1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 PoisonFlags::PoisonFlags(const Instruction *I) { 47 NUW = false; 48 NSW = false; 49 Exact = false; 50 Disjoint = false; 51 NNeg = false; 52 SameSign = false; 53 GEPNW = GEPNoWrapFlags::none(); 54 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 55 NUW = OBO->hasNoUnsignedWrap(); 56 NSW = OBO->hasNoSignedWrap(); 57 } 58 if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) 59 Exact = PEO->isExact(); 60 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 61 Disjoint = PDI->isDisjoint(); 62 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 63 NNeg = PNI->hasNonNeg(); 64 if (auto *TI = dyn_cast<TruncInst>(I)) { 65 NUW = TI->hasNoUnsignedWrap(); 66 NSW = TI->hasNoSignedWrap(); 67 } 68 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 69 GEPNW = GEP->getNoWrapFlags(); 70 if (auto *ICmp = dyn_cast<ICmpInst>(I)) 71 SameSign = ICmp->hasSameSign(); 72 } 73 74 void PoisonFlags::apply(Instruction *I) { 75 if (isa<OverflowingBinaryOperator>(I)) { 76 I->setHasNoUnsignedWrap(NUW); 77 I->setHasNoSignedWrap(NSW); 78 } 79 if (isa<PossiblyExactOperator>(I)) 80 I->setIsExact(Exact); 81 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 82 PDI->setIsDisjoint(Disjoint); 83 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 84 PNI->setNonNeg(NNeg); 85 if (isa<TruncInst>(I)) { 86 I->setHasNoUnsignedWrap(NUW); 87 I->setHasNoSignedWrap(NSW); 88 } 89 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 90 GEP->setNoWrapFlags(GEPNW); 91 if (auto *ICmp = dyn_cast<ICmpInst>(I)) 92 ICmp->setSameSign(SameSign); 93 } 94 95 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 96 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 97 /// creating a new one. 98 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 99 Instruction::CastOps Op, 100 BasicBlock::iterator IP) { 101 // This function must be called with the builder having a valid insertion 102 // point. It doesn't need to be the actual IP where the uses of the returned 103 // cast will be added, but it must dominate such IP. 104 // We use this precondition to produce a cast that will dominate all its 105 // uses. In particular, this is crucial for the case where the builder's 106 // insertion point *is* the point where we were asked to put the cast. 107 // Since we don't know the builder's insertion point is actually 108 // where the uses will be added (only that it dominates it), we are 109 // not allowed to move it. 110 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 111 112 Value *Ret = nullptr; 113 114 // Check to see if there is already a cast! 115 for (User *U : V->users()) { 116 if (U->getType() != Ty) 117 continue; 118 CastInst *CI = dyn_cast<CastInst>(U); 119 if (!CI || CI->getOpcode() != Op) 120 continue; 121 122 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 123 // the cast must also properly dominate the Builder's insertion point. 124 if (IP->getParent() == CI->getParent() && &*BIP != CI && 125 (&*IP == CI || CI->comesBefore(&*IP))) { 126 Ret = CI; 127 break; 128 } 129 } 130 131 // Create a new cast. 132 if (!Ret) { 133 SCEVInsertPointGuard Guard(Builder, this); 134 Builder.SetInsertPoint(&*IP); 135 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 136 } 137 138 // We assert at the end of the function since IP might point to an 139 // instruction with different dominance properties than a cast 140 // (an invoke for example) and not dominate BIP (but the cast does). 141 assert(!isa<Instruction>(Ret) || 142 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 143 144 return Ret; 145 } 146 147 BasicBlock::iterator 148 SCEVExpander::findInsertPointAfter(Instruction *I, 149 Instruction *MustDominate) const { 150 BasicBlock::iterator IP = ++I->getIterator(); 151 if (auto *II = dyn_cast<InvokeInst>(I)) 152 IP = II->getNormalDest()->begin(); 153 154 while (isa<PHINode>(IP)) 155 ++IP; 156 157 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 158 ++IP; 159 } else if (isa<CatchSwitchInst>(IP)) { 160 IP = MustDominate->getParent()->getFirstInsertionPt(); 161 } else { 162 assert(!IP->isEHPad() && "unexpected eh pad!"); 163 } 164 165 // Adjust insert point to be after instructions inserted by the expander, so 166 // we can re-use already inserted instructions. Avoid skipping past the 167 // original \p MustDominate, in case it is an inserted instruction. 168 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 169 ++IP; 170 171 return IP; 172 } 173 174 BasicBlock::iterator 175 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 176 // Cast the argument at the beginning of the entry block, after 177 // any bitcasts of other arguments. 178 if (Argument *A = dyn_cast<Argument>(V)) { 179 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 180 while ((isa<BitCastInst>(IP) && 181 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 182 cast<BitCastInst>(IP)->getOperand(0) != A) || 183 isa<DbgInfoIntrinsic>(IP)) 184 ++IP; 185 return IP; 186 } 187 188 // Cast the instruction immediately after the instruction. 189 if (Instruction *I = dyn_cast<Instruction>(V)) 190 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 191 192 // Otherwise, this must be some kind of a constant, 193 // so let's plop this cast into the function's entry block. 194 assert(isa<Constant>(V) && 195 "Expected the cast argument to be a global/constant"); 196 return Builder.GetInsertBlock() 197 ->getParent() 198 ->getEntryBlock() 199 .getFirstInsertionPt(); 200 } 201 202 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 203 /// which must be possible with a noop cast, doing what we can to share 204 /// the casts. 205 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 206 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 207 assert((Op == Instruction::BitCast || 208 Op == Instruction::PtrToInt || 209 Op == Instruction::IntToPtr) && 210 "InsertNoopCastOfTo cannot perform non-noop casts!"); 211 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 212 "InsertNoopCastOfTo cannot change sizes!"); 213 214 // inttoptr only works for integral pointers. For non-integral pointers, we 215 // can create a GEP on null with the integral value as index. Note that 216 // it is safe to use GEP of null instead of inttoptr here, because only 217 // expressions already based on a GEP of null should be converted to pointers 218 // during expansion. 219 if (Op == Instruction::IntToPtr) { 220 auto *PtrTy = cast<PointerType>(Ty); 221 if (DL.isNonIntegralPointerType(PtrTy)) 222 return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 223 } 224 // Short-circuit unnecessary bitcasts. 225 if (Op == Instruction::BitCast) { 226 if (V->getType() == Ty) 227 return V; 228 if (CastInst *CI = dyn_cast<CastInst>(V)) { 229 if (CI->getOperand(0)->getType() == Ty) 230 return CI->getOperand(0); 231 } 232 } 233 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 234 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 235 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 236 if (CastInst *CI = dyn_cast<CastInst>(V)) 237 if ((CI->getOpcode() == Instruction::PtrToInt || 238 CI->getOpcode() == Instruction::IntToPtr) && 239 SE.getTypeSizeInBits(CI->getType()) == 240 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 241 return CI->getOperand(0); 242 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 243 if ((CE->getOpcode() == Instruction::PtrToInt || 244 CE->getOpcode() == Instruction::IntToPtr) && 245 SE.getTypeSizeInBits(CE->getType()) == 246 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 247 return CE->getOperand(0); 248 } 249 250 // Fold a cast of a constant. 251 if (Constant *C = dyn_cast<Constant>(V)) 252 return ConstantExpr::getCast(Op, C, Ty); 253 254 // Try to reuse existing cast, or insert one. 255 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 256 } 257 258 /// InsertBinop - Insert the specified binary operator, doing a small amount 259 /// of work to avoid inserting an obviously redundant operation, and hoisting 260 /// to an outer loop when the opportunity is there and it is safe. 261 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 262 Value *LHS, Value *RHS, 263 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 264 // Fold a binop with constant operands. 265 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 266 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 267 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 268 return Res; 269 270 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 271 unsigned ScanLimit = 6; 272 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 273 // Scanning starts from the last instruction before the insertion point. 274 BasicBlock::iterator IP = Builder.GetInsertPoint(); 275 if (IP != BlockBegin) { 276 --IP; 277 for (; ScanLimit; --IP, --ScanLimit) { 278 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 279 // generated code. 280 if (isa<DbgInfoIntrinsic>(IP)) 281 ScanLimit++; 282 283 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 284 // Ensure that no-wrap flags match. 285 if (isa<OverflowingBinaryOperator>(I)) { 286 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 287 return true; 288 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 289 return true; 290 } 291 // Conservatively, do not use any instruction which has any of exact 292 // flags installed. 293 if (isa<PossiblyExactOperator>(I) && I->isExact()) 294 return true; 295 return false; 296 }; 297 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 298 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 299 return &*IP; 300 if (IP == BlockBegin) break; 301 } 302 } 303 304 // Save the original insertion point so we can restore it when we're done. 305 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 306 SCEVInsertPointGuard Guard(Builder, this); 307 308 if (IsSafeToHoist) { 309 // Move the insertion point out of as many loops as we can. 310 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 311 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 312 BasicBlock *Preheader = L->getLoopPreheader(); 313 if (!Preheader) break; 314 315 // Ok, move up a level. 316 Builder.SetInsertPoint(Preheader->getTerminator()); 317 } 318 } 319 320 // If we haven't found this binop, insert it. 321 // TODO: Use the Builder, which will make CreateBinOp below fold with 322 // InstSimplifyFolder. 323 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 324 BO->setDebugLoc(Loc); 325 if (Flags & SCEV::FlagNUW) 326 BO->setHasNoUnsignedWrap(); 327 if (Flags & SCEV::FlagNSW) 328 BO->setHasNoSignedWrap(); 329 330 return BO; 331 } 332 333 /// expandAddToGEP - Expand an addition expression with a pointer type into 334 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 335 /// BasicAliasAnalysis and other passes analyze the result. See the rules 336 /// for getelementptr vs. inttoptr in 337 /// http://llvm.org/docs/LangRef.html#pointeraliasing 338 /// for details. 