1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 32 #else 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 34 #endif 35 36 using namespace llvm; 37 38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 39 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 40 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 41 "controls the budget that is considered cheap (default = 4)")); 42 43 using namespace PatternMatch; 44 45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 47 /// creating a new one. 48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 49 Instruction::CastOps Op, 50 BasicBlock::iterator IP) { 51 // This function must be called with the builder having a valid insertion 52 // point. It doesn't need to be the actual IP where the uses of the returned 53 // cast will be added, but it must dominate such IP. 54 // We use this precondition to produce a cast that will dominate all its 55 // uses. In particular, this is crucial for the case where the builder's 56 // insertion point *is* the point where we were asked to put the cast. 57 // Since we don't know the builder's insertion point is actually 58 // where the uses will be added (only that it dominates it), we are 59 // not allowed to move it. 60 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 61 62 Value *Ret = nullptr; 63 64 // Check to see if there is already a cast! 65 for (User *U : V->users()) { 66 if (U->getType() != Ty) 67 continue; 68 CastInst *CI = dyn_cast<CastInst>(U); 69 if (!CI || CI->getOpcode() != Op) 70 continue; 71 72 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 73 // the cast must also properly dominate the Builder's insertion point. 74 if (IP->getParent() == CI->getParent() && &*BIP != CI && 75 (&*IP == CI || CI->comesBefore(&*IP))) { 76 Ret = CI; 77 break; 78 } 79 } 80 81 // Create a new cast. 82 if (!Ret) { 83 SCEVInsertPointGuard Guard(Builder, this); 84 Builder.SetInsertPoint(&*IP); 85 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 86 } 87 88 // We assert at the end of the function since IP might point to an 89 // instruction with different dominance properties than a cast 90 // (an invoke for example) and not dominate BIP (but the cast does). 91 assert(!isa<Instruction>(Ret) || 92 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 93 94 return Ret; 95 } 96 97 BasicBlock::iterator 98 SCEVExpander::findInsertPointAfter(Instruction *I, 99 Instruction *MustDominate) const { 100 BasicBlock::iterator IP = ++I->getIterator(); 101 if (auto *II = dyn_cast<InvokeInst>(I)) 102 IP = II->getNormalDest()->begin(); 103 104 while (isa<PHINode>(IP)) 105 ++IP; 106 107 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 108 ++IP; 109 } else if (isa<CatchSwitchInst>(IP)) { 110 IP = MustDominate->getParent()->getFirstInsertionPt(); 111 } else { 112 assert(!IP->isEHPad() && "unexpected eh pad!"); 113 } 114 115 // Adjust insert point to be after instructions inserted by the expander, so 116 // we can re-use already inserted instructions. Avoid skipping past the 117 // original \p MustDominate, in case it is an inserted instruction. 118 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 119 ++IP; 120 121 return IP; 122 } 123 124 BasicBlock::iterator 125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 126 // Cast the argument at the beginning of the entry block, after 127 // any bitcasts of other arguments. 128 if (Argument *A = dyn_cast<Argument>(V)) { 129 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 130 while ((isa<BitCastInst>(IP) && 131 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 132 cast<BitCastInst>(IP)->getOperand(0) != A) || 133 isa<DbgInfoIntrinsic>(IP)) 134 ++IP; 135 return IP; 136 } 137 138 // Cast the instruction immediately after the instruction. 139 if (Instruction *I = dyn_cast<Instruction>(V)) 140 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 141 142 // Otherwise, this must be some kind of a constant, 143 // so let's plop this cast into the function's entry block. 144 assert(isa<Constant>(V) && 145 "Expected the cast argument to be a global/constant"); 146 return Builder.GetInsertBlock() 147 ->getParent() 148 ->getEntryBlock() 149 .getFirstInsertionPt(); 150 } 151 152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 153 /// which must be possible with a noop cast, doing what we can to share 154 /// the casts. 155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 156 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 157 assert((Op == Instruction::BitCast || 158 Op == Instruction::PtrToInt || 159 Op == Instruction::IntToPtr) && 160 "InsertNoopCastOfTo cannot perform non-noop casts!"); 161 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 162 "InsertNoopCastOfTo cannot change sizes!"); 163 164 // inttoptr only works for integral pointers. For non-integral pointers, we 165 // can create a GEP on i8* null with the integral value as index. Note that 166 // it is safe to use GEP of null instead of inttoptr here, because only 167 // expressions already based on a GEP of null should be converted to pointers 168 // during expansion. 169 if (Op == Instruction::IntToPtr) { 170 auto *PtrTy = cast<PointerType>(Ty); 171 if (DL.isNonIntegralPointerType(PtrTy)) { 172 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 auto *GEP = Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 177 return Builder.CreateBitCast(GEP, Ty); 178 } 179 } 180 // Short-circuit unnecessary bitcasts. 181 if (Op == Instruction::BitCast) { 182 if (V->getType() == Ty) 183 return V; 184 if (CastInst *CI = dyn_cast<CastInst>(V)) { 185 if (CI->getOperand(0)->getType() == Ty) 186 return CI->getOperand(0); 187 } 188 } 189 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 190 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 192 if (CastInst *CI = dyn_cast<CastInst>(V)) 193 if ((CI->getOpcode() == Instruction::PtrToInt || 194 CI->getOpcode() == Instruction::IntToPtr) && 195 SE.getTypeSizeInBits(CI->getType()) == 196 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 197 return CI->getOperand(0); 198 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 199 if ((CE->getOpcode() == Instruction::PtrToInt || 200 CE->getOpcode() == Instruction::IntToPtr) && 201 SE.getTypeSizeInBits(CE->getType()) == 202 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 203 return CE->getOperand(0); 204 } 205 206 // Fold a cast of a constant. 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return ConstantExpr::getCast(Op, C, Ty); 209 210 // Try to reuse existing cast, or insert one. 211 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 212 } 213 214 /// InsertBinop - Insert the specified binary operator, doing a small amount 215 /// of work to avoid inserting an obviously redundant operation, and hoisting 216 /// to an outer loop when the opportunity is there and it is safe. 217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 218 Value *LHS, Value *RHS, 219 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 220 // Fold a binop with constant operands. 221 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 222 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223 return ConstantExpr::get(Opcode, CLHS, CRHS); 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 // TODO: Use the Builder, which will make CreateBinOp below fold with 277 // InstSimplifyFolder. 278 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// FactorOutConstant - Test if S is divisible by Factor, using signed 289 /// division. If so, update S with Factor divided out and return true. 290 /// S need not be evenly divisible if a reasonable remainder can be 291 /// computed. 292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 293 const SCEV *Factor, ScalarEvolution &SE, 294 const DataLayout &DL) { 295 // Everything is divisible by one. 296 if (Factor->isOne()) 297 return true; 298 299 // x/x == 1. 300 if (S == Factor) { 301 S = SE.getConstant(S->getType(), 1); 302 return true; 303 } 304 305 // For a Constant, check for a multiple of the given factor. 306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 307 // 0/x == 0. 308 if (C->isZero()) 309 return true; 310 // Check for divisibility. 311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 312 ConstantInt *CI = 313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 314 // If the quotient is zero and the remainder is non-zero, reject 315 // the value at this scale. It will be considered for subsequent 316 // smaller scales. 317 if (!CI->isZero()) { 318 const SCEV *Div = SE.getConstant(CI); 319 S = Div; 320 Remainder = SE.getAddExpr( 321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 322 return true; 323 } 324 } 325 } 326 327 // In a Mul, check if there is a constant operand which is a multiple 328 // of the given factor. 329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 330 // Size is known, check if there is a constant operand which is a multiple 331 // of the given factor. If so, we can factor it. 332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 334 if (!C->getAPInt().srem(FC->getAPInt())) { 335 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 337 S = SE.getMulExpr(NewMulOps); 338 return true; 339 } 340 } 341 342 // In an AddRec, check if both start and step are divisible. 343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 344 const SCEV *Step = A->getStepRecurrence(SE); 345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 347 return false; 348 if (!StepRem->isZero()) 349 return false; 350 const SCEV *Start = A->getStart(); 351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 352 return false; 353 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 354 A->getNoWrapFlags(SCEV::FlagNW)); 355 return true; 356 } 357 358 return false; 359 } 360 361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 362 /// is the number of SCEVAddRecExprs present, which are kept at the end of 363 /// the list. 364 /// 365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 366 Type *Ty, 367 ScalarEvolution &SE) { 368 unsigned NumAddRecs = 0; 369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 370 ++NumAddRecs; 371 // Group Ops into non-addrecs and addrecs. 372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 374 // Let ScalarEvolution sort and simplify the non-addrecs list. 375 const SCEV *Sum = NoAddRecs.empty() ? 376 SE.getConstant(Ty, 0) : 377 SE.getAddExpr(NoAddRecs); 378 // If it returned an add, use the operands. Otherwise it simplified 379 // the sum into a single value, so just use that. 380 Ops.clear(); 381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 382 Ops.append(Add->op_begin(), Add->op_end()); 383 else if (!Sum->isZero()) 384 Ops.push_back(Sum); 385 // Then append the addrecs. 386 Ops.append(AddRecs.begin(), AddRecs.end()); 387 } 388 389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 391 /// This helps expose more opportunities for folding parts of the expressions 392 /// into GEP indices. 393 /// 394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 395 Type *Ty, 396 ScalarEvolution &SE) { 397 // Find the addrecs. 398 SmallVector<const SCEV *, 8> AddRecs; 399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 401 const SCEV *Start = A->getStart(); 402 if (Start->isZero()) break; 403 const SCEV *Zero = SE.getConstant(Ty, 0); 404 AddRecs.push_back(SE.getAddRecExpr(Zero, 405 A->getStepRecurrence(SE), 406 A->getLoop(), 407 A->getNoWrapFlags(SCEV::FlagNW))); 408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 409 Ops[i] = Zero; 410 Ops.append(Add->op_begin(), Add->op_end()); 411 e += Add->getNumOperands(); 412 } else { 413 Ops[i] = Start; 414 } 415 } 416 if (!AddRecs.empty()) { 417 // Add the addrecs onto the end of the list. 418 Ops.append(AddRecs.begin(), AddRecs.end()); 419 // Resort the operand list, moving any constants to the front. 420 SimplifyAddOperands(Ops, Ty, SE); 421 } 422 } 423 424 /// expandAddToGEP - Expand an addition expression with a pointer type into 425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 426 /// BasicAliasAnalysis and other passes analyze the result. See the rules 427 /// for getelementptr vs. inttoptr in 428 /// http://llvm.org/docs/LangRef.html#pointeraliasing 429 /// for details. 