xref: /llvm-project/llvm/lib/Transforms/Utils/SimplifyCFG.cpp (revision 255a99c29f9fa1a89b03a85a3a73d6f44d03c6c1)
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/DomTreeUpdater.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemorySSA.h"
33 #include "llvm/Analysis/MemorySSAUpdater.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/MemoryModelRelaxationAnnotations.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/NoFolder.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/KnownBits.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
76 #include "llvm/Transforms/Utils/Local.h"
77 #include "llvm/Transforms/Utils/ValueMapper.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <climits>
81 #include <cstddef>
82 #include <cstdint>
83 #include <iterator>
84 #include <map>
85 #include <optional>
86 #include <set>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "simplifycfg"
95 
96 cl::opt<bool> llvm::RequireAndPreserveDomTree(
97     "simplifycfg-require-and-preserve-domtree", cl::Hidden,
98 
99     cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
100              "into preserving DomTree,"));
101 
102 // Chosen as 2 so as to be cheap, but still to have enough power to fold
103 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
104 // To catch this, we need to fold a compare and a select, hence '2' being the
105 // minimum reasonable default.
106 static cl::opt<unsigned> PHINodeFoldingThreshold(
107     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
108     cl::desc(
109         "Control the amount of phi node folding to perform (default = 2)"));
110 
111 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
112     "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
113     cl::desc("Control the maximal total instruction cost that we are willing "
114              "to speculatively execute to fold a 2-entry PHI node into a "
115              "select (default = 4)"));
116 
117 static cl::opt<bool>
118     HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
119                 cl::desc("Hoist common instructions up to the parent block"));
120 
121 static cl::opt<bool> HoistLoadsStoresWithCondFaulting(
122     "simplifycfg-hoist-loads-stores-with-cond-faulting", cl::Hidden,
123     cl::init(true),
124     cl::desc("Hoist loads/stores if the target supports "
125              "conditional faulting"));
126 
127 static cl::opt<unsigned> HoistLoadsStoresWithCondFaultingThreshold(
128     "hoist-loads-stores-with-cond-faulting-threshold", cl::Hidden, cl::init(6),
129     cl::desc("Control the maximal conditonal load/store that we are willing "
130              "to speculatively execute to eliminate conditional branch "
131              "(default = 6)"));
132 
133 static cl::opt<unsigned>
134     HoistCommonSkipLimit("simplifycfg-hoist-common-skip-limit", cl::Hidden,
135                          cl::init(20),
136                          cl::desc("Allow reordering across at most this many "
137                                   "instructions when hoisting"));
138 
139 static cl::opt<bool>
140     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
141                cl::desc("Sink common instructions down to the end block"));
142 
143 static cl::opt<bool> HoistCondStores(
144     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
145     cl::desc("Hoist conditional stores if an unconditional store precedes"));
146 
147 static cl::opt<bool> MergeCondStores(
148     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
149     cl::desc("Hoist conditional stores even if an unconditional store does not "
150              "precede - hoist multiple conditional stores into a single "
151              "predicated store"));
152 
153 static cl::opt<bool> MergeCondStoresAggressively(
154     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
155     cl::desc("When merging conditional stores, do so even if the resultant "
156              "basic blocks are unlikely to be if-converted as a result"));
157 
158 static cl::opt<bool> SpeculateOneExpensiveInst(
159     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
160     cl::desc("Allow exactly one expensive instruction to be speculatively "
161              "executed"));
162 
163 static cl::opt<unsigned> MaxSpeculationDepth(
164     "max-speculation-depth", cl::Hidden, cl::init(10),
165     cl::desc("Limit maximum recursion depth when calculating costs of "
166              "speculatively executed instructions"));
167 
168 static cl::opt<int>
169     MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
170                       cl::init(10),
171                       cl::desc("Max size of a block which is still considered "
172                                "small enough to thread through"));
173 
174 // Two is chosen to allow one negation and a logical combine.
175 static cl::opt<unsigned>
176     BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
177                         cl::init(2),
178                         cl::desc("Maximum cost of combining conditions when "
179                                  "folding branches"));
180 
181 static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
182     "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
183     cl::init(2),
184     cl::desc("Multiplier to apply to threshold when determining whether or not "
185              "to fold branch to common destination when vector operations are "
186              "present"));
187 
188 static cl::opt<bool> EnableMergeCompatibleInvokes(
189     "simplifycfg-merge-compatible-invokes", cl::Hidden, cl::init(true),
190     cl::desc("Allow SimplifyCFG to merge invokes together when appropriate"));
191 
192 static cl::opt<unsigned> MaxSwitchCasesPerResult(
193     "max-switch-cases-per-result", cl::Hidden, cl::init(16),
194     cl::desc("Limit cases to analyze when converting a switch to select"));
195 
196 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
197 STATISTIC(NumLinearMaps,
198           "Number of switch instructions turned into linear mapping");
199 STATISTIC(NumLookupTables,
200           "Number of switch instructions turned into lookup tables");
201 STATISTIC(
202     NumLookupTablesHoles,
203     "Number of switch instructions turned into lookup tables (holes checked)");
204 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
205 STATISTIC(NumFoldValueComparisonIntoPredecessors,
206           "Number of value comparisons folded into predecessor basic blocks");
207 STATISTIC(NumFoldBranchToCommonDest,
208           "Number of branches folded into predecessor basic block");
209 STATISTIC(
210     NumHoistCommonCode,
211     "Number of common instruction 'blocks' hoisted up to the begin block");
212 STATISTIC(NumHoistCommonInstrs,
213           "Number of common instructions hoisted up to the begin block");
214 STATISTIC(NumSinkCommonCode,
215           "Number of common instruction 'blocks' sunk down to the end block");
216 STATISTIC(NumSinkCommonInstrs,
217           "Number of common instructions sunk down to the end block");
218 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
219 STATISTIC(NumInvokes,
220           "Number of invokes with empty resume blocks simplified into calls");
221 STATISTIC(NumInvokesMerged, "Number of invokes that were merged together");
222 STATISTIC(NumInvokeSetsFormed, "Number of invoke sets that were formed");
223 
224 namespace {
225 
226 // The first field contains the value that the switch produces when a certain
227 // case group is selected, and the second field is a vector containing the
228 // cases composing the case group.
229 using SwitchCaseResultVectorTy =
230     SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
231 
232 // The first field contains the phi node that generates a result of the switch
233 // and the second field contains the value generated for a certain case in the
234 // switch for that PHI.
235 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
236 
237 /// ValueEqualityComparisonCase - Represents a case of a switch.
238 struct ValueEqualityComparisonCase {
239   ConstantInt *Value;
240   BasicBlock *Dest;
241 
242   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
243       : Value(Value), Dest(Dest) {}
244 
245   bool operator<(ValueEqualityComparisonCase RHS) const {
246     // Comparing pointers is ok as we only rely on the order for uniquing.
247     return Value < RHS.Value;
248   }
249 
250   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
251 };
252 
253 class SimplifyCFGOpt {
254   const TargetTransformInfo &TTI;
255   DomTreeUpdater *DTU;
256   const DataLayout &DL;
257   ArrayRef<WeakVH> LoopHeaders;
258   const SimplifyCFGOptions &Options;
259   bool Resimplify;
260 
261   Value *isValueEqualityComparison(Instruction *TI);
262   BasicBlock *getValueEqualityComparisonCases(
263       Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
264   bool simplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
265                                                      BasicBlock *Pred,
266                                                      IRBuilder<> &Builder);
267   bool performValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
268                                                     Instruction *PTI,
269                                                     IRBuilder<> &Builder);
270   bool foldValueComparisonIntoPredecessors(Instruction *TI,
271                                            IRBuilder<> &Builder);
272 
273   bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
274   bool simplifySingleResume(ResumeInst *RI);
275   bool simplifyCommonResume(ResumeInst *RI);
276   bool simplifyCleanupReturn(CleanupReturnInst *RI);
277   bool simplifyUnreachable(UnreachableInst *UI);
278   bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
279   bool simplifyIndirectBr(IndirectBrInst *IBI);
280   bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
281   bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
282   bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
283 
284   bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
285                                              IRBuilder<> &Builder);
286 
287   bool hoistCommonCodeFromSuccessors(Instruction *TI, bool EqTermsOnly);
288   bool hoistSuccIdenticalTerminatorToSwitchOrIf(
289       Instruction *TI, Instruction *I1,
290       SmallVectorImpl<Instruction *> &OtherSuccTIs);
291   bool speculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB);
292   bool simplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
293                                   BasicBlock *TrueBB, BasicBlock *FalseBB,
294                                   uint32_t TrueWeight, uint32_t FalseWeight);
295   bool simplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
296                                  const DataLayout &DL);
297   bool simplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
298   bool simplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
299   bool turnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
300 
301 public:
302   SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
303                  const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
304                  const SimplifyCFGOptions &Opts)
305       : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
306     assert((!DTU || !DTU->hasPostDomTree()) &&
307            "SimplifyCFG is not yet capable of maintaining validity of a "
308            "PostDomTree, so don't ask for it.");
309   }
310 
311   bool simplifyOnce(BasicBlock *BB);
312   bool run(BasicBlock *BB);
313 
314   // Helper to set Resimplify and return change indication.
315   bool requestResimplify() {
316     Resimplify = true;
317     return true;
318   }
319 };
320 
321 } // end anonymous namespace
322 
323 /// Return true if all the PHI nodes in the basic block \p BB
324 /// receive compatible (identical) incoming values when coming from
325 /// all of the predecessor blocks that are specified in \p IncomingBlocks.
326 ///
327 /// Note that if the values aren't exactly identical, but \p EquivalenceSet
328 /// is provided, and *both* of the values are present in the set,
329 /// then they are considered equal.
330 static bool incomingValuesAreCompatible(
331     BasicBlock *BB, ArrayRef<BasicBlock *> IncomingBlocks,
332     SmallPtrSetImpl<Value *> *EquivalenceSet = nullptr) {
333   assert(IncomingBlocks.size() == 2 &&
334          "Only for a pair of incoming blocks at the time!");
335 
336   // FIXME: it is okay if one of the incoming values is an `undef` value,
337   //        iff the other incoming value is guaranteed to be a non-poison value.
338   // FIXME: it is okay if one of the incoming values is a `poison` value.
339   return all_of(BB->phis(), [IncomingBlocks, EquivalenceSet](PHINode &PN) {
340     Value *IV0 = PN.getIncomingValueForBlock(IncomingBlocks[0]);
341     Value *IV1 = PN.getIncomingValueForBlock(IncomingBlocks[1]);
342     if (IV0 == IV1)
343       return true;
344     if (EquivalenceSet && EquivalenceSet->contains(IV0) &&
345         EquivalenceSet->contains(IV1))
346       return true;
347     return false;
348   });
349 }
350 
351 /// Return true if it is safe to merge these two
352 /// terminator instructions together.
353 static bool
354 safeToMergeTerminators(Instruction *SI1, Instruction *SI2,
355                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
356   if (SI1 == SI2)
357     return false; // Can't merge with self!
358 
359   // It is not safe to merge these two switch instructions if they have a common
360   // successor, and if that successor has a PHI node, and if *that* PHI node has
361   // conflicting incoming values from the two switch blocks.
362   BasicBlock *SI1BB = SI1->getParent();
363   BasicBlock *SI2BB = SI2->getParent();
364 
365   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
366   bool Fail = false;
367   for (BasicBlock *Succ : successors(SI2BB)) {
368     if (!SI1Succs.count(Succ))
369       continue;
370     if (incomingValuesAreCompatible(Succ, {SI1BB, SI2BB}))
371       continue;
372     Fail = true;
373     if (FailBlocks)
374       FailBlocks->insert(Succ);
375     else
376       break;
377   }
378 
379   return !Fail;
380 }
381 
382 /// Update PHI nodes in Succ to indicate that there will now be entries in it
383 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
384 /// will be the same as those coming in from ExistPred, an existing predecessor
385 /// of Succ.
386 static void addPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
387                                   BasicBlock *ExistPred,
388                                   MemorySSAUpdater *MSSAU = nullptr) {
389   for (PHINode &PN : Succ->phis())
390     PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
391   if (MSSAU)
392     if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
393       MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
394 }
395 
396 /// Compute an abstract "cost" of speculating the given instruction,
397 /// which is assumed to be safe to speculate. TCC_Free means cheap,
398 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
399 /// expensive.
400 static InstructionCost computeSpeculationCost(const User *I,
401                                               const TargetTransformInfo &TTI) {
402   return TTI.getInstructionCost(I, TargetTransformInfo::TCK_SizeAndLatency);
403 }
404 
405 /// If we have a merge point of an "if condition" as accepted above,
406 /// return true if the specified value dominates the block.  We don't handle
407 /// the true generality of domination here, just a special case which works
408 /// well enough for us.
409 ///
410 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
411 /// see if V (which must be an instruction) and its recursive operands
412 /// that do not dominate BB have a combined cost lower than Budget and
413 /// are non-trapping.  If both are true, the instruction is inserted into the
414 /// set and true is returned.
415 ///
416 /// The cost for most non-trapping instructions is defined as 1 except for
417 /// Select whose cost is 2.
418 ///
419 /// After this function returns, Cost is increased by the cost of
420 /// V plus its non-dominating operands.  If that cost is greater than
421 /// Budget, false is returned and Cost is undefined.
422 static bool dominatesMergePoint(Value *V, BasicBlock *BB, Instruction *InsertPt,
423                                 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
424                                 InstructionCost &Cost, InstructionCost Budget,
425                                 const TargetTransformInfo &TTI,
426                                 AssumptionCache *AC, unsigned Depth = 0) {
427   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
428   // so limit the recursion depth.
429   // TODO: While this recursion limit does prevent pathological behavior, it
430   // would be better to track visited instructions to avoid cycles.
431   if (Depth == MaxSpeculationDepth)
432     return false;
433 
434   Instruction *I = dyn_cast<Instruction>(V);
435   if (!I) {
436     // Non-instructions dominate all instructions and can be executed
437     // unconditionally.
438     return true;
439   }
440   BasicBlock *PBB = I->getParent();
441 
442   // We don't want to allow weird loops that might have the "if condition" in
443   // the bottom of this block.
444   if (PBB == BB)
445     return false;
446 
447   // If this instruction is defined in a block that contains an unconditional
448   // branch to BB, then it must be in the 'conditional' part of the "if
449   // statement".  If not, it definitely dominates the region.
450   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
451   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
452     return true;
453 
454   // If we have seen this instruction before, don't count it again.
455   if (AggressiveInsts.count(I))
456     return true;
457 
458   // Okay, it looks like the instruction IS in the "condition".  Check to
459   // see if it's a cheap instruction to unconditionally compute, and if it
460   // only uses stuff defined outside of the condition.  If so, hoist it out.
461   if (!isSafeToSpeculativelyExecute(I, InsertPt, AC))
462     return false;
463 
464   Cost += computeSpeculationCost(I, TTI);
465 
466   // Allow exactly one instruction to be speculated regardless of its cost
467   // (as long as it is safe to do so).
468   // This is intended to flatten the CFG even if the instruction is a division
469   // or other expensive operation. The speculation of an expensive instruction
470   // is expected to be undone in CodeGenPrepare if the speculation has not
471   // enabled further IR optimizations.
472   if (Cost > Budget &&
473       (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
474        !Cost.isValid()))
475     return false;
476 
477   // Okay, we can only really hoist these out if their operands do
478   // not take us over the cost threshold.
479   for (Use &Op : I->operands())
480     if (!dominatesMergePoint(Op, BB, InsertPt, AggressiveInsts, Cost, Budget,
481                              TTI, AC, Depth + 1))
482       return false;
483   // Okay, it's safe to do this!  Remember this instruction.
484   AggressiveInsts.insert(I);
485   return true;
486 }
487 
488 /// Extract ConstantInt from value, looking through IntToPtr
489 /// and PointerNullValue. Return NULL if value is not a constant int.
490 static ConstantInt *getConstantInt(Value *V, const DataLayout &DL) {
491   // Normal constant int.
492   ConstantInt *CI = dyn_cast<ConstantInt>(V);
493   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy() ||
494       DL.isNonIntegralPointerType(V->getType()))
495     return CI;
496 
497   // This is some kind of pointer constant. Turn it into a pointer-sized
498   // ConstantInt if possible.
499   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
500 
501   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
502   if (isa<ConstantPointerNull>(V))
503     return ConstantInt::get(PtrTy, 0);
504 
505   // IntToPtr const int.
506   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
507     if (CE->getOpcode() == Instruction::IntToPtr)
508       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
509         // The constant is very likely to have the right type already.
510         if (CI->getType() == PtrTy)
511           return CI;
512         else
513           return cast<ConstantInt>(
514               ConstantFoldIntegerCast(CI, PtrTy, /*isSigned=*/false, DL));
515       }
516   return nullptr;
517 }
518 
519 namespace {
520 
521 /// Given a chain of or (||) or and (&&) comparison of a value against a
522 /// constant, this will try to recover the information required for a switch
523 /// structure.
524 /// It will depth-first traverse the chain of comparison, seeking for patterns
525 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
526 /// representing the different cases for the switch.
527 /// Note that if the chain is composed of '||' it will build the set of elements
528 /// that matches the comparisons (i.e. any of this value validate the chain)
529 /// while for a chain of '&&' it will build the set elements that make the test
530 /// fail.
531 struct ConstantComparesGatherer {
532   const DataLayout &DL;
533 
534   /// Value found for the switch comparison
535   Value *CompValue = nullptr;
536 
537   /// Extra clause to be checked before the switch
538   Value *Extra = nullptr;
539 
540   /// Set of integers to match in switch
541   SmallVector<ConstantInt *, 8> Vals;
542 
543   /// Number of comparisons matched in the and/or chain
544   unsigned UsedICmps = 0;
545 
546   /// Construct and compute the result for the comparison instruction Cond
547   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
548     gather(Cond);
549   }
550 
551   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
552   ConstantComparesGatherer &
553   operator=(const ConstantComparesGatherer &) = delete;
554 
555 private:
556   /// Try to set the current value used for the comparison, it succeeds only if
557   /// it wasn't set before or if the new value is the same as the old one
558   bool setValueOnce(Value *NewVal) {
559     if (CompValue && CompValue != NewVal)
560       return false;
561     CompValue = NewVal;
562     return (CompValue != nullptr);
563   }
564 
565   /// Try to match Instruction "I" as a comparison against a constant and
566   /// populates the array Vals with the set of values that match (or do not
567   /// match depending on isEQ).
568   /// Return false on failure. On success, the Value the comparison matched
569   /// against is placed in CompValue.
570   /// If CompValue is already set, the function is expected to fail if a match
571   /// is found but the value compared to is different.
572   bool matchInstruction(Instruction *I, bool isEQ) {
573     // If this is an icmp against a constant, handle this as one of the cases.
574     ICmpInst *ICI;
575     ConstantInt *C;
576     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
577           (C = getConstantInt(I->getOperand(1), DL)))) {
578       return false;
579     }
580 
581     Value *RHSVal;
582     const APInt *RHSC;
583 
584     // Pattern match a special case
585     // (x & ~2^z) == y --> x == y || x == y|2^z
586     // This undoes a transformation done by instcombine to fuse 2 compares.
587     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
588       // It's a little bit hard to see why the following transformations are
589       // correct. Here is a CVC3 program to verify them for 64-bit values:
590 
591       /*
592          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
593          x    : BITVECTOR(64);
594          y    : BITVECTOR(64);
595          z    : BITVECTOR(64);
596          mask : BITVECTOR(64) = BVSHL(ONE, z);
597          QUERY( (y & ~mask = y) =>
598                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
599          );
600          QUERY( (y |  mask = y) =>
601                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
602          );
603       */
604 
605       // Please note that each pattern must be a dual implication (<--> or
606       // iff). One directional implication can create spurious matches. If the
607       // implication is only one-way, an unsatisfiable condition on the left
608       // side can imply a satisfiable condition on the right side. Dual
609       // implication ensures that satisfiable conditions are transformed to
610       // other satisfiable conditions and unsatisfiable conditions are
611       // transformed to other unsatisfiable conditions.
612 
613       // Here is a concrete example of a unsatisfiable condition on the left
614       // implying a satisfiable condition on the right:
615       //
616       // mask = (1 << z)
617       // (x & ~mask) == y  --> (x == y || x == (y | mask))
618       //
619       // Substituting y = 3, z = 0 yields:
620       // (x & -2) == 3 --> (x == 3 || x == 2)
621 
622       // Pattern match a special case:
623       /*
624         QUERY( (y & ~mask = y) =>
625                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
626         );
627       */
628       if (match(ICI->getOperand(0),
629                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
630         APInt Mask = ~*RHSC;
631         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
632           // If we already have a value for the switch, it has to match!
633           if (!setValueOnce(RHSVal))
634             return false;
635 
636           Vals.push_back(C);
637           Vals.push_back(
638               ConstantInt::get(C->getContext(),
639                                C->getValue() | Mask));
640           UsedICmps++;
641           return true;
642         }
643       }
644 
645       // Pattern match a special case:
646       /*
647         QUERY( (y |  mask = y) =>
648                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
649         );
650       */
651       if (match(ICI->getOperand(0),
652                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
653         APInt Mask = *RHSC;
654         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
655           // If we already have a value for the switch, it has to match!
656           if (!setValueOnce(RHSVal))
657             return false;
658 
659           Vals.push_back(C);
660           Vals.push_back(ConstantInt::get(C->getContext(),
661                                           C->getValue() & ~Mask));
662           UsedICmps++;
663           return true;
664         }
665       }
666 
667       // If we already have a value for the switch, it has to match!
668       if (!setValueOnce(ICI->getOperand(0)))
669         return false;
670 
671       UsedICmps++;
672       Vals.push_back(C);
673       return ICI->getOperand(0);
674     }
675 
676     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
677     ConstantRange Span =
678         ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
679 
680     // Shift the range if the compare is fed by an add. This is the range
681     // compare idiom as emitted by instcombine.
682     Value *CandidateVal = I->getOperand(0);
683     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
684       Span = Span.subtract(*RHSC);
685       CandidateVal = RHSVal;
686     }
687 
688     // If this is an and/!= check, then we are looking to build the set of
689     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
690     // x != 0 && x != 1.
691     if (!isEQ)
692       Span = Span.inverse();
693 
694     // If there are a ton of values, we don't want to make a ginormous switch.
695     if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
696       return false;
697     }
698 
699     // If we already have a value for the switch, it has to match!
700     if (!setValueOnce(CandidateVal))
701       return false;
702 
703     // Add all values from the range to the set
704     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
705       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
706 
707     UsedICmps++;
708     return true;
709   }
710 
711   /// Given a potentially 'or'd or 'and'd together collection of icmp
712   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
713   /// the value being compared, and stick the list constants into the Vals
714   /// vector.
715   /// One "Extra" case is allowed to differ from the other.
716   void gather(Value *V) {
717     bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
718 
719     // Keep a stack (SmallVector for efficiency) for depth-first traversal
720     SmallVector<Value *, 8> DFT;
721     SmallPtrSet<Value *, 8> Visited;
722 
723     // Initialize
724     Visited.insert(V);
725     DFT.push_back(V);
726 
727     while (!DFT.empty()) {
728       V = DFT.pop_back_val();
729 
730       if (Instruction *I = dyn_cast<Instruction>(V)) {
731         // If it is a || (or && depending on isEQ), process the operands.
732         Value *Op0, *Op1;
733         if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
734                  : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
735           if (Visited.insert(Op1).second)
736             DFT.push_back(Op1);
737           if (Visited.insert(Op0).second)
738             DFT.push_back(Op0);
739 
740           continue;
741         }
742 
743         // Try to match the current instruction
744         if (matchInstruction(I, isEQ))
745           // Match succeed, continue the loop
746           continue;
747       }
748 
749       // One element of the sequence of || (or &&) could not be match as a
750       // comparison against the same value as the others.
751       // We allow only one "Extra" case to be checked before the switch
752       if (!Extra) {
753         Extra = V;
754         continue;
755       }
756       // Failed to parse a proper sequence, abort now
757       CompValue = nullptr;
758       break;
759     }
760   }
761 };
762 
763 } // end anonymous namespace
764 
765 static void eraseTerminatorAndDCECond(Instruction *TI,
766                                       MemorySSAUpdater *MSSAU = nullptr) {
767   Instruction *Cond = nullptr;
768   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
769     Cond = dyn_cast<Instruction>(SI->getCondition());
770   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
771     if (BI->isConditional())
772       Cond = dyn_cast<Instruction>(BI->getCondition());
773   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
774     Cond = dyn_cast<Instruction>(IBI->getAddress());
775   }
776 
777   TI->eraseFromParent();
778   if (Cond)
779     RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
780 }
781 
782 /// Return true if the specified terminator checks
783 /// to see if a value is equal to constant integer value.
784 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
785   Value *CV = nullptr;
786   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
787     // Do not permit merging of large switch instructions into their
788     // predecessors unless there is only one predecessor.
789     if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
790       CV = SI->getCondition();
791   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
792     if (BI->isConditional() && BI->getCondition()->hasOneUse())
793       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
794         if (ICI->isEquality() && getConstantInt(ICI->getOperand(1), DL))
795           CV = ICI->getOperand(0);
796       }
797 
798   // Unwrap any lossless ptrtoint cast.
799   if (CV) {
800     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
801       Value *Ptr = PTII->getPointerOperand();
802       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
803         CV = Ptr;
804     }
805   }
806   return CV;
807 }
808 
809 /// Given a value comparison instruction,
810 /// decode all of the 'cases' that it represents and return the 'default' block.
811 BasicBlock *SimplifyCFGOpt::getValueEqualityComparisonCases(
812     Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
813   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
814     Cases.reserve(SI->getNumCases());
815     for (auto Case : SI->cases())
816       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
817                                                   Case.getCaseSuccessor()));
818     return SI->getDefaultDest();
819   }
820 
821   BranchInst *BI = cast<BranchInst>(TI);
822   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
823   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
824   Cases.push_back(ValueEqualityComparisonCase(
825       getConstantInt(ICI->getOperand(1), DL), Succ));
826   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
827 }
828 
829 /// Given a vector of bb/value pairs, remove any entries
830 /// in the list that match the specified block.
831 static void
832 eliminateBlockCases(BasicBlock *BB,
833                     std::vector<ValueEqualityComparisonCase> &Cases) {
834   llvm::erase(Cases, BB);
835 }
836 
837 /// Return true if there are any keys in C1 that exist in C2 as well.
838 static bool valuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
839                           std::vector<ValueEqualityComparisonCase> &C2) {
840   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
841 
842   // Make V1 be smaller than V2.
843   if (V1->size() > V2->size())
844     std::swap(V1, V2);
845 
846   if (V1->empty())
847     return false;
848   if (V1->size() == 1) {
849     // Just scan V2.
850     ConstantInt *TheVal = (*V1)[0].Value;
851     for (const ValueEqualityComparisonCase &VECC : *V2)
852       if (TheVal == VECC.Value)
853         return true;
854   }
855 
856   // Otherwise, just sort both lists and compare element by element.
857   array_pod_sort(V1->begin(), V1->end());
858   array_pod_sort(V2->begin(), V2->end());
859   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
860   while (i1 != e1 && i2 != e2) {
861     if ((*V1)[i1].Value == (*V2)[i2].Value)
862       return true;
863     if ((*V1)[i1].Value < (*V2)[i2].Value)
864       ++i1;
865     else
866       ++i2;
867   }
868   return false;
869 }
870 
871 // Set branch weights on SwitchInst. This sets the metadata if there is at
872 // least one non-zero weight.
873 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights,
874                              bool IsExpected) {
875   // Check that there is at least one non-zero weight. Otherwise, pass
876   // nullptr to setMetadata which will erase the existing metadata.
877   MDNode *N = nullptr;
878   if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
879     N = MDBuilder(SI->getParent()->getContext())
880             .createBranchWeights(Weights, IsExpected);
881   SI->setMetadata(LLVMContext::MD_prof, N);
882 }
883 
884 // Similar to the above, but for branch and select instructions that take
885 // exactly 2 weights.
886 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
887                              uint32_t FalseWeight, bool IsExpected) {
888   assert(isa<BranchInst>(I) || isa<SelectInst>(I));
889   // Check that there is at least one non-zero weight. Otherwise, pass
890   // nullptr to setMetadata which will erase the existing metadata.
891   MDNode *N = nullptr;
892   if (TrueWeight || FalseWeight)
893     N = MDBuilder(I->getParent()->getContext())
894             .createBranchWeights(TrueWeight, FalseWeight, IsExpected);
895   I->setMetadata(LLVMContext::MD_prof, N);
896 }
897 
898 /// If TI is known to be a terminator instruction and its block is known to
899 /// only have a single predecessor block, check to see if that predecessor is
900 /// also a value comparison with the same value, and if that comparison
901 /// determines the outcome of this comparison. If so, simplify TI. This does a
902 /// very limited form of jump threading.
903 bool SimplifyCFGOpt::simplifyEqualityComparisonWithOnlyPredecessor(
904     Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
905   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
906   if (!PredVal)
907     return false; // Not a value comparison in predecessor.
908 
909   Value *ThisVal = isValueEqualityComparison(TI);
910   assert(ThisVal && "This isn't a value comparison!!");
911   if (ThisVal != PredVal)
912     return false; // Different predicates.
913 
914   // TODO: Preserve branch weight metadata, similarly to how
915   // foldValueComparisonIntoPredecessors preserves it.
916 
917   // Find out information about when control will move from Pred to TI's block.
918   std::vector<ValueEqualityComparisonCase> PredCases;
919   BasicBlock *PredDef =
920       getValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
921   eliminateBlockCases(PredDef, PredCases); // Remove default from cases.
922 
923   // Find information about how control leaves this block.
924   std::vector<ValueEqualityComparisonCase> ThisCases;
925   BasicBlock *ThisDef = getValueEqualityComparisonCases(TI, ThisCases);
926   eliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
927 
928   // If TI's block is the default block from Pred's comparison, potentially
929   // simplify TI based on this knowledge.
930   if (PredDef == TI->getParent()) {
931     // If we are here, we know that the value is none of those cases listed in
932     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
933     // can simplify TI.
934     if (!valuesOverlap(PredCases, ThisCases))
935       return false;
936 
937     if (isa<BranchInst>(TI)) {
938       // Okay, one of the successors of this condbr is dead.  Convert it to a
939       // uncond br.
940       assert(ThisCases.size() == 1 && "Branch can only have one case!");
941       // Insert the new branch.
942       Instruction *NI = Builder.CreateBr(ThisDef);
943       (void)NI;
944 
945       // Remove PHI node entries for the dead edge.
946       ThisCases[0].Dest->removePredecessor(PredDef);
947 
948       LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
949                         << "Through successor TI: " << *TI << "Leaving: " << *NI
950                         << "\n");
951 
952       eraseTerminatorAndDCECond(TI);
953 
954       if (DTU)
955         DTU->applyUpdates(
956             {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
957 
958       return true;
959     }
960 
961     SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
962     // Okay, TI has cases that are statically dead, prune them away.
963     SmallPtrSet<Constant *, 16> DeadCases;
964     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
965       DeadCases.insert(PredCases[i].Value);
966 
967     LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
968                       << "Through successor TI: " << *TI);
969 
970     SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
971     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
972       --i;
973       auto *Successor = i->getCaseSuccessor();
974       if (DTU)
975         ++NumPerSuccessorCases[Successor];
976       if (DeadCases.count(i->getCaseValue())) {
977         Successor->removePredecessor(PredDef);
978         SI.removeCase(i);
979         if (DTU)
980           --NumPerSuccessorCases[Successor];
981       }
982     }
983 
984     if (DTU) {
985       std::vector<DominatorTree::UpdateType> Updates;
986       for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
987         if (I.second == 0)
988           Updates.push_back({DominatorTree::Delete, PredDef, I.first});
989       DTU->applyUpdates(Updates);
990     }
991 
992     LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
993     return true;
994   }
995 
996   // Otherwise, TI's block must correspond to some matched value.  Find out
997   // which value (or set of values) this is.
998   ConstantInt *TIV = nullptr;
999   BasicBlock *TIBB = TI->getParent();
1000   for (const auto &[Value, Dest] : PredCases)
1001     if (Dest == TIBB) {
1002       if (TIV)
1003         return false; // Cannot handle multiple values coming to this block.
1004       TIV = Value;
1005     }
1006   assert(TIV && "No edge from pred to succ?");
1007 
1008   // Okay, we found the one constant that our value can be if we get into TI's
1009   // BB.  Find out which successor will unconditionally be branched to.
1010   BasicBlock *TheRealDest = nullptr;
1011   for (const auto &[Value, Dest] : ThisCases)
1012     if (Value == TIV) {
1013       TheRealDest = Dest;
1014       break;
1015     }
1016 
1017   // If not handled by any explicit cases, it is handled by the default case.
1018   if (!TheRealDest)
1019     TheRealDest = ThisDef;
1020 
1021   SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
1022 
1023   // Remove PHI node entries for dead edges.
1024   BasicBlock *CheckEdge = TheRealDest;
1025   for (BasicBlock *Succ : successors(TIBB))
1026     if (Succ != CheckEdge) {
1027       if (Succ != TheRealDest)
1028         RemovedSuccs.insert(Succ);
1029       Succ->removePredecessor(TIBB);
1030     } else
1031       CheckEdge = nullptr;
1032 
1033   // Insert the new branch.
1034   Instruction *NI = Builder.CreateBr(TheRealDest);
1035   (void)NI;
1036 
1037   LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
1038                     << "Through successor TI: " << *TI << "Leaving: " << *NI
1039                     << "\n");
1040 
1041   eraseTerminatorAndDCECond(TI);
1042   if (DTU) {
1043     SmallVector<DominatorTree::UpdateType, 2> Updates;
1044     Updates.reserve(RemovedSuccs.size());
1045     for (auto *RemovedSucc : RemovedSuccs)
1046       Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
1047     DTU->applyUpdates(Updates);
1048   }
1049   return true;
1050 }
1051 
1052 namespace {
1053 
1054 /// This class implements a stable ordering of constant
1055 /// integers that does not depend on their address.  This is important for
1056 /// applications that sort ConstantInt's to ensure uniqueness.
1057 struct ConstantIntOrdering {
1058   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1059     return LHS->getValue().ult(RHS->getValue());
1060   }
1061 };
1062 
1063 } // end anonymous namespace
1064 
1065 static int constantIntSortPredicate(ConstantInt *const *P1,
1066                                     ConstantInt *const *P2) {
1067   const ConstantInt *LHS = *P1;
1068   const ConstantInt *RHS = *P2;
1069   if (LHS == RHS)
1070     return 0;
1071   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
1072 }
1073 
1074 /// Get Weights of a given terminator, the default weight is at the front
1075 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
1076 /// metadata.
1077 static void getBranchWeights(Instruction *TI,
1078                              SmallVectorImpl<uint64_t> &Weights) {
1079   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
1080   assert(MD && "Invalid branch-weight metadata");
1081   extractFromBranchWeightMD64(MD, Weights);
1082 
1083   // If TI is a conditional eq, the default case is the false case,
1084   // and the corresponding branch-weight data is at index 2. We swap the
1085   // default weight to be the first entry.
1086   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1087     assert(Weights.size() == 2);
1088     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
1089     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
1090       std::swap(Weights.front(), Weights.back());
1091   }
1092 }
1093 
1094 /// Keep halving the weights until all can fit in uint32_t.
1095 static void fitWeights(MutableArrayRef<uint64_t> Weights) {
1096   uint64_t Max = *llvm::max_element(Weights);
1097   if (Max > UINT_MAX) {
1098     unsigned Offset = 32 - llvm::countl_zero(Max);
1099     for (uint64_t &I : Weights)
1100       I >>= Offset;
1101   }
1102 }
1103 
1104 static void cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
1105     BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
1106   Instruction *PTI = PredBlock->getTerminator();
1107 
1108   // If we have bonus instructions, clone them into the predecessor block.
1109   // Note that there may be multiple predecessor blocks, so we cannot move
1110   // bonus instructions to a predecessor block.
1111   for (Instruction &BonusInst : *BB) {
1112     if (BonusInst.isTerminator())
1113       continue;
1114 
1115     Instruction *NewBonusInst = BonusInst.clone();
1116 
1117     if (!isa<DbgInfoIntrinsic>(BonusInst) &&
1118         PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
1119       // Unless the instruction has the same !dbg location as the original
1120       // branch, drop it. When we fold the bonus instructions we want to make
1121       // sure we reset their debug locations in order to avoid stepping on
1122       // dead code caused by folding dead branches.
1123       NewBonusInst->setDebugLoc(DebugLoc());
1124     }
1125 
1126     RemapInstruction(NewBonusInst, VMap,
1127                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1128 
1129     // If we speculated an instruction, we need to drop any metadata that may
1130     // result in undefined behavior, as the metadata might have been valid
1131     // only given the branch precondition.
1132     // Similarly strip attributes on call parameters that may cause UB in
1133     // location the call is moved to.
1134     NewBonusInst->dropUBImplyingAttrsAndMetadata();
1135 
1136     NewBonusInst->insertInto(PredBlock, PTI->getIterator());
1137     auto Range = NewBonusInst->cloneDebugInfoFrom(&BonusInst);
1138     RemapDbgRecordRange(NewBonusInst->getModule(), Range, VMap,
1139                         RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1140 
1141     if (isa<DbgInfoIntrinsic>(BonusInst))
1142       continue;
1143 
1144     NewBonusInst->takeName(&BonusInst);
1145     BonusInst.setName(NewBonusInst->getName() + ".old");
1146     VMap[&BonusInst] = NewBonusInst;
1147 
1148     // Update (liveout) uses of bonus instructions,
1149     // now that the bonus instruction has been cloned into predecessor.
1150     // Note that we expect to be in a block-closed SSA form for this to work!
1151     for (Use &U : make_early_inc_range(BonusInst.uses())) {
1152       auto *UI = cast<Instruction>(U.getUser());
1153       auto *PN = dyn_cast<PHINode>(UI);
1154       if (!PN) {
1155         assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
1156                "If the user is not a PHI node, then it should be in the same "
1157                "block as, and come after, the original bonus instruction.");
1158         continue; // Keep using the original bonus instruction.
1159       }
1160       // Is this the block-closed SSA form PHI node?
1161       if (PN->getIncomingBlock(U) == BB)
1162         continue; // Great, keep using the original bonus instruction.
1163       // The only other alternative is an "use" when coming from
1164       // the predecessor block - here we should refer to the cloned bonus instr.
1165       assert(PN->getIncomingBlock(U) == PredBlock &&
1166              "Not in block-closed SSA form?");
1167       U.set(NewBonusInst);
1168     }
1169   }
1170 }
1171 
1172 bool SimplifyCFGOpt::performValueComparisonIntoPredecessorFolding(
1173     Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
1174   BasicBlock *BB = TI->getParent();
1175   BasicBlock *Pred = PTI->getParent();
1176 
1177   SmallVector<DominatorTree::UpdateType, 32> Updates;
1178 
1179   // Figure out which 'cases' to copy from SI to PSI.
