xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision ecc9d7e913eec96816499d0a328c6134281f8aad)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 using namespace llvm;
33 
34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
35     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
36     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
37              "controls the budget that is considered cheap (default = 4)"));
38 
39 using namespace PatternMatch;
40 
41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users()) {
62     if (U->getType() != Ty)
63       continue;
64     CastInst *CI = dyn_cast<CastInst>(U);
65     if (!CI || CI->getOpcode() != Op)
66       continue;
67 
68     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
69     // the cast must also properly dominate the Builder's insertion point.
70     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
71         (&*IP == CI || CI->comesBefore(&*IP))) {
72       Ret = CI;
73       break;
74     }
75   }
76 
77   // Create a new cast.
78   if (!Ret) {
79     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
80     rememberInstruction(Ret);
81   }
82 
83   // We assert at the end of the function since IP might point to an
84   // instruction with different dominance properties than a cast
85   // (an invoke for example) and not dominate BIP (but the cast does).
86   assert(SE.DT.dominates(Ret, &*BIP));
87 
88   return Ret;
89 }
90 
91 BasicBlock::iterator
92 SCEVExpander::findInsertPointAfter(Instruction *I,
93                                    Instruction *MustDominate) const {
94   BasicBlock::iterator IP = ++I->getIterator();
95   if (auto *II = dyn_cast<InvokeInst>(I))
96     IP = II->getNormalDest()->begin();
97 
98   while (isa<PHINode>(IP))
99     ++IP;
100 
101   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
102     ++IP;
103   } else if (isa<CatchSwitchInst>(IP)) {
104     IP = MustDominate->getParent()->getFirstInsertionPt();
105   } else {
106     assert(!IP->isEHPad() && "unexpected eh pad!");
107   }
108 
109   // Adjust insert point to be after instructions inserted by the expander, so
110   // we can re-use already inserted instructions. Avoid skipping past the
111   // original \p MustDominate, in case it is an inserted instruction.
112   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
113     ++IP;
114 
115   return IP;
116 }
117 
118 BasicBlock::iterator
119 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
120   // Cast the argument at the beginning of the entry block, after
121   // any bitcasts of other arguments.
122   if (Argument *A = dyn_cast<Argument>(V)) {
123     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
124     while ((isa<BitCastInst>(IP) &&
125             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
126             cast<BitCastInst>(IP)->getOperand(0) != A) ||
127            isa<DbgInfoIntrinsic>(IP))
128       ++IP;
129     return IP;
130   }
131 
132   // Cast the instruction immediately after the instruction.
133   if (Instruction *I = dyn_cast<Instruction>(V))
134     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
135 
136   // Otherwise, this must be some kind of a constant,
137   // so let's plop this cast into the function's entry block.
138   assert(isa<Constant>(V) &&
139          "Expected the cast argument to be a global/constant");
140   return Builder.GetInsertBlock()
141       ->getParent()
142       ->getEntryBlock()
143       .getFirstInsertionPt();
144 }
145 
146 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
147 /// which must be possible with a noop cast, doing what we can to share
148 /// the casts.
149 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
150   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
151   assert((Op == Instruction::BitCast ||
152           Op == Instruction::PtrToInt ||
153           Op == Instruction::IntToPtr) &&
154          "InsertNoopCastOfTo cannot perform non-noop casts!");
155   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
156          "InsertNoopCastOfTo cannot change sizes!");
157 
158   // inttoptr only works for integral pointers. For non-integral pointers, we
159   // can create a GEP on i8* null  with the integral value as index. Note that
160   // it is safe to use GEP of null instead of inttoptr here, because only
161   // expressions already based on a GEP of null should be converted to pointers
162   // during expansion.
163   if (Op == Instruction::IntToPtr) {
164     auto *PtrTy = cast<PointerType>(Ty);
165     if (DL.isNonIntegralPointerType(PtrTy)) {
166       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
167       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
168              "alloc size of i8 must by 1 byte for the GEP to be correct");
169       auto *GEP = Builder.CreateGEP(
170           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
171       return Builder.CreateBitCast(GEP, Ty);
172     }
173   }
174   // Short-circuit unnecessary bitcasts.
175   if (Op == Instruction::BitCast) {
176     if (V->getType() == Ty)
177       return V;
178     if (CastInst *CI = dyn_cast<CastInst>(V)) {
179       if (CI->getOperand(0)->getType() == Ty)
180         return CI->getOperand(0);
181     }
182   }
183   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
184   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
185       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
186     if (CastInst *CI = dyn_cast<CastInst>(V))
187       if ((CI->getOpcode() == Instruction::PtrToInt ||
188            CI->getOpcode() == Instruction::IntToPtr) &&
189           SE.getTypeSizeInBits(CI->getType()) ==
190           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
191         return CI->getOperand(0);
192     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
193       if ((CE->getOpcode() == Instruction::PtrToInt ||
194            CE->getOpcode() == Instruction::IntToPtr) &&
195           SE.getTypeSizeInBits(CE->getType()) ==
196           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
197         return CE->getOperand(0);
198   }
199 
200   // Fold a cast of a constant.
