APInt Mask = ~*RHSC; 632 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { 633 // If we already have a value for the switch, it has to match! 634 if (!setValueOnce(RHSVal)) 635 return false; 636 637 Vals.push_back(C); 638 Vals.push_back( 639 ConstantInt::get(C->getContext(), 640 C->getValue() | Mask)); 641 UsedICmps++; 642 return true; 643 } 644 } 645 646 // Pattern match a special case: 647 /* 648 QUERY( (y | mask = y) => 649 ((x | mask = y) <=> (x = y OR x = (y & ~mask))) 650 ); 651 */ 652 if (match(ICI->getOperand(0), 653 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { 654 APInt Mask = *RHSC; 655 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { 656 // If we already have a value for the switch, it has to match! 657 if (!setValueOnce(RHSVal)) 658 return false; 659 660 Vals.push_back(C); 661 Vals.push_back(ConstantInt::get(C->getContext(), 662 C->getValue() & ~Mask)); 663 UsedICmps++; 664 return true; 665 } 666 } 667 668 // If we already have a value for the switch, it has to match! 669 if (!setValueOnce(ICI->getOperand(0))) 670 return false; 671 672 UsedICmps++; 673 Vals.push_back(C); 674 return ICI->getOperand(0); 675 } 676 677 // If we have "x ult 3", for example, then we can add 0,1,2 to the set. 678 ConstantRange Span = 679 ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue()); 680 681 // Shift the range if the compare is fed by an add. This is the range 682 // compare idiom as emitted by instcombine. 683 Value *CandidateVal = I->getOperand(0); 684 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { 685 Span = Span.subtract(*RHSC); 686 CandidateVal = RHSVal; 687 } 688 689 // If this is an and/!= check, then we are looking to build the set of 690 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into 691 // x != 0 && x != 1. 692 if (!isEQ) 693 Span = Span.inverse(); 694 695 // If there are a ton of values, we don't want to make a ginormous switch. 696 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { 697 return false; 698 } 699 700 // If we already have a value for the switch, it has to match! 701 if (!setValueOnce(CandidateVal)) 702 return false; 703 704 // Add all values from the range to the set 705 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) 706 Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); 707 708 UsedICmps++; 709 return true; 710 } 711 712 /// Given a potentially 'or'd or 'and'd together collection of icmp 713 /// eq/ne/lt/gt instructions that compare a value against a constant, extract 714 /// the value being compared, and stick the list constants into the Vals 715 /// vector. 716 /// One "Extra" case is allowed to differ from the other. 717 void gather(Value *V) { 718 bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value())); 719 720 // Keep a stack (SmallVector for efficiency) for depth-first traversal 721 SmallVector<Value *, 8> DFT; 722 SmallPtrSet<Value *, 8> Visited; 723 724 // Initialize 725 Visited.insert(V); 726 DFT.push_back(V); 727 728 while (!DFT.empty()) { 729 V = DFT.pop_back_val(); 730 731 if (Instruction *I = dyn_cast<Instruction>(V)) { 732 // If it is a || (or && depending on isEQ), process the operands. 733 Value *Op0, *Op1; 734 if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) 735 : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 736 if (Visited.insert(Op1).second) 737 DFT.push_back(Op1); 738 if (Visited.insert(Op0).second) 739 DFT.push_back(Op0); 740 741 continue; 742 } 743 744 // Try to match the current instruction 745 if (matchInstruction(I, isEQ)) 746 // Match succeed, continue the loop 747 continue; 748 } 749 750 // One element of the sequence of || (or &&) could not be match as a 751 // comparison against the same value as the others. 752 // We allow only one "Extra" case to be checked before the switch 753 if (!Extra) { 754 Extra = V; 755 continue; 756 } 757 // Failed to parse a proper sequence, abort now 758 CompValue = nullptr; 759 break; 760 } 761 } 762 }; 763 764 } // end anonymous namespace 765 766 static void eraseTerminatorAndDCECond(Instruction *TI, 767 MemorySSAUpdater *MSSAU = nullptr) { 768 Instruction *Cond = nullptr; 769 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 770 Cond = dyn_cast<Instruction>(SI->getCondition()); 771 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 772 if (BI->isConditional()) 773 Cond = dyn_cast<Instruction>(BI->getCondition()); 774 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { 775 Cond = dyn_cast<Instruction>(IBI->getAddress()); 776 } 777 778 TI->eraseFromParent(); 779 if (Cond) 780 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); 781 } 782 783 /// Return true if the specified terminator checks 784 /// to see if a value is equal to constant integer value. 785 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { 786 Value *CV = nullptr; 787 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 788 // Do not permit merging of large switch instructions into their 789 // predecessors unless there is only one predecessor. 790 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) 791 CV = SI->getCondition(); 792 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) 793 if (BI->isConditional() && BI->getCondition()->hasOneUse()) 794 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { 795 if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL)) 796 CV = ICI->getOperand(0); 797 } 798 799 // Unwrap any lossless ptrtoint cast. 800 if (CV) { 801 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { 802 Value *Ptr = PTII->getPointerOperand(); 803 if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) 804 CV = Ptr; 805 } 806 } 807 return CV; 808 } 809 810 /// Given a value comparison instruction, 811 /// decode all of the 'cases' that it represents and return the 'default' block. 812 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases( 813 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { 814 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 815 Cases.reserve(SI->getNumCases()); 816 for (auto Case : SI->cases()) 817 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), 818 Case.getCaseSuccessor())); 819 return SI->getDefaultDest(); 820 } 821 822 BranchInst *BI = cast<BranchInst>(TI); 823 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 824 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); 825 Cases.push_back(ValueEqualityComparisonCase( 826 getConstantInt(ICI->getOperand(1), DL), Succ)); 827 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); 828 } 829 830 /// Given a vector of bb/value pairs, remove any entries 831 /// in the list that match the specified block. 832 static void 833 eliminateBlockCases(BasicBlock *BB, 834 std::vector<ValueEqualityComparisonCase> &Cases) { 835 llvm::erase(Cases, BB); 836 } 837 838 /// Return true if there are any keys in C1 that exist in C2 as well. 839 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, 840 std::vector<ValueEqualityComparisonCase> &C2) { 841 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; 842 843 // Make V1 be smaller than V2. 844 if (V1->size() > V2->size()) 845 std::swap(V1, V2); 846 847 if (V1->empty()) 848 return false; 849 if (V1->size() == 1) { 850 // Just scan V2. 851 ConstantInt *TheVal = (*V1)[0].Value; 852 for (const ValueEqualityComparisonCase &VECC : *V2) 853 if (TheVal == VECC.Value) 854 return true; 855 } 856 857 // Otherwise, just sort both lists and compare element by element. 858 array_pod_sort(V1->begin(), V1->end()); 859 array_pod_sort(V2->begin(), V2->end()); 860 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); 861 while (i1 != e1 && i2 != e2) { 862 if ((*V1)[i1].Value == (*V2)[i2].Value) 863 return true; 864 if ((*V1)[i1].Value < (*V2)[i2].Value) 865 ++i1; 866 else 867 ++i2; 868 } 869 return false; 870 } 871 872 // Set branch weights on SwitchInst. This sets the metadata if there is at 873 // least one non-zero weight. 874 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights, 875 bool IsExpected) { 876 // Check that there is at least one non-zero weight. Otherwise, pass 877 // nullptr to setMetadata which will erase the existing metadata. 878 MDNode *N = nullptr; 879 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) 880 N = MDBuilder(SI->getParent()->getContext()) 881 .createBranchWeights(Weights, IsExpected); 882 SI->setMetadata(LLVMContext::MD_prof, N); 883 } 884 885 // Similar to the above, but for branch and select instructions that take 886 // exactly 2 weights. 887 static void setBranchWeights(Instruction *I, uint32_t TrueWeight, 888 uint32_t FalseWeight, bool IsExpected) { 889 assert(isa<BranchInst>(I) || isa<SelectInst>(I)); 890 // Check that there is at least one non-zero weight. Otherwise, pass 891 // nullptr to setMetadata which will erase the existing metadata. 892 MDNode *N = nullptr; 893 if (TrueWeight || FalseWeight) 894 N = MDBuilder(I->getParent()->getContext()) 895 .createBranchWeights(TrueWeight, FalseWeight, IsExpected); 896 I->setMetadata(LLVMContext::MD_prof, N); 897 } 898 899 /// If TI is known to be a terminator instruction and its block is known to 900 /// only have a single predecessor block, check to see if that predecessor is 901 /// also a value comparison with the same value, and if that comparison 902 /// determines the outcome of this comparison. If so, simplify TI. This does a 903 /// very limited form of jump threading. 904 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor( 905 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { 906 Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); 907 if (!PredVal) 908 return false; // Not a value comparison in predecessor. 909 910 Value *ThisVal = isValueEqualityComparison(TI); 911 assert(ThisVal && "This isn't a value comparison!!"); 912 if (ThisVal != PredVal) 913 return false; // Different predicates. 914 915 // TODO: Preserve branch weight metadata, similarly to how 916 // foldValueComparisonIntoPredecessors preserves it. 917 918 // Find out information about when control will move from Pred to TI's block. 919 std::vector<ValueEqualityComparisonCase> PredCases; 920 BasicBlock *PredDef = 921 getValueEqualityComparisonCases(Pred->getTerminator(), PredCases); 922 eliminateBlockCases(PredDef, PredCases); // Remove default from cases. 923 924 // Find information about how control leaves this block. 925 std::vector<ValueEqualityComparisonCase> ThisCases; 926 BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases); 927 eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. 928 929 // If TI's block is the default block from Pred's comparison, potentially 930 // simplify TI based on this knowledge. 931 if (PredDef == TI->getParent()) { 932 // If we are here, we know that the value is none of those cases listed in 933 // PredCases. If there are any cases in ThisCases that are in PredCases, we 934 // can simplify TI. 935 if (!valuesOverlap(PredCases, ThisCases)) 936 return false; 937 938 if (isa<BranchInst>(TI)) { 939 // Okay, one of the successors of this condbr is dead. Convert it to a 940 // uncond br. 941 assert(ThisCases.size() == 1 && "Branch can only have one case!"); 942 // Insert the new branch. 943 Instruction *NI = Builder.CreateBr(ThisDef); 944 (void)NI; 945 946 // Remove PHI node entries for the dead edge. 947 ThisCases[0].Dest->removePredecessor(PredDef); 948 949 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 950 << "Through successor TI: " << *TI << "Leaving: " << *NI 951 << "\n"); 952 953 eraseTerminatorAndDCECond(TI); 954 955 if (DTU) 956 DTU->applyUpdates( 957 {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}}); 958 959 return true; 960 } 961 962 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); 963 // Okay, TI has cases that are statically dead, prune them away. 964 SmallPtrSet<Constant *, 16> DeadCases; 965 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 966 DeadCases.insert(PredCases[i].Value); 967 968 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 969 << "Through successor TI: " << *TI); 970 971 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 972 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { 973 --i; 974 auto *Successor = i->getCaseSuccessor(); 975 if (DTU) 976 ++NumPerSuccessorCases[Successor]; 977 if (DeadCases.count(i->getCaseValue())) { 978 Successor->removePredecessor(PredDef); 979 SI.removeCase(i); 980 if (DTU) 981 --NumPerSuccessorCases[Successor]; 982 } 983 } 984 985 if (DTU) { 986 std::vector<DominatorTree::UpdateType> Updates; 987 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 988 if (I.second == 0) 989 Updates.push_back({DominatorTree::Delete, PredDef, I.first}); 990 DTU->applyUpdates(Updates); 991 } 992 993 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); 994 return true; 995 } 996 997 // Otherwise, TI's block must correspond to some matched value. Find out 998 // which value (or set of values) this is. 999 ConstantInt *TIV = nullptr; 1000 BasicBlock *TIBB = TI->getParent(); 1001 for (const auto &[Value, Dest] : PredCases) 1002 if (Dest == TIBB) { 1003 if (TIV) 1004 return false; // Cannot handle multiple values coming to this block. 1005 TIV = Value; 1006 } 1007 assert(TIV && "No edge from pred to succ?"); 1008 1009 // Okay, we found the one constant that our value can be if we get into TI's 1010 // BB. Find out which successor will unconditionally be branched to. 1011 BasicBlock *TheRealDest = nullptr; 1012 for (const auto &[Value, Dest] : ThisCases) 1013 if (Value == TIV) { 1014 TheRealDest = Dest; 1015 break; 1016 } 1017 1018 // If not handled by any explicit cases, it is handled by the default case. 1019 if (!TheRealDest) 1020 TheRealDest = ThisDef; 1021 1022 SmallPtrSet<BasicBlock *, 2> RemovedSuccs; 1023 1024 // Remove PHI node entries for dead edges. 1025 BasicBlock *CheckEdge = TheRealDest; 1026 for (BasicBlock *Succ : successors(TIBB)) 1027 if (Succ != CheckEdge) { 1028 if (Succ != TheRealDest) 1029 RemovedSuccs.insert(Succ); 1030 Succ->removePredecessor(TIBB); 1031 } else 1032 CheckEdge = nullptr; 1033 1034 // Insert the new branch. 1035 Instruction *NI = Builder.CreateBr(TheRealDest); 1036 (void)NI; 1037 1038 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() 1039 << "Through successor TI: " << *TI << "Leaving: " << *NI 1040 << "\n"); 1041 1042 eraseTerminatorAndDCECond(TI); 1043 if (DTU) { 1044 SmallVector<DominatorTree::UpdateType, 2> Updates; 1045 Updates.reserve(RemovedSuccs.size()); 1046 for (auto *RemovedSucc : RemovedSuccs) 1047 Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc}); 1048 DTU->applyUpdates(Updates); 1049 } 1050 return true; 1051 } 1052 1053 namespace { 1054 1055 /// This class implements a stable ordering of constant 1056 /// integers that does not depend on their address. This is important for 1057 /// applications that sort ConstantInt's to ensure uniqueness. 1058 struct ConstantIntOrdering { 1059 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { 1060 return LHS->getValue().ult(RHS->getValue()); 1061 } 1062 }; 1063 1064 } // end anonymous namespace 1065 1066 static int constantIntSortPredicate(ConstantInt *const *P1, 1067 ConstantInt *const *P2) { 1068 const ConstantInt *LHS = *P1; 1069 const ConstantInt *RHS = *P2; 1070 if (LHS == RHS) 1071 return 0; 1072 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; 1073 } 1074 1075 /// Get Weights of a given terminator, the default weight is at the front 1076 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight 1077 /// metadata. 1078 static void getBranchWeights(Instruction *TI, 1079 SmallVectorImpl<uint64_t> &Weights) { 1080 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); 1081 assert(MD && "Invalid branch-weight metadata"); 1082 extractFromBranchWeightMD64(MD, Weights); 1083 1084 // If TI is a conditional eq, the default case is the false case, 1085 // and the corresponding branch-weight data is at index 2. We swap the 1086 // default weight to be the first entry. 1087 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 1088 assert(Weights.size() == 2); 1089 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); 1090 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 1091 std::swap(Weights.front(), Weights.back()); 1092 } 1093 } 1094 1095 /// Keep halving the weights until all can fit in uint32_t. 1096 static void fitWeights(MutableArrayRef<uint64_t> Weights) { 1097 uint64_t Max = *llvm::max_element(Weights); 1098 if (Max > UINT_MAX) { 1099 unsigned Offset = 32 - llvm::countl_zero(Max); 1100 for (uint64_t &I : Weights) 1101 I >>= Offset; 1102 } 1103 } 1104 1105 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses( 1106 BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) { 1107 Instruction *PTI = PredBlock->getTerminator(); 1108 1109 // If we have bonus instructions, clone them into the predecessor block. 1110 // Note that there may be multiple predecessor blocks, so we cannot move 1111 // bonus instructions to a predecessor block. 1112 for (Instruction &BonusInst : *BB) { 1113 if (BonusInst.isTerminator()) 1114 continue; 1115 1116 Instruction *NewBonusInst = BonusInst.clone(); 1117 1118 if (!isa<DbgInfoIntrinsic>(BonusInst) && 1119 PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) { 1120 // Unless the instruction has the same !dbg location as the original 1121 // branch, drop it. When we fold the bonus instructions we want to make 1122 // sure we reset their debug locations in order to avoid stepping on 1123 // dead code caused by folding dead branches. 1124 NewBonusInst->setDebugLoc(DebugLoc()); 1125 } 1126 1127 RemapInstruction(NewBonusInst, VMap, 1128 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1129 1130 // If we speculated an instruction, we need to drop any metadata that may 1131 // result in undefined behavior, as the metadata might have been valid 1132 // only given the branch precondition. 1133 // Similarly strip attributes on call parameters that may cause UB in 1134 // location the call is moved to. 1135 NewBonusInst->dropUBImplyingAttrsAndMetadata(); 1136 1137 NewBonusInst->insertInto(PredBlock, PTI->getIterator()); 1138 auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst); 1139 RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap, 1140 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1141 1142 if (isa<DbgInfoIntrinsic>(BonusInst)) 1143 continue; 1144 1145 NewBonusInst->takeName(&BonusInst); 1146 BonusInst.setName(NewBonusInst->getName() + ".old"); 1147 VMap[&BonusInst] = NewBonusInst; 1148 1149 // Update (liveout) uses of bonus instructions, 1150 // now that the bonus instruction has been cloned into predecessor. 1151 // Note that we expect to be in a block-closed SSA form for this to work! 1152 for (Use &U : make_early_inc_range(BonusInst.uses())) { 1153 auto *UI = cast<Instruction>(U.getUser()); 1154 auto *PN = dyn_cast<PHINode>(UI); 1155 if (!PN) { 1156 assert(UI->getParent() == BB && BonusInst.comesBefore(UI) && 1157 "If the user is not a PHI node, then it should be in the same " 1158 "block as, and come after, the original bonus instruction."); 1159 continue; // Keep using the original bonus instruction. 1160 } 1161 // Is this the block-closed SSA form PHI node? 1162 if (PN->getIncomingBlock(U) == BB) 1163 continue; // Great, keep using the original bonus instruction. 1164 // The only other alternative is an "use" when coming from 1165 // the predecessor block - here we should refer to the cloned bonus instr. 1166 assert(PN->getIncomingBlock(U) == PredBlock && 1167 "Not in block-closed SSA form?"); 1168 U.set(NewBonusInst); 1169 } 1170 } 1171 } 1172 1173 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding( 1174 Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) { 1175 BasicBlock *BB = TI->getParent(); 1176 BasicBlock *Pred = PTI->getParent(); 1177 1178 SmallVector<DominatorTree::UpdateType, 32> Updates; 1179 1180 // Figure out which 'cases' to copy from SI to PSI. 1181 std::vector<ValueEqualityComparisonCase> BBCases; 1182 BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases); 1183 1184 std::vector<ValueEqualityComparisonCase> PredCases; 1185 BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases); 1186 1187 // Based on whether the default edge from PTI goes to BB or not, fill in 1188 // PredCases and PredDefault with the new switch cases we would like to 1189 // build. 1190 SmallMapVector<BasicBlock *, int, 8> NewSuccessors; 1191 1192 // Update the branch weight metadata along the way 1193 SmallVector<uint64_t, 8> Weights; 1194 bool PredHasWeights = hasBranchWeightMD(*PTI); 1195 bool SuccHasWeights = hasBranchWeightMD(*TI); 1196 1197 if (PredHasWeights) { 1198 getBranchWeights(PTI, Weights); 1199 // branch-weight metadata is inconsistent here. 1200 if (Weights.size() != 1 + PredCases.size()) 1201 PredHasWeights = SuccHasWeights = false; 1202 } else if (SuccHasWeights) 1203 // If there are no predecessor weights but there are successor weights, 1204 // populate Weights with 1, which will later be scaled to the sum of 1205 // successor's weights 1206 Weights.assign(1 + PredCases.size(), 1); 1207 1208 SmallVector<uint64_t, 8> SuccWeights; 1209 if (SuccHasWeights) { 1210 getBranchWeights(TI, SuccWeights); 1211 // branch-weight metadata is inconsistent here. 1212 if (SuccWeights.size() != 1 + BBCases.size()) 1213 PredHasWeights = SuccHasWeights = false; 1214 } else if (PredHasWeights) 1215 SuccWeights.assign(1 + BBCases.size(), 1); 1216 1217 if (PredDefault == BB) { 1218 // If this is the default destination from PTI, only the edges in TI 1219 // that don't occur in PTI, or that branch to BB will be activated. 1220 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1221 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1222 if (PredCases[i].Dest != BB) 1223 PTIHandled.insert(PredCases[i].Value); 1224 else { 1225 // The default destination is BB, we don't need explicit targets. 1226 std::swap(PredCases[i], PredCases.back()); 1227 1228 if (PredHasWeights || SuccHasWeights) { 1229 // Increase weight for the default case. 1230 Weights[0] += Weights[i + 1]; 1231 std::swap(Weights[i + 1], Weights.back()); 1232 Weights.pop_back(); 1233 } 1234 1235 PredCases.pop_back(); 1236 --i; 1237 --e; 1238 } 1239 1240 // Reconstruct the new switch statement we will be building. 1241 if (PredDefault != BBDefault) { 1242 PredDefault->removePredecessor(Pred); 1243 if (DTU && PredDefault != BB) 1244 Updates.push_back({DominatorTree::Delete, Pred, PredDefault}); 1245 PredDefault = BBDefault; 1246 ++NewSuccessors[BBDefault]; 1247 } 1248 1249 unsigned CasesFromPred = Weights.size(); 1250 uint64_t ValidTotalSuccWeight = 0; 1251 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1252 if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) { 1253 PredCases.push_back(BBCases[i]); 1254 ++NewSuccessors[BBCases[i].Dest]; 1255 if (SuccHasWeights || PredHasWeights) { 1256 // The default weight is at index 0, so weight for the ith case 1257 // should be at index i+1. Scale the cases from successor by 1258 // PredDefaultWeight (Weights[0]). 1259 Weights.push_back(Weights[0] * SuccWeights[i + 1]); 1260 ValidTotalSuccWeight += SuccWeights[i + 1]; 1261 } 1262 } 1263 1264 if (SuccHasWeights || PredHasWeights) { 1265 ValidTotalSuccWeight += SuccWeights[0]; 1266 // Scale the cases from predecessor by ValidTotalSuccWeight. 1267 for (unsigned i = 1; i < CasesFromPred; ++i) 1268 Weights[i] *= ValidTotalSuccWeight; 1269 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). 1270 Weights[0] *= SuccWeights[0]; 1271 } 1272 } else { 1273 // If this is not the default destination from PSI, only the edges 1274 // in SI that occur in PSI with a destination of BB will be 1275 // activated. 1276 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; 1277 std::map<ConstantInt *, uint64_t> WeightsForHandled; 1278 for (unsigned i = 0, e = PredCases.size(); i != e; ++i) 1279 if (PredCases[i].Dest == BB) { 1280 PTIHandled.insert(PredCases[i].Value); 1281 1282 if (PredHasWeights || SuccHasWeights) { 1283 WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; 1284 std::swap(Weights[i + 1], Weights.back()); 1285 Weights.pop_back(); 1286 } 1287 1288 std::swap(PredCases[i], PredCases.back()); 1289 PredCases.pop_back(); 1290 --i; 1291 --e; 1292 } 1293 1294 // Okay, now we know which constants were sent to BB from the 1295 // predecessor. Figure out where they will all go now. 1296 for (unsigned i = 0, e = BBCases.size(); i != e; ++i) 1297 if (PTIHandled.count(BBCases[i].Value)) { 1298 // If this is one we are capable of getting... 1299 if (PredHasWeights || SuccHasWeights) 1300 Weights.push_back(WeightsForHandled[BBCases[i].Value]); 1301 PredCases.push_back(BBCases[i]); 1302 ++NewSuccessors[BBCases[i].Dest]; 1303 PTIHandled.erase(BBCases[i].Value); // This constant is taken care of 1304 } 1305 1306 // If there are any constants vectored to BB that TI doesn't handle, 1307 // they must go to the default destination of TI. 1308 for (ConstantInt *I : PTIHandled) { 1309 if (PredHasWeights || SuccHasWeights) 1310 Weights.push_back(WeightsForHandled[I]); 1311 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); 1312 ++NewSuccessors[BBDefault]; 1313 } 1314 } 1315 1316 // Okay, at this point, we know which new successor Pred will get. Make 1317 // sure we update the number of entries in the PHI nodes for these 1318 // successors. 1319 SmallPtrSet<BasicBlock *, 2> SuccsOfPred; 1320 if (DTU) { 1321 SuccsOfPred = {succ_begin(Pred), succ_end(Pred)}; 1322 Updates.reserve(Updates.size() + NewSuccessors.size()); 1323 } 1324 for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor : 1325 NewSuccessors) { 1326 for (auto I : seq(NewSuccessor.second)) { 1327 (void)I; 1328 addPredecessorToBlock(NewSuccessor.first, Pred, BB); 1329 } 1330 if (DTU && !SuccsOfPred.contains(NewSuccessor.first)) 1331 Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first}); 1332 } 1333 1334 Builder.SetInsertPoint(PTI); 1335 // Convert pointer to int before we switch. 1336 if (CV->getType()->isPointerTy()) { 1337 CV = 1338 Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr"); 1339 } 1340 1341 // Now that the successors are updated, create the new Switch instruction. 1342 SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size()); 1343 NewSI->setDebugLoc(PTI->getDebugLoc()); 1344 for (ValueEqualityComparisonCase &V : PredCases) 1345 NewSI->addCase(V.Value, V.Dest); 1346 1347 if (PredHasWeights || SuccHasWeights) { 1348 // Halve the weights if any of them cannot fit in an uint32_t 1349 fitWeights(Weights); 1350 1351 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); 1352 1353 setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false); 1354 } 1355 1356 eraseTerminatorAndDCECond(PTI); 1357 1358 // Okay, last check. If BB is still a successor of PSI, then we must 1359 // have an infinite loop case. If so, add an infinitely looping block 1360 // to handle the case to preserve the behavior of the code. 1361 BasicBlock *InfLoopBlock = nullptr; 1362 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) 1363 if (NewSI->getSuccessor(i) == BB) { 1364 if (!InfLoopBlock) { 1365 // Insert it at the end of the function, because it's either code, 1366 // or it won't matter if it's hot. :) 1367 InfLoopBlock = 1368 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 1369 BranchInst::Create(InfLoopBlock, InfLoopBlock); 1370 if (DTU) 1371 Updates.push_back( 1372 {DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 1373 } 1374 NewSI->setSuccessor(i, InfLoopBlock); 1375 } 1376 1377 if (DTU) { 1378 if (InfLoopBlock) 1379 Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock}); 1380 1381 Updates.push_back({DominatorTree::Delete, Pred, BB}); 1382 1383 DTU->applyUpdates(Updates); 1384 } 1385 1386 ++NumFoldValueComparisonIntoPredecessors; 1387 return true; 1388 } 1389 1390 /// The specified terminator is a value equality comparison instruction 1391 /// (either a switch or a branch on "X == c"). 1392 /// See if any of the predecessors of the terminator block are value comparisons 1393 /// on the same value. If so, and if safe to do so, fold them together. 1394 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI, 1395 IRBuilder<> &Builder) { 1396 BasicBlock *BB = TI->getParent(); 1397 Value *CV = isValueEqualityComparison(TI); // CondVal 1398 assert(CV && "Not a comparison?"); 1399 1400 bool Changed = false; 1401 1402 SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); 1403 while (!Preds.empty()) { 1404 BasicBlock *Pred = Preds.pop_back_val(); 1405 Instruction *PTI = Pred->getTerminator(); 1406 1407 // Don't try to fold into itself. 1408 if (Pred == BB) 1409 continue; 1410 1411 // See if the predecessor is a comparison with the same value. 1412 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal 1413 if (PCV != CV) 1414 continue; 1415 1416 SmallSetVector<BasicBlock *, 4> FailBlocks; 1417 if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) { 1418 for (auto *Succ : FailBlocks) { 1419 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU)) 1420 return false; 1421 } 1422 } 1423 1424 performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder); 1425 Changed = true; 1426 } 1427 return Changed; 1428 } 1429 1430 // If we would need to insert a select that uses the value of this invoke 1431 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would 1432 // need to do this), we can't hoist the invoke, as there is nowhere to put the 1433 // select in this case. 1434 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, 1435 Instruction *I1, Instruction *I2) { 1436 for (BasicBlock *Succ : successors(BB1)) { 1437 for (const PHINode &PN : Succ->phis()) { 1438 Value *BB1V = PN.getIncomingValueForBlock(BB1); 1439 Value *BB2V = PN.getIncomingValueForBlock(BB2); 1440 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { 1441 return false; 1442 } 1443 } 1444 } 1445 return true; 1446 } 1447 1448 // Get interesting characteristics of instructions that 1449 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of 1450 // instructions can be reordered across. 1451 enum SkipFlags { 1452 SkipReadMem = 1, 1453 SkipSideEffect = 2, 1454 SkipImplicitControlFlow = 4 1455 }; 1456 1457 static unsigned skippedInstrFlags(Instruction *I) { 1458 unsigned Flags = 0; 1459 if (I->mayReadFromMemory()) 1460 Flags |= SkipReadMem; 1461 // We can't arbitrarily move around allocas, e.g. moving allocas (especially 1462 // inalloca) across stacksave/stackrestore boundaries. 1463 if (I->mayHaveSideEffects() || isa<AllocaInst>(I)) 1464 Flags |= SkipSideEffect; 1465 if (!isGuaranteedToTransferExecutionToSuccessor(I)) 1466 Flags |= SkipImplicitControlFlow; 1467 return Flags; 1468 } 1469 1470 // Returns true if it is safe to reorder an instruction across preceding 1471 // instructions in a basic block. 1472 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) { 1473 // Don't reorder a store over a load. 1474 if ((Flags & SkipReadMem) && I->mayWriteToMemory()) 1475 return false; 1476 1477 // If we have seen an instruction with side effects, it's unsafe to reorder an 1478 // instruction which reads memory or itself has side effects. 1479 if ((Flags & SkipSideEffect) && 1480 (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I))) 1481 return false; 1482 1483 // Reordering across an instruction which does not necessarily transfer 1484 // control to the next instruction is speculation. 1485 if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I)) 1486 return false; 1487 1488 // Hoisting of llvm.deoptimize is only legal together with the next return 1489 // instruction, which this pass is not always able to do. 1490 if (auto *CB = dyn_cast<CallBase>(I)) 1491 if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize) 1492 return false; 1493 1494 // It's also unsafe/illegal to hoist an instruction above its instruction 1495 // operands 1496 BasicBlock *BB = I->getParent(); 1497 for (Value *Op : I->operands()) { 1498 if (auto *J = dyn_cast<Instruction>(Op)) 1499 if (J->getParent() == BB) 1500 return false; 1501 } 1502 1503 return true; 1504 } 1505 1506 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false); 1507 1508 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical 1509 /// instructions \p I1 and \p I2 can and should be hoisted. 1510 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2, 1511 const TargetTransformInfo &TTI) { 1512 // If we're going to hoist a call, make sure that the two instructions 1513 // we're commoning/hoisting are both marked with musttail, or neither of 1514 // them is marked as such. Otherwise, we might end up in a situation where 1515 // we hoist from a block where the terminator is a `ret` to a block where 1516 // the terminator is a `br`, and `musttail` calls expect to be followed by 1517 // a return. 1518 auto *C1 = dyn_cast<CallInst>(I1); 1519 auto *C2 = dyn_cast<CallInst>(I2); 1520 if (C1 && C2) 1521 if (C1->isMustTailCall() != C2->isMustTailCall()) 1522 return false; 1523 1524 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) 1525 return false; 1526 1527 // If any of the two call sites has nomerge or convergent attribute, stop 1528 // hoisting. 1529 if (const auto *CB1 = dyn_cast<CallBase>(I1)) 1530 if (CB1->cannotMerge() || CB1->isConvergent()) 1531 return false; 1532 if (const auto *CB2 = dyn_cast<CallBase>(I2)) 1533 if (CB2->cannotMerge() || CB2->isConvergent()) 1534 return false; 1535 1536 return true; 1537 } 1538 1539 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical 1540 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in 1541 /// hoistCommonCodeFromSuccessors. e.g. The input: 1542 /// I1 DVRs: { x, z }, 1543 /// OtherInsts: { I2 DVRs: { x, y, z } } 1544 /// would result in hoisting only DbgVariableRecord x. 1545 static void hoistLockstepIdenticalDbgVariableRecords( 1546 Instruction *TI, Instruction *I1, 1547 SmallVectorImpl<Instruction *> &OtherInsts) { 1548 if (!I1->hasDbgRecords()) 1549 return; 1550 using CurrentAndEndIt = 1551 std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>; 1552 // Vector of {Current, End} iterators. 1553 SmallVector<CurrentAndEndIt> Itrs; 1554 Itrs.reserve(OtherInsts.size() + 1); 1555 // Helper lambdas for lock-step checks: 1556 // Return true if this Current == End. 1557 auto atEnd = [](const CurrentAndEndIt &Pair) { 1558 return Pair.first == Pair.second; 1559 }; 1560 // Return true if all Current are identical. 1561 auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) { 1562 return all_of(make_first_range(ArrayRef(Itrs).drop_front()), 1563 [&](DbgRecord::self_iterator I) { 1564 return Itrs[0].first->isIdenticalToWhenDefined(*I); 1565 }); 1566 }; 1567 1568 // Collect the iterators. 1569 Itrs.push_back( 1570 {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()}); 1571 for (Instruction *Other : OtherInsts) { 1572 if (!Other->hasDbgRecords()) 1573 return; 1574 Itrs.push_back( 1575 {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()}); 1576 } 1577 1578 // Iterate in lock-step until any of the DbgRecord lists are exausted. If 1579 // the lock-step DbgRecord are identical, hoist all of them to TI. 1580 // This replicates the dbg.* intrinsic behaviour in 1581 // hoistCommonCodeFromSuccessors. 1582 while (none_of(Itrs, atEnd)) { 1583 bool HoistDVRs = allIdentical(Itrs); 1584 for (CurrentAndEndIt &Pair : Itrs) { 1585 // Increment Current iterator now as we may be about to move the 1586 // DbgRecord. 1587 DbgRecord &DR = *Pair.first++; 1588 if (HoistDVRs) { 1589 DR.removeFromParent(); 1590 TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator()); 1591 } 1592 } 1593 } 1594 } 1595 1596 static bool areIdenticalUpToCommutativity(const Instruction *I1, 1597 const Instruction *I2) { 1598 if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true)) 1599 return true; 1600 1601 if (auto *Cmp1 = dyn_cast<CmpInst>(I1)) 1602 if (auto *Cmp2 = dyn_cast<CmpInst>(I2)) 1603 return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() && 1604 Cmp1->getOperand(0) == Cmp2->getOperand(1) && 1605 Cmp1->getOperand(1) == Cmp2->getOperand(0); 1606 1607 if (I1->isCommutative() && I1->isSameOperationAs(I2)) { 1608 return I1->getOperand(0) == I2->getOperand(1) && 1609 I1->getOperand(1) == I2->getOperand(0) && 1610 equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2)); 1611 } 1612 1613 return false; 1614 } 1615 1616 /// If the target supports conditional faulting, 1617 /// we look for the following pattern: 1618 /// \code 1619 /// BB: 1620 /// ... 1621 /// %cond = icmp ult %x, %y 1622 /// br i1 %cond, label %TrueBB, label %FalseBB 1623 /// FalseBB: 1624 /// store i32 1, ptr %q, align 4 1625 /// ... 1626 /// TrueBB: 1627 /// %maskedloadstore = load i32, ptr %b, align 4 1628 /// store i32 %maskedloadstore, ptr %p, align 4 1629 /// ... 1630 /// \endcode 1631 /// 1632 /// and transform it into: 1633 /// 1634 /// \code 1635 /// BB: 1636 /// ... 1637 /// %cond = icmp ult %x, %y 1638 /// %maskedloadstore = cload i32, ptr %b, %cond 1639 /// cstore i32 %maskedloadstore, ptr %p, %cond 1640 /// cstore i32 1, ptr %q, ~%cond 1641 /// br i1 %cond, label %TrueBB, label %FalseBB 1642 /// FalseBB: 1643 /// ... 1644 /// TrueBB: 1645 /// ... 1646 /// \endcode 1647 /// 1648 /// where cload/cstore are represented by llvm.masked.load/store intrinsics, 1649 /// e.g. 1650 /// 1651 /// \code 1652 /// %vcond = bitcast i1 %cond to <1 x i1> 1653 /// %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0 1654 /// (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison) 1655 /// %maskedloadstore = bitcast <1 x i32> %v0 to i32 1656 /// call void @llvm.masked.store.v1i32.p0 1657 /// (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond) 1658 /// %cond.not = xor i1 %cond, true 1659 /// %vcond.not = bitcast i1 %cond.not to <1 x i> 1660 /// call void @llvm.masked.store.v1i32.p0 1661 /// (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not) 1662 /// \endcode 1663 /// 1664 /// So we need to turn hoisted load/store into cload/cstore. 