1180   std::vector<ValueEqualityComparisonCase> BBCases;
1181   BasicBlock *BBDefault = getValueEqualityComparisonCases(TI, BBCases);
1182 
1183   std::vector<ValueEqualityComparisonCase> PredCases;
1184   BasicBlock *PredDefault = getValueEqualityComparisonCases(PTI, PredCases);
1185 
1186   // Based on whether the default edge from PTI goes to BB or not, fill in
1187   // PredCases and PredDefault with the new switch cases we would like to
1188   // build.
1189   SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
1190 
1191   // Update the branch weight metadata along the way
1192   SmallVector<uint64_t, 8> Weights;
1193   bool PredHasWeights = hasBranchWeightMD(*PTI);
1194   bool SuccHasWeights = hasBranchWeightMD(*TI);
1195 
1196   if (PredHasWeights) {
1197     getBranchWeights(PTI, Weights);
1198     // branch-weight metadata is inconsistent here.
1199     if (Weights.size() != 1 + PredCases.size())
1200       PredHasWeights = SuccHasWeights = false;
1201   } else if (SuccHasWeights)
1202     // If there are no predecessor weights but there are successor weights,
1203     // populate Weights with 1, which will later be scaled to the sum of
1204     // successor's weights
1205     Weights.assign(1 + PredCases.size(), 1);
1206 
1207   SmallVector<uint64_t, 8> SuccWeights;
1208   if (SuccHasWeights) {
1209     getBranchWeights(TI, SuccWeights);
1210     // branch-weight metadata is inconsistent here.
1211     if (SuccWeights.size() != 1 + BBCases.size())
1212       PredHasWeights = SuccHasWeights = false;
1213   } else if (PredHasWeights)
1214     SuccWeights.assign(1 + BBCases.size(), 1);
1215 
1216   if (PredDefault == BB) {
1217     // If this is the default destination from PTI, only the edges in TI
1218     // that don't occur in PTI, or that branch to BB will be activated.
1219     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1220     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1221       if (PredCases[i].Dest != BB)
1222         PTIHandled.insert(PredCases[i].Value);
1223       else {
1224         // The default destination is BB, we don't need explicit targets.
1225         std::swap(PredCases[i], PredCases.back());
1226 
1227         if (PredHasWeights || SuccHasWeights) {
1228           // Increase weight for the default case.
1229           Weights[0] += Weights[i + 1];
1230           std::swap(Weights[i + 1], Weights.back());
1231           Weights.pop_back();
1232         }
1233 
1234         PredCases.pop_back();
1235         --i;
1236         --e;
1237       }
1238 
1239     // Reconstruct the new switch statement we will be building.
1240     if (PredDefault != BBDefault) {
1241       PredDefault->removePredecessor(Pred);
1242       if (DTU && PredDefault != BB)
1243         Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
1244       PredDefault = BBDefault;
1245       ++NewSuccessors[BBDefault];
1246     }
1247 
1248     unsigned CasesFromPred = Weights.size();
1249     uint64_t ValidTotalSuccWeight = 0;
1250     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1251       if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
1252         PredCases.push_back(BBCases[i]);
1253         ++NewSuccessors[BBCases[i].Dest];
1254         if (SuccHasWeights || PredHasWeights) {
1255           // The default weight is at index 0, so weight for the ith case
1256           // should be at index i+1. Scale the cases from successor by
1257           // PredDefaultWeight (Weights[0]).
1258           Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1259           ValidTotalSuccWeight += SuccWeights[i + 1];
1260         }
1261       }
1262 
1263     if (SuccHasWeights || PredHasWeights) {
1264       ValidTotalSuccWeight += SuccWeights[0];
1265       // Scale the cases from predecessor by ValidTotalSuccWeight.
1266       for (unsigned i = 1; i < CasesFromPred; ++i)
1267         Weights[i] *= ValidTotalSuccWeight;
1268       // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1269       Weights[0] *= SuccWeights[0];
1270     }
1271   } else {
1272     // If this is not the default destination from PSI, only the edges
1273     // in SI that occur in PSI with a destination of BB will be
1274     // activated.
1275     std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1276     std::map<ConstantInt *, uint64_t> WeightsForHandled;
1277     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1278       if (PredCases[i].Dest == BB) {
1279         PTIHandled.insert(PredCases[i].Value);
1280 
1281         if (PredHasWeights || SuccHasWeights) {
1282           WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1283           std::swap(Weights[i + 1], Weights.back());
1284           Weights.pop_back();
1285         }
1286 
1287         std::swap(PredCases[i], PredCases.back());
1288         PredCases.pop_back();
1289         --i;
1290         --e;
1291       }
1292 
1293     // Okay, now we know which constants were sent to BB from the
1294     // predecessor.  Figure out where they will all go now.
1295     for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1296       if (PTIHandled.count(BBCases[i].Value)) {
1297         // If this is one we are capable of getting...
1298         if (PredHasWeights || SuccHasWeights)
1299           Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1300         PredCases.push_back(BBCases[i]);
1301         ++NewSuccessors[BBCases[i].Dest];
1302         PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
1303       }
1304 
1305     // If there are any constants vectored to BB that TI doesn't handle,
1306     // they must go to the default destination of TI.
1307     for (ConstantInt *I : PTIHandled) {
1308       if (PredHasWeights || SuccHasWeights)
1309         Weights.push_back(WeightsForHandled[I]);
1310       PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1311       ++NewSuccessors[BBDefault];
1312     }
1313   }
1314 
1315   // Okay, at this point, we know which new successor Pred will get.  Make
1316   // sure we update the number of entries in the PHI nodes for these
1317   // successors.
1318   SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
1319   if (DTU) {
1320     SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
1321     Updates.reserve(Updates.size() + NewSuccessors.size());
1322   }
1323   for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
1324        NewSuccessors) {
1325     for (auto I : seq(NewSuccessor.second)) {
1326       (void)I;
1327       addPredecessorToBlock(NewSuccessor.first, Pred, BB);
1328     }
1329     if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
1330       Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
1331   }
1332 
1333   Builder.SetInsertPoint(PTI);
1334   // Convert pointer to int before we switch.
1335   if (CV->getType()->isPointerTy()) {
1336     CV =
1337         Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
1338   }
1339 
1340   // Now that the successors are updated, create the new Switch instruction.
1341   SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1342   NewSI->setDebugLoc(PTI->getDebugLoc());
1343   for (ValueEqualityComparisonCase &V : PredCases)
1344     NewSI->addCase(V.Value, V.Dest);
1345 
1346   if (PredHasWeights || SuccHasWeights) {
1347     // Halve the weights if any of them cannot fit in an uint32_t
1348     fitWeights(Weights);
1349 
1350     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1351 
1352     setBranchWeights(NewSI, MDWeights, /*IsExpected=*/false);
1353   }
1354 
1355   eraseTerminatorAndDCECond(PTI);
1356 
1357   // Okay, last check.  If BB is still a successor of PSI, then we must
1358   // have an infinite loop case.  If so, add an infinitely looping block
1359   // to handle the case to preserve the behavior of the code.
1360   BasicBlock *InfLoopBlock = nullptr;
1361   for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1362     if (NewSI->getSuccessor(i) == BB) {
1363       if (!InfLoopBlock) {
1364         // Insert it at the end of the function, because it's either code,
1365         // or it won't matter if it's hot. :)
1366         InfLoopBlock =
1367             BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
1368         BranchInst::Create(InfLoopBlock, InfLoopBlock);
1369         if (DTU)
1370           Updates.push_back(
1371               {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
1372       }
1373       NewSI->setSuccessor(i, InfLoopBlock);
1374     }
1375 
1376   if (DTU) {
1377     if (InfLoopBlock)
1378       Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
1379 
1380     Updates.push_back({DominatorTree::Delete, Pred, BB});
1381 
1382     DTU->applyUpdates(Updates);
1383   }
1384 
1385   ++NumFoldValueComparisonIntoPredecessors;
1386   return true;
1387 }
1388 
1389 /// The specified terminator is a value equality comparison instruction
1390 /// (either a switch or a branch on "X == c").
1391 /// See if any of the predecessors of the terminator block are value comparisons
1392 /// on the same value.  If so, and if safe to do so, fold them together.
1393 bool SimplifyCFGOpt::foldValueComparisonIntoPredecessors(Instruction *TI,
1394                                                          IRBuilder<> &Builder) {
1395   BasicBlock *BB = TI->getParent();
1396   Value *CV = isValueEqualityComparison(TI); // CondVal
1397   assert(CV && "Not a comparison?");
1398 
1399   bool Changed = false;
1400 
1401   SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1402   while (!Preds.empty()) {
1403     BasicBlock *Pred = Preds.pop_back_val();
1404     Instruction *PTI = Pred->getTerminator();
1405 
1406     // Don't try to fold into itself.
1407     if (Pred == BB)
1408       continue;
1409 
1410     // See if the predecessor is a comparison with the same value.
1411     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1412     if (PCV != CV)
1413       continue;
1414 
1415     SmallSetVector<BasicBlock *, 4> FailBlocks;
1416     if (!safeToMergeTerminators(TI, PTI, &FailBlocks)) {
1417       for (auto *Succ : FailBlocks) {
1418         if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
1419           return false;
1420       }
1421     }
1422 
1423     performValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
1424     Changed = true;
1425   }
1426   return Changed;
1427 }
1428 
1429 // If we would need to insert a select that uses the value of this invoke
1430 // (comments in hoistSuccIdenticalTerminatorToSwitchOrIf explain why we would
1431 // need to do this), we can't hoist the invoke, as there is nowhere to put the
1432 // select in this case.
1433 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1434                                 Instruction *I1, Instruction *I2) {
1435   for (BasicBlock *Succ : successors(BB1)) {
1436     for (const PHINode &PN : Succ->phis()) {
1437       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1438       Value *BB2V = PN.getIncomingValueForBlock(BB2);
1439       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1440         return false;
1441       }
1442     }
1443   }
1444   return true;
1445 }
1446 
1447 // Get interesting characteristics of instructions that
1448 // `hoistCommonCodeFromSuccessors` didn't hoist. They restrict what kind of
1449 // instructions can be reordered across.
1450 enum SkipFlags {
1451   SkipReadMem = 1,
1452   SkipSideEffect = 2,
1453   SkipImplicitControlFlow = 4
1454 };
1455 
1456 static unsigned skippedInstrFlags(Instruction *I) {
1457   unsigned Flags = 0;
1458   if (I->mayReadFromMemory())
1459     Flags |= SkipReadMem;
1460   // We can't arbitrarily move around allocas, e.g. moving allocas (especially
1461   // inalloca) across stacksave/stackrestore boundaries.
1462   if (I->mayHaveSideEffects() || isa<AllocaInst>(I))
1463     Flags |= SkipSideEffect;
1464   if (!isGuaranteedToTransferExecutionToSuccessor(I))
1465     Flags |= SkipImplicitControlFlow;
1466   return Flags;
1467 }
1468 
1469 // Returns true if it is safe to reorder an instruction across preceding
1470 // instructions in a basic block.
1471 static bool isSafeToHoistInstr(Instruction *I, unsigned Flags) {
1472   // Don't reorder a store over a load.
1473   if ((Flags & SkipReadMem) && I->mayWriteToMemory())
1474     return false;
1475 
1476   // If we have seen an instruction with side effects, it's unsafe to reorder an
1477   // instruction which reads memory or itself has side effects.
1478   if ((Flags & SkipSideEffect) &&
1479       (I->mayReadFromMemory() || I->mayHaveSideEffects() || isa<AllocaInst>(I)))
1480     return false;
1481 
1482   // Reordering across an instruction which does not necessarily transfer
1483   // control to the next instruction is speculation.
1484   if ((Flags & SkipImplicitControlFlow) && !isSafeToSpeculativelyExecute(I))
1485     return false;
1486 
1487   // Hoisting of llvm.deoptimize is only legal together with the next return
1488   // instruction, which this pass is not always able to do.
1489   if (auto *CB = dyn_cast<CallBase>(I))
1490     if (CB->getIntrinsicID() == Intrinsic::experimental_deoptimize)
1491       return false;
1492 
1493   // It's also unsafe/illegal to hoist an instruction above its instruction
1494   // operands
1495   BasicBlock *BB = I->getParent();
1496   for (Value *Op : I->operands()) {
1497     if (auto *J = dyn_cast<Instruction>(Op))
1498       if (J->getParent() == BB)
1499         return false;
1500   }
1501 
1502   return true;
1503 }
1504 
1505 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
1506 
1507 /// Helper function for hoistCommonCodeFromSuccessors. Return true if identical
1508 /// instructions \p I1 and \p I2 can and should be hoisted.
1509 static bool shouldHoistCommonInstructions(Instruction *I1, Instruction *I2,
1510                                           const TargetTransformInfo &TTI) {
1511   // If we're going to hoist a call, make sure that the two instructions
1512   // we're commoning/hoisting are both marked with musttail, or neither of
1513   // them is marked as such. Otherwise, we might end up in a situation where
1514   // we hoist from a block where the terminator is a `ret` to a block where
1515   // the terminator is a `br`, and `musttail` calls expect to be followed by
1516   // a return.
1517   auto *C1 = dyn_cast<CallInst>(I1);
1518   auto *C2 = dyn_cast<CallInst>(I2);
1519   if (C1 && C2)
1520     if (C1->isMustTailCall() != C2->isMustTailCall())
1521       return false;
1522 
1523   if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1524     return false;
1525 
1526   // If any of the two call sites has nomerge or convergent attribute, stop
1527   // hoisting.
1528   if (const auto *CB1 = dyn_cast<CallBase>(I1))
1529     if (CB1->cannotMerge() || CB1->isConvergent())
1530       return false;
1531   if (const auto *CB2 = dyn_cast<CallBase>(I2))
1532     if (CB2->cannotMerge() || CB2->isConvergent())
1533       return false;
1534 
1535   return true;
1536 }
1537 
1538 /// Hoists DbgVariableRecords from \p I1 and \p OtherInstrs that are identical
1539 /// in lock-step to \p TI. This matches how dbg.* intrinsics are hoisting in
1540 /// hoistCommonCodeFromSuccessors. e.g. The input:
1541 ///    I1                DVRs: { x, z },
1542 ///    OtherInsts: { I2  DVRs: { x, y, z } }
1543 /// would result in hoisting only DbgVariableRecord x.
1544 static void hoistLockstepIdenticalDbgVariableRecords(
1545     Instruction *TI, Instruction *I1,
1546     SmallVectorImpl<Instruction *> &OtherInsts) {
1547   if (!I1->hasDbgRecords())
1548     return;
1549   using CurrentAndEndIt =
1550       std::pair<DbgRecord::self_iterator, DbgRecord::self_iterator>;
1551   // Vector of {Current, End} iterators.
1552   SmallVector<CurrentAndEndIt> Itrs;
1553   Itrs.reserve(OtherInsts.size() + 1);
1554   // Helper lambdas for lock-step checks:
1555   // Return true if this Current == End.
1556   auto atEnd = [](const CurrentAndEndIt &Pair) {
1557     return Pair.first == Pair.second;
1558   };
1559   // Return true if all Current are identical.
1560   auto allIdentical = [](const SmallVector<CurrentAndEndIt> &Itrs) {
1561     return all_of(make_first_range(ArrayRef(Itrs).drop_front()),
1562                   [&](DbgRecord::self_iterator I) {
1563                     return Itrs[0].first->isIdenticalToWhenDefined(*I);
1564                   });
1565   };
1566 
1567   // Collect the iterators.
1568   Itrs.push_back(
1569       {I1->getDbgRecordRange().begin(), I1->getDbgRecordRange().end()});
1570   for (Instruction *Other : OtherInsts) {
1571     if (!Other->hasDbgRecords())
1572       return;
1573     Itrs.push_back(
1574         {Other->getDbgRecordRange().begin(), Other->getDbgRecordRange().end()});
1575   }
1576 
1577   // Iterate in lock-step until any of the DbgRecord lists are exausted. If
1578   // the lock-step DbgRecord are identical, hoist all of them to TI.
1579   // This replicates the dbg.* intrinsic behaviour in
1580   // hoistCommonCodeFromSuccessors.
1581   while (none_of(Itrs, atEnd)) {
1582     bool HoistDVRs = allIdentical(Itrs);
1583     for (CurrentAndEndIt &Pair : Itrs) {
1584       // Increment Current iterator now as we may be about to move the
1585       // DbgRecord.
1586       DbgRecord &DR = *Pair.first++;
1587       if (HoistDVRs) {
1588         DR.removeFromParent();
1589         TI->getParent()->insertDbgRecordBefore(&DR, TI->getIterator());
1590       }
1591     }
1592   }
1593 }
1594 
1595 static bool areIdenticalUpToCommutativity(const Instruction *I1,
1596                                           const Instruction *I2) {
1597   if (I1->isIdenticalToWhenDefined(I2, /*IntersectAttrs=*/true))
1598     return true;
1599 
1600   if (auto *Cmp1 = dyn_cast<CmpInst>(I1))
1601     if (auto *Cmp2 = dyn_cast<CmpInst>(I2))
1602       return Cmp1->getPredicate() == Cmp2->getSwappedPredicate() &&
1603              Cmp1->getOperand(0) == Cmp2->getOperand(1) &&
1604              Cmp1->getOperand(1) == Cmp2->getOperand(0);
1605 
1606   if (I1->isCommutative() && I1->isSameOperationAs(I2)) {
1607     return I1->getOperand(0) == I2->getOperand(1) &&
1608            I1->getOperand(1) == I2->getOperand(0) &&
1609            equal(drop_begin(I1->operands(), 2), drop_begin(I2->operands(), 2));
1610   }
1611 
1612   return false;
1613 }
1614 
1615 /// If the target supports conditional faulting,
1616 /// we look for the following pattern:
1617 /// \code
1618 ///   BB:
1619 ///     ...
1620 ///     %cond = icmp ult %x, %y
1621 ///     br i1 %cond, label %TrueBB, label %FalseBB
1622 ///   FalseBB:
1623 ///     store i32 1, ptr %q, align 4
1624 ///     ...
1625 ///   TrueBB:
1626 ///     %maskedloadstore = load i32, ptr %b, align 4
1627 ///     store i32 %maskedloadstore, ptr %p, align 4
1628 ///     ...
1629 /// \endcode
1630 ///
1631 /// and transform it into:
1632 ///
1633 /// \code
1634 ///   BB:
1635 ///     ...
1636 ///     %cond = icmp ult %x, %y
1637 ///     %maskedloadstore = cload i32, ptr %b, %cond
1638 ///     cstore i32 %maskedloadstore, ptr %p, %cond
1639 ///     cstore i32 1, ptr %q, ~%cond
1640 ///     br i1 %cond, label %TrueBB, label %FalseBB
1641 ///   FalseBB:
1642 ///     ...
1643 ///   TrueBB:
1644 ///     ...
1645 /// \endcode
1646 ///
1647 /// where cload/cstore are represented by llvm.masked.load/store intrinsics,
1648 /// e.g.
1649 ///
1650 /// \code
1651 ///   %vcond = bitcast i1 %cond to <1 x i1>
1652 ///   %v0 = call <1 x i32> @llvm.masked.load.v1i32.p0
1653 ///                         (ptr %b, i32 4, <1 x i1> %vcond, <1 x i32> poison)
1654 ///   %maskedloadstore = bitcast <1 x i32> %v0 to i32
1655 ///   call void @llvm.masked.store.v1i32.p0
1656 ///                          (<1 x i32> %v0, ptr %p, i32 4, <1 x i1> %vcond)
1657 ///   %cond.not = xor i1 %cond, true
1658 ///   %vcond.not = bitcast i1 %cond.not to <1 x i>
1659 ///   call void @llvm.masked.store.v1i32.p0
1660 ///              (<1 x i32> <i32 1>, ptr %q, i32 4, <1x i1> %vcond.not)
1661 /// \endcode
1662 ///
1663 /// So we need to turn hoisted load/store into cload/cstore.
1664 static void hoistConditionalLoadsStores(
1665     BranchInst *BI,
1666     SmallVectorImpl<Instruction *> &SpeculatedConditionalLoadsStores,
1667     bool Invert) {
1668   auto &Context = BI->getParent()->getContext();
1669   auto *VCondTy = FixedVectorType::get(Type::getInt1Ty(Context), 1);
1670   auto *Cond = BI->getOperand(0);
1671   // Construct the condition if needed.
1672   BasicBlock *BB = BI->getParent();
1673   IRBuilder<> Builder(SpeculatedConditionalLoadsStores.back());
1674   Value *Mask = Builder.CreateBitCast(
1675       Invert ? Builder.CreateXor(Cond, ConstantInt::getTrue(Context)) : Cond,
1676       VCondTy);
1677   for (auto *I : SpeculatedConditionalLoadsStores) {
1678     IRBuilder<> Builder(I);
1679     // We currently assume conditional faulting load/store is supported for
1680     // scalar types only when creating new instructions. This can be easily
1681     // extended for vector types in the future.
1682     assert(!getLoadStoreType(I)->isVectorTy() && "not implemented");
1683     auto *Op0 = I->getOperand(0);
1684     CallInst *MaskedLoadStore = nullptr;
1685     if (auto *LI = dyn_cast<LoadInst>(I)) {
1686       // Handle Load.
1687       auto *Ty = I->getType();
1688       PHINode *PN = nullptr;
1689       Value *PassThru = nullptr;
1690       for (User *U : I->users())
1691         if ((PN = dyn_cast<PHINode>(U))) {
1692           PassThru = Builder.CreateBitCast(PN->getIncomingValueForBlock(BB),
1693                                            FixedVectorType::get(Ty, 1));
1694           break;
1695         }
1696       MaskedLoadStore = Builder.CreateMaskedLoad(
1697           FixedVectorType::get(Ty, 1), Op0, LI->getAlign(), Mask, PassThru);
1698       Value *NewLoadStore = Builder.CreateBitCast(MaskedLoadStore, Ty);
1699       if (PN)
1700         PN->setIncomingValue(PN->getBasicBlockIndex(BB), NewLoadStore);
1701       I->replaceAllUsesWith(NewLoadStore);
1702     } else {
1703       // Handle Store.
1704       auto *StoredVal =
1705           Builder.CreateBitCast(Op0, FixedVectorType::get(Op0->getType(), 1));
1706       MaskedLoadStore = Builder.CreateMaskedStore(
1707           StoredVal, I->getOperand(1), cast<StoreInst>(I)->getAlign(), Mask);
1708     }
1709     // For non-debug metadata, only !annotation, !range, !nonnull and !align are
1710     // kept when hoisting (see Instruction::dropUBImplyingAttrsAndMetadata).
1711     //
1712     // !nonnull, !align : Not support pointer type, no need to keep.
1713     // !range: Load type is changed from scalar to vector, but the metadata on
1714     //         vector specifies a per-element range, so the semantics stay the
1715     //         same. Keep it.
1716     // !annotation: Not impact semantics. Keep it.
1717     if (const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1718       MaskedLoadStore->addRangeRetAttr(getConstantRangeFromMetadata(*Ranges));
1719     I->dropUBImplyingAttrsAndUnknownMetadata({LLVMContext::MD_annotation});
1720     // FIXME: DIAssignID is not supported for masked store yet.
1721     // (Verifier::visitDIAssignIDMetadata)
1722     at::deleteAssignmentMarkers(I);
1723     I->eraseMetadataIf([](unsigned MDKind, MDNode *Node) {
1724       return Node->getMetadataID() == Metadata::DIAssignIDKind;
1725     });
1726     MaskedLoadStore->copyMetadata(*I);
1727     I->eraseFromParent();
1728   }
1729 }
1730 
1731 static bool isSafeCheapLoadStore(const Instruction *I,
1732                                  const TargetTransformInfo &TTI) {
1733   // Not handle volatile or atomic.
1734   if (auto *L = dyn_cast<LoadInst>(I)) {
1735     if (!L->isSimple())
1736       return false;
1737   } else if (auto *S = dyn_cast<StoreInst>(I)) {
1738     if (!S->isSimple())
1739       return false;
1740   } else
1741     return false;
1742 
1743   // llvm.masked.load/store use i32 for alignment while load/store use i64.
1744   // That's why we have the alignment limitation.
1745   // FIXME: Update the prototype of the intrinsics?
1746   return TTI.hasConditionalLoadStoreForType(getLoadStoreType(I)) &&
1747          getLoadStoreAlignment(I) < Value::MaximumAlignment;
1748 }
1749 
1750 /// Hoist any common code in the successor blocks up into the block. This
1751 /// function guarantees that BB dominates all successors. If EqTermsOnly is
1752 /// given, only perform hoisting in case both blocks only contain a terminator.
1753 /// In that case, only the original BI will be replaced and selects for PHIs are
1754 /// added.
1755 bool SimplifyCFGOpt::hoistCommonCodeFromSuccessors(Instruction *TI,
1756                                                    bool EqTermsOnly) {
1757   // This does very trivial matching, with limited scanning, to find identical
1758   // instructions in the two blocks. In particular, we don't want to get into
1759   // O(N1*N2*...) situations here where Ni are the sizes of these successors. As
1760   // such, we currently just scan for obviously identical instructions in an
1761   // identical order, possibly separated by the same number of non-identical
1762   // instructions.
1763   BasicBlock *BB = TI->getParent();
1764   unsigned int SuccSize = succ_size(BB);
1765   if (SuccSize < 2)
1766     return false;
1767 
1768   // If either of the blocks has it's address taken, then we can't do this fold,
1769   // because the code we'd hoist would no longer run when we jump into the block
1770   // by it's address.
1771   for (auto *Succ : successors(BB))
1772     if (Succ->hasAddressTaken() || !Succ->getSinglePredecessor())
1773       return false;
1774 
1775   // The second of pair is a SkipFlags bitmask.
1776   using SuccIterPair = std::pair<BasicBlock::iterator, unsigned>;
1777   SmallVector<SuccIterPair, 8> SuccIterPairs;
1778   for (auto *Succ : successors(BB)) {
1779     BasicBlock::iterator SuccItr = Succ->begin();
1780     if (isa<PHINode>(*SuccItr))
1781       return false;
1782     SuccIterPairs.push_back(SuccIterPair(SuccItr, 0));
1783   }
1784 
1785   // Check if only hoisting terminators is allowed. This does not add new
1786   // instructions to the hoist location.
1787   if (EqTermsOnly) {
1788     // Skip any debug intrinsics, as they are free to hoist.
1789     for (auto &SuccIter : make_first_range(SuccIterPairs)) {
1790       auto *INonDbg = &*skipDebugIntrinsics(SuccIter);
1791       if (!INonDbg->isTerminator())
1792         return false;
1793     }
1794     // Now we know that we only need to hoist debug intrinsics and the
1795     // terminator. Let the loop below handle those 2 cases.
1796   }
1797 
1798   // Count how many instructions were not hoisted so far. There's a limit on how
1799   // many instructions we skip, serving as a compilation time control as well as
1800   // preventing excessive increase of life ranges.
1801   unsigned NumSkipped = 0;
1802   // If we find an unreachable instruction at the beginning of a basic block, we
1803   // can still hoist instructions from the rest of the basic blocks.
1804   if (SuccIterPairs.size() > 2) {
1805     erase_if(SuccIterPairs,
1806              [](const auto &Pair) { return isa<UnreachableInst>(Pair.first); });
1807     if (SuccIterPairs.size() < 2)
1808       return false;
1809   }
1810 
1811   bool Changed = false;
1812 
1813   for (;;) {
1814     auto *SuccIterPairBegin = SuccIterPairs.begin();
1815     auto &BB1ItrPair = *SuccIterPairBegin++;
1816     auto OtherSuccIterPairRange =
1817         iterator_range(SuccIterPairBegin, SuccIterPairs.end());
1818     auto OtherSuccIterRange = make_first_range(OtherSuccIterPairRange);
1819 
1820     Instruction *I1 = &*BB1ItrPair.first;
1821 
1822     // Skip debug info if it is not identical.
1823     bool AllDbgInstsAreIdentical = all_of(OtherSuccIterRange, [I1](auto &Iter) {
1824       Instruction *I2 = &*Iter;
1825       return I1->isIdenticalToWhenDefined(I2);
1826     });
1827     if (!AllDbgInstsAreIdentical) {
1828       while (isa<DbgInfoIntrinsic>(I1))
1829         I1 = &*++BB1ItrPair.first;
1830       for (auto &SuccIter : OtherSuccIterRange) {
1831         Instruction *I2 = &*SuccIter;
1832         while (isa<DbgInfoIntrinsic>(I2))
1833           I2 = &*++SuccIter;
1834       }
1835     }
1836 
1837     bool AllInstsAreIdentical = true;
1838     bool HasTerminator = I1->isTerminator();
1839     for (auto &SuccIter : OtherSuccIterRange) {
1840       Instruction *I2 = &*SuccIter;
1841       HasTerminator |= I2->isTerminator();
1842       if (AllInstsAreIdentical && (!areIdenticalUpToCommutativity(I1, I2) ||
1843                                    MMRAMetadata(*I1) != MMRAMetadata(*I2)))
1844         AllInstsAreIdentical = false;
1845     }
1846 
1847     SmallVector<Instruction *, 8> OtherInsts;
1848     for (auto &SuccIter : OtherSuccIterRange)
1849       OtherInsts.push_back(&*SuccIter);
1850 
1851     // If we are hoisting the terminator instruction, don't move one (making a
1852     // broken BB), instead clone it, and remove BI.
1853     if (HasTerminator) {
1854       // Even if BB, which contains only one unreachable instruction, is ignored
1855       // at the beginning of the loop, we can hoist the terminator instruction.
1856       // If any instructions remain in the block, we cannot hoist terminators.
1857       if (NumSkipped || !AllInstsAreIdentical) {
1858         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1859         return Changed;
1860       }
1861 
1862       return hoistSuccIdenticalTerminatorToSwitchOrIf(TI, I1, OtherInsts) ||
1863              Changed;
1864     }
1865 
1866     if (AllInstsAreIdentical) {
1867       unsigned SkipFlagsBB1 = BB1ItrPair.second;
1868       AllInstsAreIdentical =
1869           isSafeToHoistInstr(I1, SkipFlagsBB1) &&
1870           all_of(OtherSuccIterPairRange, [=](const auto &Pair) {
1871             Instruction *I2 = &*Pair.first;
1872             unsigned SkipFlagsBB2 = Pair.second;
1873             // Even if the instructions are identical, it may not
1874             // be safe to hoist them if we have skipped over
1875             // instructions with side effects or their operands
1876             // weren't hoisted.
1877             return isSafeToHoistInstr(I2, SkipFlagsBB2) &&
1878                    shouldHoistCommonInstructions(I1, I2, TTI);
1879           });
1880     }
1881 
1882     if (AllInstsAreIdentical) {
1883       BB1ItrPair.first++;
1884       if (isa<DbgInfoIntrinsic>(I1)) {
1885         // The debug location is an integral part of a debug info intrinsic
1886         // and can't be separated from it or replaced.  Instead of attempting
1887         // to merge locations, simply hoist both copies of the intrinsic.
1888         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1889         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1890         // and leave any that were not hoisted behind (by calling moveBefore
1891         // rather than moveBeforePreserving).
1892         I1->moveBefore(TI);
1893         for (auto &SuccIter : OtherSuccIterRange) {
1894           auto *I2 = &*SuccIter++;
1895           assert(isa<DbgInfoIntrinsic>(I2));
1896           I2->moveBefore(TI);
1897         }
1898       } else {
1899         // For a normal instruction, we just move one to right before the
1900         // branch, then replace all uses of the other with the first.  Finally,
1901         // we remove the now redundant second instruction.
1902         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1903         // We've just hoisted DbgVariableRecords; move I1 after them (before TI)
1904         // and leave any that were not hoisted behind (by calling moveBefore
1905         // rather than moveBeforePreserving).
1906         I1->moveBefore(TI);
1907         for (auto &SuccIter : OtherSuccIterRange) {
1908           Instruction *I2 = &*SuccIter++;
1909           assert(I2 != I1);
1910           if (!I2->use_empty())
1911             I2->replaceAllUsesWith(I1);
1912           I1->andIRFlags(I2);
1913           if (auto *CB = dyn_cast<CallBase>(I1)) {
1914             bool Success = CB->tryIntersectAttributes(cast<CallBase>(I2));
1915             assert(Success && "We should not be trying to hoist callbases "
1916                               "with non-intersectable attributes");
1917             // For NDEBUG Compile.
1918             (void)Success;
1919           }
1920 
1921           combineMetadataForCSE(I1, I2, true);
1922           // I1 and I2 are being combined into a single instruction.  Its debug
1923           // location is the merged locations of the original instructions.
1924           I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1925           I2->eraseFromParent();
1926         }
1927       }
1928       if (!Changed)
1929         NumHoistCommonCode += SuccIterPairs.size();
1930       Changed = true;
1931       NumHoistCommonInstrs += SuccIterPairs.size();
1932     } else {
1933       if (NumSkipped >= HoistCommonSkipLimit) {
1934         hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherInsts);
1935         return Changed;
1936       }
1937       // We are about to skip over a pair of non-identical instructions. Record
1938       // if any have characteristics that would prevent reordering instructions
1939       // across them.
1940       for (auto &SuccIterPair : SuccIterPairs) {
1941         Instruction *I = &*SuccIterPair.first++;
1942         SuccIterPair.second |= skippedInstrFlags(I);
1943       }
1944       ++NumSkipped;
1945     }
1946   }
1947 }
1948 
1949 bool SimplifyCFGOpt::hoistSuccIdenticalTerminatorToSwitchOrIf(
1950     Instruction *TI, Instruction *I1,
1951     SmallVectorImpl<Instruction *> &OtherSuccTIs) {
1952 
1953   auto *BI = dyn_cast<BranchInst>(TI);
1954 
1955   bool Changed = false;
1956   BasicBlock *TIParent = TI->getParent();
1957   BasicBlock *BB1 = I1->getParent();
1958 
1959   // Use only for an if statement.
1960   auto *I2 = *OtherSuccTIs.begin();
1961   auto *BB2 = I2->getParent();
1962   if (BI) {
1963     assert(OtherSuccTIs.size() == 1);
1964     assert(BI->getSuccessor(0) == I1->getParent());
1965     assert(BI->getSuccessor(1) == I2->getParent());
1966   }
1967 
1968   // In the case of an if statement, we try to hoist an invoke.
1969   // FIXME: Can we define a safety predicate for CallBr?
1970   // FIXME: Test case llvm/test/Transforms/SimplifyCFG/2009-06-15-InvokeCrash.ll
1971   // removed in 4c923b3b3fd0ac1edebf0603265ca3ba51724937 commit?
1972   if (isa<InvokeInst>(I1) && (!BI || !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1973     return false;
1974 
1975   // TODO: callbr hoisting currently disabled pending further study.
1976   if (isa<CallBrInst>(I1))
1977     return false;
1978 
1979   for (BasicBlock *Succ : successors(BB1)) {
1980     for (PHINode &PN : Succ->phis()) {
1981       Value *BB1V = PN.getIncomingValueForBlock(BB1);
1982       for (Instruction *OtherSuccTI : OtherSuccTIs) {
1983         Value *BB2V = PN.getIncomingValueForBlock(OtherSuccTI->getParent());
1984         if (BB1V == BB2V)
1985           continue;
1986 
1987         // In the case of an if statement, check for
1988         // passingValueIsAlwaysUndefined here because we would rather eliminate
1989         // undefined control flow then converting it to a select.
1990         if (!BI || passingValueIsAlwaysUndefined(BB1V, &PN) ||
1991             passingValueIsAlwaysUndefined(BB2V, &PN))
1992           return false;
1993       }
1994     }
1995   }
1996 
1997   // Hoist DbgVariableRecords attached to the terminator to match dbg.*
1998   // intrinsic hoisting behaviour in hoistCommonCodeFromSuccessors.
1999   hoistLockstepIdenticalDbgVariableRecords(TI, I1, OtherSuccTIs);
2000   // Clone the terminator and hoist it into the pred, without any debug info.
2001   Instruction *NT = I1->clone();
2002   NT->insertInto(TIParent, TI->getIterator());
2003   if (!NT->getType()->isVoidTy()) {
2004     I1->replaceAllUsesWith(NT);
2005     for (Instruction *OtherSuccTI : OtherSuccTIs)
2006       OtherSuccTI->replaceAllUsesWith(NT);
2007     NT->takeName(I1);
2008   }
2009   Changed = true;
2010   NumHoistCommonInstrs += OtherSuccTIs.size() + 1;
2011 
2012   // Ensure terminator gets a debug location, even an unknown one, in case
2013   // it involves inlinable calls.
2014   SmallVector<DILocation *, 4> Locs;
2015   Locs.push_back(I1->getDebugLoc());
2016   for (auto *OtherSuccTI : OtherSuccTIs)
2017     Locs.push_back(OtherSuccTI->getDebugLoc());
2018   NT->setDebugLoc(DILocation::getMergedLocations(Locs));
2019 
2020   // PHIs created below will adopt NT's merged DebugLoc.
2021   IRBuilder<NoFolder> Builder(NT);
2022 
2023   // In the case of an if statement, hoisting one of the terminators from our
2024   // successor is a great thing. Unfortunately, the successors of the if/else
2025   // blocks may have PHI nodes in them.  If they do, all PHI entries for BB1/BB2
2026   // must agree for all PHI nodes, so we insert select instruction to compute
2027   // the final result.
2028   if (BI) {
2029     std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
2030     for (BasicBlock *Succ : successors(BB1)) {
2031       for (PHINode &PN : Succ->phis()) {
2032         Value *BB1V = PN.getIncomingValueForBlock(BB1);
2033         Value *BB2V = PN.getIncomingValueForBlock(BB2);
2034         if (BB1V == BB2V)
2035           continue;
2036 
2037         // These values do not agree.  Insert a select instruction before NT
2038         // that determines the right value.
2039         SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
2040         if (!SI) {
2041           // Propagate fast-math-flags from phi node to its replacement select.
2042           IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2043           if (isa<FPMathOperator>(PN))
2044             Builder.setFastMathFlags(PN.getFastMathFlags());
2045 
2046           SI = cast<SelectInst>(Builder.CreateSelect(
2047               BI->getCondition(), BB1V, BB2V,
2048               BB1V->getName() + "." + BB2V->getName(), BI));
2049         }
2050 
2051         // Make the PHI node use the select for all incoming values for BB1/BB2
2052         for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2053           if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
2054             PN.setIncomingValue(i, SI);
2055       }
2056     }
2057   }
2058 
2059   SmallVector<DominatorTree::UpdateType, 4> Updates;
2060 
2061   // Update any PHI nodes in our new successors.
2062   for (BasicBlock *Succ : successors(BB1)) {
2063     addPredecessorToBlock(Succ, TIParent, BB1);
2064     if (DTU)
2065       Updates.push_back({DominatorTree::Insert, TIParent, Succ});
2066   }
2067 
2068   if (DTU)
2069     for (BasicBlock *Succ : successors(TI))
2070       Updates.push_back({DominatorTree::Delete, TIParent, Succ});
2071 
2072   eraseTerminatorAndDCECond(TI);
2073   if (DTU)
2074     DTU->applyUpdates(Updates);
2075   return Changed;
2076 }
2077 
2078 // Check lifetime markers.