201   if (Constant *C = dyn_cast<Constant>(V))
202     return ConstantExpr::getCast(Op, C, Ty);
203 
204   // Try to reuse existing cast, or insert one.
205   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
206 }
207 
208 /// InsertBinop - Insert the specified binary operator, doing a small amount
209 /// of work to avoid inserting an obviously redundant operation, and hoisting
210 /// to an outer loop when the opportunity is there and it is safe.
211 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
212                                  Value *LHS, Value *RHS,
213                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
214   // Fold a binop with constant operands.
215   if (Constant *CLHS = dyn_cast<Constant>(LHS))
216     if (Constant *CRHS = dyn_cast<Constant>(RHS))
217       return ConstantExpr::get(Opcode, CLHS, CRHS);
218 
219   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
220   unsigned ScanLimit = 6;
221   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
222   // Scanning starts from the last instruction before the insertion point.
223   BasicBlock::iterator IP = Builder.GetInsertPoint();
224   if (IP != BlockBegin) {
225     --IP;
226     for (; ScanLimit; --IP, --ScanLimit) {
227       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
228       // generated code.
229       if (isa<DbgInfoIntrinsic>(IP))
230         ScanLimit++;
231 
232       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
233         // Ensure that no-wrap flags match.
234         if (isa<OverflowingBinaryOperator>(I)) {
235           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
236             return true;
237           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
238             return true;
239         }
240         // Conservatively, do not use any instruction which has any of exact
241         // flags installed.
242         if (isa<PossiblyExactOperator>(I) && I->isExact())
243           return true;
244         return false;
245       };
246       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
247           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
248         return &*IP;
249       if (IP == BlockBegin) break;
250     }
251   }
252 
253   // Save the original insertion point so we can restore it when we're done.
254   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
255   SCEVInsertPointGuard Guard(Builder, this);
256 
257   if (IsSafeToHoist) {
258     // Move the insertion point out of as many loops as we can.
259     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
260       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
261       BasicBlock *Preheader = L->getLoopPreheader();
262       if (!Preheader) break;
263 
264       // Ok, move up a level.
265       Builder.SetInsertPoint(Preheader->getTerminator());
266     }
267   }
268 
269   // If we haven't found this binop, insert it.
270   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
271   BO->setDebugLoc(Loc);
272   if (Flags & SCEV::FlagNUW)
273     BO->setHasNoUnsignedWrap();
274   if (Flags & SCEV::FlagNSW)
275     BO->setHasNoSignedWrap();
276 
277   return BO;
278 }
279 
280 /// FactorOutConstant - Test if S is divisible by Factor, using signed
281 /// division. If so, update S with Factor divided out and return true.
282 /// S need not be evenly divisible if a reasonable remainder can be
283 /// computed.
284 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
285                               const SCEV *Factor, ScalarEvolution &SE,
286                               const DataLayout &DL) {
287   // Everything is divisible by one.
288   if (Factor->isOne())
289     return true;
290 
291   // x/x == 1.
292   if (S == Factor) {
293     S = SE.getConstant(S->getType(), 1);
294     return true;
295   }
296 
297   // For a Constant, check for a multiple of the given factor.
298   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
299     // 0/x == 0.
300     if (C->isZero())
301       return true;
302     // Check for divisibility.
303     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
304       ConstantInt *CI =
305           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
306       // If the quotient is zero and the remainder is non-zero, reject
307       // the value at this scale. It will be considered for subsequent
308       // smaller scales.
309       if (!CI->isZero()) {
310         const SCEV *Div = SE.getConstant(CI);
311         S = Div;
312         Remainder = SE.getAddExpr(
313             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
314         return true;
315       }
316     }
317   }
318 
319   // In a Mul, check if there is a constant operand which is a multiple
320   // of the given factor.
321   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
322     // Size is known, check if there is a constant operand which is a multiple
323     // of the given factor. If so, we can factor it.
324     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
325       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
326         if (!C->getAPInt().srem(FC->getAPInt())) {
327           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
328           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
329           S = SE.getMulExpr(NewMulOps);
330           return true;
331         }
332   }
333 
334   // In an AddRec, check if both start and step are divisible.