339 /// 340 /// Design note: The correctness of using getelementptr here depends on 341 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 342 /// they may introduce pointer arithmetic which may not be safely converted 343 /// into getelementptr. 344 /// 345 /// Design note: It might seem desirable for this function to be more 346 /// loop-aware. If some of the indices are loop-invariant while others 347 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 348 /// loop-invariant portions of the overall computation outside the loop. 349 /// However, there are a few reasons this is not done here. Hoisting simple 350 /// arithmetic is a low-level optimization that often isn't very 351 /// important until late in the optimization process. In fact, passes 352 /// like InstructionCombining will combine GEPs, even if it means 353 /// pushing loop-invariant computation down into loops, so even if the 354 /// GEPs were split here, the work would quickly be undone. The 355 /// LoopStrengthReduction pass, which is usually run quite late (and 356 /// after the last InstructionCombining pass), takes care of hoisting 357 /// loop-invariant portions of expressions, after considering what 358 /// can be folded using target addressing modes. 359 /// 360 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V, 361 SCEV::NoWrapFlags Flags) { 362 assert(!isa<Instruction>(V) || 363 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 364 365 Value *Idx = expand(Offset); 366 GEPNoWrapFlags NW = (Flags & SCEV::FlagNUW) ? GEPNoWrapFlags::noUnsignedWrap() 367 : GEPNoWrapFlags::none(); 368 369 // Fold a GEP with constant operands. 370 if (Constant *CLHS = dyn_cast<Constant>(V)) 371 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 372 return Builder.CreatePtrAdd(CLHS, CRHS, "", NW); 373 374 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 375 unsigned ScanLimit = 6; 376 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 377 // Scanning starts from the last instruction before the insertion point. 378 BasicBlock::iterator IP = Builder.GetInsertPoint(); 379 if (IP != BlockBegin) { 380 --IP; 381 for (; ScanLimit; --IP, --ScanLimit) { 382 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 383 // generated code. 384 if (isa<DbgInfoIntrinsic>(IP)) 385 ScanLimit++; 386 if (auto *GEP = dyn_cast<GetElementPtrInst>(IP)) { 387 if (GEP->getPointerOperand() == V && 388 GEP->getSourceElementType() == Builder.getInt8Ty() && 389 GEP->getOperand(1) == Idx) { 390 rememberFlags(GEP); 391 GEP->setNoWrapFlags(GEP->getNoWrapFlags() & NW); 392 return &*IP; 393 } 394 } 395 if (IP == BlockBegin) break; 396 } 397 } 398 399 // Save the original insertion point so we can restore it when we're done. 400 SCEVInsertPointGuard Guard(Builder, this); 401 402 // Move the insertion point out of as many loops as we can. 403 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 404 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 405 BasicBlock *Preheader = L->getLoopPreheader(); 406 if (!Preheader) break; 407 408 // Ok, move up a level. 409 Builder.SetInsertPoint(Preheader->getTerminator()); 410 } 411 412 // Emit a GEP. 413 return Builder.CreatePtrAdd(V, Idx, "scevgep", NW); 414 } 415 416 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 417 /// SCEV expansion. If they are nested, this is the most nested. If they are 418 /// neighboring, pick the later. 419 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 420 DominatorTree &DT) { 421 if (!A) return B; 422 if (!B) return A; 423 if (A->contains(B)) return B; 424 if (B->contains(A)) return A; 425 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 426 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 427 return A; // Arbitrarily break the tie. 428 } 429 430 /// getRelevantLoop - Get the most relevant loop associated with the given 431 /// expression, according to PickMostRelevantLoop. 432 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 433 // Test whether we've already computed the most relevant loop for this SCEV. 434 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 435 if (!Pair.second) 436 return Pair.first->second; 437 438 switch (S->getSCEVType()) { 439 case scConstant: 440 case scVScale: 441 return nullptr; // A constant has no relevant loops. 442 case scTruncate: 443 case scZeroExtend: 444 case scSignExtend: 445 case scPtrToInt: 446 case scAddExpr: 447 case scMulExpr: 448 case scUDivExpr: 449 case scAddRecExpr: 450 case scUMaxExpr: 451 case scSMaxExpr: 452 case scUMinExpr: 453 case scSMinExpr: 454 case scSequentialUMinExpr: { 455 const Loop *L = nullptr; 456 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 457 L = AR->getLoop(); 458 for (const SCEV *Op : S->operands()) 459 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 460 return RelevantLoops[S] = L; 461 } 462 case scUnknown: { 463 const SCEVUnknown *U = cast<SCEVUnknown>(S); 464 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 465 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 466 // A non-instruction has no relevant loops. 467 return nullptr; 468 } 469 case scCouldNotCompute: 470 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 471 } 472 llvm_unreachable("Unexpected SCEV type!"); 473 } 474 475 namespace { 476 477 /// LoopCompare - Compare loops by PickMostRelevantLoop. 478 class LoopCompare { 479 DominatorTree &DT; 480 public: 481 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 482 483 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 484 std::pair<const Loop *, const SCEV *> RHS) const { 485 // Keep pointer operands sorted at the end. 486 if (LHS.second->getType()->isPointerTy() != 487 RHS.second->getType()->isPointerTy()) 488 return LHS.second->getType()->isPointerTy(); 489 490 // Compare loops with PickMostRelevantLoop. 491 if (LHS.first != RHS.first) 492 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 493 494 // If one operand is a non-constant negative and the other is not, 495 // put the non-constant negative on the right so that a sub can 496 // be used instead of a negate and add. 497 if (LHS.second->isNonConstantNegative()) { 498 if (!RHS.second->isNonConstantNegative()) 499 return false; 500 } else if (RHS.second->isNonConstantNegative()) 501 return true; 502 503 // Otherwise they are equivalent according to this comparison. 504 return false; 505 } 506 }; 507 508 } 509 510 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 511 // Recognize the canonical representation of an unsimplifed urem. 512 const SCEV *URemLHS = nullptr; 513 const SCEV *URemRHS = nullptr; 514 if (SE.matchURem(S, URemLHS, URemRHS)) { 515 Value *LHS = expand(URemLHS); 516 Value *RHS = expand(URemRHS); 517 return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap, 518 /*IsSafeToHoist*/ false); 519 } 520 521 // Collect all the add operands in a loop, along with their associated loops. 522 // Iterate in reverse so that constants are emitted last, all else equal, and 523 // so that pointer operands are inserted first, which the code below relies on 524 // to form more involved GEPs. 525 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 526 for (const SCEV *Op : reverse(S->operands())) 527 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 528 529 // Sort by loop. Use a stable sort so that constants follow non-constants and 530 // pointer operands precede non-pointer operands. 531 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 532 533 // Emit instructions to add all the operands. Hoist as much as possible 534 // out of loops, and form meaningful getelementptrs where possible. 535 Value *Sum = nullptr; 536 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 537 const Loop *CurLoop = I->first; 538 const SCEV *Op = I->second; 539 if (!Sum) { 540 // This is the first operand. Just expand it. 541 Sum = expand(Op); 542 ++I; 543 continue; 544 } 545 546 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 547 if (isa<PointerType>(Sum->getType())) { 548 // The running sum expression is a pointer. Try to form a getelementptr 549 // at this level with that as the base. 550 SmallVector<const SCEV *, 4> NewOps; 551 for (; I != E && I->first == CurLoop; ++I) { 552 // If the operand is SCEVUnknown and not instructions, peek through 553 // it, to enable more of it to be folded into the GEP. 554 const SCEV *X = I->second; 555 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 556 if (!isa<Instruction>(U->getValue())) 557 X = SE.getSCEV(U->getValue()); 558 NewOps.push_back(X); 559 } 560 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum, S->getNoWrapFlags()); 561 } else if (Op->isNonConstantNegative()) { 562 // Instead of doing a negate and add, just do a subtract. 563 Value *W = expand(SE.getNegativeSCEV(Op)); 564 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 565 /*IsSafeToHoist*/ true); 566 ++I; 567 } else { 568 // A simple add. 569 Value *W = expand(Op); 570 // Canonicalize a constant to the RHS. 571 if (isa<Constant>(Sum)) 572 std::swap(Sum, W); 573 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 574 /*IsSafeToHoist*/ true); 575 ++I; 576 } 577 } 578 579 return Sum; 580 } 581 582 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 583 Type *Ty = S->getType(); 584 585 // Collect all the mul operands in a loop, along with their associated loops. 586 // Iterate in reverse so that constants are emitted last, all else equal. 587 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 588 for (const SCEV *Op : reverse(S->operands())) 589 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 590 591 // Sort by loop. Use a stable sort so that constants follow non-constants. 592 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 593 594 // Emit instructions to mul all the operands. Hoist as much as possible 595 // out of loops. 596 Value *Prod = nullptr; 597 auto I = OpsAndLoops.begin(); 598 599 // Expand the calculation of X pow N in the following manner: 600 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 601 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 602 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 603 auto E = I; 604 // Calculate how many times the same operand from the same loop is included 605 // into this power. 606 uint64_t Exponent = 0; 607 const uint64_t MaxExponent = UINT64_MAX >> 1; 608 // No one sane will ever try to calculate such huge exponents, but if we 609 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 610 // below when the power of 2 exceeds our Exponent, and we want it to be 611 // 1u << 31 at most to not deal with unsigned overflow. 612 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 613 ++Exponent; 614 ++E; 615 } 616 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 617 618 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 619 // that are needed into the result. 