2079 static bool isLifeTimeMarker(const Instruction *I) {
2080   if (auto II = dyn_cast<IntrinsicInst>(I)) {
2081     switch (II->getIntrinsicID()) {
2082     default:
2083       break;
2084     case Intrinsic::lifetime_start:
2085     case Intrinsic::lifetime_end:
2086       return true;
2087     }
2088   }
2089   return false;
2090 }
2091 
2092 // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
2093 // into variables.
2094 static bool replacingOperandWithVariableIsCheap(const Instruction *I,
2095                                                 int OpIdx) {
2096   // Divide/Remainder by constant is typically much cheaper than by variable.
2097   if (I->isIntDivRem())
2098     return OpIdx != 1;
2099   return !isa<IntrinsicInst>(I);
2100 }
2101 
2102 // All instructions in Insts belong to different blocks that all unconditionally
2103 // branch to a common successor. Analyze each instruction and return true if it
2104 // would be possible to sink them into their successor, creating one common
2105 // instruction instead. For every value that would be required to be provided by
2106 // PHI node (because an operand varies in each input block), add to PHIOperands.
2107 static bool canSinkInstructions(
2108     ArrayRef<Instruction *> Insts,
2109     DenseMap<const Use *, SmallVector<Value *, 4>> &PHIOperands) {
2110   // Prune out obviously bad instructions to move. Each instruction must have
2111   // the same number of uses, and we check later that the uses are consistent.
2112   std::optional<unsigned> NumUses;
2113   for (auto *I : Insts) {
2114     // These instructions may change or break semantics if moved.
2115     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
2116         I->getType()->isTokenTy())
2117       return false;
2118 
2119     // Do not try to sink an instruction in an infinite loop - it can cause
2120     // this algorithm to infinite loop.
2121     if (I->getParent()->getSingleSuccessor() == I->getParent())
2122       return false;
2123 
2124     // Conservatively return false if I is an inline-asm instruction. Sinking
2125     // and merging inline-asm instructions can potentially create arguments
2126     // that cannot satisfy the inline-asm constraints.
2127     // If the instruction has nomerge or convergent attribute, return false.
2128     if (const auto *C = dyn_cast<CallBase>(I))
2129       if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
2130         return false;
2131 
2132     if (!NumUses)
2133       NumUses = I->getNumUses();
2134     else if (NumUses != I->getNumUses())
2135       return false;
2136   }
2137 
2138   const Instruction *I0 = Insts.front();
2139   const auto I0MMRA = MMRAMetadata(*I0);
2140   for (auto *I : Insts) {
2141     if (!I->isSameOperationAs(I0, Instruction::CompareUsingIntersectedAttrs))
2142       return false;
2143 
2144     // swifterror pointers can only be used by a load or store; sinking a load
2145     // or store would require introducing a select for the pointer operand,
2146     // which isn't allowed for swifterror pointers.
2147     if (isa<StoreInst>(I) && I->getOperand(1)->isSwiftError())
2148       return false;
2149     if (isa<LoadInst>(I) && I->getOperand(0)->isSwiftError())
2150       return false;
2151 
2152     // Treat MMRAs conservatively. This pass can be quite aggressive and
2153     // could drop a lot of MMRAs otherwise.
2154     if (MMRAMetadata(*I) != I0MMRA)
2155       return false;
2156   }
2157 
2158   // Uses must be consistent: If I0 is used in a phi node in the sink target,
2159   // then the other phi operands must match the instructions from Insts. This
2160   // also has to hold true for any phi nodes that would be created as a result
2161   // of sinking. Both of these cases are represented by PhiOperands.
2162   for (const Use &U : I0->uses()) {
2163     auto It = PHIOperands.find(&U);
2164     if (It == PHIOperands.end())
2165       // There may be uses in other blocks when sinking into a loop header.
2166       return false;
2167     if (!equal(Insts, It->second))
2168       return false;
2169   }
2170 
2171   // For calls to be sinkable, they must all be indirect, or have same callee.
2172   // I.e. if we have two direct calls to different callees, we don't want to
2173   // turn that into an indirect call. Likewise, if we have an indirect call,
2174   // and a direct call, we don't actually want to have a single indirect call.
2175   if (isa<CallBase>(I0)) {
2176     auto IsIndirectCall = [](const Instruction *I) {
2177       return cast<CallBase>(I)->isIndirectCall();
2178     };
2179     bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
2180     bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
2181     if (HaveIndirectCalls) {
2182       if (!AllCallsAreIndirect)
2183         return false;
2184     } else {
2185       // All callees must be identical.
2186       Value *Callee = nullptr;
2187       for (const Instruction *I : Insts) {
2188         Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
2189         if (!Callee)
2190           Callee = CurrCallee;
2191         else if (Callee != CurrCallee)
2192           return false;
2193       }
2194     }
2195   }
2196 
2197   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
2198     Value *Op = I0->getOperand(OI);
2199     if (Op->getType()->isTokenTy())
2200       // Don't touch any operand of token type.
2201       return false;
2202 
2203     auto SameAsI0 = [&I0, OI](const Instruction *I) {
2204       assert(I->getNumOperands() == I0->getNumOperands());
2205       return I->getOperand(OI) == I0->getOperand(OI);
2206     };
2207     if (!all_of(Insts, SameAsI0)) {
2208       // SROA can't speculate lifetime markers of selects/phis, and the
2209       // backend may handle such lifetimes incorrectly as well (#104776).
2210       // Don't sink lifetimes if it would introduce a phi on the pointer
2211       // argument.
2212       if (isLifeTimeMarker(I0) && OI == 1 &&
2213           any_of(Insts, [](const Instruction *I) {
2214             return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
2215           }))
2216         return false;
2217 
2218       if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
2219           !canReplaceOperandWithVariable(I0, OI))
2220         // We can't create a PHI from this GEP.
2221         return false;
2222       auto &Ops = PHIOperands[&I0->getOperandUse(OI)];
2223       for (auto *I : Insts)
2224         Ops.push_back(I->getOperand(OI));
2225     }
2226   }
2227   return true;
2228 }
2229 
2230 // Assuming canSinkInstructions(Blocks) has returned true, sink the last
2231 // instruction of every block in Blocks to their common successor, commoning
2232 // into one instruction.
2233 static void sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
2234   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
2235 
2236   // canSinkInstructions returning true guarantees that every block has at
2237   // least one non-terminator instruction.
2238   SmallVector<Instruction*,4> Insts;
2239   for (auto *BB : Blocks) {
2240     Instruction *I = BB->getTerminator();
2241     do {
2242       I = I->getPrevNode();
2243     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
2244     if (!isa<DbgInfoIntrinsic>(I))
2245       Insts.push_back(I);
2246   }
2247 
2248   // We don't need to do any more checking here; canSinkInstructions should
2249   // have done it all for us.
2250   SmallVector<Value*, 4> NewOperands;
2251   Instruction *I0 = Insts.front();
2252   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
2253     // This check is different to that in canSinkInstructions. There, we
2254     // cared about the global view once simplifycfg (and instcombine) have
2255     // completed - it takes into account PHIs that become trivially
2256     // simplifiable.  However here we need a more local view; if an operand
2257     // differs we create a PHI and rely on instcombine to clean up the very
2258     // small mess we may make.
2259     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
2260       return I->getOperand(O) != I0->getOperand(O);
2261     });
2262     if (!NeedPHI) {
2263       NewOperands.push_back(I0->getOperand(O));
2264       continue;
2265     }
2266 
2267     // Create a new PHI in the successor block and populate it.
2268     auto *Op = I0->getOperand(O);
2269     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
2270     auto *PN =
2271         PHINode::Create(Op->getType(), Insts.size(), Op->getName() + ".sink");
2272     PN->insertBefore(BBEnd->begin());
2273     for (auto *I : Insts)
2274       PN->addIncoming(I->getOperand(O), I->getParent());
2275     NewOperands.push_back(PN);
2276   }
2277 
2278   // Arbitrarily use I0 as the new "common" instruction; remap its operands
2279   // and move it to the start of the successor block.
2280   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
2281     I0->getOperandUse(O).set(NewOperands[O]);
2282 
2283   I0->moveBefore(*BBEnd, BBEnd->getFirstInsertionPt());
2284 
2285   // Update metadata and IR flags, and merge debug locations.
2286   for (auto *I : Insts)
2287     if (I != I0) {
2288       // The debug location for the "common" instruction is the merged locations
2289       // of all the commoned instructions.  We start with the original location
2290       // of the "common" instruction and iteratively merge each location in the
2291       // loop below.
2292       // This is an N-way merge, which will be inefficient if I0 is a CallInst.
2293       // However, as N-way merge for CallInst is rare, so we use simplified API
2294       // instead of using complex API for N-way merge.
2295       I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
2296       combineMetadataForCSE(I0, I, true);
2297       I0->andIRFlags(I);
2298       if (auto *CB = dyn_cast<CallBase>(I0)) {
2299         bool Success = CB->tryIntersectAttributes(cast<CallBase>(I));
2300         assert(Success && "We should not be trying to sink callbases "
2301                           "with non-intersectable attributes");
2302         // For NDEBUG Compile.
2303         (void)Success;
2304       }
2305     }
2306 
2307   for (User *U : make_early_inc_range(I0->users())) {
2308     // canSinkLastInstruction checked that all instructions are only used by
2309     // phi nodes in a way that allows replacing the phi node with the common
2310     // instruction.
2311     auto *PN = cast<PHINode>(U);
2312     PN->replaceAllUsesWith(I0);
2313     PN->eraseFromParent();
2314   }
2315 
2316   // Finally nuke all instructions apart from the common instruction.
2317   for (auto *I : Insts) {
2318     if (I == I0)
2319       continue;
2320     // The remaining uses are debug users, replace those with the common inst.
2321     // In most (all?) cases this just introduces a use-before-def.
2322     assert(I->user_empty() && "Inst unexpectedly still has non-dbg users");
2323     I->replaceAllUsesWith(I0);
2324     I->eraseFromParent();
2325   }
2326 }
2327 
2328 namespace {
2329 
2330   // LockstepReverseIterator - Iterates through instructions
2331   // in a set of blocks in reverse order from the first non-terminator.
2332   // For example (assume all blocks have size n):
2333   //   LockstepReverseIterator I([B1, B2, B3]);
2334   //   *I-- = [B1[n], B2[n], B3[n]];
2335   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
2336   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
2337   //   ...
2338   class LockstepReverseIterator {
2339     ArrayRef<BasicBlock*> Blocks;
2340     SmallVector<Instruction*,4> Insts;
2341     bool Fail;
2342 
2343   public:
2344     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
2345       reset();
2346     }
2347 
2348     void reset() {
2349       Fail = false;
2350       Insts.clear();
2351       for (auto *BB : Blocks) {
2352         Instruction *Inst = BB->getTerminator();
2353         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2354           Inst = Inst->getPrevNode();
2355         if (!Inst) {
2356           // Block wasn't big enough.
2357           Fail = true;
2358           return;
2359         }
2360         Insts.push_back(Inst);
2361       }
2362     }
2363 
2364     bool isValid() const {
2365       return !Fail;
2366     }
2367 
2368     void operator--() {
2369       if (Fail)
2370         return;
2371       for (auto *&Inst : Insts) {
2372         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2373           Inst = Inst->getPrevNode();
2374         // Already at beginning of block.
2375         if (!Inst) {
2376           Fail = true;
2377           return;
2378         }
2379       }
2380     }
2381 
2382     void operator++() {
2383       if (Fail)
2384         return;
2385       for (auto *&Inst : Insts) {
2386         for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
2387           Inst = Inst->getNextNode();
2388         // Already at end of block.
2389         if (!Inst) {
2390           Fail = true;
2391           return;
2392         }
2393       }
2394     }
2395 
2396     ArrayRef<Instruction*> operator * () const {
2397       return Insts;
2398     }
2399   };
2400 
2401 } // end anonymous namespace
2402 
2403 /// Check whether BB's predecessors end with unconditional branches. If it is
2404 /// true, sink any common code from the predecessors to BB.
2405 static bool sinkCommonCodeFromPredecessors(BasicBlock *BB,
2406                                            DomTreeUpdater *DTU) {
2407   // We support two situations:
2408   //   (1) all incoming arcs are unconditional
2409   //   (2) there are non-unconditional incoming arcs
2410   //
2411   // (2) is very common in switch defaults and
2412   // else-if patterns;
2413   //
2414   //   if (a) f(1);
2415   //   else if (b) f(2);
2416   //
2417   // produces:
2418   //
2419   //       [if]
2420   //      /    \
2421   //    [f(1)] [if]
2422   //      |     | \
2423   //      |     |  |
2424   //      |  [f(2)]|
2425   //       \    | /
2426   //        [ end ]
2427   //
2428   // [end] has two unconditional predecessor arcs and one conditional. The
2429   // conditional refers to the implicit empty 'else' arc. This conditional
2430   // arc can also be caused by an empty default block in a switch.
2431   //
2432   // In this case, we attempt to sink code from all *unconditional* arcs.
2433   // If we can sink instructions from these arcs (determined during the scan
2434   // phase below) we insert a common successor for all unconditional arcs and
2435   // connect that to [end], to enable sinking:
2436   //
2437   //       [if]
2438   //      /    \
2439   //    [x(1)] [if]
2440   //      |     | \
2441   //      |     |  \
2442   //      |  [x(2)] |
2443   //       \   /    |
2444   //   [sink.split] |
2445   //         \     /
2446   //         [ end ]
2447   //
2448   SmallVector<BasicBlock*,4> UnconditionalPreds;
2449   bool HaveNonUnconditionalPredecessors = false;
2450   for (auto *PredBB : predecessors(BB)) {
2451     auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2452     if (PredBr && PredBr->isUnconditional())
2453       UnconditionalPreds.push_back(PredBB);
2454     else
2455       HaveNonUnconditionalPredecessors = true;
2456   }
2457   if (UnconditionalPreds.size() < 2)
2458     return false;
2459 
2460   // We take a two-step approach to tail sinking. First we scan from the end of
2461   // each block upwards in lockstep. If the n'th instruction from the end of each
2462   // block can be sunk, those instructions are added to ValuesToSink and we
2463   // carry on. If we can sink an instruction but need to PHI-merge some operands
2464   // (because they're not identical in each instruction) we add these to
2465   // PHIOperands.
2466   // We prepopulate PHIOperands with the phis that already exist in BB.
2467   DenseMap<const Use *, SmallVector<Value *, 4>> PHIOperands;
2468   for (PHINode &PN : BB->phis()) {
2469     SmallDenseMap<BasicBlock *, const Use *, 4> IncomingVals;
2470     for (const Use &U : PN.incoming_values())
2471       IncomingVals.insert({PN.getIncomingBlock(U), &U});
2472     auto &Ops = PHIOperands[IncomingVals[UnconditionalPreds[0]]];
2473     for (BasicBlock *Pred : UnconditionalPreds)
2474       Ops.push_back(*IncomingVals[Pred]);
2475   }
2476 
2477   int ScanIdx = 0;
2478   SmallPtrSet<Value*,4> InstructionsToSink;
2479   LockstepReverseIterator LRI(UnconditionalPreds);
2480   while (LRI.isValid() &&
2481          canSinkInstructions(*LRI, PHIOperands)) {
2482     LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
2483                       << "\n");
2484     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
2485     ++ScanIdx;
2486     --LRI;
2487   }
2488 
2489   // If no instructions can be sunk, early-return.
2490   if (ScanIdx == 0)
2491     return false;
2492 
2493   bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
2494 
2495   if (!followedByDeoptOrUnreachable) {
2496     // Check whether this is the pointer operand of a load/store.
2497     auto IsMemOperand = [](Use &U) {
2498       auto *I = cast<Instruction>(U.getUser());
2499       if (isa<LoadInst>(I))
2500         return U.getOperandNo() == LoadInst::getPointerOperandIndex();
2501       if (isa<StoreInst>(I))
2502         return U.getOperandNo() == StoreInst::getPointerOperandIndex();
2503       return false;
2504     };
2505 
2506     // Okay, we *could* sink last ScanIdx instructions. But how many can we
2507     // actually sink before encountering instruction that is unprofitable to
2508     // sink?
2509     auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
2510       unsigned NumPHIInsts = 0;
2511       for (Use &U : (*LRI)[0]->operands()) {
2512         auto It = PHIOperands.find(&U);
2513         if (It != PHIOperands.end() && !all_of(It->second, [&](Value *V) {
2514               return InstructionsToSink.contains(V);
2515             })) {
2516           ++NumPHIInsts;
2517           // Do not separate a load/store from the gep producing the address.
2518           // The gep can likely be folded into the load/store as an addressing
2519           // mode. Additionally, a load of a gep is easier to analyze than a
2520           // load of a phi.
2521           if (IsMemOperand(U) &&
2522               any_of(It->second, [](Value *V) { return isa<GEPOperator>(V); }))
2523             return false;
2524           // FIXME: this check is overly optimistic. We may end up not sinking
2525           // said instruction, due to the very same profitability check.
2526           // See @creating_too_many_phis in sink-common-code.ll.
2527         }
2528       }
2529       LLVM_DEBUG(dbgs() << "SINK: #phi insts: " << NumPHIInsts << "\n");
2530       return NumPHIInsts <= 1;
2531     };
2532 
2533     // We've determined that we are going to sink last ScanIdx instructions,
2534     // and recorded them in InstructionsToSink. Now, some instructions may be
2535     // unprofitable to sink. But that determination depends on the instructions
2536     // that we are going to sink.
2537 
2538     // First, forward scan: find the first instruction unprofitable to sink,
2539     // recording all the ones that are profitable to sink.
2540     // FIXME: would it be better, after we detect that not all are profitable.
2541     // to either record the profitable ones, or erase the unprofitable ones?
2542     // Maybe we need to choose (at runtime) the one that will touch least
2543     // instrs?
2544     LRI.reset();
2545     int Idx = 0;
2546     SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
2547     while (Idx < ScanIdx) {
2548       if (!ProfitableToSinkInstruction(LRI)) {
2549         // Too many PHIs would be created.
2550         LLVM_DEBUG(
2551             dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
2552         break;
2553       }
2554       InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
2555       --LRI;
2556       ++Idx;
2557     }
2558 
2559     // If no instructions can be sunk, early-return.
2560     if (Idx == 0)
2561       return false;
2562 
2563     // Did we determine that (only) some instructions are unprofitable to sink?
2564     if (Idx < ScanIdx) {
2565       // Okay, some instructions are unprofitable.
2566       ScanIdx = Idx;
2567       InstructionsToSink = InstructionsProfitableToSink;
2568 
2569       // But, that may make other instructions unprofitable, too.
2570       // So, do a backward scan, do any earlier instructions become
2571       // unprofitable?
2572       assert(
2573           !ProfitableToSinkInstruction(LRI) &&
2574           "We already know that the last instruction is unprofitable to sink");
2575       ++LRI;
2576       --Idx;
2577       while (Idx >= 0) {
2578         // If we detect that an instruction becomes unprofitable to sink,
2579         // all earlier instructions won't be sunk either,
2580         // so preemptively keep InstructionsProfitableToSink in sync.
2581         // FIXME: is this the most performant approach?
2582         for (auto *I : *LRI)
2583           InstructionsProfitableToSink.erase(I);
2584         if (!ProfitableToSinkInstruction(LRI)) {
2585           // Everything starting with this instruction won't be sunk.
2586           ScanIdx = Idx;
2587           InstructionsToSink = InstructionsProfitableToSink;
2588         }
2589         ++LRI;
2590         --Idx;
2591       }
2592     }
2593 
2594     // If no instructions can be sunk, early-return.
2595     if (ScanIdx == 0)
2596       return false;
2597   }
2598 
2599   bool Changed = false;
2600 
2601   if (HaveNonUnconditionalPredecessors) {
2602     if (!followedByDeoptOrUnreachable) {
2603       // It is always legal to sink common instructions from unconditional
2604       // predecessors. However, if not all predecessors are unconditional,
2605       // this transformation might be pessimizing. So as a rule of thumb,
2606       // don't do it unless we'd sink at least one non-speculatable instruction.
2607       // See https://bugs.llvm.org/show_bug.cgi?id=30244
2608       LRI.reset();
2609       int Idx = 0;
2610       bool Profitable = false;
2611       while (Idx < ScanIdx) {
2612         if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
2613           Profitable = true;
2614           break;
2615         }
2616         --LRI;
2617         ++Idx;
2618       }
2619       if (!Profitable)
2620         return false;
2621     }
2622 
2623     LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
2624     // We have a conditional edge and we're going to sink some instructions.
2625     // Insert a new block postdominating all blocks we're going to sink from.
2626     if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
2627       // Edges couldn't be split.
2628       return false;
2629     Changed = true;
2630   }
2631 
2632   // Now that we've analyzed all potential sinking candidates, perform the
2633   // actual sink. We iteratively sink the last non-terminator of the source
2634   // blocks into their common successor unless doing so would require too
2635   // many PHI instructions to be generated (currently only one PHI is allowed
2636   // per sunk instruction).
2637   //
2638   // We can use InstructionsToSink to discount values needing PHI-merging that will
2639   // actually be sunk in a later iteration. This allows us to be more
2640   // aggressive in what we sink. This does allow a false positive where we
2641   // sink presuming a later value will also be sunk, but stop half way through
2642   // and never actually sink it which means we produce more PHIs than intended.
2643   // This is unlikely in practice though.
2644   int SinkIdx = 0;
2645   for (; SinkIdx != ScanIdx; ++SinkIdx) {
2646     LLVM_DEBUG(dbgs() << "SINK: Sink: "
2647                       << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
2648                       << "\n");
2649 
2650     // Because we've sunk every instruction in turn, the current instruction to
2651     // sink is always at index 0.
2652     LRI.reset();
2653 
2654     sinkLastInstruction(UnconditionalPreds);
2655     NumSinkCommonInstrs++;
2656     Changed = true;
2657   }
2658   if (SinkIdx != 0)
2659     ++NumSinkCommonCode;
2660   return Changed;
2661 }
2662 
2663 namespace {
2664 
2665 struct CompatibleSets {
2666   using SetTy = SmallVector<InvokeInst *, 2>;
2667 
2668   SmallVector<SetTy, 1> Sets;
2669 
2670   static bool shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes);
2671 
2672   SetTy &getCompatibleSet(InvokeInst *II);
2673 
2674   void insert(InvokeInst *II);
2675 };
2676 
2677 CompatibleSets::SetTy &CompatibleSets::getCompatibleSet(InvokeInst *II) {
2678   // Perform a linear scan over all the existing sets, see if the new `invoke`
2679   // is compatible with any particular set. Since we know that all the `invokes`
2680   // within a set are compatible, only check the first `invoke` in each set.
2681   // WARNING: at worst, this has quadratic complexity.
2682   for (CompatibleSets::SetTy &Set : Sets) {
2683     if (CompatibleSets::shouldBelongToSameSet({Set.front(), II}))
2684       return Set;
2685   }
2686 
2687   // Otherwise, we either had no sets yet, or this invoke forms a new set.
2688   return Sets.emplace_back();
2689 }
2690 
2691 void CompatibleSets::insert(InvokeInst *II) {
2692   getCompatibleSet(II).emplace_back(II);
2693 }
2694 
2695 bool CompatibleSets::shouldBelongToSameSet(ArrayRef<InvokeInst *> Invokes) {
2696   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2697 
2698   // Can we theoretically merge these `invoke`s?
2699   auto IsIllegalToMerge = [](InvokeInst *II) {
2700     return II->cannotMerge() || II->isInlineAsm();
2701   };
2702   if (any_of(Invokes, IsIllegalToMerge))
2703     return false;
2704 
2705   // Either both `invoke`s must be   direct,
2706   // or     both `invoke`s must be indirect.
2707   auto IsIndirectCall = [](InvokeInst *II) { return II->isIndirectCall(); };
2708   bool HaveIndirectCalls = any_of(Invokes, IsIndirectCall);
2709   bool AllCallsAreIndirect = all_of(Invokes, IsIndirectCall);
2710   if (HaveIndirectCalls) {
2711     if (!AllCallsAreIndirect)
2712       return false;
2713   } else {
2714     // All callees must be identical.
2715     Value *Callee = nullptr;
2716     for (InvokeInst *II : Invokes) {
2717       Value *CurrCallee = II->getCalledOperand();
2718       assert(CurrCallee && "There is always a called operand.");
2719       if (!Callee)
2720         Callee = CurrCallee;
2721       else if (Callee != CurrCallee)
2722         return false;
2723     }
2724   }
2725 
2726   // Either both `invoke`s must not have a normal destination,
2727   // or     both `invoke`s must     have a normal destination,
2728   auto HasNormalDest = [](InvokeInst *II) {
2729     return !isa<UnreachableInst>(II->getNormalDest()->getFirstNonPHIOrDbg());
2730   };
2731   if (any_of(Invokes, HasNormalDest)) {
2732     // Do not merge `invoke` that does not have a normal destination with one
2733     // that does have a normal destination, even though doing so would be legal.
2734     if (!all_of(Invokes, HasNormalDest))
2735       return false;
2736 
2737     // All normal destinations must be identical.
2738     BasicBlock *NormalBB = nullptr;
2739     for (InvokeInst *II : Invokes) {
2740       BasicBlock *CurrNormalBB = II->getNormalDest();
2741       assert(CurrNormalBB && "There is always a 'continue to' basic block.");
2742       if (!NormalBB)
2743         NormalBB = CurrNormalBB;
2744       else if (NormalBB != CurrNormalBB)
2745         return false;
2746     }
2747 
2748     // In the normal destination, the incoming values for these two `invoke`s
2749     // must be compatible.
2750     SmallPtrSet<Value *, 16> EquivalenceSet(Invokes.begin(), Invokes.end());
2751     if (!incomingValuesAreCompatible(
2752             NormalBB, {Invokes[0]->getParent(), Invokes[1]->getParent()},
2753             &EquivalenceSet))
2754       return false;
2755   }
2756 
2757 #ifndef NDEBUG
2758   // All unwind destinations must be identical.
2759   // We know that because we have started from said unwind destination.
2760   BasicBlock *UnwindBB = nullptr;
2761   for (InvokeInst *II : Invokes) {
2762     BasicBlock *CurrUnwindBB = II->getUnwindDest();
2763     assert(CurrUnwindBB && "There is always an 'unwind to' basic block.");
2764     if (!UnwindBB)
2765       UnwindBB = CurrUnwindBB;
2766     else
2767       assert(UnwindBB == CurrUnwindBB && "Unexpected unwind destination.");
2768   }
2769 #endif
2770 
2771   // In the unwind destination, the incoming values for these two `invoke`s
2772   // must be compatible.
2773   if (!incomingValuesAreCompatible(
2774           Invokes.front()->getUnwindDest(),
2775           {Invokes[0]->getParent(), Invokes[1]->getParent()}))
2776     return false;
2777 
2778   // Ignoring arguments, these `invoke`s must be identical,
2779   // including operand bundles.
2780   const InvokeInst *II0 = Invokes.front();
2781   for (auto *II : Invokes.drop_front())
2782     if (!II->isSameOperationAs(II0, Instruction::CompareUsingIntersectedAttrs))
2783       return false;
2784 
2785   // Can we theoretically form the data operands for the merged `invoke`?
2786   auto IsIllegalToMergeArguments = [](auto Ops) {
2787     Use &U0 = std::get<0>(Ops);
2788     Use &U1 = std::get<1>(Ops);
2789     if (U0 == U1)
2790       return false;
2791     return U0->getType()->isTokenTy() ||
2792            !canReplaceOperandWithVariable(cast<Instruction>(U0.getUser()),
2793                                           U0.getOperandNo());
2794   };
2795   assert(Invokes.size() == 2 && "Always called with exactly two candidates.");
2796   if (any_of(zip(Invokes[0]->data_ops(), Invokes[1]->data_ops()),
2797              IsIllegalToMergeArguments))
2798     return false;
2799 
2800   return true;
2801 }
2802 
2803 } // namespace
2804 
2805 // Merge all invokes in the provided set, all of which are compatible
2806 // as per the `CompatibleSets::shouldBelongToSameSet()`.
2807 static void mergeCompatibleInvokesImpl(ArrayRef<InvokeInst *> Invokes,
2808                                        DomTreeUpdater *DTU) {
2809   assert(Invokes.size() >= 2 && "Must have at least two invokes to merge.");
2810 
2811   SmallVector<DominatorTree::UpdateType, 8> Updates;
2812   if (DTU)
2813     Updates.reserve(2 + 3 * Invokes.size());
2814 
2815   bool HasNormalDest =
2816       !isa<UnreachableInst>(Invokes[0]->getNormalDest()->getFirstNonPHIOrDbg());
2817 
2818   // Clone one of the invokes into a new basic block.
2819   // Since they are all compatible, it doesn't matter which invoke is cloned.
2820   InvokeInst *MergedInvoke = [&Invokes, HasNormalDest]() {
2821     InvokeInst *II0 = Invokes.front();
2822     BasicBlock *II0BB = II0->getParent();
2823     BasicBlock *InsertBeforeBlock =
2824         II0->getParent()->getIterator()->getNextNode();
2825     Function *Func = II0BB->getParent();
2826     LLVMContext &Ctx = II0->getContext();
2827 
2828     BasicBlock *MergedInvokeBB = BasicBlock::Create(
2829         Ctx, II0BB->getName() + ".invoke", Func, InsertBeforeBlock);
2830 
2831     auto *MergedInvoke = cast<InvokeInst>(II0->clone());
2832     // NOTE: all invokes have the same attributes, so no handling needed.
2833     MergedInvoke->insertInto(MergedInvokeBB, MergedInvokeBB->end());
2834 
2835     if (!HasNormalDest) {
2836       // This set does not have a normal destination,
2837       // so just form a new block with unreachable terminator.
2838       BasicBlock *MergedNormalDest = BasicBlock::Create(
2839           Ctx, II0BB->getName() + ".cont", Func, InsertBeforeBlock);
2840       new UnreachableInst(Ctx, MergedNormalDest);
2841       MergedInvoke->setNormalDest(MergedNormalDest);
2842     }
2843 
2844     // The unwind destination, however, remainds identical for all invokes here.
2845 
2846     return MergedInvoke;
2847   }();
2848 
2849   if (DTU) {
2850     // Predecessor blocks that contained these invokes will now branch to
2851     // the new block that contains the merged invoke, ...
2852     for (InvokeInst *II : Invokes)
2853       Updates.push_back(
2854           {DominatorTree::Insert, II->getParent(), MergedInvoke->getParent()});
2855 
2856     // ... which has the new `unreachable` block as normal destination,
2857     // or unwinds to the (same for all `invoke`s in this set) `landingpad`,
2858     for (BasicBlock *SuccBBOfMergedInvoke : successors(MergedInvoke))
2859       Updates.push_back({DominatorTree::Insert, MergedInvoke->getParent(),
2860                          SuccBBOfMergedInvoke});
2861 
2862     // Since predecessor blocks now unconditionally branch to a new block,
2863     // they no longer branch to their original successors.
2864     for (InvokeInst *II : Invokes)
2865       for (BasicBlock *SuccOfPredBB : successors(II->getParent()))
2866         Updates.push_back(
2867             {DominatorTree::Delete, II->getParent(), SuccOfPredBB});
2868   }
2869 
2870   bool IsIndirectCall = Invokes[0]->isIndirectCall();
2871 
2872   // Form the merged operands for the merged invoke.
2873   for (Use &U : MergedInvoke->operands()) {
2874     // Only PHI together the indirect callees and data operands.
2875     if (MergedInvoke->isCallee(&U)) {
2876       if (!IsIndirectCall)
2877         continue;
2878     } else if (!MergedInvoke->isDataOperand(&U))
2879       continue;
2880 
2881     // Don't create trivial PHI's with all-identical incoming values.
2882     bool NeedPHI = any_of(Invokes, [&U](InvokeInst *II) {
2883       return II->getOperand(U.getOperandNo()) != U.get();
2884     });
2885     if (!NeedPHI)
2886       continue;
2887 
2888     // Form a PHI out of all the data ops under this index.
2889     PHINode *PN = PHINode::Create(
2890         U->getType(), /*NumReservedValues=*/Invokes.size(), "", MergedInvoke->getIterator());
2891     for (InvokeInst *II : Invokes)
2892       PN->addIncoming(II->getOperand(U.getOperandNo()), II->getParent());
2893 
2894     U.set(PN);
2895   }
2896 
2897   // We've ensured that each PHI node has compatible (identical) incoming values
2898   // when coming from each of the `invoke`s in the current merge set,
2899   // so update the PHI nodes accordingly.
2900   for (BasicBlock *Succ : successors(MergedInvoke))
2901     addPredecessorToBlock(Succ, /*NewPred=*/MergedInvoke->getParent(),
2902                           /*ExistPred=*/Invokes.front()->getParent());
2903 
2904   // And finally, replace the original `invoke`s with an unconditional branch
2905   // to the block with the merged `invoke`. Also, give that merged `invoke`
2906   // the merged debugloc of all the original `invoke`s.
2907   DILocation *MergedDebugLoc = nullptr;
2908   for (InvokeInst *II : Invokes) {
2909     // Compute the debug location common to all the original `invoke`s.
2910     if (!MergedDebugLoc)
2911       MergedDebugLoc = II->getDebugLoc();
2912     else
2913       MergedDebugLoc =
2914           DILocation::getMergedLocation(MergedDebugLoc, II->getDebugLoc());
2915 
2916     // And replace the old `invoke` with an unconditionally branch
2917     // to the block with the merged `invoke`.
2918     for (BasicBlock *OrigSuccBB : successors(II->getParent()))
2919       OrigSuccBB->removePredecessor(II->getParent());
2920     BranchInst::Create(MergedInvoke->getParent(), II->getParent());
2921     bool Success = MergedInvoke->tryIntersectAttributes(II);
2922     assert(Success && "Merged invokes with incompatible attributes");
2923     // For NDEBUG Compile
2924     (void)Success;
2925     II->replaceAllUsesWith(MergedInvoke);
2926     II->eraseFromParent();
2927     ++NumInvokesMerged;
2928   }
2929   MergedInvoke->setDebugLoc(MergedDebugLoc);
2930   ++NumInvokeSetsFormed;
2931 
2932   if (DTU)
2933     DTU->applyUpdates(Updates);
2934 }
2935 
2936 /// If this block is a `landingpad` exception handling block, categorize all
2937 /// the predecessor `invoke`s into sets, with all `invoke`s in each set
2938 /// being "mergeable" together, and then merge invokes in each set together.
2939 ///
2940 /// This is a weird mix of hoisting and sinking. Visually, it goes from:
2941 ///          [...]        [...]
2942 ///            |            |
2943 ///        [invoke0]    [invoke1]
2944 ///           / \          / \
2945 ///     [cont0] [landingpad] [cont1]
2946 /// to:
2947 ///      [...] [...]
2948 ///          \ /
2949 ///       [invoke]
2950 ///          / \
2951 ///     [cont] [landingpad]
2952 ///
2953 /// But of course we can only do that if the invokes share the `landingpad`,
2954 /// edges invoke0->cont0 and invoke1->cont1 are "compatible",
2955 /// and the invoked functions are "compatible".
2956 static bool mergeCompatibleInvokes(BasicBlock *BB, DomTreeUpdater *DTU) {
2957   if (!EnableMergeCompatibleInvokes)
2958     return false;
2959 
2960   bool Changed = false;
2961 
2962   // FIXME: generalize to all exception handling blocks?
2963   if (!BB->isLandingPad())
2964     return Changed;
2965 
2966   CompatibleSets Grouper;
2967 
2968   // Record all the predecessors of this `landingpad`. As per verifier,
2969   // the only allowed predecessor is the unwind edge of an `invoke`.
2970   // We want to group "compatible" `invokes` into the same set to be merged.
2971   for (BasicBlock *PredBB : predecessors(BB))
2972     Grouper.insert(cast<InvokeInst>(PredBB->getTerminator()));
2973 
2974   // And now, merge `invoke`s that were grouped togeter.
2975   for (ArrayRef<InvokeInst *> Invokes : Grouper.Sets) {
2976     if (Invokes.size() < 2)
2977       continue;
2978     Changed = true;
2979     mergeCompatibleInvokesImpl(Invokes, DTU);
2980   }
2981 
2982   return Changed;
2983 }
2984 
2985 namespace {
2986 /// Track ephemeral values, which should be ignored for cost-modelling
2987 /// purposes. Requires walking instructions in reverse order.
2988 class EphemeralValueTracker {
2989   SmallPtrSet<const Instruction *, 32> EphValues;
2990 
2991   bool isEphemeral(const Instruction *I) {
2992     if (isa<AssumeInst>(I))
2993       return true;
2994     return !I->mayHaveSideEffects() && !I->isTerminator() &&
2995            all_of(I->users(), [&](const User *U) {
2996              return EphValues.count(cast<Instruction>(U));
2997            });
2998   }
2999 
3000 public:
3001   bool track(const Instruction *I) {
3002     if (isEphemeral(I)) {
3003       EphValues.insert(I);
3004       return true;
3005     }
3006     return false;
3007   }
3008 
3009   bool contains(const Instruction *I) const { return EphValues.contains(I); }
3010 };
3011 } // namespace
3012 
3013 /// Determine if we can hoist sink a sole store instruction out of a
3014 /// conditional block.
3015 ///
3016 /// We are looking for code like the following:
3017 ///   BrBB:
3018 ///     store i32 %add, i32* %arrayidx2
3019 ///     ... // No other stores or function calls (we could be calling a memory
3020 ///     ... // function).
3021 ///     %cmp = icmp ult %x, %y
3022 ///     br i1 %cmp, label %EndBB, label %ThenBB
3023 ///   ThenBB:
3024 ///     store i32 %add5, i32* %arrayidx2
3025 ///     br label EndBB
3026 ///   EndBB:
3027 ///     ...
3028 ///   We are going to transform this into:
3029 ///   BrBB:
3030 ///     store i32 %add, i32* %arrayidx2
3031 ///     ... //
3032 ///     %cmp = icmp ult %x, %y
3033 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
3034 ///     store i32 %add.add5, i32* %arrayidx2
3035 ///     ...
3036 ///
3037 /// \return The pointer to the value of the previous store if the store can be
3038 ///         hoisted into the predecessor block. 0 otherwise.
3039 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
3040                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
3041   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
3042   if (!StoreToHoist)
3043     return nullptr;
3044 
3045   // Volatile or atomic.
3046   if (!StoreToHoist->isSimple())
3047     return nullptr;
3048 
3049   Value *StorePtr = StoreToHoist->getPointerOperand();
3050   Type *StoreTy = StoreToHoist->getValueOperand()->getType();
3051 
3052   // Look for a store to the same pointer in BrBB.
3053   unsigned MaxNumInstToLookAt = 9;
3054   // Skip pseudo probe intrinsic calls which are not really killing any memory
3055   // accesses.
3056   for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
3057     if (!MaxNumInstToLookAt)
3058       break;
3059     --MaxNumInstToLookAt;
3060 
3061     // Could be calling an instruction that affects memory like free().
3062     if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
3063       return nullptr;
3064 
3065     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
3066       // Found the previous store to same location and type. Make sure it is
3067       // simple, to avoid introducing a spurious non-atomic write after an
3068       // atomic write.