430 /// 431 /// Design note: The correctness of using getelementptr here depends on 432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 433 /// they may introduce pointer arithmetic which may not be safely converted 434 /// into getelementptr. 435 /// 436 /// Design note: It might seem desirable for this function to be more 437 /// loop-aware. If some of the indices are loop-invariant while others 438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 439 /// loop-invariant portions of the overall computation outside the loop. 440 /// However, there are a few reasons this is not done here. Hoisting simple 441 /// arithmetic is a low-level optimization that often isn't very 442 /// important until late in the optimization process. In fact, passes 443 /// like InstructionCombining will combine GEPs, even if it means 444 /// pushing loop-invariant computation down into loops, so even if the 445 /// GEPs were split here, the work would quickly be undone. The 446 /// LoopStrengthReduction pass, which is usually run quite late (and 447 /// after the last InstructionCombining pass), takes care of hoisting 448 /// loop-invariant portions of expressions, after considering what 449 /// can be folded using target addressing modes. 450 /// 451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 452 const SCEV *const *op_end, 453 PointerType *PTy, 454 Type *Ty, 455 Value *V) { 456 SmallVector<Value *, 4> GepIndices; 457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 458 bool AnyNonZeroIndices = false; 459 460 // Split AddRecs up into parts as either of the parts may be usable 461 // without the other. 462 SplitAddRecs(Ops, Ty, SE); 463 464 Type *IntIdxTy = DL.getIndexType(PTy); 465 466 // For opaque pointers, always generate i8 GEP. 467 if (!PTy->isOpaque()) { 468 // Descend down the pointer's type and attempt to convert the other 469 // operands into GEP indices, at each level. The first index in a GEP 470 // indexes into the array implied by the pointer operand; the rest of 471 // the indices index into the element or field type selected by the 472 // preceding index. 473 Type *ElTy = PTy->getNonOpaquePointerElementType(); 474 for (;;) { 475 // If the scale size is not 0, attempt to factor out a scale for 476 // array indexing. 477 SmallVector<const SCEV *, 8> ScaledOps; 478 if (ElTy->isSized()) { 479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 480 if (!ElSize->isZero()) { 481 SmallVector<const SCEV *, 8> NewOps; 482 for (const SCEV *Op : Ops) { 483 const SCEV *Remainder = SE.getConstant(Ty, 0); 484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 485 // Op now has ElSize factored out. 486 ScaledOps.push_back(Op); 487 if (!Remainder->isZero()) 488 NewOps.push_back(Remainder); 489 AnyNonZeroIndices = true; 490 } else { 491 // The operand was not divisible, so add it to the list of 492 // operands we'll scan next iteration. 493 NewOps.push_back(Op); 494 } 495 } 496 // If we made any changes, update Ops. 497 if (!ScaledOps.empty()) { 498 Ops = NewOps; 499 SimplifyAddOperands(Ops, Ty, SE); 500 } 501 } 502 } 503 504 // Record the scaled array index for this level of the type. If 505 // we didn't find any operands that could be factored, tentatively 506 // assume that element zero was selected (since the zero offset 507 // would obviously be folded away). 508 Value *Scaled = 509 ScaledOps.empty() 510 ? Constant::getNullValue(Ty) 511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 512 GepIndices.push_back(Scaled); 513 514 // Collect struct field index operands. 515 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 516 bool FoundFieldNo = false; 517 // An empty struct has no fields. 518 if (STy->getNumElements() == 0) break; 519 // Field offsets are known. See if a constant offset falls within any of 520 // the struct fields. 521 if (Ops.empty()) 522 break; 523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 524 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 525 const StructLayout &SL = *DL.getStructLayout(STy); 526 uint64_t FullOffset = C->getValue()->getZExtValue(); 527 if (FullOffset < SL.getSizeInBytes()) { 528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 529 GepIndices.push_back( 530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 531 ElTy = STy->getTypeAtIndex(ElIdx); 532 Ops[0] = 533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 534 AnyNonZeroIndices = true; 535 FoundFieldNo = true; 536 } 537 } 538 // If no struct field offsets were found, tentatively assume that 539 // field zero was selected (since the zero offset would obviously 540 // be folded away). 541 if (!FoundFieldNo) { 542 ElTy = STy->getTypeAtIndex(0u); 543 GepIndices.push_back( 544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 545 } 546 } 547 548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 549 ElTy = ATy->getElementType(); 550 else 551 // FIXME: Handle VectorType. 552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 553 // constant, therefore can not be factored out. The generated IR is less 554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 555 break; 556 } 557 } 558 559 // If none of the operands were convertible to proper GEP indices, cast 560 // the base to i8* and do an ugly getelementptr with that. It's still 561 // better than ptrtoint+arithmetic+inttoptr at least. 562 if (!AnyNonZeroIndices) { 563 // Cast the base to i8*. 564 if (!PTy->isOpaque()) 565 V = InsertNoopCastOfTo(V, 566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 567 568 assert(!isa<Instruction>(V) || 569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 570 571 // Expand the operands for a plain byte offset. 572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 573 574 // Fold a GEP with constant operands. 575 if (Constant *CLHS = dyn_cast<Constant>(V)) 576 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 578 CLHS, CRHS); 579 580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 581 unsigned ScanLimit = 6; 582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 583 // Scanning starts from the last instruction before the insertion point. 584 BasicBlock::iterator IP = Builder.GetInsertPoint(); 585 if (IP != BlockBegin) { 586 --IP; 587 for (; ScanLimit; --IP, --ScanLimit) { 588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 589 // generated code. 590 if (isa<DbgInfoIntrinsic>(IP)) 591 ScanLimit++; 592 if (IP->getOpcode() == Instruction::GetElementPtr && 593 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 594 cast<GEPOperator>(&*IP)->getSourceElementType() == 595 Type::getInt8Ty(Ty->getContext())) 596 return &*IP; 597 if (IP == BlockBegin) break; 598 } 599 } 600 601 // Save the original insertion point so we can restore it when we're done. 602 SCEVInsertPointGuard Guard(Builder, this); 603 604 // Move the insertion point out of as many loops as we can. 605 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 606 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 607 BasicBlock *Preheader = L->getLoopPreheader(); 608 if (!Preheader) break; 609 610 // Ok, move up a level. 611 Builder.SetInsertPoint(Preheader->getTerminator()); 612 } 613 614 // Emit a GEP. 615 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 616 } 617 618 { 619 SCEVInsertPointGuard Guard(Builder, this); 620 621 // Move the insertion point out of as many loops as we can. 622 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 623 if (!L->isLoopInvariant(V)) break; 624 625 bool AnyIndexNotLoopInvariant = any_of( 626 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 627 628 if (AnyIndexNotLoopInvariant) 629 break; 630 631 BasicBlock *Preheader = L->getLoopPreheader(); 632 if (!Preheader) break; 633 634 // Ok, move up a level. 635 Builder.SetInsertPoint(Preheader->getTerminator()); 636 } 637 638 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 639 // because ScalarEvolution may have changed the address arithmetic to 640 // compute a value which is beyond the end of the allocated object. 641 Value *Casted = V; 642 if (V->getType() != PTy) 643 Casted = InsertNoopCastOfTo(Casted, PTy); 644 Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 645 Casted, GepIndices, "scevgep"); 646 Ops.push_back(SE.getUnknown(GEP)); 647 } 648 649 return expand(SE.getAddExpr(Ops)); 650 } 651 652 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 653 Value *V) { 654 const SCEV *const Ops[1] = {Op}; 655 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 656 } 657 658 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 659 /// SCEV expansion. If they are nested, this is the most nested. If they are 660 /// neighboring, pick the later. 661 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 662 DominatorTree &DT) { 663 if (!A) return B; 664 if (!B) return A; 665 if (A->contains(B)) return B; 666 if (B->contains(A)) return A; 667 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 668 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 669 return A; // Arbitrarily break the tie. 670 } 671 672 /// getRelevantLoop - Get the most relevant loop associated with the given 673 /// expression, according to PickMostRelevantLoop. 674 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 675 // Test whether we've already computed the most relevant loop for this SCEV. 676 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 677 if (!Pair.second) 678 return Pair.first->second; 679 680 if (isa<SCEVConstant>(S)) 681 // A constant has no relevant loops. 682 return nullptr; 683 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 684 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 685 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 686 // A non-instruction has no relevant loops. 687 return nullptr; 688 } 689 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 690 const Loop *L = nullptr; 691 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 692 L = AR->getLoop(); 693 for (const SCEV *Op : N->operands()) 694 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 695 return RelevantLoops[N] = L; 696 } 697 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 698 const Loop *Result = getRelevantLoop(C->getOperand()); 699 return RelevantLoops[C] = Result; 700 } 701 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 702 const Loop *Result = PickMostRelevantLoop( 703 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 704 return RelevantLoops[D] = Result; 705 } 706 llvm_unreachable("Unexpected SCEV type!"); 707 } 708 709 namespace { 710 711 /// LoopCompare - Compare loops by PickMostRelevantLoop. 712 class LoopCompare { 713 DominatorTree &DT; 714 public: 715 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 716 717 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 718 std::pair<const Loop *, const SCEV *> RHS) const { 719 // Keep pointer operands sorted at the end. 720 if (LHS.second->getType()->isPointerTy() != 721 RHS.second->getType()->isPointerTy()) 722 return LHS.second->getType()->isPointerTy(); 723 724 // Compare loops with PickMostRelevantLoop. 725 if (LHS.first != RHS.first) 726 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 727 728 // If one operand is a non-constant negative and the other is not, 729 // put the non-constant negative on the right so that a sub can 730 // be used instead of a negate and add. 731 if (LHS.second->isNonConstantNegative()) { 732 if (!RHS.second->isNonConstantNegative()) 733 return false; 734 } else if (RHS.second->isNonConstantNegative()) 735 return true; 736 737 // Otherwise they are equivalent according to this comparison. 738 return false; 739 } 740 }; 741 742 } 743 744 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 745 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 746 747 // Collect all the add operands in a loop, along with their associated loops. 