1665 /// 1666 /// \param BI The branch instruction. 1667 /// \param SpeculatedConditionalLoadsStores The load/store instructions that 1668 /// will be speculated. 1669 /// \param Invert indicates if speculates FalseBB. Only used in triangle CFG. 1670 static void hoistConditionalLoadsStores( 1671 BranchInst *BI, 1672 SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores, 1673 std::optional<bool> Invert) { 1674 auto &Context = BI->getParent()->getContext(); 1675 auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1); 1676 auto *Cond = BI->getOperand(0); 1677 // Construct the condition if needed. 1678 BasicBlock *BB = BI->getParent(); 1679 IRBuilder<> Builder( 1680 Invert.has_value() ? SpeculatedConditionalLoadsStores.back() : BI); 1681 Value *Mask = nullptr; 1682 Value *MaskFalse = nullptr; 1683 Value *MaskTrue = nullptr; 1684 if (Invert.has_value()) { 1685 Mask = Builder.CreateBitCast( 1686 *Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond, 1687 VCondTy); 1688 } else { 1689 MaskFalse = Builder.CreateBitCast( 1690 Builder.CreateXor(Cond, ConstantInt::getTrue(Context)), VCondTy); 1691 MaskTrue = Builder.CreateBitCast(Cond, VCondTy); 1692 } 1693 auto PeekThroughBitcasts = [](Value *V) { 1694 while (auto *BitCast = dyn_cast<BitCastInst>(V)) 1695 V = BitCast->getOperand(0); 1696 return V; 1697 }; 1698 for (auto *I : SpeculatedConditionalLoadsStores) { 1699 IRBuilder<> Builder(Invert.has_value() ? I : BI); 1700 if (!Invert.has_value()) 1701 Mask = I->getParent() == BI->getSuccessor(0) ? MaskTrue : MaskFalse; 1702 // We currently assume conditional faulting load/store is supported for 1703 // scalar types only when creating new instructions. This can be easily 1704 // extended for vector types in the future. 1705 assert(!getLoadStoreType(I)->isVectorTy() && "not implemented"); 1706 auto *Op0 = I->getOperand(0); 1707 CallInst *MaskedLoadStore = nullptr; 1708 if (auto *LI = dyn_cast<LoadInst>(I)) { 1709 // Handle Load. 1710 auto *Ty = I->getType(); 1711 PHINode *PN = nullptr; 1712 Value *PassThru = nullptr; 1713 if (Invert.has_value()) 1714 for (User *U : I->users()) 1715 if ((PN = dyn_cast<PHINode>(U))) { 1716 PassThru = Builder.CreateBitCast( 1717 PeekThroughBitcasts(PN->getIncomingValueForBlock(BB)), 1718 FixedVectorType::get(Ty, 1)); 1719 break; 1720 } 1721 MaskedLoadStore = Builder.CreateMaskedLoad( 1722 FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru); 1723 Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty); 1724 if (PN) 1725 PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore); 1726 I->replaceAllUsesWith(NewLoadStore); 1727 } else { 1728 // Handle Store. 1729 auto *StoredVal = Builder.CreateBitCast( 1730 PeekThroughBitcasts(Op0), FixedVectorType::get(Op0->getType(), 1)); 1731 MaskedLoadStore = Builder.CreateMaskedStore( 1732 StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask); 1733 } 1734 // For non-debug metadata, only !annotation, !range, !nonnull and !align are 1735 // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata). 1736 // 1737 // !nonnull, !align : Not support pointer type, no need to keep. 1738 // !range: Load type is changed from scalar to vector, but the metadata on 1739 // vector specifies a per-element range, so the semantics stay the 1740 // same. Keep it. 1741 // !annotation: Not impact semantics. Keep it. 1742 if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) 1743 MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges)); 1744 I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation}); 1745 // FIXME: DIAssignID is not supported for masked store yet. 1746 // (Verifier::visitDIAssignIDMetadata) 1747 at::deleteAssignmentMarkers(I); 1748 I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) { 1749 return Node->getMetadataID() == Metadata::DIAssignIDKind; 1750 }); 1751 MaskedLoadStore->copyMetadata(*I); 1752 I->eraseFromParent(); 1753 } 1754 } 1755 1756 static bool isSafeCheapLoadStore(const Instruction *I, 1757 const TargetTransformInfo &TTI) { 1758 // Not handle volatile or atomic. 1759 if (auto *L = dyn_cast<LoadInst>(I)) { 1760 if (!L->isSimple()) 1761 return false; 1762 } else if (auto *S = dyn_cast<StoreInst>(I)) { 1763 if (!S->isSimple()) 1764 return false; 1765 } else 1766 return false; 1767 1768 // llvm.masked.load/store use i32 for alignment while load/store use i64. 1769 // That's why we have the alignment limitation. 1770 // FIXME: Update the prototype of the intrinsics? 1771 return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) && 1772 getLoadStoreAlignment(I) < Value::MaximumAlignment; 1773 } 1774 1775 /// Hoist any common code in the successor blocks up into the block. This 1776 /// function guarantees that BB dominates all successors. If EqTermsOnly is 1777 /// given, only perform hoisting in case both blocks only contain a terminator. 1778 /// In that case, only the original BI will be replaced and selects for PHIs are 1779 /// added. 1780 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI, 1781 bool EqTermsOnly) { 1782 // This does very trivial matching, with limited scanning, to find identical 1783 // instructions in the two blocks. In particular, we don't want to get into 1784 // O(N1*N2*...) situations here where Ni are the sizes of these successors. As 1785 // such, we currently just scan for obviously identical instructions in an 1786 // identical order, possibly separated by the same number of non-identical 1787 // instructions. 1788 BasicBlock *BB = TI->getParent(); 1789 unsigned int SuccSize = succ_size(BB); 1790 if (SuccSize < 2) 1791 return false; 1792 1793 // If either of the blocks has it's address taken, then we can't do this fold, 1794 // because the code we'd hoist would no longer run when we jump into the block 1795 // by it's address. 1796 for (auto *Succ : successors(BB)) 1797 if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor()) 1798 return false; 1799 1800 // The second of pair is a SkipFlags bitmask. 1801 using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>; 1802 SmallVector<SuccIterPair, 8> SuccIterPairs; 1803 for (auto *Succ : successors(BB)) { 1804 BasicBlock::iterator SuccItr = Succ->begin(); 1805 if (isa<PHINode>(*SuccItr)) 1806 return false; 1807 SuccIterPairs.push_back(SuccIterPair(SuccItr, 0)); 1808 } 1809 1810 // Check if only hoisting terminators is allowed. This does not add new 1811 // instructions to the hoist location. 1812 if (EqTermsOnly) { 1813 // Skip any debug intrinsics, as they are free to hoist. 1814 for (auto &SuccIter : make_first_range(SuccIterPairs)) { 1815 auto *INonDbg = &*skipDebugIntrinsics(SuccIter); 1816 if (!INonDbg->isTerminator()) 1817 return false; 1818 } 1819 // Now we know that we only need to hoist debug intrinsics and the 1820 // terminator. Let the loop below handle those 2 cases. 1821 } 1822 1823 // Count how many instructions were not hoisted so far. There's a limit on how 1824 // many instructions we skip, serving as a compilation time control as well as 1825 // preventing excessive increase of life ranges. 1826 unsigned NumSkipped = 0; 1827 // If we find an unreachable instruction at the beginning of a basic block, we 1828 // can still hoist instructions from the rest of the basic blocks. 1829 if (SuccIterPairs.size() > 2) { 1830 erase_if(SuccIterPairs, 1831 [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); }); 1832 if (SuccIterPairs.size() < 2) 1833 return false; 1834 } 1835 1836 bool Changed = false; 1837 1838 for (;;) { 1839 auto *SuccIterPairBegin = SuccIterPairs.begin(); 1840 auto &BB1ItrPair = *SuccIterPairBegin++; 1841 auto OtherSuccIterPairRange = 1842 iterator_range(SuccIterPairBegin, SuccIterPairs.end()); 1843 auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange); 1844 1845 Instruction *I1 = &*BB1ItrPair.first; 1846 1847 // Skip debug info if it is not identical. 1848 bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) { 1849 Instruction *I2 = &*Iter; 1850 return I1->isIdenticalToWhenDefined(I2); 1851 }); 1852 if (!AllDbgInstsAreIdentical) { 1853 while (isa<DbgInfoIntrinsic>(I1)) 1854 I1 = &*++BB1ItrPair.first; 1855 for (auto &SuccIter : OtherSuccIterRange) { 1856 Instruction *I2 = &*SuccIter; 1857 while (isa<DbgInfoIntrinsic>(I2)) 1858 I2 = &*++SuccIter; 1859 } 1860 } 1861 1862 bool AllInstsAreIdentical = true; 1863 bool HasTerminator = I1->isTerminator(); 1864 for (auto &SuccIter : OtherSuccIterRange) { 1865 Instruction *I2 = &*SuccIter; 1866 HasTerminator |= I2->isTerminator(); 1867 if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) || 1868 MMRAMetadata(*I1) != MMRAMetadata(*I2))) 1869 AllInstsAreIdentical = false; 1870 } 1871 1872 SmallVector<Instruction *, 8> OtherInsts; 1873 for (auto &SuccIter : OtherSuccIterRange) 1874 OtherInsts.push_back(&*SuccIter); 1875 1876 // If we are hoisting the terminator instruction, don't move one (making a 1877 // broken BB), instead clone it, and remove BI. 1878 if (HasTerminator) { 1879 // Even if BB, which contains only one unreachable instruction, is ignored 1880 // at the beginning of the loop, we can hoist the terminator instruction. 1881 // If any instructions remain in the block, we cannot hoist terminators. 1882 if (NumSkipped || !AllInstsAreIdentical) { 1883 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1884 return Changed; 1885 } 1886 1887 return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) || 1888 Changed; 1889 } 1890 1891 if (AllInstsAreIdentical) { 1892 unsigned SkipFlagsBB1 = BB1ItrPair.second; 1893 AllInstsAreIdentical = 1894 isSafeToHoistInstr(I1, SkipFlagsBB1) && 1895 all_of(OtherSuccIterPairRange, [=](const auto &Pair) { 1896 Instruction *I2 = &*Pair.first; 1897 unsigned SkipFlagsBB2 = Pair.second; 1898 // Even if the instructions are identical, it may not 1899 // be safe to hoist them if we have skipped over 1900 // instructions with side effects or their operands 1901 // weren't hoisted. 1902 return isSafeToHoistInstr(I2, SkipFlagsBB2) && 1903 shouldHoistCommonInstructions(I1, I2, TTI); 1904 }); 1905 } 1906 1907 if (AllInstsAreIdentical) { 1908 BB1ItrPair.first++; 1909 if (isa<DbgInfoIntrinsic>(I1)) { 1910 // The debug location is an integral part of a debug info intrinsic 1911 // and can't be separated from it or replaced. Instead of attempting 1912 // to merge locations, simply hoist both copies of the intrinsic. 1913 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1914 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1915 // and leave any that were not hoisted behind (by calling moveBefore 1916 // rather than moveBeforePreserving). 1917 I1->moveBefore(TI); 1918 for (auto &SuccIter : OtherSuccIterRange) { 1919 auto *I2 = &*SuccIter++; 1920 assert(isa<DbgInfoIntrinsic>(I2)); 1921 I2->moveBefore(TI); 1922 } 1923 } else { 1924 // For a normal instruction, we just move one to right before the 1925 // branch, then replace all uses of the other with the first. Finally, 1926 // we remove the now redundant second instruction. 1927 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1928 // We've just hoisted DbgVariableRecords; move I1 after them (before TI) 1929 // and leave any that were not hoisted behind (by calling moveBefore 1930 // rather than moveBeforePreserving). 1931 I1->moveBefore(TI); 1932 for (auto &SuccIter : OtherSuccIterRange) { 1933 Instruction *I2 = &*SuccIter++; 1934 assert(I2 != I1); 1935 if (!I2->use_empty()) 1936 I2->replaceAllUsesWith(I1); 1937 I1->andIRFlags(I2); 1938 if (auto *CB = dyn_cast<CallBase>(I1)) { 1939 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2)); 1940 assert(Success && "We should not be trying to hoist callbases " 1941 "with non-intersectable attributes"); 1942 // For NDEBUG Compile. 1943 (void)Success; 1944 } 1945 1946 combineMetadataForCSE(I1, I2, true); 1947 // I1 and I2 are being combined into a single instruction. Its debug 1948 // location is the merged locations of the original instructions. 1949 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); 1950 I2->eraseFromParent(); 1951 } 1952 } 1953 if (!Changed) 1954 NumHoistCommonCode += SuccIterPairs.size(); 1955 Changed = true; 1956 NumHoistCommonInstrs += SuccIterPairs.size(); 1957 } else { 1958 if (NumSkipped >= HoistCommonSkipLimit) { 1959 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts); 1960 return Changed; 1961 } 1962 // We are about to skip over a pair of non-identical instructions. Record 1963 // if any have characteristics that would prevent reordering instructions 1964 // across them. 1965 for (auto &SuccIterPair : SuccIterPairs) { 1966 Instruction *I = &*SuccIterPair.first++; 1967 SuccIterPair.second |= skippedInstrFlags(I); 1968 } 1969 ++NumSkipped; 1970 } 1971 } 1972 } 1973 1974 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf( 1975 Instruction *TI, Instruction *I1, 1976 SmallVectorImpl<Instruction *> &OtherSuccTIs) { 1977 1978 auto *BI = dyn_cast<BranchInst>(TI); 1979 1980 bool Changed = false; 1981 BasicBlock *TIParent = TI->getParent(); 1982 BasicBlock *BB1 = I1->getParent(); 1983 1984 // Use only for an if statement. 1985 auto *I2 = *OtherSuccTIs.begin(); 1986 auto *BB2 = I2->getParent(); 1987 if (BI) { 1988 assert(OtherSuccTIs.size() == 1); 1989 assert(BI->getSuccessor(0) == I1->getParent()); 1990 assert(BI->getSuccessor(1) == I2->getParent()); 1991 } 1992 1993 // In the case of an if statement, we try to hoist an invoke. 1994 // FIXME: Can we define a safety predicate for CallBr? 1995 // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll 1996 // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit? 1997 if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2))) 1998 return false; 1999 2000 // TODO: callbr hoisting currently disabled pending further study. 2001 if (isa<CallBrInst>(I1)) 2002 return false; 2003 2004 for (BasicBlock *Succ : successors(BB1)) { 2005 for (PHINode &PN : Succ->phis()) { 2006 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2007 for (Instruction *OtherSuccTI : OtherSuccTIs) { 2008 Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent()); 2009 if (BB1V == BB2V) 2010 continue; 2011 2012 // In the case of an if statement, check for 2013 // passingValueIsAlwaysUndefined here because we would rather eliminate 2014 // undefined control flow then converting it to a select. 2015 if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) || 2016 passingValueIsAlwaysUndefined(BB2V, &PN)) 2017 return false; 2018 } 2019 } 2020 } 2021 2022 // Hoist DbgVariableRecords attached to the terminator to match dbg.* 2023 // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors. 2024 hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs); 2025 // Clone the terminator and hoist it into the pred, without any debug info. 2026 Instruction *NT = I1->clone(); 2027 NT->insertInto(TIParent, TI->getIterator()); 2028 if (!NT->getType()->isVoidTy()) { 2029 I1->replaceAllUsesWith(NT); 2030 for (Instruction *OtherSuccTI : OtherSuccTIs) 2031 OtherSuccTI->replaceAllUsesWith(NT); 2032 NT->takeName(I1); 2033 } 2034 Changed = true; 2035 NumHoistCommonInstrs += OtherSuccTIs.size() + 1; 2036 2037 // Ensure terminator gets a debug location, even an unknown one, in case 2038 // it involves inlinable calls. 2039 SmallVector<DILocation *, 4> Locs; 2040 Locs.push_back(I1->getDebugLoc()); 2041 for (auto *OtherSuccTI : OtherSuccTIs) 2042 Locs.push_back(OtherSuccTI->getDebugLoc()); 2043 NT->setDebugLoc(DILocation::getMergedLocations(Locs)); 2044 2045 // PHIs created below will adopt NT's merged DebugLoc. 2046 IRBuilder<NoFolder> Builder(NT); 2047 2048 // In the case of an if statement, hoisting one of the terminators from our 2049 // successor is a great thing. Unfortunately, the successors of the if/else 2050 // blocks may have PHI nodes in them. If they do, all PHI entries for BB1/BB2 2051 // must agree for all PHI nodes, so we insert select instruction to compute 2052 // the final result. 2053 if (BI) { 2054 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; 2055 for (BasicBlock *Succ : successors(BB1)) { 2056 for (PHINode &PN : Succ->phis()) { 2057 Value *BB1V = PN.getIncomingValueForBlock(BB1); 2058 Value *BB2V = PN.getIncomingValueForBlock(BB2); 2059 if (BB1V == BB2V) 2060 continue; 2061 2062 // These values do not agree. Insert a select instruction before NT 2063 // that determines the right value. 2064 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; 2065 if (!SI) { 2066 // Propagate fast-math-flags from phi node to its replacement select. 2067 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 2068 if (isa<FPMathOperator>(PN)) 2069 Builder.setFastMathFlags(PN.getFastMathFlags()); 2070 2071 SI = cast<SelectInst>(Builder.CreateSelect( 2072 BI->getCondition(), BB1V, BB2V, 2073 BB1V->getName() + "." + BB2V->getName(), BI)); 2074 } 2075 2076 // Make the PHI node use the select for all incoming values for BB1/BB2 2077 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 2078 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) 2079 PN.setIncomingValue(i, SI); 2080 } 2081 } 2082 } 2083 2084 SmallVector<DominatorTree::UpdateType, 4> Updates; 2085 2086 // Update any PHI nodes in our new successors. 2087 for (BasicBlock *Succ : successors(BB1)) { 2088 addPredecessorToBlock(Succ, TIParent, BB1); 2089 if (DTU) 2090 Updates.push_back({DominatorTree::Insert, TIParent, Succ}); 2091 } 2092 2093 if (DTU) 2094 for (BasicBlock *Succ : successors(TI)) 2095 Updates.push_back({DominatorTree::Delete, TIParent, Succ}); 2096 2097 eraseTerminatorAndDCECond(TI); 2098 if (DTU) 2099 DTU->applyUpdates(Updates); 2100 return Changed; 2101 } 2102 2103 // Check lifetime markers. 2104 static bool isLifeTimeMarker(const Instruction *I) { 2105 if (auto II = dyn_cast<IntrinsicInst>(I)) { 2106 switch (II->getIntrinsicID()) { 2107 default: 2108 break; 2109 case Intrinsic::lifetime_start: 2110 case Intrinsic::lifetime_end: 2111 return true; 2112 } 2113 } 2114 return false; 2115 } 2116 2117 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes 2118 // into variables. 2119 static bool replacingOperandWithVariableIsCheap(const Instruction *I, 2120 int OpIdx) { 2121 // Divide/Remainder by constant is typically much cheaper than by variable. 2122 if (I->isIntDivRem()) 2123 return OpIdx != 1; 2124 return !isa<IntrinsicInst>(I); 2125 } 2126 2127 // All instructions in Insts belong to different blocks that all unconditionally 2128 // branch to a common successor. Analyze each instruction and return true if it 2129 // would be possible to sink them into their successor, creating one common 2130 // instruction instead. For every value that would be required to be provided by 2131 // PHI node (because an operand varies in each input block), add to PHIOperands. 2132 static bool canSinkInstructions( 2133 ArrayRef<Instruction *> Insts, 2134 DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) { 2135 // Prune out obviously bad instructions to move. Each instruction must have 2136 // the same number of uses, and we check later that the uses are consistent. 2137 std::optional<unsigned> NumUses; 2138 for (auto *I : Insts) { 2139 // These instructions may change or break semantics if moved. 2140 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 2141 I->getType()->isTokenTy()) 2142 return false; 2143 2144 // Do not try to sink an instruction in an infinite loop - it can cause 2145 // this algorithm to infinite loop. 2146 if (I->getParent()->getSingleSuccessor() == I->getParent()) 2147 return false; 2148 2149 // Conservatively return false if I is an inline-asm instruction. Sinking 2150 // and merging inline-asm instructions can potentially create arguments 2151 // that cannot satisfy the inline-asm constraints. 2152 // If the instruction has nomerge or convergent attribute, return false. 2153 if (const auto *C = dyn_cast<CallBase>(I)) 2154 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent()) 2155 return false; 2156 2157 if (!NumUses) 2158 NumUses = I->getNumUses(); 2159 else if (NumUses != I->getNumUses()) 2160 return false; 2161 } 2162 2163 const Instruction *I0 = Insts.front(); 2164 const auto I0MMRA = MMRAMetadata(*I0); 2165 for (auto *I : Insts) { 2166 if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs)) 2167 return false; 2168 2169 // swifterror pointers can only be used by a load or store; sinking a load 2170 // or store would require introducing a select for the pointer operand, 2171 // which isn't allowed for swifterror pointers. 2172 if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError()) 2173 return false; 2174 if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError()) 2175 return false; 2176 2177 // Treat MMRAs conservatively. This pass can be quite aggressive and 2178 // could drop a lot of MMRAs otherwise. 2179 if (MMRAMetadata(*I) != I0MMRA) 2180 return false; 2181 } 2182 2183 // Uses must be consistent: If I0 is used in a phi node in the sink target, 2184 // then the other phi operands must match the instructions from Insts. This 2185 // also has to hold true for any phi nodes that would be created as a result 2186 // of sinking. Both of these cases are represented by PhiOperands. 2187 for (const Use &U : I0->uses()) { 2188 auto It = PHIOperands.find(&U); 2189 if (It == PHIOperands.end()) 2190 // There may be uses in other blocks when sinking into a loop header. 2191 return false; 2192 if (!equal(Insts, It->second)) 2193 return false; 2194 } 2195 2196 // For calls to be sinkable, they must all be indirect, or have same callee. 2197 // I.e. if we have two direct calls to different callees, we don't want to 2198 // turn that into an indirect call. Likewise, if we have an indirect call, 2199 // and a direct call, we don't actually want to have a single indirect call. 2200 if (isa<CallBase>(I0)) { 2201 auto IsIndirectCall = [](const Instruction *I) { 2202 return cast<CallBase>(I)->isIndirectCall(); 2203 }; 2204 bool HaveIndirectCalls = any_of(Insts, IsIndirectCall); 2205 bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall); 2206 if (HaveIndirectCalls) { 2207 if (!AllCallsAreIndirect) 2208 return false; 2209 } else { 2210 // All callees must be identical. 2211 Value *Callee = nullptr; 2212 for (const Instruction *I : Insts) { 2213 Value *CurrCallee = cast<CallBase>(I)->getCalledOperand(); 2214 if (!Callee) 2215 Callee = CurrCallee; 2216 else if (Callee != CurrCallee) 2217 return false; 2218 } 2219 } 2220 } 2221 2222 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { 2223 Value *Op = I0->getOperand(OI); 2224 if (Op->getType()->isTokenTy()) 2225 // Don't touch any operand of token type. 2226 return false; 2227 2228 auto SameAsI0 = [&I0, OI](const Instruction *I) { 2229 assert(I->getNumOperands() == I0->getNumOperands()); 2230 return I->getOperand(OI) == I0->getOperand(OI); 2231 }; 2232 if (!all_of(Insts, SameAsI0)) { 2233 // SROA can't speculate lifetime markers of selects/phis, and the 2234 // backend may handle such lifetimes incorrectly as well (#104776). 2235 // Don't sink lifetimes if it would introduce a phi on the pointer 2236 // argument. 2237 if (isLifeTimeMarker(I0) && OI == 1 && 2238 any_of(Insts, [](const Instruction *I) { 2239 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts()); 2240 })) 2241 return false; 2242 2243 if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) || 2244 !canReplaceOperandWithVariable(I0, OI)) 2245 // We can't create a PHI from this GEP. 2246 return false; 2247 auto &Ops = PHIOperands[&I0->getOperandUse(OI)]; 2248 for (auto *I : Insts) 2249 Ops.push_back(I->getOperand(OI)); 2250 } 2251 } 2252 return true; 2253 } 2254 2255 // Assuming canSinkInstructions(Blocks) has returned true, sink the last 2256 // instruction of every block in Blocks to their common successor, commoning 2257 // into one instruction. 2258 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { 2259 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); 2260 2261 // canSinkInstructions returning true guarantees that every block has at 2262 // least one non-terminator instruction. 2263 SmallVector<Instruction*,4> Insts; 2264 for (auto *BB : Blocks) { 2265 Instruction *I = BB->getTerminator(); 2266 do { 2267 I = I->getPrevNode(); 2268 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); 2269 if (!isa<DbgInfoIntrinsic>(I)) 2270 Insts.push_back(I); 2271 } 2272 2273 // We don't need to do any more checking here; canSinkInstructions should 2274 // have done it all for us. 2275 SmallVector<Value*, 4> NewOperands; 2276 Instruction *I0 = Insts.front(); 2277 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 2278 // This check is different to that in canSinkInstructions. There, we 2279 // cared about the global view once simplifycfg (and instcombine) have 2280 // completed - it takes into account PHIs that become trivially 2281 // simplifiable. However here we need a more local view; if an operand 2282 // differs we create a PHI and rely on instcombine to clean up the very 2283 // small mess we may make. 2284 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { 2285 return I->getOperand(O) != I0->getOperand(O); 2286 }); 2287 if (!NeedPHI) { 2288 NewOperands.push_back(I0->getOperand(O)); 2289 continue; 2290 } 2291 2292 // Create a new PHI in the successor block and populate it. 2293 auto *Op = I0->getOperand(O); 2294 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 2295 auto *PN = 2296 PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink"); 2297 PN->insertBefore(BBEnd->begin()); 2298 for (auto *I : Insts) 2299 PN->addIncoming(I->getOperand(O), I->getParent()); 2300 NewOperands.push_back(PN); 2301 } 2302 2303 // Arbitrarily use I0 as the new "common" instruction; remap its operands 2304 // and move it to the start of the successor block. 2305 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 2306 I0->getOperandUse(O).set(NewOperands[O]); 2307 2308 I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt()); 2309 2310 // Update metadata and IR flags, and merge debug locations. 2311 for (auto *I : Insts) 2312 if (I != I0) { 2313 // The debug location for the "common" instruction is the merged locations 2314 // of all the commoned instructions. We start with the original location 2315 // of the "common" instruction and iteratively merge each location in the 2316 // loop below. 2317 // This is an N-way merge, which will be inefficient if I0 is a CallInst. 2318 // However, as N-way merge for CallInst is rare, so we use simplified API 2319 // instead of using complex API for N-way merge. 2320 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); 2321 combineMetadataForCSE(I0, I, true); 2322 I0->andIRFlags(I); 2323 if (auto *CB = dyn_cast<CallBase>(I0)) { 2324 bool Success = CB->tryIntersectAttributes(cast<CallBase>(I)); 2325 assert(Success && "We should not be trying to sink callbases " 2326 "with non-intersectable attributes"); 2327 // For NDEBUG Compile. 2328 (void)Success; 2329 } 2330 } 2331 2332 for (User *U : make_early_inc_range(I0->users())) { 2333 // canSinkLastInstruction checked that all instructions are only used by 2334 // phi nodes in a way that allows replacing the phi node with the common 2335 // instruction. 2336 auto *PN = cast<PHINode>(U); 2337 PN->replaceAllUsesWith(I0); 2338 PN->eraseFromParent(); 2339 } 2340 2341 // Finally nuke all instructions apart from the common instruction. 2342 for (auto *I : Insts) { 2343 if (I == I0) 2344 continue; 2345 // The remaining uses are debug users, replace those with the common inst. 2346 // In most (all?) cases this just introduces a use-before-def. 2347 assert(I->user_empty() && "Inst unexpectedly still has non-dbg users"); 2348 I->replaceAllUsesWith(I0); 2349 I->eraseFromParent(); 2350 } 2351 } 2352 2353 namespace { 2354 2355 // LockstepReverseIterator - Iterates through instructions 2356 // in a set of blocks in reverse order from the first non-terminator. 2357 // For example (assume all blocks have size n): 2358 // LockstepReverseIterator I([B1, B2, B3]); 2359 // *I-- = [B1[n], B2[n], B3[n]]; 2360 // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 2361 // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 2362 // ... 2363 class LockstepReverseIterator { 2364 ArrayRef<BasicBlock*> Blocks; 2365 SmallVector<Instruction*,4> Insts; 2366 bool Fail; 2367 2368 public: 2369 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { 2370 reset(); 2371 } 2372 2373 void reset() { 2374 Fail = false; 2375 Insts.clear(); 2376 for (auto *BB : Blocks) { 2377 Instruction *Inst = BB->getTerminator(); 2378 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2379 Inst = Inst->getPrevNode(); 2380 if (!Inst) { 2381 // Block wasn't big enough. 2382 Fail = true; 2383 return; 2384 } 2385 Insts.push_back(Inst); 2386 } 2387 } 2388 2389 bool isValid() const { 2390 return !Fail; 2391 } 2392 2393 void operator--() { 2394 if (Fail) 2395 return; 2396 for (auto *&Inst : Insts) { 2397 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2398 Inst = Inst->getPrevNode(); 2399 // Already at beginning of block. 2400 if (!Inst) { 2401 Fail = true; 2402 return; 2403 } 2404 } 2405 } 2406 2407 void operator++() { 2408 if (Fail) 2409 return; 2410 for (auto *&Inst : Insts) { 2411 for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) 2412 Inst = Inst->getNextNode(); 2413 // Already at end of block. 2414 if (!Inst) { 2415 Fail = true; 2416 return; 2417 } 2418 } 2419 } 2420 2421 ArrayRef<Instruction*> operator * () const { 2422 return Insts; 2423 } 2424 }; 2425 2426 } // end anonymous namespace 2427 2428 /// Check whether BB's predecessors end with unconditional branches. If it is 2429 /// true, sink any common code from the predecessors to BB. 2430 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB, 2431 DomTreeUpdater *DTU) { 2432 // We support two situations: 2433 // (1) all incoming arcs are unconditional 2434 // (2) there are non-unconditional incoming arcs 2435 // 2436 // (2) is very common in switch defaults and 2437 // else-if patterns; 2438 // 2439 // if (a) f(1); 2440 // else if (b) f(2); 2441 // 2442 // produces: 2443 // 2444 // [if] 2445 // / \ 2446 // [f(1)] [if] 2447 // | | \ 2448 // | | | 2449 // | [f(2)]| 2450 // \ | / 2451 // [ end ] 2452 // 2453 // [end] has two unconditional predecessor arcs and one conditional. The 2454 // conditional refers to the implicit empty 'else' arc. This conditional 2455 // arc can also be caused by an empty default block in a switch. 2456 // 2457 // In this case, we attempt to sink code from all *unconditional* arcs. 2458 // If we can sink instructions from these arcs (determined during the scan 2459 // phase below) we insert a common successor for all unconditional arcs and 2460 // connect that to [end], to enable sinking: 2461 // 2462 // [if] 2463 // / \ 2464 // [x(1)] [if] 2465 // | | \ 2466 // | | \ 2467 // | [x(2)] | 2468 // \ / | 2469 // [sink.split] | 2470 // \ / 2471 // [ end ] 2472 // 2473 SmallVector<BasicBlock*,4> UnconditionalPreds; 2474 bool HaveNonUnconditionalPredecessors = false; 2475 for (auto *PredBB : predecessors(BB)) { 2476 auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 2477 if (PredBr && PredBr->isUnconditional()) 2478 UnconditionalPreds.push_back(PredBB); 2479 else 2480 HaveNonUnconditionalPredecessors = true; 2481 } 2482 if (UnconditionalPreds.size() < 2) 2483 return false; 2484 2485 // We take a two-step approach to tail sinking. First we scan from the end of 2486 // each block upwards in lockstep. If the n'th instruction from the end of each 2487 // block can be sunk, those instructions are added to ValuesToSink and we 2488 // carry on. If we can sink an instruction but need to PHI-merge some operands 2489 // (because they're not identical in each instruction) we add these to 2490 // PHIOperands. 2491 // We prepopulate PHIOperands with the phis that already exist in BB. 2492 DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands; 2493 for (PHINode &PN : BB->phis()) { 2494 SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals; 2495 for (const Use &U : PN.incoming_values()) 2496 IncomingVals.insert({PN.getIncomingBlock(U), &U}); 2497 auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]]; 2498 for (BasicBlock *Pred : UnconditionalPreds) 2499 Ops.push_back(*IncomingVals[Pred]); 2500 } 2501 2502 int ScanIdx = 0; 2503 SmallPtrSet<Value*,4> InstructionsToSink; 2504 LockstepReverseIterator LRI(UnconditionalPreds); 2505 while (LRI.isValid() && 2506 canSinkInstructions(*LRI, PHIOperands)) { 2507 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] 2508 << "\n"); 2509 InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); 2510 ++ScanIdx; 2511 --LRI; 2512 } 2513 2514 // If no instructions can be sunk, early-return. 2515 if (ScanIdx == 0) 2516 return false; 2517 2518 bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB); 2519 2520 if (!followedByDeoptOrUnreachable) { 2521 // Check whether this is the pointer operand of a load/store. 2522 auto IsMemOperand = [](Use &U) { 2523 auto *I = cast<Instruction>(U.getUser()); 2524 if (isa<LoadInst>(I)) 2525 return U.getOperandNo() == LoadInst::getPointerOperandIndex(); 2526 if (isa<StoreInst>(I)) 2527 return U.getOperandNo() == StoreInst::getPointerOperandIndex(); 2528 return false; 2529 }; 2530 2531 // Okay, we *could* sink last ScanIdx instructions. But how many can we 2532 // actually sink before encountering instruction that is unprofitable to 2533 // sink? 2534 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { 2535 unsigned NumPHIInsts = 0; 2536 for (Use &U : (*LRI)[0]->operands()) { 2537 auto It = PHIOperands.find(&U); 2538 if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) { 2539 return InstructionsToSink.contains(V); 2540 })) { 2541 ++NumPHIInsts; 2542 // Do not separate a load/store from the gep producing the address. 2543 // The gep can likely be folded into the load/store as an addressing 2544 // mode. Additionally, a load of a gep is easier to analyze than a 2545 // load of a phi. 2546 if (IsMemOperand(U) && 2547 any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); })) 2548 return false; 2549 // FIXME: this check is overly optimistic. We may end up not sinking 2550 // said instruction, due to the very same profitability check. 2551 // See @creating_too_many_phis in sink-common-code.ll. 2552 } 2553 } 2554 LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n"); 2555 return NumPHIInsts <= 1; 2556 }; 2557 2558 // We've determined that we are going to sink last ScanIdx instructions, 2559 // and recorded them in InstructionsToSink. Now, some instructions may be 2560 // unprofitable to sink. But that determination depends on the instructions 2561 // that we are going to sink. 2562 2563 // First, forward scan: find the first instruction unprofitable to sink, 2564 // recording all the ones that are profitable to sink. 2565 // FIXME: would it be better, after we detect that not all are profitable. 2566 // to either record the profitable ones, or erase the unprofitable ones? 2567 // Maybe we need to choose (at runtime) the one that will touch least 2568 // instrs? 2569 LRI.reset(); 2570 int Idx = 0; 2571 SmallPtrSet<Value *, 4> InstructionsProfitableToSink; 2572 while (Idx < ScanIdx) { 2573 if (!ProfitableToSinkInstruction(LRI)) { 2574 // Too many PHIs would be created. 2575 LLVM_DEBUG( 2576 dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); 2577 break; 2578 } 2579 InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end()); 2580 --LRI; 2581 ++Idx; 2582 } 2583 2584 // If no instructions can be sunk, early-return. 2585 if (Idx == 0) 2586 return false; 2587 2588 // Did we determine that (only) some instructions are unprofitable to sink? 2589 if (Idx < ScanIdx) { 2590 // Okay, some instructions are unprofitable. 2591 ScanIdx = Idx; 2592 InstructionsToSink = InstructionsProfitableToSink; 2593 2594 // But, that may make other instructions unprofitable, too. 2595 // So, do a backward scan, do any earlier instructions become 2596 // unprofitable? 2597 assert( 2598 !ProfitableToSinkInstruction(LRI) && 2599 "We already know that the last instruction is unprofitable to sink"); 2600 ++LRI; 2601 --Idx; 2602 while (Idx >= 0) { 2603 // If we detect that an instruction becomes unprofitable to sink, 2604 // all earlier instructions won't be sunk either, 2605 // so preemptively keep InstructionsProfitableToSink in sync. 2606 // FIXME: is this the most performant approach? 2607 for (auto *I : *LRI) 2608 InstructionsProfitableToSink.erase(I); 2609 if (!ProfitableToSinkInstruction(LRI)) { 2610 // Everything starting with this instruction won't be sunk. 2611 ScanIdx = Idx; 2612 InstructionsToSink = InstructionsProfitableToSink; 2613 } 2614 ++LRI; 2615 --Idx; 2616 } 2617 } 2618 2619 // If no instructions can be sunk, early-return. 2620 if (ScanIdx == 0) 2621 return false; 2622 } 2623 2624 bool Changed = false; 2625 2626 if (HaveNonUnconditionalPredecessors) { 2627 if (!followedByDeoptOrUnreachable) { 2628 // It is always legal to sink common instructions from unconditional 2629 // predecessors. However, if not all predecessors are unconditional, 2630 // this transformation might be pessimizing. So as a rule of thumb, 2631 // don't do it unless we'd sink at least one non-speculatable instruction. 