3069       if (SI->getPointerOperand() == StorePtr &&
3070           SI->getValueOperand()->getType() == StoreTy && SI->isSimple() &&
3071           SI->getAlign() >= StoreToHoist->getAlign())
3072         // Found the previous store, return its value operand.
3073         return SI->getValueOperand();
3074       return nullptr; // Unknown store.
3075     }
3076 
3077     if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
3078       if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
3079           LI->isSimple() && LI->getAlign() >= StoreToHoist->getAlign()) {
3080         Value *Obj = getUnderlyingObject(StorePtr);
3081         bool ExplicitlyDereferenceableOnly;
3082         if (isWritableObject(Obj, ExplicitlyDereferenceableOnly) &&
3083             !PointerMayBeCaptured(Obj, /*ReturnCaptures=*/false,
3084                                   /*StoreCaptures=*/true) &&
3085             (!ExplicitlyDereferenceableOnly ||
3086              isDereferenceablePointer(StorePtr, StoreTy,
3087                                       LI->getDataLayout()))) {
3088           // Found a previous load, return it.
3089           return LI;
3090         }
3091       }
3092       // The load didn't work out, but we may still find a store.
3093     }
3094   }
3095 
3096   return nullptr;
3097 }
3098 
3099 /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
3100 /// converted to selects.
3101 static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
3102                                            BasicBlock *EndBB,
3103                                            unsigned &SpeculatedInstructions,
3104                                            InstructionCost &Cost,
3105                                            const TargetTransformInfo &TTI) {
3106   TargetTransformInfo::TargetCostKind CostKind =
3107     BB->getParent()->hasMinSize()
3108     ? TargetTransformInfo::TCK_CodeSize
3109     : TargetTransformInfo::TCK_SizeAndLatency;
3110 
3111   bool HaveRewritablePHIs = false;
3112   for (PHINode &PN : EndBB->phis()) {
3113     Value *OrigV = PN.getIncomingValueForBlock(BB);
3114     Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
3115 
3116     // FIXME: Try to remove some of the duplication with
3117     // hoistCommonCodeFromSuccessors. Skip PHIs which are trivial.
3118     if (ThenV == OrigV)
3119       continue;
3120 
3121     Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
3122                                    CmpInst::BAD_ICMP_PREDICATE, CostKind);
3123 
3124     // Don't convert to selects if we could remove undefined behavior instead.
3125     if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
3126         passingValueIsAlwaysUndefined(ThenV, &PN))
3127       return false;
3128 
3129     HaveRewritablePHIs = true;
3130     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
3131     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
3132     if (!OrigCE && !ThenCE)
3133       continue; // Known cheap (FIXME: Maybe not true for aggregates).
3134 
3135     InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
3136     InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
3137     InstructionCost MaxCost =
3138         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3139     if (OrigCost + ThenCost > MaxCost)
3140       return false;
3141 
3142     // Account for the cost of an unfolded ConstantExpr which could end up
3143     // getting expanded into Instructions.
3144     // FIXME: This doesn't account for how many operations are combined in the
3145     // constant expression.
3146     ++SpeculatedInstructions;
3147     if (SpeculatedInstructions > 1)
3148       return false;
3149   }
3150 
3151   return HaveRewritablePHIs;
3152 }
3153 
3154 static bool isProfitableToSpeculate(const BranchInst *BI, bool Invert,
3155                                     const TargetTransformInfo &TTI) {
3156   // If the branch is non-unpredictable, and is predicted to *not* branch to
3157   // the `then` block, then avoid speculating it.
3158   if (BI->getMetadata(LLVMContext::MD_unpredictable))
3159     return true;
3160 
3161   uint64_t TWeight, FWeight;
3162   if (!extractBranchWeights(*BI, TWeight, FWeight) || (TWeight + FWeight) == 0)
3163     return true;
3164 
3165   uint64_t EndWeight = Invert ? TWeight : FWeight;
3166   BranchProbability BIEndProb =
3167       BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
3168   BranchProbability Likely = TTI.getPredictableBranchThreshold();
3169   return BIEndProb < Likely;
3170 }
3171 
3172 /// Speculate a conditional basic block flattening the CFG.
3173 ///
3174 /// Note that this is a very risky transform currently. Speculating
3175 /// instructions like this is most often not desirable. Instead, there is an MI
3176 /// pass which can do it with full awareness of the resource constraints.
3177 /// However, some cases are "obvious" and we should do directly. An example of
3178 /// this is speculating a single, reasonably cheap instruction.
3179 ///
3180 /// There is only one distinct advantage to flattening the CFG at the IR level:
3181 /// it makes very common but simplistic optimizations such as are common in
3182 /// instcombine and the DAG combiner more powerful by removing CFG edges and
3183 /// modeling their effects with easier to reason about SSA value graphs.
3184 ///
3185 ///
3186 /// An illustration of this transform is turning this IR:
3187 /// \code
3188 ///   BB:
3189 ///     %cmp = icmp ult %x, %y
3190 ///     br i1 %cmp, label %EndBB, label %ThenBB
3191 ///   ThenBB:
3192 ///     %sub = sub %x, %y
3193 ///     br label BB2
3194 ///   EndBB:
3195 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %BB ]
3196 ///     ...
3197 /// \endcode
3198 ///
3199 /// Into this IR:
3200 /// \code
3201 ///   BB:
3202 ///     %cmp = icmp ult %x, %y
3203 ///     %sub = sub %x, %y
3204 ///     %cond = select i1 %cmp, 0, %sub
3205 ///     ...
3206 /// \endcode
3207 ///
3208 /// \returns true if the conditional block is removed.
3209 bool SimplifyCFGOpt::speculativelyExecuteBB(BranchInst *BI,
3210                                             BasicBlock *ThenBB) {
3211   if (!Options.SpeculateBlocks)
3212     return false;
3213 
3214   // Be conservative for now. FP select instruction can often be expensive.
3215   Value *BrCond = BI->getCondition();
3216   if (isa<FCmpInst>(BrCond))
3217     return false;
3218 
3219   BasicBlock *BB = BI->getParent();
3220   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
3221   InstructionCost Budget =
3222       PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3223 
3224   // If ThenBB is actually on the false edge of the conditional branch, remember
3225   // to swap the select operands later.
3226   bool Invert = false;
3227   if (ThenBB != BI->getSuccessor(0)) {
3228     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
3229     Invert = true;
3230   }
3231   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
3232 
3233   if (!isProfitableToSpeculate(BI, Invert, TTI))
3234     return false;
3235 
3236   // Keep a count of how many times instructions are used within ThenBB when
3237   // they are candidates for sinking into ThenBB. Specifically:
3238   // - They are defined in BB, and
3239   // - They have no side effects, and
3240   // - All of their uses are in ThenBB.
3241   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
3242 
3243   SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
3244 
3245   unsigned SpeculatedInstructions = 0;
3246   bool HoistLoadsStores = HoistLoadsStoresWithCondFaulting &&
3247                           Options.HoistLoadsStoresWithCondFaulting;
3248   SmallVector<Instruction *, 2> SpeculatedConditionalLoadsStores;
3249   Value *SpeculatedStoreValue = nullptr;
3250   StoreInst *SpeculatedStore = nullptr;
3251   EphemeralValueTracker EphTracker;
3252   for (Instruction &I : reverse(drop_end(*ThenBB))) {
3253     // Skip debug info.
3254     if (isa<DbgInfoIntrinsic>(I)) {
3255       SpeculatedDbgIntrinsics.push_back(&I);
3256       continue;
3257     }
3258 
3259     // Skip pseudo probes. The consequence is we lose track of the branch
3260     // probability for ThenBB, which is fine since the optimization here takes
3261     // place regardless of the branch probability.
3262     if (isa<PseudoProbeInst>(I)) {
3263       // The probe should be deleted so that it will not be over-counted when
3264       // the samples collected on the non-conditional path are counted towards
3265       // the conditional path. We leave it for the counts inference algorithm to
3266       // figure out a proper count for an unknown probe.
3267       SpeculatedDbgIntrinsics.push_back(&I);
3268       continue;
3269     }
3270 
3271     // Ignore ephemeral values, they will be dropped by the transform.
3272     if (EphTracker.track(&I))
3273       continue;
3274 
3275     // Only speculatively execute a single instruction (not counting the
3276     // terminator) for now.
3277     bool IsSafeCheapLoadStore = HoistLoadsStores &&
3278                                 isSafeCheapLoadStore(&I, TTI) &&
3279                                 SpeculatedConditionalLoadsStores.size() <
3280                                     HoistLoadsStoresWithCondFaultingThreshold;
3281     // Not count load/store into cost if target supports conditional faulting
3282     // b/c it's cheap to speculate it.
3283     if (IsSafeCheapLoadStore)
3284       SpeculatedConditionalLoadsStores.push_back(&I);
3285     else
3286       ++SpeculatedInstructions;
3287 
3288     if (SpeculatedInstructions > 1)
3289       return false;
3290 
3291     // Don't hoist the instruction if it's unsafe or expensive.
3292     if (!IsSafeCheapLoadStore &&
3293         !isSafeToSpeculativelyExecute(&I, BI, Options.AC) &&
3294         !(HoistCondStores && !SpeculatedStoreValue &&
3295           (SpeculatedStoreValue =
3296                isSafeToSpeculateStore(&I, BB, ThenBB, EndBB))))
3297       return false;
3298     if (!IsSafeCheapLoadStore && !SpeculatedStoreValue &&
3299         computeSpeculationCost(&I, TTI) >
3300             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
3301       return false;
3302 
3303     // Store the store speculation candidate.
3304     if (!SpeculatedStore && SpeculatedStoreValue)
3305       SpeculatedStore = cast<StoreInst>(&I);
3306 
3307     // Do not hoist the instruction if any of its operands are defined but not
3308     // used in BB. The transformation will prevent the operand from
3309     // being sunk into the use block.
3310     for (Use &Op : I.operands()) {
3311       Instruction *OpI = dyn_cast<Instruction>(Op);
3312       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
3313         continue; // Not a candidate for sinking.
3314 
3315       ++SinkCandidateUseCounts[OpI];
3316     }
3317   }
3318 
3319   // Consider any sink candidates which are only used in ThenBB as costs for
3320   // speculation. Note, while we iterate over a DenseMap here, we are summing
3321   // and so iteration order isn't significant.
3322   for (const auto &[Inst, Count] : SinkCandidateUseCounts)
3323     if (Inst->hasNUses(Count)) {
3324       ++SpeculatedInstructions;
3325       if (SpeculatedInstructions > 1)
3326         return false;
3327     }
3328 
3329   // Check that we can insert the selects and that it's not too expensive to do
3330   // so.
3331   bool Convert =
3332       SpeculatedStore != nullptr || !SpeculatedConditionalLoadsStores.empty();
3333   InstructionCost Cost = 0;
3334   Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
3335                                             SpeculatedInstructions, Cost, TTI);
3336   if (!Convert || Cost > Budget)
3337     return false;
3338 
3339   // If we get here, we can hoist the instruction and if-convert.
3340   LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
3341 
3342   // Insert a select of the value of the speculated store.
3343   if (SpeculatedStoreValue) {
3344     IRBuilder<NoFolder> Builder(BI);
3345     Value *OrigV = SpeculatedStore->getValueOperand();
3346     Value *TrueV = SpeculatedStore->getValueOperand();
3347     Value *FalseV = SpeculatedStoreValue;
3348     if (Invert)
3349       std::swap(TrueV, FalseV);
3350     Value *S = Builder.CreateSelect(
3351         BrCond, TrueV, FalseV, "spec.store.select", BI);
3352     SpeculatedStore->setOperand(0, S);
3353     SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
3354                                          SpeculatedStore->getDebugLoc());
3355     // The value stored is still conditional, but the store itself is now
3356     // unconditonally executed, so we must be sure that any linked dbg.assign
3357     // intrinsics are tracking the new stored value (the result of the
3358     // select). If we don't, and the store were to be removed by another pass
3359     // (e.g. DSE), then we'd eventually end up emitting a location describing
3360     // the conditional value, unconditionally.
3361     //
3362     // === Before this transformation ===
3363     // pred:
3364     //   store %one, %x.dest, !DIAssignID !1
3365     //   dbg.assign %one, "x", ..., !1, ...
3366     //   br %cond if.then
3367     //
3368     // if.then:
3369     //   store %two, %x.dest, !DIAssignID !2
3370     //   dbg.assign %two, "x", ..., !2, ...
3371     //
3372     // === After this transformation ===
3373     // pred:
3374     //   store %one, %x.dest, !DIAssignID !1
3375     //   dbg.assign %one, "x", ..., !1
3376     ///  ...
3377     //   %merge = select %cond, %two, %one
3378     //   store %merge, %x.dest, !DIAssignID !2
3379     //   dbg.assign %merge, "x", ..., !2
3380     auto replaceVariable = [OrigV, S](auto *DbgAssign) {
3381       if (llvm::is_contained(DbgAssign->location_ops(), OrigV))
3382         DbgAssign->replaceVariableLocationOp(OrigV, S);
3383     };
3384     for_each(at::getAssignmentMarkers(SpeculatedStore), replaceVariable);
3385     for_each(at::getDVRAssignmentMarkers(SpeculatedStore), replaceVariable);
3386   }
3387 
3388   // Metadata can be dependent on the condition we are hoisting above.
3389   // Strip all UB-implying metadata on the instruction. Drop the debug loc
3390   // to avoid making it appear as if the condition is a constant, which would
3391   // be misleading while debugging.
3392   // Similarly strip attributes that maybe dependent on condition we are
3393   // hoisting above.
3394   for (auto &I : make_early_inc_range(*ThenBB)) {
3395     if (!SpeculatedStoreValue || &I != SpeculatedStore) {
3396       // Don't update the DILocation of dbg.assign intrinsics.
3397       if (!isa<DbgAssignIntrinsic>(&I))
3398         I.setDebugLoc(DebugLoc());
3399     }
3400     I.dropUBImplyingAttrsAndMetadata();
3401 
3402     // Drop ephemeral values.
3403     if (EphTracker.contains(&I)) {
3404       I.replaceAllUsesWith(PoisonValue::get(I.getType()));
3405       I.eraseFromParent();
3406     }
3407   }
3408 
3409   // Hoist the instructions.
3410   // In "RemoveDIs" non-instr debug-info mode, drop DbgVariableRecords attached
3411   // to these instructions, in the same way that dbg.value intrinsics are
3412   // dropped at the end of this block.
3413   for (auto &It : make_range(ThenBB->begin(), ThenBB->end()))
3414     for (DbgRecord &DR : make_early_inc_range(It.getDbgRecordRange()))
3415       // Drop all records except assign-kind DbgVariableRecords (dbg.assign
3416       // equivalent).
3417       if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(&DR);
3418           !DVR || !DVR->isDbgAssign())
3419         It.dropOneDbgRecord(&DR);
3420   BB->splice(BI->getIterator(), ThenBB, ThenBB->begin(),
3421              std::prev(ThenBB->end()));
3422 
3423   if (!SpeculatedConditionalLoadsStores.empty())
3424     hoistConditionalLoadsStores(BI, SpeculatedConditionalLoadsStores, Invert);
3425 
3426   // Insert selects and rewrite the PHI operands.
3427   IRBuilder<NoFolder> Builder(BI);
3428   for (PHINode &PN : EndBB->phis()) {
3429     unsigned OrigI = PN.getBasicBlockIndex(BB);
3430     unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
3431     Value *OrigV = PN.getIncomingValue(OrigI);
3432     Value *ThenV = PN.getIncomingValue(ThenI);
3433 
3434     // Skip PHIs which are trivial.
3435     if (OrigV == ThenV)
3436       continue;
3437 
3438     // Create a select whose true value is the speculatively executed value and
3439     // false value is the pre-existing value. Swap them if the branch
3440     // destinations were inverted.
3441     Value *TrueV = ThenV, *FalseV = OrigV;
3442     if (Invert)
3443       std::swap(TrueV, FalseV);
3444     Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
3445     PN.setIncomingValue(OrigI, V);
3446     PN.setIncomingValue(ThenI, V);
3447   }
3448 
3449   // Remove speculated dbg intrinsics.
3450   // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
3451   // dbg value for the different flows and inserting it after the select.
3452   for (Instruction *I : SpeculatedDbgIntrinsics) {
3453     // We still want to know that an assignment took place so don't remove
3454     // dbg.assign intrinsics.
3455     if (!isa<DbgAssignIntrinsic>(I))
3456       I->eraseFromParent();
3457   }
3458 
3459   ++NumSpeculations;
3460   return true;
3461 }
3462 
3463 /// Return true if we can thread a branch across this block.
3464 static bool blockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
3465   int Size = 0;
3466   EphemeralValueTracker EphTracker;
3467 
3468   // Walk the loop in reverse so that we can identify ephemeral values properly
3469   // (values only feeding assumes).
3470   for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
3471     // Can't fold blocks that contain noduplicate or convergent calls.
3472     if (CallInst *CI = dyn_cast<CallInst>(&I))
3473       if (CI->cannotDuplicate() || CI->isConvergent())
3474         return false;
3475 
3476     // Ignore ephemeral values which are deleted during codegen.
3477     // We will delete Phis while threading, so Phis should not be accounted in
3478     // block's size.
3479     if (!EphTracker.track(&I) && !isa<PHINode>(I)) {
3480       if (Size++ > MaxSmallBlockSize)
3481         return false; // Don't clone large BB's.
3482     }
3483 
3484     // We can only support instructions that do not define values that are
3485     // live outside of the current basic block.
3486     for (User *U : I.users()) {
3487       Instruction *UI = cast<Instruction>(U);
3488       if (UI->getParent() != BB || isa<PHINode>(UI))
3489         return false;
3490     }
3491 
3492     // Looks ok, continue checking.
3493   }
3494 
3495   return true;
3496 }
3497 
3498 static ConstantInt *getKnownValueOnEdge(Value *V, BasicBlock *From,
3499                                         BasicBlock *To) {
3500   // Don't look past the block defining the value, we might get the value from
3501   // a previous loop iteration.
3502   auto *I = dyn_cast<Instruction>(V);
3503   if (I && I->getParent() == To)
3504     return nullptr;
3505 
3506   // We know the value if the From block branches on it.
3507   auto *BI = dyn_cast<BranchInst>(From->getTerminator());
3508   if (BI && BI->isConditional() && BI->getCondition() == V &&
3509       BI->getSuccessor(0) != BI->getSuccessor(1))
3510     return BI->getSuccessor(0) == To ? ConstantInt::getTrue(BI->getContext())
3511                                      : ConstantInt::getFalse(BI->getContext());
3512 
3513   return nullptr;
3514 }
3515 
3516 /// If we have a conditional branch on something for which we know the constant
3517 /// value in predecessors (e.g. a phi node in the current block), thread edges
3518 /// from the predecessor to their ultimate destination.
3519 static std::optional<bool>
3520 foldCondBranchOnValueKnownInPredecessorImpl(BranchInst *BI, DomTreeUpdater *DTU,
3521                                             const DataLayout &DL,
3522                                             AssumptionCache *AC) {
3523   SmallMapVector<ConstantInt *, SmallSetVector<BasicBlock *, 2>, 2> KnownValues;
3524   BasicBlock *BB = BI->getParent();
3525   Value *Cond = BI->getCondition();
3526   PHINode *PN = dyn_cast<PHINode>(Cond);
3527   if (PN && PN->getParent() == BB) {
3528     // Degenerate case of a single entry PHI.
3529     if (PN->getNumIncomingValues() == 1) {
3530       FoldSingleEntryPHINodes(PN->getParent());
3531       return true;
3532     }
3533 
3534     for (Use &U : PN->incoming_values())
3535       if (auto *CB = dyn_cast<ConstantInt>(U))
3536         KnownValues[CB].insert(PN->getIncomingBlock(U));
3537   } else {
3538     for (BasicBlock *Pred : predecessors(BB)) {
3539       if (ConstantInt *CB = getKnownValueOnEdge(Cond, Pred, BB))
3540         KnownValues[CB].insert(Pred);
3541     }
3542   }
3543 
3544   if (KnownValues.empty())
3545     return false;
3546 
3547   // Now we know that this block has multiple preds and two succs.
3548   // Check that the block is small enough and values defined in the block are
3549   // not used outside of it.
3550   if (!blockIsSimpleEnoughToThreadThrough(BB))
3551     return false;
3552 
3553   for (const auto &Pair : KnownValues) {
3554     // Okay, we now know that all edges from PredBB should be revectored to
3555     // branch to RealDest.
3556     ConstantInt *CB = Pair.first;
3557     ArrayRef<BasicBlock *> PredBBs = Pair.second.getArrayRef();
3558     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
3559 
3560     if (RealDest == BB)
3561       continue; // Skip self loops.
3562 
3563     // Skip if the predecessor's terminator is an indirect branch.
3564     if (any_of(PredBBs, [](BasicBlock *PredBB) {
3565           return isa<IndirectBrInst>(PredBB->getTerminator());
3566         }))
3567       continue;
3568 
3569     LLVM_DEBUG({
3570       dbgs() << "Condition " << *Cond << " in " << BB->getName()
3571              << " has value " << *Pair.first << " in predecessors:\n";
3572       for (const BasicBlock *PredBB : Pair.second)
3573         dbgs() << "  " << PredBB->getName() << "\n";
3574       dbgs() << "Threading to destination " << RealDest->getName() << ".\n";
3575     });
3576 
3577     // Split the predecessors we are threading into a new edge block. We'll
3578     // clone the instructions into this block, and then redirect it to RealDest.
3579     BasicBlock *EdgeBB = SplitBlockPredecessors(BB, PredBBs, ".critedge", DTU);
3580 
3581     // TODO: These just exist to reduce test diff, we can drop them if we like.
3582     EdgeBB->setName(RealDest->getName() + ".critedge");
3583     EdgeBB->moveBefore(RealDest);
3584 
3585     // Update PHI nodes.
3586     addPredecessorToBlock(RealDest, EdgeBB, BB);
3587 
3588     // BB may have instructions that are being threaded over.  Clone these
3589     // instructions into EdgeBB.  We know that there will be no uses of the
3590     // cloned instructions outside of EdgeBB.
3591     BasicBlock::iterator InsertPt = EdgeBB->getFirstInsertionPt();
3592     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
3593     TranslateMap[Cond] = CB;
3594 
3595     // RemoveDIs: track instructions that we optimise away while folding, so
3596     // that we can copy DbgVariableRecords from them later.
3597     BasicBlock::iterator SrcDbgCursor = BB->begin();
3598     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
3599       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
3600         TranslateMap[PN] = PN->getIncomingValueForBlock(EdgeBB);
3601         continue;
3602       }
3603       // Clone the instruction.
3604       Instruction *N = BBI->clone();
3605       // Insert the new instruction into its new home.
3606       N->insertInto(EdgeBB, InsertPt);
3607 
3608       if (BBI->hasName())
3609         N->setName(BBI->getName() + ".c");
3610 
3611       // Update operands due to translation.
3612       for (Use &Op : N->operands()) {
3613         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
3614         if (PI != TranslateMap.end())
3615           Op = PI->second;
3616       }
3617 
3618       // Check for trivial simplification.
3619       if (Value *V = simplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
3620         if (!BBI->use_empty())
3621           TranslateMap[&*BBI] = V;
3622         if (!N->mayHaveSideEffects()) {
3623           N->eraseFromParent(); // Instruction folded away, don't need actual
3624                                 // inst
3625           N = nullptr;
3626         }
3627       } else {
3628         if (!BBI->use_empty())
3629           TranslateMap[&*BBI] = N;
3630       }
3631       if (N) {
3632         // Copy all debug-info attached to instructions from the last we
3633         // successfully clone, up to this instruction (they might have been
3634         // folded away).
3635         for (; SrcDbgCursor != BBI; ++SrcDbgCursor)
3636           N->cloneDebugInfoFrom(&*SrcDbgCursor);
3637         SrcDbgCursor = std::next(BBI);
3638         // Clone debug-info on this instruction too.
3639         N->cloneDebugInfoFrom(&*BBI);
3640 
3641         // Register the new instruction with the assumption cache if necessary.
3642         if (auto *Assume = dyn_cast<AssumeInst>(N))
3643           if (AC)
3644             AC->registerAssumption(Assume);
3645       }
3646     }
3647 
3648     for (; &*SrcDbgCursor != BI; ++SrcDbgCursor)
3649       InsertPt->cloneDebugInfoFrom(&*SrcDbgCursor);
3650     InsertPt->cloneDebugInfoFrom(BI);
3651 
3652     BB->removePredecessor(EdgeBB);
3653     BranchInst *EdgeBI = cast<BranchInst>(EdgeBB->getTerminator());
3654     EdgeBI->setSuccessor(0, RealDest);
3655     EdgeBI->setDebugLoc(BI->getDebugLoc());
3656 
3657     if (DTU) {
3658       SmallVector<DominatorTree::UpdateType, 2> Updates;
3659       Updates.push_back({DominatorTree::Delete, EdgeBB, BB});
3660       Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
3661       DTU->applyUpdates(Updates);
3662     }
3663 
3664     // For simplicity, we created a separate basic block for the edge. Merge
3665     // it back into the predecessor if possible. This not only avoids
3666     // unnecessary SimplifyCFG iterations, but also makes sure that we don't
3667     // bypass the check for trivial cycles above.
3668     MergeBlockIntoPredecessor(EdgeBB, DTU);
3669 
3670     // Signal repeat, simplifying any other constants.
3671     return std::nullopt;
3672   }
3673 
3674   return false;
3675 }
3676 
3677 static bool foldCondBranchOnValueKnownInPredecessor(BranchInst *BI,
3678                                                     DomTreeUpdater *DTU,
3679                                                     const DataLayout &DL,
3680                                                     AssumptionCache *AC) {
3681   std::optional<bool> Result;
3682   bool EverChanged = false;
3683   do {
3684     // Note that None means "we changed things, but recurse further."
3685     Result = foldCondBranchOnValueKnownInPredecessorImpl(BI, DTU, DL, AC);
3686     EverChanged |= Result == std::nullopt || *Result;
3687   } while (Result == std::nullopt);
3688   return EverChanged;
3689 }
3690 
3691 /// Given a BB that starts with the specified two-entry PHI node,
3692 /// see if we can eliminate it.
3693 static bool foldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
3694                                 DomTreeUpdater *DTU, AssumptionCache *AC,
3695                                 const DataLayout &DL,
3696                                 bool SpeculateUnpredictables) {
3697   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
3698   // statement", which has a very simple dominance structure.  Basically, we
3699   // are trying to find the condition that is being branched on, which
3700   // subsequently causes this merge to happen.  We really want control
3701   // dependence information for this check, but simplifycfg can't keep it up
3702   // to date, and this catches most of the cases we care about anyway.
3703   BasicBlock *BB = PN->getParent();
3704 
3705   BasicBlock *IfTrue, *IfFalse;
3706   BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
3707   if (!DomBI)
3708     return false;
3709   Value *IfCond = DomBI->getCondition();
3710   // Don't bother if the branch will be constant folded trivially.
3711   if (isa<ConstantInt>(IfCond))
3712     return false;
3713 
3714   BasicBlock *DomBlock = DomBI->getParent();
3715   SmallVector<BasicBlock *, 2> IfBlocks;
3716   llvm::copy_if(
3717       PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
3718         return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
3719       });
3720   assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
3721          "Will have either one or two blocks to speculate.");
3722 
3723   // If the branch is non-unpredictable, see if we either predictably jump to
3724   // the merge bb (if we have only a single 'then' block), or if we predictably
3725   // jump to one specific 'then' block (if we have two of them).
3726   // It isn't beneficial to speculatively execute the code
3727   // from the block that we know is predictably not entered.
3728   bool IsUnpredictable = DomBI->getMetadata(LLVMContext::MD_unpredictable);
3729   if (!IsUnpredictable) {
3730     uint64_t TWeight, FWeight;
3731     if (extractBranchWeights(*DomBI, TWeight, FWeight) &&
3732         (TWeight + FWeight) != 0) {
3733       BranchProbability BITrueProb =
3734           BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
3735       BranchProbability Likely = TTI.getPredictableBranchThreshold();
3736       BranchProbability BIFalseProb = BITrueProb.getCompl();
3737       if (IfBlocks.size() == 1) {
3738         BranchProbability BIBBProb =
3739             DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
3740         if (BIBBProb >= Likely)
3741           return false;
3742       } else {
3743         if (BITrueProb >= Likely || BIFalseProb >= Likely)
3744           return false;
3745       }
3746     }
3747   }
3748 
3749   // Don't try to fold an unreachable block. For example, the phi node itself
3750   // can't be the candidate if-condition for a select that we want to form.
3751   if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
3752     if (IfCondPhiInst->getParent() == BB)
3753       return false;
3754 
3755   // Okay, we found that we can merge this two-entry phi node into a select.
3756   // Doing so would require us to fold *all* two entry phi nodes in this block.
3757   // At some point this becomes non-profitable (particularly if the target
3758   // doesn't support cmov's).  Only do this transformation if there are two or
3759   // fewer PHI nodes in this block.
3760   unsigned NumPhis = 0;
3761   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
3762     if (NumPhis > 2)
3763       return false;
3764 
3765   // Loop over the PHI's seeing if we can promote them all to select
3766   // instructions.  While we are at it, keep track of the instructions
3767   // that need to be moved to the dominating block.
3768   SmallPtrSet<Instruction *, 4> AggressiveInsts;
3769   InstructionCost Cost = 0;
3770   InstructionCost Budget =
3771       TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3772   if (SpeculateUnpredictables && IsUnpredictable)
3773     Budget += TTI.getBranchMispredictPenalty();
3774 
3775   bool Changed = false;
3776   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
3777     PHINode *PN = cast<PHINode>(II++);
3778     if (Value *V = simplifyInstruction(PN, {DL, PN})) {
3779       PN->replaceAllUsesWith(V);
3780       PN->eraseFromParent();
3781       Changed = true;
3782       continue;
3783     }
3784 
3785     if (!dominatesMergePoint(PN->getIncomingValue(0), BB, DomBI,
3786                              AggressiveInsts, Cost, Budget, TTI, AC) ||
3787         !dominatesMergePoint(PN->getIncomingValue(1), BB, DomBI,
3788                              AggressiveInsts, Cost, Budget, TTI, AC))
3789       return Changed;
3790   }
3791 
3792   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
3793   // we ran out of PHIs then we simplified them all.
3794   PN = dyn_cast<PHINode>(BB->begin());
3795   if (!PN)
3796     return true;
3797 
3798   // Return true if at least one of these is a 'not', and another is either
3799   // a 'not' too, or a constant.
3800   auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
3801     if (!match(V0, m_Not(m_Value())))
3802       std::swap(V0, V1);
3803     auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
3804     return match(V0, m_Not(m_Value())) && match(V1, Invertible);
3805   };
3806 
3807   // Don't fold i1 branches on PHIs which contain binary operators or
3808   // (possibly inverted) select form of or/ands,  unless one of
3809   // the incoming values is an 'not' and another one is freely invertible.
3810   // These can often be turned into switches and other things.
3811   auto IsBinOpOrAnd = [](Value *V) {
3812     return match(
3813         V, m_CombineOr(
3814                m_BinOp(),
3815                m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
3816                            m_Select(m_Value(), m_Value(), m_ImmConstant()))));
3817   };
3818   if (PN->getType()->isIntegerTy(1) &&
3819       (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
3820        IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
3821       !CanHoistNotFromBothValues(PN->getIncomingValue(0),
3822                                  PN->getIncomingValue(1)))
3823     return Changed;
3824 
3825   // If all PHI nodes are promotable, check to make sure that all instructions
3826   // in the predecessor blocks can be promoted as well. If not, we won't be able
3827   // to get rid of the control flow, so it's not worth promoting to select
3828   // instructions.
3829   for (BasicBlock *IfBlock : IfBlocks)
3830     for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
3831       if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
3832         // This is not an aggressive instruction that we can promote.
3833         // Because of this, we won't be able to get rid of the control flow, so
3834         // the xform is not worth it.
3835         return Changed;
3836       }
3837 
3838   // If either of the blocks has it's address taken, we can't do this fold.
3839   if (any_of(IfBlocks,
3840              [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
3841     return Changed;
3842 
3843   LLVM_DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond;
3844              if (IsUnpredictable) dbgs() << " (unpredictable)";
3845              dbgs() << "  T: " << IfTrue->getName()
3846                     << "  F: " << IfFalse->getName() << "\n");
3847 
3848   // If we can still promote the PHI nodes after this gauntlet of tests,
3849   // do all of the PHI's now.
3850 
3851   // Move all 'aggressive' instructions, which are defined in the
3852   // conditional parts of the if's up to the dominating block.
3853   for (BasicBlock *IfBlock : IfBlocks)
3854       hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
3855 
3856   IRBuilder<NoFolder> Builder(DomBI);
3857   // Propagate fast-math-flags from phi nodes to replacement selects.
3858   IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
3859   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
3860     if (isa<FPMathOperator>(PN))
3861       Builder.setFastMathFlags(PN->getFastMathFlags());
3862 
3863     // Change the PHI node into a select instruction.
3864     Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
3865     Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
3866 
3867     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
3868     PN->replaceAllUsesWith(Sel);
3869     Sel->takeName(PN);
3870     PN->eraseFromParent();
3871   }
3872 
3873   // At this point, all IfBlocks are empty, so our if statement
3874   // has been flattened.  Change DomBlock to jump directly to our new block to
3875   // avoid other simplifycfg's kicking in on the diamond.
3876   Builder.CreateBr(BB);
3877 
3878   SmallVector<DominatorTree::UpdateType, 3> Updates;
3879   if (DTU) {
3880     Updates.push_back({DominatorTree::Insert, DomBlock, BB});
3881     for (auto *Successor : successors(DomBlock))
3882       Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
3883   }
3884 
3885   DomBI->eraseFromParent();
3886   if (DTU)
3887     DTU->applyUpdates(Updates);
3888 
3889   return true;
3890 }
3891 
3892 static Value *createLogicalOp(IRBuilderBase &Builder,
3893                               Instruction::BinaryOps Opc, Value *LHS,
3894                               Value *RHS, const Twine &Name = "") {
3895   // Try to relax logical op to binary op.
3896   if (impliesPoison(RHS, LHS))
3897     return Builder.CreateBinOp(Opc, LHS, RHS, Name);
3898   if (Opc == Instruction::And)
3899     return Builder.CreateLogicalAnd(LHS, RHS, Name);
3900   if (Opc == Instruction::Or)
3901     return Builder.CreateLogicalOr(LHS, RHS, Name);
3902   llvm_unreachable("Invalid logical opcode");
3903 }
3904 
3905 /// Return true if either PBI or BI has branch weight available, and store
3906 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
3907 /// not have branch weight, use 1:1 as its weight.
3908 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
3909                                    uint64_t &PredTrueWeight,
3910                                    uint64_t &PredFalseWeight,
3911                                    uint64_t &SuccTrueWeight,
3912                                    uint64_t &SuccFalseWeight) {
3913   bool PredHasWeights =
3914       extractBranchWeights(*PBI, PredTrueWeight, PredFalseWeight);
3915   bool SuccHasWeights =
3916       extractBranchWeights(*BI, SuccTrueWeight, SuccFalseWeight);
3917   if (PredHasWeights || SuccHasWeights) {
3918     if (!PredHasWeights)
3919       PredTrueWeight = PredFalseWeight = 1;
3920     if (!SuccHasWeights)
3921       SuccTrueWeight = SuccFalseWeight = 1;
3922     return true;
3923   } else {
3924     return false;
3925   }
3926 }
3927 
3928 /// Determine if the two branches share a common destination and deduce a glue
3929 /// that joins the branches' conditions to arrive at the common destination if
3930 /// that would be profitable.
3931 static std::optional<std::tuple<BasicBlock *, Instruction::BinaryOps, bool>>
3932 shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
3933                                           const TargetTransformInfo *TTI) {
3934   assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
3935          "Both blocks must end with a conditional branches.");
3936   assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
3937          "PredBB must be a predecessor of BB.");
3938 
3939   // We have the potential to fold the conditions together, but if the
3940   // predecessor branch is predictable, we may not want to merge them.
3941   uint64_t PTWeight, PFWeight;
3942   BranchProbability PBITrueProb, Likely;
3943   if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
3944       extractBranchWeights(*PBI, PTWeight, PFWeight) &&
3945       (PTWeight + PFWeight) != 0) {
3946     PBITrueProb =
3947         BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
3948     Likely = TTI->getPredictableBranchThreshold();
3949   }
3950 
3951   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3952     // Speculate the 2nd condition unless the 1st is probably true.
3953     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3954       return {{BI->getSuccessor(0), Instruction::Or, false}};
3955   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3956     // Speculate the 2nd condition unless the 1st is probably false.
3957     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3958       return {{BI->getSuccessor(1), Instruction::And, false}};
3959   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3960     // Speculate the 2nd condition unless the 1st is probably true.
3961     if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
3962       return {{BI->getSuccessor(1), Instruction::And, true}};
3963   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3964     // Speculate the 2nd condition unless the 1st is probably false.
3965     if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
3966       return {{BI->getSuccessor(0), Instruction::Or, true}};
3967   }
3968   return std::nullopt;
3969 }
3970 
3971 static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
3972                                              DomTreeUpdater *DTU,
3973                                              MemorySSAUpdater *MSSAU,
3974                                              const TargetTransformInfo *TTI) {
3975   BasicBlock *BB = BI->getParent();
3976   BasicBlock *PredBlock = PBI->getParent();
3977 
3978   // Determine if the two branches share a common destination.
3979   BasicBlock *CommonSucc;
3980   Instruction::BinaryOps Opc;
3981   bool InvertPredCond;
3982   std::tie(CommonSucc, Opc, InvertPredCond) =
3983       *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
3984 
3985   LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
3986 
3987   IRBuilder<> Builder(PBI);
3988   // The builder is used to create instructions to eliminate the branch in BB.
3989   // If BB's terminator has !annotation metadata, add it to the new
3990   // instructions.
3991   Builder.CollectMetadataToCopy(BB->getTerminator(),
3992                                 {LLVMContext::MD_annotation});
3993 
3994   // If we need to invert the condition in the pred block to match, do so now.
3995   if (InvertPredCond) {
3996     InvertBranch(PBI, Builder);
3997   }
3998 
3999   BasicBlock *UniqueSucc =
4000       PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
4001 
4002   // Before cloning instructions, notify the successor basic block that it
4003   // is about to have a new predecessor. This will update PHI nodes,
4004   // which will allow us to update live-out uses of bonus instructions.
4005   addPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
4006 
4007   // Try to update branch weights.
4008   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4009   if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4010                              SuccTrueWeight, SuccFalseWeight)) {
4011     SmallVector<uint64_t, 8> NewWeights;
4012 
4013     if (PBI->getSuccessor(0) == BB) {
4014       // PBI: br i1 %x, BB, FalseDest
4015       // BI:  br i1 %y, UniqueSucc, FalseDest
4016       // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
4017       NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
4018       // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
4019       //               TrueWeight for PBI * FalseWeight for BI.