620 Value *P = expand(I->second); 621 Value *Result = nullptr; 622 if (Exponent & 1) 623 Result = P; 624 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 625 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 626 /*IsSafeToHoist*/ true); 627 if (Exponent & BinExp) 628 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 629 SCEV::FlagAnyWrap, 630 /*IsSafeToHoist*/ true) 631 : P; 632 } 633 634 I = E; 635 assert(Result && "Nothing was expanded?"); 636 return Result; 637 }; 638 639 while (I != OpsAndLoops.end()) { 640 if (!Prod) { 641 // This is the first operand. Just expand it. 642 Prod = ExpandOpBinPowN(); 643 } else if (I->second->isAllOnesValue()) { 644 // Instead of doing a multiply by negative one, just do a negate. 645 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 646 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 647 ++I; 648 } else { 649 // A simple mul. 650 Value *W = ExpandOpBinPowN(); 651 // Canonicalize a constant to the RHS. 652 if (isa<Constant>(Prod)) std::swap(Prod, W); 653 const APInt *RHS; 654 if (match(W, m_Power2(RHS))) { 655 // Canonicalize Prod*(1<<C) to Prod<<C. 656 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 657 auto NWFlags = S->getNoWrapFlags(); 658 // clear nsw flag if shl will produce poison value. 659 if (RHS->logBase2() == RHS->getBitWidth() - 1) 660 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 661 Prod = InsertBinop(Instruction::Shl, Prod, 662 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 663 /*IsSafeToHoist*/ true); 664 } else { 665 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 666 /*IsSafeToHoist*/ true); 667 } 668 } 669 } 670 671 return Prod; 672 } 673 674 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 675 Value *LHS = expand(S->getLHS()); 676 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 677 const APInt &RHS = SC->getAPInt(); 678 if (RHS.isPowerOf2()) 679 return InsertBinop(Instruction::LShr, LHS, 680 ConstantInt::get(SC->getType(), RHS.logBase2()), 681 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 682 } 683 684 const SCEV *RHSExpr = S->getRHS(); 685 Value *RHS = expand(RHSExpr); 686 if (SafeUDivMode) { 687 bool GuaranteedNotPoison = 688 ScalarEvolution::isGuaranteedNotToBePoison(RHSExpr); 689 if (!GuaranteedNotPoison) 690 RHS = Builder.CreateFreeze(RHS); 691 692 // We need an umax if either RHSExpr is not known to be zero, or if it is 693 // not guaranteed to be non-poison. In the later case, the frozen poison may 694 // be 0. 695 if (!SE.isKnownNonZero(RHSExpr) || !GuaranteedNotPoison) 696 RHS = Builder.CreateIntrinsic(RHS->getType(), Intrinsic::umax, 697 {RHS, ConstantInt::get(RHS->getType(), 1)}); 698 } 699 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 700 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 701 } 702 703 /// Determine if this is a well-behaved chain of instructions leading back to 704 /// the PHI. If so, it may be reused by expanded expressions. 705 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 706 const Loop *L) { 707 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 708 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 709 return false; 710 // If any of the operands don't dominate the insert position, bail. 711 // Addrec operands are always loop-invariant, so this can only happen 712 // if there are instructions which haven't been hoisted. 713 if (L == IVIncInsertLoop) { 714 for (Use &Op : llvm::drop_begin(IncV->operands())) 715 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 716 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 717 return false; 718 } 719 // Advance to the next instruction. 720 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 721 if (!IncV) 722 return false; 723 724 if (IncV->mayHaveSideEffects()) 725 return false; 726 727 if (IncV == PN) 728 return true; 729 730 return isNormalAddRecExprPHI(PN, IncV, L); 731 } 732 733 /// getIVIncOperand returns an induction variable increment's induction 734 /// variable operand. 735 /// 736 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 737 /// operands dominate InsertPos. 738 /// 739 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 740 /// simple patterns generated by getAddRecExprPHILiterally and 741 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 742 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 743 Instruction *InsertPos, 744 bool allowScale) { 745 if (IncV == InsertPos) 746 return nullptr; 747 748 switch (IncV->getOpcode()) { 749 default: 750 return nullptr; 751 // Check for a simple Add/Sub or GEP of a loop invariant step. 752 case Instruction::Add: 753 case Instruction::Sub: { 754 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 755 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 756 return dyn_cast<Instruction>(IncV->getOperand(0)); 757 return nullptr; 758 } 759 case Instruction::BitCast: 760 return dyn_cast<Instruction>(IncV->getOperand(0)); 761 case Instruction::GetElementPtr: 762 for (Use &U : llvm::drop_begin(IncV->operands())) { 763 if (isa<Constant>(U)) 764 continue; 765 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 766 if (!SE.DT.dominates(OInst, InsertPos)) 767 return nullptr; 768 } 769 if (allowScale) { 770 // allow any kind of GEP as long as it can be hoisted. 771 continue; 772 } 773 // GEPs produced by SCEVExpander use i8 element type. 774 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 775 return nullptr; 776 break; 777 } 778 return dyn_cast<Instruction>(IncV->getOperand(0)); 779 } 780 } 781 782 /// If the insert point of the current builder or any of the builders on the 783 /// stack of saved builders has 'I' as its insert point, update it to point to 784 /// the instruction after 'I'. This is intended to be used when the instruction 785 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 786 /// different block, the inconsistent insert point (with a mismatched 787 /// Instruction and Block) can lead to an instruction being inserted in a block 788 /// other than its parent. 789 void SCEVExpander::fixupInsertPoints(Instruction *I) { 790 BasicBlock::iterator It(*I); 791 BasicBlock::iterator NewInsertPt = std::next(It); 792 if (Builder.GetInsertPoint() == It) 793 Builder.SetInsertPoint(&*NewInsertPt); 794 for (auto *InsertPtGuard : InsertPointGuards) 795 if (InsertPtGuard->GetInsertPoint() == It) 796 InsertPtGuard->SetInsertPoint(NewInsertPt); 797 } 798 799 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 800 /// it available to other uses in this loop. Recursively hoist any operands, 801 /// until we reach a value that dominates InsertPos. 802 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 803 bool RecomputePoisonFlags) { 804 auto FixupPoisonFlags = [this](Instruction *I) { 805 // Drop flags that are potentially inferred from old context and infer flags 806 // in new context. 807 rememberFlags(I); 808 I->dropPoisonGeneratingFlags(); 809 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 810 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 811 auto *BO = cast<BinaryOperator>(I); 812 BO->setHasNoUnsignedWrap( 813 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 814 BO->setHasNoSignedWrap( 815 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 816 } 817 }; 818 819 if (SE.DT.dominates(IncV, InsertPos)) { 820 if (RecomputePoisonFlags) 821 FixupPoisonFlags(IncV); 822 return true; 823 } 824 825 // InsertPos must itself dominate IncV so that IncV's new position satisfies 826 // its existing users. 827 if (isa<PHINode>(InsertPos) || 828 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 829 return false; 830 831 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 832 return false; 833 834 // Check that the chain of IV operands leading back to Phi can be hoisted. 835 SmallVector<Instruction*, 4> IVIncs; 836 for(;;) { 837 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 838 if (!Oper) 839 return false; 840 // IncV is safe to hoist. 841 IVIncs.push_back(IncV); 842 IncV = Oper; 843 if (SE.DT.dominates(IncV, InsertPos)) 844 break; 845 } 846 for (Instruction *I : llvm::reverse(IVIncs)) { 847 fixupInsertPoints(I); 848 I->moveBefore(InsertPos->getIterator()); 849 if (RecomputePoisonFlags) 850 FixupPoisonFlags(I); 851 } 852 return true; 853 } 854 855 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, 856 PHINode *WidePhi, 857 Instruction *OrigInc, 858 Instruction *WideInc) { 859 return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) && 860 match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) && 861 OrigInc->getOpcode() == WideInc->getOpcode(); 862 } 863 864 /// Determine if this cyclic phi is in a form that would have been generated by 865 /// LSR. We don't care if the phi was actually expanded in this pass, as long 866 /// as it is in a low-cost form, for example, no implied multiplication. This 867 /// should match any patterns generated by getAddRecExprPHILiterally and 868 /// expandAddtoGEP. 869 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 870 const Loop *L) { 871 for(Instruction *IVOper = IncV; 872 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 873 /*allowScale=*/false));) { 874 if (IVOper == PN) 875 return true; 876 } 877 return false; 878 } 879 880 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 881 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 882 /// need to materialize IV increments elsewhere to handle difficult situations. 883 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 884 bool useSubtract) { 885 Value *IncV; 886 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 887 if (PN->getType()->isPointerTy()) { 888 // TODO: Change name to IVName.iv.next. 889 IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep"); 890 } else { 891 IncV = useSubtract ? 892 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 893 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 894 } 895 return IncV; 896 } 897 898 /// Check whether we can cheaply express the requested SCEV in terms of 899 /// the available PHI SCEV by truncation and/or inversion of the step. 900 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 901 const SCEVAddRecExpr *Phi, 902 const SCEVAddRecExpr *Requested, 903 bool &InvertStep) { 904 // We can't transform to match a pointer PHI. 905 Type *PhiTy = Phi->getType(); 906 Type *RequestedTy = Requested->getType(); 907 if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 908 return false; 909 910 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 911 return false; 912 913 // Try truncate it if necessary. 