748 // Iterate in reverse so that constants are emitted last, all else equal, and 749 // so that pointer operands are inserted first, which the code below relies on 750 // to form more involved GEPs. 751 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 752 for (const SCEV *Op : reverse(S->operands())) 753 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 754 755 // Sort by loop. Use a stable sort so that constants follow non-constants and 756 // pointer operands precede non-pointer operands. 757 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 758 759 // Emit instructions to add all the operands. Hoist as much as possible 760 // out of loops, and form meaningful getelementptrs where possible. 761 Value *Sum = nullptr; 762 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 763 const Loop *CurLoop = I->first; 764 const SCEV *Op = I->second; 765 if (!Sum) { 766 // This is the first operand. Just expand it. 767 Sum = expand(Op); 768 ++I; 769 continue; 770 } 771 772 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 773 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 774 // The running sum expression is a pointer. Try to form a getelementptr 775 // at this level with that as the base. 776 SmallVector<const SCEV *, 4> NewOps; 777 for (; I != E && I->first == CurLoop; ++I) { 778 // If the operand is SCEVUnknown and not instructions, peek through 779 // it, to enable more of it to be folded into the GEP. 780 const SCEV *X = I->second; 781 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 782 if (!isa<Instruction>(U->getValue())) 783 X = SE.getSCEV(U->getValue()); 784 NewOps.push_back(X); 785 } 786 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 787 } else if (Op->isNonConstantNegative()) { 788 // Instead of doing a negate and add, just do a subtract. 789 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 790 Sum = InsertNoopCastOfTo(Sum, Ty); 791 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 792 /*IsSafeToHoist*/ true); 793 ++I; 794 } else { 795 // A simple add. 796 Value *W = expandCodeForImpl(Op, Ty, false); 797 Sum = InsertNoopCastOfTo(Sum, Ty); 798 // Canonicalize a constant to the RHS. 799 if (isa<Constant>(Sum)) std::swap(Sum, W); 800 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 801 /*IsSafeToHoist*/ true); 802 ++I; 803 } 804 } 805 806 return Sum; 807 } 808 809 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 810 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 811 812 // Collect all the mul operands in a loop, along with their associated loops. 813 // Iterate in reverse so that constants are emitted last, all else equal. 814 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 815 for (const SCEV *Op : reverse(S->operands())) 816 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 817 818 // Sort by loop. Use a stable sort so that constants follow non-constants. 819 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 820 821 // Emit instructions to mul all the operands. Hoist as much as possible 822 // out of loops. 823 Value *Prod = nullptr; 824 auto I = OpsAndLoops.begin(); 825 826 // Expand the calculation of X pow N in the following manner: 827 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 828 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 829 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 830 auto E = I; 831 // Calculate how many times the same operand from the same loop is included 832 // into this power. 833 uint64_t Exponent = 0; 834 const uint64_t MaxExponent = UINT64_MAX >> 1; 835 // No one sane will ever try to calculate such huge exponents, but if we 836 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 837 // below when the power of 2 exceeds our Exponent, and we want it to be 838 // 1u << 31 at most to not deal with unsigned overflow. 839 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 840 ++Exponent; 841 ++E; 842 } 843 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 844 845 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 846 // that are needed into the result. 847 Value *P = expandCodeForImpl(I->second, Ty, false); 848 Value *Result = nullptr; 849 if (Exponent & 1) 850 Result = P; 851 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 852 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 853 /*IsSafeToHoist*/ true); 854 if (Exponent & BinExp) 855 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 856 SCEV::FlagAnyWrap, 857 /*IsSafeToHoist*/ true) 858 : P; 859 } 860 861 I = E; 862 assert(Result && "Nothing was expanded?"); 863 return Result; 864 }; 865 866 while (I != OpsAndLoops.end()) { 867 if (!Prod) { 868 // This is the first operand. Just expand it. 869 Prod = ExpandOpBinPowN(); 870 } else if (I->second->isAllOnesValue()) { 871 // Instead of doing a multiply by negative one, just do a negate. 872 Prod = InsertNoopCastOfTo(Prod, Ty); 873 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 874 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 875 ++I; 876 } else { 877 // A simple mul. 878 Value *W = ExpandOpBinPowN(); 879 Prod = InsertNoopCastOfTo(Prod, Ty); 880 // Canonicalize a constant to the RHS. 881 if (isa<Constant>(Prod)) std::swap(Prod, W); 882 const APInt *RHS; 883 if (match(W, m_Power2(RHS))) { 884 // Canonicalize Prod*(1<<C) to Prod<<C. 885 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 886 auto NWFlags = S->getNoWrapFlags(); 887 // clear nsw flag if shl will produce poison value. 888 if (RHS->logBase2() == RHS->getBitWidth() - 1) 889 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 890 Prod = InsertBinop(Instruction::Shl, Prod, 891 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 892 /*IsSafeToHoist*/ true); 893 } else { 894 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 895 /*IsSafeToHoist*/ true); 896 } 897 } 898 } 899 900 return Prod; 901 } 902 903 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 904 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 905 906 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 908 const APInt &RHS = SC->getAPInt(); 909 if (RHS.isPowerOf2()) 910 return InsertBinop(Instruction::LShr, LHS, 911 ConstantInt::get(Ty, RHS.logBase2()), 912 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 913 } 914 915 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 916 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 917 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 918 } 919 920 /// Determine if this is a well-behaved chain of instructions leading back to 921 /// the PHI. If so, it may be reused by expanded expressions. 922 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 923 const Loop *L) { 924 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 925 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 926 return false; 927 // If any of the operands don't dominate the insert position, bail. 928 // Addrec operands are always loop-invariant, so this can only happen 929 // if there are instructions which haven't been hoisted. 930 if (L == IVIncInsertLoop) { 931 for (Use &Op : llvm::drop_begin(IncV->operands())) 932 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 933 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 934 return false; 935 } 936 // Advance to the next instruction. 937 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 938 if (!IncV) 939 return false; 940 941 if (IncV->mayHaveSideEffects()) 942 return false; 943 944 if (IncV == PN) 945 return true; 946 947 return isNormalAddRecExprPHI(PN, IncV, L); 948 } 949 950 /// getIVIncOperand returns an induction variable increment's induction 951 /// variable operand. 952 /// 953 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 954 /// operands dominate InsertPos. 955 /// 956 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 957 /// simple patterns generated by getAddRecExprPHILiterally and 958 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 959 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 960 Instruction *InsertPos, 961 bool allowScale) { 962 if (IncV == InsertPos) 963 return nullptr; 964 965 switch (IncV->getOpcode()) { 966 default: 967 return nullptr; 968 // Check for a simple Add/Sub or GEP of a loop invariant step. 969 case Instruction::Add: 970 case Instruction::Sub: { 971 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 972 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 973 return dyn_cast<Instruction>(IncV->getOperand(0)); 974 return nullptr; 975 } 976 case Instruction::BitCast: 977 return dyn_cast<Instruction>(IncV->getOperand(0)); 978 case Instruction::GetElementPtr: 979 for (Use &U : llvm::drop_begin(IncV->operands())) { 980 if (isa<Constant>(U)) 981 continue; 982 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 983 if (!SE.DT.dominates(OInst, InsertPos)) 984 return nullptr; 985 } 986 if (allowScale) { 987 // allow any kind of GEP as long as it can be hoisted. 988 continue; 989 } 990 // This must be a pointer addition of constants (pretty), which is already 991 // handled, or some number of address-size elements (ugly). Ugly geps 992 // have 2 operands. i1* is used by the expander to represent an 993 // address-size element. 994 if (IncV->getNumOperands() != 2) 995 return nullptr; 996 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 997 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 998 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 999 return nullptr; 1000 break; 1001 } 1002 return dyn_cast<Instruction>(IncV->getOperand(0)); 1003 } 1004 } 1005 1006 /// If the insert point of the current builder or any of the builders on the 1007 /// stack of saved builders has 'I' as its insert point, update it to point to 1008 /// the instruction after 'I'. This is intended to be used when the instruction 1009 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1010 /// different block, the inconsistent insert point (with a mismatched 1011 /// Instruction and Block) can lead to an instruction being inserted in a block 1012 /// other than its parent. 1013 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1014 BasicBlock::iterator It(*I); 1015 BasicBlock::iterator NewInsertPt = std::next(It); 1016 if (Builder.GetInsertPoint() == It) 1017 Builder.SetInsertPoint(&*NewInsertPt); 1018 for (auto *InsertPtGuard : InsertPointGuards) 1019 if (InsertPtGuard->GetInsertPoint() == It) 1020 InsertPtGuard->SetInsertPoint(NewInsertPt); 1021 } 1022 1023 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1024 /// it available to other uses in this loop. Recursively hoist any operands, 1025 /// until we reach a value that dominates InsertPos. 1026 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1027 if (SE.DT.dominates(IncV, InsertPos)) 1028 return true; 1029 1030 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1031 // its existing users. 1032 if (isa<PHINode>(InsertPos) || 1033 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1034 return false; 1035 1036 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1037 return false; 1038 1039 // Check that the chain of IV operands leading back to Phi can be hoisted. 1040 SmallVector<Instruction*, 4> IVIncs; 1041 for(;;) { 1042 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1043 if (!Oper) 1044 return false; 1045 // IncV is safe to hoist. 1046 IVIncs.push_back(IncV); 1047 IncV = Oper; 1048 if (SE.DT.dominates(IncV, InsertPos)) 1049 break; 1050 } 1051 for (Instruction *I : llvm::reverse(IVIncs)) { 1052 fixupInsertPoints(I); 1053 I->moveBefore(InsertPos); 1054 } 1055 return true; 1056 } 1057 1058 /// Determine if this cyclic phi is in a form that would have been generated by 1059 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1060 /// as it is in a low-cost form, for example, no implied multiplication. This 1061 /// should match any patterns generated by getAddRecExprPHILiterally and 1062 /// expandAddtoGEP. 