4020       // We assume that total weights of a BranchInst can fit into 32 bits.
4021       // Therefore, we will not have overflow using 64-bit arithmetic.
4022       NewWeights.push_back(PredFalseWeight *
4023                                (SuccFalseWeight + SuccTrueWeight) +
4024                            PredTrueWeight * SuccFalseWeight);
4025     } else {
4026       // PBI: br i1 %x, TrueDest, BB
4027       // BI:  br i1 %y, TrueDest, UniqueSucc
4028       // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
4029       //              FalseWeight for PBI * TrueWeight for BI.
4030       NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
4031                            PredFalseWeight * SuccTrueWeight);
4032       // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
4033       NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
4034     }
4035 
4036     // Halve the weights if any of them cannot fit in an uint32_t
4037     fitWeights(NewWeights);
4038 
4039     SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
4040     setBranchWeights(PBI, MDWeights[0], MDWeights[1], /*IsExpected=*/false);
4041 
4042     // TODO: If BB is reachable from all paths through PredBlock, then we
4043     // could replace PBI's branch probabilities with BI's.
4044   } else
4045     PBI->setMetadata(LLVMContext::MD_prof, nullptr);
4046 
4047   // Now, update the CFG.
4048   PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
4049 
4050   if (DTU)
4051     DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
4052                        {DominatorTree::Delete, PredBlock, BB}});
4053 
4054   // If BI was a loop latch, it may have had associated loop metadata.
4055   // We need to copy it to the new latch, that is, PBI.
4056   if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
4057     PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
4058 
4059   ValueToValueMapTy VMap; // maps original values to cloned values
4060   cloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
4061 
4062   Module *M = BB->getModule();
4063 
4064   if (PredBlock->IsNewDbgInfoFormat) {
4065     PredBlock->getTerminator()->cloneDebugInfoFrom(BB->getTerminator());
4066     for (DbgVariableRecord &DVR :
4067          filterDbgVars(PredBlock->getTerminator()->getDbgRecordRange())) {
4068       RemapDbgRecord(M, &DVR, VMap,
4069                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
4070     }
4071   }
4072 
4073   // Now that the Cond was cloned into the predecessor basic block,
4074   // or/and the two conditions together.
4075   Value *BICond = VMap[BI->getCondition()];
4076   PBI->setCondition(
4077       createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
4078 
4079   ++NumFoldBranchToCommonDest;
4080   return true;
4081 }
4082 
4083 /// Return if an instruction's type or any of its operands' types are a vector
4084 /// type.
4085 static bool isVectorOp(Instruction &I) {
4086   return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
4087            return U->getType()->isVectorTy();
4088          });
4089 }
4090 
4091 /// If this basic block is simple enough, and if a predecessor branches to us
4092 /// and one of our successors, fold the block into the predecessor and use
4093 /// logical operations to pick the right destination.
4094 bool llvm::foldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
4095                                   MemorySSAUpdater *MSSAU,
4096                                   const TargetTransformInfo *TTI,
4097                                   unsigned BonusInstThreshold) {
4098   // If this block ends with an unconditional branch,
4099   // let speculativelyExecuteBB() deal with it.
4100   if (!BI->isConditional())
4101     return false;
4102 
4103   BasicBlock *BB = BI->getParent();
4104   TargetTransformInfo::TargetCostKind CostKind =
4105     BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
4106                                   : TargetTransformInfo::TCK_SizeAndLatency;
4107 
4108   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
4109 
4110   if (!Cond ||
4111       (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond) &&
4112        !isa<SelectInst>(Cond)) ||
4113       Cond->getParent() != BB || !Cond->hasOneUse())
4114     return false;
4115 
4116   // Finally, don't infinitely unroll conditional loops.
4117   if (is_contained(successors(BB), BB))
4118     return false;
4119 
4120   // With which predecessors will we want to deal with?
4121   SmallVector<BasicBlock *, 8> Preds;
4122   for (BasicBlock *PredBlock : predecessors(BB)) {
4123     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
4124 
4125     // Check that we have two conditional branches.  If there is a PHI node in
4126     // the common successor, verify that the same value flows in from both
4127     // blocks.
4128     if (!PBI || PBI->isUnconditional() || !safeToMergeTerminators(BI, PBI))
4129       continue;
4130 
4131     // Determine if the two branches share a common destination.
4132     BasicBlock *CommonSucc;
4133     Instruction::BinaryOps Opc;
4134     bool InvertPredCond;
4135     if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
4136       std::tie(CommonSucc, Opc, InvertPredCond) = *Recipe;
4137     else
4138       continue;
4139 
4140     // Check the cost of inserting the necessary logic before performing the
4141     // transformation.
4142     if (TTI) {
4143       Type *Ty = BI->getCondition()->getType();
4144       InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
4145       if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
4146                              !isa<CmpInst>(PBI->getCondition())))
4147         Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
4148 
4149       if (Cost > BranchFoldThreshold)
4150         continue;
4151     }
4152 
4153     // Ok, we do want to deal with this predecessor. Record it.
4154     Preds.emplace_back(PredBlock);
4155   }
4156 
4157   // If there aren't any predecessors into which we can fold,
4158   // don't bother checking the cost.
4159   if (Preds.empty())
4160     return false;
4161 
4162   // Only allow this transformation if computing the condition doesn't involve
4163   // too many instructions and these involved instructions can be executed
4164   // unconditionally. We denote all involved instructions except the condition
4165   // as "bonus instructions", and only allow this transformation when the
4166   // number of the bonus instructions we'll need to create when cloning into
4167   // each predecessor does not exceed a certain threshold.
4168   unsigned NumBonusInsts = 0;
4169   bool SawVectorOp = false;
4170   const unsigned PredCount = Preds.size();
4171   for (Instruction &I : *BB) {
4172     // Don't check the branch condition comparison itself.
4173     if (&I == Cond)
4174       continue;
4175     // Ignore dbg intrinsics, and the terminator.
4176     if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
4177       continue;
4178     // I must be safe to execute unconditionally.
4179     if (!isSafeToSpeculativelyExecute(&I))
4180       return false;
4181     SawVectorOp |= isVectorOp(I);
4182 
4183     // Account for the cost of duplicating this instruction into each
4184     // predecessor. Ignore free instructions.
4185     if (!TTI || TTI->getInstructionCost(&I, CostKind) !=
4186                     TargetTransformInfo::TCC_Free) {
4187       NumBonusInsts += PredCount;
4188 
4189       // Early exits once we reach the limit.
4190       if (NumBonusInsts >
4191           BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
4192         return false;
4193     }
4194 
4195     auto IsBCSSAUse = [BB, &I](Use &U) {
4196       auto *UI = cast<Instruction>(U.getUser());
4197       if (auto *PN = dyn_cast<PHINode>(UI))
4198         return PN->getIncomingBlock(U) == BB;
4199       return UI->getParent() == BB && I.comesBefore(UI);
4200     };
4201 
4202     // Does this instruction require rewriting of uses?
4203     if (!all_of(I.uses(), IsBCSSAUse))
4204       return false;
4205   }
4206   if (NumBonusInsts >
4207       BonusInstThreshold *
4208           (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
4209     return false;
4210 
4211   // Ok, we have the budget. Perform the transformation.
4212   for (BasicBlock *PredBlock : Preds) {
4213     auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
4214     return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
4215   }
4216   return false;
4217 }
4218 
4219 // If there is only one store in BB1 and BB2, return it, otherwise return
4220 // nullptr.
4221 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
4222   StoreInst *S = nullptr;
4223   for (auto *BB : {BB1, BB2}) {
4224     if (!BB)
4225       continue;
4226     for (auto &I : *BB)
4227       if (auto *SI = dyn_cast<StoreInst>(&I)) {
4228         if (S)
4229           // Multiple stores seen.
4230           return nullptr;
4231         else
4232           S = SI;
4233       }
4234   }
4235   return S;
4236 }
4237 
4238 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
4239                                               Value *AlternativeV = nullptr) {
4240   // PHI is going to be a PHI node that allows the value V that is defined in
4241   // BB to be referenced in BB's only successor.
4242   //
4243   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
4244   // doesn't matter to us what the other operand is (it'll never get used). We
4245   // could just create a new PHI with an undef incoming value, but that could
4246   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
4247   // other PHI. So here we directly look for some PHI in BB's successor with V
4248   // as an incoming operand. If we find one, we use it, else we create a new
4249   // one.
4250   //
4251   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
4252   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
4253   // where OtherBB is the single other predecessor of BB's only successor.
4254   PHINode *PHI = nullptr;
4255   BasicBlock *Succ = BB->getSingleSuccessor();
4256 
4257   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
4258     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
4259       PHI = cast<PHINode>(I);
4260       if (!AlternativeV)
4261         break;
4262 
4263       assert(Succ->hasNPredecessors(2));
4264       auto PredI = pred_begin(Succ);
4265       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
4266       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
4267         break;
4268       PHI = nullptr;
4269     }
4270   if (PHI)
4271     return PHI;
4272 
4273   // If V is not an instruction defined in BB, just return it.
4274   if (!AlternativeV &&
4275       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
4276     return V;
4277 
4278   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge");
4279   PHI->insertBefore(Succ->begin());
4280   PHI->addIncoming(V, BB);
4281   for (BasicBlock *PredBB : predecessors(Succ))
4282     if (PredBB != BB)
4283       PHI->addIncoming(
4284           AlternativeV ? AlternativeV : PoisonValue::get(V->getType()), PredBB);
4285   return PHI;
4286 }
4287 
4288 static bool mergeConditionalStoreToAddress(
4289     BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
4290     BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
4291     DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
4292   // For every pointer, there must be exactly two stores, one coming from
4293   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
4294   // store (to any address) in PTB,PFB or QTB,QFB.
4295   // FIXME: We could relax this restriction with a bit more work and performance
4296   // testing.
4297   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
4298   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
4299   if (!PStore || !QStore)
4300     return false;
4301 
4302   // Now check the stores are compatible.
4303   if (!QStore->isUnordered() || !PStore->isUnordered() ||
4304       PStore->getValueOperand()->getType() !=
4305           QStore->getValueOperand()->getType())
4306     return false;
4307 
4308   // Check that sinking the store won't cause program behavior changes. Sinking
4309   // the store out of the Q blocks won't change any behavior as we're sinking
4310   // from a block to its unconditional successor. But we're moving a store from
4311   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
4312   // So we need to check that there are no aliasing loads or stores in
4313   // QBI, QTB and QFB. We also need to check there are no conflicting memory
4314   // operations between PStore and the end of its parent block.
4315   //
4316   // The ideal way to do this is to query AliasAnalysis, but we don't
4317   // preserve AA currently so that is dangerous. Be super safe and just
4318   // check there are no other memory operations at all.
4319   for (auto &I : *QFB->getSinglePredecessor())
4320     if (I.mayReadOrWriteMemory())
4321       return false;
4322   for (auto &I : *QFB)
4323     if (&I != QStore && I.mayReadOrWriteMemory())
4324       return false;
4325   if (QTB)
4326     for (auto &I : *QTB)
4327       if (&I != QStore && I.mayReadOrWriteMemory())
4328         return false;
4329   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
4330        I != E; ++I)
4331     if (&*I != PStore && I->mayReadOrWriteMemory())
4332       return false;
4333 
4334   // If we're not in aggressive mode, we only optimize if we have some
4335   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
4336   auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
4337     if (!BB)
4338       return true;
4339     // Heuristic: if the block can be if-converted/phi-folded and the
4340     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
4341     // thread this store.
4342     InstructionCost Cost = 0;
4343     InstructionCost Budget =
4344         PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
4345     for (auto &I : BB->instructionsWithoutDebug(false)) {
4346       // Consider terminator instruction to be free.
4347       if (I.isTerminator())
4348         continue;
4349       // If this is one the stores that we want to speculate out of this BB,
4350       // then don't count it's cost, consider it to be free.
4351       if (auto *S = dyn_cast<StoreInst>(&I))
4352         if (llvm::find(FreeStores, S))
4353           continue;
4354       // Else, we have a white-list of instructions that we are ak speculating.
4355       if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
4356         return false; // Not in white-list - not worthwhile folding.
4357       // And finally, if this is a non-free instruction that we are okay
4358       // speculating, ensure that we consider the speculation budget.
4359       Cost +=
4360           TTI.getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
4361       if (Cost > Budget)
4362         return false; // Eagerly refuse to fold as soon as we're out of budget.
4363     }
4364     assert(Cost <= Budget &&
4365            "When we run out of budget we will eagerly return from within the "
4366            "per-instruction loop.");
4367     return true;
4368   };
4369 
4370   const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
4371   if (!MergeCondStoresAggressively &&
4372       (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
4373        !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
4374     return false;
4375 
4376   // If PostBB has more than two predecessors, we need to split it so we can
4377   // sink the store.
4378   if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
4379     // We know that QFB's only successor is PostBB. And QFB has a single
4380     // predecessor. If QTB exists, then its only successor is also PostBB.
4381     // If QTB does not exist, then QFB's only predecessor has a conditional
4382     // branch to QFB and PostBB.
4383     BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
4384     BasicBlock *NewBB =
4385         SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
4386     if (!NewBB)
4387       return false;
4388     PostBB = NewBB;
4389   }
4390 
4391   // OK, we're going to sink the stores to PostBB. The store has to be
4392   // conditional though, so first create the predicate.
4393   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
4394                      ->getCondition();
4395   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
4396                      ->getCondition();
4397 
4398   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
4399                                                 PStore->getParent());
4400   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
4401                                                 QStore->getParent(), PPHI);
4402 
4403   BasicBlock::iterator PostBBFirst = PostBB->getFirstInsertionPt();
4404   IRBuilder<> QB(PostBB, PostBBFirst);
4405   QB.SetCurrentDebugLocation(PostBBFirst->getStableDebugLoc());
4406 
4407   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
4408   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
4409 
4410   if (InvertPCond)
4411     PPred = QB.CreateNot(PPred);
4412   if (InvertQCond)
4413     QPred = QB.CreateNot(QPred);
4414   Value *CombinedPred = QB.CreateOr(PPred, QPred);
4415 
4416   BasicBlock::iterator InsertPt = QB.GetInsertPoint();
4417   auto *T = SplitBlockAndInsertIfThen(CombinedPred, InsertPt,
4418                                       /*Unreachable=*/false,
4419                                       /*BranchWeights=*/nullptr, DTU);
4420 
4421   QB.SetInsertPoint(T);
4422   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
4423   SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
4424   // Choose the minimum alignment. If we could prove both stores execute, we
4425   // could use biggest one.  In this case, though, we only know that one of the
4426   // stores executes.  And we don't know it's safe to take the alignment from a
4427   // store that doesn't execute.
4428   SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
4429 
4430   QStore->eraseFromParent();
4431   PStore->eraseFromParent();
4432 
4433   return true;
4434 }
4435 
4436 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
4437                                    DomTreeUpdater *DTU, const DataLayout &DL,
4438                                    const TargetTransformInfo &TTI) {
4439   // The intention here is to find diamonds or triangles (see below) where each
4440   // conditional block contains a store to the same address. Both of these
4441   // stores are conditional, so they can't be unconditionally sunk. But it may
4442   // be profitable to speculatively sink the stores into one merged store at the
4443   // end, and predicate the merged store on the union of the two conditions of
4444   // PBI and QBI.
4445   //
4446   // This can reduce the number of stores executed if both of the conditions are
4447   // true, and can allow the blocks to become small enough to be if-converted.
4448   // This optimization will also chain, so that ladders of test-and-set
4449   // sequences can be if-converted away.
4450   //
4451   // We only deal with simple diamonds or triangles:
4452   //
4453   //     PBI       or      PBI        or a combination of the two
4454   //    /   \               | \
4455   //   PTB  PFB             |  PFB
4456   //    \   /               | /
4457   //     QBI                QBI
4458   //    /  \                | \
4459   //   QTB  QFB             |  QFB
4460   //    \  /                | /
4461   //    PostBB            PostBB
4462   //
4463   // We model triangles as a type of diamond with a nullptr "true" block.
4464   // Triangles are canonicalized so that the fallthrough edge is represented by
4465   // a true condition, as in the diagram above.
4466   BasicBlock *PTB = PBI->getSuccessor(0);
4467   BasicBlock *PFB = PBI->getSuccessor(1);
4468   BasicBlock *QTB = QBI->getSuccessor(0);
4469   BasicBlock *QFB = QBI->getSuccessor(1);
4470   BasicBlock *PostBB = QFB->getSingleSuccessor();
4471 
4472   // Make sure we have a good guess for PostBB. If QTB's only successor is
4473   // QFB, then QFB is a better PostBB.
4474   if (QTB->getSingleSuccessor() == QFB)
4475     PostBB = QFB;
4476 
4477   // If we couldn't find a good PostBB, stop.
4478   if (!PostBB)
4479     return false;
4480 
4481   bool InvertPCond = false, InvertQCond = false;
4482   // Canonicalize fallthroughs to the true branches.
4483   if (PFB == QBI->getParent()) {
4484     std::swap(PFB, PTB);
4485     InvertPCond = true;
4486   }
4487   if (QFB == PostBB) {
4488     std::swap(QFB, QTB);
4489     InvertQCond = true;
4490   }
4491 
4492   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
4493   // and QFB may not. Model fallthroughs as a nullptr block.
4494   if (PTB == QBI->getParent())
4495     PTB = nullptr;
4496   if (QTB == PostBB)
4497     QTB = nullptr;
4498 
4499   // Legality bailouts. We must have at least the non-fallthrough blocks and
4500   // the post-dominating block, and the non-fallthroughs must only have one
4501   // predecessor.
4502   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
4503     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
4504   };
4505   if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
4506       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
4507     return false;
4508   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
4509       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
4510     return false;
4511   if (!QBI->getParent()->hasNUses(2))
4512     return false;
4513 
4514   // OK, this is a sequence of two diamonds or triangles.
4515   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
4516   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
4517   for (auto *BB : {PTB, PFB}) {
4518     if (!BB)
4519       continue;
4520     for (auto &I : *BB)
4521       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4522         PStoreAddresses.insert(SI->getPointerOperand());
4523   }
4524   for (auto *BB : {QTB, QFB}) {
4525     if (!BB)
4526       continue;
4527     for (auto &I : *BB)
4528       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
4529         QStoreAddresses.insert(SI->getPointerOperand());
4530   }
4531 
4532   set_intersect(PStoreAddresses, QStoreAddresses);
4533   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
4534   // clear what it contains.
4535   auto &CommonAddresses = PStoreAddresses;
4536 
4537   bool Changed = false;
4538   for (auto *Address : CommonAddresses)
4539     Changed |=
4540         mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
4541                                        InvertPCond, InvertQCond, DTU, DL, TTI);
4542   return Changed;
4543 }
4544 
4545 /// If the previous block ended with a widenable branch, determine if reusing
4546 /// the target block is profitable and legal.  This will have the effect of
4547 /// "widening" PBI, but doesn't require us to reason about hosting safety.
4548 static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4549                                            DomTreeUpdater *DTU) {
4550   // TODO: This can be generalized in two important ways:
4551   // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
4552   //    values from the PBI edge.
4553   // 2) We can sink side effecting instructions into BI's fallthrough
4554   //    successor provided they doesn't contribute to computation of
4555   //    BI's condition.
4556   BasicBlock *IfTrueBB = PBI->getSuccessor(0);
4557   BasicBlock *IfFalseBB = PBI->getSuccessor(1);
4558   if (!isWidenableBranch(PBI) || IfTrueBB != BI->getParent() ||
4559       !BI->getParent()->getSinglePredecessor())
4560     return false;
4561   if (!IfFalseBB->phis().empty())
4562     return false; // TODO
4563   // This helps avoid infinite loop with SimplifyCondBranchToCondBranch which
4564   // may undo the transform done here.
4565   // TODO: There might be a more fine-grained solution to this.
4566   if (!llvm::succ_empty(IfFalseBB))
4567     return false;
4568   // Use lambda to lazily compute expensive condition after cheap ones.
4569   auto NoSideEffects = [](BasicBlock &BB) {
4570     return llvm::none_of(BB, [](const Instruction &I) {
4571         return I.mayWriteToMemory() || I.mayHaveSideEffects();
4572       });
4573   };
4574   if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
4575       BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
4576       NoSideEffects(*BI->getParent())) {
4577     auto *OldSuccessor = BI->getSuccessor(1);
4578     OldSuccessor->removePredecessor(BI->getParent());
4579     BI->setSuccessor(1, IfFalseBB);
4580     if (DTU)
4581       DTU->applyUpdates(
4582           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4583            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4584     return true;
4585   }
4586   if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
4587       BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
4588       NoSideEffects(*BI->getParent())) {
4589     auto *OldSuccessor = BI->getSuccessor(0);
4590     OldSuccessor->removePredecessor(BI->getParent());
4591     BI->setSuccessor(0, IfFalseBB);
4592     if (DTU)
4593       DTU->applyUpdates(
4594           {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
4595            {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
4596     return true;
4597   }
4598   return false;
4599 }
4600 
4601 /// If we have a conditional branch as a predecessor of another block,
4602 /// this function tries to simplify it.  We know
4603 /// that PBI and BI are both conditional branches, and BI is in one of the
4604 /// successor blocks of PBI - PBI branches to BI.
4605 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
4606                                            DomTreeUpdater *DTU,
4607                                            const DataLayout &DL,
4608                                            const TargetTransformInfo &TTI) {
4609   assert(PBI->isConditional() && BI->isConditional());
4610   BasicBlock *BB = BI->getParent();
4611 
4612   // If this block ends with a branch instruction, and if there is a
4613   // predecessor that ends on a branch of the same condition, make
4614   // this conditional branch redundant.
4615   if (PBI->getCondition() == BI->getCondition() &&
4616       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
4617     // Okay, the outcome of this conditional branch is statically
4618     // knowable.  If this block had a single pred, handle specially, otherwise
4619     // foldCondBranchOnValueKnownInPredecessor() will handle it.
4620     if (BB->getSinglePredecessor()) {
4621       // Turn this into a branch on constant.
4622       bool CondIsTrue = PBI->getSuccessor(0) == BB;
4623       BI->setCondition(
4624           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
4625       return true; // Nuke the branch on constant.
4626     }
4627   }
4628 
4629   // If the previous block ended with a widenable branch, determine if reusing
4630   // the target block is profitable and legal.  This will have the effect of
4631   // "widening" PBI, but doesn't require us to reason about hosting safety.
4632   if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
4633     return true;
4634 
4635   // If both branches are conditional and both contain stores to the same
4636   // address, remove the stores from the conditionals and create a conditional
4637   // merged store at the end.
4638   if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
4639     return true;
4640 
4641   // If this is a conditional branch in an empty block, and if any
4642   // predecessors are a conditional branch to one of our destinations,
4643   // fold the conditions into logical ops and one cond br.
4644 
4645   // Ignore dbg intrinsics.
4646   if (&*BB->instructionsWithoutDebug(false).begin() != BI)
4647     return false;
4648 
4649   int PBIOp, BIOp;
4650   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
4651     PBIOp = 0;
4652     BIOp = 0;
4653   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
4654     PBIOp = 0;
4655     BIOp = 1;
4656   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
4657     PBIOp = 1;
4658     BIOp = 0;
4659   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
4660     PBIOp = 1;
4661     BIOp = 1;
4662   } else {
4663     return false;
4664   }
4665 
4666   // Check to make sure that the other destination of this branch
4667   // isn't BB itself.  If so, this is an infinite loop that will
4668   // keep getting unwound.
4669   if (PBI->getSuccessor(PBIOp) == BB)
4670     return false;
4671 
4672   // If predecessor's branch probability to BB is too low don't merge branches.
4673   SmallVector<uint32_t, 2> PredWeights;
4674   if (!PBI->getMetadata(LLVMContext::MD_unpredictable) &&
4675       extractBranchWeights(*PBI, PredWeights) &&
4676       (static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]) != 0) {
4677 
4678     BranchProbability CommonDestProb = BranchProbability::getBranchProbability(
4679         PredWeights[PBIOp],
4680         static_cast<uint64_t>(PredWeights[0]) + PredWeights[1]);
4681 
4682     BranchProbability Likely = TTI.getPredictableBranchThreshold();
4683     if (CommonDestProb >= Likely)
4684       return false;
4685   }
4686 
4687   // Do not perform this transformation if it would require
4688   // insertion of a large number of select instructions. For targets
4689   // without predication/cmovs, this is a big pessimization.
4690 
4691   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
4692   BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
4693   unsigned NumPhis = 0;
4694   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
4695        ++II, ++NumPhis) {
4696     if (NumPhis > 2) // Disable this xform.
4697       return false;
4698   }
4699 
4700   // Finally, if everything is ok, fold the branches to logical ops.
4701   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
4702 
4703   LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
4704                     << "AND: " << *BI->getParent());
4705 
4706   SmallVector<DominatorTree::UpdateType, 5> Updates;
4707 
4708   // If OtherDest *is* BB, then BB is a basic block with a single conditional
4709   // branch in it, where one edge (OtherDest) goes back to itself but the other
4710   // exits.  We don't *know* that the program avoids the infinite loop
4711   // (even though that seems likely).  If we do this xform naively, we'll end up
4712   // recursively unpeeling the loop.  Since we know that (after the xform is
4713   // done) that the block *is* infinite if reached, we just make it an obviously
4714   // infinite loop with no cond branch.
4715   if (OtherDest == BB) {
4716     // Insert it at the end of the function, because it's either code,
4717     // or it won't matter if it's hot. :)
4718     BasicBlock *InfLoopBlock =
4719         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
4720     BranchInst::Create(InfLoopBlock, InfLoopBlock);
4721     if (DTU)
4722       Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
4723     OtherDest = InfLoopBlock;
4724   }
4725 
4726   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4727 
4728   // BI may have other predecessors.  Because of this, we leave
4729   // it alone, but modify PBI.
4730 
4731   // Make sure we get to CommonDest on True&True directions.
4732   Value *PBICond = PBI->getCondition();
4733   IRBuilder<NoFolder> Builder(PBI);
4734   if (PBIOp)
4735     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
4736 
4737   Value *BICond = BI->getCondition();
4738   if (BIOp)
4739     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
4740 
4741   // Merge the conditions.
4742   Value *Cond =
4743       createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
4744 
4745   // Modify PBI to branch on the new condition to the new dests.
4746   PBI->setCondition(Cond);
4747   PBI->setSuccessor(0, CommonDest);
4748   PBI->setSuccessor(1, OtherDest);
4749 
4750   if (DTU) {
4751     Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
4752     Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
4753 
4754     DTU->applyUpdates(Updates);
4755   }
4756 
4757   // Update branch weight for PBI.
4758   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
4759   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
4760   bool HasWeights =
4761       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
4762                              SuccTrueWeight, SuccFalseWeight);
4763   if (HasWeights) {
4764     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4765     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4766     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4767     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4768     // The weight to CommonDest should be PredCommon * SuccTotal +
4769     //                                    PredOther * SuccCommon.
4770     // The weight to OtherDest should be PredOther * SuccOther.
4771     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
4772                                   PredOther * SuccCommon,
4773                               PredOther * SuccOther};
4774     // Halve the weights if any of them cannot fit in an uint32_t
4775     fitWeights(NewWeights);
4776 
4777     setBranchWeights(PBI, NewWeights[0], NewWeights[1], /*IsExpected=*/false);
4778   }
4779 
4780   // OtherDest may have phi nodes.  If so, add an entry from PBI's
4781   // block that are identical to the entries for BI's block.
4782   addPredecessorToBlock(OtherDest, PBI->getParent(), BB);
4783 
4784   // We know that the CommonDest already had an edge from PBI to
4785   // it.  If it has PHIs though, the PHIs may have different
4786   // entries for BB and PBI's BB.  If so, insert a select to make
4787   // them agree.
4788   for (PHINode &PN : CommonDest->phis()) {
4789     Value *BIV = PN.getIncomingValueForBlock(BB);
4790     unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
4791     Value *PBIV = PN.getIncomingValue(PBBIdx);
4792     if (BIV != PBIV) {
4793       // Insert a select in PBI to pick the right value.
4794       SelectInst *NV = cast<SelectInst>(
4795           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
4796       PN.setIncomingValue(PBBIdx, NV);
4797       // Although the select has the same condition as PBI, the original branch
4798       // weights for PBI do not apply to the new select because the select's
4799       // 'logical' edges are incoming edges of the phi that is eliminated, not
4800       // the outgoing edges of PBI.
4801       if (HasWeights) {
4802         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
4803         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
4804         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
4805         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
4806         // The weight to PredCommonDest should be PredCommon * SuccTotal.
4807         // The weight to PredOtherDest should be PredOther * SuccCommon.
4808         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
4809                                   PredOther * SuccCommon};
4810 
4811         fitWeights(NewWeights);
4812 
4813         setBranchWeights(NV, NewWeights[0], NewWeights[1],
4814                          /*IsExpected=*/false);
4815       }
4816     }
4817   }
4818 
4819   LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
4820   LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
4821 
4822   // This basic block is probably dead.  We know it has at least
4823   // one fewer predecessor.
4824   return true;
4825 }
4826 
4827 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
4828 // true or to FalseBB if Cond is false.
4829 // Takes care of updating the successors and removing the old terminator.
4830 // Also makes sure not to introduce new successors by assuming that edges to
4831 // non-successor TrueBBs and FalseBBs aren't reachable.
4832 bool SimplifyCFGOpt::simplifyTerminatorOnSelect(Instruction *OldTerm,
4833                                                 Value *Cond, BasicBlock *TrueBB,
4834                                                 BasicBlock *FalseBB,
4835                                                 uint32_t TrueWeight,
4836                                                 uint32_t FalseWeight) {
4837   auto *BB = OldTerm->getParent();
4838   // Remove any superfluous successor edges from the CFG.
4839   // First, figure out which successors to preserve.
4840   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
4841   // successor.
4842   BasicBlock *KeepEdge1 = TrueBB;
4843   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
4844 
4845   SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
4846 
4847   // Then remove the rest.
4848   for (BasicBlock *Succ : successors(OldTerm)) {
4849     // Make sure only to keep exactly one copy of each edge.
4850     if (Succ == KeepEdge1)
4851       KeepEdge1 = nullptr;
4852     else if (Succ == KeepEdge2)
4853       KeepEdge2 = nullptr;
4854     else {
4855       Succ->removePredecessor(BB,
4856                               /*KeepOneInputPHIs=*/true);
4857 
4858       if (Succ != TrueBB && Succ != FalseBB)
4859         RemovedSuccessors.insert(Succ);
4860     }
4861   }
4862 
4863   IRBuilder<> Builder(OldTerm);
4864   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
4865 
4866   // Insert an appropriate new terminator.
4867   if (!KeepEdge1 && !KeepEdge2) {
4868     if (TrueBB == FalseBB) {
4869       // We were only looking for one successor, and it was present.
4870       // Create an unconditional branch to it.
4871       Builder.CreateBr(TrueBB);
4872     } else {
4873       // We found both of the successors we were looking for.
4874       // Create a conditional branch sharing the condition of the select.
4875       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
4876       if (TrueWeight != FalseWeight)
4877         setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
4878     }
4879   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
4880     // Neither of the selected blocks were successors, so this
4881     // terminator must be unreachable.
4882     new UnreachableInst(OldTerm->getContext(), OldTerm->getIterator());
4883   } else {
4884     // One of the selected values was a successor, but the other wasn't.
4885     // Insert an unconditional branch to the one that was found;
4886     // the edge to the one that wasn't must be unreachable.
4887     if (!KeepEdge1) {
4888       // Only TrueBB was found.
4889       Builder.CreateBr(TrueBB);
4890     } else {
4891       // Only FalseBB was found.
4892       Builder.CreateBr(FalseBB);
4893     }
4894   }
4895 
4896   eraseTerminatorAndDCECond(OldTerm);
4897 
4898   if (DTU) {
4899     SmallVector<DominatorTree::UpdateType, 2> Updates;
4900     Updates.reserve(RemovedSuccessors.size());
4901     for (auto *RemovedSuccessor : RemovedSuccessors)
4902       Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
4903     DTU->applyUpdates(Updates);
4904   }
4905 
4906   return true;
4907 }
4908 
4909 // Replaces
4910 //   (switch (select cond, X, Y)) on constant X, Y
4911 // with a branch - conditional if X and Y lead to distinct BBs,
4912 // unconditional otherwise.
4913 bool SimplifyCFGOpt::simplifySwitchOnSelect(SwitchInst *SI,
4914                                             SelectInst *Select) {
4915   // Check for constant integer values in the select.
4916   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
4917   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
4918   if (!TrueVal || !FalseVal)
4919     return false;
4920 
4921   // Find the relevant condition and destinations.
4922   Value *Condition = Select->getCondition();
4923   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
4924   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
4925 
4926   // Get weight for TrueBB and FalseBB.
4927   uint32_t TrueWeight = 0, FalseWeight = 0;
4928   SmallVector<uint64_t, 8> Weights;
4929   bool HasWeights = hasBranchWeightMD(*SI);
4930   if (HasWeights) {
4931     getBranchWeights(SI, Weights);
4932     if (Weights.size() == 1 + SI->getNumCases()) {
4933       TrueWeight =
4934           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
4935       FalseWeight =
4936           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
4937     }
4938   }
4939 
4940   // Perform the actual simplification.
4941   return simplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
4942                                     FalseWeight);
4943 }
4944 
4945 // Replaces
4946 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
4947 //                             blockaddress(@fn, BlockB)))
4948 // with
4949 //   (br cond, BlockA, BlockB).
4950 bool SimplifyCFGOpt::simplifyIndirectBrOnSelect(IndirectBrInst *IBI,
4951                                                 SelectInst *SI) {
4952   // Check that both operands of the select are block addresses.
4953   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
4954   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
4955   if (!TBA || !FBA)
4956     return false;
4957 
4958   // Extract the actual blocks.
4959   BasicBlock *TrueBB = TBA->getBasicBlock();
4960   BasicBlock *FalseBB = FBA->getBasicBlock();
4961 
4962   // Perform the actual simplification.
4963   return simplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
4964                                     0);
4965 }
4966 
4967 /// This is called when we find an icmp instruction
4968 /// (a seteq/setne with a constant) as the only instruction in a
4969 /// block that ends with an uncond branch.  We are looking for a very specific
4970 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
4971 /// this case, we merge the first two "or's of icmp" into a switch, but then the
4972 /// default value goes to an uncond block with a seteq in it, we get something
4973 /// like:
4974 ///
4975 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
4976 /// DEFAULT:
4977 ///   %tmp = icmp eq i8 %A, 92
4978 ///   br label %end
4979 /// end:
4980 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
4981 ///
4982 /// We prefer to split the edge to 'end' so that there is a true/false entry to
4983 /// the PHI, merging the third icmp into the switch.
4984 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
4985     ICmpInst *ICI, IRBuilder<> &Builder) {
4986   BasicBlock *BB = ICI->getParent();
4987 
4988   // If the block has any PHIs in it or the icmp has multiple uses, it is too
4989   // complex.
4990   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
4991     return false;
4992 
4993   Value *V = ICI->getOperand(0);
4994   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
4995 
4996   // The pattern we're looking for is where our only predecessor is a switch on
4997   // 'V' and this block is the default case for the switch.  In this case we can
4998   // fold the compared value into the switch to simplify things.
4999   BasicBlock *Pred = BB->getSinglePredecessor();
5000   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
5001     return false;
5002 
5003   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
5004   if (SI->getCondition() != V)
5005     return false;
5006 
5007   // If BB is reachable on a non-default case, then we simply know the value of
5008   // V in this block.  Substitute it and constant fold the icmp instruction
5009   // away.
5010   if (SI->getDefaultDest() != BB) {
5011     ConstantInt *VVal = SI->findCaseDest(BB);
5012     assert(VVal && "Should have a unique destination value");
5013     ICI->setOperand(0, VVal);
5014 
5015     if (Value *V = simplifyInstruction(ICI, {DL, ICI})) {
5016       ICI->replaceAllUsesWith(V);
5017       ICI->eraseFromParent();
5018     }
5019     // BB is now empty, so it is likely to simplify away.
5020     return requestResimplify();
5021   }
5022 
5023   // Ok, the block is reachable from the default dest.  If the constant we're
5024   // comparing exists in one of the other edges, then we can constant fold ICI
5025   // and zap it.
5026   if (SI->findCaseValue(Cst) != SI->case_default()) {
5027     Value *V;
5028     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5029       V = ConstantInt::getFalse(BB->getContext());
5030     else
5031       V = ConstantInt::getTrue(BB->getContext());
5032 
5033     ICI->replaceAllUsesWith(V);
5034     ICI->eraseFromParent();
5035     // BB is now empty, so it is likely to simplify away.
5036     return requestResimplify();
5037   }
5038 
5039   // The use of the icmp has to be in the 'end' block, by the only PHI node in
5040   // the block.
5041   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
5042   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
5043   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
5044       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
5045     return false;
5046 
5047   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
5048   // true in the PHI.
5049   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
5050   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
5051 
5052   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
5053     std::swap(DefaultCst, NewCst);
5054 
5055   // Replace ICI (which is used by the PHI for the default value) with true or
5056   // false depending on if it is EQ or NE.
5057   ICI->replaceAllUsesWith(DefaultCst);
5058   ICI->eraseFromParent();
5059 
5060   SmallVector<DominatorTree::UpdateType, 2> Updates;
5061 
5062   // Okay, the switch goes to this block on a default value.  Add an edge from
5063   // the switch to the merge point on the compared value.
5064   BasicBlock *NewBB =
5065       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
5066   {
5067     SwitchInstProfUpdateWrapper SIW(*SI);
5068     auto W0 = SIW.getSuccessorWeight(0);
5069     SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
5070     if (W0) {
5071       NewW = ((uint64_t(*W0) + 1) >> 1);
5072       SIW.setSuccessorWeight(0, *NewW);
5073     }
5074     SIW.addCase(Cst, NewBB, NewW);
5075     if (DTU)
5076       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
5077   }
5078 
5079   // NewBB branches to the phi block, add the uncond branch and the phi entry.
5080   Builder.SetInsertPoint(NewBB);
5081   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
5082   Builder.CreateBr(SuccBlock);
5083   PHIUse->addIncoming(NewCst, NewBB);
5084   if (DTU) {
5085     Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
5086     DTU->applyUpdates(Updates);
5087   }
5088   return true;
5089 }
5090 
5091 /// The specified branch is a conditional branch.
5092 /// Check to see if it is branching on an or/and chain of icmp instructions, and
5093 /// fold it into a switch instruction if so.
5094 bool SimplifyCFGOpt::simplifyBranchOnICmpChain(BranchInst *BI,
5095                                                IRBuilder<> &Builder,
5096                                                const DataLayout &DL) {
5097   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
5098   if (!Cond)
5099     return false;
5100 
5101   // Change br (X == 0 | X == 1), T, F into a switch instruction.
5102   // If this is a bunch of seteq's or'd together, or if it's a bunch of
5103   // 'setne's and'ed together, collect them.