914 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 915 if (!Phi) 916 return false; 917 918 // Check whether truncation will help. 919 if (Phi == Requested) { 920 InvertStep = false; 921 return true; 922 } 923 924 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 925 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 926 InvertStep = true; 927 return true; 928 } 929 930 return false; 931 } 932 933 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 934 if (!isa<IntegerType>(AR->getType())) 935 return false; 936 937 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 938 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 939 const SCEV *Step = AR->getStepRecurrence(SE); 940 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 941 SE.getSignExtendExpr(AR, WideTy)); 942 const SCEV *ExtendAfterOp = 943 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 944 return ExtendAfterOp == OpAfterExtend; 945 } 946 947 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 948 if (!isa<IntegerType>(AR->getType())) 949 return false; 950 951 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 952 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 953 const SCEV *Step = AR->getStepRecurrence(SE); 954 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 955 SE.getZeroExtendExpr(AR, WideTy)); 956 const SCEV *ExtendAfterOp = 957 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 958 return ExtendAfterOp == OpAfterExtend; 959 } 960 961 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 962 /// the base addrec, which is the addrec without any non-loop-dominating 963 /// values, and return the PHI. 964 PHINode * 965 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 966 const Loop *L, Type *&TruncTy, 967 bool &InvertStep) { 968 assert((!IVIncInsertLoop || IVIncInsertPos) && 969 "Uninitialized insert position"); 970 971 // Reuse a previously-inserted PHI, if present. 972 BasicBlock *LatchBlock = L->getLoopLatch(); 973 if (LatchBlock) { 974 PHINode *AddRecPhiMatch = nullptr; 975 Instruction *IncV = nullptr; 976 TruncTy = nullptr; 977 InvertStep = false; 978 979 // Only try partially matching scevs that need truncation and/or 980 // step-inversion if we know this loop is outside the current loop. 981 bool TryNonMatchingSCEV = 982 IVIncInsertLoop && 983 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 984 985 for (PHINode &PN : L->getHeader()->phis()) { 986 if (!SE.isSCEVable(PN.getType())) 987 continue; 988 989 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 990 // PHI has no meaning at all. 991 if (!PN.isComplete()) { 992 SCEV_DEBUG_WITH_TYPE( 993 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 994 continue; 995 } 996 997 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 998 if (!PhiSCEV) 999 continue; 1000 1001 bool IsMatchingSCEV = PhiSCEV == Normalized; 1002 // We only handle truncation and inversion of phi recurrences for the 1003 // expanded expression if the expanded expression's loop dominates the 1004 // loop we insert to. Check now, so we can bail out early. 1005 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1006 continue; 1007 1008 // TODO: this possibly can be reworked to avoid this cast at all. 1009 Instruction *TempIncV = 1010 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1011 if (!TempIncV) 1012 continue; 1013 1014 // Check whether we can reuse this PHI node. 1015 if (LSRMode) { 1016 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1017 continue; 1018 } else { 1019 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1020 continue; 1021 } 1022 1023 // Stop if we have found an exact match SCEV. 1024 if (IsMatchingSCEV) { 1025 IncV = TempIncV; 1026 TruncTy = nullptr; 1027 InvertStep = false; 1028 AddRecPhiMatch = &PN; 1029 break; 1030 } 1031 1032 // Try whether the phi can be translated into the requested form 1033 // (truncated and/or offset by a constant). 1034 if ((!TruncTy || InvertStep) && 1035 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1036 // Record the phi node. But don't stop we might find an exact match 1037 // later. 1038 AddRecPhiMatch = &PN; 1039 IncV = TempIncV; 1040 TruncTy = Normalized->getType(); 1041 } 1042 } 1043 1044 if (AddRecPhiMatch) { 1045 // Ok, the add recurrence looks usable. 1046 // Remember this PHI, even in post-inc mode. 1047 InsertedValues.insert(AddRecPhiMatch); 1048 // Remember the increment. 1049 rememberInstruction(IncV); 1050 // Those values were not actually inserted but re-used. 1051 ReusedValues.insert(AddRecPhiMatch); 1052 ReusedValues.insert(IncV); 1053 return AddRecPhiMatch; 1054 } 1055 } 1056 1057 // Save the original insertion point so we can restore it when we're done. 1058 SCEVInsertPointGuard Guard(Builder, this); 1059 1060 // Another AddRec may need to be recursively expanded below. For example, if 1061 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1062 // loop. Remove this loop from the PostIncLoops set before expanding such 1063 // AddRecs. Otherwise, we cannot find a valid position for the step 1064 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1065 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1066 // so it's not worth implementing SmallPtrSet::swap. 1067 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1068 PostIncLoops.clear(); 1069 1070 // Expand code for the start value into the loop preheader. 1071 assert(L->getLoopPreheader() && 1072 "Can't expand add recurrences without a loop preheader!"); 1073 Value *StartV = 1074 expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 1075 1076 // StartV must have been be inserted into L's preheader to dominate the new 1077 // phi. 1078 assert(!isa<Instruction>(StartV) || 1079 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1080 L->getHeader())); 1081 1082 // Expand code for the step value. Do this before creating the PHI so that PHI 1083 // reuse code doesn't see an incomplete PHI. 1084 const SCEV *Step = Normalized->getStepRecurrence(SE); 1085 Type *ExpandTy = Normalized->getType(); 1086 // If the stride is negative, insert a sub instead of an add for the increment 1087 // (unless it's a constant, because subtracts of constants are canonicalized 1088 // to adds). 1089 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1090 if (useSubtract) 1091 Step = SE.getNegativeSCEV(Step); 1092 // Expand the step somewhere that dominates the loop header. 1093 Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1094 1095 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1096 // we actually do emit an addition. It does not apply if we emit a 1097 // subtraction. 1098 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1099 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1100 1101 // Create the PHI. 1102 BasicBlock *Header = L->getHeader(); 1103 Builder.SetInsertPoint(Header, Header->begin()); 1104 PHINode *PN = 1105 Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv"); 1106 1107 // Create the step instructions and populate the PHI. 1108 for (BasicBlock *Pred : predecessors(Header)) { 1109 // Add a start value. 1110 if (!L->contains(Pred)) { 1111 PN->addIncoming(StartV, Pred); 1112 continue; 1113 } 1114 1115 // Create a step value and add it to the PHI. 1116 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1117 // instructions at IVIncInsertPos. 1118 Instruction *InsertPos = L == IVIncInsertLoop ? 1119 IVIncInsertPos : Pred->getTerminator(); 1120 Builder.SetInsertPoint(InsertPos); 1121 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1122 1123 if (isa<OverflowingBinaryOperator>(IncV)) { 1124 if (IncrementIsNUW) 1125 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1126 if (IncrementIsNSW) 1127 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1128 } 1129 PN->addIncoming(IncV, Pred); 1130 } 1131 1132 // After expanding subexpressions, restore the PostIncLoops set so the caller 1133 // can ensure that IVIncrement dominates the current uses. 1134 PostIncLoops = SavedPostIncLoops; 1135 1136 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1137 // effective when we are able to use an IV inserted here, so record it. 1138 InsertedValues.insert(PN); 1139 InsertedIVs.push_back(PN); 1140 return PN; 1141 } 1142 1143 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1144 const Loop *L = S->getLoop(); 1145 1146 // Determine a normalized form of this expression, which is the expression 1147 // before any post-inc adjustment is made. 1148 const SCEVAddRecExpr *Normalized = S; 1149 if (PostIncLoops.count(L)) { 1150 PostIncLoopSet Loops; 1151 Loops.insert(L); 1152 Normalized = cast<SCEVAddRecExpr>( 1153 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1154 } 1155 1156 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1157 const SCEV *Step = Normalized->getStepRecurrence(SE); 1158 assert(SE.properlyDominates(Start, L->getHeader()) && 1159 "Start does not properly dominate loop header"); 1160 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1161 1162 // In some cases, we decide to reuse an existing phi node but need to truncate 1163 // it and/or invert the step. 1164 Type *TruncTy = nullptr; 1165 bool InvertStep = false; 1166 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 1167 1168 // Accommodate post-inc mode, if necessary. 1169 Value *Result; 1170 if (!PostIncLoops.count(L)) 1171 Result = PN; 1172 else { 1173 // In PostInc mode, use the post-incremented value. 1174 BasicBlock *LatchBlock = L->getLoopLatch(); 1175 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1176 Result = PN->getIncomingValueForBlock(LatchBlock); 1177 1178 // We might be introducing a new use of the post-inc IV that is not poison 1179 // safe, in which case we should drop poison generating flags. Only keep 1180 // those flags for which SCEV has proven that they always hold. 1181 if (isa<OverflowingBinaryOperator>(Result)) { 1182 auto *I = cast<Instruction>(Result); 1183 if (!S->hasNoUnsignedWrap()) 1184 I->setHasNoUnsignedWrap(false); 1185 if (!S->hasNoSignedWrap()) 1186 I->setHasNoSignedWrap(false); 1187 } 1188 1189 // For an expansion to use the postinc form, the client must call 1190 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1191 // or dominated by IVIncInsertPos. 1192 if (isa<Instruction>(Result) && 1193 !SE.DT.dominates(cast<Instruction>(Result), 1194 &*Builder.GetInsertPoint())) { 1195 // The induction variable's postinc expansion does not dominate this use. 1196 // IVUsers tries to prevent this case, so it is rare. However, it can 1197 // happen when an IVUser outside the loop is not dominated by the latch 1198 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1199 // all cases. Consider a phi outside whose operand is replaced during 1200 // expansion with the value of the postinc user. Without fundamentally 1201 // changing the way postinc users are tracked, the only remedy is 1202 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1203 // but hopefully expandCodeFor handles that. 1204 bool useSubtract = 1205 !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 1206 if (useSubtract) 1207 Step = SE.getNegativeSCEV(Step); 1208 Value *StepV; 1209 { 1210 // Expand the step somewhere that dominates the loop header. 1211 SCEVInsertPointGuard Guard(Builder, this); 1212 StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1213 } 1214 Result = expandIVInc(PN, StepV, L, useSubtract); 1215 } 1216 } 1217 1218 // We have decided to reuse an induction variable of a dominating loop. Apply 1219 // truncation and/or inversion of the step. 1220 if (TruncTy) { 1221 // Truncate the result. 1222 if (TruncTy != Result->getType()) 1223 Result = Builder.CreateTrunc(Result, TruncTy); 1224 1225 // Invert the result. 