2632 // See https://bugs.llvm.org/show_bug.cgi?id=30244 2633 LRI.reset(); 2634 int Idx = 0; 2635 bool Profitable = false; 2636 while (Idx < ScanIdx) { 2637 if (!isSafeToSpeculativelyExecute((*LRI)[0])) { 2638 Profitable = true; 2639 break; 2640 } 2641 --LRI; 2642 ++Idx; 2643 } 2644 if (!Profitable) 2645 return false; 2646 } 2647 2648 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); 2649 // We have a conditional edge and we're going to sink some instructions. 2650 // Insert a new block postdominating all blocks we're going to sink from. 2651 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU)) 2652 // Edges couldn't be split. 2653 return false; 2654 Changed = true; 2655 } 2656 2657 // Now that we've analyzed all potential sinking candidates, perform the 2658 // actual sink. We iteratively sink the last non-terminator of the source 2659 // blocks into their common successor unless doing so would require too 2660 // many PHI instructions to be generated (currently only one PHI is allowed 2661 // per sunk instruction). 2662 // 2663 // We can use InstructionsToSink to discount values needing PHI-merging that will 2664 // actually be sunk in a later iteration. This allows us to be more 2665 // aggressive in what we sink. This does allow a false positive where we 2666 // sink presuming a later value will also be sunk, but stop half way through 2667 // and never actually sink it which means we produce more PHIs than intended. 2668 // This is unlikely in practice though. 2669 int SinkIdx = 0; 2670 for (; SinkIdx != ScanIdx; ++SinkIdx) { 2671 LLVM_DEBUG(dbgs() << "SINK: Sink: " 2672 << *UnconditionalPreds[0]->getTerminator()->getPrevNode() 2673 << "\n"); 2674 2675 // Because we've sunk every instruction in turn, the current instruction to 2676 // sink is always at index 0. 2677 LRI.reset(); 2678 2679 sinkLastInstruction(UnconditionalPreds); 2680 NumSinkCommonInstrs++; 2681 Changed = true; 2682 } 2683 if (SinkIdx != 0) 2684 ++NumSinkCommonCode; 2685 return Changed; 2686 } 2687 2688 namespace { 2689 2690 struct CompatibleSets { 2691 using SetTy = SmallVector<InvokeInst *, 2>; 2692 2693 SmallVector<SetTy, 1> Sets; 2694 2695 static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes); 2696 2697 SetTy &getCompatibleSet(InvokeInst *II); 2698 2699 void insert(InvokeInst *II); 2700 }; 2701 2702 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) { 2703 // Perform a linear scan over all the existing sets, see if the new `invoke` 2704 // is compatible with any particular set. Since we know that all the `invokes` 2705 // within a set are compatible, only check the first `invoke` in each set. 2706 // WARNING: at worst, this has quadratic complexity. 2707 for (CompatibleSets::SetTy &Set : Sets) { 2708 if (CompatibleSets::shouldBelongToSameSet({Set.front(), II})) 2709 return Set; 2710 } 2711 2712 // Otherwise, we either had no sets yet, or this invoke forms a new set. 2713 return Sets.emplace_back(); 2714 } 2715 2716 void CompatibleSets::insert(InvokeInst *II) { 2717 getCompatibleSet(II).emplace_back(II); 2718 } 2719 2720 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) { 2721 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2722 2723 // Can we theoretically merge these `invoke`s? 2724 auto IsIllegalToMerge = [](InvokeInst *II) { 2725 return II->cannotMerge() || II->isInlineAsm(); 2726 }; 2727 if (any_of(Invokes, IsIllegalToMerge)) 2728 return false; 2729 2730 // Either both `invoke`s must be direct, 2731 // or both `invoke`s must be indirect. 2732 auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); }; 2733 bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall); 2734 bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall); 2735 if (HaveIndirectCalls) { 2736 if (!AllCallsAreIndirect) 2737 return false; 2738 } else { 2739 // All callees must be identical. 2740 Value *Callee = nullptr; 2741 for (InvokeInst *II : Invokes) { 2742 Value *CurrCallee = II->getCalledOperand(); 2743 assert(CurrCallee && "There is always a called operand."); 2744 if (!Callee) 2745 Callee = CurrCallee; 2746 else if (Callee != CurrCallee) 2747 return false; 2748 } 2749 } 2750 2751 // Either both `invoke`s must not have a normal destination, 2752 // or both `invoke`s must have a normal destination, 2753 auto HasNormalDest = [](InvokeInst *II) { 2754 return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg()); 2755 }; 2756 if (any_of(Invokes, HasNormalDest)) { 2757 // Do not merge `invoke` that does not have a normal destination with one 2758 // that does have a normal destination, even though doing so would be legal. 2759 if (!all_of(Invokes, HasNormalDest)) 2760 return false; 2761 2762 // All normal destinations must be identical. 2763 BasicBlock *NormalBB = nullptr; 2764 for (InvokeInst *II : Invokes) { 2765 BasicBlock *CurrNormalBB = II->getNormalDest(); 2766 assert(CurrNormalBB && "There is always a 'continue to' basic block."); 2767 if (!NormalBB) 2768 NormalBB = CurrNormalBB; 2769 else if (NormalBB != CurrNormalBB) 2770 return false; 2771 } 2772 2773 // In the normal destination, the incoming values for these two `invoke`s 2774 // must be compatible. 2775 SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end()); 2776 if (!incomingValuesAreCompatible( 2777 NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()}, 2778 &EquivalenceSet)) 2779 return false; 2780 } 2781 2782 #ifndef NDEBUG 2783 // All unwind destinations must be identical. 2784 // We know that because we have started from said unwind destination. 2785 BasicBlock *UnwindBB = nullptr; 2786 for (InvokeInst *II : Invokes) { 2787 BasicBlock *CurrUnwindBB = II->getUnwindDest(); 2788 assert(CurrUnwindBB && "There is always an 'unwind to' basic block."); 2789 if (!UnwindBB) 2790 UnwindBB = CurrUnwindBB; 2791 else 2792 assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination."); 2793 } 2794 #endif 2795 2796 // In the unwind destination, the incoming values for these two `invoke`s 2797 // must be compatible. 2798 if (!incomingValuesAreCompatible( 2799 Invokes.front()->getUnwindDest(), 2800 {Invokes[0]->getParent(), Invokes[1]->getParent()})) 2801 return false; 2802 2803 // Ignoring arguments, these `invoke`s must be identical, 2804 // including operand bundles. 2805 const InvokeInst *II0 = Invokes.front(); 2806 for (auto *II : Invokes.drop_front()) 2807 if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs)) 2808 return false; 2809 2810 // Can we theoretically form the data operands for the merged `invoke`? 2811 auto IsIllegalToMergeArguments = [](auto Ops) { 2812 Use &U0 = std::get<0>(Ops); 2813 Use &U1 = std::get<1>(Ops); 2814 if (U0 == U1) 2815 return false; 2816 return U0->getType()->isTokenTy() || 2817 !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()), 2818 U0.getOperandNo()); 2819 }; 2820 assert(Invokes.size() == 2 && "Always called with exactly two candidates."); 2821 if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()), 2822 IsIllegalToMergeArguments)) 2823 return false; 2824 2825 return true; 2826 } 2827 2828 } // namespace 2829 2830 // Merge all invokes in the provided set, all of which are compatible 2831 // as per the `CompatibleSets::shouldBelongToSameSet()`. 2832 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes, 2833 DomTreeUpdater *DTU) { 2834 assert(Invokes.size() >= 2 && "Must have at least two invokes to merge."); 2835 2836 SmallVector<DominatorTree::UpdateType, 8> Updates; 2837 if (DTU) 2838 Updates.reserve(2 + 3 * Invokes.size()); 2839 2840 bool HasNormalDest = 2841 !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg()); 2842 2843 // Clone one of the invokes into a new basic block. 2844 // Since they are all compatible, it doesn't matter which invoke is cloned. 2845 InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() { 2846 InvokeInst *II0 = Invokes.front(); 2847 BasicBlock *II0BB = II0->getParent(); 2848 BasicBlock *InsertBeforeBlock = 2849 II0->getParent()->getIterator()->getNextNode(); 2850 Function *Func = II0BB->getParent(); 2851 LLVMContext &Ctx = II0->getContext(); 2852 2853 BasicBlock *MergedInvokeBB = BasicBlock::Create( 2854 Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock); 2855 2856 auto *MergedInvoke = cast<InvokeInst>(II0->clone()); 2857 // NOTE: all invokes have the same attributes, so no handling needed. 2858 MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end()); 2859 2860 if (!HasNormalDest) { 2861 // This set does not have a normal destination, 2862 // so just form a new block with unreachable terminator. 2863 BasicBlock *MergedNormalDest = BasicBlock::Create( 2864 Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock); 2865 new UnreachableInst(Ctx, MergedNormalDest); 2866 MergedInvoke->setNormalDest(MergedNormalDest); 2867 } 2868 2869 // The unwind destination, however, remainds identical for all invokes here. 2870 2871 return MergedInvoke; 2872 }(); 2873 2874 if (DTU) { 2875 // Predecessor blocks that contained these invokes will now branch to 2876 // the new block that contains the merged invoke, ... 2877 for (InvokeInst *II : Invokes) 2878 Updates.push_back( 2879 {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()}); 2880 2881 // ... which has the new `unreachable` block as normal destination, 2882 // or unwinds to the (same for all `invoke`s in this set) `landingpad`, 2883 for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke)) 2884 Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(), 2885 SuccBBOfMergedInvoke}); 2886 2887 // Since predecessor blocks now unconditionally branch to a new block, 2888 // they no longer branch to their original successors. 2889 for (InvokeInst *II : Invokes) 2890 for (BasicBlock *SuccOfPredBB : successors(II->getParent())) 2891 Updates.push_back( 2892 {DominatorTree::Delete, II->getParent(), SuccOfPredBB}); 2893 } 2894 2895 bool IsIndirectCall = Invokes[0]->isIndirectCall(); 2896 2897 // Form the merged operands for the merged invoke. 2898 for (Use &U : MergedInvoke->operands()) { 2899 // Only PHI together the indirect callees and data operands. 2900 if (MergedInvoke->isCallee(&U)) { 2901 if (!IsIndirectCall) 2902 continue; 2903 } else if (!MergedInvoke->isDataOperand(&U)) 2904 continue; 2905 2906 // Don't create trivial PHI's with all-identical incoming values. 2907 bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) { 2908 return II->getOperand(U.getOperandNo()) != U.get(); 2909 }); 2910 if (!NeedPHI) 2911 continue; 2912 2913 // Form a PHI out of all the data ops under this index. 2914 PHINode *PN = PHINode::Create( 2915 U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator()); 2916 for (InvokeInst *II : Invokes) 2917 PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent()); 2918 2919 U.set(PN); 2920 } 2921 2922 // We've ensured that each PHI node has compatible (identical) incoming values 2923 // when coming from each of the `invoke`s in the current merge set, 2924 // so update the PHI nodes accordingly. 2925 for (BasicBlock *Succ : successors(MergedInvoke)) 2926 addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(), 2927 /*ExistPred=*/Invokes.front()->getParent()); 2928 2929 // And finally, replace the original `invoke`s with an unconditional branch 2930 // to the block with the merged `invoke`. Also, give that merged `invoke` 2931 // the merged debugloc of all the original `invoke`s. 2932 DILocation *MergedDebugLoc = nullptr; 2933 for (InvokeInst *II : Invokes) { 2934 // Compute the debug location common to all the original `invoke`s. 2935 if (!MergedDebugLoc) 2936 MergedDebugLoc = II->getDebugLoc(); 2937 else 2938 MergedDebugLoc = 2939 DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc()); 2940 2941 // And replace the old `invoke` with an unconditionally branch 2942 // to the block with the merged `invoke`. 2943 for (BasicBlock *OrigSuccBB : successors(II->getParent())) 2944 OrigSuccBB->removePredecessor(II->getParent()); 2945 auto *BI = BranchInst::Create(MergedInvoke->getParent(), II->getParent()); 2946 // The unconditional branch is part of the replacement for the original 2947 // invoke, so should use its DebugLoc. 2948 BI->setDebugLoc(II->getDebugLoc()); 2949 bool Success = MergedInvoke->tryIntersectAttributes(II); 2950 assert(Success && "Merged invokes with incompatible attributes"); 2951 // For NDEBUG Compile 2952 (void)Success; 2953 II->replaceAllUsesWith(MergedInvoke); 2954 II->eraseFromParent(); 2955 ++NumInvokesMerged; 2956 } 2957 MergedInvoke->setDebugLoc(MergedDebugLoc); 2958 ++NumInvokeSetsFormed; 2959 2960 if (DTU) 2961 DTU->applyUpdates(Updates); 2962 } 2963 2964 /// If this block is a `landingpad` exception handling block, categorize all 2965 /// the predecessor `invoke`s into sets, with all `invoke`s in each set 2966 /// being "mergeable" together, and then merge invokes in each set together. 2967 /// 2968 /// This is a weird mix of hoisting and sinking. Visually, it goes from: 2969 /// [...] [...] 2970 /// | | 2971 /// [invoke0] [invoke1] 2972 /// / \ / \ 2973 /// [cont0] [landingpad] [cont1] 2974 /// to: 2975 /// [...] [...] 2976 /// \ / 2977 /// [invoke] 2978 /// / \ 2979 /// [cont] [landingpad] 2980 /// 2981 /// But of course we can only do that if the invokes share the `landingpad`, 2982 /// edges invoke0->cont0 and invoke1->cont1 are "compatible", 2983 /// and the invoked functions are "compatible". 2984 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) { 2985 if (!EnableMergeCompatibleInvokes) 2986 return false; 2987 2988 bool Changed = false; 2989 2990 // FIXME: generalize to all exception handling blocks? 2991 if (!BB->isLandingPad()) 2992 return Changed; 2993 2994 CompatibleSets Grouper; 2995 2996 // Record all the predecessors of this `landingpad`. As per verifier, 2997 // the only allowed predecessor is the unwind edge of an `invoke`. 2998 // We want to group "compatible" `invokes` into the same set to be merged. 2999 for (BasicBlock *PredBB : predecessors(BB)) 3000 Grouper.insert(cast<InvokeInst>(PredBB->getTerminator())); 3001 3002 // And now, merge `invoke`s that were grouped togeter. 3003 for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) { 3004 if (Invokes.size() < 2) 3005 continue; 3006 Changed = true; 3007 mergeCompatibleInvokesImpl(Invokes, DTU); 3008 } 3009 3010 return Changed; 3011 } 3012 3013 namespace { 3014 /// Track ephemeral values, which should be ignored for cost-modelling 3015 /// purposes. Requires walking instructions in reverse order. 3016 class EphemeralValueTracker { 3017 SmallPtrSet<const Instruction *, 32> EphValues; 3018 3019 bool isEphemeral(const Instruction *I) { 3020 if (isa<AssumeInst>(I)) 3021 return true; 3022 return !I->mayHaveSideEffects() && !I->isTerminator() && 3023 all_of(I->users(), [&](const User *U) { 3024 return EphValues.count(cast<Instruction>(U)); 3025 }); 3026 } 3027 3028 public: 3029 bool track(const Instruction *I) { 3030 if (isEphemeral(I)) { 3031 EphValues.insert(I); 3032 return true; 3033 } 3034 return false; 3035 } 3036 3037 bool contains(const Instruction *I) const { return EphValues.contains(I); } 3038 }; 3039 } // namespace 3040 3041 /// Determine if we can hoist sink a sole store instruction out of a 3042 /// conditional block. 3043 /// 3044 /// We are looking for code like the following: 3045 /// BrBB: 3046 /// store i32 %add, i32* %arrayidx2 3047 /// ... // No other stores or function calls (we could be calling a memory 3048 /// ... // function). 3049 /// %cmp = icmp ult %x, %y 3050 /// br i1 %cmp, label %EndBB, label %ThenBB 3051 /// ThenBB: 3052 /// store i32 %add5, i32* %arrayidx2 3053 /// br label EndBB 3054 /// EndBB: 3055 /// ... 3056 /// We are going to transform this into: 3057 /// BrBB: 3058 /// store i32 %add, i32* %arrayidx2 3059 /// ... // 3060 /// %cmp = icmp ult %x, %y 3061 /// %add.add5 = select i1 %cmp, i32 %add, %add5 3062 /// store i32 %add.add5, i32* %arrayidx2 3063 /// ... 3064 /// 3065 /// \return The pointer to the value of the previous store if the store can be 3066 /// hoisted into the predecessor block. 0 otherwise. 3067 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, 3068 BasicBlock *StoreBB, BasicBlock *EndBB) { 3069 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); 3070 if (!StoreToHoist) 3071 return nullptr; 3072 3073 // Volatile or atomic. 3074 if (!StoreToHoist->isSimple()) 3075 return nullptr; 3076 3077 Value *StorePtr = StoreToHoist->getPointerOperand(); 3078 Type *StoreTy = StoreToHoist->getValueOperand()->getType(); 3079 3080 // Look for a store to the same pointer in BrBB. 3081 unsigned MaxNumInstToLookAt = 9; 3082 // Skip pseudo probe intrinsic calls which are not really killing any memory 3083 // accesses. 3084 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) { 3085 if (!MaxNumInstToLookAt) 3086 break; 3087 --MaxNumInstToLookAt; 3088 3089 // Could be calling an instruction that affects memory like free(). 3090 if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI)) 3091 return nullptr; 3092 3093 if (auto *SI = dyn_cast<StoreInst>(&CurI)) { 3094 // Found the previous store to same location and type. Make sure it is 3095 // simple, to avoid introducing a spurious non-atomic write after an 3096 // atomic write. 3097 if (SI->getPointerOperand() == StorePtr && 3098 SI->getValueOperand()->getType() == StoreTy && SI->isSimple() && 3099 SI->getAlign() >= StoreToHoist->getAlign()) 3100 // Found the previous store, return its value operand. 3101 return SI->getValueOperand(); 3102 return nullptr; // Unknown store. 3103 } 3104 3105 if (auto *LI = dyn_cast<LoadInst>(&CurI)) { 3106 if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy && 3107 LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) { 3108 Value *Obj = getUnderlyingObject(StorePtr); 3109 bool ExplicitlyDereferenceableOnly; 3110 if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) && 3111 !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false, 3112 /*StoreCaptures=*/true) && 3113 (!ExplicitlyDereferenceableOnly || 3114 isDereferenceablePointer(StorePtr, StoreTy, 3115 LI->getDataLayout()))) { 3116 // Found a previous load, return it. 3117 return LI; 3118 } 3119 } 3120 // The load didn't work out, but we may still find a store. 3121 } 3122 } 3123 3124 return nullptr; 3125 } 3126 3127 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be 3128 /// converted to selects. 3129 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB, 3130 BasicBlock *EndBB, 3131 unsigned &SpeculatedInstructions, 3132 InstructionCost &Cost, 3133 const TargetTransformInfo &TTI) { 3134 TargetTransformInfo::TargetCostKind CostKind = 3135 BB->getParent()->hasMinSize() 3136 ? TargetTransformInfo::TCK_CodeSize 3137 : TargetTransformInfo::TCK_SizeAndLatency; 3138 3139 bool HaveRewritablePHIs = false; 3140 for (PHINode &PN : EndBB->phis()) { 3141 Value *OrigV = PN.getIncomingValueForBlock(BB); 3142 Value *ThenV = PN.getIncomingValueForBlock(ThenBB); 3143 3144 // FIXME: Try to remove some of the duplication with 3145 // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial. 3146 if (ThenV == OrigV) 3147 continue; 3148 3149 Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr, 3150 CmpInst::BAD_ICMP_PREDICATE, CostKind); 3151 3152 // Don't convert to selects if we could remove undefined behavior instead. 3153 if (passingValueIsAlwaysUndefined(OrigV, &PN) || 3154 passingValueIsAlwaysUndefined(ThenV, &PN)) 3155 return false; 3156 3157 HaveRewritablePHIs = true; 3158 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); 3159 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); 3160 if (!OrigCE && !ThenCE) 3161 continue; // Known cheap (FIXME: Maybe not true for aggregates). 3162 3163 InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0; 3164 InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0; 3165 InstructionCost MaxCost = 3166 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3167 if (OrigCost + ThenCost > MaxCost) 3168 return false; 3169 3170 // Account for the cost of an unfolded ConstantExpr which could end up 3171 // getting expanded into Instructions. 3172 // FIXME: This doesn't account for how many operations are combined in the 3173 // constant expression. 3174 ++SpeculatedInstructions; 3175 if (SpeculatedInstructions > 1) 3176 return false; 3177 } 3178 3179 return HaveRewritablePHIs; 3180 } 3181 3182 static bool isProfitableToSpeculate(const BranchInst *BI, 3183 std::optional<bool> Invert, 3184 const TargetTransformInfo &TTI) { 3185 // If the branch is non-unpredictable, and is predicted to *not* branch to 3186 // the `then` block, then avoid speculating it. 3187 if (BI->getMetadata(LLVMContext::MD_unpredictable)) 3188 return true; 3189 3190 uint64_t TWeight, FWeight; 3191 if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0) 3192 return true; 3193 3194 if (!Invert.has_value()) 3195 return false; 3196 3197 uint64_t EndWeight = *Invert ? TWeight : FWeight; 3198 BranchProbability BIEndProb = 3199 BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight); 3200 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3201 return BIEndProb < Likely; 3202 } 3203 3204 /// Speculate a conditional basic block flattening the CFG. 3205 /// 3206 /// Note that this is a very risky transform currently. Speculating 3207 /// instructions like this is most often not desirable. Instead, there is an MI 3208 /// pass which can do it with full awareness of the resource constraints. 3209 /// However, some cases are "obvious" and we should do directly. An example of 3210 /// this is speculating a single, reasonably cheap instruction. 3211 /// 3212 /// There is only one distinct advantage to flattening the CFG at the IR level: 3213 /// it makes very common but simplistic optimizations such as are common in 3214 /// instcombine and the DAG combiner more powerful by removing CFG edges and 3215 /// modeling their effects with easier to reason about SSA value graphs. 3216 /// 3217 /// 3218 /// An illustration of this transform is turning this IR: 3219 /// \code 3220 /// BB: 3221 /// %cmp = icmp ult %x, %y 3222 /// br i1 %cmp, label %EndBB, label %ThenBB 3223 /// ThenBB: 3224 /// %sub = sub %x, %y 3225 /// br label BB2 3226 /// EndBB: 3227 /// %phi = phi [ %sub, %ThenBB ], [ 0, %BB ] 3228 /// ... 3229 /// \endcode 3230 /// 3231 /// Into this IR: 3232 /// \code 3233 /// BB: 3234 /// %cmp = icmp ult %x, %y 3235 /// %sub = sub %x, %y 3236 /// %cond = select i1 %cmp, 0, %sub 3237 /// ... 3238 /// \endcode 3239 /// 3240 /// \returns true if the conditional block is removed. 3241 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI, 3242 BasicBlock *ThenBB) { 3243 if (!Options.SpeculateBlocks) 3244 return false; 3245 3246 // Be conservative for now. FP select instruction can often be expensive. 3247 Value *BrCond = BI->getCondition(); 3248 if (isa<FCmpInst>(BrCond)) 3249 return false; 3250 3251 BasicBlock *BB = BI->getParent(); 3252 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); 3253 InstructionCost Budget = 3254 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3255 3256 // If ThenBB is actually on the false edge of the conditional branch, remember 3257 // to swap the select operands later. 3258 bool Invert = false; 3259 if (ThenBB != BI->getSuccessor(0)) { 3260 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); 3261 Invert = true; 3262 } 3263 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); 3264 3265 if (!isProfitableToSpeculate(BI, Invert, TTI)) 3266 return false; 3267 3268 // Keep a count of how many times instructions are used within ThenBB when 3269 // they are candidates for sinking into ThenBB. Specifically: 3270 // - They are defined in BB, and 3271 // - They have no side effects, and 3272 // - All of their uses are in ThenBB. 3273 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; 3274 3275 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; 3276 3277 unsigned SpeculatedInstructions = 0; 3278 bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting && 3279 Options.HoistLoadsStoresWithCondFaulting; 3280 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 3281 Value *SpeculatedStoreValue = nullptr; 3282 StoreInst *SpeculatedStore = nullptr; 3283 EphemeralValueTracker EphTracker; 3284 for (Instruction &I : reverse(drop_end(*ThenBB))) { 3285 // Skip debug info. 3286 if (isa<DbgInfoIntrinsic>(I)) { 3287 SpeculatedDbgIntrinsics.push_back(&I); 3288 continue; 3289 } 3290 3291 // Skip pseudo probes. The consequence is we lose track of the branch 3292 // probability for ThenBB, which is fine since the optimization here takes 3293 // place regardless of the branch probability. 3294 if (isa<PseudoProbeInst>(I)) { 3295 // The probe should be deleted so that it will not be over-counted when 3296 // the samples collected on the non-conditional path are counted towards 3297 // the conditional path. We leave it for the counts inference algorithm to 3298 // figure out a proper count for an unknown probe. 3299 SpeculatedDbgIntrinsics.push_back(&I); 3300 continue; 3301 } 3302 3303 // Ignore ephemeral values, they will be dropped by the transform. 3304 if (EphTracker.track(&I)) 3305 continue; 3306 3307 // Only speculatively execute a single instruction (not counting the 3308 // terminator) for now. 3309 bool IsSafeCheapLoadStore = HoistLoadsStores && 3310 isSafeCheapLoadStore(&I, TTI) && 3311 SpeculatedConditionalLoadsStores.size() < 3312 HoistLoadsStoresWithCondFaultingThreshold; 3313 // Not count load/store into cost if target supports conditional faulting 3314 // b/c it's cheap to speculate it. 3315 if (IsSafeCheapLoadStore) 3316 SpeculatedConditionalLoadsStores.push_back(&I); 3317 else 3318 ++SpeculatedInstructions; 3319 3320 if (SpeculatedInstructions > 1) 3321 return false; 3322 3323 // Don't hoist the instruction if it's unsafe or expensive. 3324 if (!IsSafeCheapLoadStore && 3325 !isSafeToSpeculativelyExecute(&I, BI, Options.AC) && 3326 !(HoistCondStores && !SpeculatedStoreValue && 3327 (SpeculatedStoreValue = 3328 isSafeToSpeculateStore(&I, BB, ThenBB, EndBB)))) 3329 return false; 3330 if (!IsSafeCheapLoadStore && !SpeculatedStoreValue && 3331 computeSpeculationCost(&I, TTI) > 3332 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) 3333 return false; 3334 3335 // Store the store speculation candidate. 3336 if (!SpeculatedStore && SpeculatedStoreValue) 3337 SpeculatedStore = cast<StoreInst>(&I); 3338 3339 // Do not hoist the instruction if any of its operands are defined but not 3340 // used in BB. The transformation will prevent the operand from 3341 // being sunk into the use block. 3342 for (Use &Op : I.operands()) { 3343 Instruction *OpI = dyn_cast<Instruction>(Op); 3344 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) 3345 continue; // Not a candidate for sinking. 3346 3347 ++SinkCandidateUseCounts[OpI]; 3348 } 3349 } 3350 3351 // Consider any sink candidates which are only used in ThenBB as costs for 3352 // speculation. Note, while we iterate over a DenseMap here, we are summing 3353 // and so iteration order isn't significant. 3354 for (const auto &[Inst, Count] : SinkCandidateUseCounts) 3355 if (Inst->hasNUses(Count)) { 3356 ++SpeculatedInstructions; 3357 if (SpeculatedInstructions > 1) 3358 return false; 3359 } 3360 3361 // Check that we can insert the selects and that it's not too expensive to do 3362 // so. 3363 bool Convert = 3364 SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty(); 3365 InstructionCost Cost = 0; 3366 Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB, 3367 SpeculatedInstructions, Cost, TTI); 3368 if (!Convert || Cost > Budget) 3369 return false; 3370 3371 // If we get here, we can hoist the instruction and if-convert. 3372 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); 3373 3374 // Insert a select of the value of the speculated store. 3375 if (SpeculatedStoreValue) { 3376 IRBuilder<NoFolder> Builder(BI); 3377 Value *OrigV = SpeculatedStore->getValueOperand(); 3378 Value *TrueV = SpeculatedStore->getValueOperand(); 3379 Value *FalseV = SpeculatedStoreValue; 3380 if (Invert) 3381 std::swap(TrueV, FalseV); 3382 Value *S = Builder.CreateSelect( 3383 BrCond, TrueV, FalseV, "spec.store.select", BI); 3384 SpeculatedStore->setOperand(0, S); 3385 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), 3386 SpeculatedStore->getDebugLoc()); 3387 // The value stored is still conditional, but the store itself is now 3388 // unconditonally executed, so we must be sure that any linked dbg.assign 3389 // intrinsics are tracking the new stored value (the result of the 3390 // select). If we don't, and the store were to be removed by another pass 3391 // (e.g. DSE), then we'd eventually end up emitting a location describing 3392 // the conditional value, unconditionally. 3393 // 3394 // === Before this transformation === 3395 // pred: 3396 // store %one, %x.dest, !DIAssignID !1 3397 // dbg.assign %one, "x", ..., !1, ... 3398 // br %cond if.then 3399 // 3400 // if.then: 3401 // store %two, %x.dest, !DIAssignID !2 3402 // dbg.assign %two, "x", ..., !2, ... 3403 // 3404 // === After this transformation === 3405 // pred: 3406 // store %one, %x.dest, !DIAssignID !1 3407 // dbg.assign %one, "x", ..., !1 3408 /// ... 3409 // %merge = select %cond, %two, %one 3410 // store %merge, %x.dest, !DIAssignID !2 3411 // dbg.assign %merge, "x", ..., !2 3412 auto replaceVariable = [OrigV, S](auto *DbgAssign) { 3413 if (llvm::is_contained(DbgAssign->location_ops(), OrigV)) 3414 DbgAssign->replaceVariableLocationOp(OrigV, S); 3415 }; 3416 for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable); 3417 for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable); 3418 } 3419 3420 // Metadata can be dependent on the condition we are hoisting above. 3421 // Strip all UB-implying metadata on the instruction. Drop the debug loc 3422 // to avoid making it appear as if the condition is a constant, which would 3423 // be misleading while debugging. 3424 // Similarly strip attributes that maybe dependent on condition we are 3425 // hoisting above. 3426 for (auto &I : make_early_inc_range(*ThenBB)) { 3427 if (!SpeculatedStoreValue || &I != SpeculatedStore) { 3428 // Don't update the DILocation of dbg.assign intrinsics. 3429 if (!isa<DbgAssignIntrinsic>(&I)) 3430 I.setDebugLoc(DebugLoc()); 3431 } 3432 I.dropUBImplyingAttrsAndMetadata(); 3433 3434 // Drop ephemeral values. 3435 if (EphTracker.contains(&I)) { 3436 I.replaceAllUsesWith(PoisonValue::get(I.getType())); 3437 I.eraseFromParent(); 3438 } 3439 } 3440 3441 // Hoist the instructions. 3442 // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached 3443 // to these instructions, in the same way that dbg.value intrinsics are 3444 // dropped at the end of this block. 3445 for (auto &It : make_range(ThenBB->begin(), ThenBB->end())) 3446 for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange())) 3447 // Drop all records except assign-kind DbgVariableRecords (dbg.assign 3448 // equivalent). 3449 if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR); 3450 !DVR || !DVR->isDbgAssign()) 3451 It.dropOneDbgRecord(&DR); 3452 BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(), 3453 std::prev(ThenBB->end())); 3454 3455 if (!SpeculatedConditionalLoadsStores.empty()) 3456 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert); 3457 3458 // Insert selects and rewrite the PHI operands. 3459 IRBuilder<NoFolder> Builder(BI); 3460 for (PHINode &PN : EndBB->phis()) { 3461 unsigned OrigI = PN.getBasicBlockIndex(BB); 3462 unsigned ThenI = PN.getBasicBlockIndex(ThenBB); 3463 Value *OrigV = PN.getIncomingValue(OrigI); 3464 Value *ThenV = PN.getIncomingValue(ThenI); 3465 3466 // Skip PHIs which are trivial. 3467 if (OrigV == ThenV) 3468 continue; 3469 3470 // Create a select whose true value is the speculatively executed value and 3471 // false value is the pre-existing value. Swap them if the branch 3472 // destinations were inverted. 3473 Value *TrueV = ThenV, *FalseV = OrigV; 3474 if (Invert) 3475 std::swap(TrueV, FalseV); 3476 Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI); 3477 PN.setIncomingValue(OrigI, V); 3478 PN.setIncomingValue(ThenI, V); 3479 } 3480 3481 // Remove speculated dbg intrinsics. 3482 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the 3483 // dbg value for the different flows and inserting it after the select. 3484 for (Instruction *I : SpeculatedDbgIntrinsics) { 3485 // We still want to know that an assignment took place so don't remove 3486 // dbg.assign intrinsics. 3487 if (!isa<DbgAssignIntrinsic>(I)) 3488 I->eraseFromParent(); 3489 } 3490 3491 ++NumSpeculations; 3492 return true; 3493 } 3494 3495 /// Return true if we can thread a branch across this block. 3496 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { 3497 int Size = 0; 3498 EphemeralValueTracker EphTracker; 3499 3500 // Walk the loop in reverse so that we can identify ephemeral values properly 3501 // (values only feeding assumes). 3502 for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) { 3503 // Can't fold blocks that contain noduplicate or convergent calls. 3504 if (CallInst *CI = dyn_cast<CallInst>(&I)) 3505 if (CI->cannotDuplicate() || CI->isConvergent()) 3506 return false; 3507 3508 // Ignore ephemeral values which are deleted during codegen. 3509 // We will delete Phis while threading, so Phis should not be accounted in 3510 // block's size. 3511 if (!EphTracker.track(&I) && !isa<PHINode>(I)) { 3512 if (Size++ > MaxSmallBlockSize) 3513 return false; // Don't clone large BB's. 3514 } 3515 3516 // We can only support instructions that do not define values that are 3517 // live outside of the current basic block. 3518 for (User *U : I.users()) { 3519 Instruction *UI = cast<Instruction>(U); 3520 if (UI->getParent() != BB || isa<PHINode>(UI)) 3521 return false; 3522 } 3523 3524 // Looks ok, continue checking. 3525 } 3526 3527 return true; 3528 } 3529 3530 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From, 3531 BasicBlock *To) { 3532 // Don't look past the block defining the value, we might get the value from 3533 // a previous loop iteration. 3534 auto *I = dyn_cast<Instruction>(V); 3535 if (I && I->getParent() == To) 3536 return nullptr; 3537 3538 // We know the value if the From block branches on it. 3539 auto *BI = dyn_cast<BranchInst>(From->getTerminator()); 3540 if (BI && BI->isConditional() && BI->getCondition() == V && 3541 BI->getSuccessor(0) != BI->getSuccessor(1)) 3542 return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext()) 3543 : ConstantInt::getFalse(BI->getContext()); 3544 3545 return nullptr; 3546 } 3547 3548 /// If we have a conditional branch on something for which we know the constant 3549 /// value in predecessors (e.g. a phi node in the current block), thread edges 3550 /// from the predecessor to their ultimate destination. 3551 static std::optional<bool> 3552 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU, 3553 const DataLayout &DL, 3554 AssumptionCache *AC) { 3555 SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues; 3556 BasicBlock *BB = BI->getParent(); 3557 Value *Cond = BI->getCondition(); 3558 PHINode *PN = dyn_cast<PHINode>(Cond); 3559 if (PN && PN->getParent() == BB) { 3560 // Degenerate case of a single entry PHI. 3561 if (PN->getNumIncomingValues() == 1) { 3562 FoldSingleEntryPHINodes(PN->getParent()); 3563 return true; 3564 } 3565 3566 for (Use &U : PN->incoming_values()) 3567 if (auto *CB = dyn_cast<ConstantInt>(U)) 3568 KnownValues[CB].insert(PN->getIncomingBlock(U)); 3569 } else { 3570 for (BasicBlock *Pred : predecessors(BB)) { 3571 if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB)) 3572 KnownValues[CB].insert(Pred); 3573 } 3574 } 3575 3576 if (KnownValues.empty()) 3577 return false; 3578 3579 // Now we know that this block has multiple preds and two succs. 3580 // Check that the block is small enough and values defined in the block are 3581 // not used outside of it. 3582 if (!blockIsSimpleEnoughToThreadThrough(BB)) 3583 return false; 3584 3585 for (const auto &Pair : KnownValues) { 3586 // Okay, we now know that all edges from PredBB should be revectored to 3587 // branch to RealDest. 3588 ConstantInt *CB = Pair.first; 3589 ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef(); 3590 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); 3591 3592 if (RealDest == BB) 3593 continue; // Skip self loops. 3594 3595 // Skip if the predecessor's terminator is an indirect branch. 3596 if (any_of(PredBBs, [](BasicBlock *PredBB) { 3597 return isa<IndirectBrInst>(PredBB->getTerminator()); 3598 })) 3599 continue; 3600 3601 LLVM_DEBUG({ 3602 dbgs() << "Condition " << *Cond << " in " << BB->getName() 3603 << " has value " << *Pair.first << " in predecessors:\n"; 3604 for (const BasicBlock *PredBB : Pair.second) 3605 dbgs() << " " << PredBB->getName() << "\n"; 3606 dbgs() << "Threading to destination " << RealDest->getName() << ".\n"; 3607 }); 3608 3609 // Split the predecessors we are threading into a new edge block. We'll 3610 // clone the instructions into this block, and then redirect it to RealDest. 3611 BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU); 3612 3613 // TODO: These just exist to reduce test diff, we can drop them if we like. 3614 EdgeBB->setName(RealDest->getName() + ".critedge"); 3615 EdgeBB->moveBefore(RealDest); 3616 3617 // Update PHI nodes. 3618 addPredecessorToBlock(RealDest, EdgeBB, BB); 3619 3620 // BB may have instructions that are being threaded over. Clone these 3621 // instructions into EdgeBB. We know that there will be no uses of the 3622 // cloned instructions outside of EdgeBB. 