1063 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1064 const Loop *L) { 1065 for(Instruction *IVOper = IncV; 1066 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1067 /*allowScale=*/false));) { 1068 if (IVOper == PN) 1069 return true; 1070 } 1071 return false; 1072 } 1073 1074 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1075 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1076 /// need to materialize IV increments elsewhere to handle difficult situations. 1077 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1078 Type *ExpandTy, Type *IntTy, 1079 bool useSubtract) { 1080 Value *IncV; 1081 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1082 if (ExpandTy->isPointerTy()) { 1083 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1084 // If the step isn't constant, don't use an implicitly scaled GEP, because 1085 // that would require a multiply inside the loop. 1086 if (!isa<ConstantInt>(StepV)) 1087 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1088 GEPPtrTy->getAddressSpace()); 1089 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1090 if (IncV->getType() != PN->getType()) 1091 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1092 } else { 1093 IncV = useSubtract ? 1094 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1095 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1096 } 1097 return IncV; 1098 } 1099 1100 /// Check whether we can cheaply express the requested SCEV in terms of 1101 /// the available PHI SCEV by truncation and/or inversion of the step. 1102 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1103 const SCEVAddRecExpr *Phi, 1104 const SCEVAddRecExpr *Requested, 1105 bool &InvertStep) { 1106 // We can't transform to match a pointer PHI. 1107 if (Phi->getType()->isPointerTy()) 1108 return false; 1109 1110 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1111 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1112 1113 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1114 return false; 1115 1116 // Try truncate it if necessary. 1117 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1118 if (!Phi) 1119 return false; 1120 1121 // Check whether truncation will help. 1122 if (Phi == Requested) { 1123 InvertStep = false; 1124 return true; 1125 } 1126 1127 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1128 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1129 InvertStep = true; 1130 return true; 1131 } 1132 1133 return false; 1134 } 1135 1136 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1137 if (!isa<IntegerType>(AR->getType())) 1138 return false; 1139 1140 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1141 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1142 const SCEV *Step = AR->getStepRecurrence(SE); 1143 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1144 SE.getSignExtendExpr(AR, WideTy)); 1145 const SCEV *ExtendAfterOp = 1146 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1147 return ExtendAfterOp == OpAfterExtend; 1148 } 1149 1150 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1151 if (!isa<IntegerType>(AR->getType())) 1152 return false; 1153 1154 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1155 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1156 const SCEV *Step = AR->getStepRecurrence(SE); 1157 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1158 SE.getZeroExtendExpr(AR, WideTy)); 1159 const SCEV *ExtendAfterOp = 1160 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1161 return ExtendAfterOp == OpAfterExtend; 1162 } 1163 1164 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1165 /// the base addrec, which is the addrec without any non-loop-dominating 1166 /// values, and return the PHI. 1167 PHINode * 1168 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1169 const Loop *L, 1170 Type *ExpandTy, 1171 Type *IntTy, 1172 Type *&TruncTy, 1173 bool &InvertStep) { 1174 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1175 1176 // Reuse a previously-inserted PHI, if present. 1177 BasicBlock *LatchBlock = L->getLoopLatch(); 1178 if (LatchBlock) { 1179 PHINode *AddRecPhiMatch = nullptr; 1180 Instruction *IncV = nullptr; 1181 TruncTy = nullptr; 1182 InvertStep = false; 1183 1184 // Only try partially matching scevs that need truncation and/or 1185 // step-inversion if we know this loop is outside the current loop. 1186 bool TryNonMatchingSCEV = 1187 IVIncInsertLoop && 1188 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1189 1190 for (PHINode &PN : L->getHeader()->phis()) { 1191 if (!SE.isSCEVable(PN.getType())) 1192 continue; 1193 1194 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1195 // PHI has no meaning at all. 1196 if (!PN.isComplete()) { 1197 SCEV_DEBUG_WITH_TYPE( 1198 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1199 continue; 1200 } 1201 1202 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1203 if (!PhiSCEV) 1204 continue; 1205 1206 bool IsMatchingSCEV = PhiSCEV == Normalized; 1207 // We only handle truncation and inversion of phi recurrences for the 1208 // expanded expression if the expanded expression's loop dominates the 1209 // loop we insert to. Check now, so we can bail out early. 1210 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1211 continue; 1212 1213 // TODO: this possibly can be reworked to avoid this cast at all. 1214 Instruction *TempIncV = 1215 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1216 if (!TempIncV) 1217 continue; 1218 1219 // Check whether we can reuse this PHI node. 1220 if (LSRMode) { 1221 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1222 continue; 1223 } else { 1224 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1225 continue; 1226 } 1227 1228 // Stop if we have found an exact match SCEV. 1229 if (IsMatchingSCEV) { 1230 IncV = TempIncV; 1231 TruncTy = nullptr; 1232 InvertStep = false; 1233 AddRecPhiMatch = &PN; 1234 break; 1235 } 1236 1237 // Try whether the phi can be translated into the requested form 1238 // (truncated and/or offset by a constant). 1239 if ((!TruncTy || InvertStep) && 1240 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1241 // Record the phi node. But don't stop we might find an exact match 1242 // later. 1243 AddRecPhiMatch = &PN; 1244 IncV = TempIncV; 1245 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1246 } 1247 } 1248 1249 if (AddRecPhiMatch) { 1250 // Ok, the add recurrence looks usable. 1251 // Remember this PHI, even in post-inc mode. 1252 InsertedValues.insert(AddRecPhiMatch); 1253 // Remember the increment. 1254 rememberInstruction(IncV); 1255 // Those values were not actually inserted but re-used. 1256 ReusedValues.insert(AddRecPhiMatch); 1257 ReusedValues.insert(IncV); 1258 return AddRecPhiMatch; 1259 } 1260 } 1261 1262 // Save the original insertion point so we can restore it when we're done. 1263 SCEVInsertPointGuard Guard(Builder, this); 1264 1265 // Another AddRec may need to be recursively expanded below. For example, if 1266 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1267 // loop. Remove this loop from the PostIncLoops set before expanding such 1268 // AddRecs. Otherwise, we cannot find a valid position for the step 1269 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1270 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1271 // so it's not worth implementing SmallPtrSet::swap. 1272 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1273 PostIncLoops.clear(); 1274 1275 // Expand code for the start value into the loop preheader. 1276 assert(L->getLoopPreheader() && 1277 "Can't expand add recurrences without a loop preheader!"); 1278 Value *StartV = 1279 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1280 L->getLoopPreheader()->getTerminator(), false); 1281 1282 // StartV must have been be inserted into L's preheader to dominate the new 1283 // phi. 1284 assert(!isa<Instruction>(StartV) || 1285 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1286 L->getHeader())); 1287 1288 // Expand code for the step value. Do this before creating the PHI so that PHI 1289 // reuse code doesn't see an incomplete PHI. 1290 const SCEV *Step = Normalized->getStepRecurrence(SE); 1291 // If the stride is negative, insert a sub instead of an add for the increment 1292 // (unless it's a constant, because subtracts of constants are canonicalized 1293 // to adds). 1294 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1295 if (useSubtract) 1296 Step = SE.getNegativeSCEV(Step); 1297 // Expand the step somewhere that dominates the loop header. 1298 Value *StepV = expandCodeForImpl( 1299 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1300 1301 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1302 // we actually do emit an addition. It does not apply if we emit a 1303 // subtraction. 1304 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1305 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1306 1307 // Create the PHI. 1308 BasicBlock *Header = L->getHeader(); 1309 Builder.SetInsertPoint(Header, Header->begin()); 1310 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1311 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1312 Twine(IVName) + ".iv"); 1313 1314 // Create the step instructions and populate the PHI. 1315 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1316 BasicBlock *Pred = *HPI; 1317 1318 // Add a start value. 1319 if (!L->contains(Pred)) { 1320 PN->addIncoming(StartV, Pred); 1321 continue; 1322 } 1323 1324 // Create a step value and add it to the PHI. 1325 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1326 // instructions at IVIncInsertPos. 1327 Instruction *InsertPos = L == IVIncInsertLoop ? 1328 IVIncInsertPos : Pred->getTerminator(); 1329 Builder.SetInsertPoint(InsertPos); 1330 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1331 1332 if (isa<OverflowingBinaryOperator>(IncV)) { 1333 if (IncrementIsNUW) 1334 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1335 if (IncrementIsNSW) 1336 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1337 } 1338 PN->addIncoming(IncV, Pred); 1339 } 1340 1341 // After expanding subexpressions, restore the PostIncLoops set so the caller 1342 // can ensure that IVIncrement dominates the current uses. 1343 PostIncLoops = SavedPostIncLoops; 1344 1345 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1346 // effective when we are able to use an IV inserted here, so record it. 1347 InsertedValues.insert(PN); 1348 InsertedIVs.push_back(PN); 1349 return PN; 1350 } 1351 1352 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1353 Type *STy = S->getType(); 1354 Type *IntTy = SE.getEffectiveSCEVType(STy); 1355 const Loop *L = S->getLoop(); 1356 1357 // Determine a normalized form of this expression, which is the expression 1358 // before any post-inc adjustment is made. 1359 const SCEVAddRecExpr *Normalized = S; 1360 if (PostIncLoops.count(L)) { 1361 PostIncLoopSet Loops; 1362 Loops.insert(L); 1363 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1364 } 1365 1366 // Strip off any non-loop-dominating component from the addrec start. 1367 const SCEV *Start = Normalized->getStart(); 1368 const SCEV *PostLoopOffset = nullptr; 1369 if (!SE.properlyDominates(Start, L->getHeader())) { 1370 PostLoopOffset = Start; 1371 Start = SE.getConstant(Normalized->getType(), 0); 1372 Normalized = cast<SCEVAddRecExpr>( 1373 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1374 Normalized->getLoop(), 1375 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1376 } 1377 1378 // Strip off any non-loop-dominating component from the addrec step. 1379 const SCEV *Step = Normalized->getStepRecurrence(SE); 1380 const SCEV *PostLoopScale = nullptr; 1381 if (!SE.dominates(Step, L->getHeader())) { 1382 PostLoopScale = Step; 1383 Step = SE.getConstant(Normalized->getType(), 1); 1384 if (!Start->isZero()) { 1385 // The normalization below assumes that Start is constant zero, so if 1386 // it isn't re-associate Start to PostLoopOffset. 1387 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1388 PostLoopOffset = Start; 1389 Start = SE.getConstant(Normalized->getType(), 0); 1390 } 1391 Normalized = 1392 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1393 Start, Step, Normalized->getLoop(), 1394 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1395 } 1396 1397 // Expand the core addrec. If we need post-loop scaling, force it to 1398 // expand to an integer type to avoid the need for additional casting. 