1226 if (InvertStep) 1227 Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 1228 } 1229 1230 return Result; 1231 } 1232 1233 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1234 // In canonical mode we compute the addrec as an expression of a canonical IV 1235 // using evaluateAtIteration and expand the resulting SCEV expression. This 1236 // way we avoid introducing new IVs to carry on the computation of the addrec 1237 // throughout the loop. 1238 // 1239 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1240 // type wider than the addrec itself. Emitting a canonical IV of the 1241 // proper type might produce non-legal types, for example expanding an i64 1242 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1243 // back to non-canonical mode for nested addrecs. 1244 if (!CanonicalMode || (S->getNumOperands() > 2)) 1245 return expandAddRecExprLiterally(S); 1246 1247 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1248 const Loop *L = S->getLoop(); 1249 1250 // First check for an existing canonical IV in a suitable type. 1251 PHINode *CanonicalIV = nullptr; 1252 if (PHINode *PN = L->getCanonicalInductionVariable()) 1253 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1254 CanonicalIV = PN; 1255 1256 // Rewrite an AddRec in terms of the canonical induction variable, if 1257 // its type is more narrow. 1258 if (CanonicalIV && 1259 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1260 !S->getType()->isPointerTy()) { 1261 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1262 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1263 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1264 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1265 S->getNoWrapFlags(SCEV::FlagNW))); 1266 BasicBlock::iterator NewInsertPt = 1267 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1268 V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 1269 return V; 1270 } 1271 1272 // {X,+,F} --> X + {0,+,F} 1273 if (!S->getStart()->isZero()) { 1274 if (isa<PointerType>(S->getType())) { 1275 Value *StartV = expand(SE.getPointerBase(S)); 1276 return expandAddToGEP(SE.removePointerBase(S), StartV, 1277 S->getNoWrapFlags(SCEV::FlagNUW)); 1278 } 1279 1280 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1281 NewOps[0] = SE.getConstant(Ty, 0); 1282 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1283 S->getNoWrapFlags(SCEV::FlagNW)); 1284 1285 // Just do a normal add. Pre-expand the operands to suppress folding. 1286 // 1287 // The LHS and RHS values are factored out of the expand call to make the 1288 // output independent of the argument evaluation order. 1289 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1290 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1291 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1292 } 1293 1294 // If we don't yet have a canonical IV, create one. 1295 if (!CanonicalIV) { 1296 // Create and insert the PHI node for the induction variable in the 1297 // specified loop. 1298 BasicBlock *Header = L->getHeader(); 1299 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1300 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1301 CanonicalIV->insertBefore(Header->begin()); 1302 rememberInstruction(CanonicalIV); 1303 1304 SmallSet<BasicBlock *, 4> PredSeen; 1305 Constant *One = ConstantInt::get(Ty, 1); 1306 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1307 BasicBlock *HP = *HPI; 1308 if (!PredSeen.insert(HP).second) { 1309 // There must be an incoming value for each predecessor, even the 1310 // duplicates! 1311 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1312 continue; 1313 } 1314 1315 if (L->contains(HP)) { 1316 // Insert a unit add instruction right before the terminator 1317 // corresponding to the back-edge. 1318 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1319 "indvar.next", 1320 HP->getTerminator()->getIterator()); 1321 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1322 rememberInstruction(Add); 1323 CanonicalIV->addIncoming(Add, HP); 1324 } else { 1325 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1326 } 1327 } 1328 } 1329 1330 // {0,+,1} --> Insert a canonical induction variable into the loop! 1331 if (S->isAffine() && S->getOperand(1)->isOne()) { 1332 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1333 "IVs with types different from the canonical IV should " 1334 "already have been handled!"); 1335 return CanonicalIV; 1336 } 1337 1338 // {0,+,F} --> {0,+,1} * F 1339 1340 // If this is a simple linear addrec, emit it now as a special case. 1341 if (S->isAffine()) // {0,+,F} --> i*F 1342 return 1343 expand(SE.getTruncateOrNoop( 1344 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1345 SE.getNoopOrAnyExtend(S->getOperand(1), 1346 CanonicalIV->getType())), 1347 Ty)); 1348 1349 // If this is a chain of recurrences, turn it into a closed form, using the 1350 // folders, then expandCodeFor the closed form. This allows the folders to 1351 // simplify the expression without having to build a bunch of special code 1352 // into this folder. 1353 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1354 1355 // Promote S up to the canonical IV type, if the cast is foldable. 1356 const SCEV *NewS = S; 1357 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1358 if (isa<SCEVAddRecExpr>(Ext)) 1359 NewS = Ext; 1360 1361 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1362 1363 // Truncate the result down to the original type, if needed. 1364 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1365 return expand(T); 1366 } 1367 1368 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1369 Value *V = expand(S->getOperand()); 1370 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1371 GetOptimalInsertionPointForCastOf(V)); 1372 } 1373 1374 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1375 Value *V = expand(S->getOperand()); 1376 return Builder.CreateTrunc(V, S->getType()); 1377 } 1378 1379 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1380 Value *V = expand(S->getOperand()); 1381 return Builder.CreateZExt(V, S->getType(), "", 1382 SE.isKnownNonNegative(S->getOperand())); 1383 } 1384 1385 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1386 Value *V = expand(S->getOperand()); 1387 return Builder.CreateSExt(V, S->getType()); 1388 } 1389 1390 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1391 Intrinsic::ID IntrinID, Twine Name, 1392 bool IsSequential) { 1393 bool PrevSafeMode = SafeUDivMode; 1394 SafeUDivMode |= IsSequential; 1395 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1396 Type *Ty = LHS->getType(); 1397 if (IsSequential) 1398 LHS = Builder.CreateFreeze(LHS); 1399 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1400 SafeUDivMode = (IsSequential && i != 0) || PrevSafeMode; 1401 Value *RHS = expand(S->getOperand(i)); 1402 if (IsSequential && i != 0) 1403 RHS = Builder.CreateFreeze(RHS); 1404 Value *Sel; 1405 if (Ty->isIntegerTy()) 1406 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1407 /*FMFSource=*/nullptr, Name); 1408 else { 1409 Value *ICmp = 1410 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1411 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1412 } 1413 LHS = Sel; 1414 } 1415 SafeUDivMode = PrevSafeMode; 1416 return LHS; 1417 } 1418 1419 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1420 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1421 } 1422 1423 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1424 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1425 } 1426 1427 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1428 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1429 } 1430 1431 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1432 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1433 } 1434 1435 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1436 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1437 } 1438 1439 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1440 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1441 } 1442 1443 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1444 BasicBlock::iterator IP) { 1445 setInsertPoint(IP); 1446 Value *V = expandCodeFor(SH, Ty); 1447 return V; 1448 } 1449 1450 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1451 // Expand the code for this SCEV. 1452 Value *V = expand(SH); 1453 1454 if (Ty) { 1455 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1456 "non-trivial casts should be done with the SCEVs directly!"); 1457 V = InsertNoopCastOfTo(V, Ty); 1458 } 1459 return V; 1460 } 1461 1462 Value *SCEVExpander::FindValueInExprValueMap( 1463 const SCEV *S, const Instruction *InsertPt, 1464 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1465 // If the expansion is not in CanonicalMode, and the SCEV contains any 1466 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1467 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1468 return nullptr; 1469 1470 // If S is a constant or unknown, it may be worse to reuse an existing Value. 1471 if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S)) 1472 return nullptr; 1473 1474 for (Value *V : SE.getSCEVValues(S)) { 1475 Instruction *EntInst = dyn_cast<Instruction>(V); 1476 if (!EntInst) 1477 continue; 1478 1479 // Choose a Value from the set which dominates the InsertPt. 1480 // InsertPt should be inside the Value's parent loop so as not to break 1481 // the LCSSA form. 1482 assert(EntInst->getFunction() == InsertPt->getFunction()); 1483 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1484 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1485 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1486 continue; 1487 1488 // Make sure reusing the instruction is poison-safe. 1489 if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 1490 return V; 1491 DropPoisonGeneratingInsts.clear(); 1492 } 1493 return nullptr; 1494 } 1495 1496 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1497 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1498 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1499 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1500 // the expansion will try to reuse Value from ExprValueMap, and only when it 1501 // fails, expand the SCEV literally. 1502 Value *SCEVExpander::expand(const SCEV *S) { 1503 // Compute an insertion point for this SCEV object. Hoist the instructions 1504 // as far out in the loop nest as possible. 1505 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1506 1507 // We can move insertion point only if there is no div or rem operations 1508 // otherwise we are risky to move it over the check for zero denominator. 1509 auto SafeToHoist = [](const SCEV *S) { 1510 return !SCEVExprContains(S, [](const SCEV *S) { 1511 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1512 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1513 // Division by non-zero constants can be hoisted. 1514 return SC->getValue()->isZero(); 1515 // All other divisions should not be moved as they may be 1516 // divisions by zero and should be kept within the 1517 // conditions of the surrounding loops that guard their 1518 // execution (see PR35406). 