3623 BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt(); 3624 DenseMap<Value *, Value *> TranslateMap; // Track translated values. 3625 TranslateMap[Cond] = CB; 3626 3627 // RemoveDIs: track instructions that we optimise away while folding, so 3628 // that we can copy DbgVariableRecords from them later. 3629 BasicBlock::iterator SrcDbgCursor = BB->begin(); 3630 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { 3631 if (PHINode *PN = dyn_cast<PHINode>(BBI)) { 3632 TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB); 3633 continue; 3634 } 3635 // Clone the instruction. 3636 Instruction *N = BBI->clone(); 3637 // Insert the new instruction into its new home. 3638 N->insertInto(EdgeBB, InsertPt); 3639 3640 if (BBI->hasName()) 3641 N->setName(BBI->getName() + ".c"); 3642 3643 // Update operands due to translation. 3644 for (Use &Op : N->operands()) { 3645 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op); 3646 if (PI != TranslateMap.end()) 3647 Op = PI->second; 3648 } 3649 3650 // Check for trivial simplification. 3651 if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) { 3652 if (!BBI->use_empty()) 3653 TranslateMap[&*BBI] = V; 3654 if (!N->mayHaveSideEffects()) { 3655 N->eraseFromParent(); // Instruction folded away, don't need actual 3656 // inst 3657 N = nullptr; 3658 } 3659 } else { 3660 if (!BBI->use_empty()) 3661 TranslateMap[&*BBI] = N; 3662 } 3663 if (N) { 3664 // Copy all debug-info attached to instructions from the last we 3665 // successfully clone, up to this instruction (they might have been 3666 // folded away). 3667 for (; SrcDbgCursor != BBI; ++SrcDbgCursor) 3668 N->cloneDebugInfoFrom(&*SrcDbgCursor); 3669 SrcDbgCursor = std::next(BBI); 3670 // Clone debug-info on this instruction too. 3671 N->cloneDebugInfoFrom(&*BBI); 3672 3673 // Register the new instruction with the assumption cache if necessary. 3674 if (auto *Assume = dyn_cast<AssumeInst>(N)) 3675 if (AC) 3676 AC->registerAssumption(Assume); 3677 } 3678 } 3679 3680 for (; &*SrcDbgCursor != BI; ++SrcDbgCursor) 3681 InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor); 3682 InsertPt->cloneDebugInfoFrom(BI); 3683 3684 BB->removePredecessor(EdgeBB); 3685 BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator()); 3686 EdgeBI->setSuccessor(0, RealDest); 3687 EdgeBI->setDebugLoc(BI->getDebugLoc()); 3688 3689 if (DTU) { 3690 SmallVector<DominatorTree::UpdateType, 2> Updates; 3691 Updates.push_back({DominatorTree::Delete, EdgeBB, BB}); 3692 Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest}); 3693 DTU->applyUpdates(Updates); 3694 } 3695 3696 // For simplicity, we created a separate basic block for the edge. Merge 3697 // it back into the predecessor if possible. This not only avoids 3698 // unnecessary SimplifyCFG iterations, but also makes sure that we don't 3699 // bypass the check for trivial cycles above. 3700 MergeBlockIntoPredecessor(EdgeBB, DTU); 3701 3702 // Signal repeat, simplifying any other constants. 3703 return std::nullopt; 3704 } 3705 3706 return false; 3707 } 3708 3709 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI, 3710 DomTreeUpdater *DTU, 3711 const DataLayout &DL, 3712 AssumptionCache *AC) { 3713 std::optional<bool> Result; 3714 bool EverChanged = false; 3715 do { 3716 // Note that None means "we changed things, but recurse further." 3717 Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC); 3718 EverChanged |= Result == std::nullopt || *Result; 3719 } while (Result == std::nullopt); 3720 return EverChanged; 3721 } 3722 3723 /// Given a BB that starts with the specified two-entry PHI node, 3724 /// see if we can eliminate it. 3725 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, 3726 DomTreeUpdater *DTU, AssumptionCache *AC, 3727 const DataLayout &DL, 3728 bool SpeculateUnpredictables) { 3729 // Ok, this is a two entry PHI node. Check to see if this is a simple "if 3730 // statement", which has a very simple dominance structure. Basically, we 3731 // are trying to find the condition that is being branched on, which 3732 // subsequently causes this merge to happen. We really want control 3733 // dependence information for this check, but simplifycfg can't keep it up 3734 // to date, and this catches most of the cases we care about anyway. 3735 BasicBlock *BB = PN->getParent(); 3736 3737 BasicBlock *IfTrue, *IfFalse; 3738 BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse); 3739 if (!DomBI) 3740 return false; 3741 Value *IfCond = DomBI->getCondition(); 3742 // Don't bother if the branch will be constant folded trivially. 3743 if (isa<ConstantInt>(IfCond)) 3744 return false; 3745 3746 BasicBlock *DomBlock = DomBI->getParent(); 3747 SmallVector<BasicBlock *, 2> IfBlocks; 3748 llvm::copy_if( 3749 PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) { 3750 return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional(); 3751 }); 3752 assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) && 3753 "Will have either one or two blocks to speculate."); 3754 3755 // If the branch is non-unpredictable, see if we either predictably jump to 3756 // the merge bb (if we have only a single 'then' block), or if we predictably 3757 // jump to one specific 'then' block (if we have two of them). 3758 // It isn't beneficial to speculatively execute the code 3759 // from the block that we know is predictably not entered. 3760 bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable); 3761 if (!IsUnpredictable) { 3762 uint64_t TWeight, FWeight; 3763 if (extractBranchWeights(*DomBI, TWeight, FWeight) && 3764 (TWeight + FWeight) != 0) { 3765 BranchProbability BITrueProb = 3766 BranchProbability::getBranchProbability(TWeight, TWeight + FWeight); 3767 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 3768 BranchProbability BIFalseProb = BITrueProb.getCompl(); 3769 if (IfBlocks.size() == 1) { 3770 BranchProbability BIBBProb = 3771 DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb; 3772 if (BIBBProb >= Likely) 3773 return false; 3774 } else { 3775 if (BITrueProb >= Likely || BIFalseProb >= Likely) 3776 return false; 3777 } 3778 } 3779 } 3780 3781 // Don't try to fold an unreachable block. For example, the phi node itself 3782 // can't be the candidate if-condition for a select that we want to form. 3783 if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond)) 3784 if (IfCondPhiInst->getParent() == BB) 3785 return false; 3786 3787 // Okay, we found that we can merge this two-entry phi node into a select. 3788 // Doing so would require us to fold *all* two entry phi nodes in this block. 3789 // At some point this becomes non-profitable (particularly if the target 3790 // doesn't support cmov's). Only do this transformation if there are two or 3791 // fewer PHI nodes in this block. 3792 unsigned NumPhis = 0; 3793 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) 3794 if (NumPhis > 2) 3795 return false; 3796 3797 // Loop over the PHI's seeing if we can promote them all to select 3798 // instructions. While we are at it, keep track of the instructions 3799 // that need to be moved to the dominating block. 3800 SmallPtrSet<Instruction *, 4> AggressiveInsts; 3801 InstructionCost Cost = 0; 3802 InstructionCost Budget = 3803 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 3804 if (SpeculateUnpredictables && IsUnpredictable) 3805 Budget += TTI.getBranchMispredictPenalty(); 3806 3807 bool Changed = false; 3808 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { 3809 PHINode *PN = cast<PHINode>(II++); 3810 if (Value *V = simplifyInstruction(PN, {DL, PN})) { 3811 PN->replaceAllUsesWith(V); 3812 PN->eraseFromParent(); 3813 Changed = true; 3814 continue; 3815 } 3816 3817 if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI, 3818 AggressiveInsts, Cost, Budget, TTI, AC) || 3819 !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI, 3820 AggressiveInsts, Cost, Budget, TTI, AC)) 3821 return Changed; 3822 } 3823 3824 // If we folded the first phi, PN dangles at this point. Refresh it. If 3825 // we ran out of PHIs then we simplified them all. 3826 PN = dyn_cast<PHINode>(BB->begin()); 3827 if (!PN) 3828 return true; 3829 3830 // Return true if at least one of these is a 'not', and another is either 3831 // a 'not' too, or a constant. 3832 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) { 3833 if (!match(V0, m_Not(m_Value()))) 3834 std::swap(V0, V1); 3835 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant()); 3836 return match(V0, m_Not(m_Value())) && match(V1, Invertible); 3837 }; 3838 3839 // Don't fold i1 branches on PHIs which contain binary operators or 3840 // (possibly inverted) select form of or/ands, unless one of 3841 // the incoming values is an 'not' and another one is freely invertible. 3842 // These can often be turned into switches and other things. 3843 auto IsBinOpOrAnd = [](Value *V) { 3844 return match( 3845 V, m_CombineOr( 3846 m_BinOp(), 3847 m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()), 3848 m_Select(m_Value(), m_Value(), m_ImmConstant())))); 3849 }; 3850 if (PN->getType()->isIntegerTy(1) && 3851 (IsBinOpOrAnd(PN->getIncomingValue(0)) || 3852 IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) && 3853 !CanHoistNotFromBothValues(PN->getIncomingValue(0), 3854 PN->getIncomingValue(1))) 3855 return Changed; 3856 3857 // If all PHI nodes are promotable, check to make sure that all instructions 3858 // in the predecessor blocks can be promoted as well. If not, we won't be able 3859 // to get rid of the control flow, so it's not worth promoting to select 3860 // instructions. 3861 for (BasicBlock *IfBlock : IfBlocks) 3862 for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I) 3863 if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) { 3864 // This is not an aggressive instruction that we can promote. 3865 // Because of this, we won't be able to get rid of the control flow, so 3866 // the xform is not worth it. 3867 return Changed; 3868 } 3869 3870 // If either of the blocks has it's address taken, we can't do this fold. 3871 if (any_of(IfBlocks, 3872 [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); })) 3873 return Changed; 3874 3875 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond; 3876 if (IsUnpredictable) dbgs() << " (unpredictable)"; 3877 dbgs() << " T: " << IfTrue->getName() 3878 << " F: " << IfFalse->getName() << "\n"); 3879 3880 // If we can still promote the PHI nodes after this gauntlet of tests, 3881 // do all of the PHI's now. 3882 3883 // Move all 'aggressive' instructions, which are defined in the 3884 // conditional parts of the if's up to the dominating block. 3885 for (BasicBlock *IfBlock : IfBlocks) 3886 hoistAllInstructionsInto(DomBlock, DomBI, IfBlock); 3887 3888 IRBuilder<NoFolder> Builder(DomBI); 3889 // Propagate fast-math-flags from phi nodes to replacement selects. 3890 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder); 3891 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 3892 if (isa<FPMathOperator>(PN)) 3893 Builder.setFastMathFlags(PN->getFastMathFlags()); 3894 3895 // Change the PHI node into a select instruction. 3896 Value *TrueVal = PN->getIncomingValueForBlock(IfTrue); 3897 Value *FalseVal = PN->getIncomingValueForBlock(IfFalse); 3898 3899 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI); 3900 PN->replaceAllUsesWith(Sel); 3901 Sel->takeName(PN); 3902 PN->eraseFromParent(); 3903 } 3904 3905 // At this point, all IfBlocks are empty, so our if statement 3906 // has been flattened. Change DomBlock to jump directly to our new block to 3907 // avoid other simplifycfg's kicking in on the diamond. 3908 Builder.CreateBr(BB); 3909 3910 SmallVector<DominatorTree::UpdateType, 3> Updates; 3911 if (DTU) { 3912 Updates.push_back({DominatorTree::Insert, DomBlock, BB}); 3913 for (auto *Successor : successors(DomBlock)) 3914 Updates.push_back({DominatorTree::Delete, DomBlock, Successor}); 3915 } 3916 3917 DomBI->eraseFromParent(); 3918 if (DTU) 3919 DTU->applyUpdates(Updates); 3920 3921 return true; 3922 } 3923 3924 static Value *createLogicalOp(IRBuilderBase &Builder, 3925 Instruction::BinaryOps Opc, Value *LHS, 3926 Value *RHS, const Twine &Name = "") { 3927 // Try to relax logical op to binary op. 3928 if (impliesPoison(RHS, LHS)) 3929 return Builder.CreateBinOp(Opc, LHS, RHS, Name); 3930 if (Opc == Instruction::And) 3931 return Builder.CreateLogicalAnd(LHS, RHS, Name); 3932 if (Opc == Instruction::Or) 3933 return Builder.CreateLogicalOr(LHS, RHS, Name); 3934 llvm_unreachable("Invalid logical opcode"); 3935 } 3936 3937 /// Return true if either PBI or BI has branch weight available, and store 3938 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does 3939 /// not have branch weight, use 1:1 as its weight. 3940 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, 3941 uint64_t &PredTrueWeight, 3942 uint64_t &PredFalseWeight, 3943 uint64_t &SuccTrueWeight, 3944 uint64_t &SuccFalseWeight) { 3945 bool PredHasWeights = 3946 extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight); 3947 bool SuccHasWeights = 3948 extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight); 3949 if (PredHasWeights || SuccHasWeights) { 3950 if (!PredHasWeights) 3951 PredTrueWeight = PredFalseWeight = 1; 3952 if (!SuccHasWeights) 3953 SuccTrueWeight = SuccFalseWeight = 1; 3954 return true; 3955 } else { 3956 return false; 3957 } 3958 } 3959 3960 /// Determine if the two branches share a common destination and deduce a glue 3961 /// that joins the branches' conditions to arrive at the common destination if 3962 /// that would be profitable. 3963 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>> 3964 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI, 3965 const TargetTransformInfo *TTI) { 3966 assert(BI && PBI && BI->isConditional() && PBI->isConditional() && 3967 "Both blocks must end with a conditional branches."); 3968 assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) && 3969 "PredBB must be a predecessor of BB."); 3970 3971 // We have the potential to fold the conditions together, but if the 3972 // predecessor branch is predictable, we may not want to merge them. 3973 uint64_t PTWeight, PFWeight; 3974 BranchProbability PBITrueProb, Likely; 3975 if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) && 3976 extractBranchWeights(*PBI, PTWeight, PFWeight) && 3977 (PTWeight + PFWeight) != 0) { 3978 PBITrueProb = 3979 BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight); 3980 Likely = TTI->getPredictableBranchThreshold(); 3981 } 3982 3983 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 3984 // Speculate the 2nd condition unless the 1st is probably true. 3985 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3986 return {{BI->getSuccessor(0), Instruction::Or, false}}; 3987 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 3988 // Speculate the 2nd condition unless the 1st is probably false. 3989 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3990 return {{BI->getSuccessor(1), Instruction::And, false}}; 3991 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 3992 // Speculate the 2nd condition unless the 1st is probably true. 3993 if (PBITrueProb.isUnknown() || PBITrueProb < Likely) 3994 return {{BI->getSuccessor(1), Instruction::And, true}}; 3995 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 3996 // Speculate the 2nd condition unless the 1st is probably false. 3997 if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely) 3998 return {{BI->getSuccessor(0), Instruction::Or, true}}; 3999 } 4000 return std::nullopt; 4001 } 4002 4003 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI, 4004 DomTreeUpdater *DTU, 4005 MemorySSAUpdater *MSSAU, 4006 const TargetTransformInfo *TTI) { 4007 BasicBlock *BB = BI->getParent(); 4008 BasicBlock *PredBlock = PBI->getParent(); 4009 4010 // Determine if the two branches share a common destination. 4011 BasicBlock *CommonSucc; 4012 Instruction::BinaryOps Opc; 4013 bool InvertPredCond; 4014 std::tie(CommonSucc, Opc, InvertPredCond) = 4015 *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI); 4016 4017 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); 4018 4019 IRBuilder<> Builder(PBI); 4020 // The builder is used to create instructions to eliminate the branch in BB. 4021 // If BB's terminator has !annotation metadata, add it to the new 4022 // instructions. 4023 Builder.CollectMetadataToCopy(BB->getTerminator(), 4024 {LLVMContext::MD_annotation}); 4025 4026 // If we need to invert the condition in the pred block to match, do so now. 4027 if (InvertPredCond) { 4028 InvertBranch(PBI, Builder); 4029 } 4030 4031 BasicBlock *UniqueSucc = 4032 PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1); 4033 4034 // Before cloning instructions, notify the successor basic block that it 4035 // is about to have a new predecessor. This will update PHI nodes, 4036 // which will allow us to update live-out uses of bonus instructions. 4037 addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU); 4038 4039 // Try to update branch weights. 4040 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4041 if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4042 SuccTrueWeight, SuccFalseWeight)) { 4043 SmallVector<uint64_t, 8> NewWeights; 4044 4045 if (PBI->getSuccessor(0) == BB) { 4046 // PBI: br i1 %x, BB, FalseDest 4047 // BI: br i1 %y, UniqueSucc, FalseDest 4048 // TrueWeight is TrueWeight for PBI * TrueWeight for BI. 4049 NewWeights.push_back(PredTrueWeight * SuccTrueWeight); 4050 // FalseWeight is FalseWeight for PBI * TotalWeight for BI + 4051 // TrueWeight for PBI * FalseWeight for BI. 4052 // We assume that total weights of a BranchInst can fit into 32 bits. 4053 // Therefore, we will not have overflow using 64-bit arithmetic. 4054 NewWeights.push_back(PredFalseWeight * 4055 (SuccFalseWeight + SuccTrueWeight) + 4056 PredTrueWeight * SuccFalseWeight); 4057 } else { 4058 // PBI: br i1 %x, TrueDest, BB 4059 // BI: br i1 %y, TrueDest, UniqueSucc 4060 // TrueWeight is TrueWeight for PBI * TotalWeight for BI + 4061 // FalseWeight for PBI * TrueWeight for BI. 4062 NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) + 4063 PredFalseWeight * SuccTrueWeight); 4064 // FalseWeight is FalseWeight for PBI * FalseWeight for BI. 4065 NewWeights.push_back(PredFalseWeight * SuccFalseWeight); 4066 } 4067 4068 // Halve the weights if any of them cannot fit in an uint32_t 4069 fitWeights(NewWeights); 4070 4071 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end()); 4072 setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false); 4073 4074 // TODO: If BB is reachable from all paths through PredBlock, then we 4075 // could replace PBI's branch probabilities with BI's. 4076 } else 4077 PBI->setMetadata(LLVMContext::MD_prof, nullptr); 4078 4079 // Now, update the CFG. 4080 PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc); 4081 4082 if (DTU) 4083 DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc}, 4084 {DominatorTree::Delete, PredBlock, BB}}); 4085 4086 // If BI was a loop latch, it may have had associated loop metadata. 4087 // We need to copy it to the new latch, that is, PBI. 4088 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) 4089 PBI->setMetadata(LLVMContext::MD_loop, LoopMD); 4090 4091 ValueToValueMapTy VMap; // maps original values to cloned values 4092 cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap); 4093 4094 Module *M = BB->getModule(); 4095 4096 if (PredBlock->IsNewDbgInfoFormat) { 4097 PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator()); 4098 for (DbgVariableRecord &DVR : 4099 filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) { 4100 RemapDbgRecord(M, &DVR, VMap, 4101 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 4102 } 4103 } 4104 4105 // Now that the Cond was cloned into the predecessor basic block, 4106 // or/and the two conditions together. 4107 Value *BICond = VMap[BI->getCondition()]; 4108 PBI->setCondition( 4109 createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond")); 4110 4111 ++NumFoldBranchToCommonDest; 4112 return true; 4113 } 4114 4115 /// Return if an instruction's type or any of its operands' types are a vector 4116 /// type. 4117 static bool isVectorOp(Instruction &I) { 4118 return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) { 4119 return U->getType()->isVectorTy(); 4120 }); 4121 } 4122 4123 /// If this basic block is simple enough, and if a predecessor branches to us 4124 /// and one of our successors, fold the block into the predecessor and use 4125 /// logical operations to pick the right destination. 4126 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU, 4127 MemorySSAUpdater *MSSAU, 4128 const TargetTransformInfo *TTI, 4129 unsigned BonusInstThreshold) { 4130 // If this block ends with an unconditional branch, 4131 // let speculativelyExecuteBB() deal with it. 4132 if (!BI->isConditional()) 4133 return false; 4134 4135 BasicBlock *BB = BI->getParent(); 4136 TargetTransformInfo::TargetCostKind CostKind = 4137 BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize 4138 : TargetTransformInfo::TCK_SizeAndLatency; 4139 4140 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 4141 4142 if (!Cond || 4143 (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) && 4144 !isa<SelectInst>(Cond)) || 4145 Cond->getParent() != BB || !Cond->hasOneUse()) 4146 return false; 4147 4148 // Finally, don't infinitely unroll conditional loops. 4149 if (is_contained(successors(BB), BB)) 4150 return false; 4151 4152 // With which predecessors will we want to deal with? 4153 SmallVector<BasicBlock *, 8> Preds; 4154 for (BasicBlock *PredBlock : predecessors(BB)) { 4155 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); 4156 4157 // Check that we have two conditional branches. If there is a PHI node in 4158 // the common successor, verify that the same value flows in from both 4159 // blocks. 4160 if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI)) 4161 continue; 4162 4163 // Determine if the two branches share a common destination. 4164 BasicBlock *CommonSucc; 4165 Instruction::BinaryOps Opc; 4166 bool InvertPredCond; 4167 if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI)) 4168 std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe; 4169 else 4170 continue; 4171 4172 // Check the cost of inserting the necessary logic before performing the 4173 // transformation. 4174 if (TTI) { 4175 Type *Ty = BI->getCondition()->getType(); 4176 InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind); 4177 if (InvertPredCond && (!PBI->getCondition()->hasOneUse() || 4178 !isa<CmpInst>(PBI->getCondition()))) 4179 Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind); 4180 4181 if (Cost > BranchFoldThreshold) 4182 continue; 4183 } 4184 4185 // Ok, we do want to deal with this predecessor. Record it. 4186 Preds.emplace_back(PredBlock); 4187 } 4188 4189 // If there aren't any predecessors into which we can fold, 4190 // don't bother checking the cost. 4191 if (Preds.empty()) 4192 return false; 4193 4194 // Only allow this transformation if computing the condition doesn't involve 4195 // too many instructions and these involved instructions can be executed 4196 // unconditionally. We denote all involved instructions except the condition 4197 // as "bonus instructions", and only allow this transformation when the 4198 // number of the bonus instructions we'll need to create when cloning into 4199 // each predecessor does not exceed a certain threshold. 4200 unsigned NumBonusInsts = 0; 4201 bool SawVectorOp = false; 4202 const unsigned PredCount = Preds.size(); 4203 for (Instruction &I : *BB) { 4204 // Don't check the branch condition comparison itself. 4205 if (&I == Cond) 4206 continue; 4207 // Ignore dbg intrinsics, and the terminator. 4208 if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I)) 4209 continue; 4210 // I must be safe to execute unconditionally. 4211 if (!isSafeToSpeculativelyExecute(&I)) 4212 return false; 4213 SawVectorOp |= isVectorOp(I); 4214 4215 // Account for the cost of duplicating this instruction into each 4216 // predecessor. Ignore free instructions. 4217 if (!TTI || TTI->getInstructionCost(&I, CostKind) != 4218 TargetTransformInfo::TCC_Free) { 4219 NumBonusInsts += PredCount; 4220 4221 // Early exits once we reach the limit. 4222 if (NumBonusInsts > 4223 BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier) 4224 return false; 4225 } 4226 4227 auto IsBCSSAUse = [BB, &I](Use &U) { 4228 auto *UI = cast<Instruction>(U.getUser()); 4229 if (auto *PN = dyn_cast<PHINode>(UI)) 4230 return PN->getIncomingBlock(U) == BB; 4231 return UI->getParent() == BB && I.comesBefore(UI); 4232 }; 4233 4234 // Does this instruction require rewriting of uses? 4235 if (!all_of(I.uses(), IsBCSSAUse)) 4236 return false; 4237 } 4238 if (NumBonusInsts > 4239 BonusInstThreshold * 4240 (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1)) 4241 return false; 4242 4243 // Ok, we have the budget. Perform the transformation. 4244 for (BasicBlock *PredBlock : Preds) { 4245 auto *PBI = cast<BranchInst>(PredBlock->getTerminator()); 4246 return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI); 4247 } 4248 return false; 4249 } 4250 4251 // If there is only one store in BB1 and BB2, return it, otherwise return 4252 // nullptr. 4253 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { 4254 StoreInst *S = nullptr; 4255 for (auto *BB : {BB1, BB2}) { 4256 if (!BB) 4257 continue; 4258 for (auto &I : *BB) 4259 if (auto *SI = dyn_cast<StoreInst>(&I)) { 4260 if (S) 4261 // Multiple stores seen. 4262 return nullptr; 4263 else 4264 S = SI; 4265 } 4266 } 4267 return S; 4268 } 4269 4270 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, 4271 Value *AlternativeV = nullptr) { 4272 // PHI is going to be a PHI node that allows the value V that is defined in 4273 // BB to be referenced in BB's only successor. 4274 // 4275 // If AlternativeV is nullptr, the only value we care about in PHI is V. It 4276 // doesn't matter to us what the other operand is (it'll never get used). We 4277 // could just create a new PHI with an undef incoming value, but that could 4278 // increase register pressure if EarlyCSE/InstCombine can't fold it with some 4279 // other PHI. So here we directly look for some PHI in BB's successor with V 4280 // as an incoming operand. If we find one, we use it, else we create a new 4281 // one. 4282 // 4283 // If AlternativeV is not nullptr, we care about both incoming values in PHI. 4284 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] 4285 // where OtherBB is the single other predecessor of BB's only successor. 4286 PHINode *PHI = nullptr; 4287 BasicBlock *Succ = BB->getSingleSuccessor(); 4288 4289 for (auto I = Succ->begin(); isa<PHINode>(I); ++I) 4290 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { 4291 PHI = cast<PHINode>(I); 4292 if (!AlternativeV) 4293 break; 4294 4295 assert(Succ->hasNPredecessors(2)); 4296 auto PredI = pred_begin(Succ); 4297 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; 4298 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) 4299 break; 4300 PHI = nullptr; 4301 } 4302 if (PHI) 4303 return PHI; 4304 4305 // If V is not an instruction defined in BB, just return it. 4306 if (!AlternativeV && 4307 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) 4308 return V; 4309 4310 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge"); 4311 PHI->insertBefore(Succ->begin()); 4312 PHI->addIncoming(V, BB); 4313 for (BasicBlock *PredBB : predecessors(Succ)) 4314 if (PredBB != BB) 4315 PHI->addIncoming( 4316 AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB); 4317 return PHI; 4318 } 4319 4320 static bool mergeConditionalStoreToAddress( 4321 BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB, 4322 BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond, 4323 DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) { 4324 // For every pointer, there must be exactly two stores, one coming from 4325 // PTB or PFB, and the other from QTB or QFB. We don't support more than one 4326 // store (to any address) in PTB,PFB or QTB,QFB. 4327 // FIXME: We could relax this restriction with a bit more work and performance 4328 // testing. 4329 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); 4330 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); 4331 if (!PStore || !QStore) 4332 return false; 4333 4334 // Now check the stores are compatible. 4335 if (!QStore->isUnordered() || !PStore->isUnordered() || 4336 PStore->getValueOperand()->getType() != 4337 QStore->getValueOperand()->getType()) 4338 return false; 4339 4340 // Check that sinking the store won't cause program behavior changes. Sinking 4341 // the store out of the Q blocks won't change any behavior as we're sinking 4342 // from a block to its unconditional successor. But we're moving a store from 4343 // the P blocks down through the middle block (QBI) and past both QFB and QTB. 4344 // So we need to check that there are no aliasing loads or stores in 4345 // QBI, QTB and QFB. We also need to check there are no conflicting memory 4346 // operations between PStore and the end of its parent block. 4347 // 4348 // The ideal way to do this is to query AliasAnalysis, but we don't 4349 // preserve AA currently so that is dangerous. Be super safe and just 4350 // check there are no other memory operations at all. 4351 for (auto &I : *QFB->getSinglePredecessor()) 4352 if (I.mayReadOrWriteMemory()) 4353 return false; 4354 for (auto &I : *QFB) 4355 if (&I != QStore && I.mayReadOrWriteMemory()) 4356 return false; 4357 if (QTB) 4358 for (auto &I : *QTB) 4359 if (&I != QStore && I.mayReadOrWriteMemory()) 4360 return false; 4361 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); 4362 I != E; ++I) 4363 if (&*I != PStore && I->mayReadOrWriteMemory()) 4364 return false; 4365 4366 // If we're not in aggressive mode, we only optimize if we have some 4367 // confidence that by optimizing we'll allow P and/or Q to be if-converted. 4368 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) { 4369 if (!BB) 4370 return true; 4371 // Heuristic: if the block can be if-converted/phi-folded and the 4372 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to 4373 // thread this store. 4374 InstructionCost Cost = 0; 4375 InstructionCost Budget = 4376 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; 4377 for (auto &I : BB->instructionsWithoutDebug(false)) { 4378 // Consider terminator instruction to be free. 4379 if (I.isTerminator()) 4380 continue; 4381 // If this is one the stores that we want to speculate out of this BB, 4382 // then don't count it's cost, consider it to be free. 4383 if (auto *S = dyn_cast<StoreInst>(&I)) 4384 if (llvm::find(FreeStores, S)) 4385 continue; 4386 // Else, we have a white-list of instructions that we are ak speculating. 4387 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I)) 4388 return false; // Not in white-list - not worthwhile folding. 4389 // And finally, if this is a non-free instruction that we are okay 4390 // speculating, ensure that we consider the speculation budget. 4391 Cost += 4392 TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 4393 if (Cost > Budget) 4394 return false; // Eagerly refuse to fold as soon as we're out of budget. 4395 } 4396 assert(Cost <= Budget && 4397 "When we run out of budget we will eagerly return from within the " 4398 "per-instruction loop."); 4399 return true; 4400 }; 4401 4402 const std::array<StoreInst *, 2> FreeStores = {PStore, QStore}; 4403 if (!MergeCondStoresAggressively && 4404 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) || 4405 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores))) 4406 return false; 4407 4408 // If PostBB has more than two predecessors, we need to split it so we can 4409 // sink the store. 4410 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { 4411 // We know that QFB's only successor is PostBB. And QFB has a single 4412 // predecessor. If QTB exists, then its only successor is also PostBB. 4413 // If QTB does not exist, then QFB's only predecessor has a conditional 4414 // branch to QFB and PostBB. 4415 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); 4416 BasicBlock *NewBB = 4417 SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU); 4418 if (!NewBB) 4419 return false; 4420 PostBB = NewBB; 4421 } 4422 4423 // OK, we're going to sink the stores to PostBB. The store has to be 4424 // conditional though, so first create the predicate. 4425 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) 4426 ->getCondition(); 4427 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) 4428 ->getCondition(); 4429 4430 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), 4431 PStore->getParent()); 4432 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), 4433 QStore->getParent(), PPHI); 4434 4435 BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt(); 4436 IRBuilder<> QB(PostBB, PostBBFirst); 4437 QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc()); 4438 4439 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); 4440 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); 4441 4442 if (InvertPCond) 4443 PPred = QB.CreateNot(PPred); 4444 if (InvertQCond) 4445 QPred = QB.CreateNot(QPred); 4446 Value *CombinedPred = QB.CreateOr(PPred, QPred); 4447 4448 BasicBlock::iterator InsertPt = QB.GetInsertPoint(); 4449 auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt, 4450 /*Unreachable=*/false, 4451 /*BranchWeights=*/nullptr, DTU); 4452 4453 QB.SetInsertPoint(T); 4454 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); 4455 SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata())); 4456 // Choose the minimum alignment. If we could prove both stores execute, we 4457 // could use biggest one. In this case, though, we only know that one of the 4458 // stores executes. And we don't know it's safe to take the alignment from a 4459 // store that doesn't execute. 4460 SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign())); 4461 4462 QStore->eraseFromParent(); 4463 PStore->eraseFromParent(); 4464 4465 return true; 4466 } 4467 4468 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, 4469 DomTreeUpdater *DTU, const DataLayout &DL, 4470 const TargetTransformInfo &TTI) { 4471 // The intention here is to find diamonds or triangles (see below) where each 4472 // conditional block contains a store to the same address. Both of these 4473 // stores are conditional, so they can't be unconditionally sunk. But it may 4474 // be profitable to speculatively sink the stores into one merged store at the 4475 // end, and predicate the merged store on the union of the two conditions of 4476 // PBI and QBI. 4477 // 4478 // This can reduce the number of stores executed if both of the conditions are 4479 // true, and can allow the blocks to become small enough to be if-converted. 4480 // This optimization will also chain, so that ladders of test-and-set 4481 // sequences can be if-converted away. 4482 // 4483 // We only deal with simple diamonds or triangles: 4484 // 4485 // PBI or PBI or a combination of the two 4486 // / \ | \ 4487 // PTB PFB | PFB 4488 // \ / | / 4489 // QBI QBI 4490 // / \ | \ 4491 // QTB QFB | QFB 4492 // \ / | / 4493 // PostBB PostBB 4494 // 4495 // We model triangles as a type of diamond with a nullptr "true" block. 4496 // Triangles are canonicalized so that the fallthrough edge is represented by 4497 // a true condition, as in the diagram above. 4498 BasicBlock *PTB = PBI->getSuccessor(0); 4499 BasicBlock *PFB = PBI->getSuccessor(1); 4500 BasicBlock *QTB = QBI->getSuccessor(0); 4501 BasicBlock *QFB = QBI->getSuccessor(1); 4502 BasicBlock *PostBB = QFB->getSingleSuccessor(); 4503 4504 // Make sure we have a good guess for PostBB. If QTB's only successor is 4505 // QFB, then QFB is a better PostBB. 4506 if (QTB->getSingleSuccessor() == QFB) 4507 PostBB = QFB; 4508 4509 // If we couldn't find a good PostBB, stop. 4510 if (!PostBB) 4511 return false; 4512 4513 bool InvertPCond = false, InvertQCond = false; 4514 // Canonicalize fallthroughs to the true branches. 4515 if (PFB == QBI->getParent()) { 4516 std::swap(PFB, PTB); 4517 InvertPCond = true; 4518 } 4519 if (QFB == PostBB) { 4520 std::swap(QFB, QTB); 4521 InvertQCond = true; 4522 } 4523 4524 // From this point on we can assume PTB or QTB may be fallthroughs but PFB 4525 // and QFB may not. Model fallthroughs as a nullptr block. 4526 if (PTB == QBI->getParent()) 4527 PTB = nullptr; 4528 if (QTB == PostBB) 4529 QTB = nullptr; 4530 4531 // Legality bailouts. We must have at least the non-fallthrough blocks and 4532 // the post-dominating block, and the non-fallthroughs must only have one 4533 // predecessor. 4534 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { 4535 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; 4536 }; 4537 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || 4538 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) 4539 return false; 4540 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || 4541 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) 4542 return false; 4543 if (!QBI->getParent()->hasNUses(2)) 4544 return false; 4545 4546 // OK, this is a sequence of two diamonds or triangles. 4547 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. 