5104 
5105   // Try to gather values from a chain of and/or to be turned into a switch
5106   ConstantComparesGatherer ConstantCompare(Cond, DL);
5107   // Unpack the result
5108   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
5109   Value *CompVal = ConstantCompare.CompValue;
5110   unsigned UsedICmps = ConstantCompare.UsedICmps;
5111   Value *ExtraCase = ConstantCompare.Extra;
5112 
5113   // If we didn't have a multiply compared value, fail.
5114   if (!CompVal)
5115     return false;
5116 
5117   // Avoid turning single icmps into a switch.
5118   if (UsedICmps <= 1)
5119     return false;
5120 
5121   bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
5122 
5123   // There might be duplicate constants in the list, which the switch
5124   // instruction can't handle, remove them now.
5125   array_pod_sort(Values.begin(), Values.end(), constantIntSortPredicate);
5126   Values.erase(llvm::unique(Values), Values.end());
5127 
5128   // If Extra was used, we require at least two switch values to do the
5129   // transformation.  A switch with one value is just a conditional branch.
5130   if (ExtraCase && Values.size() < 2)
5131     return false;
5132 
5133   // TODO: Preserve branch weight metadata, similarly to how
5134   // foldValueComparisonIntoPredecessors preserves it.
5135 
5136   // Figure out which block is which destination.
5137   BasicBlock *DefaultBB = BI->getSuccessor(1);
5138   BasicBlock *EdgeBB = BI->getSuccessor(0);
5139   if (!TrueWhenEqual)
5140     std::swap(DefaultBB, EdgeBB);
5141 
5142   BasicBlock *BB = BI->getParent();
5143 
5144   LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
5145                     << " cases into SWITCH.  BB is:\n"
5146                     << *BB);
5147 
5148   SmallVector<DominatorTree::UpdateType, 2> Updates;
5149 
5150   // If there are any extra values that couldn't be folded into the switch
5151   // then we evaluate them with an explicit branch first. Split the block
5152   // right before the condbr to handle it.
5153   if (ExtraCase) {
5154     BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
5155                                    /*MSSAU=*/nullptr, "switch.early.test");
5156 
5157     // Remove the uncond branch added to the old block.
5158     Instruction *OldTI = BB->getTerminator();
5159     Builder.SetInsertPoint(OldTI);
5160 
5161     // There can be an unintended UB if extra values are Poison. Before the
5162     // transformation, extra values may not be evaluated according to the
5163     // condition, and it will not raise UB. But after transformation, we are
5164     // evaluating extra values before checking the condition, and it will raise
5165     // UB. It can be solved by adding freeze instruction to extra values.
5166     AssumptionCache *AC = Options.AC;
5167 
5168     if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
5169       ExtraCase = Builder.CreateFreeze(ExtraCase);
5170 
5171     if (TrueWhenEqual)
5172       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
5173     else
5174       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
5175 
5176     OldTI->eraseFromParent();
5177 
5178     if (DTU)
5179       Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
5180 
5181     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
5182     // for the edge we just added.
5183     addPredecessorToBlock(EdgeBB, BB, NewBB);
5184 
5185     LLVM_DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
5186                       << "\nEXTRABB = " << *BB);
5187     BB = NewBB;
5188   }
5189 
5190   Builder.SetInsertPoint(BI);
5191   // Convert pointer to int before we switch.
5192   if (CompVal->getType()->isPointerTy()) {
5193     CompVal = Builder.CreatePtrToInt(
5194         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
5195   }
5196 
5197   // Create the new switch instruction now.
5198   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
5199 
5200   // Add all of the 'cases' to the switch instruction.
5201   for (unsigned i = 0, e = Values.size(); i != e; ++i)
5202     New->addCase(Values[i], EdgeBB);
5203 
5204   // We added edges from PI to the EdgeBB.  As such, if there were any
5205   // PHI nodes in EdgeBB, they need entries to be added corresponding to
5206   // the number of edges added.
5207   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
5208     PHINode *PN = cast<PHINode>(BBI);
5209     Value *InVal = PN->getIncomingValueForBlock(BB);
5210     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
5211       PN->addIncoming(InVal, BB);
5212   }
5213 
5214   // Erase the old branch instruction.
5215   eraseTerminatorAndDCECond(BI);
5216   if (DTU)
5217     DTU->applyUpdates(Updates);
5218 
5219   LLVM_DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
5220   return true;
5221 }
5222 
5223 bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
5224   if (isa<PHINode>(RI->getValue()))
5225     return simplifyCommonResume(RI);
5226   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
5227            RI->getValue() == RI->getParent()->getFirstNonPHI())
5228     // The resume must unwind the exception that caused control to branch here.
5229     return simplifySingleResume(RI);
5230 
5231   return false;
5232 }
5233 
5234 // Check if cleanup block is empty
5235 static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
5236   for (Instruction &I : R) {
5237     auto *II = dyn_cast<IntrinsicInst>(&I);
5238     if (!II)
5239       return false;
5240 
5241     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
5242     switch (IntrinsicID) {
5243     case Intrinsic::dbg_declare:
5244     case Intrinsic::dbg_value:
5245     case Intrinsic::dbg_label:
5246     case Intrinsic::lifetime_end:
5247       break;
5248     default:
5249       return false;
5250     }
5251   }
5252   return true;
5253 }
5254 
5255 // Simplify resume that is shared by several landing pads (phi of landing pad).
5256 bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
5257   BasicBlock *BB = RI->getParent();
5258 
5259   // Check that there are no other instructions except for debug and lifetime
5260   // intrinsics between the phi's and resume instruction.
5261   if (!isCleanupBlockEmpty(
5262           make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
5263     return false;
5264 
5265   SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
5266   auto *PhiLPInst = cast<PHINode>(RI->getValue());
5267 
5268   // Check incoming blocks to see if any of them are trivial.
5269   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
5270        Idx++) {
5271     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
5272     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
5273 
5274     // If the block has other successors, we can not delete it because
5275     // it has other dependents.
5276     if (IncomingBB->getUniqueSuccessor() != BB)
5277       continue;
5278 
5279     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
5280     // Not the landing pad that caused the control to branch here.
5281     if (IncomingValue != LandingPad)
5282       continue;
5283 
5284     if (isCleanupBlockEmpty(
5285             make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
5286       TrivialUnwindBlocks.insert(IncomingBB);
5287   }
5288 
5289   // If no trivial unwind blocks, don't do any simplifications.
5290   if (TrivialUnwindBlocks.empty())
5291     return false;
5292 
5293   // Turn all invokes that unwind here into calls.
5294   for (auto *TrivialBB : TrivialUnwindBlocks) {
5295     // Blocks that will be simplified should be removed from the phi node.
5296     // Note there could be multiple edges to the resume block, and we need
5297     // to remove them all.
5298     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
5299       BB->removePredecessor(TrivialBB, true);
5300 
5301     for (BasicBlock *Pred :
5302          llvm::make_early_inc_range(predecessors(TrivialBB))) {
5303       removeUnwindEdge(Pred, DTU);
5304       ++NumInvokes;
5305     }
5306 
5307     // In each SimplifyCFG run, only the current processed block can be erased.
5308     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
5309     // of erasing TrivialBB, we only remove the branch to the common resume
5310     // block so that we can later erase the resume block since it has no
5311     // predecessors.
5312     TrivialBB->getTerminator()->eraseFromParent();
5313     new UnreachableInst(RI->getContext(), TrivialBB);
5314     if (DTU)
5315       DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
5316   }
5317 
5318   // Delete the resume block if all its predecessors have been removed.
5319   if (pred_empty(BB))
5320     DeleteDeadBlock(BB, DTU);
5321 
5322   return !TrivialUnwindBlocks.empty();
5323 }
5324 
5325 // Simplify resume that is only used by a single (non-phi) landing pad.
5326 bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
5327   BasicBlock *BB = RI->getParent();
5328   auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
5329   assert(RI->getValue() == LPInst &&
5330          "Resume must unwind the exception that caused control to here");
5331 
5332   // Check that there are no other instructions except for debug intrinsics.
5333   if (!isCleanupBlockEmpty(
5334           make_range<Instruction *>(LPInst->getNextNode(), RI)))
5335     return false;
5336 
5337   // Turn all invokes that unwind here into calls and delete the basic block.
5338   for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
5339     removeUnwindEdge(Pred, DTU);
5340     ++NumInvokes;
5341   }
5342 
5343   // The landingpad is now unreachable.  Zap it.
5344   DeleteDeadBlock(BB, DTU);
5345   return true;
5346 }
5347 
5348 static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
5349   // If this is a trivial cleanup pad that executes no instructions, it can be
5350   // eliminated.  If the cleanup pad continues to the caller, any predecessor
5351   // that is an EH pad will be updated to continue to the caller and any
5352   // predecessor that terminates with an invoke instruction will have its invoke
5353   // instruction converted to a call instruction.  If the cleanup pad being
5354   // simplified does not continue to the caller, each predecessor will be
5355   // updated to continue to the unwind destination of the cleanup pad being
5356   // simplified.
5357   BasicBlock *BB = RI->getParent();
5358   CleanupPadInst *CPInst = RI->getCleanupPad();
5359   if (CPInst->getParent() != BB)
5360     // This isn't an empty cleanup.
5361     return false;
5362 
5363   // We cannot kill the pad if it has multiple uses.  This typically arises
5364   // from unreachable basic blocks.
5365   if (!CPInst->hasOneUse())
5366     return false;
5367 
5368   // Check that there are no other instructions except for benign intrinsics.
5369   if (!isCleanupBlockEmpty(
5370           make_range<Instruction *>(CPInst->getNextNode(), RI)))
5371     return false;
5372 
5373   // If the cleanup return we are simplifying unwinds to the caller, this will
5374   // set UnwindDest to nullptr.
5375   BasicBlock *UnwindDest = RI->getUnwindDest();
5376   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
5377 
5378   // We're about to remove BB from the control flow.  Before we do, sink any
5379   // PHINodes into the unwind destination.  Doing this before changing the
5380   // control flow avoids some potentially slow checks, since we can currently
5381   // be certain that UnwindDest and BB have no common predecessors (since they
5382   // are both EH pads).
5383   if (UnwindDest) {
5384     // First, go through the PHI nodes in UnwindDest and update any nodes that
5385     // reference the block we are removing
5386     for (PHINode &DestPN : UnwindDest->phis()) {
5387       int Idx = DestPN.getBasicBlockIndex(BB);
5388       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
5389       assert(Idx != -1);
5390       // This PHI node has an incoming value that corresponds to a control
5391       // path through the cleanup pad we are removing.  If the incoming
5392       // value is in the cleanup pad, it must be a PHINode (because we
5393       // verified above that the block is otherwise empty).  Otherwise, the
5394       // value is either a constant or a value that dominates the cleanup
5395       // pad being removed.
5396       //
5397       // Because BB and UnwindDest are both EH pads, all of their
5398       // predecessors must unwind to these blocks, and since no instruction
5399       // can have multiple unwind destinations, there will be no overlap in
5400       // incoming blocks between SrcPN and DestPN.
5401       Value *SrcVal = DestPN.getIncomingValue(Idx);
5402       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
5403 
5404       bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
5405       for (auto *Pred : predecessors(BB)) {
5406         Value *Incoming =
5407             NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
5408         DestPN.addIncoming(Incoming, Pred);
5409       }
5410     }
5411 
5412     // Sink any remaining PHI nodes directly into UnwindDest.
5413     Instruction *InsertPt = DestEHPad;
5414     for (PHINode &PN : make_early_inc_range(BB->phis())) {
5415       if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
5416         // If the PHI node has no uses or all of its uses are in this basic
5417         // block (meaning they are debug or lifetime intrinsics), just leave
5418         // it.  It will be erased when we erase BB below.
5419         continue;
5420 
5421       // Otherwise, sink this PHI node into UnwindDest.
5422       // Any predecessors to UnwindDest which are not already represented
5423       // must be back edges which inherit the value from the path through
5424       // BB.  In this case, the PHI value must reference itself.
5425       for (auto *pred : predecessors(UnwindDest))
5426         if (pred != BB)
5427           PN.addIncoming(&PN, pred);
5428       PN.moveBefore(InsertPt);
5429       // Also, add a dummy incoming value for the original BB itself,
5430       // so that the PHI is well-formed until we drop said predecessor.
5431       PN.addIncoming(PoisonValue::get(PN.getType()), BB);
5432     }
5433   }
5434 
5435   std::vector<DominatorTree::UpdateType> Updates;
5436 
5437   // We use make_early_inc_range here because we will remove all predecessors.
5438   for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
5439     if (UnwindDest == nullptr) {
5440       if (DTU) {
5441         DTU->applyUpdates(Updates);
5442         Updates.clear();
5443       }
5444       removeUnwindEdge(PredBB, DTU);
5445       ++NumInvokes;
5446     } else {
5447       BB->removePredecessor(PredBB);
5448       Instruction *TI = PredBB->getTerminator();
5449       TI->replaceUsesOfWith(BB, UnwindDest);
5450       if (DTU) {
5451         Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
5452         Updates.push_back({DominatorTree::Delete, PredBB, BB});
5453       }
5454     }
5455   }
5456 
5457   if (DTU)
5458     DTU->applyUpdates(Updates);
5459 
5460   DeleteDeadBlock(BB, DTU);
5461 
5462   return true;
5463 }
5464 
5465 // Try to merge two cleanuppads together.
5466 static bool mergeCleanupPad(CleanupReturnInst *RI) {
5467   // Skip any cleanuprets which unwind to caller, there is nothing to merge
5468   // with.
5469   BasicBlock *UnwindDest = RI->getUnwindDest();
5470   if (!UnwindDest)
5471     return false;
5472 
5473   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
5474   // be safe to merge without code duplication.
5475   if (UnwindDest->getSinglePredecessor() != RI->getParent())
5476     return false;
5477 
5478   // Verify that our cleanuppad's unwind destination is another cleanuppad.
5479   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
5480   if (!SuccessorCleanupPad)
5481     return false;
5482 
5483   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
5484   // Replace any uses of the successor cleanupad with the predecessor pad
5485   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
5486   // funclet bundle operands.
5487   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
5488   // Remove the old cleanuppad.
5489   SuccessorCleanupPad->eraseFromParent();
5490   // Now, we simply replace the cleanupret with a branch to the unwind
5491   // destination.
5492   BranchInst::Create(UnwindDest, RI->getParent());
5493   RI->eraseFromParent();
5494 
5495   return true;
5496 }
5497 
5498 bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
5499   // It is possible to transiantly have an undef cleanuppad operand because we
5500   // have deleted some, but not all, dead blocks.
5501   // Eventually, this block will be deleted.
5502   if (isa<UndefValue>(RI->getOperand(0)))
5503     return false;
5504 
5505   if (mergeCleanupPad(RI))
5506     return true;
5507 
5508   if (removeEmptyCleanup(RI, DTU))
5509     return true;
5510 
5511   return false;
5512 }
5513 
5514 // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
5515 bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
5516   BasicBlock *BB = UI->getParent();
5517 
5518   bool Changed = false;
5519 
5520   // Ensure that any debug-info records that used to occur after the Unreachable
5521   // are moved to in front of it -- otherwise they'll "dangle" at the end of
5522   // the block.
5523   BB->flushTerminatorDbgRecords();
5524 
5525   // Debug-info records on the unreachable inst itself should be deleted, as
5526   // below we delete everything past the final executable instruction.
5527   UI->dropDbgRecords();
5528 
5529   // If there are any instructions immediately before the unreachable that can
5530   // be removed, do so.
5531   while (UI->getIterator() != BB->begin()) {
5532     BasicBlock::iterator BBI = UI->getIterator();
5533     --BBI;
5534 
5535     if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
5536       break; // Can not drop any more instructions. We're done here.
5537     // Otherwise, this instruction can be freely erased,
5538     // even if it is not side-effect free.
5539 
5540     // Note that deleting EH's here is in fact okay, although it involves a bit
5541     // of subtle reasoning. If this inst is an EH, all the predecessors of this
5542     // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
5543     // and we can therefore guarantee this block will be erased.
5544 
5545     // If we're deleting this, we're deleting any subsequent debug info, so
5546     // delete DbgRecords.
5547     BBI->dropDbgRecords();
5548 
5549     // Delete this instruction (any uses are guaranteed to be dead)
5550     BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
5551     BBI->eraseFromParent();
5552     Changed = true;
5553   }
5554 
5555   // If the unreachable instruction is the first in the block, take a gander
5556   // at all of the predecessors of this instruction, and simplify them.
5557   if (&BB->front() != UI)
5558     return Changed;
5559 
5560   std::vector<DominatorTree::UpdateType> Updates;
5561 
5562   SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
5563   for (BasicBlock *Predecessor : Preds) {
5564     Instruction *TI = Predecessor->getTerminator();
5565     IRBuilder<> Builder(TI);
5566     if (auto *BI = dyn_cast<BranchInst>(TI)) {
5567       // We could either have a proper unconditional branch,
5568       // or a degenerate conditional branch with matching destinations.
5569       if (all_of(BI->successors(),
5570                  [BB](auto *Successor) { return Successor == BB; })) {
5571         new UnreachableInst(TI->getContext(), TI->getIterator());
5572         TI->eraseFromParent();
5573         Changed = true;
5574       } else {
5575         assert(BI->isConditional() && "Can't get here with an uncond branch.");
5576         Value* Cond = BI->getCondition();
5577         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
5578                "The destinations are guaranteed to be different here.");
5579         CallInst *Assumption;
5580         if (BI->getSuccessor(0) == BB) {
5581           Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
5582           Builder.CreateBr(BI->getSuccessor(1));
5583         } else {
5584           assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
5585           Assumption = Builder.CreateAssumption(Cond);
5586           Builder.CreateBr(BI->getSuccessor(0));
5587         }
5588         if (Options.AC)
5589           Options.AC->registerAssumption(cast<AssumeInst>(Assumption));
5590 
5591         eraseTerminatorAndDCECond(BI);
5592         Changed = true;
5593       }
5594       if (DTU)
5595         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5596     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
5597       SwitchInstProfUpdateWrapper SU(*SI);
5598       for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
5599         if (i->getCaseSuccessor() != BB) {
5600           ++i;
5601           continue;
5602         }
5603         BB->removePredecessor(SU->getParent());
5604         i = SU.removeCase(i);
5605         e = SU->case_end();
5606         Changed = true;
5607       }
5608       // Note that the default destination can't be removed!
5609       if (DTU && SI->getDefaultDest() != BB)
5610         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5611     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
5612       if (II->getUnwindDest() == BB) {
5613         if (DTU) {
5614           DTU->applyUpdates(Updates);
5615           Updates.clear();
5616         }
5617         auto *CI = cast<CallInst>(removeUnwindEdge(TI->getParent(), DTU));
5618         if (!CI->doesNotThrow())
5619           CI->setDoesNotThrow();
5620         Changed = true;
5621       }
5622     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
5623       if (CSI->getUnwindDest() == BB) {
5624         if (DTU) {
5625           DTU->applyUpdates(Updates);
5626           Updates.clear();
5627         }
5628         removeUnwindEdge(TI->getParent(), DTU);
5629         Changed = true;
5630         continue;
5631       }
5632 
5633       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
5634                                              E = CSI->handler_end();
5635            I != E; ++I) {
5636         if (*I == BB) {
5637           CSI->removeHandler(I);
5638           --I;
5639           --E;
5640           Changed = true;
5641         }
5642       }
5643       if (DTU)
5644         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5645       if (CSI->getNumHandlers() == 0) {
5646         if (CSI->hasUnwindDest()) {
5647           // Redirect all predecessors of the block containing CatchSwitchInst
5648           // to instead branch to the CatchSwitchInst's unwind destination.
5649           if (DTU) {
5650             for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
5651               Updates.push_back({DominatorTree::Insert,
5652                                  PredecessorOfPredecessor,
5653                                  CSI->getUnwindDest()});
5654               Updates.push_back({DominatorTree::Delete,
5655                                  PredecessorOfPredecessor, Predecessor});
5656             }
5657           }
5658           Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
5659         } else {
5660           // Rewrite all preds to unwind to caller (or from invoke to call).
5661           if (DTU) {
5662             DTU->applyUpdates(Updates);
5663             Updates.clear();
5664           }
5665           SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
5666           for (BasicBlock *EHPred : EHPreds)
5667             removeUnwindEdge(EHPred, DTU);
5668         }
5669         // The catchswitch is no longer reachable.
5670         new UnreachableInst(CSI->getContext(), CSI->getIterator());
5671         CSI->eraseFromParent();
5672         Changed = true;
5673       }
5674     } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
5675       (void)CRI;
5676       assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
5677              "Expected to always have an unwind to BB.");
5678       if (DTU)
5679         Updates.push_back({DominatorTree::Delete, Predecessor, BB});
5680       new UnreachableInst(TI->getContext(), TI->getIterator());
5681       TI->eraseFromParent();
5682       Changed = true;
5683     }
5684   }
5685 
5686   if (DTU)
5687     DTU->applyUpdates(Updates);
5688 
5689   // If this block is now dead, remove it.
5690   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
5691     DeleteDeadBlock(BB, DTU);
5692     return true;
5693   }
5694 
5695   return Changed;
5696 }
5697 
5698 static bool casesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
5699   assert(Cases.size() >= 1);
5700 
5701   array_pod_sort(Cases.begin(), Cases.end(), constantIntSortPredicate);
5702   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
5703     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
5704       return false;
5705   }
5706   return true;
5707 }
5708 
5709 static void createUnreachableSwitchDefault(SwitchInst *Switch,
5710                                            DomTreeUpdater *DTU,
5711                                            bool RemoveOrigDefaultBlock = true) {
5712   LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
5713   auto *BB = Switch->getParent();
5714   auto *OrigDefaultBlock = Switch->getDefaultDest();
5715   if (RemoveOrigDefaultBlock)
5716     OrigDefaultBlock->removePredecessor(BB);
5717   BasicBlock *NewDefaultBlock = BasicBlock::Create(
5718       BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
5719       OrigDefaultBlock);
5720   new UnreachableInst(Switch->getContext(), NewDefaultBlock);
5721   Switch->setDefaultDest(&*NewDefaultBlock);
5722   if (DTU) {
5723     SmallVector<DominatorTree::UpdateType, 2> Updates;
5724     Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
5725     if (RemoveOrigDefaultBlock &&
5726         !is_contained(successors(BB), OrigDefaultBlock))
5727       Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
5728     DTU->applyUpdates(Updates);
5729   }
5730 }
5731 
5732 /// Turn a switch into an integer range comparison and branch.
5733 /// Switches with more than 2 destinations are ignored.
5734 /// Switches with 1 destination are also ignored.
5735 bool SimplifyCFGOpt::turnSwitchRangeIntoICmp(SwitchInst *SI,
5736                                              IRBuilder<> &Builder) {
5737   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5738 
5739   bool HasDefault =
5740       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5741 
5742   auto *BB = SI->getParent();
5743 
5744   // Partition the cases into two sets with different destinations.
5745   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
5746   BasicBlock *DestB = nullptr;
5747   SmallVector<ConstantInt *, 16> CasesA;
5748   SmallVector<ConstantInt *, 16> CasesB;
5749 
5750   for (auto Case : SI->cases()) {
5751     BasicBlock *Dest = Case.getCaseSuccessor();
5752     if (!DestA)
5753       DestA = Dest;
5754     if (Dest == DestA) {
5755       CasesA.push_back(Case.getCaseValue());
5756       continue;
5757     }
5758     if (!DestB)
5759       DestB = Dest;
5760     if (Dest == DestB) {
5761       CasesB.push_back(Case.getCaseValue());
5762       continue;
5763     }
5764     return false; // More than two destinations.
5765   }
5766   if (!DestB)
5767     return false; // All destinations are the same and the default is unreachable
5768 
5769   assert(DestA && DestB &&
5770          "Single-destination switch should have been folded.");
5771   assert(DestA != DestB);
5772   assert(DestB != SI->getDefaultDest());
5773   assert(!CasesB.empty() && "There must be non-default cases.");
5774   assert(!CasesA.empty() || HasDefault);
5775 
5776   // Figure out if one of the sets of cases form a contiguous range.
5777   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
5778   BasicBlock *ContiguousDest = nullptr;
5779   BasicBlock *OtherDest = nullptr;
5780   if (!CasesA.empty() && casesAreContiguous(CasesA)) {
5781     ContiguousCases = &CasesA;
5782     ContiguousDest = DestA;
5783     OtherDest = DestB;
5784   } else if (casesAreContiguous(CasesB)) {
5785     ContiguousCases = &CasesB;
5786     ContiguousDest = DestB;
5787     OtherDest = DestA;
5788   } else
5789     return false;
5790 
5791   // Start building the compare and branch.
5792 
5793   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
5794   Constant *NumCases =
5795       ConstantInt::get(Offset->getType(), ContiguousCases->size());
5796 
5797   Value *Sub = SI->getCondition();
5798   if (!Offset->isNullValue())
5799     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
5800 
5801   Value *Cmp;
5802   // If NumCases overflowed, then all possible values jump to the successor.
5803   if (NumCases->isNullValue() && !ContiguousCases->empty())
5804     Cmp = ConstantInt::getTrue(SI->getContext());
5805   else
5806     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
5807   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
5808 
5809   // Update weight for the newly-created conditional branch.
5810   if (hasBranchWeightMD(*SI)) {
5811     SmallVector<uint64_t, 8> Weights;
5812     getBranchWeights(SI, Weights);
5813     if (Weights.size() == 1 + SI->getNumCases()) {
5814       uint64_t TrueWeight = 0;
5815       uint64_t FalseWeight = 0;
5816       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
5817         if (SI->getSuccessor(I) == ContiguousDest)
5818           TrueWeight += Weights[I];
5819         else
5820           FalseWeight += Weights[I];
5821       }
5822       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
5823         TrueWeight /= 2;
5824         FalseWeight /= 2;
5825       }
5826       setBranchWeights(NewBI, TrueWeight, FalseWeight, /*IsExpected=*/false);
5827     }
5828   }
5829 
5830   // Prune obsolete incoming values off the successors' PHI nodes.
5831   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
5832     unsigned PreviousEdges = ContiguousCases->size();
5833     if (ContiguousDest == SI->getDefaultDest())
5834       ++PreviousEdges;
5835     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5836       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5837   }
5838   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
5839     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
5840     if (OtherDest == SI->getDefaultDest())
5841       ++PreviousEdges;
5842     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
5843       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
5844   }
5845 
5846   // Clean up the default block - it may have phis or other instructions before
5847   // the unreachable terminator.
5848   if (!HasDefault)
5849     createUnreachableSwitchDefault(SI, DTU);
5850 
5851   auto *UnreachableDefault = SI->getDefaultDest();
5852 
5853   // Drop the switch.
5854   SI->eraseFromParent();
5855 
5856   if (!HasDefault && DTU)
5857     DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
5858 
5859   return true;
5860 }
5861 
5862 /// Compute masked bits for the condition of a switch
5863 /// and use it to remove dead cases.
5864 static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
5865                                      AssumptionCache *AC,
5866                                      const DataLayout &DL) {
5867   Value *Cond = SI->getCondition();
5868   KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
5869 
5870   // We can also eliminate cases by determining that their values are outside of
5871   // the limited range of the condition based on how many significant (non-sign)
5872   // bits are in the condition value.
5873   unsigned MaxSignificantBitsInCond =
5874       ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
5875 
5876   // Gather dead cases.
5877   SmallVector<ConstantInt *, 8> DeadCases;
5878   SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
5879   SmallVector<BasicBlock *, 8> UniqueSuccessors;
5880   for (const auto &Case : SI->cases()) {
5881     auto *Successor = Case.getCaseSuccessor();
5882     if (DTU) {
5883       if (!NumPerSuccessorCases.count(Successor))
5884         UniqueSuccessors.push_back(Successor);
5885       ++NumPerSuccessorCases[Successor];
5886     }
5887     const APInt &CaseVal = Case.getCaseValue()->getValue();
5888     if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
5889         (CaseVal.getSignificantBits() > MaxSignificantBitsInCond)) {
5890       DeadCases.push_back(Case.getCaseValue());
5891       if (DTU)
5892         --NumPerSuccessorCases[Successor];
5893       LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
5894                         << " is dead.\n");
5895     }
5896   }
5897 
5898   // If we can prove that the cases must cover all possible values, the
5899   // default destination becomes dead and we can remove it.  If we know some
5900   // of the bits in the value, we can use that to more precisely compute the
5901   // number of possible unique case values.
5902   bool HasDefault =
5903       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5904   const unsigned NumUnknownBits =
5905       Known.getBitWidth() - (Known.Zero | Known.One).popcount();
5906   assert(NumUnknownBits <= Known.getBitWidth());
5907   if (HasDefault && DeadCases.empty() &&
5908       NumUnknownBits < 64 /* avoid overflow */) {
5909     uint64_t AllNumCases = 1ULL << NumUnknownBits;
5910     if (SI->getNumCases() == AllNumCases) {
5911       createUnreachableSwitchDefault(SI, DTU);
5912       return true;
5913     }
5914     // When only one case value is missing, replace default with that case.
5915     // Eliminating the default branch will provide more opportunities for
5916     // optimization, such as lookup tables.
5917     if (SI->getNumCases() == AllNumCases - 1) {
5918       assert(NumUnknownBits > 1 && "Should be canonicalized to a branch");
5919       IntegerType *CondTy = cast<IntegerType>(Cond->getType());
5920       if (CondTy->getIntegerBitWidth() > 64 ||
5921           !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5922         return false;
5923 
5924       uint64_t MissingCaseVal = 0;
5925       for (const auto &Case : SI->cases())
5926         MissingCaseVal ^= Case.getCaseValue()->getValue().getLimitedValue();
5927       auto *MissingCase =
5928           cast<ConstantInt>(ConstantInt::get(Cond->getType(), MissingCaseVal));
5929       SwitchInstProfUpdateWrapper SIW(*SI);
5930       SIW.addCase(MissingCase, SI->getDefaultDest(), SIW.getSuccessorWeight(0));
5931       createUnreachableSwitchDefault(SI, DTU, /*RemoveOrigDefaultBlock*/ false);
5932       SIW.setSuccessorWeight(0, 0);
5933       return true;
5934     }
5935   }
5936 
5937   if (DeadCases.empty())
5938     return false;
5939 
5940   SwitchInstProfUpdateWrapper SIW(*SI);
5941   for (ConstantInt *DeadCase : DeadCases) {
5942     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
5943     assert(CaseI != SI->case_default() &&
5944            "Case was not found. Probably mistake in DeadCases forming.");
5945     // Prune unused values from PHI nodes.
5946     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
5947     SIW.removeCase(CaseI);
5948   }
5949 
5950   if (DTU) {
5951     std::vector<DominatorTree::UpdateType> Updates;
5952     for (auto *Successor : UniqueSuccessors)
5953       if (NumPerSuccessorCases[Successor] == 0)
5954         Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
5955     DTU->applyUpdates(Updates);
5956   }
5957 
5958   return true;
5959 }
5960 
5961 /// If BB would be eligible for simplification by
5962 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
5963 /// by an unconditional branch), look at the phi node for BB in the successor
5964 /// block and see if the incoming value is equal to CaseValue. If so, return
5965 /// the phi node, and set PhiIndex to BB's index in the phi node.
5966 static PHINode *findPHIForConditionForwarding(ConstantInt *CaseValue,
5967                                               BasicBlock *BB, int *PhiIndex) {
5968   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
5969     return nullptr; // BB must be empty to be a candidate for simplification.
5970   if (!BB->getSinglePredecessor())
5971     return nullptr; // BB must be dominated by the switch.
5972 
5973   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
5974   if (!Branch || !Branch->isUnconditional())
5975     return nullptr; // Terminator must be unconditional branch.
5976 
5977   BasicBlock *Succ = Branch->getSuccessor(0);
5978 
5979   for (PHINode &PHI : Succ->phis()) {
5980     int Idx = PHI.getBasicBlockIndex(BB);
5981     assert(Idx >= 0 && "PHI has no entry for predecessor?");
5982 
5983     Value *InValue = PHI.getIncomingValue(Idx);
5984     if (InValue != CaseValue)
5985       continue;
5986 
5987     *PhiIndex = Idx;
5988     return &PHI;
5989   }
5990 
5991   return nullptr;
5992 }
5993 
5994 /// Try to forward the condition of a switch instruction to a phi node
5995 /// dominated by the switch, if that would mean that some of the destination
5996 /// blocks of the switch can be folded away. Return true if a change is made.
5997 static bool forwardSwitchConditionToPHI(SwitchInst *SI) {
5998   using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
5999 
6000   ForwardingNodesMap ForwardingNodes;
6001   BasicBlock *SwitchBlock = SI->getParent();
6002   bool Changed = false;
6003   for (const auto &Case : SI->cases()) {
6004     ConstantInt *CaseValue = Case.getCaseValue();
6005     BasicBlock *CaseDest = Case.getCaseSuccessor();
6006 
6007     // Replace phi operands in successor blocks that are using the constant case
6008     // value rather than the switch condition variable:
6009     //   switchbb:
6010     //   switch i32 %x, label %default [
6011     //     i32 17, label %succ
6012     //   ...
6013     //   succ:
6014     //     %r = phi i32 ... [ 17, %switchbb ] ...
6015     // -->
6016     //     %r = phi i32 ... [ %x, %switchbb ] ...
6017 
6018     for (PHINode &Phi : CaseDest->phis()) {
6019       // This only works if there is exactly 1 incoming edge from the switch to
6020       // a phi. If there is >1, that means multiple cases of the switch map to 1
6021       // value in the phi, and that phi value is not the switch condition. Thus,
6022       // this transform would not make sense (the phi would be invalid because
6023       // a phi can't have different incoming values from the same block).
6024       int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
6025       if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
6026           count(Phi.blocks(), SwitchBlock) == 1) {
6027         Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
6028         Changed = true;
6029       }
6030     }
6031 
6032     // Collect phi nodes that are indirectly using this switch's case constants.
6033     int PhiIdx;
6034     if (auto *Phi = findPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
6035       ForwardingNodes[Phi].push_back(PhiIdx);
6036   }
6037 
6038   for (auto &ForwardingNode : ForwardingNodes) {
6039     PHINode *Phi = ForwardingNode.first;
6040     SmallVectorImpl<int> &Indexes = ForwardingNode.second;
6041     // Check if it helps to fold PHI.
6042     if (Indexes.size() < 2 && !llvm::is_contained(Phi->incoming_values(), SI->getCondition()))
6043       continue;
6044 
6045     for (int Index : Indexes)
6046       Phi->setIncomingValue(Index, SI->getCondition());
6047     Changed = true;
6048   }
6049 
6050   return Changed;
6051 }
6052 
6053 /// Return true if the backend will be able to handle
6054 /// initializing an array of constants like C.
6055 static bool validLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
6056   if (C->isThreadDependent())
6057     return false;
6058   if (C->isDLLImportDependent())
6059     return false;
6060 
6061   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
6062       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
6063       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
6064     return false;
6065 
6066   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
6067     // Pointer casts and in-bounds GEPs will not prohibit the backend from
6068     // materializing the array of constants.
6069     Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
6070     if (StrippedC == C || !validLookupTableConstant(StrippedC, TTI))
6071       return false;
6072   }
6073 
6074   if (!TTI.shouldBuildLookupTablesForConstant(C))
6075     return false;
6076 
6077   return true;
6078 }
6079 
6080 /// If V is a Constant, return it. Otherwise, try to look up
6081 /// its constant value in ConstantPool, returning 0 if it's not there.
6082 static Constant *
6083 lookupConstant(Value *V,
6084                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6085   if (Constant *C = dyn_cast<Constant>(V))
6086     return C;
6087   return ConstantPool.lookup(V);
6088 }
6089 
6090 /// Try to fold instruction I into a constant. This works for
6091 /// simple instructions such as binary operations where both operands are
6092 /// constant or can be replaced by constants from the ConstantPool. Returns the
6093 /// resulting constant on success, 0 otherwise.
6094 static Constant *
6095 constantFold(Instruction *I, const DataLayout &DL,
6096              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
6097   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
6098     Constant *A = lookupConstant(Select->getCondition(), ConstantPool);
6099     if (!A)
6100       return nullptr;
6101     if (A->isAllOnesValue())
6102       return lookupConstant(Select->getTrueValue(), ConstantPool);
6103     if (A->isNullValue())
6104       return lookupConstant(Select->getFalseValue(), ConstantPool);
6105     return nullptr;
6106   }
6107 
6108   SmallVector<Constant *, 4> COps;
6109   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
6110     if (Constant *A = lookupConstant(I->getOperand(N), ConstantPool))
6111       COps.push_back(A);
6112     else
6113       return nullptr;
6114   }
6115 
6116   return ConstantFoldInstOperands(I, COps, DL);
6117 }
6118 
6119 /// Try to determine the resulting constant values in phi nodes
6120 /// at the common destination basic block, *CommonDest, for one of the case
6121 /// destionations CaseDest corresponding to value CaseVal (0 for the default
6122 /// case), of a switch instruction SI.
6123 static bool
6124 getCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
6125                BasicBlock **CommonDest,
6126                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
6127                const DataLayout &DL, const TargetTransformInfo &TTI) {
6128   // The block from which we enter the common destination.
6129   BasicBlock *Pred = SI->getParent();
6130 
6131   // If CaseDest is empty except for some side-effect free instructions through
6132   // which we can constant-propagate the CaseVal, continue to its successor.
6133   SmallDenseMap<Value *, Constant *> ConstantPool;
6134   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
6135   for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
6136     if (I.isTerminator()) {
6137       // If the terminator is a simple branch, continue to the next block.
6138       if (I.getNumSuccessors() != 1 || I.isSpecialTerminator())
6139         return false;
6140       Pred = CaseDest;
6141       CaseDest = I.getSuccessor(0);
6142     } else if (Constant *C = constantFold(&I, DL, ConstantPool)) {
6143       // Instruction is side-effect free and constant.
6144 
6145       // If the instruction has uses outside this block or a phi node slot for
6146       // the block, it is not safe to bypass the instruction since it would then
6147       // no longer dominate all its uses.
6148       for (auto &Use : I.uses()) {
6149         User *User = Use.getUser();
6150         if (Instruction *I = dyn_cast<Instruction>(User))
6151           if (I->getParent() == CaseDest)
6152             continue;
6153         if (PHINode *Phi = dyn_cast<PHINode>(User))
6154           if (Phi->getIncomingBlock(Use) == CaseDest)
6155             continue;
6156         return false;
6157       }
6158 
6159       ConstantPool.insert(std::make_pair(&I, C));
6160     } else {
6161       break;
6162     }
6163   }
6164 
6165   // If we did not have a CommonDest before, use the current one.
6166   if (!*CommonDest)
6167     *CommonDest = CaseDest;
6168   // If the destination isn't the common one, abort.
6169   if (CaseDest != *CommonDest)
6170     return false;
6171 
6172   // Get the values for this case from phi nodes in the destination block.
6173   for (PHINode &PHI : (*CommonDest)->phis()) {
6174     int Idx = PHI.getBasicBlockIndex(Pred);
6175     if (Idx == -1)
6176       continue;
6177 
6178     Constant *ConstVal =
6179         lookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
6180     if (!ConstVal)
6181       return false;
6182 
6183     // Be conservative about which kinds of constants we support.