1519 return true; 1520 } 1521 return false; 1522 }); 1523 }; 1524 if (SafeToHoist(S)) { 1525 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1526 L = L->getParentLoop()) { 1527 if (SE.isLoopInvariant(S, L)) { 1528 if (!L) break; 1529 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1530 InsertPt = Preheader->getTerminator()->getIterator(); 1531 } else { 1532 // LSR sets the insertion point for AddRec start/step values to the 1533 // block start to simplify value reuse, even though it's an invalid 1534 // position. SCEVExpander must correct for this in all cases. 1535 InsertPt = L->getHeader()->getFirstInsertionPt(); 1536 } 1537 } else { 1538 // If the SCEV is computable at this level, insert it into the header 1539 // after the PHIs (and after any other instructions that we've inserted 1540 // there) so that it is guaranteed to dominate any user inside the loop. 1541 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1542 InsertPt = L->getHeader()->getFirstInsertionPt(); 1543 1544 while (InsertPt != Builder.GetInsertPoint() && 1545 (isInsertedInstruction(&*InsertPt) || 1546 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1547 InsertPt = std::next(InsertPt); 1548 } 1549 break; 1550 } 1551 } 1552 } 1553 1554 // Check to see if we already expanded this here. 1555 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1556 if (I != InsertedExpressions.end()) 1557 return I->second; 1558 1559 SCEVInsertPointGuard Guard(Builder, this); 1560 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1561 1562 // Expand the expression into instructions. 1563 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1564 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1565 if (!V) { 1566 V = visit(S); 1567 V = fixupLCSSAFormFor(V); 1568 } else { 1569 for (Instruction *I : DropPoisonGeneratingInsts) { 1570 rememberFlags(I); 1571 I->dropPoisonGeneratingAnnotations(); 1572 // See if we can re-infer from first principles any of the flags we just 1573 // dropped. 1574 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1575 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1576 auto *BO = cast<BinaryOperator>(I); 1577 BO->setHasNoUnsignedWrap( 1578 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1579 BO->setHasNoSignedWrap( 1580 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1581 } 1582 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 1583 auto *Src = NNI->getOperand(0); 1584 if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 1585 Constant::getNullValue(Src->getType()), I, 1586 DL).value_or(false)) 1587 NNI->setNonNeg(true); 1588 } 1589 } 1590 } 1591 // Remember the expanded value for this SCEV at this location. 1592 // 1593 // This is independent of PostIncLoops. The mapped value simply materializes 1594 // the expression at this insertion point. If the mapped value happened to be 1595 // a postinc expansion, it could be reused by a non-postinc user, but only if 1596 // its insertion point was already at the head of the loop. 1597 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1598 return V; 1599 } 1600 1601 void SCEVExpander::rememberInstruction(Value *I) { 1602 auto DoInsert = [this](Value *V) { 1603 if (!PostIncLoops.empty()) 1604 InsertedPostIncValues.insert(V); 1605 else 1606 InsertedValues.insert(V); 1607 }; 1608 DoInsert(I); 1609 } 1610 1611 void SCEVExpander::rememberFlags(Instruction *I) { 1612 // If we already have flags for the instruction, keep the existing ones. 1613 OrigFlags.try_emplace(I, PoisonFlags(I)); 1614 } 1615 1616 void SCEVExpander::replaceCongruentIVInc( 1617 PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT, 1618 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1619 BasicBlock *LatchBlock = L->getLoopLatch(); 1620 if (!LatchBlock) 1621 return; 1622 1623 Instruction *OrigInc = 1624 dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1625 Instruction *IsomorphicInc = 1626 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1627 if (!OrigInc || !IsomorphicInc) 1628 return; 1629 1630 // If this phi has the same width but is more canonical, replace the 1631 // original with it. As part of the "more canonical" determination, 1632 // respect a prior decision to use an IV chain. 1633 if (OrigPhi->getType() == Phi->getType() && 1634 !(ChainedPhis.count(Phi) || 1635 isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) && 1636 (ChainedPhis.count(Phi) || 1637 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1638 std::swap(OrigPhi, Phi); 1639 std::swap(OrigInc, IsomorphicInc); 1640 } 1641 1642 // Replacing the congruent phi is sufficient because acyclic 1643 // redundancy elimination, CSE/GVN, should handle the 1644 // rest. However, once SCEV proves that a phi is congruent, 1645 // it's often the head of an IV user cycle that is isomorphic 1646 // with the original phi. It's worth eagerly cleaning up the 1647 // common case of a single IV increment so that DeleteDeadPHIs 1648 // can remove cycles that had postinc uses. 1649 // Because we may potentially introduce a new use of OrigIV that didn't 1650 // exist before at this point, its poison flags need readjustment. 1651 const SCEV *TruncExpr = 1652 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1653 if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) || 1654 !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc)) 1655 return; 1656 1657 bool BothHaveNUW = false; 1658 bool BothHaveNSW = false; 1659 auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc); 1660 auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc); 1661 if (OBOIncV && OBOIsomorphic) { 1662 BothHaveNUW = 1663 OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap(); 1664 BothHaveNSW = 1665 OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap(); 1666 } 1667 1668 if (!hoistIVInc(OrigInc, IsomorphicInc, 1669 /*RecomputePoisonFlags*/ true)) 1670 return; 1671 1672 // We are replacing with a wider increment. If both OrigInc and IsomorphicInc 1673 // are NUW/NSW, then we can preserve them on the wider increment; the narrower 1674 // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't 1675 // make IsomorphicInc's uses more poisonous. 1676 assert(OrigInc->getType()->getScalarSizeInBits() >= 1677 IsomorphicInc->getType()->getScalarSizeInBits() && 1678 "Should only replace an increment with a wider one."); 1679 if (BothHaveNUW || BothHaveNSW) { 1680 OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW); 1681 OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW); 1682 } 1683 1684 SCEV_DEBUG_WITH_TYPE(DebugType, 1685 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1686 << *IsomorphicInc << '\n'); 1687 Value *NewInc = OrigInc; 1688 if (OrigInc->getType() != IsomorphicInc->getType()) { 1689 BasicBlock::iterator IP; 1690 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1691 IP = PN->getParent()->getFirstInsertionPt(); 1692 else 1693 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1694 1695 IRBuilder<> Builder(IP->getParent(), IP); 1696 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1697 NewInc = 1698 Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1699 } 1700 IsomorphicInc->replaceAllUsesWith(NewInc); 1701 DeadInsts.emplace_back(IsomorphicInc); 1702 } 1703 1704 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1705 /// replace them with their most canonical representative. Return the number of 1706 /// phis eliminated. 1707 /// 1708 /// This does not depend on any SCEVExpander state but should be used in 1709 /// the same context that SCEVExpander is used. 1710 unsigned 1711 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1712 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1713 const TargetTransformInfo *TTI) { 1714 // Find integer phis in order of increasing width. 1715 SmallVector<PHINode*, 8> Phis; 1716 for (PHINode &PN : L->getHeader()->phis()) 1717 Phis.push_back(&PN); 1718 1719 if (TTI) 1720 // Use stable_sort to preserve order of equivalent PHIs, so the order 1721 // of the sorted Phis is the same from run to run on the same loop. 1722 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1723 // Put pointers at the back and make sure pointer < pointer = false. 1724 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1725 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1726 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1727 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1728 }); 1729 1730 unsigned NumElim = 0; 1731 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1732 // Process phis from wide to narrow. Map wide phis to their truncation 1733 // so narrow phis can reuse them. 1734 for (PHINode *Phi : Phis) { 1735 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1736 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1737 return V; 1738 if (!SE.isSCEVable(PN->getType())) 1739 return nullptr; 1740 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1741 if (!Const) 1742 return nullptr; 1743 return Const->getValue(); 1744 }; 1745 1746 // Fold constant phis. They may be congruent to other constant phis and 1747 // would confuse the logic below that expects proper IVs. 1748 if (Value *V = SimplifyPHINode(Phi)) { 1749 if (V->getType() != Phi->getType()) 1750 continue; 1751 SE.forgetValue(Phi); 1752 Phi->replaceAllUsesWith(V); 1753 DeadInsts.emplace_back(Phi); 1754 ++NumElim; 1755 SCEV_DEBUG_WITH_TYPE(DebugType, 1756 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1757 << '\n'); 1758 continue; 1759 } 1760 1761 if (!SE.isSCEVable(Phi->getType())) 1762 continue; 1763 1764 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1765 if (!OrigPhiRef) { 1766 OrigPhiRef = Phi; 1767 if (Phi->getType()->isIntegerTy() && TTI && 1768 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1769 // Make sure we only rewrite using simple induction variables; 1770 // otherwise, we can make the trip count of a loop unanalyzable 1771 // to SCEV. 1772 const SCEV *PhiExpr = SE.getSCEV(Phi); 1773 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1774 // This phi can be freely truncated to the narrowest phi type. Map the 1775 // truncated expression to it so it will be reused for narrow types. 1776 const SCEV *TruncExpr = 1777 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1778 ExprToIVMap[TruncExpr] = Phi; 1779 } 1780 } 1781 continue; 1782 } 1783 1784 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1785 // sense. 1786 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1787 continue; 1788 1789 replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts); 1790 SCEV_DEBUG_WITH_TYPE(DebugType, 1791 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1792 << '\n'); 1793 SCEV_DEBUG_WITH_TYPE( 1794 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1795 ++NumElim; 1796 Value *NewIV = OrigPhiRef; 1797 if (OrigPhiRef->getType() != Phi->getType()) { 1798 IRBuilder<> Builder(L->getHeader(), 1799 L->getHeader()->getFirstInsertionPt()); 1800 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1801 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1802 } 1803 Phi->replaceAllUsesWith(NewIV); 1804 DeadInsts.emplace_back(Phi); 1805 } 1806 return NumElim; 1807 } 1808 1809 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1810 const Instruction *At, 1811 Loop *L) { 1812 using namespace llvm::PatternMatch; 1813 1814 SmallVector<BasicBlock *, 4> ExitingBlocks; 1815 L->getExitingBlocks(ExitingBlocks); 1816 1817 // Look for suitable value in simple conditions at the loop exits. 