4548 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; 4549 for (auto *BB : {PTB, PFB}) { 4550 if (!BB) 4551 continue; 4552 for (auto &I : *BB) 4553 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4554 PStoreAddresses.insert(SI->getPointerOperand()); 4555 } 4556 for (auto *BB : {QTB, QFB}) { 4557 if (!BB) 4558 continue; 4559 for (auto &I : *BB) 4560 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) 4561 QStoreAddresses.insert(SI->getPointerOperand()); 4562 } 4563 4564 set_intersect(PStoreAddresses, QStoreAddresses); 4565 // set_intersect mutates PStoreAddresses in place. Rename it here to make it 4566 // clear what it contains. 4567 auto &CommonAddresses = PStoreAddresses; 4568 4569 bool Changed = false; 4570 for (auto *Address : CommonAddresses) 4571 Changed |= 4572 mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address, 4573 InvertPCond, InvertQCond, DTU, DL, TTI); 4574 return Changed; 4575 } 4576 4577 /// If the previous block ended with a widenable branch, determine if reusing 4578 /// the target block is profitable and legal. This will have the effect of 4579 /// "widening" PBI, but doesn't require us to reason about hosting safety. 4580 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4581 DomTreeUpdater *DTU) { 4582 // TODO: This can be generalized in two important ways: 4583 // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input 4584 // values from the PBI edge. 4585 // 2) We can sink side effecting instructions into BI's fallthrough 4586 // successor provided they doesn't contribute to computation of 4587 // BI's condition. 4588 BasicBlock *IfTrueBB = PBI->getSuccessor(0); 4589 BasicBlock *IfFalseBB = PBI->getSuccessor(1); 4590 if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() || 4591 !BI->getParent()->getSinglePredecessor()) 4592 return false; 4593 if (!IfFalseBB->phis().empty()) 4594 return false; // TODO 4595 // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which 4596 // may undo the transform done here. 4597 // TODO: There might be a more fine-grained solution to this. 4598 if (!llvm::succ_empty(IfFalseBB)) 4599 return false; 4600 // Use lambda to lazily compute expensive condition after cheap ones. 4601 auto NoSideEffects = [](BasicBlock &BB) { 4602 return llvm::none_of(BB, [](const Instruction &I) { 4603 return I.mayWriteToMemory() || I.mayHaveSideEffects(); 4604 }); 4605 }; 4606 if (BI->getSuccessor(1) != IfFalseBB && // no inf looping 4607 BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability 4608 NoSideEffects(*BI->getParent())) { 4609 auto *OldSuccessor = BI->getSuccessor(1); 4610 OldSuccessor->removePredecessor(BI->getParent()); 4611 BI->setSuccessor(1, IfFalseBB); 4612 if (DTU) 4613 DTU->applyUpdates( 4614 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4615 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4616 return true; 4617 } 4618 if (BI->getSuccessor(0) != IfFalseBB && // no inf looping 4619 BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability 4620 NoSideEffects(*BI->getParent())) { 4621 auto *OldSuccessor = BI->getSuccessor(0); 4622 OldSuccessor->removePredecessor(BI->getParent()); 4623 BI->setSuccessor(0, IfFalseBB); 4624 if (DTU) 4625 DTU->applyUpdates( 4626 {{DominatorTree::Insert, BI->getParent(), IfFalseBB}, 4627 {DominatorTree::Delete, BI->getParent(), OldSuccessor}}); 4628 return true; 4629 } 4630 return false; 4631 } 4632 4633 /// If we have a conditional branch as a predecessor of another block, 4634 /// this function tries to simplify it. We know 4635 /// that PBI and BI are both conditional branches, and BI is in one of the 4636 /// successor blocks of PBI - PBI branches to BI. 4637 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, 4638 DomTreeUpdater *DTU, 4639 const DataLayout &DL, 4640 const TargetTransformInfo &TTI) { 4641 assert(PBI->isConditional() && BI->isConditional()); 4642 BasicBlock *BB = BI->getParent(); 4643 4644 // If this block ends with a branch instruction, and if there is a 4645 // predecessor that ends on a branch of the same condition, make 4646 // this conditional branch redundant. 4647 if (PBI->getCondition() == BI->getCondition() && 4648 PBI->getSuccessor(0) != PBI->getSuccessor(1)) { 4649 // Okay, the outcome of this conditional branch is statically 4650 // knowable. If this block had a single pred, handle specially, otherwise 4651 // foldCondBranchOnValueKnownInPredecessor() will handle it. 4652 if (BB->getSinglePredecessor()) { 4653 // Turn this into a branch on constant. 4654 bool CondIsTrue = PBI->getSuccessor(0) == BB; 4655 BI->setCondition( 4656 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); 4657 return true; // Nuke the branch on constant. 4658 } 4659 } 4660 4661 // If the previous block ended with a widenable branch, determine if reusing 4662 // the target block is profitable and legal. This will have the effect of 4663 // "widening" PBI, but doesn't require us to reason about hosting safety. 4664 if (tryWidenCondBranchToCondBranch(PBI, BI, DTU)) 4665 return true; 4666 4667 // If both branches are conditional and both contain stores to the same 4668 // address, remove the stores from the conditionals and create a conditional 4669 // merged store at the end. 4670 if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 4671 return true; 4672 4673 // If this is a conditional branch in an empty block, and if any 4674 // predecessors are a conditional branch to one of our destinations, 4675 // fold the conditions into logical ops and one cond br. 4676 4677 // Ignore dbg intrinsics. 4678 if (&*BB->instructionsWithoutDebug(false).begin() != BI) 4679 return false; 4680 4681 int PBIOp, BIOp; 4682 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { 4683 PBIOp = 0; 4684 BIOp = 0; 4685 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { 4686 PBIOp = 0; 4687 BIOp = 1; 4688 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { 4689 PBIOp = 1; 4690 BIOp = 0; 4691 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { 4692 PBIOp = 1; 4693 BIOp = 1; 4694 } else { 4695 return false; 4696 } 4697 4698 // Check to make sure that the other destination of this branch 4699 // isn't BB itself. If so, this is an infinite loop that will 4700 // keep getting unwound. 4701 if (PBI->getSuccessor(PBIOp) == BB) 4702 return false; 4703 4704 // If predecessor's branch probability to BB is too low don't merge branches. 4705 SmallVector<uint32_t, 2> PredWeights; 4706 if (!PBI->getMetadata(LLVMContext::MD_unpredictable) && 4707 extractBranchWeights(*PBI, PredWeights) && 4708 (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) { 4709 4710 BranchProbability CommonDestProb = BranchProbability::getBranchProbability( 4711 PredWeights[PBIOp], 4712 static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]); 4713 4714 BranchProbability Likely = TTI.getPredictableBranchThreshold(); 4715 if (CommonDestProb >= Likely) 4716 return false; 4717 } 4718 4719 // Do not perform this transformation if it would require 4720 // insertion of a large number of select instructions. For targets 4721 // without predication/cmovs, this is a big pessimization. 4722 4723 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); 4724 BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1); 4725 unsigned NumPhis = 0; 4726 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); 4727 ++II, ++NumPhis) { 4728 if (NumPhis > 2) // Disable this xform. 4729 return false; 4730 } 4731 4732 // Finally, if everything is ok, fold the branches to logical ops. 4733 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); 4734 4735 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() 4736 << "AND: " << *BI->getParent()); 4737 4738 SmallVector<DominatorTree::UpdateType, 5> Updates; 4739 4740 // If OtherDest *is* BB, then BB is a basic block with a single conditional 4741 // branch in it, where one edge (OtherDest) goes back to itself but the other 4742 // exits. We don't *know* that the program avoids the infinite loop 4743 // (even though that seems likely). If we do this xform naively, we'll end up 4744 // recursively unpeeling the loop. Since we know that (after the xform is 4745 // done) that the block *is* infinite if reached, we just make it an obviously 4746 // infinite loop with no cond branch. 4747 if (OtherDest == BB) { 4748 // Insert it at the end of the function, because it's either code, 4749 // or it won't matter if it's hot. :) 4750 BasicBlock *InfLoopBlock = 4751 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); 4752 BranchInst::Create(InfLoopBlock, InfLoopBlock); 4753 if (DTU) 4754 Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock}); 4755 OtherDest = InfLoopBlock; 4756 } 4757 4758 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4759 4760 // BI may have other predecessors. Because of this, we leave 4761 // it alone, but modify PBI. 4762 4763 // Make sure we get to CommonDest on True&True directions. 4764 Value *PBICond = PBI->getCondition(); 4765 IRBuilder<NoFolder> Builder(PBI); 4766 if (PBIOp) 4767 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); 4768 4769 Value *BICond = BI->getCondition(); 4770 if (BIOp) 4771 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); 4772 4773 // Merge the conditions. 4774 Value *Cond = 4775 createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge"); 4776 4777 // Modify PBI to branch on the new condition to the new dests. 4778 PBI->setCondition(Cond); 4779 PBI->setSuccessor(0, CommonDest); 4780 PBI->setSuccessor(1, OtherDest); 4781 4782 if (DTU) { 4783 Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest}); 4784 Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest}); 4785 4786 DTU->applyUpdates(Updates); 4787 } 4788 4789 // Update branch weight for PBI. 4790 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; 4791 uint64_t PredCommon, PredOther, SuccCommon, SuccOther; 4792 bool HasWeights = 4793 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, 4794 SuccTrueWeight, SuccFalseWeight); 4795 if (HasWeights) { 4796 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4797 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4798 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4799 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4800 // The weight to CommonDest should be PredCommon * SuccTotal + 4801 // PredOther * SuccCommon. 4802 // The weight to OtherDest should be PredOther * SuccOther. 4803 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + 4804 PredOther * SuccCommon, 4805 PredOther * SuccOther}; 4806 // Halve the weights if any of them cannot fit in an uint32_t 4807 fitWeights(NewWeights); 4808 4809 setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false); 4810 } 4811 4812 // OtherDest may have phi nodes. If so, add an entry from PBI's 4813 // block that are identical to the entries for BI's block. 4814 addPredecessorToBlock(OtherDest, PBI->getParent(), BB); 4815 4816 // We know that the CommonDest already had an edge from PBI to 4817 // it. If it has PHIs though, the PHIs may have different 4818 // entries for BB and PBI's BB. If so, insert a select to make 4819 // them agree. 4820 for (PHINode &PN : CommonDest->phis()) { 4821 Value *BIV = PN.getIncomingValueForBlock(BB); 4822 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); 4823 Value *PBIV = PN.getIncomingValue(PBBIdx); 4824 if (BIV != PBIV) { 4825 // Insert a select in PBI to pick the right value. 4826 SelectInst *NV = cast<SelectInst>( 4827 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); 4828 PN.setIncomingValue(PBBIdx, NV); 4829 // Although the select has the same condition as PBI, the original branch 4830 // weights for PBI do not apply to the new select because the select's 4831 // 'logical' edges are incoming edges of the phi that is eliminated, not 4832 // the outgoing edges of PBI. 4833 if (HasWeights) { 4834 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; 4835 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; 4836 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; 4837 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; 4838 // The weight to PredCommonDest should be PredCommon * SuccTotal. 4839 // The weight to PredOtherDest should be PredOther * SuccCommon. 4840 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), 4841 PredOther * SuccCommon}; 4842 4843 fitWeights(NewWeights); 4844 4845 setBranchWeights(NV, NewWeights[0], NewWeights[1], 4846 /*IsExpected=*/false); 4847 } 4848 } 4849 } 4850 4851 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); 4852 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); 4853 4854 // This basic block is probably dead. We know it has at least 4855 // one fewer predecessor. 4856 return true; 4857 } 4858 4859 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is 4860 // true or to FalseBB if Cond is false. 4861 // Takes care of updating the successors and removing the old terminator. 4862 // Also makes sure not to introduce new successors by assuming that edges to 4863 // non-successor TrueBBs and FalseBBs aren't reachable. 4864 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm, 4865 Value *Cond, BasicBlock *TrueBB, 4866 BasicBlock *FalseBB, 4867 uint32_t TrueWeight, 4868 uint32_t FalseWeight) { 4869 auto *BB = OldTerm->getParent(); 4870 // Remove any superfluous successor edges from the CFG. 4871 // First, figure out which successors to preserve. 4872 // If TrueBB and FalseBB are equal, only try to preserve one copy of that 4873 // successor. 4874 BasicBlock *KeepEdge1 = TrueBB; 4875 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; 4876 4877 SmallSetVector<BasicBlock *, 2> RemovedSuccessors; 4878 4879 // Then remove the rest. 4880 for (BasicBlock *Succ : successors(OldTerm)) { 4881 // Make sure only to keep exactly one copy of each edge. 4882 if (Succ == KeepEdge1) 4883 KeepEdge1 = nullptr; 4884 else if (Succ == KeepEdge2) 4885 KeepEdge2 = nullptr; 4886 else { 4887 Succ->removePredecessor(BB, 4888 /*KeepOneInputPHIs=*/true); 4889 4890 if (Succ != TrueBB && Succ != FalseBB) 4891 RemovedSuccessors.insert(Succ); 4892 } 4893 } 4894 4895 IRBuilder<> Builder(OldTerm); 4896 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); 4897 4898 // Insert an appropriate new terminator. 4899 if (!KeepEdge1 && !KeepEdge2) { 4900 if (TrueBB == FalseBB) { 4901 // We were only looking for one successor, and it was present. 4902 // Create an unconditional branch to it. 4903 Builder.CreateBr(TrueBB); 4904 } else { 4905 // We found both of the successors we were looking for. 4906 // Create a conditional branch sharing the condition of the select. 4907 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); 4908 if (TrueWeight != FalseWeight) 4909 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 4910 } 4911 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { 4912 // Neither of the selected blocks were successors, so this 4913 // terminator must be unreachable. 4914 new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator()); 4915 } else { 4916 // One of the selected values was a successor, but the other wasn't. 4917 // Insert an unconditional branch to the one that was found; 4918 // the edge to the one that wasn't must be unreachable. 4919 if (!KeepEdge1) { 4920 // Only TrueBB was found. 4921 Builder.CreateBr(TrueBB); 4922 } else { 4923 // Only FalseBB was found. 4924 Builder.CreateBr(FalseBB); 4925 } 4926 } 4927 4928 eraseTerminatorAndDCECond(OldTerm); 4929 4930 if (DTU) { 4931 SmallVector<DominatorTree::UpdateType, 2> Updates; 4932 Updates.reserve(RemovedSuccessors.size()); 4933 for (auto *RemovedSuccessor : RemovedSuccessors) 4934 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 4935 DTU->applyUpdates(Updates); 4936 } 4937 4938 return true; 4939 } 4940 4941 // Replaces 4942 // (switch (select cond, X, Y)) on constant X, Y 4943 // with a branch - conditional if X and Y lead to distinct BBs, 4944 // unconditional otherwise. 4945 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI, 4946 SelectInst *Select) { 4947 // Check for constant integer values in the select. 4948 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); 4949 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); 4950 if (!TrueVal || !FalseVal) 4951 return false; 4952 4953 // Find the relevant condition and destinations. 4954 Value *Condition = Select->getCondition(); 4955 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); 4956 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); 4957 4958 // Get weight for TrueBB and FalseBB. 4959 uint32_t TrueWeight = 0, FalseWeight = 0; 4960 SmallVector<uint64_t, 8> Weights; 4961 bool HasWeights = hasBranchWeightMD(*SI); 4962 if (HasWeights) { 4963 getBranchWeights(SI, Weights); 4964 if (Weights.size() == 1 + SI->getNumCases()) { 4965 TrueWeight = 4966 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; 4967 FalseWeight = 4968 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; 4969 } 4970 } 4971 4972 // Perform the actual simplification. 4973 return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, 4974 FalseWeight); 4975 } 4976 4977 // Replaces 4978 // (indirectbr (select cond, blockaddress(@fn, BlockA), 4979 // blockaddress(@fn, BlockB))) 4980 // with 4981 // (br cond, BlockA, BlockB). 4982 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI, 4983 SelectInst *SI) { 4984 // Check that both operands of the select are block addresses. 4985 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); 4986 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); 4987 if (!TBA || !FBA) 4988 return false; 4989 4990 // Extract the actual blocks. 4991 BasicBlock *TrueBB = TBA->getBasicBlock(); 4992 BasicBlock *FalseBB = FBA->getBasicBlock(); 4993 4994 // Perform the actual simplification. 4995 return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, 4996 0); 4997 } 4998 4999 /// This is called when we find an icmp instruction 5000 /// (a seteq/setne with a constant) as the only instruction in a 5001 /// block that ends with an uncond branch. We are looking for a very specific 5002 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In 5003 /// this case, we merge the first two "or's of icmp" into a switch, but then the 5004 /// default value goes to an uncond block with a seteq in it, we get something 5005 /// like: 5006 /// 5007 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] 5008 /// DEFAULT: 5009 /// %tmp = icmp eq i8 %A, 92 5010 /// br label %end 5011 /// end: 5012 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] 5013 /// 5014 /// We prefer to split the edge to 'end' so that there is a true/false entry to 5015 /// the PHI, merging the third icmp into the switch. 5016 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( 5017 ICmpInst *ICI, IRBuilder<> &Builder) { 5018 BasicBlock *BB = ICI->getParent(); 5019 5020 // If the block has any PHIs in it or the icmp has multiple uses, it is too 5021 // complex. 5022 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) 5023 return false; 5024 5025 Value *V = ICI->getOperand(0); 5026 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); 5027 5028 // The pattern we're looking for is where our only predecessor is a switch on 5029 // 'V' and this block is the default case for the switch. In this case we can 5030 // fold the compared value into the switch to simplify things. 5031 BasicBlock *Pred = BB->getSinglePredecessor(); 5032 if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) 5033 return false; 5034 5035 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); 5036 if (SI->getCondition() != V) 5037 return false; 5038 5039 // If BB is reachable on a non-default case, then we simply know the value of 5040 // V in this block. Substitute it and constant fold the icmp instruction 5041 // away. 5042 if (SI->getDefaultDest() != BB) { 5043 ConstantInt *VVal = SI->findCaseDest(BB); 5044 assert(VVal && "Should have a unique destination value"); 5045 ICI->setOperand(0, VVal); 5046 5047 if (Value *V = simplifyInstruction(ICI, {DL, ICI})) { 5048 ICI->replaceAllUsesWith(V); 5049 ICI->eraseFromParent(); 5050 } 5051 // BB is now empty, so it is likely to simplify away. 5052 return requestResimplify(); 5053 } 5054 5055 // Ok, the block is reachable from the default dest. If the constant we're 5056 // comparing exists in one of the other edges, then we can constant fold ICI 5057 // and zap it. 5058 if (SI->findCaseValue(Cst) != SI->case_default()) { 5059 Value *V; 5060 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5061 V = ConstantInt::getFalse(BB->getContext()); 5062 else 5063 V = ConstantInt::getTrue(BB->getContext()); 5064 5065 ICI->replaceAllUsesWith(V); 5066 ICI->eraseFromParent(); 5067 // BB is now empty, so it is likely to simplify away. 5068 return requestResimplify(); 5069 } 5070 5071 // The use of the icmp has to be in the 'end' block, by the only PHI node in 5072 // the block. 5073 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); 5074 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); 5075 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || 5076 isa<PHINode>(++BasicBlock::iterator(PHIUse))) 5077 return false; 5078 5079 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets 5080 // true in the PHI. 5081 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); 5082 Constant *NewCst = ConstantInt::getFalse(BB->getContext()); 5083 5084 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 5085 std::swap(DefaultCst, NewCst); 5086 5087 // Replace ICI (which is used by the PHI for the default value) with true or 5088 // false depending on if it is EQ or NE. 5089 ICI->replaceAllUsesWith(DefaultCst); 5090 ICI->eraseFromParent(); 5091 5092 SmallVector<DominatorTree::UpdateType, 2> Updates; 5093 5094 // Okay, the switch goes to this block on a default value. Add an edge from 5095 // the switch to the merge point on the compared value. 5096 BasicBlock *NewBB = 5097 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); 5098 { 5099 SwitchInstProfUpdateWrapper SIW(*SI); 5100 auto W0 = SIW.getSuccessorWeight(0); 5101 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; 5102 if (W0) { 5103 NewW = ((uint64_t(*W0) + 1) >> 1); 5104 SIW.setSuccessorWeight(0, *NewW); 5105 } 5106 SIW.addCase(Cst, NewBB, NewW); 5107 if (DTU) 5108 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 5109 } 5110 5111 // NewBB branches to the phi block, add the uncond branch and the phi entry. 5112 Builder.SetInsertPoint(NewBB); 5113 Builder.SetCurrentDebugLocation(SI->getDebugLoc()); 5114 Builder.CreateBr(SuccBlock); 5115 PHIUse->addIncoming(NewCst, NewBB); 5116 if (DTU) { 5117 Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock}); 5118 DTU->applyUpdates(Updates); 5119 } 5120 return true; 5121 } 5122 5123 /// The specified branch is a conditional branch. 5124 /// Check to see if it is branching on an or/and chain of icmp instructions, and 5125 /// fold it into a switch instruction if so. 5126 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI, 5127 IRBuilder<> &Builder, 5128 const DataLayout &DL) { 5129 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); 5130 if (!Cond) 5131 return false; 5132 5133 // Change br (X == 0 | X == 1), T, F into a switch instruction. 5134 // If this is a bunch of seteq's or'd together, or if it's a bunch of 5135 // 'setne's and'ed together, collect them. 5136 5137 // Try to gather values from a chain of and/or to be turned into a switch 5138 ConstantComparesGatherer ConstantCompare(Cond, DL); 5139 // Unpack the result 5140 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; 5141 Value *CompVal = ConstantCompare.CompValue; 5142 unsigned UsedICmps = ConstantCompare.UsedICmps; 5143 Value *ExtraCase = ConstantCompare.Extra; 5144 5145 // If we didn't have a multiply compared value, fail. 5146 if (!CompVal) 5147 return false; 5148 5149 // Avoid turning single icmps into a switch. 5150 if (UsedICmps <= 1) 5151 return false; 5152 5153 bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value())); 5154 5155 // There might be duplicate constants in the list, which the switch 5156 // instruction can't handle, remove them now. 5157 array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate); 5158 Values.erase(llvm::unique(Values), Values.end()); 5159 5160 // If Extra was used, we require at least two switch values to do the 5161 // transformation. A switch with one value is just a conditional branch. 5162 if (ExtraCase && Values.size() < 2) 5163 return false; 5164 5165 // TODO: Preserve branch weight metadata, similarly to how 5166 // foldValueComparisonIntoPredecessors preserves it. 5167 5168 // Figure out which block is which destination. 5169 BasicBlock *DefaultBB = BI->getSuccessor(1); 5170 BasicBlock *EdgeBB = BI->getSuccessor(0); 5171 if (!TrueWhenEqual) 5172 std::swap(DefaultBB, EdgeBB); 5173 5174 BasicBlock *BB = BI->getParent(); 5175 5176 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() 5177 << " cases into SWITCH. BB is:\n" 5178 << *BB); 5179 5180 SmallVector<DominatorTree::UpdateType, 2> Updates; 5181 5182 // If there are any extra values that couldn't be folded into the switch 5183 // then we evaluate them with an explicit branch first. Split the block 5184 // right before the condbr to handle it. 5185 if (ExtraCase) { 5186 BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr, 5187 /*MSSAU=*/nullptr, "switch.early.test"); 5188 5189 // Remove the uncond branch added to the old block. 5190 Instruction *OldTI = BB->getTerminator(); 5191 Builder.SetInsertPoint(OldTI); 5192 5193 // There can be an unintended UB if extra values are Poison. Before the 5194 // transformation, extra values may not be evaluated according to the 5195 // condition, and it will not raise UB. But after transformation, we are 5196 // evaluating extra values before checking the condition, and it will raise 5197 // UB. It can be solved by adding freeze instruction to extra values. 5198 AssumptionCache *AC = Options.AC; 5199 5200 if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr)) 5201 ExtraCase = Builder.CreateFreeze(ExtraCase); 5202 5203 if (TrueWhenEqual) 5204 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); 5205 else 5206 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); 5207 5208 OldTI->eraseFromParent(); 5209 5210 if (DTU) 5211 Updates.push_back({DominatorTree::Insert, BB, EdgeBB}); 5212 5213 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them 5214 // for the edge we just added. 5215 addPredecessorToBlock(EdgeBB, BB, NewBB); 5216 5217 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase 5218 << "\nEXTRABB = " << *BB); 5219 BB = NewBB; 5220 } 5221 5222 Builder.SetInsertPoint(BI); 5223 // Convert pointer to int before we switch. 5224 if (CompVal->getType()->isPointerTy()) { 5225 CompVal = Builder.CreatePtrToInt( 5226 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); 5227 } 5228 5229 // Create the new switch instruction now. 5230 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); 5231 5232 // Add all of the 'cases' to the switch instruction. 5233 for (unsigned i = 0, e = Values.size(); i != e; ++i) 5234 New->addCase(Values[i], EdgeBB); 5235 5236 // We added edges from PI to the EdgeBB. As such, if there were any 5237 // PHI nodes in EdgeBB, they need entries to be added corresponding to 5238 // the number of edges added. 5239 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { 5240 PHINode *PN = cast<PHINode>(BBI); 5241 Value *InVal = PN->getIncomingValueForBlock(BB); 5242 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) 5243 PN->addIncoming(InVal, BB); 5244 } 5245 5246 // Erase the old branch instruction. 5247 eraseTerminatorAndDCECond(BI); 5248 if (DTU) 5249 DTU->applyUpdates(Updates); 5250 5251 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); 5252 return true; 5253 } 5254 5255 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { 5256 if (isa<PHINode>(RI->getValue())) 5257 return simplifyCommonResume(RI); 5258 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && 5259 RI->getValue() == RI->getParent()->getFirstNonPHI()) 5260 // The resume must unwind the exception that caused control to branch here. 5261 return simplifySingleResume(RI); 5262 5263 return false; 5264 } 5265 5266 // Check if cleanup block is empty 5267 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) { 5268 for (Instruction &I : R) { 5269 auto *II = dyn_cast<IntrinsicInst>(&I); 5270 if (!II) 5271 return false; 5272 5273 Intrinsic::ID IntrinsicID = II->getIntrinsicID(); 5274 switch (IntrinsicID) { 5275 case Intrinsic::dbg_declare: 5276 case Intrinsic::dbg_value: 5277 case Intrinsic::dbg_label: 5278 case Intrinsic::lifetime_end: 5279 break; 5280 default: 5281 return false; 5282 } 5283 } 5284 return true; 5285 } 5286 5287 // Simplify resume that is shared by several landing pads (phi of landing pad). 5288 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) { 5289 BasicBlock *BB = RI->getParent(); 5290 5291 // Check that there are no other instructions except for debug and lifetime 5292 // intrinsics between the phi's and resume instruction. 5293 if (!isCleanupBlockEmpty( 5294 make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator()))) 5295 return false; 5296 5297 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; 5298 auto *PhiLPInst = cast<PHINode>(RI->getValue()); 5299 5300 // Check incoming blocks to see if any of them are trivial. 5301 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; 5302 Idx++) { 5303 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); 5304 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); 5305 5306 // If the block has other successors, we can not delete it because 5307 // it has other dependents. 5308 if (IncomingBB->getUniqueSuccessor() != BB) 5309 continue; 5310 5311 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); 5312 // Not the landing pad that caused the control to branch here. 5313 if (IncomingValue != LandingPad) 5314 continue; 5315 5316 if (isCleanupBlockEmpty( 5317 make_range(LandingPad->getNextNode(), IncomingBB->getTerminator()))) 5318 TrivialUnwindBlocks.insert(IncomingBB); 5319 } 5320 5321 // If no trivial unwind blocks, don't do any simplifications. 5322 if (TrivialUnwindBlocks.empty()) 5323 return false; 5324 5325 // Turn all invokes that unwind here into calls. 5326 for (auto *TrivialBB : TrivialUnwindBlocks) { 5327 // Blocks that will be simplified should be removed from the phi node. 5328 // Note there could be multiple edges to the resume block, and we need 5329 // to remove them all. 5330 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) 5331 BB->removePredecessor(TrivialBB, true); 5332 5333 for (BasicBlock *Pred : 5334 llvm::make_early_inc_range(predecessors(TrivialBB))) { 5335 removeUnwindEdge(Pred, DTU); 5336 ++NumInvokes; 5337 } 5338 5339 // In each SimplifyCFG run, only the current processed block can be erased. 5340 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead 5341 // of erasing TrivialBB, we only remove the branch to the common resume 5342 // block so that we can later erase the resume block since it has no 5343 // predecessors. 5344 TrivialBB->getTerminator()->eraseFromParent(); 5345 new UnreachableInst(RI->getContext(), TrivialBB); 5346 if (DTU) 5347 DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}}); 5348 } 5349 5350 // Delete the resume block if all its predecessors have been removed. 5351 if (pred_empty(BB)) 5352 DeleteDeadBlock(BB, DTU); 5353 5354 return !TrivialUnwindBlocks.empty(); 5355 } 5356 5357 // Simplify resume that is only used by a single (non-phi) landing pad. 5358 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) { 5359 BasicBlock *BB = RI->getParent(); 5360 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI()); 5361 assert(RI->getValue() == LPInst && 5362 "Resume must unwind the exception that caused control to here"); 5363 5364 // Check that there are no other instructions except for debug intrinsics. 5365 if (!isCleanupBlockEmpty( 5366 make_range<Instruction *>(LPInst->getNextNode(), RI))) 5367 return false; 5368 5369 // Turn all invokes that unwind here into calls and delete the basic block. 5370 for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) { 5371 removeUnwindEdge(Pred, DTU); 5372 ++NumInvokes; 5373 } 5374 5375 // The landingpad is now unreachable. Zap it. 5376 DeleteDeadBlock(BB, DTU); 5377 return true; 5378 } 5379 5380 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) { 5381 // If this is a trivial cleanup pad that executes no instructions, it can be 5382 // eliminated. If the cleanup pad continues to the caller, any predecessor 5383 // that is an EH pad will be updated to continue to the caller and any 5384 // predecessor that terminates with an invoke instruction will have its invoke 5385 // instruction converted to a call instruction. If the cleanup pad being 5386 // simplified does not continue to the caller, each predecessor will be 5387 // updated to continue to the unwind destination of the cleanup pad being 5388 // simplified. 5389 BasicBlock *BB = RI->getParent(); 5390 CleanupPadInst *CPInst = RI->getCleanupPad(); 5391 if (CPInst->getParent() != BB) 5392 // This isn't an empty cleanup. 5393 return false; 5394 5395 // We cannot kill the pad if it has multiple uses. This typically arises 5396 // from unreachable basic blocks. 5397 if (!CPInst->hasOneUse()) 5398 return false; 5399 5400 // Check that there are no other instructions except for benign intrinsics. 5401 if (!isCleanupBlockEmpty( 5402 make_range<Instruction *>(CPInst->getNextNode(), RI))) 5403 return false; 5404 5405 // If the cleanup return we are simplifying unwinds to the caller, this will 5406 // set UnwindDest to nullptr. 5407 BasicBlock *UnwindDest = RI->getUnwindDest(); 5408 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; 5409 5410 // We're about to remove BB from the control flow. Before we do, sink any 5411 // PHINodes into the unwind destination. Doing this before changing the 5412 // control flow avoids some potentially slow checks, since we can currently 5413 // be certain that UnwindDest and BB have no common predecessors (since they 5414 // are both EH pads). 5415 if (UnwindDest) { 5416 // First, go through the PHI nodes in UnwindDest and update any nodes that 5417 // reference the block we are removing 5418 for (PHINode &DestPN : UnwindDest->phis()) { 5419 int Idx = DestPN.getBasicBlockIndex(BB); 5420 // Since BB unwinds to UnwindDest, it has to be in the PHI node. 5421 assert(Idx != -1); 5422 // This PHI node has an incoming value that corresponds to a control 5423 // path through the cleanup pad we are removing. If the incoming 5424 // value is in the cleanup pad, it must be a PHINode (because we 5425 // verified above that the block is otherwise empty). Otherwise, the 5426 // value is either a constant or a value that dominates the cleanup 5427 // pad being removed. 5428 // 5429 // Because BB and UnwindDest are both EH pads, all of their 5430 // predecessors must unwind to these blocks, and since no instruction 5431 // can have multiple unwind destinations, there will be no overlap in 5432 // incoming blocks between SrcPN and DestPN. 5433 Value *SrcVal = DestPN.getIncomingValue(Idx); 5434 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); 5435 5436 bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB; 5437 for (auto *Pred : predecessors(BB)) { 5438 Value *Incoming = 5439 NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal; 5440 DestPN.addIncoming(Incoming, Pred); 5441 } 5442 } 5443 5444 // Sink any remaining PHI nodes directly into UnwindDest. 5445 Instruction *InsertPt = DestEHPad; 5446 for (PHINode &PN : make_early_inc_range(BB->phis())) { 5447 if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB)) 5448 // If the PHI node has no uses or all of its uses are in this basic 5449 // block (meaning they are debug or lifetime intrinsics), just leave 5450 // it. It will be erased when we erase BB below. 5451 continue; 5452 5453 // Otherwise, sink this PHI node into UnwindDest. 5454 // Any predecessors to UnwindDest which are not already represented 5455 // must be back edges which inherit the value from the path through 5456 // BB. In this case, the PHI value must reference itself. 5457 for (auto *pred : predecessors(UnwindDest)) 5458 if (pred != BB) 5459 PN.addIncoming(&PN, pred); 5460 PN.moveBefore(InsertPt); 5461 // Also, add a dummy incoming value for the original BB itself, 5462 // so that the PHI is well-formed until we drop said predecessor. 5463 PN.addIncoming(PoisonValue::get(PN.getType()), BB); 5464 } 5465 } 5466 5467 std::vector<DominatorTree::UpdateType> Updates; 5468 5469 // We use make_early_inc_range here because we will remove all predecessors. 5470 for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) { 5471 if (UnwindDest == nullptr) { 5472 if (DTU) { 5473 DTU->applyUpdates(Updates); 5474 Updates.clear(); 5475 } 5476 removeUnwindEdge(PredBB, DTU); 5477 ++NumInvokes; 5478 } else { 5479 BB->removePredecessor(PredBB); 5480 Instruction *TI = PredBB->getTerminator(); 5481 TI->replaceUsesOfWith(BB, UnwindDest); 5482 if (DTU) { 5483 Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest}); 5484 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 5485 } 5486 } 5487 } 5488 5489 if (DTU) 5490 DTU->applyUpdates(Updates); 5491 5492 DeleteDeadBlock(BB, DTU); 5493 5494 return true; 5495 } 5496 5497 // Try to merge two cleanuppads together. 5498 static bool mergeCleanupPad(CleanupReturnInst *RI) { 5499 // Skip any cleanuprets which unwind to caller, there is nothing to merge 5500 // with. 5501 BasicBlock *UnwindDest = RI->getUnwindDest(); 5502 if (!UnwindDest) 5503 return false; 5504 5505 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't 5506 // be safe to merge without code duplication. 