1399 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1400 // We can't use a pointer type for the addrec if the pointer type is 1401 // non-integral. 1402 Type *AddRecPHIExpandTy = 1403 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1404 1405 // In some cases, we decide to reuse an existing phi node but need to truncate 1406 // it and/or invert the step. 1407 Type *TruncTy = nullptr; 1408 bool InvertStep = false; 1409 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1410 IntTy, TruncTy, InvertStep); 1411 1412 // Accommodate post-inc mode, if necessary. 1413 Value *Result; 1414 if (!PostIncLoops.count(L)) 1415 Result = PN; 1416 else { 1417 // In PostInc mode, use the post-incremented value. 1418 BasicBlock *LatchBlock = L->getLoopLatch(); 1419 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1420 Result = PN->getIncomingValueForBlock(LatchBlock); 1421 1422 // We might be introducing a new use of the post-inc IV that is not poison 1423 // safe, in which case we should drop poison generating flags. Only keep 1424 // those flags for which SCEV has proven that they always hold. 1425 if (isa<OverflowingBinaryOperator>(Result)) { 1426 auto *I = cast<Instruction>(Result); 1427 if (!S->hasNoUnsignedWrap()) 1428 I->setHasNoUnsignedWrap(false); 1429 if (!S->hasNoSignedWrap()) 1430 I->setHasNoSignedWrap(false); 1431 } 1432 1433 // For an expansion to use the postinc form, the client must call 1434 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1435 // or dominated by IVIncInsertPos. 1436 if (isa<Instruction>(Result) && 1437 !SE.DT.dominates(cast<Instruction>(Result), 1438 &*Builder.GetInsertPoint())) { 1439 // The induction variable's postinc expansion does not dominate this use. 1440 // IVUsers tries to prevent this case, so it is rare. However, it can 1441 // happen when an IVUser outside the loop is not dominated by the latch 1442 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1443 // all cases. Consider a phi outside whose operand is replaced during 1444 // expansion with the value of the postinc user. Without fundamentally 1445 // changing the way postinc users are tracked, the only remedy is 1446 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1447 // but hopefully expandCodeFor handles that. 1448 bool useSubtract = 1449 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1450 if (useSubtract) 1451 Step = SE.getNegativeSCEV(Step); 1452 Value *StepV; 1453 { 1454 // Expand the step somewhere that dominates the loop header. 1455 SCEVInsertPointGuard Guard(Builder, this); 1456 StepV = expandCodeForImpl( 1457 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1458 } 1459 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1460 } 1461 } 1462 1463 // We have decided to reuse an induction variable of a dominating loop. Apply 1464 // truncation and/or inversion of the step. 1465 if (TruncTy) { 1466 Type *ResTy = Result->getType(); 1467 // Normalize the result type. 1468 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1469 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1470 // Truncate the result. 1471 if (TruncTy != Result->getType()) 1472 Result = Builder.CreateTrunc(Result, TruncTy); 1473 1474 // Invert the result. 1475 if (InvertStep) 1476 Result = Builder.CreateSub( 1477 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1478 } 1479 1480 // Re-apply any non-loop-dominating scale. 1481 if (PostLoopScale) { 1482 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1483 Result = InsertNoopCastOfTo(Result, IntTy); 1484 Result = Builder.CreateMul(Result, 1485 expandCodeForImpl(PostLoopScale, IntTy, false)); 1486 } 1487 1488 // Re-apply any non-loop-dominating offset. 1489 if (PostLoopOffset) { 1490 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1491 if (Result->getType()->isIntegerTy()) { 1492 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1493 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1494 } else { 1495 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1496 } 1497 } else { 1498 Result = InsertNoopCastOfTo(Result, IntTy); 1499 Result = Builder.CreateAdd( 1500 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1501 } 1502 } 1503 1504 return Result; 1505 } 1506 1507 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1508 // In canonical mode we compute the addrec as an expression of a canonical IV 1509 // using evaluateAtIteration and expand the resulting SCEV expression. This 1510 // way we avoid introducing new IVs to carry on the comutation of the addrec 1511 // throughout the loop. 1512 // 1513 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1514 // type wider than the addrec itself. Emitting a canonical IV of the 1515 // proper type might produce non-legal types, for example expanding an i64 1516 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1517 // back to non-canonical mode for nested addrecs. 1518 if (!CanonicalMode || (S->getNumOperands() > 2)) 1519 return expandAddRecExprLiterally(S); 1520 1521 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1522 const Loop *L = S->getLoop(); 1523 1524 // First check for an existing canonical IV in a suitable type. 1525 PHINode *CanonicalIV = nullptr; 1526 if (PHINode *PN = L->getCanonicalInductionVariable()) 1527 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1528 CanonicalIV = PN; 1529 1530 // Rewrite an AddRec in terms of the canonical induction variable, if 1531 // its type is more narrow. 1532 if (CanonicalIV && 1533 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1534 !S->getType()->isPointerTy()) { 1535 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1536 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1537 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1538 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1539 S->getNoWrapFlags(SCEV::FlagNW))); 1540 BasicBlock::iterator NewInsertPt = 1541 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1542 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1543 &*NewInsertPt, false); 1544 return V; 1545 } 1546 1547 // {X,+,F} --> X + {0,+,F} 1548 if (!S->getStart()->isZero()) { 1549 if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1550 Value *StartV = expand(SE.getPointerBase(S)); 1551 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1552 return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1553 } 1554 1555 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1556 NewOps[0] = SE.getConstant(Ty, 0); 1557 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1558 S->getNoWrapFlags(SCEV::FlagNW)); 1559 1560 // Just do a normal add. Pre-expand the operands to suppress folding. 1561 // 1562 // The LHS and RHS values are factored out of the expand call to make the 1563 // output independent of the argument evaluation order. 1564 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1565 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1566 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1567 } 1568 1569 // If we don't yet have a canonical IV, create one. 1570 if (!CanonicalIV) { 1571 // Create and insert the PHI node for the induction variable in the 1572 // specified loop. 1573 BasicBlock *Header = L->getHeader(); 1574 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1575 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1576 &Header->front()); 1577 rememberInstruction(CanonicalIV); 1578 1579 SmallSet<BasicBlock *, 4> PredSeen; 1580 Constant *One = ConstantInt::get(Ty, 1); 1581 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1582 BasicBlock *HP = *HPI; 1583 if (!PredSeen.insert(HP).second) { 1584 // There must be an incoming value for each predecessor, even the 1585 // duplicates! 1586 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1587 continue; 1588 } 1589 1590 if (L->contains(HP)) { 1591 // Insert a unit add instruction right before the terminator 1592 // corresponding to the back-edge. 1593 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1594 "indvar.next", 1595 HP->getTerminator()); 1596 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1597 rememberInstruction(Add); 1598 CanonicalIV->addIncoming(Add, HP); 1599 } else { 1600 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1601 } 1602 } 1603 } 1604 1605 // {0,+,1} --> Insert a canonical induction variable into the loop! 1606 if (S->isAffine() && S->getOperand(1)->isOne()) { 1607 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1608 "IVs with types different from the canonical IV should " 1609 "already have been handled!"); 1610 return CanonicalIV; 1611 } 1612 1613 // {0,+,F} --> {0,+,1} * F 1614 1615 // If this is a simple linear addrec, emit it now as a special case. 1616 if (S->isAffine()) // {0,+,F} --> i*F 1617 return 1618 expand(SE.getTruncateOrNoop( 1619 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1620 SE.getNoopOrAnyExtend(S->getOperand(1), 1621 CanonicalIV->getType())), 1622 Ty)); 1623 1624 // If this is a chain of recurrences, turn it into a closed form, using the 1625 // folders, then expandCodeFor the closed form. This allows the folders to 1626 // simplify the expression without having to build a bunch of special code 1627 // into this folder. 1628 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1629 1630 // Promote S up to the canonical IV type, if the cast is foldable. 1631 const SCEV *NewS = S; 1632 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1633 if (isa<SCEVAddRecExpr>(Ext)) 1634 NewS = Ext; 1635 1636 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1637 1638 // Truncate the result down to the original type, if needed. 1639 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1640 return expand(T); 1641 } 1642 1643 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1644 Value *V = 1645 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1646 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1647 GetOptimalInsertionPointForCastOf(V)); 1648 } 1649 1650 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1651 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1652 Value *V = expandCodeForImpl( 1653 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1654 false); 1655 return Builder.CreateTrunc(V, Ty); 1656 } 1657 1658 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1659 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1660 Value *V = expandCodeForImpl( 1661 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1662 false); 1663 return Builder.CreateZExt(V, Ty); 1664 } 1665 1666 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1667 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1668 Value *V = expandCodeForImpl( 1669 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1670 false); 1671 return Builder.CreateSExt(V, Ty); 1672 } 1673 1674 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1675 Intrinsic::ID IntrinID, Twine Name, 1676 bool IsSequential) { 1677 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1678 Type *Ty = LHS->getType(); 1679 if (IsSequential) 1680 LHS = Builder.CreateFreeze(LHS); 1681 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1682 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1683 if (IsSequential && i != 0) 1684 RHS = Builder.CreateFreeze(RHS); 1685 Value *Sel; 1686 if (Ty->isIntegerTy()) 1687 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1688 /*FMFSource=*/nullptr, Name); 1689 else { 1690 Value *ICmp = 1691 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1692 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1693 } 1694 LHS = Sel; 1695 } 1696 return LHS; 1697 } 1698 1699 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1700 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1701 } 1702 1703 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1704 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1705 } 1706 1707 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1708 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1709 } 1710 1711 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1712 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1713 } 1714 1715 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1716 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1717 } 1718 1719 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1720 Instruction *IP, bool Root) { 1721 setInsertPoint(IP); 1722 Value *V = expandCodeForImpl(SH, Ty, Root); 1723 return V; 1724 } 1725 1726 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1727 // Expand the code for this SCEV. 1728 Value *V = expand(SH); 1729 1730 if (PreserveLCSSA) { 1731 if (auto *Inst = dyn_cast<Instruction>(V)) { 1732 // Create a temporary instruction to at the current insertion point, so we 1733 // can hand it off to the helper to create LCSSA PHIs if required for the 1734 // new use. 1735 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1736 // would accept a insertion point and return an LCSSA phi for that 1737 // insertion point, so there is no need to insert & remove the temporary 1738 // instruction. 