1818 for (BasicBlock *BB : ExitingBlocks) { 1819 CmpPredicate Pred; 1820 Instruction *LHS, *RHS; 1821 1822 if (!match(BB->getTerminator(), 1823 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1824 m_BasicBlock(), m_BasicBlock()))) 1825 continue; 1826 1827 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1828 return true; 1829 1830 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1831 return true; 1832 } 1833 1834 // Use expand's logic which is used for reusing a previous Value in 1835 // ExprValueMap. Note that we don't currently model the cost of 1836 // needing to drop poison generating flags on the instruction if we 1837 // want to reuse it. We effectively assume that has zero cost. 1838 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1839 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1840 } 1841 1842 template<typename T> static InstructionCost costAndCollectOperands( 1843 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1844 TargetTransformInfo::TargetCostKind CostKind, 1845 SmallVectorImpl<SCEVOperand> &Worklist) { 1846 1847 const T *S = cast<T>(WorkItem.S); 1848 InstructionCost Cost = 0; 1849 // Object to help map SCEV operands to expanded IR instructions. 1850 struct OperationIndices { 1851 OperationIndices(unsigned Opc, size_t min, size_t max) : 1852 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1853 unsigned Opcode; 1854 size_t MinIdx; 1855 size_t MaxIdx; 1856 }; 1857 1858 // Collect the operations of all the instructions that will be needed to 1859 // expand the SCEVExpr. This is so that when we come to cost the operands, 1860 // we know what the generated user(s) will be. 1861 SmallVector<OperationIndices, 2> Operations; 1862 1863 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1864 Operations.emplace_back(Opcode, 0, 0); 1865 return TTI.getCastInstrCost(Opcode, S->getType(), 1866 S->getOperand(0)->getType(), 1867 TTI::CastContextHint::None, CostKind); 1868 }; 1869 1870 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1871 unsigned MinIdx = 0, 1872 unsigned MaxIdx = 1) -> InstructionCost { 1873 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1874 return NumRequired * 1875 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1876 }; 1877 1878 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1879 unsigned MaxIdx) -> InstructionCost { 1880 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1881 Type *OpType = S->getType(); 1882 return NumRequired * TTI.getCmpSelInstrCost( 1883 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1884 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1885 }; 1886 1887 switch (S->getSCEVType()) { 1888 case scCouldNotCompute: 1889 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1890 case scUnknown: 1891 case scConstant: 1892 case scVScale: 1893 return 0; 1894 case scPtrToInt: 1895 Cost = CastCost(Instruction::PtrToInt); 1896 break; 1897 case scTruncate: 1898 Cost = CastCost(Instruction::Trunc); 1899 break; 1900 case scZeroExtend: 1901 Cost = CastCost(Instruction::ZExt); 1902 break; 1903 case scSignExtend: 1904 Cost = CastCost(Instruction::SExt); 1905 break; 1906 case scUDivExpr: { 1907 unsigned Opcode = Instruction::UDiv; 1908 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1909 if (SC->getAPInt().isPowerOf2()) 1910 Opcode = Instruction::LShr; 1911 Cost = ArithCost(Opcode, 1); 1912 break; 1913 } 1914 case scAddExpr: 1915 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1916 break; 1917 case scMulExpr: 1918 // TODO: this is a very pessimistic cost modelling for Mul, 1919 // because of Bin Pow algorithm actually used by the expander, 1920 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1921 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1922 break; 1923 case scSMaxExpr: 1924 case scUMaxExpr: 1925 case scSMinExpr: 1926 case scUMinExpr: 1927 case scSequentialUMinExpr: { 1928 // FIXME: should this ask the cost for Intrinsic's? 1929 // The reduction tree. 1930 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1931 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1932 switch (S->getSCEVType()) { 1933 case scSequentialUMinExpr: { 1934 // The safety net against poison. 1935 // FIXME: this is broken. 1936 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1937 Cost += ArithCost(Instruction::Or, 1938 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1939 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1940 break; 1941 } 1942 default: 1943 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1944 "Unhandled SCEV expression type?"); 1945 break; 1946 } 1947 break; 1948 } 1949 case scAddRecExpr: { 1950 // Addrec expands to a phi and add per recurrence. 1951 unsigned NumRecurrences = S->getNumOperands() - 1; 1952 Cost += TTI.getCFInstrCost(Instruction::PHI, CostKind) * NumRecurrences; 1953 Cost += 1954 TTI.getArithmeticInstrCost(Instruction::Add, S->getType(), CostKind) * 1955 NumRecurrences; 1956 // AR start is used in phi. 1957 Worklist.emplace_back(Instruction::PHI, 0, S->getOperand(0)); 1958 // Other operands are used in add. 1959 for (const SCEV *Op : S->operands().drop_front()) 1960 Worklist.emplace_back(Instruction::Add, 1, Op); 1961 break; 1962 } 1963 } 1964 1965 for (auto &CostOp : Operations) { 1966 for (auto SCEVOp : enumerate(S->operands())) { 1967 // Clamp the index to account for multiple IR operations being chained. 1968 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1969 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1970 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1971 } 1972 } 1973 return Cost; 1974 } 1975 1976 bool SCEVExpander::isHighCostExpansionHelper( 1977 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1978 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1979 SmallPtrSetImpl<const SCEV *> &Processed, 1980 SmallVectorImpl<SCEVOperand> &Worklist) { 1981 if (Cost > Budget) 1982 return true; // Already run out of budget, give up. 1983 1984 const SCEV *S = WorkItem.S; 1985 // Was the cost of expansion of this expression already accounted for? 1986 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1987 return false; // We have already accounted for this expression. 1988 1989 // If we can find an existing value for this scev available at the point "At" 1990 // then consider the expression cheap. 1991 if (hasRelatedExistingExpansion(S, &At, L)) 1992 return false; // Consider the expression to be free. 1993 1994 TargetTransformInfo::TargetCostKind CostKind = 1995 L->getHeader()->getParent()->hasMinSize() 1996 ? TargetTransformInfo::TCK_CodeSize 1997 : TargetTransformInfo::TCK_RecipThroughput; 1998 1999 switch (S->getSCEVType()) { 2000 case scCouldNotCompute: 2001 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2002 case scUnknown: 2003 case scVScale: 2004 // Assume to be zero-cost. 2005 return false; 2006 case scConstant: { 2007 // Only evalulate the costs of constants when optimizing for size. 2008 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2009 return false; 2010 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2011 Type *Ty = S->getType(); 2012 Cost += TTI.getIntImmCostInst( 2013 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2014 return Cost > Budget; 2015 } 2016 case scTruncate: 2017 case scPtrToInt: 2018 case scZeroExtend: 2019 case scSignExtend: { 2020 Cost += 2021 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2022 return false; // Will answer upon next entry into this function. 2023 } 2024 case scUDivExpr: { 2025 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2026 // HowManyLessThans produced to compute a precise expression, rather than a 2027 // UDiv from the user's code. If we can't find a UDiv in the code with some 2028 // simple searching, we need to account for it's cost. 2029 2030 // At the beginning of this function we already tried to find existing 2031 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2032 // pattern involving division. This is just a simple search heuristic. 2033 if (hasRelatedExistingExpansion( 2034 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2035 return false; // Consider it to be free. 2036 2037 Cost += 2038 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2039 return false; // Will answer upon next entry into this function. 2040 } 2041 case scAddExpr: 2042 case scMulExpr: 2043 case scUMaxExpr: 2044 case scSMaxExpr: 2045 case scUMinExpr: 2046 case scSMinExpr: 2047 case scSequentialUMinExpr: { 2048 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2049 "Nary expr should have more than 1 operand."); 2050 // The simple nary expr will require one less op (or pair of ops) 2051 // than the number of it's terms. 2052 Cost += 2053 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2054 return Cost > Budget; 2055 } 2056 case scAddRecExpr: { 2057 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2058 "Polynomial should be at least linear"); 2059 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2060 WorkItem, TTI, CostKind, Worklist); 2061 return Cost > Budget; 2062 } 2063 } 2064 llvm_unreachable("Unknown SCEV kind!"); 2065 } 2066 2067 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2068 Instruction *IP) { 2069 assert(IP); 2070 switch (Pred->getKind()) { 2071 case SCEVPredicate::P_Union: 2072 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2073 case SCEVPredicate::P_Compare: 2074 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2075 case SCEVPredicate::P_Wrap: { 2076 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2077 return expandWrapPredicate(AddRecPred, IP); 2078 } 2079 } 2080 llvm_unreachable("Unknown SCEV predicate type"); 2081 } 2082 2083 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2084 Instruction *IP) { 2085 Value *Expr0 = expand(Pred->getLHS(), IP); 2086 Value *Expr1 = expand(Pred->getRHS(), IP); 2087 2088 Builder.SetInsertPoint(IP); 2089 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2090 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2091 return I; 2092 } 2093 2094 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2095 Instruction *Loc, bool Signed) { 2096 assert(AR->isAffine() && "Cannot generate RT check for " 2097 "non-affine expression"); 2098 2099 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2100 SmallVector<const SCEVPredicate *, 4> Pred; 2101 const SCEV *ExitCount = 2102 SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred); 2103 2104 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2105 2106 const SCEV *Step = AR->getStepRecurrence(SE); 2107 const SCEV *Start = AR->getStart(); 2108 2109 Type *ARTy = AR->getType(); 2110 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2111 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2112 2113 // The expression {Start,+,Step} has nusw/nssw if 2114 // Step < 0, Start - |Step| * Backedge <= Start 2115 // Step >= 0, Start + |Step| * Backedge > Start 2116 // and |Step| * Backedge doesn't unsigned overflow. 