5507 if (UnwindDest->getSinglePredecessor() != RI->getParent()) 5508 return false; 5509 5510 // Verify that our cleanuppad's unwind destination is another cleanuppad. 5511 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); 5512 if (!SuccessorCleanupPad) 5513 return false; 5514 5515 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); 5516 // Replace any uses of the successor cleanupad with the predecessor pad 5517 // The only cleanuppad uses should be this cleanupret, it's cleanupret and 5518 // funclet bundle operands. 5519 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); 5520 // Remove the old cleanuppad. 5521 SuccessorCleanupPad->eraseFromParent(); 5522 // Now, we simply replace the cleanupret with a branch to the unwind 5523 // destination. 5524 BranchInst::Create(UnwindDest, RI->getParent()); 5525 RI->eraseFromParent(); 5526 5527 return true; 5528 } 5529 5530 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) { 5531 // It is possible to transiantly have an undef cleanuppad operand because we 5532 // have deleted some, but not all, dead blocks. 5533 // Eventually, this block will be deleted. 5534 if (isa<UndefValue>(RI->getOperand(0))) 5535 return false; 5536 5537 if (mergeCleanupPad(RI)) 5538 return true; 5539 5540 if (removeEmptyCleanup(RI, DTU)) 5541 return true; 5542 5543 return false; 5544 } 5545 5546 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()! 5547 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) { 5548 BasicBlock *BB = UI->getParent(); 5549 5550 bool Changed = false; 5551 5552 // Ensure that any debug-info records that used to occur after the Unreachable 5553 // are moved to in front of it -- otherwise they'll "dangle" at the end of 5554 // the block. 5555 BB->flushTerminatorDbgRecords(); 5556 5557 // Debug-info records on the unreachable inst itself should be deleted, as 5558 // below we delete everything past the final executable instruction. 5559 UI->dropDbgRecords(); 5560 5561 // If there are any instructions immediately before the unreachable that can 5562 // be removed, do so. 5563 while (UI->getIterator() != BB->begin()) { 5564 BasicBlock::iterator BBI = UI->getIterator(); 5565 --BBI; 5566 5567 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI)) 5568 break; // Can not drop any more instructions. We're done here. 5569 // Otherwise, this instruction can be freely erased, 5570 // even if it is not side-effect free. 5571 5572 // Note that deleting EH's here is in fact okay, although it involves a bit 5573 // of subtle reasoning. If this inst is an EH, all the predecessors of this 5574 // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn, 5575 // and we can therefore guarantee this block will be erased. 5576 5577 // If we're deleting this, we're deleting any subsequent debug info, so 5578 // delete DbgRecords. 5579 BBI->dropDbgRecords(); 5580 5581 // Delete this instruction (any uses are guaranteed to be dead) 5582 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 5583 BBI->eraseFromParent(); 5584 Changed = true; 5585 } 5586 5587 // If the unreachable instruction is the first in the block, take a gander 5588 // at all of the predecessors of this instruction, and simplify them. 5589 if (&BB->front() != UI) 5590 return Changed; 5591 5592 std::vector<DominatorTree::UpdateType> Updates; 5593 5594 SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); 5595 for (BasicBlock *Predecessor : Preds) { 5596 Instruction *TI = Predecessor->getTerminator(); 5597 IRBuilder<> Builder(TI); 5598 if (auto *BI = dyn_cast<BranchInst>(TI)) { 5599 // We could either have a proper unconditional branch, 5600 // or a degenerate conditional branch with matching destinations. 5601 if (all_of(BI->successors(), 5602 [BB](auto *Successor) { return Successor == BB; })) { 5603 new UnreachableInst(TI->getContext(), TI->getIterator()); 5604 TI->eraseFromParent(); 5605 Changed = true; 5606 } else { 5607 assert(BI->isConditional() && "Can't get here with an uncond branch."); 5608 Value* Cond = BI->getCondition(); 5609 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 5610 "The destinations are guaranteed to be different here."); 5611 CallInst *Assumption; 5612 if (BI->getSuccessor(0) == BB) { 5613 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 5614 Builder.CreateBr(BI->getSuccessor(1)); 5615 } else { 5616 assert(BI->getSuccessor(1) == BB && "Incorrect CFG"); 5617 Assumption = Builder.CreateAssumption(Cond); 5618 Builder.CreateBr(BI->getSuccessor(0)); 5619 } 5620 if (Options.AC) 5621 Options.AC->registerAssumption(cast<AssumeInst>(Assumption)); 5622 5623 eraseTerminatorAndDCECond(BI); 5624 Changed = true; 5625 } 5626 if (DTU) 5627 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5628 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { 5629 SwitchInstProfUpdateWrapper SU(*SI); 5630 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { 5631 if (i->getCaseSuccessor() != BB) { 5632 ++i; 5633 continue; 5634 } 5635 BB->removePredecessor(SU->getParent()); 5636 i = SU.removeCase(i); 5637 e = SU->case_end(); 5638 Changed = true; 5639 } 5640 // Note that the default destination can't be removed! 5641 if (DTU && SI->getDefaultDest() != BB) 5642 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5643 } else if (auto *II = dyn_cast<InvokeInst>(TI)) { 5644 if (II->getUnwindDest() == BB) { 5645 if (DTU) { 5646 DTU->applyUpdates(Updates); 5647 Updates.clear(); 5648 } 5649 auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU)); 5650 if (!CI->doesNotThrow()) 5651 CI->setDoesNotThrow(); 5652 Changed = true; 5653 } 5654 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 5655 if (CSI->getUnwindDest() == BB) { 5656 if (DTU) { 5657 DTU->applyUpdates(Updates); 5658 Updates.clear(); 5659 } 5660 removeUnwindEdge(TI->getParent(), DTU); 5661 Changed = true; 5662 continue; 5663 } 5664 5665 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), 5666 E = CSI->handler_end(); 5667 I != E; ++I) { 5668 if (*I == BB) { 5669 CSI->removeHandler(I); 5670 --I; 5671 --E; 5672 Changed = true; 5673 } 5674 } 5675 if (DTU) 5676 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5677 if (CSI->getNumHandlers() == 0) { 5678 if (CSI->hasUnwindDest()) { 5679 // Redirect all predecessors of the block containing CatchSwitchInst 5680 // to instead branch to the CatchSwitchInst's unwind destination. 5681 if (DTU) { 5682 for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) { 5683 Updates.push_back({DominatorTree::Insert, 5684 PredecessorOfPredecessor, 5685 CSI->getUnwindDest()}); 5686 Updates.push_back({DominatorTree::Delete, 5687 PredecessorOfPredecessor, Predecessor}); 5688 } 5689 } 5690 Predecessor->replaceAllUsesWith(CSI->getUnwindDest()); 5691 } else { 5692 // Rewrite all preds to unwind to caller (or from invoke to call). 5693 if (DTU) { 5694 DTU->applyUpdates(Updates); 5695 Updates.clear(); 5696 } 5697 SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor)); 5698 for (BasicBlock *EHPred : EHPreds) 5699 removeUnwindEdge(EHPred, DTU); 5700 } 5701 // The catchswitch is no longer reachable. 5702 new UnreachableInst(CSI->getContext(), CSI->getIterator()); 5703 CSI->eraseFromParent(); 5704 Changed = true; 5705 } 5706 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 5707 (void)CRI; 5708 assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB && 5709 "Expected to always have an unwind to BB."); 5710 if (DTU) 5711 Updates.push_back({DominatorTree::Delete, Predecessor, BB}); 5712 new UnreachableInst(TI->getContext(), TI->getIterator()); 5713 TI->eraseFromParent(); 5714 Changed = true; 5715 } 5716 } 5717 5718 if (DTU) 5719 DTU->applyUpdates(Updates); 5720 5721 // If this block is now dead, remove it. 5722 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { 5723 DeleteDeadBlock(BB, DTU); 5724 return true; 5725 } 5726 5727 return Changed; 5728 } 5729 5730 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { 5731 assert(Cases.size() >= 1); 5732 5733 array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate); 5734 for (size_t I = 1, E = Cases.size(); I != E; ++I) { 5735 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) 5736 return false; 5737 } 5738 return true; 5739 } 5740 5741 static void createUnreachableSwitchDefault(SwitchInst *Switch, 5742 DomTreeUpdater *DTU, 5743 bool RemoveOrigDefaultBlock = true) { 5744 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); 5745 auto *BB = Switch->getParent(); 5746 auto *OrigDefaultBlock = Switch->getDefaultDest(); 5747 if (RemoveOrigDefaultBlock) 5748 OrigDefaultBlock->removePredecessor(BB); 5749 BasicBlock *NewDefaultBlock = BasicBlock::Create( 5750 BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(), 5751 OrigDefaultBlock); 5752 new UnreachableInst(Switch->getContext(), NewDefaultBlock); 5753 Switch->setDefaultDest(&*NewDefaultBlock); 5754 if (DTU) { 5755 SmallVector<DominatorTree::UpdateType, 2> Updates; 5756 Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock}); 5757 if (RemoveOrigDefaultBlock && 5758 !is_contained(successors(BB), OrigDefaultBlock)) 5759 Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock}); 5760 DTU->applyUpdates(Updates); 5761 } 5762 } 5763 5764 /// Turn a switch into an integer range comparison and branch. 5765 /// Switches with more than 2 destinations are ignored. 5766 /// Switches with 1 destination are also ignored. 5767 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI, 5768 IRBuilder<> &Builder) { 5769 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 5770 5771 bool HasDefault = 5772 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5773 5774 auto *BB = SI->getParent(); 5775 5776 // Partition the cases into two sets with different destinations. 5777 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; 5778 BasicBlock *DestB = nullptr; 5779 SmallVector<ConstantInt *, 16> CasesA; 5780 SmallVector<ConstantInt *, 16> CasesB; 5781 5782 for (auto Case : SI->cases()) { 5783 BasicBlock *Dest = Case.getCaseSuccessor(); 5784 if (!DestA) 5785 DestA = Dest; 5786 if (Dest == DestA) { 5787 CasesA.push_back(Case.getCaseValue()); 5788 continue; 5789 } 5790 if (!DestB) 5791 DestB = Dest; 5792 if (Dest == DestB) { 5793 CasesB.push_back(Case.getCaseValue()); 5794 continue; 5795 } 5796 return false; // More than two destinations. 5797 } 5798 if (!DestB) 5799 return false; // All destinations are the same and the default is unreachable 5800 5801 assert(DestA && DestB && 5802 "Single-destination switch should have been folded."); 5803 assert(DestA != DestB); 5804 assert(DestB != SI->getDefaultDest()); 5805 assert(!CasesB.empty() && "There must be non-default cases."); 5806 assert(!CasesA.empty() || HasDefault); 5807 5808 // Figure out if one of the sets of cases form a contiguous range. 5809 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; 5810 BasicBlock *ContiguousDest = nullptr; 5811 BasicBlock *OtherDest = nullptr; 5812 if (!CasesA.empty() && casesAreContiguous(CasesA)) { 5813 ContiguousCases = &CasesA; 5814 ContiguousDest = DestA; 5815 OtherDest = DestB; 5816 } else if (casesAreContiguous(CasesB)) { 5817 ContiguousCases = &CasesB; 5818 ContiguousDest = DestB; 5819 OtherDest = DestA; 5820 } else 5821 return false; 5822 5823 // Start building the compare and branch. 5824 5825 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); 5826 Constant *NumCases = 5827 ConstantInt::get(Offset->getType(), ContiguousCases->size()); 5828 5829 Value *Sub = SI->getCondition(); 5830 if (!Offset->isNullValue()) 5831 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); 5832 5833 Value *Cmp; 5834 // If NumCases overflowed, then all possible values jump to the successor. 5835 if (NumCases->isNullValue() && !ContiguousCases->empty()) 5836 Cmp = ConstantInt::getTrue(SI->getContext()); 5837 else 5838 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); 5839 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); 5840 5841 // Update weight for the newly-created conditional branch. 5842 if (hasBranchWeightMD(*SI)) { 5843 SmallVector<uint64_t, 8> Weights; 5844 getBranchWeights(SI, Weights); 5845 if (Weights.size() == 1 + SI->getNumCases()) { 5846 uint64_t TrueWeight = 0; 5847 uint64_t FalseWeight = 0; 5848 for (size_t I = 0, E = Weights.size(); I != E; ++I) { 5849 if (SI->getSuccessor(I) == ContiguousDest) 5850 TrueWeight += Weights[I]; 5851 else 5852 FalseWeight += Weights[I]; 5853 } 5854 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { 5855 TrueWeight /= 2; 5856 FalseWeight /= 2; 5857 } 5858 setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false); 5859 } 5860 } 5861 5862 // Prune obsolete incoming values off the successors' PHI nodes. 5863 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { 5864 unsigned PreviousEdges = ContiguousCases->size(); 5865 if (ContiguousDest == SI->getDefaultDest()) 5866 ++PreviousEdges; 5867 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5868 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5869 } 5870 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { 5871 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); 5872 if (OtherDest == SI->getDefaultDest()) 5873 ++PreviousEdges; 5874 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) 5875 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); 5876 } 5877 5878 // Clean up the default block - it may have phis or other instructions before 5879 // the unreachable terminator. 5880 if (!HasDefault) 5881 createUnreachableSwitchDefault(SI, DTU); 5882 5883 auto *UnreachableDefault = SI->getDefaultDest(); 5884 5885 // Drop the switch. 5886 SI->eraseFromParent(); 5887 5888 if (!HasDefault && DTU) 5889 DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}}); 5890 5891 return true; 5892 } 5893 5894 /// Compute masked bits for the condition of a switch 5895 /// and use it to remove dead cases. 5896 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU, 5897 AssumptionCache *AC, 5898 const DataLayout &DL) { 5899 Value *Cond = SI->getCondition(); 5900 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); 5901 5902 // We can also eliminate cases by determining that their values are outside of 5903 // the limited range of the condition based on how many significant (non-sign) 5904 // bits are in the condition value. 5905 unsigned MaxSignificantBitsInCond = 5906 ComputeMaxSignificantBits(Cond, DL, 0, AC, SI); 5907 5908 // Gather dead cases. 5909 SmallVector<ConstantInt *, 8> DeadCases; 5910 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 5911 SmallVector<BasicBlock *, 8> UniqueSuccessors; 5912 for (const auto &Case : SI->cases()) { 5913 auto *Successor = Case.getCaseSuccessor(); 5914 if (DTU) { 5915 if (!NumPerSuccessorCases.count(Successor)) 5916 UniqueSuccessors.push_back(Successor); 5917 ++NumPerSuccessorCases[Successor]; 5918 } 5919 const APInt &CaseVal = Case.getCaseValue()->getValue(); 5920 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || 5921 (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) { 5922 DeadCases.push_back(Case.getCaseValue()); 5923 if (DTU) 5924 --NumPerSuccessorCases[Successor]; 5925 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal 5926 << " is dead.\n"); 5927 } 5928 } 5929 5930 // If we can prove that the cases must cover all possible values, the 5931 // default destination becomes dead and we can remove it. If we know some 5932 // of the bits in the value, we can use that to more precisely compute the 5933 // number of possible unique case values. 5934 bool HasDefault = 5935 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); 5936 const unsigned NumUnknownBits = 5937 Known.getBitWidth() - (Known.Zero | Known.One).popcount(); 5938 assert(NumUnknownBits <= Known.getBitWidth()); 5939 if (HasDefault && DeadCases.empty() && 5940 NumUnknownBits < 64 /* avoid overflow */) { 5941 uint64_t AllNumCases = 1ULL << NumUnknownBits; 5942 if (SI->getNumCases() == AllNumCases) { 5943 createUnreachableSwitchDefault(SI, DTU); 5944 return true; 5945 } 5946 // When only one case value is missing, replace default with that case. 5947 // Eliminating the default branch will provide more opportunities for 5948 // optimization, such as lookup tables. 5949 if (SI->getNumCases() == AllNumCases - 1) { 5950 assert(NumUnknownBits > 1 && "Should be canonicalized to a branch"); 5951 IntegerType *CondTy = cast<IntegerType>(Cond->getType()); 5952 if (CondTy->getIntegerBitWidth() > 64 || 5953 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 5954 return false; 5955 5956 uint64_t MissingCaseVal = 0; 5957 for (const auto &Case : SI->cases()) 5958 MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue(); 5959 auto *MissingCase = 5960 cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal)); 5961 SwitchInstProfUpdateWrapper SIW(*SI); 5962 SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0)); 5963 createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false); 5964 SIW.setSuccessorWeight(0, 0); 5965 return true; 5966 } 5967 } 5968 5969 if (DeadCases.empty()) 5970 return false; 5971 5972 SwitchInstProfUpdateWrapper SIW(*SI); 5973 for (ConstantInt *DeadCase : DeadCases) { 5974 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); 5975 assert(CaseI != SI->case_default() && 5976 "Case was not found. Probably mistake in DeadCases forming."); 5977 // Prune unused values from PHI nodes. 5978 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); 5979 SIW.removeCase(CaseI); 5980 } 5981 5982 if (DTU) { 5983 std::vector<DominatorTree::UpdateType> Updates; 5984 for (auto *Successor : UniqueSuccessors) 5985 if (NumPerSuccessorCases[Successor] == 0) 5986 Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor}); 5987 DTU->applyUpdates(Updates); 5988 } 5989 5990 return true; 5991 } 5992 5993 /// If BB would be eligible for simplification by 5994 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated 5995 /// by an unconditional branch), look at the phi node for BB in the successor 5996 /// block and see if the incoming value is equal to CaseValue. If so, return 5997 /// the phi node, and set PhiIndex to BB's index in the phi node. 5998 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue, 5999 BasicBlock *BB, int *PhiIndex) { 6000 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) 6001 return nullptr; // BB must be empty to be a candidate for simplification. 6002 if (!BB->getSinglePredecessor()) 6003 return nullptr; // BB must be dominated by the switch. 6004 6005 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 6006 if (!Branch || !Branch->isUnconditional()) 6007 return nullptr; // Terminator must be unconditional branch. 6008 6009 BasicBlock *Succ = Branch->getSuccessor(0); 6010 6011 for (PHINode &PHI : Succ->phis()) { 6012 int Idx = PHI.getBasicBlockIndex(BB); 6013 assert(Idx >= 0 && "PHI has no entry for predecessor?"); 6014 6015 Value *InValue = PHI.getIncomingValue(Idx); 6016 if (InValue != CaseValue) 6017 continue; 6018 6019 *PhiIndex = Idx; 6020 return &PHI; 6021 } 6022 6023 return nullptr; 6024 } 6025 6026 /// Try to forward the condition of a switch instruction to a phi node 6027 /// dominated by the switch, if that would mean that some of the destination 6028 /// blocks of the switch can be folded away. Return true if a change is made. 6029 static bool forwardSwitchConditionToPHI(SwitchInst *SI) { 6030 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; 6031 6032 ForwardingNodesMap ForwardingNodes; 6033 BasicBlock *SwitchBlock = SI->getParent(); 6034 bool Changed = false; 6035 for (const auto &Case : SI->cases()) { 6036 ConstantInt *CaseValue = Case.getCaseValue(); 6037 BasicBlock *CaseDest = Case.getCaseSuccessor(); 6038 6039 // Replace phi operands in successor blocks that are using the constant case 6040 // value rather than the switch condition variable: 6041 // switchbb: 6042 // switch i32 %x, label %default [ 6043 // i32 17, label %succ 6044 // ... 6045 // succ: 6046 // %r = phi i32 ... [ 17, %switchbb ] ... 6047 // --> 6048 // %r = phi i32 ... [ %x, %switchbb ] ... 6049 6050 for (PHINode &Phi : CaseDest->phis()) { 6051 // This only works if there is exactly 1 incoming edge from the switch to 6052 // a phi. If there is >1, that means multiple cases of the switch map to 1 6053 // value in the phi, and that phi value is not the switch condition. Thus, 6054 // this transform would not make sense (the phi would be invalid because 6055 // a phi can't have different incoming values from the same block). 6056 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); 6057 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && 6058 count(Phi.blocks(), SwitchBlock) == 1) { 6059 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); 6060 Changed = true; 6061 } 6062 } 6063 6064 // Collect phi nodes that are indirectly using this switch's case constants. 6065 int PhiIdx; 6066 if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) 6067 ForwardingNodes[Phi].push_back(PhiIdx); 6068 } 6069 6070 for (auto &ForwardingNode : ForwardingNodes) { 6071 PHINode *Phi = ForwardingNode.first; 6072 SmallVectorImpl<int> &Indexes = ForwardingNode.second; 6073 // Check if it helps to fold PHI. 6074 if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition())) 6075 continue; 6076 6077 for (int Index : Indexes) 6078 Phi->setIncomingValue(Index, SI->getCondition()); 6079 Changed = true; 6080 } 6081 6082 return Changed; 6083 } 6084 6085 /// Return true if the backend will be able to handle 6086 /// initializing an array of constants like C. 6087 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { 6088 if (C->isThreadDependent()) 6089 return false; 6090 if (C->isDLLImportDependent()) 6091 return false; 6092 6093 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && 6094 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && 6095 !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) 6096 return false; 6097 6098 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 6099 // Pointer casts and in-bounds GEPs will not prohibit the backend from 6100 // materializing the array of constants. 6101 Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets()); 6102 if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI)) 6103 return false; 6104 } 6105 6106 if (!TTI.shouldBuildLookupTablesForConstant(C)) 6107 return false; 6108 6109 return true; 6110 } 6111 6112 /// If V is a Constant, return it. Otherwise, try to look up 6113 /// its constant value in ConstantPool, returning 0 if it's not there. 6114 static Constant * 6115 lookupConstant(Value *V, 6116 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6117 if (Constant *C = dyn_cast<Constant>(V)) 6118 return C; 6119 return ConstantPool.lookup(V); 6120 } 6121 6122 /// Try to fold instruction I into a constant. This works for 6123 /// simple instructions such as binary operations where both operands are 6124 /// constant or can be replaced by constants from the ConstantPool. Returns the 6125 /// resulting constant on success, 0 otherwise. 6126 static Constant * 6127 constantFold(Instruction *I, const DataLayout &DL, 6128 const SmallDenseMap<Value *, Constant *> &ConstantPool) { 6129 if (SelectInst *Select = dyn_cast<SelectInst>(I)) { 6130 Constant *A = lookupConstant(Select->getCondition(), ConstantPool); 6131 if (!A) 6132 return nullptr; 6133 if (A->isAllOnesValue()) 6134 return lookupConstant(Select->getTrueValue(), ConstantPool); 6135 if (A->isNullValue()) 6136 return lookupConstant(Select->getFalseValue(), ConstantPool); 6137 return nullptr; 6138 } 6139 6140 SmallVector<Constant *, 4> COps; 6141 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { 6142 if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool)) 6143 COps.push_back(A); 6144 else 6145 return nullptr; 6146 } 6147 6148 return ConstantFoldInstOperands(I, COps, DL); 6149 } 6150 6151 /// Try to determine the resulting constant values in phi nodes 6152 /// at the common destination basic block, *CommonDest, for one of the case 6153 /// destionations CaseDest corresponding to value CaseVal (0 for the default 6154 /// case), of a switch instruction SI. 6155 static bool 6156 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, 6157 BasicBlock **CommonDest, 6158 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, 6159 const DataLayout &DL, const TargetTransformInfo &TTI) { 6160 // The block from which we enter the common destination. 6161 BasicBlock *Pred = SI->getParent(); 6162 6163 // If CaseDest is empty except for some side-effect free instructions through 6164 // which we can constant-propagate the CaseVal, continue to its successor. 6165 SmallDenseMap<Value *, Constant *> ConstantPool; 6166 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); 6167 for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) { 6168 if (I.isTerminator()) { 6169 // If the terminator is a simple branch, continue to the next block. 6170 if (I.getNumSuccessors() != 1 || I.isSpecialTerminator()) 6171 return false; 6172 Pred = CaseDest; 6173 CaseDest = I.getSuccessor(0); 6174 } else if (Constant *C = constantFold(&I, DL, ConstantPool)) { 6175 // Instruction is side-effect free and constant. 6176 6177 // If the instruction has uses outside this block or a phi node slot for 6178 // the block, it is not safe to bypass the instruction since it would then 6179 // no longer dominate all its uses. 6180 for (auto &Use : I.uses()) { 6181 User *User = Use.getUser(); 6182 if (Instruction *I = dyn_cast<Instruction>(User)) 6183 if (I->getParent() == CaseDest) 6184 continue; 6185 if (PHINode *Phi = dyn_cast<PHINode>(User)) 6186 if (Phi->getIncomingBlock(Use) == CaseDest) 6187 continue; 6188 return false; 6189 } 6190 6191 ConstantPool.insert(std::make_pair(&I, C)); 6192 } else { 6193 break; 6194 } 6195 } 6196 6197 // If we did not have a CommonDest before, use the current one. 6198 if (!*CommonDest) 6199 *CommonDest = CaseDest; 6200 // If the destination isn't the common one, abort. 6201 if (CaseDest != *CommonDest) 6202 return false; 6203 6204 // Get the values for this case from phi nodes in the destination block. 6205 for (PHINode &PHI : (*CommonDest)->phis()) { 6206 int Idx = PHI.getBasicBlockIndex(Pred); 6207 if (Idx == -1) 6208 continue; 6209 6210 Constant *ConstVal = 6211 lookupConstant(PHI.getIncomingValue(Idx), ConstantPool); 6212 if (!ConstVal) 6213 return false; 6214 6215 // Be conservative about which kinds of constants we support. 6216 if (!validLookupTableConstant(ConstVal, TTI)) 6217 return false; 6218 6219 Res.push_back(std::make_pair(&PHI, ConstVal)); 6220 } 6221 6222 return Res.size() > 0; 6223 } 6224 6225 // Helper function used to add CaseVal to the list of cases that generate 6226 // Result. Returns the updated number of cases that generate this result. 6227 static size_t mapCaseToResult(ConstantInt *CaseVal, 6228 SwitchCaseResultVectorTy &UniqueResults, 6229 Constant *Result) { 6230 for (auto &I : UniqueResults) { 6231 if (I.first == Result) { 6232 I.second.push_back(CaseVal); 6233 return I.second.size(); 6234 } 6235 } 6236 UniqueResults.push_back( 6237 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); 6238 return 1; 6239 } 6240 6241 // Helper function that initializes a map containing 6242 // results for the PHI node of the common destination block for a switch 6243 // instruction. Returns false if multiple PHI nodes have been found or if 6244 // there is not a common destination block for the switch. 6245 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI, 6246 BasicBlock *&CommonDest, 6247 SwitchCaseResultVectorTy &UniqueResults, 6248 Constant *&DefaultResult, 6249 const DataLayout &DL, 6250 const TargetTransformInfo &TTI, 6251 uintptr_t MaxUniqueResults) { 6252 for (const auto &I : SI->cases()) { 6253 ConstantInt *CaseVal = I.getCaseValue(); 6254 6255 // Resulting value at phi nodes for this case value. 6256 SwitchCaseResultsTy Results; 6257 if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, 6258 DL, TTI)) 6259 return false; 6260 6261 // Only one value per case is permitted. 6262 if (Results.size() > 1) 6263 return false; 6264 6265 // Add the case->result mapping to UniqueResults. 6266 const size_t NumCasesForResult = 6267 mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); 6268 6269 // Early out if there are too many cases for this result. 6270 if (NumCasesForResult > MaxSwitchCasesPerResult) 6271 return false; 6272 6273 // Early out if there are too many unique results. 6274 if (UniqueResults.size() > MaxUniqueResults) 6275 return false; 6276 6277 // Check the PHI consistency. 6278 if (!PHI) 6279 PHI = Results[0].first; 6280 else if (PHI != Results[0].first) 6281 return false; 6282 } 6283 // Find the default result value. 6284 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; 6285 BasicBlock *DefaultDest = SI->getDefaultDest(); 6286 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, 6287 DL, TTI); 6288 // If the default value is not found abort unless the default destination 6289 // is unreachable. 6290 DefaultResult = 6291 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; 6292 if ((!DefaultResult && 6293 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) 6294 return false; 6295 6296 return true; 6297 } 6298 6299 // Helper function that checks if it is possible to transform a switch with only 6300 // two cases (or two cases + default) that produces a result into a select. 6301 // TODO: Handle switches with more than 2 cases that map to the same result. 6302 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector, 6303 Constant *DefaultResult, Value *Condition, 6304 IRBuilder<> &Builder) { 6305 // If we are selecting between only two cases transform into a simple 6306 // select or a two-way select if default is possible. 6307 // Example: 6308 // switch (a) { %0 = icmp eq i32 %a, 10 6309 // case 10: return 42; %1 = select i1 %0, i32 42, i32 4 6310 // case 20: return 2; ----> %2 = icmp eq i32 %a, 20 6311 // default: return 4; %3 = select i1 %2, i32 2, i32 %1 6312 // } 6313 if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 && 6314 ResultVector[1].second.size() == 1) { 6315 ConstantInt *FirstCase = ResultVector[0].second[0]; 6316 ConstantInt *SecondCase = ResultVector[1].second[0]; 6317 Value *SelectValue = ResultVector[1].first; 6318 if (DefaultResult) { 6319 Value *ValueCompare = 6320 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); 6321 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, 6322 DefaultResult, "switch.select"); 6323 } 6324 Value *ValueCompare = 6325 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); 6326 return Builder.CreateSelect(ValueCompare, ResultVector[0].first, 6327 SelectValue, "switch.select"); 6328 } 6329 6330 // Handle the degenerate case where two cases have the same result value. 6331 if (ResultVector.size() == 1 && DefaultResult) { 6332 ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second; 6333 unsigned CaseCount = CaseValues.size(); 6334 // n bits group cases map to the same result: 6335 // case 0,4 -> Cond & 0b1..1011 == 0 ? result : default 6336 // case 0,2,4,6 -> Cond & 0b1..1001 == 0 ? result : default 6337 // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default 6338 if (isPowerOf2_32(CaseCount)) { 6339 ConstantInt *MinCaseVal = CaseValues[0]; 6340 // Find mininal value. 6341 for (auto *Case : CaseValues) 6342 if (Case->getValue().slt(MinCaseVal->getValue())) 6343 MinCaseVal = Case; 6344 6345 // Mark the bits case number touched. 6346 APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth()); 6347 for (auto *Case : CaseValues) 6348 BitMask |= (Case->getValue() - MinCaseVal->getValue()); 6349 6350 // Check if cases with the same result can cover all number 6351 // in touched bits. 6352 if (BitMask.popcount() == Log2_32(CaseCount)) { 6353 if (!MinCaseVal->isNullValue()) 6354 Condition = Builder.CreateSub(Condition, MinCaseVal); 6355 Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and"); 6356 Value *Cmp = Builder.CreateICmpEQ( 6357 And, Constant::getNullValue(And->getType()), "switch.selectcmp"); 6358 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6359 } 6360 } 6361 6362 // Handle the degenerate case where two cases have the same value. 6363 if (CaseValues.size() == 2) { 6364 Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0], 6365 "switch.selectcmp.case1"); 6366 Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1], 6367 "switch.selectcmp.case2"); 6368 Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp"); 6369 return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult); 6370 } 6371 } 6372 6373 return nullptr; 6374 } 6375 6376 // Helper function to cleanup a switch instruction that has been converted into 6377 // a select, fixing up PHI nodes and basic blocks. 6378 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI, 6379 Value *SelectValue, 6380 IRBuilder<> &Builder, 6381 DomTreeUpdater *DTU) { 6382 std::vector<DominatorTree::UpdateType> Updates; 6383 6384 BasicBlock *SelectBB = SI->getParent(); 6385 BasicBlock *DestBB = PHI->getParent(); 6386 6387 if (DTU && !is_contained(predecessors(DestBB), SelectBB)) 6388 Updates.push_back({DominatorTree::Insert, SelectBB, DestBB}); 6389 Builder.CreateBr(DestBB); 6390 6391 // Remove the switch. 6392 6393 PHI->removeIncomingValueIf( 6394 [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; }); 6395 PHI->addIncoming(SelectValue, SelectBB); 6396 6397 SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; 6398 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 6399 BasicBlock *Succ = SI->getSuccessor(i); 6400 6401 if (Succ == DestBB) 6402 continue; 6403 Succ->removePredecessor(SelectBB); 6404 if (DTU && RemovedSuccessors.insert(Succ).second) 6405 Updates.push_back({DominatorTree::Delete, SelectBB, Succ}); 6406 } 6407 SI->eraseFromParent(); 6408 if (DTU) 6409 DTU->applyUpdates(Updates); 6410 } 6411 6412 /// If a switch is only used to initialize one or more phi nodes in a common 6413 /// successor block with only two different constant values, try to replace the 6414 /// switch with a select. Returns true if the fold was made. 6415 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder, 6416 DomTreeUpdater *DTU, const DataLayout &DL, 6417 const TargetTransformInfo &TTI) { 6418 Value *const Cond = SI->getCondition(); 6419 PHINode *PHI = nullptr; 6420 BasicBlock *CommonDest = nullptr; 6421 Constant *DefaultResult; 6422 SwitchCaseResultVectorTy UniqueResults; 6423 // Collect all the cases that will deliver the same value from the switch. 6424 if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, 6425 DL, TTI, /*MaxUniqueResults*/ 2)) 6426 return false; 6427 6428 assert(PHI != nullptr && "PHI for value select not found"); 6429 Builder.SetInsertPoint(SI); 6430 Value *SelectValue = 6431 foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder); 6432 if (!SelectValue) 6433 return false; 6434 6435 removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU); 6436 return true; 6437 } 6438 6439 namespace { 6440 6441 /// This class represents a lookup table that can be used to replace a switch. 6442 class SwitchLookupTable { 6443 public: 6444 /// Create a lookup table to use as a switch replacement with the contents 6445 /// of Values, using DefaultValue to fill any holes in the table. 6446 SwitchLookupTable( 6447 Module &M, uint64_t TableSize, ConstantInt *Offset, 6448 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6449 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); 6450 6451 /// Build instructions with Builder to retrieve the value at 6452 /// the position given by Index in the lookup table. 6453 Value *buildLookup(Value *Index, IRBuilder<> &Builder); 6454 6455 /// Return true if a table with TableSize elements of 6456 /// type ElementType would fit in a target-legal register. 6457 static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize, 6458 Type *ElementType); 6459 6460 private: 6461 // Depending on the contents of the table, it can be represented in 6462 // different ways. 6463 enum { 6464 // For tables where each element contains the same value, we just have to 6465 // store that single value and return it for each lookup. 6466 SingleValueKind, 6467 6468 // For tables where there is a linear relationship between table index 6469 // and values. We calculate the result with a simple multiplication 6470 // and addition instead of a table lookup. 6471 LinearMapKind, 6472 6473 // For small tables with integer elements, we can pack them into a bitmap 6474 // that fits into a target-legal register. Values are retrieved by 6475 // shift and mask operations. 6476 BitMapKind, 6477 6478 // The table is stored as an array of values. Values are retrieved by load 6479 // instructions from the table. 6480 ArrayKind 6481 } Kind; 6482 6483 // For SingleValueKind, this is the single value. 6484 Constant *SingleValue = nullptr; 6485 6486 // For BitMapKind, this is the bitmap. 6487 ConstantInt *BitMap = nullptr; 6488 IntegerType *BitMapElementTy = nullptr; 6489 6490 // For LinearMapKind, these are the constants used to derive the value. 6491 ConstantInt *LinearOffset = nullptr; 6492 ConstantInt *LinearMultiplier = nullptr; 6493 bool LinearMapValWrapped = false; 6494 6495 // For ArrayKind, this is the array. 6496 GlobalVariable *Array = nullptr; 6497 }; 6498 6499 } // end anonymous namespace 6500 6501 SwitchLookupTable::SwitchLookupTable( 6502 Module &M, uint64_t TableSize, ConstantInt *Offset, 6503 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, 6504 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { 6505 assert(Values.size() && "Can't build lookup table without values!"); 6506 assert(TableSize >= Values.size() && "Can't fit values in table!"); 6507 6508 // If all values in the table are equal, this is that value. 