1739 Instruction *Tmp; 1740 if (Inst->getType()->isIntegerTy()) 1741 Tmp = cast<Instruction>(Builder.CreateIntToPtr( 1742 Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user")); 1743 else { 1744 assert(Inst->getType()->isPointerTy()); 1745 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1746 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1747 } 1748 V = fixupLCSSAFormFor(Tmp, 0); 1749 1750 // Clean up temporary instruction. 1751 InsertedValues.erase(Tmp); 1752 InsertedPostIncValues.erase(Tmp); 1753 Tmp->eraseFromParent(); 1754 } 1755 } 1756 1757 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1758 if (Ty) { 1759 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1760 "non-trivial casts should be done with the SCEVs directly!"); 1761 V = InsertNoopCastOfTo(V, Ty); 1762 } 1763 return V; 1764 } 1765 1766 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1767 const Instruction *InsertPt) { 1768 // If the expansion is not in CanonicalMode, and the SCEV contains any 1769 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1770 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1771 return nullptr; 1772 1773 // If S is a constant, it may be worse to reuse an existing Value. 1774 if (isa<SCEVConstant>(S)) 1775 return nullptr; 1776 1777 // Choose a Value from the set which dominates the InsertPt. 1778 // InsertPt should be inside the Value's parent loop so as not to break 1779 // the LCSSA form. 1780 for (Value *V : SE.getSCEVValues(S)) { 1781 Instruction *EntInst = dyn_cast<Instruction>(V); 1782 if (!EntInst) 1783 continue; 1784 1785 assert(EntInst->getFunction() == InsertPt->getFunction()); 1786 if (S->getType() == V->getType() && 1787 SE.DT.dominates(EntInst, InsertPt) && 1788 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1789 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1790 return V; 1791 } 1792 return nullptr; 1793 } 1794 1795 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1796 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1797 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1798 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1799 // the expansion will try to reuse Value from ExprValueMap, and only when it 1800 // fails, expand the SCEV literally. 1801 Value *SCEVExpander::expand(const SCEV *S) { 1802 // Compute an insertion point for this SCEV object. Hoist the instructions 1803 // as far out in the loop nest as possible. 1804 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1805 1806 // We can move insertion point only if there is no div or rem operations 1807 // otherwise we are risky to move it over the check for zero denominator. 1808 auto SafeToHoist = [](const SCEV *S) { 1809 return !SCEVExprContains(S, [](const SCEV *S) { 1810 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1811 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1812 // Division by non-zero constants can be hoisted. 1813 return SC->getValue()->isZero(); 1814 // All other divisions should not be moved as they may be 1815 // divisions by zero and should be kept within the 1816 // conditions of the surrounding loops that guard their 1817 // execution (see PR35406). 1818 return true; 1819 } 1820 return false; 1821 }); 1822 }; 1823 if (SafeToHoist(S)) { 1824 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1825 L = L->getParentLoop()) { 1826 if (SE.isLoopInvariant(S, L)) { 1827 if (!L) break; 1828 if (BasicBlock *Preheader = L->getLoopPreheader()) 1829 InsertPt = Preheader->getTerminator(); 1830 else 1831 // LSR sets the insertion point for AddRec start/step values to the 1832 // block start to simplify value reuse, even though it's an invalid 1833 // position. SCEVExpander must correct for this in all cases. 1834 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1835 } else { 1836 // If the SCEV is computable at this level, insert it into the header 1837 // after the PHIs (and after any other instructions that we've inserted 1838 // there) so that it is guaranteed to dominate any user inside the loop. 1839 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1840 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1841 1842 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1843 (isInsertedInstruction(InsertPt) || 1844 isa<DbgInfoIntrinsic>(InsertPt))) { 1845 InsertPt = &*std::next(InsertPt->getIterator()); 1846 } 1847 break; 1848 } 1849 } 1850 } 1851 1852 // Check to see if we already expanded this here. 1853 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1854 if (I != InsertedExpressions.end()) 1855 return I->second; 1856 1857 SCEVInsertPointGuard Guard(Builder, this); 1858 Builder.SetInsertPoint(InsertPt); 1859 1860 // Expand the expression into instructions. 1861 Value *V = FindValueInExprValueMap(S, InsertPt); 1862 if (!V) 1863 V = visit(S); 1864 else { 1865 // If we're reusing an existing instruction, we are effectively CSEing two 1866 // copies of the instruction (with potentially different flags). As such, 1867 // we need to drop any poison generating flags unless we can prove that 1868 // said flags must be valid for all new users. 1869 if (auto *I = dyn_cast<Instruction>(V)) 1870 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1871 I->dropPoisonGeneratingFlags(); 1872 } 1873 // Remember the expanded value for this SCEV at this location. 1874 // 1875 // This is independent of PostIncLoops. The mapped value simply materializes 1876 // the expression at this insertion point. If the mapped value happened to be 1877 // a postinc expansion, it could be reused by a non-postinc user, but only if 1878 // its insertion point was already at the head of the loop. 1879 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1880 return V; 1881 } 1882 1883 void SCEVExpander::rememberInstruction(Value *I) { 1884 auto DoInsert = [this](Value *V) { 1885 if (!PostIncLoops.empty()) 1886 InsertedPostIncValues.insert(V); 1887 else 1888 InsertedValues.insert(V); 1889 }; 1890 DoInsert(I); 1891 1892 if (!PreserveLCSSA) 1893 return; 1894 1895 if (auto *Inst = dyn_cast<Instruction>(I)) { 1896 // A new instruction has been added, which might introduce new uses outside 1897 // a defining loop. Fix LCSSA from for each operand of the new instruction, 1898 // if required. 1899 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 1900 OpIdx++) 1901 fixupLCSSAFormFor(Inst, OpIdx); 1902 } 1903 } 1904 1905 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1906 /// replace them with their most canonical representative. Return the number of 1907 /// phis eliminated. 1908 /// 1909 /// This does not depend on any SCEVExpander state but should be used in 1910 /// the same context that SCEVExpander is used. 1911 unsigned 1912 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1913 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1914 const TargetTransformInfo *TTI) { 1915 // Find integer phis in order of increasing width. 1916 SmallVector<PHINode*, 8> Phis; 1917 for (PHINode &PN : L->getHeader()->phis()) 1918 Phis.push_back(&PN); 1919 1920 if (TTI) 1921 // Use stable_sort to preserve order of equivalent PHIs, so the order 1922 // of the sorted Phis is the same from run to run on the same loop. 1923 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1924 // Put pointers at the back and make sure pointer < pointer = false. 1925 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1926 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1927 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 1928 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 1929 }); 1930 1931 unsigned NumElim = 0; 1932 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1933 // Process phis from wide to narrow. Map wide phis to their truncation 1934 // so narrow phis can reuse them. 1935 for (PHINode *Phi : Phis) { 1936 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1937 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1938 return V; 1939 if (!SE.isSCEVable(PN->getType())) 1940 return nullptr; 1941 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1942 if (!Const) 1943 return nullptr; 1944 return Const->getValue(); 1945 }; 1946 1947 // Fold constant phis. They may be congruent to other constant phis and 1948 // would confuse the logic below that expects proper IVs. 1949 if (Value *V = SimplifyPHINode(Phi)) { 1950 if (V->getType() != Phi->getType()) 1951 continue; 1952 Phi->replaceAllUsesWith(V); 1953 DeadInsts.emplace_back(Phi); 1954 ++NumElim; 1955 SCEV_DEBUG_WITH_TYPE(DebugType, 1956 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1957 << '\n'); 1958 continue; 1959 } 1960 1961 if (!SE.isSCEVable(Phi->getType())) 1962 continue; 1963 1964 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1965 if (!OrigPhiRef) { 1966 OrigPhiRef = Phi; 1967 if (Phi->getType()->isIntegerTy() && TTI && 1968 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1969 // This phi can be freely truncated to the narrowest phi type. Map the 1970 // truncated expression to it so it will be reused for narrow types. 1971 const SCEV *TruncExpr = 1972 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1973 ExprToIVMap[TruncExpr] = Phi; 1974 } 1975 continue; 1976 } 1977 1978 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1979 // sense. 1980 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1981 continue; 1982 1983 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1984 Instruction *OrigInc = dyn_cast<Instruction>( 1985 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1986 Instruction *IsomorphicInc = 1987 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1988 1989 if (OrigInc && IsomorphicInc) { 1990 // If this phi has the same width but is more canonical, replace the 1991 // original with it. As part of the "more canonical" determination, 1992 // respect a prior decision to use an IV chain. 1993 if (OrigPhiRef->getType() == Phi->getType() && 1994 !