2117 2118 Builder.SetInsertPoint(Loc); 2119 Value *TripCountVal = expand(ExitCount, Loc); 2120 2121 IntegerType *Ty = 2122 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2123 2124 Value *StepValue = expand(Step, Loc); 2125 Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 2126 Value *StartValue = expand(Start, Loc); 2127 2128 ConstantInt *Zero = 2129 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2130 2131 Builder.SetInsertPoint(Loc); 2132 // Compute |Step| 2133 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2134 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2135 2136 // Compute |Step| * Backedge 2137 // Compute: 2138 // 1. Start + |Step| * Backedge < Start 2139 // 2. Start - |Step| * Backedge > Start 2140 // 2141 // And select either 1. or 2. depending on whether step is positive or 2142 // negative. If Step is known to be positive or negative, only create 2143 // either 1. or 2. 2144 auto ComputeEndCheck = [&]() -> Value * { 2145 // Checking <u 0 is always false. 2146 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2147 return ConstantInt::getFalse(Loc->getContext()); 2148 2149 // Get the backedge taken count and truncate or extended to the AR type. 2150 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2151 2152 Value *MulV, *OfMul; 2153 if (Step->isOne()) { 2154 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2155 // needed, there is never an overflow, so to avoid artificially inflating 2156 // the cost of the check, directly emit the optimized IR. 2157 MulV = TruncTripCount; 2158 OfMul = ConstantInt::getFalse(MulV->getContext()); 2159 } else { 2160 CallInst *Mul = Builder.CreateIntrinsic(Intrinsic::umul_with_overflow, Ty, 2161 {AbsStep, TruncTripCount}, 2162 /*FMFSource=*/nullptr, "mul"); 2163 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2164 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2165 } 2166 2167 Value *Add = nullptr, *Sub = nullptr; 2168 bool NeedPosCheck = !SE.isKnownNegative(Step); 2169 bool NeedNegCheck = !SE.isKnownPositive(Step); 2170 2171 if (isa<PointerType>(ARTy)) { 2172 Value *NegMulV = Builder.CreateNeg(MulV); 2173 if (NeedPosCheck) 2174 Add = Builder.CreatePtrAdd(StartValue, MulV); 2175 if (NeedNegCheck) 2176 Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 2177 } else { 2178 if (NeedPosCheck) 2179 Add = Builder.CreateAdd(StartValue, MulV); 2180 if (NeedNegCheck) 2181 Sub = Builder.CreateSub(StartValue, MulV); 2182 } 2183 2184 Value *EndCompareLT = nullptr; 2185 Value *EndCompareGT = nullptr; 2186 Value *EndCheck = nullptr; 2187 if (NeedPosCheck) 2188 EndCheck = EndCompareLT = Builder.CreateICmp( 2189 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2190 if (NeedNegCheck) 2191 EndCheck = EndCompareGT = Builder.CreateICmp( 2192 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2193 if (NeedPosCheck && NeedNegCheck) { 2194 // Select the answer based on the sign of Step. 2195 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2196 } 2197 return Builder.CreateOr(EndCheck, OfMul); 2198 }; 2199 Value *EndCheck = ComputeEndCheck(); 2200 2201 // If the backedge taken count type is larger than the AR type, 2202 // check that we don't drop any bits by truncating it. If we are 2203 // dropping bits, then we have overflow (unless the step is zero). 2204 if (SrcBits > DstBits) { 2205 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2206 auto *BackedgeCheck = 2207 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2208 ConstantInt::get(Loc->getContext(), MaxVal)); 2209 BackedgeCheck = Builder.CreateAnd( 2210 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2211 2212 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2213 } 2214 2215 return EndCheck; 2216 } 2217 2218 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2219 Instruction *IP) { 2220 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2221 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2222 2223 // Add a check for NUSW 2224 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2225 NUSWCheck = generateOverflowCheck(A, IP, false); 2226 2227 // Add a check for NSSW 2228 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2229 NSSWCheck = generateOverflowCheck(A, IP, true); 2230 2231 if (NUSWCheck && NSSWCheck) 2232 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2233 2234 if (NUSWCheck) 2235 return NUSWCheck; 2236 2237 if (NSSWCheck) 2238 return NSSWCheck; 2239 2240 return ConstantInt::getFalse(IP->getContext()); 2241 } 2242 2243 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2244 Instruction *IP) { 2245 // Loop over all checks in this set. 2246 SmallVector<Value *> Checks; 2247 for (const auto *Pred : Union->getPredicates()) { 2248 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2249 Builder.SetInsertPoint(IP); 2250 } 2251 2252 if (Checks.empty()) 2253 return ConstantInt::getFalse(IP->getContext()); 2254 return Builder.CreateOr(Checks); 2255 } 2256 2257 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2258 auto *DefI = dyn_cast<Instruction>(V); 2259 if (!PreserveLCSSA || !DefI) 2260 return V; 2261 2262 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 2263 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2264 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2265 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2266 return V; 2267 2268 // Create a temporary instruction to at the current insertion point, so we 2269 // can hand it off to the helper to create LCSSA PHIs if required for the 2270 // new use. 2271 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2272 // would accept a insertion point and return an LCSSA phi for that 2273 // insertion point, so there is no need to insert & remove the temporary 2274 // instruction. 2275 Type *ToTy; 2276 if (DefI->getType()->isIntegerTy()) 2277 ToTy = PointerType::get(DefI->getContext(), 0); 2278 else 2279 ToTy = Type::getInt32Ty(DefI->getContext()); 2280 Instruction *User = 2281 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2282 auto RemoveUserOnExit = 2283 make_scope_exit([User]() { User->eraseFromParent(); }); 2284 2285 SmallVector<Instruction *, 1> ToUpdate; 2286 ToUpdate.push_back(DefI); 2287 SmallVector<PHINode *, 16> PHIsToRemove; 2288 SmallVector<PHINode *, 16> InsertedPHIs; 2289 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2290 &InsertedPHIs); 2291 for (PHINode *PN : InsertedPHIs) 2292 rememberInstruction(PN); 2293 for (PHINode *PN : PHIsToRemove) { 2294 if (!PN->use_empty()) 2295 continue; 2296 InsertedValues.erase(PN); 2297 InsertedPostIncValues.erase(PN); 2298 PN->eraseFromParent(); 2299 } 2300 2301 return User->getOperand(0); 2302 } 2303 2304 namespace { 2305 // Search for a SCEV subexpression that is not safe to expand. Any expression 2306 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2307 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2308 // instruction, but the important thing is that we prove the denominator is 2309 // nonzero before expansion. 2310 // 2311 // IVUsers already checks that IV-derived expressions are safe. So this check is 2312 // only needed when the expression includes some subexpression that is not IV 2313 // derived. 2314 // 2315 // Currently, we only allow division by a value provably non-zero here. 2316 // 2317 // We cannot generally expand recurrences unless the step dominates the loop 2318 // header. The expander handles the special case of affine recurrences by 2319 // scaling the recurrence outside the loop, but this technique isn't generally 2320 // applicable. Expanding a nested recurrence outside a loop requires computing 2321 // binomial coefficients. This could be done, but the recurrence has to be in a 2322 // perfectly reduced form, which can't be guaranteed. 2323 struct SCEVFindUnsafe { 2324 ScalarEvolution &SE; 2325 bool CanonicalMode; 2326 bool IsUnsafe = false; 2327 2328 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2329 : SE(SE), CanonicalMode(CanonicalMode) {} 2330 2331 bool follow(const SCEV *S) { 2332 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2333 if (!SE.isKnownNonZero(D->getRHS())) { 2334 IsUnsafe = true; 2335 return false; 2336 } 2337 } 2338 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2339 // For non-affine addrecs or in non-canonical mode we need a preheader 2340 // to insert into. 2341 if (!AR->getLoop()->getLoopPreheader() && 2342 (!CanonicalMode || !AR->isAffine())) { 2343 IsUnsafe = true; 2344 return false; 2345 } 2346 } 2347 return true; 2348 } 2349 bool isDone() const { return IsUnsafe; } 2350 }; 2351 } // namespace 2352 2353 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2354 SCEVFindUnsafe Search(SE, CanonicalMode); 2355 visitAll(S, Search); 2356 return !Search.IsUnsafe; 2357 } 2358 2359 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2360 const Instruction *InsertionPoint) const { 2361 if (!isSafeToExpand(S)) 2362 return false; 2363 // We have to prove that the expanded site of S dominates InsertionPoint. 2364 // This is easy when not in the same block, but hard when S is an instruction 2365 // to be expanded somewhere inside the same block as our insertion point. 2366 // What we really need here is something analogous to an OrderedBasicBlock, 2367 // but for the moment, we paper over the problem by handling two common and 2368 // cheap to check cases. 2369 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2370 return true; 2371 if (SE.dominates(S, InsertionPoint->getParent())) { 2372 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2373 return true; 2374 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2375 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2376 return true; 2377 } 2378 return false; 2379 } 2380 2381 void SCEVExpanderCleaner::cleanup() { 2382 // Result is used, nothing to remove. 2383 if (ResultUsed) 2384 return; 2385 2386 // Restore original poison flags. 2387 for (auto [I, Flags] : Expander.OrigFlags) 2388 Flags.apply(I); 2389 2390 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2391 #ifndef NDEBUG 2392 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2393 InsertedInstructions.end()); 2394 (void)InsertedSet; 2395 #endif 2396 // Remove sets with value handles. 2397 Expander.clear(); 2398 2399 // Remove all inserted instructions. 2400 for (Instruction *I : reverse(InsertedInstructions)) { 2401 #ifndef NDEBUG 2402 assert(all_of(I->users(), 2403 [&InsertedSet](Value *U) { 2404 return InsertedSet.contains(cast<Instruction>(U)); 2405 }) && 2406 "removed instruction should only be used by instructions inserted " 2407 "during expansion"); 2408 #endif 2409 assert(!I->getType()->isVoidTy() && 2410 "inserted instruction should have non-void types"); 2411 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2412 I->eraseFromParent(); 2413 } 2414 } 2415