6509 SingleValue = Values.begin()->second; 6510 6511 Type *ValueType = Values.begin()->second->getType(); 6512 6513 // Build up the table contents. 6514 SmallVector<Constant *, 64> TableContents(TableSize); 6515 for (size_t I = 0, E = Values.size(); I != E; ++I) { 6516 ConstantInt *CaseVal = Values[I].first; 6517 Constant *CaseRes = Values[I].second; 6518 assert(CaseRes->getType() == ValueType); 6519 6520 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); 6521 TableContents[Idx] = CaseRes; 6522 6523 if (CaseRes != SingleValue) 6524 SingleValue = nullptr; 6525 } 6526 6527 // Fill in any holes in the table with the default result. 6528 if (Values.size() < TableSize) { 6529 assert(DefaultValue && 6530 "Need a default value to fill the lookup table holes."); 6531 assert(DefaultValue->getType() == ValueType); 6532 for (uint64_t I = 0; I < TableSize; ++I) { 6533 if (!TableContents[I]) 6534 TableContents[I] = DefaultValue; 6535 } 6536 6537 if (DefaultValue != SingleValue) 6538 SingleValue = nullptr; 6539 } 6540 6541 // If each element in the table contains the same value, we only need to store 6542 // that single value. 6543 if (SingleValue) { 6544 Kind = SingleValueKind; 6545 return; 6546 } 6547 6548 // Check if we can derive the value with a linear transformation from the 6549 // table index. 6550 if (isa<IntegerType>(ValueType)) { 6551 bool LinearMappingPossible = true; 6552 APInt PrevVal; 6553 APInt DistToPrev; 6554 // When linear map is monotonic and signed overflow doesn't happen on 6555 // maximum index, we can attach nsw on Add and Mul. 6556 bool NonMonotonic = false; 6557 assert(TableSize >= 2 && "Should be a SingleValue table."); 6558 // Check if there is the same distance between two consecutive values. 6559 for (uint64_t I = 0; I < TableSize; ++I) { 6560 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); 6561 if (!ConstVal) { 6562 // This is an undef. We could deal with it, but undefs in lookup tables 6563 // are very seldom. It's probably not worth the additional complexity. 6564 LinearMappingPossible = false; 6565 break; 6566 } 6567 const APInt &Val = ConstVal->getValue(); 6568 if (I != 0) { 6569 APInt Dist = Val - PrevVal; 6570 if (I == 1) { 6571 DistToPrev = Dist; 6572 } else if (Dist != DistToPrev) { 6573 LinearMappingPossible = false; 6574 break; 6575 } 6576 NonMonotonic |= 6577 Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal); 6578 } 6579 PrevVal = Val; 6580 } 6581 if (LinearMappingPossible) { 6582 LinearOffset = cast<ConstantInt>(TableContents[0]); 6583 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); 6584 APInt M = LinearMultiplier->getValue(); 6585 bool MayWrap = true; 6586 if (isIntN(M.getBitWidth(), TableSize - 1)) 6587 (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap); 6588 LinearMapValWrapped = NonMonotonic || MayWrap; 6589 Kind = LinearMapKind; 6590 ++NumLinearMaps; 6591 return; 6592 } 6593 } 6594 6595 // If the type is integer and the table fits in a register, build a bitmap. 6596 if (wouldFitInRegister(DL, TableSize, ValueType)) { 6597 IntegerType *IT = cast<IntegerType>(ValueType); 6598 APInt TableInt(TableSize * IT->getBitWidth(), 0); 6599 for (uint64_t I = TableSize; I > 0; --I) { 6600 TableInt <<= IT->getBitWidth(); 6601 // Insert values into the bitmap. Undef values are set to zero. 6602 if (!isa<UndefValue>(TableContents[I - 1])) { 6603 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); 6604 TableInt |= Val->getValue().zext(TableInt.getBitWidth()); 6605 } 6606 } 6607 BitMap = ConstantInt::get(M.getContext(), TableInt); 6608 BitMapElementTy = IT; 6609 Kind = BitMapKind; 6610 ++NumBitMaps; 6611 return; 6612 } 6613 6614 // Store the table in an array. 6615 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); 6616 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); 6617 6618 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, 6619 GlobalVariable::PrivateLinkage, Initializer, 6620 "switch.table." + FuncName); 6621 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 6622 // Set the alignment to that of an array items. We will be only loading one 6623 // value out of it. 6624 Array->setAlignment(DL.getPrefTypeAlign(ValueType)); 6625 Kind = ArrayKind; 6626 } 6627 6628 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) { 6629 switch (Kind) { 6630 case SingleValueKind: 6631 return SingleValue; 6632 case LinearMapKind: { 6633 // Derive the result value from the input value. 6634 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), 6635 false, "switch.idx.cast"); 6636 if (!LinearMultiplier->isOne()) 6637 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult", 6638 /*HasNUW = */ false, 6639 /*HasNSW = */ !LinearMapValWrapped); 6640 6641 if (!LinearOffset->isZero()) 6642 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset", 6643 /*HasNUW = */ false, 6644 /*HasNSW = */ !LinearMapValWrapped); 6645 return Result; 6646 } 6647 case BitMapKind: { 6648 // Type of the bitmap (e.g. i59). 6649 IntegerType *MapTy = BitMap->getIntegerType(); 6650 6651 // Cast Index to the same type as the bitmap. 6652 // Note: The Index is <= the number of elements in the table, so 6653 // truncating it to the width of the bitmask is safe. 6654 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); 6655 6656 // Multiply the shift amount by the element width. NUW/NSW can always be 6657 // set, because wouldFitInRegister guarantees Index * ShiftAmt is in 6658 // BitMap's bit width. 6659 ShiftAmt = Builder.CreateMul( 6660 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), 6661 "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true); 6662 6663 // Shift down. 6664 Value *DownShifted = 6665 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); 6666 // Mask off. 6667 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); 6668 } 6669 case ArrayKind: { 6670 // Make sure the table index will not overflow when treated as signed. 6671 IntegerType *IT = cast<IntegerType>(Index->getType()); 6672 uint64_t TableSize = 6673 Array->getInitializer()->getType()->getArrayNumElements(); 6674 if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u))) 6675 Index = Builder.CreateZExt( 6676 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), 6677 "switch.tableidx.zext"); 6678 6679 Value *GEPIndices[] = {Builder.getInt32(0), Index}; 6680 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, 6681 GEPIndices, "switch.gep"); 6682 return Builder.CreateLoad( 6683 cast<ArrayType>(Array->getValueType())->getElementType(), GEP, 6684 "switch.load"); 6685 } 6686 } 6687 llvm_unreachable("Unknown lookup table kind!"); 6688 } 6689 6690 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL, 6691 uint64_t TableSize, 6692 Type *ElementType) { 6693 auto *IT = dyn_cast<IntegerType>(ElementType); 6694 if (!IT) 6695 return false; 6696 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values 6697 // are <= 15, we could try to narrow the type. 6698 6699 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. 6700 if (TableSize >= UINT_MAX / IT->getBitWidth()) 6701 return false; 6702 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); 6703 } 6704 6705 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI, 6706 const DataLayout &DL) { 6707 // Allow any legal type. 6708 if (TTI.isTypeLegal(Ty)) 6709 return true; 6710 6711 auto *IT = dyn_cast<IntegerType>(Ty); 6712 if (!IT) 6713 return false; 6714 6715 // Also allow power of 2 integer types that have at least 8 bits and fit in 6716 // a register. These types are common in frontend languages and targets 6717 // usually support loads of these types. 6718 // TODO: We could relax this to any integer that fits in a register and rely 6719 // on ABI alignment and padding in the table to allow the load to be widened. 6720 // Or we could widen the constants and truncate the load. 6721 unsigned BitWidth = IT->getBitWidth(); 6722 return BitWidth >= 8 && isPowerOf2_32(BitWidth) && 6723 DL.fitsInLegalInteger(IT->getBitWidth()); 6724 } 6725 6726 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) { 6727 // 40% is the default density for building a jump table in optsize/minsize 6728 // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this 6729 // function was based on. 6730 const uint64_t MinDensity = 40; 6731 6732 if (CaseRange >= UINT64_MAX / 100) 6733 return false; // Avoid multiplication overflows below. 6734 6735 return NumCases * 100 >= CaseRange * MinDensity; 6736 } 6737 6738 static bool isSwitchDense(ArrayRef<int64_t> Values) { 6739 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); 6740 uint64_t Range = Diff + 1; 6741 if (Range < Diff) 6742 return false; // Overflow. 6743 6744 return isSwitchDense(Values.size(), Range); 6745 } 6746 6747 /// Determine whether a lookup table should be built for this switch, based on 6748 /// the number of cases, size of the table, and the types of the results. 6749 // TODO: We could support larger than legal types by limiting based on the 6750 // number of loads required and/or table size. If the constants are small we 6751 // could use smaller table entries and extend after the load. 6752 static bool 6753 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, 6754 const TargetTransformInfo &TTI, const DataLayout &DL, 6755 const SmallDenseMap<PHINode *, Type *> &ResultTypes) { 6756 if (SI->getNumCases() > TableSize) 6757 return false; // TableSize overflowed. 6758 6759 bool AllTablesFitInRegister = true; 6760 bool HasIllegalType = false; 6761 for (const auto &I : ResultTypes) { 6762 Type *Ty = I.second; 6763 6764 // Saturate this flag to true. 6765 HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL); 6766 6767 // Saturate this flag to false. 6768 AllTablesFitInRegister = 6769 AllTablesFitInRegister && 6770 SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty); 6771 6772 // If both flags saturate, we're done. NOTE: This *only* works with 6773 // saturating flags, and all flags have to saturate first due to the 6774 // non-deterministic behavior of iterating over a dense map. 6775 if (HasIllegalType && !AllTablesFitInRegister) 6776 break; 6777 } 6778 6779 // If each table would fit in a register, we should build it anyway. 6780 if (AllTablesFitInRegister) 6781 return true; 6782 6783 // Don't build a table that doesn't fit in-register if it has illegal types. 6784 if (HasIllegalType) 6785 return false; 6786 6787 return isSwitchDense(SI->getNumCases(), TableSize); 6788 } 6789 6790 static bool shouldUseSwitchConditionAsTableIndex( 6791 ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal, 6792 bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes, 6793 const DataLayout &DL, const TargetTransformInfo &TTI) { 6794 if (MinCaseVal.isNullValue()) 6795 return true; 6796 if (MinCaseVal.isNegative() || 6797 MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() || 6798 !HasDefaultResults) 6799 return false; 6800 return all_of(ResultTypes, [&](const auto &KV) { 6801 return SwitchLookupTable::wouldFitInRegister( 6802 DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */, 6803 KV.second /* ResultType */); 6804 }); 6805 } 6806 6807 /// Try to reuse the switch table index compare. Following pattern: 6808 /// \code 6809 /// if (idx < tablesize) 6810 /// r = table[idx]; // table does not contain default_value 6811 /// else 6812 /// r = default_value; 6813 /// if (r != default_value) 6814 /// ... 6815 /// \endcode 6816 /// Is optimized to: 6817 /// \code 6818 /// cond = idx < tablesize; 6819 /// if (cond) 6820 /// r = table[idx]; 6821 /// else 6822 /// r = default_value; 6823 /// if (cond) 6824 /// ... 6825 /// \endcode 6826 /// Jump threading will then eliminate the second if(cond). 6827 static void reuseTableCompare( 6828 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, 6829 Constant *DefaultValue, 6830 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { 6831 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); 6832 if (!CmpInst) 6833 return; 6834 6835 // We require that the compare is in the same block as the phi so that jump 6836 // threading can do its work afterwards. 6837 if (CmpInst->getParent() != PhiBlock) 6838 return; 6839 6840 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); 6841 if (!CmpOp1) 6842 return; 6843 6844 Value *RangeCmp = RangeCheckBranch->getCondition(); 6845 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); 6846 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); 6847 6848 // Check if the compare with the default value is constant true or false. 6849 const DataLayout &DL = PhiBlock->getDataLayout(); 6850 Constant *DefaultConst = ConstantFoldCompareInstOperands( 6851 CmpInst->getPredicate(), DefaultValue, CmpOp1, DL); 6852 if (DefaultConst != TrueConst && DefaultConst != FalseConst) 6853 return; 6854 6855 // Check if the compare with the case values is distinct from the default 6856 // compare result. 6857 for (auto ValuePair : Values) { 6858 Constant *CaseConst = ConstantFoldCompareInstOperands( 6859 CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL); 6860 if (!CaseConst || CaseConst == DefaultConst || 6861 (CaseConst != TrueConst && CaseConst != FalseConst)) 6862 return; 6863 } 6864 6865 // Check if the branch instruction dominates the phi node. It's a simple 6866 // dominance check, but sufficient for our needs. 6867 // Although this check is invariant in the calling loops, it's better to do it 6868 // at this late stage. Practically we do it at most once for a switch. 6869 BasicBlock *BranchBlock = RangeCheckBranch->getParent(); 6870 for (BasicBlock *Pred : predecessors(PhiBlock)) { 6871 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) 6872 return; 6873 } 6874 6875 if (DefaultConst == FalseConst) { 6876 // The compare yields the same result. We can replace it. 6877 CmpInst->replaceAllUsesWith(RangeCmp); 6878 ++NumTableCmpReuses; 6879 } else { 6880 // The compare yields the same result, just inverted. We can replace it. 6881 Value *InvertedTableCmp = BinaryOperator::CreateXor( 6882 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", 6883 RangeCheckBranch->getIterator()); 6884 CmpInst->replaceAllUsesWith(InvertedTableCmp); 6885 ++NumTableCmpReuses; 6886 } 6887 } 6888 6889 /// If the switch is only used to initialize one or more phi nodes in a common 6890 /// successor block with different constant values, replace the switch with 6891 /// lookup tables. 6892 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, 6893 DomTreeUpdater *DTU, const DataLayout &DL, 6894 const TargetTransformInfo &TTI) { 6895 assert(SI->getNumCases() > 1 && "Degenerate switch?"); 6896 6897 BasicBlock *BB = SI->getParent(); 6898 Function *Fn = BB->getParent(); 6899 // Only build lookup table when we have a target that supports it or the 6900 // attribute is not set. 6901 if (!TTI.shouldBuildLookupTables() || 6902 (Fn->getFnAttribute("no-jump-tables").getValueAsBool())) 6903 return false; 6904 6905 // FIXME: If the switch is too sparse for a lookup table, perhaps we could 6906 // split off a dense part and build a lookup table for that. 6907 6908 // FIXME: This creates arrays of GEPs to constant strings, which means each 6909 // GEP needs a runtime relocation in PIC code. We should just build one big 6910 // string and lookup indices into that. 6911 6912 // Ignore switches with less than three cases. Lookup tables will not make 6913 // them faster, so we don't analyze them. 6914 if (SI->getNumCases() < 3) 6915 return false; 6916 6917 // Figure out the corresponding result for each case value and phi node in the 6918 // common destination, as well as the min and max case values. 6919 assert(!SI->cases().empty()); 6920 SwitchInst::CaseIt CI = SI->case_begin(); 6921 ConstantInt *MinCaseVal = CI->getCaseValue(); 6922 ConstantInt *MaxCaseVal = CI->getCaseValue(); 6923 6924 BasicBlock *CommonDest = nullptr; 6925 6926 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; 6927 SmallDenseMap<PHINode *, ResultListTy> ResultLists; 6928 6929 SmallDenseMap<PHINode *, Constant *> DefaultResults; 6930 SmallDenseMap<PHINode *, Type *> ResultTypes; 6931 SmallVector<PHINode *, 4> PHIs; 6932 6933 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { 6934 ConstantInt *CaseVal = CI->getCaseValue(); 6935 if (CaseVal->getValue().slt(MinCaseVal->getValue())) 6936 MinCaseVal = CaseVal; 6937 if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) 6938 MaxCaseVal = CaseVal; 6939 6940 // Resulting value at phi nodes for this case value. 6941 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; 6942 ResultsTy Results; 6943 if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, 6944 Results, DL, TTI)) 6945 return false; 6946 6947 // Append the result from this case to the list for each phi. 6948 for (const auto &I : Results) { 6949 PHINode *PHI = I.first; 6950 Constant *Value = I.second; 6951 if (!ResultLists.count(PHI)) 6952 PHIs.push_back(PHI); 6953 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); 6954 } 6955 } 6956 6957 // Keep track of the result types. 6958 for (PHINode *PHI : PHIs) { 6959 ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); 6960 } 6961 6962 uint64_t NumResults = ResultLists[PHIs[0]].size(); 6963 6964 // If the table has holes, we need a constant result for the default case 6965 // or a bitmask that fits in a register. 6966 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; 6967 bool HasDefaultResults = 6968 getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, 6969 DefaultResultsList, DL, TTI); 6970 6971 for (const auto &I : DefaultResultsList) { 6972 PHINode *PHI = I.first; 6973 Constant *Result = I.second; 6974 DefaultResults[PHI] = Result; 6975 } 6976 6977 bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex( 6978 *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI); 6979 uint64_t TableSize; 6980 if (UseSwitchConditionAsTableIndex) 6981 TableSize = MaxCaseVal->getLimitedValue() + 1; 6982 else 6983 TableSize = 6984 (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1; 6985 6986 // If the default destination is unreachable, or if the lookup table covers 6987 // all values of the conditional variable, branch directly to the lookup table 6988 // BB. Otherwise, check that the condition is within the case range. 6989 bool DefaultIsReachable = !SI->defaultDestUndefined(); 6990 6991 bool TableHasHoles = (NumResults < TableSize); 6992 6993 // If the table has holes but the default destination doesn't produce any 6994 // constant results, the lookup table entries corresponding to the holes will 6995 // contain undefined values. 6996 bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults; 6997 6998 // If the default destination doesn't produce a constant result but is still 6999 // reachable, and the lookup table has holes, we need to use a mask to 7000 // determine if the current index should load from the lookup table or jump 7001 // to the default case. 7002 // The mask is unnecessary if the table has holes but the default destination 7003 // is unreachable, as in that case the holes must also be unreachable. 7004 bool NeedMask = AllHolesAreUndefined && DefaultIsReachable; 7005 if (NeedMask) { 7006 // As an extra penalty for the validity test we require more cases. 7007 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). 7008 return false; 7009 if (!DL.fitsInLegalInteger(TableSize)) 7010 return false; 7011 } 7012 7013 if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) 7014 return false; 7015 7016 std::vector<DominatorTree::UpdateType> Updates; 7017 7018 // Compute the maximum table size representable by the integer type we are 7019 // switching upon. 7020 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); 7021 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; 7022 assert(MaxTableSize >= TableSize && 7023 "It is impossible for a switch to have more entries than the max " 7024 "representable value of its input integer type's size."); 7025 7026 // Create the BB that does the lookups. 7027 Module &Mod = *CommonDest->getParent()->getParent(); 7028 BasicBlock *LookupBB = BasicBlock::Create( 7029 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); 7030 7031 // Compute the table index value. 7032 Builder.SetInsertPoint(SI); 7033 Value *TableIndex; 7034 ConstantInt *TableIndexOffset; 7035 if (UseSwitchConditionAsTableIndex) { 7036 TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0); 7037 TableIndex = SI->getCondition(); 7038 } else { 7039 TableIndexOffset = MinCaseVal; 7040 // If the default is unreachable, all case values are s>= MinCaseVal. Then 7041 // we can try to attach nsw. 7042 bool MayWrap = true; 7043 if (!DefaultIsReachable) { 7044 APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap); 7045 (void)Res; 7046 } 7047 7048 TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset, 7049 "switch.tableidx", /*HasNUW =*/false, 7050 /*HasNSW =*/!MayWrap); 7051 } 7052 7053 BranchInst *RangeCheckBranch = nullptr; 7054 7055 // Grow the table to cover all possible index values to avoid the range check. 7056 // It will use the default result to fill in the table hole later, so make 7057 // sure it exist. 7058 if (UseSwitchConditionAsTableIndex && HasDefaultResults) { 7059 ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false); 7060 // Grow the table shouldn't have any size impact by checking 7061 // wouldFitInRegister. 7062 // TODO: Consider growing the table also when it doesn't fit in a register 7063 // if no optsize is specified. 7064 const uint64_t UpperBound = CR.getUpper().getLimitedValue(); 7065 if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) { 7066 return SwitchLookupTable::wouldFitInRegister( 7067 DL, UpperBound, KV.second /* ResultType */); 7068 })) { 7069 // There may be some case index larger than the UpperBound (unreachable 7070 // case), so make sure the table size does not get smaller. 7071 TableSize = std::max(UpperBound, TableSize); 7072 // The default branch is unreachable after we enlarge the lookup table. 7073 // Adjust DefaultIsReachable to reuse code path. 7074 DefaultIsReachable = false; 7075 } 7076 } 7077 7078 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); 7079 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7080 Builder.CreateBr(LookupBB); 7081 if (DTU) 7082 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7083 // Note: We call removeProdecessor later since we need to be able to get the 7084 // PHI value for the default case in case we're using a bit mask. 7085 } else { 7086 Value *Cmp = Builder.CreateICmpULT( 7087 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); 7088 RangeCheckBranch = 7089 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); 7090 if (DTU) 7091 Updates.push_back({DominatorTree::Insert, BB, LookupBB}); 7092 } 7093 7094 // Populate the BB that does the lookups. 7095 Builder.SetInsertPoint(LookupBB); 7096 7097 if (NeedMask) { 7098 // Before doing the lookup, we do the hole check. The LookupBB is therefore 7099 // re-purposed to do the hole check, and we create a new LookupBB. 7100 BasicBlock *MaskBB = LookupBB; 7101 MaskBB->setName("switch.hole_check"); 7102 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", 7103 CommonDest->getParent(), CommonDest); 7104 7105 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid 7106 // unnecessary illegal types. 7107 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); 7108 APInt MaskInt(TableSizePowOf2, 0); 7109 APInt One(TableSizePowOf2, 1); 7110 // Build bitmask; fill in a 1 bit for every case. 7111 const ResultListTy &ResultList = ResultLists[PHIs[0]]; 7112 for (size_t I = 0, E = ResultList.size(); I != E; ++I) { 7113 uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue()) 7114 .getLimitedValue(); 7115 MaskInt |= One << Idx; 7116 } 7117 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); 7118 7119 // Get the TableIndex'th bit of the bitmask. 7120 // If this bit is 0 (meaning hole) jump to the default destination, 7121 // else continue with table lookup. 7122 IntegerType *MapTy = TableMask->getIntegerType(); 7123 Value *MaskIndex = 7124 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); 7125 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); 7126 Value *LoBit = Builder.CreateTrunc( 7127 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); 7128 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); 7129 if (DTU) { 7130 Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB}); 7131 Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()}); 7132 } 7133 Builder.SetInsertPoint(LookupBB); 7134 addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB); 7135 } 7136 7137 if (!DefaultIsReachable || GeneratingCoveredLookupTable) { 7138 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, 7139 // do not delete PHINodes here. 7140 SI->getDefaultDest()->removePredecessor(BB, 7141 /*KeepOneInputPHIs=*/true); 7142 if (DTU) 7143 Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()}); 7144 } 7145 7146 for (PHINode *PHI : PHIs) { 7147 const ResultListTy &ResultList = ResultLists[PHI]; 7148 7149 // Use any value to fill the lookup table holes. 7150 Constant *DV = 7151 AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI]; 7152 StringRef FuncName = Fn->getName(); 7153 SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV, 7154 DL, FuncName); 7155 7156 Value *Result = Table.buildLookup(TableIndex, Builder); 7157 7158 // Do a small peephole optimization: re-use the switch table compare if 7159 // possible. 7160 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { 7161 BasicBlock *PhiBlock = PHI->getParent(); 7162 // Search for compare instructions which use the phi. 7163 for (auto *User : PHI->users()) { 7164 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); 7165 } 7166 } 7167 7168 PHI->addIncoming(Result, LookupBB); 7169 } 7170 7171 Builder.CreateBr(CommonDest); 7172 if (DTU) 7173 Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest}); 7174 7175 // Remove the switch. 7176 SmallPtrSet<BasicBlock *, 8> RemovedSuccessors; 7177 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { 7178 BasicBlock *Succ = SI->getSuccessor(i); 7179 7180 if (Succ == SI->getDefaultDest()) 7181 continue; 7182 Succ->removePredecessor(BB); 7183 if (DTU && RemovedSuccessors.insert(Succ).second) 7184 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7185 } 7186 SI->eraseFromParent(); 7187 7188 if (DTU) 7189 DTU->applyUpdates(Updates); 7190 7191 ++NumLookupTables; 7192 if (NeedMask) 7193 ++NumLookupTablesHoles; 7194 return true; 7195 } 7196 7197 /// Try to transform a switch that has "holes" in it to a contiguous sequence 7198 /// of cases. 7199 /// 7200 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be 7201 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. 7202 /// 7203 /// This converts a sparse switch into a dense switch which allows better 7204 /// lowering and could also allow transforming into a lookup table. 7205 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, 7206 const DataLayout &DL, 7207 const TargetTransformInfo &TTI) { 7208 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); 7209 if (CondTy->getIntegerBitWidth() > 64 || 7210 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7211 return false; 7212 // Only bother with this optimization if there are more than 3 switch cases; 7213 // SDAG will only bother creating jump tables for 4 or more cases. 7214 if (SI->getNumCases() < 4) 7215 return false; 7216 7217 // This transform is agnostic to the signedness of the input or case values. We 7218 // can treat the case values as signed or unsigned. We can optimize more common 7219 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values 7220 // as signed. 7221 SmallVector<int64_t,4> Values; 7222 for (const auto &C : SI->cases()) 7223 Values.push_back(C.getCaseValue()->getValue().getSExtValue()); 7224 llvm::sort(Values); 7225 7226 // If the switch is already dense, there's nothing useful to do here. 7227 if (isSwitchDense(Values)) 7228 return false; 7229 7230 // First, transform the values such that they start at zero and ascend. 7231 int64_t Base = Values[0]; 7232 for (auto &V : Values) 7233 V -= (uint64_t)(Base); 7234 7235 // Now we have signed numbers that have been shifted so that, given enough 7236 // precision, there are no negative values. Since the rest of the transform 7237 // is bitwise only, we switch now to an unsigned representation. 7238 7239 // This transform can be done speculatively because it is so cheap - it 7240 // results in a single rotate operation being inserted. 7241 7242 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than 7243 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be 7244 // less than 64. 7245 unsigned Shift = 64; 7246 for (auto &V : Values) 7247 Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V)); 7248 assert(Shift < 64); 7249 if (Shift > 0) 7250 for (auto &V : Values) 7251 V = (int64_t)((uint64_t)V >> Shift); 7252 7253 if (!isSwitchDense(Values)) 7254 // Transform didn't create a dense switch. 7255 return false; 7256 7257 // The obvious transform is to shift the switch condition right and emit a 7258 // check that the condition actually cleanly divided by GCD, i.e. 7259 // C & (1 << Shift - 1) == 0 7260 // inserting a new CFG edge to handle the case where it didn't divide cleanly. 7261 // 7262 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the 7263 // shift and puts the shifted-off bits in the uppermost bits. If any of these 7264 // are nonzero then the switch condition will be very large and will hit the 7265 // default case. 7266 7267 auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); 7268 Builder.SetInsertPoint(SI); 7269 Value *Sub = 7270 Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); 7271 Value *Rot = Builder.CreateIntrinsic( 7272 Ty, Intrinsic::fshl, 7273 {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)}); 7274 SI->replaceUsesOfWith(SI->getCondition(), Rot); 7275 7276 for (auto Case : SI->cases()) { 7277 auto *Orig = Case.getCaseValue(); 7278 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true); 7279 Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift)))); 7280 } 7281 return true; 7282 } 7283 7284 /// Tries to transform switch of powers of two to reduce switch range. 7285 /// For example, switch like: 7286 /// switch (C) { case 1: case 2: case 64: case 128: } 7287 /// will be transformed to: 7288 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: } 7289 /// 7290 /// This transformation allows better lowering and could allow transforming into 7291 /// a lookup table. 7292 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder, 7293 const DataLayout &DL, 7294 const TargetTransformInfo &TTI) { 7295 Value *Condition = SI->getCondition(); 7296 LLVMContext &Context = SI->getContext(); 7297 auto *CondTy = cast<IntegerType>(Condition->getType()); 7298 7299 if (CondTy->getIntegerBitWidth() > 64 || 7300 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) 7301 return false; 7302 7303 const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost( 7304 IntrinsicCostAttributes(Intrinsic::cttz, CondTy, 7305 {Condition, ConstantInt::getTrue(Context)}), 7306 TTI::TCK_SizeAndLatency); 7307 7308 if (CttzIntrinsicCost > TTI::TCC_Basic) 7309 // Inserting intrinsic is too expensive. 7310 return false; 7311 7312 // Only bother with this optimization if there are more than 3 switch cases. 7313 // SDAG will only bother creating jump tables for 4 or more cases. 7314 if (SI->getNumCases() < 4) 7315 return false; 7316 7317 // We perform this optimization only for switches with 7318 // unreachable default case. 7319 // This assumtion will save us from checking if `Condition` is a power of two. 7320 if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg())) 7321 return false; 7322 7323 // Check that switch cases are powers of two. 7324 SmallVector<uint64_t, 4> Values; 7325 for (const auto &Case : SI->cases()) { 7326 uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue(); 7327 if (llvm::has_single_bit(CaseValue)) 7328 Values.push_back(CaseValue); 7329 else 7330 return false; 7331 } 7332 7333 // isSwichDense requires case values to be sorted. 7334 llvm::sort(Values); 7335 if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) - 7336 llvm::countr_zero(Values.front()) + 1)) 7337 // Transform is unable to generate dense switch. 7338 return false; 7339 7340 Builder.SetInsertPoint(SI); 7341 7342 // Replace each case with its trailing zeros number. 7343 for (auto &Case : SI->cases()) { 7344 auto *OrigValue = Case.getCaseValue(); 7345 Case.setValue(ConstantInt::get(OrigValue->getIntegerType(), 7346 OrigValue->getValue().countr_zero())); 7347 } 7348 7349 // Replace condition with its trailing zeros number. 7350 auto *ConditionTrailingZeros = Builder.CreateIntrinsic( 7351 Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)}); 7352 7353 SI->setCondition(ConditionTrailingZeros); 7354 7355 return true; 7356 } 7357 7358 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have 7359 /// the same destination. 7360 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder, 7361 DomTreeUpdater *DTU) { 7362 auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition()); 7363 if (!Cmp || !Cmp->hasOneUse()) 7364 return false; 7365 7366 SmallVector<uint32_t, 4> Weights; 7367 bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights); 7368 if (!HasWeights) 7369 Weights.resize(4); // Avoid checking HasWeights everywhere. 7370 7371 // Normalize to [us]cmp == Res ? Succ : OtherSucc. 7372 int64_t Res; 7373 BasicBlock *Succ, *OtherSucc; 7374 uint32_t SuccWeight = 0, OtherSuccWeight = 0; 7375 BasicBlock *Unreachable = nullptr; 7376 7377 if (SI->getNumCases() == 2) { 7378 // Find which of 1, 0 or -1 is missing (handled by default dest). 7379 SmallSet<int64_t, 3> Missing; 7380 Missing.insert(1); 7381 Missing.insert(0); 7382 Missing.insert(-1); 7383 7384 Succ = SI->getDefaultDest(); 7385 SuccWeight = Weights[0]; 7386 OtherSucc = nullptr; 7387 for (auto &Case : SI->cases()) { 7388 std::optional<int64_t> Val = 7389 Case.getCaseValue()->getValue().trySExtValue(); 7390 if (!Val) 7391 return false; 7392 if (!Missing.erase(*Val)) 7393 return false; 7394 if (OtherSucc && OtherSucc != Case.getCaseSuccessor()) 7395 return false; 7396 OtherSucc = Case.getCaseSuccessor(); 7397 OtherSuccWeight += Weights[Case.getSuccessorIndex()]; 7398 } 7399 7400 assert(Missing.size() == 1 && "Should have one case left"); 7401 Res = *Missing.begin(); 7402 } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) { 7403 // Normalize so that Succ is taken once and OtherSucc twice. 7404 Unreachable = SI->getDefaultDest(); 7405 Succ = OtherSucc = nullptr; 7406 for (auto &Case : SI->cases()) { 7407 BasicBlock *NewSucc = Case.getCaseSuccessor(); 7408 uint32_t Weight = Weights[Case.getSuccessorIndex()]; 7409 if (!OtherSucc || OtherSucc == NewSucc) { 7410 OtherSucc = NewSucc; 7411 OtherSuccWeight += Weight; 7412 } else if (!Succ) { 7413 Succ = NewSucc; 7414 SuccWeight = Weight; 7415 } else if (Succ == NewSucc) { 7416 std::swap(Succ, OtherSucc); 7417 std::swap(SuccWeight, OtherSuccWeight); 7418 } else 7419 return false; 7420 } 7421 for (auto &Case : SI->cases()) { 7422 std::optional<int64_t> Val = 7423 Case.getCaseValue()->getValue().trySExtValue(); 7424 if (!Val || (Val != 1 && Val != 0 && Val != -1)) 7425 return false; 7426 if (Case.getCaseSuccessor() == Succ) { 7427 Res = *Val; 7428 break; 7429 } 7430 } 7431 } else { 7432 return false; 7433 } 7434 7435 // Determine predicate for the missing case. 7436 ICmpInst::Predicate Pred; 7437 switch (Res) { 7438 case 1: 7439 Pred = ICmpInst::ICMP_UGT; 7440 break; 7441 case 0: 7442 Pred = ICmpInst::ICMP_EQ; 7443 break; 7444 case -1: 7445 Pred = ICmpInst::ICMP_ULT; 7446 break; 7447 } 7448 if (Cmp->isSigned()) 7449 Pred = ICmpInst::getSignedPredicate(Pred); 7450 7451 MDNode *NewWeights = nullptr; 7452 if (HasWeights) 7453 NewWeights = MDBuilder(SI->getContext()) 7454 .createBranchWeights(SuccWeight, OtherSuccWeight); 7455 7456 BasicBlock *BB = SI->getParent(); 7457 Builder.SetInsertPoint(SI->getIterator()); 7458 Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS()); 7459 Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights, 7460 SI->getMetadata(LLVMContext::MD_unpredictable)); 7461 OtherSucc->removePredecessor(BB); 7462 if (Unreachable) 7463 Unreachable->removePredecessor(BB); 7464 SI->eraseFromParent(); 7465 Cmp->eraseFromParent(); 7466 if (DTU && Unreachable) 7467 DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}}); 7468 return true; 7469 } 7470 7471 /// Checking whether two cases of SI are equal depends on the contents of the 7472 /// BasicBlock and the incoming values of their successor PHINodes. 7473 /// PHINode::getIncomingValueForBlock is O(|Preds|), so we'd like to avoid 7474 /// calling this function on each BasicBlock every time isEqual is called, 7475 /// especially since the same BasicBlock may be passed as an argument multiple 7476 /// times. To do this, we can precompute a map of PHINode -> Pred BasicBlock -> 7477 /// IncomingValue and add it in the Wrapper so isEqual can do O(1) checking 7478 /// of the incoming values. 7479 struct SwitchSuccWrapper { 7480 // Keep so we can use SwitchInst::setSuccessor to do the replacement. It won't 7481 // be important to equality though. 