(ChainedPhis.count(Phi) || 1995 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1996 (ChainedPhis.count(Phi) || 1997 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1998 std::swap(OrigPhiRef, Phi); 1999 std::swap(OrigInc, IsomorphicInc); 2000 } 2001 // Replacing the congruent phi is sufficient because acyclic 2002 // redundancy elimination, CSE/GVN, should handle the 2003 // rest. However, once SCEV proves that a phi is congruent, 2004 // it's often the head of an IV user cycle that is isomorphic 2005 // with the original phi. It's worth eagerly cleaning up the 2006 // common case of a single IV increment so that DeleteDeadPHIs 2007 // can remove cycles that had postinc uses. 2008 const SCEV *TruncExpr = 2009 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2010 if (OrigInc != IsomorphicInc && 2011 TruncExpr == SE.getSCEV(IsomorphicInc) && 2012 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2013 hoistIVInc(OrigInc, IsomorphicInc)) { 2014 SCEV_DEBUG_WITH_TYPE( 2015 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2016 << *IsomorphicInc << '\n'); 2017 Value *NewInc = OrigInc; 2018 if (OrigInc->getType() != IsomorphicInc->getType()) { 2019 Instruction *IP = nullptr; 2020 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2021 IP = &*PN->getParent()->getFirstInsertionPt(); 2022 else 2023 IP = OrigInc->getNextNode(); 2024 2025 IRBuilder<> Builder(IP); 2026 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2027 NewInc = Builder.CreateTruncOrBitCast( 2028 OrigInc, IsomorphicInc->getType(), IVName); 2029 } 2030 IsomorphicInc->replaceAllUsesWith(NewInc); 2031 DeadInsts.emplace_back(IsomorphicInc); 2032 } 2033 } 2034 } 2035 SCEV_DEBUG_WITH_TYPE(DebugType, 2036 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2037 << '\n'); 2038 SCEV_DEBUG_WITH_TYPE( 2039 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2040 ++NumElim; 2041 Value *NewIV = OrigPhiRef; 2042 if (OrigPhiRef->getType() != Phi->getType()) { 2043 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2044 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2045 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2046 } 2047 Phi->replaceAllUsesWith(NewIV); 2048 DeadInsts.emplace_back(Phi); 2049 } 2050 return NumElim; 2051 } 2052 2053 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 2054 const Instruction *At, 2055 Loop *L) { 2056 using namespace llvm::PatternMatch; 2057 2058 SmallVector<BasicBlock *, 4> ExitingBlocks; 2059 L->getExitingBlocks(ExitingBlocks); 2060 2061 // Look for suitable value in simple conditions at the loop exits. 2062 for (BasicBlock *BB : ExitingBlocks) { 2063 ICmpInst::Predicate Pred; 2064 Instruction *LHS, *RHS; 2065 2066 if (!match(BB->getTerminator(), 2067 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2068 m_BasicBlock(), m_BasicBlock()))) 2069 continue; 2070 2071 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2072 return LHS; 2073 2074 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2075 return RHS; 2076 } 2077 2078 // Use expand's logic which is used for reusing a previous Value in 2079 // ExprValueMap. Note that we don't currently model the cost of 2080 // needing to drop poison generating flags on the instruction if we 2081 // want to reuse it. We effectively assume that has zero cost. 2082 return FindValueInExprValueMap(S, At); 2083 } 2084 2085 template<typename T> static InstructionCost costAndCollectOperands( 2086 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2087 TargetTransformInfo::TargetCostKind CostKind, 2088 SmallVectorImpl<SCEVOperand> &Worklist) { 2089 2090 const T *S = cast<T>(WorkItem.S); 2091 InstructionCost Cost = 0; 2092 // Object to help map SCEV operands to expanded IR instructions. 2093 struct OperationIndices { 2094 OperationIndices(unsigned Opc, size_t min, size_t max) : 2095 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2096 unsigned Opcode; 2097 size_t MinIdx; 2098 size_t MaxIdx; 2099 }; 2100 2101 // Collect the operations of all the instructions that will be needed to 2102 // expand the SCEVExpr. This is so that when we come to cost the operands, 2103 // we know what the generated user(s) will be. 2104 SmallVector<OperationIndices, 2> Operations; 2105 2106 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2107 Operations.emplace_back(Opcode, 0, 0); 2108 return TTI.getCastInstrCost(Opcode, S->getType(), 2109 S->getOperand(0)->getType(), 2110 TTI::CastContextHint::None, CostKind); 2111 }; 2112 2113 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2114 unsigned MinIdx = 0, 2115 unsigned MaxIdx = 1) -> InstructionCost { 2116 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2117 return NumRequired * 2118 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2119 }; 2120 2121 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2122 unsigned MaxIdx) -> InstructionCost { 2123 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2124 Type *OpType = S->getOperand(0)->getType(); 2125 return NumRequired * TTI.getCmpSelInstrCost( 2126 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2127 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2128 }; 2129 2130 switch (S->getSCEVType()) { 2131 case scCouldNotCompute: 2132 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2133 case scUnknown: 2134 case scConstant: 2135 return 0; 2136 case scPtrToInt: 2137 Cost = CastCost(Instruction::PtrToInt); 2138 break; 2139 case scTruncate: 2140 Cost = CastCost(Instruction::Trunc); 2141 break; 2142 case scZeroExtend: 2143 Cost = CastCost(Instruction::ZExt); 2144 break; 2145 case scSignExtend: 2146 Cost = CastCost(Instruction::SExt); 2147 break; 2148 case scUDivExpr: { 2149 unsigned Opcode = Instruction::UDiv; 2150 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2151 if (SC->getAPInt().isPowerOf2()) 2152 Opcode = Instruction::LShr; 2153 Cost = ArithCost(Opcode, 1); 2154 break; 2155 } 2156 case scAddExpr: 2157 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2158 break; 2159 case scMulExpr: 2160 // TODO: this is a very pessimistic cost modelling for Mul, 2161 // because of Bin Pow algorithm actually used by the expander, 2162 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2163 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2164 break; 2165 case scSMaxExpr: 2166 case scUMaxExpr: 2167 case scSMinExpr: 2168 case scUMinExpr: 2169 case scSequentialUMinExpr: { 2170 // FIXME: should this ask the cost for Intrinsic's? 2171 // The reduction tree. 2172 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2173 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2174 switch (S->getSCEVType()) { 2175 case scSequentialUMinExpr: { 2176 // The safety net against poison. 2177 // FIXME: this is broken. 2178 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 2179 Cost += ArithCost(Instruction::Or, 2180 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 2181 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 2182 break; 2183 } 2184 default: 2185 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 2186 "Unhandled SCEV expression type?"); 2187 break; 2188 } 2189 break; 2190 } 2191 case scAddRecExpr: { 2192 // In this polynominal, we may have some zero operands, and we shouldn't 2193 // really charge for those. So how many non-zero coeffients are there? 2194 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2195 return !Op->isZero(); 2196 }); 2197 2198 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2199 assert(!(*std::prev(S->operands().end()))->isZero() && 2200 "Last operand should not be zero"); 2201 2202 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2203 int NumNonZeroDegreeNonOneTerms = 2204 llvm::count_if(S->operands(), [](const SCEV *Op) { 2205 auto *SConst = dyn_cast<SCEVConstant>(Op); 2206 return !SConst || SConst->getAPInt().ugt(1); 2207 }); 2208 2209 // Much like with normal add expr, the polynominal will require 2210 // one less addition than the number of it's terms. 2211 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2212 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2213 // Here, *each* one of those will require a multiplication. 2214 InstructionCost MulCost = 2215 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2216 Cost = AddCost + MulCost; 2217 2218 // What is the degree of this polynominal? 2219 int PolyDegree = S->getNumOperands() - 1; 2220 assert(PolyDegree >= 1 && "Should be at least affine."); 2221 2222 // The final term will be: 2223 // Op_{PolyDegree} * x ^ {PolyDegree} 2224 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2225 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2226 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2227 // FIXME: this is conservatively correct, but might be overly pessimistic. 2228 Cost += MulCost * (PolyDegree - 1); 2229 break; 2230 } 2231 } 2232 2233 for (auto &CostOp : Operations) { 2234 for (auto SCEVOp : enumerate(S->operands())) { 2235 // Clamp the index to account for multiple IR operations being chained. 2236 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2237 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2238 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2239 } 2240 } 2241 return Cost; 2242 } 2243 2244 bool SCEVExpander::isHighCostExpansionHelper( 2245 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2246 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2247 SmallPtrSetImpl<const SCEV *> &Processed, 2248 SmallVectorImpl<SCEVOperand> &Worklist) { 2249 if (Cost > Budget) 2250 return true; // Already run out of budget, give up. 2251 2252 const SCEV *S = WorkItem.S; 2253 // Was the cost of expansion of this expression already accounted for? 2254 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2255 return false; // We have already accounted for this expression. 2256 2257 // If we can find an existing value for this scev available at the point "At" 2258 // then consider the expression cheap. 2259 if (getRelatedExistingExpansion(S, &At, L)) 2260 return false; // Consider the expression to be free. 2261 2262 TargetTransformInfo::TargetCostKind CostKind = 2263 L->getHeader()->getParent()->hasMinSize() 2264 ? TargetTransformInfo::TCK_CodeSize 2265 : TargetTransformInfo::TCK_RecipThroughput; 2266 2267 switch (S->getSCEVType()) { 2268 case scCouldNotCompute: 2269 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2270 case scUnknown: 2271 // Assume to be zero-cost. 2272 return false; 2273 case scConstant: { 2274 // Only evalulate the costs of constants when optimizing for size. 2275 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2276 return false; 2277 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2278 Type *Ty = S->getType(); 2279 Cost += TTI.getIntImmCostInst( 2280 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2281 return Cost > Budget; 2282 } 2283 case scTruncate: 2284 case scPtrToInt: 2285 case scZeroExtend: 2286 case scSignExtend: { 2287 Cost += 2288 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2289 return false; // Will answer upon next entry into this function. 2290 } 2291 case scUDivExpr: { 2292 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2293 // HowManyLessThans produced to compute a precise expression, rather than a 2294 // UDiv from the user's code. If we can't find a UDiv in the code with some 2295 // simple searching, we need to account for it's cost. 2296 2297 // At the beginning of this function we already tried to find existing 2298 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2299 // pattern involving division. This is just a simple search heuristic. 2300 if (getRelatedExistingExpansion( 2301 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2302 return false; // Consider it to be free. 2303 2304 Cost += 2305 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2306 return false; // Will answer upon next entry into this function. 2307 } 2308 case scAddExpr: 2309 case scMulExpr: 2310 case scUMaxExpr: 2311 case scSMaxExpr: 2312 case scUMinExpr: 2313 case scSMinExpr: 2314 case scSequentialUMinExpr: { 2315 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2316 "Nary expr should have more than 1 operand."); 2317 // The simple nary expr will require one less op (or pair of ops) 2318 // than the number of it's terms. 