6184     if (!validLookupTableConstant(ConstVal, TTI))
6185       return false;
6186 
6187     Res.push_back(std::make_pair(&PHI, ConstVal));
6188   }
6189 
6190   return Res.size() > 0;
6191 }
6192 
6193 // Helper function used to add CaseVal to the list of cases that generate
6194 // Result. Returns the updated number of cases that generate this result.
6195 static size_t mapCaseToResult(ConstantInt *CaseVal,
6196                               SwitchCaseResultVectorTy &UniqueResults,
6197                               Constant *Result) {
6198   for (auto &I : UniqueResults) {
6199     if (I.first == Result) {
6200       I.second.push_back(CaseVal);
6201       return I.second.size();
6202     }
6203   }
6204   UniqueResults.push_back(
6205       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
6206   return 1;
6207 }
6208 
6209 // Helper function that initializes a map containing
6210 // results for the PHI node of the common destination block for a switch
6211 // instruction. Returns false if multiple PHI nodes have been found or if
6212 // there is not a common destination block for the switch.
6213 static bool initializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
6214                                   BasicBlock *&CommonDest,
6215                                   SwitchCaseResultVectorTy &UniqueResults,
6216                                   Constant *&DefaultResult,
6217                                   const DataLayout &DL,
6218                                   const TargetTransformInfo &TTI,
6219                                   uintptr_t MaxUniqueResults) {
6220   for (const auto &I : SI->cases()) {
6221     ConstantInt *CaseVal = I.getCaseValue();
6222 
6223     // Resulting value at phi nodes for this case value.
6224     SwitchCaseResultsTy Results;
6225     if (!getCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
6226                         DL, TTI))
6227       return false;
6228 
6229     // Only one value per case is permitted.
6230     if (Results.size() > 1)
6231       return false;
6232 
6233     // Add the case->result mapping to UniqueResults.
6234     const size_t NumCasesForResult =
6235         mapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
6236 
6237     // Early out if there are too many cases for this result.
6238     if (NumCasesForResult > MaxSwitchCasesPerResult)
6239       return false;
6240 
6241     // Early out if there are too many unique results.
6242     if (UniqueResults.size() > MaxUniqueResults)
6243       return false;
6244 
6245     // Check the PHI consistency.
6246     if (!PHI)
6247       PHI = Results[0].first;
6248     else if (PHI != Results[0].first)
6249       return false;
6250   }
6251   // Find the default result value.
6252   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
6253   BasicBlock *DefaultDest = SI->getDefaultDest();
6254   getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
6255                  DL, TTI);
6256   // If the default value is not found abort unless the default destination
6257   // is unreachable.
6258   DefaultResult =
6259       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
6260   if ((!DefaultResult &&
6261        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
6262     return false;
6263 
6264   return true;
6265 }
6266 
6267 // Helper function that checks if it is possible to transform a switch with only
6268 // two cases (or two cases + default) that produces a result into a select.
6269 // TODO: Handle switches with more than 2 cases that map to the same result.
6270 static Value *foldSwitchToSelect(const SwitchCaseResultVectorTy &ResultVector,
6271                                  Constant *DefaultResult, Value *Condition,
6272                                  IRBuilder<> &Builder) {
6273   // If we are selecting between only two cases transform into a simple
6274   // select or a two-way select if default is possible.
6275   // Example:
6276   // switch (a) {                  %0 = icmp eq i32 %a, 10
6277   //   case 10: return 42;         %1 = select i1 %0, i32 42, i32 4
6278   //   case 20: return 2;   ---->  %2 = icmp eq i32 %a, 20
6279   //   default: return 4;          %3 = select i1 %2, i32 2, i32 %1
6280   // }
6281   if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
6282       ResultVector[1].second.size() == 1) {
6283     ConstantInt *FirstCase = ResultVector[0].second[0];
6284     ConstantInt *SecondCase = ResultVector[1].second[0];
6285     Value *SelectValue = ResultVector[1].first;
6286     if (DefaultResult) {
6287       Value *ValueCompare =
6288           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
6289       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
6290                                          DefaultResult, "switch.select");
6291     }
6292     Value *ValueCompare =
6293         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
6294     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
6295                                 SelectValue, "switch.select");
6296   }
6297 
6298   // Handle the degenerate case where two cases have the same result value.
6299   if (ResultVector.size() == 1 && DefaultResult) {
6300     ArrayRef<ConstantInt *> CaseValues = ResultVector[0].second;
6301     unsigned CaseCount = CaseValues.size();
6302     // n bits group cases map to the same result:
6303     // case 0,4      -> Cond & 0b1..1011 == 0 ? result : default
6304     // case 0,2,4,6  -> Cond & 0b1..1001 == 0 ? result : default
6305     // case 0,2,8,10 -> Cond & 0b1..0101 == 0 ? result : default
6306     if (isPowerOf2_32(CaseCount)) {
6307       ConstantInt *MinCaseVal = CaseValues[0];
6308       // Find mininal value.
6309       for (auto *Case : CaseValues)
6310         if (Case->getValue().slt(MinCaseVal->getValue()))
6311           MinCaseVal = Case;
6312 
6313       // Mark the bits case number touched.
6314       APInt BitMask = APInt::getZero(MinCaseVal->getBitWidth());
6315       for (auto *Case : CaseValues)
6316         BitMask |= (Case->getValue() - MinCaseVal->getValue());
6317 
6318       // Check if cases with the same result can cover all number
6319       // in touched bits.
6320       if (BitMask.popcount() == Log2_32(CaseCount)) {
6321         if (!MinCaseVal->isNullValue())
6322           Condition = Builder.CreateSub(Condition, MinCaseVal);
6323         Value *And = Builder.CreateAnd(Condition, ~BitMask, "switch.and");
6324         Value *Cmp = Builder.CreateICmpEQ(
6325             And, Constant::getNullValue(And->getType()), "switch.selectcmp");
6326         return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6327       }
6328     }
6329 
6330     // Handle the degenerate case where two cases have the same value.
6331     if (CaseValues.size() == 2) {
6332       Value *Cmp1 = Builder.CreateICmpEQ(Condition, CaseValues[0],
6333                                          "switch.selectcmp.case1");
6334       Value *Cmp2 = Builder.CreateICmpEQ(Condition, CaseValues[1],
6335                                          "switch.selectcmp.case2");
6336       Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
6337       return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
6338     }
6339   }
6340 
6341   return nullptr;
6342 }
6343 
6344 // Helper function to cleanup a switch instruction that has been converted into
6345 // a select, fixing up PHI nodes and basic blocks.
6346 static void removeSwitchAfterSelectFold(SwitchInst *SI, PHINode *PHI,
6347                                         Value *SelectValue,
6348                                         IRBuilder<> &Builder,
6349                                         DomTreeUpdater *DTU) {
6350   std::vector<DominatorTree::UpdateType> Updates;
6351 
6352   BasicBlock *SelectBB = SI->getParent();
6353   BasicBlock *DestBB = PHI->getParent();
6354 
6355   if (DTU && !is_contained(predecessors(DestBB), SelectBB))
6356     Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
6357   Builder.CreateBr(DestBB);
6358 
6359   // Remove the switch.
6360 
6361   PHI->removeIncomingValueIf(
6362       [&](unsigned Idx) { return PHI->getIncomingBlock(Idx) == SelectBB; });
6363   PHI->addIncoming(SelectValue, SelectBB);
6364 
6365   SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
6366   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
6367     BasicBlock *Succ = SI->getSuccessor(i);
6368 
6369     if (Succ == DestBB)
6370       continue;
6371     Succ->removePredecessor(SelectBB);
6372     if (DTU && RemovedSuccessors.insert(Succ).second)
6373       Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
6374   }
6375   SI->eraseFromParent();
6376   if (DTU)
6377     DTU->applyUpdates(Updates);
6378 }
6379 
6380 /// If a switch is only used to initialize one or more phi nodes in a common
6381 /// successor block with only two different constant values, try to replace the
6382 /// switch with a select. Returns true if the fold was made.
6383 static bool trySwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
6384                               DomTreeUpdater *DTU, const DataLayout &DL,
6385                               const TargetTransformInfo &TTI) {
6386   Value *const Cond = SI->getCondition();
6387   PHINode *PHI = nullptr;
6388   BasicBlock *CommonDest = nullptr;
6389   Constant *DefaultResult;
6390   SwitchCaseResultVectorTy UniqueResults;
6391   // Collect all the cases that will deliver the same value from the switch.
6392   if (!initializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
6393                              DL, TTI, /*MaxUniqueResults*/ 2))
6394     return false;
6395 
6396   assert(PHI != nullptr && "PHI for value select not found");
6397   Builder.SetInsertPoint(SI);
6398   Value *SelectValue =
6399       foldSwitchToSelect(UniqueResults, DefaultResult, Cond, Builder);
6400   if (!SelectValue)
6401     return false;
6402 
6403   removeSwitchAfterSelectFold(SI, PHI, SelectValue, Builder, DTU);
6404   return true;
6405 }
6406 
6407 namespace {
6408 
6409 /// This class represents a lookup table that can be used to replace a switch.
6410 class SwitchLookupTable {
6411 public:
6412   /// Create a lookup table to use as a switch replacement with the contents
6413   /// of Values, using DefaultValue to fill any holes in the table.
6414   SwitchLookupTable(
6415       Module &M, uint64_t TableSize, ConstantInt *Offset,
6416       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6417       Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
6418 
6419   /// Build instructions with Builder to retrieve the value at
6420   /// the position given by Index in the lookup table.
6421   Value *buildLookup(Value *Index, IRBuilder<> &Builder);
6422 
6423   /// Return true if a table with TableSize elements of
6424   /// type ElementType would fit in a target-legal register.
6425   static bool wouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
6426                                  Type *ElementType);
6427 
6428 private:
6429   // Depending on the contents of the table, it can be represented in
6430   // different ways.
6431   enum {
6432     // For tables where each element contains the same value, we just have to
6433     // store that single value and return it for each lookup.
6434     SingleValueKind,
6435 
6436     // For tables where there is a linear relationship between table index
6437     // and values. We calculate the result with a simple multiplication
6438     // and addition instead of a table lookup.
6439     LinearMapKind,
6440 
6441     // For small tables with integer elements, we can pack them into a bitmap
6442     // that fits into a target-legal register. Values are retrieved by
6443     // shift and mask operations.
6444     BitMapKind,
6445 
6446     // The table is stored as an array of values. Values are retrieved by load
6447     // instructions from the table.
6448     ArrayKind
6449   } Kind;
6450 
6451   // For SingleValueKind, this is the single value.
6452   Constant *SingleValue = nullptr;
6453 
6454   // For BitMapKind, this is the bitmap.
6455   ConstantInt *BitMap = nullptr;
6456   IntegerType *BitMapElementTy = nullptr;
6457 
6458   // For LinearMapKind, these are the constants used to derive the value.
6459   ConstantInt *LinearOffset = nullptr;
6460   ConstantInt *LinearMultiplier = nullptr;
6461   bool LinearMapValWrapped = false;
6462 
6463   // For ArrayKind, this is the array.
6464   GlobalVariable *Array = nullptr;
6465 };
6466 
6467 } // end anonymous namespace
6468 
6469 SwitchLookupTable::SwitchLookupTable(
6470     Module &M, uint64_t TableSize, ConstantInt *Offset,
6471     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
6472     Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
6473   assert(Values.size() && "Can't build lookup table without values!");
6474   assert(TableSize >= Values.size() && "Can't fit values in table!");
6475 
6476   // If all values in the table are equal, this is that value.
6477   SingleValue = Values.begin()->second;
6478 
6479   Type *ValueType = Values.begin()->second->getType();
6480 
6481   // Build up the table contents.
6482   SmallVector<Constant *, 64> TableContents(TableSize);
6483   for (size_t I = 0, E = Values.size(); I != E; ++I) {
6484     ConstantInt *CaseVal = Values[I].first;
6485     Constant *CaseRes = Values[I].second;
6486     assert(CaseRes->getType() == ValueType);
6487 
6488     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
6489     TableContents[Idx] = CaseRes;
6490 
6491     if (CaseRes != SingleValue)
6492       SingleValue = nullptr;
6493   }
6494 
6495   // Fill in any holes in the table with the default result.
6496   if (Values.size() < TableSize) {
6497     assert(DefaultValue &&
6498            "Need a default value to fill the lookup table holes.");
6499     assert(DefaultValue->getType() == ValueType);
6500     for (uint64_t I = 0; I < TableSize; ++I) {
6501       if (!TableContents[I])
6502         TableContents[I] = DefaultValue;
6503     }
6504 
6505     if (DefaultValue != SingleValue)
6506       SingleValue = nullptr;
6507   }
6508 
6509   // If each element in the table contains the same value, we only need to store
6510   // that single value.
6511   if (SingleValue) {
6512     Kind = SingleValueKind;
6513     return;
6514   }
6515 
6516   // Check if we can derive the value with a linear transformation from the
6517   // table index.
6518   if (isa<IntegerType>(ValueType)) {
6519     bool LinearMappingPossible = true;
6520     APInt PrevVal;
6521     APInt DistToPrev;
6522     // When linear map is monotonic and signed overflow doesn't happen on
6523     // maximum index, we can attach nsw on Add and Mul.
6524     bool NonMonotonic = false;
6525     assert(TableSize >= 2 && "Should be a SingleValue table.");
6526     // Check if there is the same distance between two consecutive values.
6527     for (uint64_t I = 0; I < TableSize; ++I) {
6528       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
6529       if (!ConstVal) {
6530         // This is an undef. We could deal with it, but undefs in lookup tables
6531         // are very seldom. It's probably not worth the additional complexity.
6532         LinearMappingPossible = false;
6533         break;
6534       }
6535       const APInt &Val = ConstVal->getValue();
6536       if (I != 0) {
6537         APInt Dist = Val - PrevVal;
6538         if (I == 1) {
6539           DistToPrev = Dist;
6540         } else if (Dist != DistToPrev) {
6541           LinearMappingPossible = false;
6542           break;
6543         }
6544         NonMonotonic |=
6545             Dist.isStrictlyPositive() ? Val.sle(PrevVal) : Val.sgt(PrevVal);
6546       }
6547       PrevVal = Val;
6548     }
6549     if (LinearMappingPossible) {
6550       LinearOffset = cast<ConstantInt>(TableContents[0]);
6551       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
6552       APInt M = LinearMultiplier->getValue();
6553       bool MayWrap = true;
6554       if (isIntN(M.getBitWidth(), TableSize - 1))
6555         (void)M.smul_ov(APInt(M.getBitWidth(), TableSize - 1), MayWrap);
6556       LinearMapValWrapped = NonMonotonic || MayWrap;
6557       Kind = LinearMapKind;
6558       ++NumLinearMaps;
6559       return;
6560     }
6561   }
6562 
6563   // If the type is integer and the table fits in a register, build a bitmap.
6564   if (wouldFitInRegister(DL, TableSize, ValueType)) {
6565     IntegerType *IT = cast<IntegerType>(ValueType);
6566     APInt TableInt(TableSize * IT->getBitWidth(), 0);
6567     for (uint64_t I = TableSize; I > 0; --I) {
6568       TableInt <<= IT->getBitWidth();
6569       // Insert values into the bitmap. Undef values are set to zero.
6570       if (!isa<UndefValue>(TableContents[I - 1])) {
6571         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
6572         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
6573       }
6574     }
6575     BitMap = ConstantInt::get(M.getContext(), TableInt);
6576     BitMapElementTy = IT;
6577     Kind = BitMapKind;
6578     ++NumBitMaps;
6579     return;
6580   }
6581 
6582   // Store the table in an array.
6583   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
6584   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
6585 
6586   Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
6587                              GlobalVariable::PrivateLinkage, Initializer,
6588                              "switch.table." + FuncName);
6589   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
6590   // Set the alignment to that of an array items. We will be only loading one
6591   // value out of it.
6592   Array->setAlignment(DL.getPrefTypeAlign(ValueType));
6593   Kind = ArrayKind;
6594 }
6595 
6596 Value *SwitchLookupTable::buildLookup(Value *Index, IRBuilder<> &Builder) {
6597   switch (Kind) {
6598   case SingleValueKind:
6599     return SingleValue;
6600   case LinearMapKind: {
6601     // Derive the result value from the input value.
6602     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
6603                                           false, "switch.idx.cast");
6604     if (!LinearMultiplier->isOne())
6605       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult",
6606                                  /*HasNUW = */ false,
6607                                  /*HasNSW = */ !LinearMapValWrapped);
6608 
6609     if (!LinearOffset->isZero())
6610       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset",
6611                                  /*HasNUW = */ false,
6612                                  /*HasNSW = */ !LinearMapValWrapped);
6613     return Result;
6614   }
6615   case BitMapKind: {
6616     // Type of the bitmap (e.g. i59).
6617     IntegerType *MapTy = BitMap->getIntegerType();
6618 
6619     // Cast Index to the same type as the bitmap.
6620     // Note: The Index is <= the number of elements in the table, so
6621     // truncating it to the width of the bitmask is safe.
6622     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
6623 
6624     // Multiply the shift amount by the element width. NUW/NSW can always be
6625     // set, because wouldFitInRegister guarantees Index * ShiftAmt is in
6626     // BitMap's bit width.
6627     ShiftAmt = Builder.CreateMul(
6628         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
6629         "switch.shiftamt",/*HasNUW =*/true,/*HasNSW =*/true);
6630 
6631     // Shift down.
6632     Value *DownShifted =
6633         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
6634     // Mask off.
6635     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
6636   }
6637   case ArrayKind: {
6638     // Make sure the table index will not overflow when treated as signed.
6639     IntegerType *IT = cast<IntegerType>(Index->getType());
6640     uint64_t TableSize =
6641         Array->getInitializer()->getType()->getArrayNumElements();
6642     if (TableSize > (1ULL << std::min(IT->getBitWidth() - 1, 63u)))
6643       Index = Builder.CreateZExt(
6644           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
6645           "switch.tableidx.zext");
6646 
6647     Value *GEPIndices[] = {Builder.getInt32(0), Index};
6648     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
6649                                            GEPIndices, "switch.gep");
6650     return Builder.CreateLoad(
6651         cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
6652         "switch.load");
6653   }
6654   }
6655   llvm_unreachable("Unknown lookup table kind!");
6656 }
6657 
6658 bool SwitchLookupTable::wouldFitInRegister(const DataLayout &DL,
6659                                            uint64_t TableSize,
6660                                            Type *ElementType) {
6661   auto *IT = dyn_cast<IntegerType>(ElementType);
6662   if (!IT)
6663     return false;
6664   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
6665   // are <= 15, we could try to narrow the type.
6666 
6667   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
6668   if (TableSize >= UINT_MAX / IT->getBitWidth())
6669     return false;
6670   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
6671 }
6672 
6673 static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
6674                                       const DataLayout &DL) {
6675   // Allow any legal type.
6676   if (TTI.isTypeLegal(Ty))
6677     return true;
6678 
6679   auto *IT = dyn_cast<IntegerType>(Ty);
6680   if (!IT)
6681     return false;
6682 
6683   // Also allow power of 2 integer types that have at least 8 bits and fit in
6684   // a register. These types are common in frontend languages and targets
6685   // usually support loads of these types.
6686   // TODO: We could relax this to any integer that fits in a register and rely
6687   // on ABI alignment and padding in the table to allow the load to be widened.
6688   // Or we could widen the constants and truncate the load.
6689   unsigned BitWidth = IT->getBitWidth();
6690   return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
6691          DL.fitsInLegalInteger(IT->getBitWidth());
6692 }
6693 
6694 static bool isSwitchDense(uint64_t NumCases, uint64_t CaseRange) {
6695   // 40% is the default density for building a jump table in optsize/minsize
6696   // mode. See also TargetLoweringBase::isSuitableForJumpTable(), which this
6697   // function was based on.
6698   const uint64_t MinDensity = 40;
6699 
6700   if (CaseRange >= UINT64_MAX / 100)
6701     return false; // Avoid multiplication overflows below.
6702 
6703   return NumCases * 100 >= CaseRange * MinDensity;
6704 }
6705 
6706 static bool isSwitchDense(ArrayRef<int64_t> Values) {
6707   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
6708   uint64_t Range = Diff + 1;
6709   if (Range < Diff)
6710     return false; // Overflow.
6711 
6712   return isSwitchDense(Values.size(), Range);
6713 }
6714 
6715 /// Determine whether a lookup table should be built for this switch, based on
6716 /// the number of cases, size of the table, and the types of the results.
6717 // TODO: We could support larger than legal types by limiting based on the
6718 // number of loads required and/or table size. If the constants are small we
6719 // could use smaller table entries and extend after the load.
6720 static bool
6721 shouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
6722                        const TargetTransformInfo &TTI, const DataLayout &DL,
6723                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
6724   if (SI->getNumCases() > TableSize)
6725     return false; // TableSize overflowed.
6726 
6727   bool AllTablesFitInRegister = true;
6728   bool HasIllegalType = false;
6729   for (const auto &I : ResultTypes) {
6730     Type *Ty = I.second;
6731 
6732     // Saturate this flag to true.
6733     HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
6734 
6735     // Saturate this flag to false.
6736     AllTablesFitInRegister =
6737         AllTablesFitInRegister &&
6738         SwitchLookupTable::wouldFitInRegister(DL, TableSize, Ty);
6739 
6740     // If both flags saturate, we're done. NOTE: This *only* works with
6741     // saturating flags, and all flags have to saturate first due to the
6742     // non-deterministic behavior of iterating over a dense map.
6743     if (HasIllegalType && !AllTablesFitInRegister)
6744       break;
6745   }
6746 
6747   // If each table would fit in a register, we should build it anyway.
6748   if (AllTablesFitInRegister)
6749     return true;
6750 
6751   // Don't build a table that doesn't fit in-register if it has illegal types.
6752   if (HasIllegalType)
6753     return false;
6754 
6755   return isSwitchDense(SI->getNumCases(), TableSize);
6756 }
6757 
6758 static bool shouldUseSwitchConditionAsTableIndex(
6759     ConstantInt &MinCaseVal, const ConstantInt &MaxCaseVal,
6760     bool HasDefaultResults, const SmallDenseMap<PHINode *, Type *> &ResultTypes,
6761     const DataLayout &DL, const TargetTransformInfo &TTI) {
6762   if (MinCaseVal.isNullValue())
6763     return true;
6764   if (MinCaseVal.isNegative() ||
6765       MaxCaseVal.getLimitedValue() == std::numeric_limits<uint64_t>::max() ||
6766       !HasDefaultResults)
6767     return false;
6768   return all_of(ResultTypes, [&](const auto &KV) {
6769     return SwitchLookupTable::wouldFitInRegister(
6770         DL, MaxCaseVal.getLimitedValue() + 1 /* TableSize */,
6771         KV.second /* ResultType */);
6772   });
6773 }
6774 
6775 /// Try to reuse the switch table index compare. Following pattern:
6776 /// \code
6777 ///     if (idx < tablesize)
6778 ///        r = table[idx]; // table does not contain default_value
6779 ///     else
6780 ///        r = default_value;
6781 ///     if (r != default_value)
6782 ///        ...
6783 /// \endcode
6784 /// Is optimized to:
6785 /// \code
6786 ///     cond = idx < tablesize;
6787 ///     if (cond)
6788 ///        r = table[idx];
6789 ///     else
6790 ///        r = default_value;
6791 ///     if (cond)
6792 ///        ...
6793 /// \endcode
6794 /// Jump threading will then eliminate the second if(cond).
6795 static void reuseTableCompare(
6796     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
6797     Constant *DefaultValue,
6798     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
6799   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
6800   if (!CmpInst)
6801     return;
6802 
6803   // We require that the compare is in the same block as the phi so that jump
6804   // threading can do its work afterwards.
6805   if (CmpInst->getParent() != PhiBlock)
6806     return;
6807 
6808   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
6809   if (!CmpOp1)
6810     return;
6811 
6812   Value *RangeCmp = RangeCheckBranch->getCondition();
6813   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
6814   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
6815 
6816   // Check if the compare with the default value is constant true or false.
6817   const DataLayout &DL = PhiBlock->getDataLayout();
6818   Constant *DefaultConst = ConstantFoldCompareInstOperands(
6819       CmpInst->getPredicate(), DefaultValue, CmpOp1, DL);
6820   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
6821     return;
6822 
6823   // Check if the compare with the case values is distinct from the default
6824   // compare result.
6825   for (auto ValuePair : Values) {
6826     Constant *CaseConst = ConstantFoldCompareInstOperands(
6827         CmpInst->getPredicate(), ValuePair.second, CmpOp1, DL);
6828     if (!CaseConst || CaseConst == DefaultConst ||
6829         (CaseConst != TrueConst && CaseConst != FalseConst))
6830       return;
6831   }
6832 
6833   // Check if the branch instruction dominates the phi node. It's a simple
6834   // dominance check, but sufficient for our needs.
6835   // Although this check is invariant in the calling loops, it's better to do it
6836   // at this late stage. Practically we do it at most once for a switch.
6837   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
6838   for (BasicBlock *Pred : predecessors(PhiBlock)) {
6839     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
6840       return;
6841   }
6842 
6843   if (DefaultConst == FalseConst) {
6844     // The compare yields the same result. We can replace it.
6845     CmpInst->replaceAllUsesWith(RangeCmp);
6846     ++NumTableCmpReuses;
6847   } else {
6848     // The compare yields the same result, just inverted. We can replace it.
6849     Value *InvertedTableCmp = BinaryOperator::CreateXor(
6850         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
6851         RangeCheckBranch->getIterator());
6852     CmpInst->replaceAllUsesWith(InvertedTableCmp);
6853     ++NumTableCmpReuses;
6854   }
6855 }
6856 
6857 /// If the switch is only used to initialize one or more phi nodes in a common
6858 /// successor block with different constant values, replace the switch with
6859 /// lookup tables.
6860 static bool switchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
6861                                 DomTreeUpdater *DTU, const DataLayout &DL,
6862                                 const TargetTransformInfo &TTI) {
6863   assert(SI->getNumCases() > 1 && "Degenerate switch?");
6864 
6865   BasicBlock *BB = SI->getParent();
6866   Function *Fn = BB->getParent();
6867   // Only build lookup table when we have a target that supports it or the
6868   // attribute is not set.
6869   if (!TTI.shouldBuildLookupTables() ||
6870       (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
6871     return false;
6872 
6873   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
6874   // split off a dense part and build a lookup table for that.
6875 
6876   // FIXME: This creates arrays of GEPs to constant strings, which means each
6877   // GEP needs a runtime relocation in PIC code. We should just build one big
6878   // string and lookup indices into that.
6879 
6880   // Ignore switches with less than three cases. Lookup tables will not make
6881   // them faster, so we don't analyze them.
6882   if (SI->getNumCases() < 3)
6883     return false;
6884 
6885   // Figure out the corresponding result for each case value and phi node in the
6886   // common destination, as well as the min and max case values.
6887   assert(!SI->cases().empty());
6888   SwitchInst::CaseIt CI = SI->case_begin();
6889   ConstantInt *MinCaseVal = CI->getCaseValue();
6890   ConstantInt *MaxCaseVal = CI->getCaseValue();
6891 
6892   BasicBlock *CommonDest = nullptr;
6893 
6894   using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
6895   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
6896 
6897   SmallDenseMap<PHINode *, Constant *> DefaultResults;
6898   SmallDenseMap<PHINode *, Type *> ResultTypes;
6899   SmallVector<PHINode *, 4> PHIs;
6900 
6901   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
6902     ConstantInt *CaseVal = CI->getCaseValue();
6903     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
6904       MinCaseVal = CaseVal;
6905     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
6906       MaxCaseVal = CaseVal;
6907 
6908     // Resulting value at phi nodes for this case value.
6909     using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
6910     ResultsTy Results;
6911     if (!getCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
6912                         Results, DL, TTI))
6913       return false;
6914 
6915     // Append the result from this case to the list for each phi.
6916     for (const auto &I : Results) {
6917       PHINode *PHI = I.first;
6918       Constant *Value = I.second;
6919       if (!ResultLists.count(PHI))
6920         PHIs.push_back(PHI);
6921       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
6922     }
6923   }
6924 
6925   // Keep track of the result types.
6926   for (PHINode *PHI : PHIs) {
6927     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
6928   }
6929 
6930   uint64_t NumResults = ResultLists[PHIs[0]].size();
6931 
6932   // If the table has holes, we need a constant result for the default case
6933   // or a bitmask that fits in a register.
6934   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
6935   bool HasDefaultResults =
6936       getCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
6937                      DefaultResultsList, DL, TTI);
6938 
6939   for (const auto &I : DefaultResultsList) {
6940     PHINode *PHI = I.first;
6941     Constant *Result = I.second;
6942     DefaultResults[PHI] = Result;
6943   }
6944 
6945   bool UseSwitchConditionAsTableIndex = shouldUseSwitchConditionAsTableIndex(
6946       *MinCaseVal, *MaxCaseVal, HasDefaultResults, ResultTypes, DL, TTI);
6947   uint64_t TableSize;
6948   if (UseSwitchConditionAsTableIndex)
6949     TableSize = MaxCaseVal->getLimitedValue() + 1;
6950   else
6951     TableSize =
6952         (MaxCaseVal->getValue() - MinCaseVal->getValue()).getLimitedValue() + 1;
6953 
6954   // If the default destination is unreachable, or if the lookup table covers
6955   // all values of the conditional variable, branch directly to the lookup table
6956   // BB. Otherwise, check that the condition is within the case range.
6957   bool DefaultIsReachable = !SI->defaultDestUndefined();
6958 
6959   bool TableHasHoles = (NumResults < TableSize);
6960 
6961   // If the table has holes but the default destination doesn't produce any
6962   // constant results, the lookup table entries corresponding to the holes will
6963   // contain undefined values.
6964   bool AllHolesAreUndefined = TableHasHoles && !HasDefaultResults;
6965 
6966   // If the default destination doesn't produce a constant result but is still
6967   // reachable, and the lookup table has holes, we need to use a mask to
6968   // determine if the current index should load from the lookup table or jump
6969   // to the default case.
6970   // The mask is unnecessary if the table has holes but the default destination
6971   // is unreachable, as in that case the holes must also be unreachable.
6972   bool NeedMask = AllHolesAreUndefined && DefaultIsReachable;
6973   if (NeedMask) {
6974     // As an extra penalty for the validity test we require more cases.
6975     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
6976       return false;
6977     if (!DL.fitsInLegalInteger(TableSize))
6978       return false;
6979   }
6980 
6981   if (!shouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
6982     return false;
6983 
6984   std::vector<DominatorTree::UpdateType> Updates;
6985 
6986   // Compute the maximum table size representable by the integer type we are
6987   // switching upon.
6988   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
6989   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
6990   assert(MaxTableSize >= TableSize &&
6991          "It is impossible for a switch to have more entries than the max "
6992          "representable value of its input integer type's size.");
6993 
6994   // Create the BB that does the lookups.
6995   Module &Mod = *CommonDest->getParent()->getParent();
6996   BasicBlock *LookupBB = BasicBlock::Create(
6997       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
6998 
6999   // Compute the table index value.
7000   Builder.SetInsertPoint(SI);
7001   Value *TableIndex;
7002   ConstantInt *TableIndexOffset;
7003   if (UseSwitchConditionAsTableIndex) {
7004     TableIndexOffset = ConstantInt::get(MaxCaseVal->getIntegerType(), 0);
7005     TableIndex = SI->getCondition();
7006   } else {
7007     TableIndexOffset = MinCaseVal;
7008     // If the default is unreachable, all case values are s>= MinCaseVal. Then
7009     // we can try to attach nsw.
7010     bool MayWrap = true;
7011     if (!DefaultIsReachable) {
7012       APInt Res = MaxCaseVal->getValue().ssub_ov(MinCaseVal->getValue(), MayWrap);
7013       (void)Res;
7014     }
7015 
7016     TableIndex = Builder.CreateSub(SI->getCondition(), TableIndexOffset,
7017                                    "switch.tableidx", /*HasNUW =*/false,
7018                                    /*HasNSW =*/!MayWrap);
7019   }
7020 
7021   BranchInst *RangeCheckBranch = nullptr;
7022 
7023   // Grow the table to cover all possible index values to avoid the range check.
7024   // It will use the default result to fill in the table hole later, so make
7025   // sure it exist.
7026   if (UseSwitchConditionAsTableIndex && HasDefaultResults) {
7027     ConstantRange CR = computeConstantRange(TableIndex, /* ForSigned */ false);
7028     // Grow the table shouldn't have any size impact by checking
7029     // wouldFitInRegister.
7030     // TODO: Consider growing the table also when it doesn't fit in a register
7031     // if no optsize is specified.
7032     const uint64_t UpperBound = CR.getUpper().getLimitedValue();
7033     if (!CR.isUpperWrapped() && all_of(ResultTypes, [&](const auto &KV) {
7034           return SwitchLookupTable::wouldFitInRegister(
7035               DL, UpperBound, KV.second /* ResultType */);
7036         })) {
7037       // There may be some case index larger than the UpperBound (unreachable
7038       // case), so make sure the table size does not get smaller.
7039       TableSize = std::max(UpperBound, TableSize);
7040       // The default branch is unreachable after we enlarge the lookup table.
7041       // Adjust DefaultIsReachable to reuse code path.
7042       DefaultIsReachable = false;
7043     }
7044   }
7045 
7046   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
7047   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7048     Builder.CreateBr(LookupBB);
7049     if (DTU)
7050       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7051     // Note: We call removeProdecessor later since we need to be able to get the
7052     // PHI value for the default case in case we're using a bit mask.
7053   } else {
7054     Value *Cmp = Builder.CreateICmpULT(
7055         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
7056     RangeCheckBranch =
7057         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
7058     if (DTU)
7059       Updates.push_back({DominatorTree::Insert, BB, LookupBB});
7060   }
7061 
7062   // Populate the BB that does the lookups.
7063   Builder.SetInsertPoint(LookupBB);
7064 
7065   if (NeedMask) {
7066     // Before doing the lookup, we do the hole check. The LookupBB is therefore
7067     // re-purposed to do the hole check, and we create a new LookupBB.
7068     BasicBlock *MaskBB = LookupBB;
7069     MaskBB->setName("switch.hole_check");
7070     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
7071                                   CommonDest->getParent(), CommonDest);
7072 
7073     // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
7074     // unnecessary illegal types.
7075     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
7076     APInt MaskInt(TableSizePowOf2, 0);
7077     APInt One(TableSizePowOf2, 1);
7078     // Build bitmask; fill in a 1 bit for every case.
7079     const ResultListTy &ResultList = ResultLists[PHIs[0]];
7080     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
7081       uint64_t Idx = (ResultList[I].first->getValue() - TableIndexOffset->getValue())
7082                          .getLimitedValue();
7083       MaskInt |= One << Idx;
7084     }
7085     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
7086 
7087     // Get the TableIndex'th bit of the bitmask.
7088     // If this bit is 0 (meaning hole) jump to the default destination,
7089     // else continue with table lookup.
7090     IntegerType *MapTy = TableMask->getIntegerType();
7091     Value *MaskIndex =
7092         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
7093     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
7094     Value *LoBit = Builder.CreateTrunc(
7095         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
7096     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
7097     if (DTU) {
7098       Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
7099       Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
7100     }
7101     Builder.SetInsertPoint(LookupBB);
7102     addPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
7103   }
7104 
7105   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
7106     // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
7107     // do not delete PHINodes here.
7108     SI->getDefaultDest()->removePredecessor(BB,
7109                                             /*KeepOneInputPHIs=*/true);
7110     if (DTU)
7111       Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
7112   }
7113 
7114   for (PHINode *PHI : PHIs) {
7115     const ResultListTy &ResultList = ResultLists[PHI];
7116 
7117     // Use any value to fill the lookup table holes.
7118     Constant *DV =
7119         AllHolesAreUndefined ? ResultLists[PHI][0].second : DefaultResults[PHI];
7120     StringRef FuncName = Fn->getName();
7121     SwitchLookupTable Table(Mod, TableSize, TableIndexOffset, ResultList, DV,
7122                             DL, FuncName);
7123 
7124     Value *Result = Table.buildLookup(TableIndex, Builder);
7125 
7126     // Do a small peephole optimization: re-use the switch table compare if
7127     // possible.
7128     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
7129       BasicBlock *PhiBlock = PHI->getParent();
7130       // Search for compare instructions which use the phi.
7131       for (auto *User : PHI->users()) {
7132         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
7133       }
7134     }
7135 
7136     PHI->addIncoming(Result, LookupBB);
7137   }
7138 
7139   Builder.CreateBr(CommonDest);
7140   if (DTU)
7141     Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
7142 
7143   // Remove the switch.
7144   SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
7145   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
7146     BasicBlock *Succ = SI->getSuccessor(i);
7147 
7148     if (Succ == SI->getDefaultDest())
7149       continue;
7150     Succ->removePredecessor(BB);
7151     if (DTU && RemovedSuccessors.insert(Succ).second)
7152       Updates.push_back({DominatorTree::Delete, BB, Succ});
7153   }
7154   SI->eraseFromParent();
7155 
7156   if (DTU)
7157     DTU->applyUpdates(Updates);
7158 
7159   ++NumLookupTables;
7160   if (NeedMask)
7161     ++NumLookupTablesHoles;
7162   return true;
7163 }
7164 
7165 /// Try to transform a switch that has "holes" in it to a contiguous sequence
7166 /// of cases.
7167 ///
7168 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
7169 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
7170 ///
7171 /// This converts a sparse switch into a dense switch which allows better
7172 /// lowering and could also allow transforming into a lookup table.
7173 static bool reduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
7174                               const DataLayout &DL,
7175                               const TargetTransformInfo &TTI) {
7176   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
7177   if (CondTy->getIntegerBitWidth() > 64 ||
7178       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7179     return false;
7180   // Only bother with this optimization if there are more than 3 switch cases;
7181   // SDAG will only bother creating jump tables for 4 or more cases.
7182   if (SI->getNumCases() < 4)
7183     return false;
7184 
7185   // This transform is agnostic to the signedness of the input or case values. We
7186   // can treat the case values as signed or unsigned. We can optimize more common
7187   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
7188   // as signed.
7189   SmallVector<int64_t,4> Values;
7190   for (const auto &C : SI->cases())
7191     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
7192   llvm::sort(Values);
7193 
7194   // If the switch is already dense, there's nothing useful to do here.
7195   if (isSwitchDense(Values))
7196     return false;
7197 
7198   // First, transform the values such that they start at zero and ascend.
7199   int64_t Base = Values[0];
7200   for (auto &V : Values)
7201     V -= (uint64_t)(Base);
7202 
7203   // Now we have signed numbers that have been shifted so that, given enough
7204   // precision, there are no negative values. Since the rest of the transform
7205   // is bitwise only, we switch now to an unsigned representation.
7206 
7207   // This transform can be done speculatively because it is so cheap - it
7208   // results in a single rotate operation being inserted.
7209 
7210   // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
7211   // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
7212   // less than 64.