7482 unsigned SuccNum; 7483 BasicBlock *Dest; 7484 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> *PhiPredIVs; 7485 }; 7486 7487 namespace llvm { 7488 template <> struct DenseMapInfo<const SwitchSuccWrapper *> { 7489 static const SwitchSuccWrapper *getEmptyKey() { 7490 return static_cast<SwitchSuccWrapper *>( 7491 DenseMapInfo<void *>::getEmptyKey()); 7492 } 7493 static const SwitchSuccWrapper *getTombstoneKey() { 7494 return static_cast<SwitchSuccWrapper *>( 7495 DenseMapInfo<void *>::getTombstoneKey()); 7496 } 7497 static unsigned getHashValue(const SwitchSuccWrapper *SSW) { 7498 BasicBlock *Succ = SSW->Dest; 7499 BranchInst *BI = cast<BranchInst>(Succ->getTerminator()); 7500 assert(BI->isUnconditional() && 7501 "Only supporting unconditional branches for now"); 7502 assert(BI->getNumSuccessors() == 1 && 7503 "Expected unconditional branches to have one successor"); 7504 assert(Succ->size() == 1 && "Expected just a single branch in the BB"); 7505 7506 // Since we assume the BB is just a single BranchInst with a single 7507 // successor, we hash as the BB and the incoming Values of its successor 7508 // PHIs. Initially, we tried to just use the successor BB as the hash, but 7509 // including the incoming PHI values leads to better performance. 7510 // We also tried to build a map from BB -> Succs.IncomingValues ahead of 7511 // time and passing it in SwitchSuccWrapper, but this slowed down the 7512 // average compile time without having any impact on the worst case compile 7513 // time. 7514 BasicBlock *BB = BI->getSuccessor(0); 7515 SmallVector<Value *> PhiValsForBB; 7516 for (PHINode &Phi : BB->phis()) 7517 PhiValsForBB.emplace_back((*SSW->PhiPredIVs)[&Phi][BB]); 7518 7519 return hash_combine( 7520 BB, hash_combine_range(PhiValsForBB.begin(), PhiValsForBB.end())); 7521 } 7522 static bool isEqual(const SwitchSuccWrapper *LHS, 7523 const SwitchSuccWrapper *RHS) { 7524 auto EKey = DenseMapInfo<SwitchSuccWrapper *>::getEmptyKey(); 7525 auto TKey = DenseMapInfo<SwitchSuccWrapper *>::getTombstoneKey(); 7526 if (LHS == EKey || RHS == EKey || LHS == TKey || RHS == TKey) 7527 return LHS == RHS; 7528 7529 BasicBlock *A = LHS->Dest; 7530 BasicBlock *B = RHS->Dest; 7531 7532 // FIXME: we checked that the size of A and B are both 1 in 7533 // simplifyDuplicateSwitchArms to make the Case list smaller to 7534 // improve performance. If we decide to support BasicBlocks with more 7535 // than just a single instruction, we need to check that A.size() == 7536 // B.size() here, and we need to check more than just the BranchInsts 7537 // for equality. 7538 7539 BranchInst *ABI = cast<BranchInst>(A->getTerminator()); 7540 BranchInst *BBI = cast<BranchInst>(B->getTerminator()); 7541 assert(ABI->isUnconditional() && BBI->isUnconditional() && 7542 "Only supporting unconditional branches for now"); 7543 if (ABI->getSuccessor(0) != BBI->getSuccessor(0)) 7544 return false; 7545 7546 // Need to check that PHIs in successor have matching values 7547 BasicBlock *Succ = ABI->getSuccessor(0); 7548 for (PHINode &Phi : Succ->phis()) { 7549 auto &PredIVs = (*LHS->PhiPredIVs)[&Phi]; 7550 if (PredIVs[A] != PredIVs[B]) 7551 return false; 7552 } 7553 7554 return true; 7555 } 7556 }; 7557 } // namespace llvm 7558 7559 bool SimplifyCFGOpt::simplifyDuplicateSwitchArms(SwitchInst *SI, 7560 DomTreeUpdater *DTU) { 7561 // Build Cases. Skip BBs that are not candidates for simplification. Mark 7562 // PHINodes which need to be processed into PhiPredIVs. We decide to process 7563 // an entire PHI at once after the loop, opposed to calling 7564 // getIncomingValueForBlock inside this loop, since each call to 7565 // getIncomingValueForBlock is O(|Preds|). 7566 SmallPtrSet<PHINode *, 8> Phis; 7567 SmallPtrSet<BasicBlock *, 8> Seen; 7568 DenseMap<PHINode *, SmallDenseMap<BasicBlock *, Value *, 8>> PhiPredIVs; 7569 SmallVector<SwitchSuccWrapper> Cases; 7570 Cases.reserve(SI->getNumSuccessors()); 7571 7572 for (unsigned I = 0; I < SI->getNumSuccessors(); ++I) { 7573 BasicBlock *BB = SI->getSuccessor(I); 7574 7575 // FIXME: Support more than just a single BranchInst. One way we could do 7576 // this is by taking a hashing approach of all insts in BB. 7577 if (BB->size() != 1) 7578 continue; 7579 7580 // FIXME: This case needs some extra care because the terminators other than 7581 // SI need to be updated. 7582 if (BB->hasNPredecessorsOrMore(2)) 7583 continue; 7584 7585 // FIXME: Relax that the terminator is a BranchInst by checking for equality 7586 // on other kinds of terminators. We decide to only support unconditional 7587 // branches for now for compile time reasons. 7588 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 7589 if (!BI || BI->isConditional()) 7590 continue; 7591 7592 if (Seen.insert(BB).second) { 7593 // Keep track of which PHIs we need as keys in PhiPredIVs below. 7594 for (BasicBlock *Succ : BI->successors()) 7595 for (PHINode &Phi : Succ->phis()) 7596 Phis.insert(&Phi); 7597 } 7598 Cases.emplace_back(SwitchSuccWrapper{I, BB, &PhiPredIVs}); 7599 } 7600 7601 // Precompute a data structure to improve performance of isEqual for 7602 // SwitchSuccWrapper. 7603 PhiPredIVs.reserve(Phis.size()); 7604 for (PHINode *Phi : Phis) { 7605 PhiPredIVs[Phi] = 7606 SmallDenseMap<BasicBlock *, Value *, 8>(Phi->getNumIncomingValues()); 7607 for (auto &IV : Phi->incoming_values()) 7608 PhiPredIVs[Phi].insert({Phi->getIncomingBlock(IV), IV.get()}); 7609 } 7610 7611 // Build a set such that if the SwitchSuccWrapper exists in the set and 7612 // another SwitchSuccWrapper isEqual, then the equivalent SwitchSuccWrapper 7613 // which is not in the set should be replaced with the one in the set. If the 7614 // SwitchSuccWrapper is not in the set, then it should be added to the set so 7615 // other SwitchSuccWrappers can check against it in the same manner. We use 7616 // SwitchSuccWrapper instead of just BasicBlock because we'd like to pass 7617 // around information to isEquality, getHashValue, and when doing the 7618 // replacement with better performance. 7619 DenseSet<const SwitchSuccWrapper *> ReplaceWith; 7620 ReplaceWith.reserve(Cases.size()); 7621 7622 SmallVector<DominatorTree::UpdateType> Updates; 7623 Updates.reserve(ReplaceWith.size()); 7624 bool MadeChange = false; 7625 for (auto &SSW : Cases) { 7626 // SSW is a candidate for simplification. If we find a duplicate BB, 7627 // replace it. 7628 const auto [It, Inserted] = ReplaceWith.insert(&SSW); 7629 if (!Inserted) { 7630 // We know that SI's parent BB no longer dominates the old case successor 7631 // since we are making it dead. 7632 Updates.push_back({DominatorTree::Delete, SI->getParent(), SSW.Dest}); 7633 SI->setSuccessor(SSW.SuccNum, (*It)->Dest); 7634 MadeChange = true; 7635 } 7636 } 7637 7638 if (DTU) 7639 DTU->applyUpdates(Updates); 7640 7641 return MadeChange; 7642 } 7643 7644 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { 7645 BasicBlock *BB = SI->getParent(); 7646 7647 if (isValueEqualityComparison(SI)) { 7648 // If we only have one predecessor, and if it is a branch on this value, 7649 // see if that predecessor totally determines the outcome of this switch. 7650 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 7651 if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) 7652 return requestResimplify(); 7653 7654 Value *Cond = SI->getCondition(); 7655 if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) 7656 if (simplifySwitchOnSelect(SI, Select)) 7657 return requestResimplify(); 7658 7659 // If the block only contains the switch, see if we can fold the block 7660 // away into any preds. 7661 if (SI == &*BB->instructionsWithoutDebug(false).begin()) 7662 if (foldValueComparisonIntoPredecessors(SI, Builder)) 7663 return requestResimplify(); 7664 } 7665 7666 // Try to transform the switch into an icmp and a branch. 7667 // The conversion from switch to comparison may lose information on 7668 // impossible switch values, so disable it early in the pipeline. 7669 if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder)) 7670 return requestResimplify(); 7671 7672 // Remove unreachable cases. 7673 if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL)) 7674 return requestResimplify(); 7675 7676 if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU)) 7677 return requestResimplify(); 7678 7679 if (trySwitchToSelect(SI, Builder, DTU, DL, TTI)) 7680 return requestResimplify(); 7681 7682 if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI)) 7683 return requestResimplify(); 7684 7685 // The conversion from switch to lookup tables results in difficult-to-analyze 7686 // code and makes pruning branches much harder. This is a problem if the 7687 // switch expression itself can still be restricted as a result of inlining or 7688 // CVP. Therefore, only apply this transformation during late stages of the 7689 // optimisation pipeline. 7690 if (Options.ConvertSwitchToLookupTable && 7691 switchToLookupTable(SI, Builder, DTU, DL, TTI)) 7692 return requestResimplify(); 7693 7694 if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI)) 7695 return requestResimplify(); 7696 7697 if (reduceSwitchRange(SI, Builder, DL, TTI)) 7698 return requestResimplify(); 7699 7700 if (HoistCommon && 7701 hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts)) 7702 return requestResimplify(); 7703 7704 if (simplifyDuplicateSwitchArms(SI, DTU)) 7705 return requestResimplify(); 7706 7707 return false; 7708 } 7709 7710 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) { 7711 BasicBlock *BB = IBI->getParent(); 7712 bool Changed = false; 7713 7714 // Eliminate redundant destinations. 7715 SmallPtrSet<Value *, 8> Succs; 7716 SmallSetVector<BasicBlock *, 8> RemovedSuccs; 7717 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 7718 BasicBlock *Dest = IBI->getDestination(i); 7719 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { 7720 if (!Dest->hasAddressTaken()) 7721 RemovedSuccs.insert(Dest); 7722 Dest->removePredecessor(BB); 7723 IBI->removeDestination(i); 7724 --i; 7725 --e; 7726 Changed = true; 7727 } 7728 } 7729 7730 if (DTU) { 7731 std::vector<DominatorTree::UpdateType> Updates; 7732 Updates.reserve(RemovedSuccs.size()); 7733 for (auto *RemovedSucc : RemovedSuccs) 7734 Updates.push_back({DominatorTree::Delete, BB, RemovedSucc}); 7735 DTU->applyUpdates(Updates); 7736 } 7737 7738 if (IBI->getNumDestinations() == 0) { 7739 // If the indirectbr has no successors, change it to unreachable. 7740 new UnreachableInst(IBI->getContext(), IBI->getIterator()); 7741 eraseTerminatorAndDCECond(IBI); 7742 return true; 7743 } 7744 7745 if (IBI->getNumDestinations() == 1) { 7746 // If the indirectbr has one successor, change it to a direct branch. 7747 BranchInst::Create(IBI->getDestination(0), IBI->getIterator()); 7748 eraseTerminatorAndDCECond(IBI); 7749 return true; 7750 } 7751 7752 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { 7753 if (simplifyIndirectBrOnSelect(IBI, SI)) 7754 return requestResimplify(); 7755 } 7756 return Changed; 7757 } 7758 7759 /// Given an block with only a single landing pad and a unconditional branch 7760 /// try to find another basic block which this one can be merged with. This 7761 /// handles cases where we have multiple invokes with unique landing pads, but 7762 /// a shared handler. 7763 /// 7764 /// We specifically choose to not worry about merging non-empty blocks 7765 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In 7766 /// practice, the optimizer produces empty landing pad blocks quite frequently 7767 /// when dealing with exception dense code. (see: instcombine, gvn, if-else 7768 /// sinking in this file) 7769 /// 7770 /// This is primarily a code size optimization. We need to avoid performing 7771 /// any transform which might inhibit optimization (such as our ability to 7772 /// specialize a particular handler via tail commoning). We do this by not 7773 /// merging any blocks which require us to introduce a phi. Since the same 7774 /// values are flowing through both blocks, we don't lose any ability to 7775 /// specialize. If anything, we make such specialization more likely. 7776 /// 7777 /// TODO - This transformation could remove entries from a phi in the target 7778 /// block when the inputs in the phi are the same for the two blocks being 7779 /// merged. In some cases, this could result in removal of the PHI entirely. 7780 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, 7781 BasicBlock *BB, DomTreeUpdater *DTU) { 7782 auto Succ = BB->getUniqueSuccessor(); 7783 assert(Succ); 7784 // If there's a phi in the successor block, we'd likely have to introduce 7785 // a phi into the merged landing pad block. 7786 if (isa<PHINode>(*Succ->begin())) 7787 return false; 7788 7789 for (BasicBlock *OtherPred : predecessors(Succ)) { 7790 if (BB == OtherPred) 7791 continue; 7792 BasicBlock::iterator I = OtherPred->begin(); 7793 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); 7794 if (!LPad2 || !LPad2->isIdenticalTo(LPad)) 7795 continue; 7796 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7797 ; 7798 BranchInst *BI2 = dyn_cast<BranchInst>(I); 7799 if (!BI2 || !BI2->isIdenticalTo(BI)) 7800 continue; 7801 7802 std::vector<DominatorTree::UpdateType> Updates; 7803 7804 // We've found an identical block. Update our predecessors to take that 7805 // path instead and make ourselves dead. 7806 SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB)); 7807 for (BasicBlock *Pred : UniquePreds) { 7808 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); 7809 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && 7810 "unexpected successor"); 7811 II->setUnwindDest(OtherPred); 7812 if (DTU) { 7813 Updates.push_back({DominatorTree::Insert, Pred, OtherPred}); 7814 Updates.push_back({DominatorTree::Delete, Pred, BB}); 7815 } 7816 } 7817 7818 // The debug info in OtherPred doesn't cover the merged control flow that 7819 // used to go through BB. We need to delete it or update it. 7820 for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred)) 7821 if (isa<DbgInfoIntrinsic>(Inst)) 7822 Inst.eraseFromParent(); 7823 7824 SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB)); 7825 for (BasicBlock *Succ : UniqueSuccs) { 7826 Succ->removePredecessor(BB); 7827 if (DTU) 7828 Updates.push_back({DominatorTree::Delete, BB, Succ}); 7829 } 7830 7831 IRBuilder<> Builder(BI); 7832 Builder.CreateUnreachable(); 7833 BI->eraseFromParent(); 7834 if (DTU) 7835 DTU->applyUpdates(Updates); 7836 return true; 7837 } 7838 return false; 7839 } 7840 7841 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) { 7842 return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder) 7843 : simplifyCondBranch(Branch, Builder); 7844 } 7845 7846 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI, 7847 IRBuilder<> &Builder) { 7848 BasicBlock *BB = BI->getParent(); 7849 BasicBlock *Succ = BI->getSuccessor(0); 7850 7851 // If the Terminator is the only non-phi instruction, simplify the block. 7852 // If LoopHeader is provided, check if the block or its successor is a loop 7853 // header. (This is for early invocations before loop simplify and 7854 // vectorization to keep canonical loop forms for nested loops. These blocks 7855 // can be eliminated when the pass is invoked later in the back-end.) 7856 // Note that if BB has only one predecessor then we do not introduce new 7857 // backedge, so we can eliminate BB. 7858 bool NeedCanonicalLoop = 7859 Options.NeedCanonicalLoop && 7860 (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) && 7861 (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ))); 7862 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator(); 7863 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && 7864 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU)) 7865 return true; 7866 7867 // If the only instruction in the block is a seteq/setne comparison against a 7868 // constant, try to simplify the block. 7869 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) 7870 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { 7871 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7872 ; 7873 if (I->isTerminator() && 7874 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) 7875 return true; 7876 } 7877 7878 // See if we can merge an empty landing pad block with another which is 7879 // equivalent. 7880 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { 7881 for (++I; isa<DbgInfoIntrinsic>(I); ++I) 7882 ; 7883 if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU)) 7884 return true; 7885 } 7886 7887 // If this basic block is ONLY a compare and a branch, and if a predecessor 7888 // branches to us and our successor, fold the comparison into the 7889 // predecessor and use logical operations to update the incoming value 7890 // for PHI nodes in common successor. 7891 if (Options.SpeculateBlocks && 7892 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 7893 Options.BonusInstThreshold)) 7894 return requestResimplify(); 7895 return false; 7896 } 7897 7898 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { 7899 BasicBlock *PredPred = nullptr; 7900 for (auto *P : predecessors(BB)) { 7901 BasicBlock *PPred = P->getSinglePredecessor(); 7902 if (!PPred || (PredPred && PredPred != PPred)) 7903 return nullptr; 7904 PredPred = PPred; 7905 } 7906 return PredPred; 7907 } 7908 7909 /// Fold the following pattern: 7910 /// bb0: 7911 /// br i1 %cond1, label %bb1, label %bb2 7912 /// bb1: 7913 /// br i1 %cond2, label %bb3, label %bb4 7914 /// bb2: 7915 /// br i1 %cond2, label %bb4, label %bb3 7916 /// bb3: 7917 /// ... 7918 /// bb4: 7919 /// ... 7920 /// into 7921 /// bb0: 7922 /// %cond = xor i1 %cond1, %cond2 7923 /// br i1 %cond, label %bb4, label %bb3 7924 /// bb3: 7925 /// ... 7926 /// bb4: 7927 /// ... 7928 /// NOTE: %cond2 always dominates the terminator of bb0. 7929 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) { 7930 BasicBlock *BB = BI->getParent(); 7931 BasicBlock *BB1 = BI->getSuccessor(0); 7932 BasicBlock *BB2 = BI->getSuccessor(1); 7933 auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) { 7934 if (Succ == BB) 7935 return false; 7936 if (&Succ->front() != Succ->getTerminator()) 7937 return false; 7938 SuccBI = dyn_cast<BranchInst>(Succ->getTerminator()); 7939 if (!SuccBI || !SuccBI->isConditional()) 7940 return false; 7941 BasicBlock *Succ1 = SuccBI->getSuccessor(0); 7942 BasicBlock *Succ2 = SuccBI->getSuccessor(1); 7943 return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB && 7944 !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front()); 7945 }; 7946 BranchInst *BB1BI, *BB2BI; 7947 if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI)) 7948 return false; 7949 7950 if (BB1BI->getCondition() != BB2BI->getCondition() || 7951 BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) || 7952 BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0)) 7953 return false; 7954 7955 BasicBlock *BB3 = BB1BI->getSuccessor(0); 7956 BasicBlock *BB4 = BB1BI->getSuccessor(1); 7957 IRBuilder<> Builder(BI); 7958 BI->setCondition( 7959 Builder.CreateXor(BI->getCondition(), BB1BI->getCondition())); 7960 BB1->removePredecessor(BB); 7961 BI->setSuccessor(0, BB4); 7962 BB2->removePredecessor(BB); 7963 BI->setSuccessor(1, BB3); 7964 if (DTU) { 7965 SmallVector<DominatorTree::UpdateType, 4> Updates; 7966 Updates.push_back({DominatorTree::Delete, BB, BB1}); 7967 Updates.push_back({DominatorTree::Insert, BB, BB4}); 7968 Updates.push_back({DominatorTree::Delete, BB, BB2}); 7969 Updates.push_back({DominatorTree::Insert, BB, BB3}); 7970 7971 DTU->applyUpdates(Updates); 7972 } 7973 bool HasWeight = false; 7974 uint64_t BBTWeight, BBFWeight; 7975 if (extractBranchWeights(*BI, BBTWeight, BBFWeight)) 7976 HasWeight = true; 7977 else 7978 BBTWeight = BBFWeight = 1; 7979 uint64_t BB1TWeight, BB1FWeight; 7980 if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight)) 7981 HasWeight = true; 7982 else 7983 BB1TWeight = BB1FWeight = 1; 7984 uint64_t BB2TWeight, BB2FWeight; 7985 if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight)) 7986 HasWeight = true; 7987 else 7988 BB2TWeight = BB2FWeight = 1; 7989 if (HasWeight) { 7990 uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight, 7991 BBTWeight * BB1TWeight + BBFWeight * BB2FWeight}; 7992 fitWeights(Weights); 7993 setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false); 7994 } 7995 return true; 7996 } 7997 7998 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { 7999 assert( 8000 !isa<ConstantInt>(BI->getCondition()) && 8001 BI->getSuccessor(0) != BI->getSuccessor(1) && 8002 "Tautological conditional branch should have been eliminated already."); 8003 8004 BasicBlock *BB = BI->getParent(); 8005 if (!Options.SimplifyCondBranch || 8006 BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing)) 8007 return false; 8008 8009 // Conditional branch 8010 if (isValueEqualityComparison(BI)) { 8011 // If we only have one predecessor, and if it is a branch on this value, 8012 // see if that predecessor totally determines the outcome of this 8013 // switch. 8014 if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) 8015 if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) 8016 return requestResimplify(); 8017 8018 // This block must be empty, except for the setcond inst, if it exists. 8019 // Ignore dbg and pseudo intrinsics. 8020 auto I = BB->instructionsWithoutDebug(true).begin(); 8021 if (&*I == BI) { 8022 if (foldValueComparisonIntoPredecessors(BI, Builder)) 8023 return requestResimplify(); 8024 } else if (&*I == cast<Instruction>(BI->getCondition())) { 8025 ++I; 8026 if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder)) 8027 return requestResimplify(); 8028 } 8029 } 8030 8031 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. 8032 if (simplifyBranchOnICmpChain(BI, Builder, DL)) 8033 return true; 8034 8035 // If this basic block has dominating predecessor blocks and the dominating 8036 // blocks' conditions imply BI's condition, we know the direction of BI. 8037 std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); 8038 if (Imp) { 8039 // Turn this into a branch on constant. 8040 auto *OldCond = BI->getCondition(); 8041 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) 8042 : ConstantInt::getFalse(BB->getContext()); 8043 BI->setCondition(TorF); 8044 RecursivelyDeleteTriviallyDeadInstructions(OldCond); 8045 return requestResimplify(); 8046 } 8047 8048 // If this basic block is ONLY a compare and a branch, and if a predecessor 8049 // branches to us and one of our successors, fold the comparison into the 8050 // predecessor and use logical operations to pick the right destination. 8051 if (Options.SpeculateBlocks && 8052 foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI, 8053 Options.BonusInstThreshold)) 8054 return requestResimplify(); 8055 8056 // We have a conditional branch to two blocks that are only reachable 8057 // from BI. We know that the condbr dominates the two blocks, so see if 8058 // there is any identical code in the "then" and "else" blocks. If so, we 8059 // can hoist it up to the branching block. 8060 if (BI->getSuccessor(0)->getSinglePredecessor()) { 8061 if (BI->getSuccessor(1)->getSinglePredecessor()) { 8062 if (HoistCommon && 8063 hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts)) 8064 return requestResimplify(); 8065 8066 if (BI && HoistLoadsStoresWithCondFaulting && 8067 Options.HoistLoadsStoresWithCondFaulting && 8068 isProfitableToSpeculate(BI, std::nullopt, TTI)) { 8069 SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores; 8070 auto CanSpeculateConditionalLoadsStores = [&]() { 8071 for (auto *Succ : successors(BB)) { 8072 for (Instruction &I : *Succ) { 8073 if (I.isTerminator()) { 8074 if (I.getNumSuccessors() > 1) 8075 return false; 8076 continue; 8077 } else if (!isSafeCheapLoadStore(&I, TTI) || 8078 SpeculatedConditionalLoadsStores.size() == 8079 HoistLoadsStoresWithCondFaultingThreshold) { 8080 return false; 8081 } 8082 SpeculatedConditionalLoadsStores.push_back(&I); 8083 } 8084 } 8085 return !SpeculatedConditionalLoadsStores.empty(); 8086 }; 8087 8088 if (CanSpeculateConditionalLoadsStores()) { 8089 hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, 8090 std::nullopt); 8091 return requestResimplify(); 8092 } 8093 } 8094 } else { 8095 // If Successor #1 has multiple preds, we may be able to conditionally 8096 // execute Successor #0 if it branches to Successor #1. 8097 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); 8098 if (Succ0TI->getNumSuccessors() == 1 && 8099 Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) 8100 if (speculativelyExecuteBB(BI, BI->getSuccessor(0))) 8101 return requestResimplify(); 8102 } 8103 } else if (BI->getSuccessor(1)->getSinglePredecessor()) { 8104 // If Successor #0 has multiple preds, we may be able to conditionally 8105 // execute Successor #1 if it branches to Successor #0. 8106 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); 8107 if (Succ1TI->getNumSuccessors() == 1 && 8108 Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) 8109 if (speculativelyExecuteBB(BI, BI->getSuccessor(1))) 8110 return requestResimplify(); 8111 } 8112 8113 // If this is a branch on something for which we know the constant value in 8114 // predecessors (e.g. a phi node in the current block), thread control 8115 // through this block. 8116 if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC)) 8117 return requestResimplify(); 8118 8119 // Scan predecessor blocks for conditional branches. 8120 for (BasicBlock *Pred : predecessors(BB)) 8121 if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator())) 8122 if (PBI != BI && PBI->isConditional()) 8123 if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI)) 8124 return requestResimplify(); 8125 8126 // Look for diamond patterns. 8127 if (MergeCondStores) 8128 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) 8129 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) 8130 if (PBI != BI && PBI->isConditional()) 8131 if (mergeConditionalStores(PBI, BI, DTU, DL, TTI)) 8132 return requestResimplify(); 8133 8134 // Look for nested conditional branches. 8135 if (mergeNestedCondBranch(BI, DTU)) 8136 return requestResimplify(); 8137 8138 return false; 8139 } 8140 8141 /// Check if passing a value to an instruction will cause undefined behavior. 8142 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) { 8143 Constant *C = dyn_cast<Constant>(V); 8144 if (!C) 8145 return false; 8146 8147 if (I->use_empty()) 8148 return false; 8149 8150 if (C->isNullValue() || isa<UndefValue>(C)) { 8151 // Only look at the first use we can handle, avoid hurting compile time with 8152 // long uselists 8153 auto FindUse = llvm::find_if(I->users(), [](auto *U) { 8154 auto *Use = cast<Instruction>(U); 8155 // Change this list when we want to add new instructions. 8156 switch (Use->getOpcode()) { 8157 default: 8158 return false; 8159 case Instruction::GetElementPtr: 8160 case Instruction::Ret: 8161 case Instruction::BitCast: 8162 case Instruction::Load: 8163 case Instruction::Store: 8164 case Instruction::Call: 8165 case Instruction::CallBr: 8166 case Instruction::Invoke: 8167 case Instruction::UDiv: 8168 case Instruction::URem: 8169 // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not 8170 // implemented to avoid code complexity as it is unclear how useful such 8171 // logic is. 8172 case Instruction::SDiv: 8173 case Instruction::SRem: 8174 return true; 8175 } 8176 }); 8177 if (FindUse == I->user_end()) 8178 return false; 8179 auto *Use = cast<Instruction>(*FindUse); 8180 // Bail out if Use is not in the same BB as I or Use == I or Use comes 8181 // before I in the block. The latter two can be the case if Use is a 8182 // PHI node. 8183 if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I)) 8184 return false; 8185 8186 // Now make sure that there are no instructions in between that can alter 8187 // control flow (eg. calls) 8188 auto InstrRange = 8189 make_range(std::next(I->getIterator()), Use->getIterator()); 8190 if (any_of(InstrRange, [](Instruction &I) { 8191 return !isGuaranteedToTransferExecutionToSuccessor(&I); 8192 })) 8193 return false; 8194 8195 // Look through GEPs. A load from a GEP derived from NULL is still undefined 8196 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) 8197 if (GEP->getPointerOperand() == I) { 8198 // The current base address is null, there are four cases to consider: 8199 // getelementptr (TY, null, 0) -> null 8200 // getelementptr (TY, null, not zero) -> may be modified 8201 // getelementptr inbounds (TY, null, 0) -> null 8202 // getelementptr inbounds (TY, null, not zero) -> poison iff null is 8203 // undefined? 8204 if (!GEP->hasAllZeroIndices() && 8205 (!GEP->isInBounds() || 8206 NullPointerIsDefined(GEP->getFunction(), 8207 GEP->getPointerAddressSpace()))) 8208 PtrValueMayBeModified = true; 8209 return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified); 8210 } 8211 8212 // Look through return. 8213 if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) { 8214 bool HasNoUndefAttr = 8215 Ret->getFunction()->hasRetAttribute(Attribute::NoUndef); 8216 // Return undefined to a noundef return value is undefined. 8217 if (isa<UndefValue>(C) && HasNoUndefAttr) 8218 return true; 8219 // Return null to a nonnull+noundef return value is undefined. 8220 if (C->isNullValue() && HasNoUndefAttr && 8221 Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) { 8222 return !PtrValueMayBeModified; 8223 } 8224 } 8225 8226 // Load from null is undefined. 8227 if (LoadInst *LI = dyn_cast<LoadInst>(Use)) 8228 if (!LI->isVolatile()) 8229 return !NullPointerIsDefined(LI->getFunction(), 8230 LI->getPointerAddressSpace()); 8231 8232 // Store to null is undefined. 8233 if (StoreInst *SI = dyn_cast<StoreInst>(Use)) 8234 if (!SI->isVolatile()) 8235 return (!NullPointerIsDefined(SI->getFunction(), 8236 SI->getPointerAddressSpace())) && 8237 SI->getPointerOperand() == I; 8238 8239 // llvm.assume(false/undef) always triggers immediate UB. 8240 if (auto *Assume = dyn_cast<AssumeInst>(Use)) { 8241 // Ignore assume operand bundles. 8242 if (I == Assume->getArgOperand(0)) 8243 return true; 8244 } 8245 8246 if (auto *CB = dyn_cast<CallBase>(Use)) { 8247 if (C->isNullValue() && NullPointerIsDefined(CB->getFunction())) 8248 return false; 8249 // A call to null is undefined. 8250 if (CB->getCalledOperand() == I) 8251 return true; 8252 8253 if (C->isNullValue()) { 8254 for (const llvm::Use &Arg : CB->args()) 8255 if (Arg == I) { 8256 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8257 if (CB->isPassingUndefUB(ArgIdx) && 8258 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) { 8259 // Passing null to a nonnnull+noundef argument is undefined. 8260 return !PtrValueMayBeModified; 8261 } 8262 } 8263 } else if (isa<UndefValue>(C)) { 8264 // Passing undef to a noundef argument is undefined. 8265 for (const llvm::Use &Arg : CB->args()) 8266 if (Arg == I) { 8267 unsigned ArgIdx = CB->getArgOperandNo(&Arg); 8268 if (CB->isPassingUndefUB(ArgIdx)) { 8269 // Passing undef to a noundef argument is undefined. 8270 return true; 8271 } 8272 } 8273 } 8274 } 8275 // Div/Rem by zero is immediate UB 8276 if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem()) 8277 return true; 8278 } 8279 return false; 8280 } 8281 8282 /// If BB has an incoming value that will always trigger undefined behavior 8283 /// (eg. null pointer dereference), remove the branch leading here. 8284 static bool removeUndefIntroducingPredecessor(BasicBlock *BB, 8285 DomTreeUpdater *DTU, 8286 AssumptionCache *AC) { 8287 for (PHINode &PHI : BB->phis()) 8288 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) 8289 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { 8290 BasicBlock *Predecessor = PHI.getIncomingBlock(i); 8291 Instruction *T = Predecessor->getTerminator(); 8292 IRBuilder<> Builder(T); 8293 if (BranchInst *BI = dyn_cast<BranchInst>(T)) { 8294 BB->removePredecessor(Predecessor); 8295 // Turn unconditional branches into unreachables and remove the dead 8296 // destination from conditional branches. 8297 if (BI->isUnconditional()) 8298 Builder.CreateUnreachable(); 8299 else { 8300 // Preserve guarding condition in assume, because it might not be 8301 // inferrable from any dominating condition. 8302 Value *Cond = BI->getCondition(); 8303 CallInst *Assumption; 8304 if (BI->getSuccessor(0) == BB) 8305 Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond)); 8306 else 8307 Assumption = Builder.CreateAssumption(Cond); 8308 if (AC) 8309 AC->registerAssumption(cast<AssumeInst>(Assumption)); 8310 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) 8311 : BI->getSuccessor(0)); 8312 } 8313 BI->eraseFromParent(); 8314 if (DTU) 8315 DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}}); 8316 return true; 8317 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) { 8318 // Redirect all branches leading to UB into 8319 // a newly created unreachable block. 8320 BasicBlock *Unreachable = BasicBlock::Create( 8321 Predecessor->getContext(), "unreachable", BB->getParent(), BB); 8322 Builder.SetInsertPoint(Unreachable); 8323 // The new block contains only one instruction: Unreachable 8324 Builder.CreateUnreachable(); 8325 for (const auto &Case : SI->cases()) 8326 if (Case.getCaseSuccessor() == BB) { 8327 BB->removePredecessor(Predecessor); 8328 Case.setSuccessor(Unreachable); 8329 } 8330 if (SI->getDefaultDest() == BB) { 8331 BB->removePredecessor(Predecessor); 8332 SI->setDefaultDest(Unreachable); 8333 } 8334 8335 if (DTU) 8336 DTU->applyUpdates( 8337 { { DominatorTree::Insert, Predecessor, Unreachable }, 8338 { DominatorTree::Delete, Predecessor, BB } }); 8339 return true; 8340 } 8341 } 8342 8343 return false; 8344 } 8345 8346 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { 8347 bool Changed = false; 8348 8349 assert(BB && BB->getParent() && "Block not embedded in function!"); 8350 assert(BB->getTerminator() && "Degenerate basic block encountered!"); 8351 8352 // Remove basic blocks that have no predecessors (except the entry block)... 8353 // or that just have themself as a predecessor. These are unreachable. 8354 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || 8355 BB->getSinglePredecessor() == BB) { 8356 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); 8357 DeleteDeadBlock(BB, DTU); 8358 return true; 8359 } 8360 8361 // Check to see if we can constant propagate this terminator instruction 8362 // away... 8363 Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true, 8364 /*TLI=*/nullptr, DTU); 8365 8366 // Check for and eliminate duplicate PHI nodes in this block. 8367 Changed |= EliminateDuplicatePHINodes(BB); 8368 8369 // Check for and remove branches that will always cause undefined behavior. 8370 if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC)) 8371 return requestResimplify(); 8372 8373 // Merge basic blocks into their predecessor if there is only one distinct 8374 // pred, and if there is only one distinct successor of the predecessor, and 8375 // if there are no PHI nodes. 8376 if (MergeBlockIntoPredecessor(BB, DTU)) 8377 return true; 8378 8379 if (SinkCommon && Options.SinkCommonInsts) 8380 if (sinkCommonCodeFromPredecessors(BB, DTU) || 8381 mergeCompatibleInvokes(BB, DTU)) { 8382 // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's, 8383 // so we may now how duplicate PHI's. 8384 // Let's rerun EliminateDuplicatePHINodes() first, 8385 // before foldTwoEntryPHINode() potentially converts them into select's, 8386 // after which we'd need a whole EarlyCSE pass run to cleanup them. 8387 return true; 8388 } 8389 8390 IRBuilder<> Builder(BB); 8391 8392 if (Options.SpeculateBlocks && 8393 !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) { 8394 // If there is a trivial two-entry PHI node in this basic block, and we can 8395 // eliminate it, do so now. 8396 if (auto *PN = dyn_cast<PHINode>(BB->begin())) 8397 if (PN->getNumIncomingValues() == 2) 8398 if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL, 8399 Options.SpeculateUnpredictables)) 8400 return true; 8401 } 8402 8403 Instruction *Terminator = BB->getTerminator(); 8404 Builder.SetInsertPoint(Terminator); 8405 switch (Terminator->getOpcode()) { 8406 case Instruction::Br: 8407 Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder); 8408 break; 8409 case Instruction::Resume: 8410 Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder); 8411 break; 8412 case Instruction::CleanupRet: 8413 Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator)); 8414 break; 8415 case Instruction::Switch: 8416 Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder); 8417 break; 8418 case Instruction::Unreachable: 8419 Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator)); 8420 break; 8421 case Instruction::IndirectBr: 8422 Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator)); 8423 break; 8424 } 8425 8426 return Changed; 8427 } 8428 8429 bool SimplifyCFGOpt::run(BasicBlock *BB) { 8430 bool Changed = false; 8431 8432 // Repeated simplify BB as long as resimplification is requested. 8433 do { 8434 Resimplify = false; 8435 8436 // Perform one round of simplifcation. Resimplify flag will be set if 8437 // another iteration is requested. 8438 Changed |= simplifyOnce(BB); 8439 } while (Resimplify); 8440 8441 return Changed; 8442 } 8443 8444 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 8445 DomTreeUpdater *DTU, const SimplifyCFGOptions &Options, 8446 ArrayRef<WeakVH> LoopHeaders) { 8447 return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders, 8448 Options) 8449 .run(BB); 8450 } 8451