2319 Cost += 2320 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2321 return Cost > Budget; 2322 } 2323 case scAddRecExpr: { 2324 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2325 "Polynomial should be at least linear"); 2326 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2327 WorkItem, TTI, CostKind, Worklist); 2328 return Cost > Budget; 2329 } 2330 } 2331 llvm_unreachable("Unknown SCEV kind!"); 2332 } 2333 2334 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2335 Instruction *IP) { 2336 assert(IP); 2337 switch (Pred->getKind()) { 2338 case SCEVPredicate::P_Union: 2339 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2340 case SCEVPredicate::P_Compare: 2341 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2342 case SCEVPredicate::P_Wrap: { 2343 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2344 return expandWrapPredicate(AddRecPred, IP); 2345 } 2346 } 2347 llvm_unreachable("Unknown SCEV predicate type"); 2348 } 2349 2350 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2351 Instruction *IP) { 2352 Value *Expr0 = 2353 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2354 Value *Expr1 = 2355 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2356 2357 Builder.SetInsertPoint(IP); 2358 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2359 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2360 return I; 2361 } 2362 2363 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2364 Instruction *Loc, bool Signed) { 2365 assert(AR->isAffine() && "Cannot generate RT check for " 2366 "non-affine expression"); 2367 2368 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2369 SmallVector<const SCEVPredicate *, 4> Pred; 2370 const SCEV *ExitCount = 2371 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2372 2373 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2374 2375 const SCEV *Step = AR->getStepRecurrence(SE); 2376 const SCEV *Start = AR->getStart(); 2377 2378 Type *ARTy = AR->getType(); 2379 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2380 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2381 2382 // The expression {Start,+,Step} has nusw/nssw if 2383 // Step < 0, Start - |Step| * Backedge <= Start 2384 // Step >= 0, Start + |Step| * Backedge > Start 2385 // and |Step| * Backedge doesn't unsigned overflow. 2386 2387 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2388 Builder.SetInsertPoint(Loc); 2389 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2390 2391 IntegerType *Ty = 2392 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2393 2394 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2395 Value *NegStepValue = 2396 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2397 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false); 2398 2399 ConstantInt *Zero = 2400 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2401 2402 Builder.SetInsertPoint(Loc); 2403 // Compute |Step| 2404 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2405 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2406 2407 // Compute |Step| * Backedge 2408 // Compute: 2409 // 1. Start + |Step| * Backedge < Start 2410 // 2. Start - |Step| * Backedge > Start 2411 // 2412 // And select either 1. or 2. depending on whether step is positive or 2413 // negative. If Step is known to be positive or negative, only create 2414 // either 1. or 2. 2415 auto ComputeEndCheck = [&]() -> Value * { 2416 // Checking <u 0 is always false. 2417 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2418 return ConstantInt::getFalse(Loc->getContext()); 2419 2420 // Get the backedge taken count and truncate or extended to the AR type. 2421 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2422 2423 Value *MulV, *OfMul; 2424 if (Step->isOne()) { 2425 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2426 // needed, there is never an overflow, so to avoid artificially inflating 2427 // the cost of the check, directly emit the optimized IR. 2428 MulV = TruncTripCount; 2429 OfMul = ConstantInt::getFalse(MulV->getContext()); 2430 } else { 2431 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2432 Intrinsic::umul_with_overflow, Ty); 2433 CallInst *Mul = 2434 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2435 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2436 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2437 } 2438 2439 Value *Add = nullptr, *Sub = nullptr; 2440 bool NeedPosCheck = !SE.isKnownNegative(Step); 2441 bool NeedNegCheck = !SE.isKnownPositive(Step); 2442 2443 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2444 StartValue = InsertNoopCastOfTo( 2445 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2446 Value *NegMulV = Builder.CreateNeg(MulV); 2447 if (NeedPosCheck) 2448 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2449 if (NeedNegCheck) 2450 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2451 } else { 2452 if (NeedPosCheck) 2453 Add = Builder.CreateAdd(StartValue, MulV); 2454 if (NeedNegCheck) 2455 Sub = Builder.CreateSub(StartValue, MulV); 2456 } 2457 2458 Value *EndCompareLT = nullptr; 2459 Value *EndCompareGT = nullptr; 2460 Value *EndCheck = nullptr; 2461 if (NeedPosCheck) 2462 EndCheck = EndCompareLT = Builder.CreateICmp( 2463 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2464 if (NeedNegCheck) 2465 EndCheck = EndCompareGT = Builder.CreateICmp( 2466 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2467 if (NeedPosCheck && NeedNegCheck) { 2468 // Select the answer based on the sign of Step. 2469 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2470 } 2471 return Builder.CreateOr(EndCheck, OfMul); 2472 }; 2473 Value *EndCheck = ComputeEndCheck(); 2474 2475 // If the backedge taken count type is larger than the AR type, 2476 // check that we don't drop any bits by truncating it. If we are 2477 // dropping bits, then we have overflow (unless the step is zero). 2478 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2479 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2480 auto *BackedgeCheck = 2481 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2482 ConstantInt::get(Loc->getContext(), MaxVal)); 2483 BackedgeCheck = Builder.CreateAnd( 2484 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2485 2486 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2487 } 2488 2489 return EndCheck; 2490 } 2491 2492 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2493 Instruction *IP) { 2494 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2495 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2496 2497 // Add a check for NUSW 2498 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2499 NUSWCheck = generateOverflowCheck(A, IP, false); 2500 2501 // Add a check for NSSW 2502 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2503 NSSWCheck = generateOverflowCheck(A, IP, true); 2504 2505 if (NUSWCheck && NSSWCheck) 2506 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2507 2508 if (NUSWCheck) 2509 return NUSWCheck; 2510 2511 if (NSSWCheck) 2512 return NSSWCheck; 2513 2514 return ConstantInt::getFalse(IP->getContext()); 2515 } 2516 2517 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2518 Instruction *IP) { 2519 // Loop over all checks in this set. 2520 SmallVector<Value *> Checks; 2521 for (auto Pred : Union->getPredicates()) { 2522 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2523 Builder.SetInsertPoint(IP); 2524 } 2525 2526 if (Checks.empty()) 2527 return ConstantInt::getFalse(IP->getContext()); 2528 return Builder.CreateOr(Checks); 2529 } 2530 2531 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2532 assert(PreserveLCSSA); 2533 SmallVector<Instruction *, 1> ToUpdate; 2534 2535 auto *OpV = User->getOperand(OpIdx); 2536 auto *OpI = dyn_cast<Instruction>(OpV); 2537 if (!OpI) 2538 return OpV; 2539 2540 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2541 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2542 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2543 return OpV; 2544 2545 ToUpdate.push_back(OpI); 2546 SmallVector<PHINode *, 16> PHIsToRemove; 2547 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2548 for (PHINode *PN : PHIsToRemove) { 2549 if (!PN->use_empty()) 2550 continue; 2551 InsertedValues.erase(PN); 2552 InsertedPostIncValues.erase(PN); 2553 PN->eraseFromParent(); 2554 } 2555 2556 return User->getOperand(OpIdx); 2557 } 2558 2559 namespace { 2560 // Search for a SCEV subexpression that is not safe to expand. Any expression 2561 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2562 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2563 // instruction, but the important thing is that we prove the denominator is 2564 // nonzero before expansion. 2565 // 2566 // IVUsers already checks that IV-derived expressions are safe. So this check is 2567 // only needed when the expression includes some subexpression that is not IV 2568 // derived. 2569 // 2570 // Currently, we only allow division by a nonzero constant here. If this is 2571 // inadequate, we could easily allow division by SCEVUnknown by using 2572 // ValueTracking to check isKnownNonZero(). 2573 // 2574 // We cannot generally expand recurrences unless the step dominates the loop 2575 // header. The expander handles the special case of affine recurrences by 2576 // scaling the recurrence outside the loop, but this technique isn't generally 2577 // applicable. Expanding a nested recurrence outside a loop requires computing 2578 // binomial coefficients. This could be done, but the recurrence has to be in a 2579 // perfectly reduced form, which can't be guaranteed. 2580 struct SCEVFindUnsafe { 2581 ScalarEvolution &SE; 2582 bool CanonicalMode; 2583 bool IsUnsafe = false; 2584 2585 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2586 : SE(SE), CanonicalMode(CanonicalMode) {} 2587 2588 bool follow(const SCEV *S) { 2589 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2590 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2591 if (!SC || SC->getValue()->isZero()) { 2592 IsUnsafe = true; 2593 return false; 2594 } 2595 } 2596 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2597 const SCEV *Step = AR->getStepRecurrence(SE); 2598 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2599 IsUnsafe = true; 2600 return false; 2601 } 2602 2603 // For non-affine addrecs or in non-canonical mode we need a preheader 2604 // to insert into. 2605 if (!AR->getLoop()->getLoopPreheader() && 2606 (!CanonicalMode || !AR->isAffine())) { 2607 IsUnsafe = true; 2608 return false; 2609 } 2610 } 2611 return true; 2612 } 2613 bool isDone() const { return IsUnsafe; } 2614 }; 2615 } 2616 2617 namespace llvm { 2618 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) { 2619 SCEVFindUnsafe Search(SE, CanonicalMode); 2620 visitAll(S, Search); 2621 return !Search.IsUnsafe; 2622 } 2623 2624 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2625 ScalarEvolution &SE) { 2626 if (!isSafeToExpand(S, SE)) 2627 return false; 2628 // We have to prove that the expanded site of S dominates InsertionPoint. 2629 // This is easy when not in the same block, but hard when S is an instruction 2630 // to be expanded somewhere inside the same block as our insertion point. 2631 // What we really need here is something analogous to an OrderedBasicBlock, 2632 // but for the moment, we paper over the problem by handling two common and 2633 // cheap to check cases. 2634 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2635 return true; 2636 if (SE.dominates(S, InsertionPoint->getParent())) { 2637 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2638 return true; 2639 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2640 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2641 return true; 2642 } 2643 return false; 2644 } 2645 2646 void SCEVExpanderCleaner::cleanup() { 2647 // Result is used, nothing to remove. 2648 if (ResultUsed) 2649 return; 2650 2651 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2652 #ifndef NDEBUG 2653 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2654 InsertedInstructions.end()); 2655 (void)InsertedSet; 2656 #endif 2657 // Remove sets with value handles. 2658 Expander.clear(); 2659 2660 // Remove all inserted instructions. 2661 for (Instruction *I : reverse(InsertedInstructions)) { 2662 #ifndef NDEBUG 2663 assert(all_of(I->users(), 2664 [&InsertedSet](Value *U) { 2665 return InsertedSet.contains(cast<Instruction>(U)); 2666 }) && 2667 "removed instruction should only be used by instructions inserted " 2668 "during expansion"); 2669 #endif 2670 assert(!I->getType()->isVoidTy() && 2671 "inserted instruction should have non-void types"); 2672 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2673 I->eraseFromParent(); 2674 } 2675 } 2676 } 2677