7213   unsigned Shift = 64;
7214   for (auto &V : Values)
7215     Shift = std::min(Shift, (unsigned)llvm::countr_zero((uint64_t)V));
7216   assert(Shift < 64);
7217   if (Shift > 0)
7218     for (auto &V : Values)
7219       V = (int64_t)((uint64_t)V >> Shift);
7220 
7221   if (!isSwitchDense(Values))
7222     // Transform didn't create a dense switch.
7223     return false;
7224 
7225   // The obvious transform is to shift the switch condition right and emit a
7226   // check that the condition actually cleanly divided by GCD, i.e.
7227   //   C & (1 << Shift - 1) == 0
7228   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
7229   //
7230   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
7231   // shift and puts the shifted-off bits in the uppermost bits. If any of these
7232   // are nonzero then the switch condition will be very large and will hit the
7233   // default case.
7234 
7235   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
7236   Builder.SetInsertPoint(SI);
7237   Value *Sub =
7238       Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
7239   Value *Rot = Builder.CreateIntrinsic(
7240       Ty, Intrinsic::fshl,
7241       {Sub, Sub, ConstantInt::get(Ty, Ty->getBitWidth() - Shift)});
7242   SI->replaceUsesOfWith(SI->getCondition(), Rot);
7243 
7244   for (auto Case : SI->cases()) {
7245     auto *Orig = Case.getCaseValue();
7246     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base, true);
7247     Case.setValue(cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(Shift))));
7248   }
7249   return true;
7250 }
7251 
7252 /// Tries to transform switch of powers of two to reduce switch range.
7253 /// For example, switch like:
7254 /// switch (C) { case 1: case 2: case 64: case 128: }
7255 /// will be transformed to:
7256 /// switch (count_trailing_zeros(C)) { case 0: case 1: case 6: case 7: }
7257 ///
7258 /// This transformation allows better lowering and could allow transforming into
7259 /// a lookup table.
7260 static bool simplifySwitchOfPowersOfTwo(SwitchInst *SI, IRBuilder<> &Builder,
7261                                         const DataLayout &DL,
7262                                         const TargetTransformInfo &TTI) {
7263   Value *Condition = SI->getCondition();
7264   LLVMContext &Context = SI->getContext();
7265   auto *CondTy = cast<IntegerType>(Condition->getType());
7266 
7267   if (CondTy->getIntegerBitWidth() > 64 ||
7268       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
7269     return false;
7270 
7271   const auto CttzIntrinsicCost = TTI.getIntrinsicInstrCost(
7272       IntrinsicCostAttributes(Intrinsic::cttz, CondTy,
7273                               {Condition, ConstantInt::getTrue(Context)}),
7274       TTI::TCK_SizeAndLatency);
7275 
7276   if (CttzIntrinsicCost > TTI::TCC_Basic)
7277     // Inserting intrinsic is too expensive.
7278     return false;
7279 
7280   // Only bother with this optimization if there are more than 3 switch cases.
7281   // SDAG will only bother creating jump tables for 4 or more cases.
7282   if (SI->getNumCases() < 4)
7283     return false;
7284 
7285   // We perform this optimization only for switches with
7286   // unreachable default case.
7287   // This assumtion will save us from checking if `Condition` is a power of two.
7288   if (!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()))
7289     return false;
7290 
7291   // Check that switch cases are powers of two.
7292   SmallVector<uint64_t, 4> Values;
7293   for (const auto &Case : SI->cases()) {
7294     uint64_t CaseValue = Case.getCaseValue()->getValue().getZExtValue();
7295     if (llvm::has_single_bit(CaseValue))
7296       Values.push_back(CaseValue);
7297     else
7298       return false;
7299   }
7300 
7301   // isSwichDense requires case values to be sorted.
7302   llvm::sort(Values);
7303   if (!isSwitchDense(Values.size(), llvm::countr_zero(Values.back()) -
7304                                         llvm::countr_zero(Values.front()) + 1))
7305     // Transform is unable to generate dense switch.
7306     return false;
7307 
7308   Builder.SetInsertPoint(SI);
7309 
7310   // Replace each case with its trailing zeros number.
7311   for (auto &Case : SI->cases()) {
7312     auto *OrigValue = Case.getCaseValue();
7313     Case.setValue(ConstantInt::get(OrigValue->getIntegerType(),
7314                                    OrigValue->getValue().countr_zero()));
7315   }
7316 
7317   // Replace condition with its trailing zeros number.
7318   auto *ConditionTrailingZeros = Builder.CreateIntrinsic(
7319       Intrinsic::cttz, {CondTy}, {Condition, ConstantInt::getTrue(Context)});
7320 
7321   SI->setCondition(ConditionTrailingZeros);
7322 
7323   return true;
7324 }
7325 
7326 /// Fold switch over ucmp/scmp intrinsic to br if two of the switch arms have
7327 /// the same destination.
7328 static bool simplifySwitchOfCmpIntrinsic(SwitchInst *SI, IRBuilderBase &Builder,
7329                                          DomTreeUpdater *DTU) {
7330   auto *Cmp = dyn_cast<CmpIntrinsic>(SI->getCondition());
7331   if (!Cmp || !Cmp->hasOneUse())
7332     return false;
7333 
7334   SmallVector<uint32_t, 4> Weights;
7335   bool HasWeights = extractBranchWeights(getBranchWeightMDNode(*SI), Weights);
7336   if (!HasWeights)
7337     Weights.resize(4); // Avoid checking HasWeights everywhere.
7338 
7339   // Normalize to [us]cmp == Res ? Succ : OtherSucc.
7340   int64_t Res;
7341   BasicBlock *Succ, *OtherSucc;
7342   uint32_t SuccWeight = 0, OtherSuccWeight = 0;
7343   BasicBlock *Unreachable = nullptr;
7344 
7345   if (SI->getNumCases() == 2) {
7346     // Find which of 1, 0 or -1 is missing (handled by default dest).
7347     SmallSet<int64_t, 3> Missing;
7348     Missing.insert(1);
7349     Missing.insert(0);
7350     Missing.insert(-1);
7351 
7352     Succ = SI->getDefaultDest();
7353     SuccWeight = Weights[0];
7354     OtherSucc = nullptr;
7355     for (auto &Case : SI->cases()) {
7356       std::optional<int64_t> Val =
7357           Case.getCaseValue()->getValue().trySExtValue();
7358       if (!Val)
7359         return false;
7360       if (!Missing.erase(*Val))
7361         return false;
7362       if (OtherSucc && OtherSucc != Case.getCaseSuccessor())
7363         return false;
7364       OtherSucc = Case.getCaseSuccessor();
7365       OtherSuccWeight += Weights[Case.getSuccessorIndex()];
7366     }
7367 
7368     assert(Missing.size() == 1 && "Should have one case left");
7369     Res = *Missing.begin();
7370   } else if (SI->getNumCases() == 3 && SI->defaultDestUndefined()) {
7371     // Normalize so that Succ is taken once and OtherSucc twice.
7372     Unreachable = SI->getDefaultDest();
7373     Succ = OtherSucc = nullptr;
7374     for (auto &Case : SI->cases()) {
7375       BasicBlock *NewSucc = Case.getCaseSuccessor();
7376       uint32_t Weight = Weights[Case.getSuccessorIndex()];
7377       if (!OtherSucc || OtherSucc == NewSucc) {
7378         OtherSucc = NewSucc;
7379         OtherSuccWeight += Weight;
7380       } else if (!Succ) {
7381         Succ = NewSucc;
7382         SuccWeight = Weight;
7383       } else if (Succ == NewSucc) {
7384         std::swap(Succ, OtherSucc);
7385         std::swap(SuccWeight, OtherSuccWeight);
7386       } else
7387         return false;
7388     }
7389     for (auto &Case : SI->cases()) {
7390       std::optional<int64_t> Val =
7391           Case.getCaseValue()->getValue().trySExtValue();
7392       if (!Val || (Val != 1 && Val != 0 && Val != -1))
7393         return false;
7394       if (Case.getCaseSuccessor() == Succ) {
7395         Res = *Val;
7396         break;
7397       }
7398     }
7399   } else {
7400     return false;
7401   }
7402 
7403   // Determine predicate for the missing case.
7404   ICmpInst::Predicate Pred;
7405   switch (Res) {
7406   case 1:
7407     Pred = ICmpInst::ICMP_UGT;
7408     break;
7409   case 0:
7410     Pred = ICmpInst::ICMP_EQ;
7411     break;
7412   case -1:
7413     Pred = ICmpInst::ICMP_ULT;
7414     break;
7415   }
7416   if (Cmp->isSigned())
7417     Pred = ICmpInst::getSignedPredicate(Pred);
7418 
7419   MDNode *NewWeights = nullptr;
7420   if (HasWeights)
7421     NewWeights = MDBuilder(SI->getContext())
7422                      .createBranchWeights(SuccWeight, OtherSuccWeight);
7423 
7424   BasicBlock *BB = SI->getParent();
7425   Builder.SetInsertPoint(SI->getIterator());
7426   Value *ICmp = Builder.CreateICmp(Pred, Cmp->getLHS(), Cmp->getRHS());
7427   Builder.CreateCondBr(ICmp, Succ, OtherSucc, NewWeights,
7428                        SI->getMetadata(LLVMContext::MD_unpredictable));
7429   OtherSucc->removePredecessor(BB);
7430   if (Unreachable)
7431     Unreachable->removePredecessor(BB);
7432   SI->eraseFromParent();
7433   Cmp->eraseFromParent();
7434   if (DTU && Unreachable)
7435     DTU->applyUpdates({{DominatorTree::Delete, BB, Unreachable}});
7436   return true;
7437 }
7438 
7439 bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
7440   BasicBlock *BB = SI->getParent();
7441 
7442   if (isValueEqualityComparison(SI)) {
7443     // If we only have one predecessor, and if it is a branch on this value,
7444     // see if that predecessor totally determines the outcome of this switch.
7445     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7446       if (simplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
7447         return requestResimplify();
7448 
7449     Value *Cond = SI->getCondition();
7450     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
7451       if (simplifySwitchOnSelect(SI, Select))
7452         return requestResimplify();
7453 
7454     // If the block only contains the switch, see if we can fold the block
7455     // away into any preds.
7456     if (SI == &*BB->instructionsWithoutDebug(false).begin())
7457       if (foldValueComparisonIntoPredecessors(SI, Builder))
7458         return requestResimplify();
7459   }
7460 
7461   // Try to transform the switch into an icmp and a branch.
7462   // The conversion from switch to comparison may lose information on
7463   // impossible switch values, so disable it early in the pipeline.
7464   if (Options.ConvertSwitchRangeToICmp && turnSwitchRangeIntoICmp(SI, Builder))
7465     return requestResimplify();
7466 
7467   // Remove unreachable cases.
7468   if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
7469     return requestResimplify();
7470 
7471   if (simplifySwitchOfCmpIntrinsic(SI, Builder, DTU))
7472     return requestResimplify();
7473 
7474   if (trySwitchToSelect(SI, Builder, DTU, DL, TTI))
7475     return requestResimplify();
7476 
7477   if (Options.ForwardSwitchCondToPhi && forwardSwitchConditionToPHI(SI))
7478     return requestResimplify();
7479 
7480   // The conversion from switch to lookup tables results in difficult-to-analyze
7481   // code and makes pruning branches much harder. This is a problem if the
7482   // switch expression itself can still be restricted as a result of inlining or
7483   // CVP. Therefore, only apply this transformation during late stages of the
7484   // optimisation pipeline.
7485   if (Options.ConvertSwitchToLookupTable &&
7486       switchToLookupTable(SI, Builder, DTU, DL, TTI))
7487     return requestResimplify();
7488 
7489   if (simplifySwitchOfPowersOfTwo(SI, Builder, DL, TTI))
7490     return requestResimplify();
7491 
7492   if (reduceSwitchRange(SI, Builder, DL, TTI))
7493     return requestResimplify();
7494 
7495   if (HoistCommon &&
7496       hoistCommonCodeFromSuccessors(SI, !Options.HoistCommonInsts))
7497     return requestResimplify();
7498 
7499   return false;
7500 }
7501 
7502 bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
7503   BasicBlock *BB = IBI->getParent();
7504   bool Changed = false;
7505 
7506   // Eliminate redundant destinations.
7507   SmallPtrSet<Value *, 8> Succs;
7508   SmallSetVector<BasicBlock *, 8> RemovedSuccs;
7509   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
7510     BasicBlock *Dest = IBI->getDestination(i);
7511     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
7512       if (!Dest->hasAddressTaken())
7513         RemovedSuccs.insert(Dest);
7514       Dest->removePredecessor(BB);
7515       IBI->removeDestination(i);
7516       --i;
7517       --e;
7518       Changed = true;
7519     }
7520   }
7521 
7522   if (DTU) {
7523     std::vector<DominatorTree::UpdateType> Updates;
7524     Updates.reserve(RemovedSuccs.size());
7525     for (auto *RemovedSucc : RemovedSuccs)
7526       Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
7527     DTU->applyUpdates(Updates);
7528   }
7529 
7530   if (IBI->getNumDestinations() == 0) {
7531     // If the indirectbr has no successors, change it to unreachable.
7532     new UnreachableInst(IBI->getContext(), IBI->getIterator());
7533     eraseTerminatorAndDCECond(IBI);
7534     return true;
7535   }
7536 
7537   if (IBI->getNumDestinations() == 1) {
7538     // If the indirectbr has one successor, change it to a direct branch.
7539     BranchInst::Create(IBI->getDestination(0), IBI->getIterator());
7540     eraseTerminatorAndDCECond(IBI);
7541     return true;
7542   }
7543 
7544   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
7545     if (simplifyIndirectBrOnSelect(IBI, SI))
7546       return requestResimplify();
7547   }
7548   return Changed;
7549 }
7550 
7551 /// Given an block with only a single landing pad and a unconditional branch
7552 /// try to find another basic block which this one can be merged with.  This
7553 /// handles cases where we have multiple invokes with unique landing pads, but
7554 /// a shared handler.
7555 ///
7556 /// We specifically choose to not worry about merging non-empty blocks
7557 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
7558 /// practice, the optimizer produces empty landing pad blocks quite frequently
7559 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
7560 /// sinking in this file)
7561 ///
7562 /// This is primarily a code size optimization.  We need to avoid performing
7563 /// any transform which might inhibit optimization (such as our ability to
7564 /// specialize a particular handler via tail commoning).  We do this by not
7565 /// merging any blocks which require us to introduce a phi.  Since the same
7566 /// values are flowing through both blocks, we don't lose any ability to
7567 /// specialize.  If anything, we make such specialization more likely.
7568 ///
7569 /// TODO - This transformation could remove entries from a phi in the target
7570 /// block when the inputs in the phi are the same for the two blocks being
7571 /// merged.  In some cases, this could result in removal of the PHI entirely.
7572 static bool tryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
7573                                  BasicBlock *BB, DomTreeUpdater *DTU) {
7574   auto Succ = BB->getUniqueSuccessor();
7575   assert(Succ);
7576   // If there's a phi in the successor block, we'd likely have to introduce
7577   // a phi into the merged landing pad block.
7578   if (isa<PHINode>(*Succ->begin()))
7579     return false;
7580 
7581   for (BasicBlock *OtherPred : predecessors(Succ)) {
7582     if (BB == OtherPred)
7583       continue;
7584     BasicBlock::iterator I = OtherPred->begin();
7585     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
7586     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
7587       continue;
7588     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7589       ;
7590     BranchInst *BI2 = dyn_cast<BranchInst>(I);
7591     if (!BI2 || !BI2->isIdenticalTo(BI))
7592       continue;
7593 
7594     std::vector<DominatorTree::UpdateType> Updates;
7595 
7596     // We've found an identical block.  Update our predecessors to take that
7597     // path instead and make ourselves dead.
7598     SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
7599     for (BasicBlock *Pred : UniquePreds) {
7600       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
7601       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
7602              "unexpected successor");
7603       II->setUnwindDest(OtherPred);
7604       if (DTU) {
7605         Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
7606         Updates.push_back({DominatorTree::Delete, Pred, BB});
7607       }
7608     }
7609 
7610     // The debug info in OtherPred doesn't cover the merged control flow that
7611     // used to go through BB.  We need to delete it or update it.
7612     for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
7613       if (isa<DbgInfoIntrinsic>(Inst))
7614         Inst.eraseFromParent();
7615 
7616     SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
7617     for (BasicBlock *Succ : UniqueSuccs) {
7618       Succ->removePredecessor(BB);
7619       if (DTU)
7620         Updates.push_back({DominatorTree::Delete, BB, Succ});
7621     }
7622 
7623     IRBuilder<> Builder(BI);
7624     Builder.CreateUnreachable();
7625     BI->eraseFromParent();
7626     if (DTU)
7627       DTU->applyUpdates(Updates);
7628     return true;
7629   }
7630   return false;
7631 }
7632 
7633 bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
7634   return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
7635                                    : simplifyCondBranch(Branch, Builder);
7636 }
7637 
7638 bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
7639                                           IRBuilder<> &Builder) {
7640   BasicBlock *BB = BI->getParent();
7641   BasicBlock *Succ = BI->getSuccessor(0);
7642 
7643   // If the Terminator is the only non-phi instruction, simplify the block.
7644   // If LoopHeader is provided, check if the block or its successor is a loop
7645   // header. (This is for early invocations before loop simplify and
7646   // vectorization to keep canonical loop forms for nested loops. These blocks
7647   // can be eliminated when the pass is invoked later in the back-end.)
7648   // Note that if BB has only one predecessor then we do not introduce new
7649   // backedge, so we can eliminate BB.
7650   bool NeedCanonicalLoop =
7651       Options.NeedCanonicalLoop &&
7652       (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
7653        (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
7654   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
7655   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
7656       !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
7657     return true;
7658 
7659   // If the only instruction in the block is a seteq/setne comparison against a
7660   // constant, try to simplify the block.
7661   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
7662     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
7663       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7664         ;
7665       if (I->isTerminator() &&
7666           tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
7667         return true;
7668     }
7669 
7670   // See if we can merge an empty landing pad block with another which is
7671   // equivalent.
7672   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
7673     for (++I; isa<DbgInfoIntrinsic>(I); ++I)
7674       ;
7675     if (I->isTerminator() && tryToMergeLandingPad(LPad, BI, BB, DTU))
7676       return true;
7677   }
7678 
7679   // If this basic block is ONLY a compare and a branch, and if a predecessor
7680   // branches to us and our successor, fold the comparison into the
7681   // predecessor and use logical operations to update the incoming value
7682   // for PHI nodes in common successor.
7683   if (Options.SpeculateBlocks &&
7684       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7685                              Options.BonusInstThreshold))
7686     return requestResimplify();
7687   return false;
7688 }
7689 
7690 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
7691   BasicBlock *PredPred = nullptr;
7692   for (auto *P : predecessors(BB)) {
7693     BasicBlock *PPred = P->getSinglePredecessor();
7694     if (!PPred || (PredPred && PredPred != PPred))
7695       return nullptr;
7696     PredPred = PPred;
7697   }
7698   return PredPred;
7699 }
7700 
7701 /// Fold the following pattern:
7702 /// bb0:
7703 ///   br i1 %cond1, label %bb1, label %bb2
7704 /// bb1:
7705 ///   br i1 %cond2, label %bb3, label %bb4
7706 /// bb2:
7707 ///   br i1 %cond2, label %bb4, label %bb3
7708 /// bb3:
7709 ///   ...
7710 /// bb4:
7711 ///   ...
7712 /// into
7713 /// bb0:
7714 ///   %cond = xor i1 %cond1, %cond2
7715 ///   br i1 %cond, label %bb4, label %bb3
7716 /// bb3:
7717 ///   ...
7718 /// bb4:
7719 ///   ...
7720 /// NOTE: %cond2 always dominates the terminator of bb0.
7721 static bool mergeNestedCondBranch(BranchInst *BI, DomTreeUpdater *DTU) {
7722   BasicBlock *BB = BI->getParent();
7723   BasicBlock *BB1 = BI->getSuccessor(0);
7724   BasicBlock *BB2 = BI->getSuccessor(1);
7725   auto IsSimpleSuccessor = [BB](BasicBlock *Succ, BranchInst *&SuccBI) {
7726     if (Succ == BB)
7727       return false;
7728     if (&Succ->front() != Succ->getTerminator())
7729       return false;
7730     SuccBI = dyn_cast<BranchInst>(Succ->getTerminator());
7731     if (!SuccBI || !SuccBI->isConditional())
7732       return false;
7733     BasicBlock *Succ1 = SuccBI->getSuccessor(0);
7734     BasicBlock *Succ2 = SuccBI->getSuccessor(1);
7735     return Succ1 != Succ && Succ2 != Succ && Succ1 != BB && Succ2 != BB &&
7736            !isa<PHINode>(Succ1->front()) && !isa<PHINode>(Succ2->front());
7737   };
7738   BranchInst *BB1BI, *BB2BI;
7739   if (!IsSimpleSuccessor(BB1, BB1BI) || !IsSimpleSuccessor(BB2, BB2BI))
7740     return false;
7741 
7742   if (BB1BI->getCondition() != BB2BI->getCondition() ||
7743       BB1BI->getSuccessor(0) != BB2BI->getSuccessor(1) ||
7744       BB1BI->getSuccessor(1) != BB2BI->getSuccessor(0))
7745     return false;
7746 
7747   BasicBlock *BB3 = BB1BI->getSuccessor(0);
7748   BasicBlock *BB4 = BB1BI->getSuccessor(1);
7749   IRBuilder<> Builder(BI);
7750   BI->setCondition(
7751       Builder.CreateXor(BI->getCondition(), BB1BI->getCondition()));
7752   BB1->removePredecessor(BB);
7753   BI->setSuccessor(0, BB4);
7754   BB2->removePredecessor(BB);
7755   BI->setSuccessor(1, BB3);
7756   if (DTU) {
7757     SmallVector<DominatorTree::UpdateType, 4> Updates;
7758     Updates.push_back({DominatorTree::Delete, BB, BB1});
7759     Updates.push_back({DominatorTree::Insert, BB, BB4});
7760     Updates.push_back({DominatorTree::Delete, BB, BB2});
7761     Updates.push_back({DominatorTree::Insert, BB, BB3});
7762 
7763     DTU->applyUpdates(Updates);
7764   }
7765   bool HasWeight = false;
7766   uint64_t BBTWeight, BBFWeight;
7767   if (extractBranchWeights(*BI, BBTWeight, BBFWeight))
7768     HasWeight = true;
7769   else
7770     BBTWeight = BBFWeight = 1;
7771   uint64_t BB1TWeight, BB1FWeight;
7772   if (extractBranchWeights(*BB1BI, BB1TWeight, BB1FWeight))
7773     HasWeight = true;
7774   else
7775     BB1TWeight = BB1FWeight = 1;
7776   uint64_t BB2TWeight, BB2FWeight;
7777   if (extractBranchWeights(*BB2BI, BB2TWeight, BB2FWeight))
7778     HasWeight = true;
7779   else
7780     BB2TWeight = BB2FWeight = 1;
7781   if (HasWeight) {
7782     uint64_t Weights[2] = {BBTWeight * BB1FWeight + BBFWeight * BB2TWeight,
7783                            BBTWeight * BB1TWeight + BBFWeight * BB2FWeight};
7784     fitWeights(Weights);
7785     setBranchWeights(BI, Weights[0], Weights[1], /*IsExpected=*/false);
7786   }
7787   return true;
7788 }
7789 
7790 bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
7791   assert(
7792       !isa<ConstantInt>(BI->getCondition()) &&
7793       BI->getSuccessor(0) != BI->getSuccessor(1) &&
7794       "Tautological conditional branch should have been eliminated already.");
7795 
7796   BasicBlock *BB = BI->getParent();
7797   if (!Options.SimplifyCondBranch ||
7798       BI->getFunction()->hasFnAttribute(Attribute::OptForFuzzing))
7799     return false;
7800 
7801   // Conditional branch
7802   if (isValueEqualityComparison(BI)) {
7803     // If we only have one predecessor, and if it is a branch on this value,
7804     // see if that predecessor totally determines the outcome of this
7805     // switch.
7806     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
7807       if (simplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
7808         return requestResimplify();
7809 
7810     // This block must be empty, except for the setcond inst, if it exists.
7811     // Ignore dbg and pseudo intrinsics.
7812     auto I = BB->instructionsWithoutDebug(true).begin();
7813     if (&*I == BI) {
7814       if (foldValueComparisonIntoPredecessors(BI, Builder))
7815         return requestResimplify();
7816     } else if (&*I == cast<Instruction>(BI->getCondition())) {
7817       ++I;
7818       if (&*I == BI && foldValueComparisonIntoPredecessors(BI, Builder))
7819         return requestResimplify();
7820     }
7821   }
7822 
7823   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
7824   if (simplifyBranchOnICmpChain(BI, Builder, DL))
7825     return true;
7826 
7827   // If this basic block has dominating predecessor blocks and the dominating
7828   // blocks' conditions imply BI's condition, we know the direction of BI.
7829   std::optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
7830   if (Imp) {
7831     // Turn this into a branch on constant.
7832     auto *OldCond = BI->getCondition();
7833     ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
7834                              : ConstantInt::getFalse(BB->getContext());
7835     BI->setCondition(TorF);
7836     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
7837     return requestResimplify();
7838   }
7839 
7840   // If this basic block is ONLY a compare and a branch, and if a predecessor
7841   // branches to us and one of our successors, fold the comparison into the
7842   // predecessor and use logical operations to pick the right destination.
7843   if (Options.SpeculateBlocks &&
7844       foldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
7845                              Options.BonusInstThreshold))
7846     return requestResimplify();
7847 
7848   // We have a conditional branch to two blocks that are only reachable
7849   // from BI.  We know that the condbr dominates the two blocks, so see if
7850   // there is any identical code in the "then" and "else" blocks.  If so, we
7851   // can hoist it up to the branching block.
7852   if (BI->getSuccessor(0)->getSinglePredecessor()) {
7853     if (BI->getSuccessor(1)->getSinglePredecessor()) {
7854       if (HoistCommon &&
7855           hoistCommonCodeFromSuccessors(BI, !Options.HoistCommonInsts))
7856         return requestResimplify();
7857     } else {
7858       // If Successor #1 has multiple preds, we may be able to conditionally
7859       // execute Successor #0 if it branches to Successor #1.
7860       Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
7861       if (Succ0TI->getNumSuccessors() == 1 &&
7862           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
7863         if (speculativelyExecuteBB(BI, BI->getSuccessor(0)))
7864           return requestResimplify();
7865     }
7866   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
7867     // If Successor #0 has multiple preds, we may be able to conditionally
7868     // execute Successor #1 if it branches to Successor #0.
7869     Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
7870     if (Succ1TI->getNumSuccessors() == 1 &&
7871         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
7872       if (speculativelyExecuteBB(BI, BI->getSuccessor(1)))
7873         return requestResimplify();
7874   }
7875 
7876   // If this is a branch on something for which we know the constant value in
7877   // predecessors (e.g. a phi node in the current block), thread control
7878   // through this block.
7879   if (foldCondBranchOnValueKnownInPredecessor(BI, DTU, DL, Options.AC))
7880     return requestResimplify();
7881 
7882   // Scan predecessor blocks for conditional branches.
7883   for (BasicBlock *Pred : predecessors(BB))
7884     if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
7885       if (PBI != BI && PBI->isConditional())
7886         if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
7887           return requestResimplify();
7888 
7889   // Look for diamond patterns.
7890   if (MergeCondStores)
7891     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
7892       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
7893         if (PBI != BI && PBI->isConditional())
7894           if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
7895             return requestResimplify();
7896 
7897   // Look for nested conditional branches.
7898   if (mergeNestedCondBranch(BI, DTU))
7899     return requestResimplify();
7900 
7901   return false;
7902 }
7903 
7904 /// Check if passing a value to an instruction will cause undefined behavior.
7905 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
7906   Constant *C = dyn_cast<Constant>(V);
7907   if (!C)
7908     return false;
7909 
7910   if (I->use_empty())
7911     return false;
7912 
7913   if (C->isNullValue() || isa<UndefValue>(C)) {
7914     // Only look at the first use we can handle, avoid hurting compile time with
7915     // long uselists
7916     auto FindUse = llvm::find_if(I->users(), [](auto *U) {
7917       auto *Use = cast<Instruction>(U);
7918       // Change this list when we want to add new instructions.
7919       switch (Use->getOpcode()) {
7920       default:
7921         return false;
7922       case Instruction::GetElementPtr:
7923       case Instruction::Ret:
7924       case Instruction::BitCast:
7925       case Instruction::Load:
7926       case Instruction::Store:
7927       case Instruction::Call:
7928       case Instruction::CallBr:
7929       case Instruction::Invoke:
7930       case Instruction::UDiv:
7931       case Instruction::URem:
7932         // Note: signed div/rem of INT_MIN / -1 is also immediate UB, not
7933         // implemented to avoid code complexity as it is unclear how useful such
7934         // logic is.
7935       case Instruction::SDiv:
7936       case Instruction::SRem:
7937         return true;
7938       }
7939     });
7940     if (FindUse == I->user_end())
7941       return false;
7942     auto *Use = cast<Instruction>(*FindUse);
7943     // Bail out if Use is not in the same BB as I or Use == I or Use comes
7944     // before I in the block. The latter two can be the case if Use is a
7945     // PHI node.
7946     if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
7947       return false;
7948 
7949     // Now make sure that there are no instructions in between that can alter
7950     // control flow (eg. calls)
7951     auto InstrRange =
7952         make_range(std::next(I->getIterator()), Use->getIterator());
7953     if (any_of(InstrRange, [](Instruction &I) {
7954           return !isGuaranteedToTransferExecutionToSuccessor(&I);
7955         }))
7956       return false;
7957 
7958     // Look through GEPs. A load from a GEP derived from NULL is still undefined
7959     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
7960       if (GEP->getPointerOperand() == I) {
7961         // The current base address is null, there are four cases to consider:
7962         // getelementptr (TY, null, 0)                 -> null
7963         // getelementptr (TY, null, not zero)          -> may be modified
7964         // getelementptr inbounds (TY, null, 0)        -> null
7965         // getelementptr inbounds (TY, null, not zero) -> poison iff null is
7966         // undefined?
7967         if (!GEP->hasAllZeroIndices() &&
7968             (!GEP->isInBounds() ||
7969              NullPointerIsDefined(GEP->getFunction(),
7970                                   GEP->getPointerAddressSpace())))
7971           PtrValueMayBeModified = true;
7972         return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
7973       }
7974 
7975     // Look through return.
7976     if (ReturnInst *Ret = dyn_cast<ReturnInst>(Use)) {
7977       bool HasNoUndefAttr =
7978           Ret->getFunction()->hasRetAttribute(Attribute::NoUndef);
7979       // Return undefined to a noundef return value is undefined.
7980       if (isa<UndefValue>(C) && HasNoUndefAttr)
7981         return true;
7982       // Return null to a nonnull+noundef return value is undefined.
7983       if (C->isNullValue() && HasNoUndefAttr &&
7984           Ret->getFunction()->hasRetAttribute(Attribute::NonNull)) {
7985         return !PtrValueMayBeModified;
7986       }
7987     }
7988 
7989     // Load from null is undefined.
7990     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
7991       if (!LI->isVolatile())
7992         return !NullPointerIsDefined(LI->getFunction(),
7993                                      LI->getPointerAddressSpace());
7994 
7995     // Store to null is undefined.
7996     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
7997       if (!SI->isVolatile())
7998         return (!NullPointerIsDefined(SI->getFunction(),
7999                                       SI->getPointerAddressSpace())) &&
8000                SI->getPointerOperand() == I;
8001 
8002     // llvm.assume(false/undef) always triggers immediate UB.
8003     if (auto *Assume = dyn_cast<AssumeInst>(Use)) {
8004       // Ignore assume operand bundles.
8005       if (I == Assume->getArgOperand(0))
8006         return true;
8007     }
8008 
8009     if (auto *CB = dyn_cast<CallBase>(Use)) {
8010       if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
8011         return false;
8012       // A call to null is undefined.
8013       if (CB->getCalledOperand() == I)
8014         return true;
8015 
8016       if (C->isNullValue()) {
8017         for (const llvm::Use &Arg : CB->args())
8018           if (Arg == I) {
8019             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8020             if (CB->isPassingUndefUB(ArgIdx) &&
8021                 CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
8022               // Passing null to a nonnnull+noundef argument is undefined.
8023               return !PtrValueMayBeModified;
8024             }
8025           }
8026       } else if (isa<UndefValue>(C)) {
8027         // Passing undef to a noundef argument is undefined.
8028         for (const llvm::Use &Arg : CB->args())
8029           if (Arg == I) {
8030             unsigned ArgIdx = CB->getArgOperandNo(&Arg);
8031             if (CB->isPassingUndefUB(ArgIdx)) {
8032               // Passing undef to a noundef argument is undefined.
8033               return true;
8034             }
8035           }
8036       }
8037     }
8038     // Div/Rem by zero is immediate UB
8039     if (match(Use, m_BinOp(m_Value(), m_Specific(I))) && Use->isIntDivRem())
8040       return true;
8041   }
8042   return false;
8043 }
8044 
8045 /// If BB has an incoming value that will always trigger undefined behavior
8046 /// (eg. null pointer dereference), remove the branch leading here.
8047 static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
8048                                               DomTreeUpdater *DTU,
8049                                               AssumptionCache *AC) {
8050   for (PHINode &PHI : BB->phis())
8051     for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
8052       if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
8053         BasicBlock *Predecessor = PHI.getIncomingBlock(i);
8054         Instruction *T = Predecessor->getTerminator();
8055         IRBuilder<> Builder(T);
8056         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
8057           BB->removePredecessor(Predecessor);
8058           // Turn unconditional branches into unreachables and remove the dead
8059           // destination from conditional branches.
8060           if (BI->isUnconditional())
8061             Builder.CreateUnreachable();
8062           else {
8063             // Preserve guarding condition in assume, because it might not be
8064             // inferrable from any dominating condition.
8065             Value *Cond = BI->getCondition();
8066             CallInst *Assumption;
8067             if (BI->getSuccessor(0) == BB)
8068               Assumption = Builder.CreateAssumption(Builder.CreateNot(Cond));
8069             else
8070               Assumption = Builder.CreateAssumption(Cond);
8071             if (AC)
8072               AC->registerAssumption(cast<AssumeInst>(Assumption));
8073             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
8074                                                        : BI->getSuccessor(0));
8075           }
8076           BI->eraseFromParent();
8077           if (DTU)
8078             DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
8079           return true;
8080         } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
8081           // Redirect all branches leading to UB into
8082           // a newly created unreachable block.
8083           BasicBlock *Unreachable = BasicBlock::Create(
8084               Predecessor->getContext(), "unreachable", BB->getParent(), BB);
8085           Builder.SetInsertPoint(Unreachable);
8086           // The new block contains only one instruction: Unreachable
8087           Builder.CreateUnreachable();
8088           for (const auto &Case : SI->cases())
8089             if (Case.getCaseSuccessor() == BB) {
8090               BB->removePredecessor(Predecessor);
8091               Case.setSuccessor(Unreachable);
8092             }
8093           if (SI->getDefaultDest() == BB) {
8094             BB->removePredecessor(Predecessor);
8095             SI->setDefaultDest(Unreachable);
8096           }
8097 
8098           if (DTU)
8099             DTU->applyUpdates(
8100                 { { DominatorTree::Insert, Predecessor, Unreachable },
8101                   { DominatorTree::Delete, Predecessor, BB } });
8102           return true;
8103         }
8104       }
8105 
8106   return false;
8107 }
8108 
8109 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
8110   bool Changed = false;
8111 
8112   assert(BB && BB->getParent() && "Block not embedded in function!");
8113   assert(BB->getTerminator() && "Degenerate basic block encountered!");
8114 
8115   // Remove basic blocks that have no predecessors (except the entry block)...
8116   // or that just have themself as a predecessor.  These are unreachable.
8117   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
8118       BB->getSinglePredecessor() == BB) {
8119     LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
8120     DeleteDeadBlock(BB, DTU);
8121     return true;
8122   }
8123 
8124   // Check to see if we can constant propagate this terminator instruction
8125   // away...
8126   Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
8127                                     /*TLI=*/nullptr, DTU);
8128 
8129   // Check for and eliminate duplicate PHI nodes in this block.
8130   Changed |= EliminateDuplicatePHINodes(BB);
8131 
8132   // Check for and remove branches that will always cause undefined behavior.
8133   if (removeUndefIntroducingPredecessor(BB, DTU, Options.AC))
8134     return requestResimplify();
8135 
8136   // Merge basic blocks into their predecessor if there is only one distinct
8137   // pred, and if there is only one distinct successor of the predecessor, and
8138   // if there are no PHI nodes.
8139   if (MergeBlockIntoPredecessor(BB, DTU))
8140     return true;
8141 
8142   if (SinkCommon && Options.SinkCommonInsts)
8143     if (sinkCommonCodeFromPredecessors(BB, DTU) ||
8144         mergeCompatibleInvokes(BB, DTU)) {
8145       // sinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
8146       // so we may now how duplicate PHI's.
8147       // Let's rerun EliminateDuplicatePHINodes() first,
8148       // before foldTwoEntryPHINode() potentially converts them into select's,
8149       // after which we'd need a whole EarlyCSE pass run to cleanup them.
8150       return true;
8151     }
8152 
8153   IRBuilder<> Builder(BB);
8154 
8155   if (Options.SpeculateBlocks &&
8156       !BB->getParent()->hasFnAttribute(Attribute::OptForFuzzing)) {
8157     // If there is a trivial two-entry PHI node in this basic block, and we can
8158     // eliminate it, do so now.
8159     if (auto *PN = dyn_cast<PHINode>(BB->begin()))
8160       if (PN->getNumIncomingValues() == 2)
8161         if (foldTwoEntryPHINode(PN, TTI, DTU, Options.AC, DL,
8162                                 Options.SpeculateUnpredictables))
8163           return true;
8164   }
8165 
8166   Instruction *Terminator = BB->getTerminator();
8167   Builder.SetInsertPoint(Terminator);
8168   switch (Terminator->getOpcode()) {
8169   case Instruction::Br:
8170     Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
8171     break;
8172   case Instruction::Resume:
8173     Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
8174     break;
8175   case Instruction::CleanupRet:
8176     Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
8177     break;
8178   case Instruction::Switch:
8179     Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
8180     break;
8181   case Instruction::Unreachable:
8182     Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
8183     break;
8184   case Instruction::IndirectBr:
8185     Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
8186     break;
8187   }
8188 
8189   return Changed;
8190 }
8191 
8192 bool SimplifyCFGOpt::run(BasicBlock *BB) {
8193   bool Changed = false;
8194 
8195   // Repeated simplify BB as long as resimplification is requested.
8196   do {
8197     Resimplify = false;
8198 
8199     // Perform one round of simplifcation. Resimplify flag will be set if
8200     // another iteration is requested.
8201     Changed |= simplifyOnce(BB);
8202   } while (Resimplify);
8203 
8204   return Changed;
8205 }
8206 
8207 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
8208                        DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
8209                        ArrayRef<WeakVH> LoopHeaders) {
8210   return SimplifyCFGOpt(TTI, DTU, BB->getDataLayout(), LoopHeaders,
8211                         Options)
8212       .run(BB);
8213 }
8214