335   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
336     const SCEV *Step = A->getStepRecurrence(SE);
337     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
338     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
339       return false;
340     if (!StepRem->isZero())
341       return false;
342     const SCEV *Start = A->getStart();
343     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
344       return false;
345     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
346                          A->getNoWrapFlags(SCEV::FlagNW));
347     return true;
348   }
349 
350   return false;
351 }
352 
353 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
354 /// is the number of SCEVAddRecExprs present, which are kept at the end of
355 /// the list.
356 ///
357 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
358                                 Type *Ty,
359                                 ScalarEvolution &SE) {
360   unsigned NumAddRecs = 0;
361   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
362     ++NumAddRecs;
363   // Group Ops into non-addrecs and addrecs.
364   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
365   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
366   // Let ScalarEvolution sort and simplify the non-addrecs list.
367   const SCEV *Sum = NoAddRecs.empty() ?
368                     SE.getConstant(Ty, 0) :
369                     SE.getAddExpr(NoAddRecs);
370   // If it returned an add, use the operands. Otherwise it simplified
371   // the sum into a single value, so just use that.
372   Ops.clear();
373   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
374     Ops.append(Add->op_begin(), Add->op_end());
375   else if (!Sum->isZero())
376     Ops.push_back(Sum);
377   // Then append the addrecs.
378   Ops.append(AddRecs.begin(), AddRecs.end());
379 }
380 
381 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
382 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
383 /// This helps expose more opportunities for folding parts of the expressions
384 /// into GEP indices.
385 ///
386 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
387                          Type *Ty,
388                          ScalarEvolution &SE) {
389   // Find the addrecs.
390   SmallVector<const SCEV *, 8> AddRecs;
391   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
392     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
393       const SCEV *Start = A->getStart();
394       if (Start->isZero()) break;
395       const SCEV *Zero = SE.getConstant(Ty, 0);
396       AddRecs.push_back(SE.getAddRecExpr(Zero,
397                                          A->getStepRecurrence(SE),
398                                          A->getLoop(),
399                                          A->getNoWrapFlags(SCEV::FlagNW)));
400       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
401         Ops[i] = Zero;
402         Ops.append(Add->op_begin(), Add->op_end());
403         e += Add->getNumOperands();
404       } else {
405         Ops[i] = Start;
406       }
407     }
408   if (!AddRecs.empty()) {
409     // Add the addrecs onto the end of the list.
410     Ops.append(AddRecs.begin(), AddRecs.end());
411     // Resort the operand list, moving any constants to the front.
412     SimplifyAddOperands(Ops, Ty, SE);
413   }
414 }
415 
416 /// expandAddToGEP - Expand an addition expression with a pointer type into
417 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
418 /// BasicAliasAnalysis and other passes analyze the result. See the rules
419 /// for getelementptr vs. inttoptr in
420 /// http://llvm.org/docs/LangRef.html#pointeraliasing
421 /// for details.
422 ///
423 /// Design note: The correctness of using getelementptr here depends on
424 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
425 /// they may introduce pointer arithmetic which may not be safely converted
426 /// into getelementptr.
427 ///
428 /// Design note: It might seem desirable for this function to be more
429 /// loop-aware. If some of the indices are loop-invariant while others
430 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
431 /// loop-invariant portions of the overall computation outside the loop.
432 /// However, there are a few reasons this is not done here. Hoisting simple
433 /// arithmetic is a low-level optimization that often isn't very
434 /// important until late in the optimization process. In fact, passes
435 /// like InstructionCombining will combine GEPs, even if it means
436 /// pushing loop-invariant computation down into loops, so even if the
437 /// GEPs were split here, the work would quickly be undone. The
438 /// LoopStrengthReduction pass, which is usually run quite late (and
439 /// after the last InstructionCombining pass), takes care of hoisting
440 /// loop-invariant portions of expressions, after considering what
441 /// can be folded using target addressing modes.
442 ///
443 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
444                                     const SCEV *const *op_end,
445                                     PointerType *PTy,
446                                     Type *Ty,
447                                     Value *V) {
448   Type *OriginalElTy = PTy->getElementType();
449   Type *ElTy = OriginalElTy;
450   SmallVector<Value *, 4> GepIndices;
451   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
452   bool AnyNonZeroIndices = false;
453 
454   // Split AddRecs up into parts as either of the parts may be usable
455   // without the other.
456   SplitAddRecs(Ops, Ty, SE);
457 
458   Type *IntIdxTy = DL.getIndexType(PTy);
459 
460   // Descend down the pointer's type and attempt to convert the other
461   // operands into GEP indices, at each level. The first index in a GEP
462   // indexes into the array implied by the pointer operand; the rest of
463   // the indices index into the element or field type selected by the
464   // preceding index.
465   for (;;) {
466     // If the scale size is not 0, attempt to factor out a scale for
467     // array indexing.
468     SmallVector<const SCEV *, 8> ScaledOps;
469     if (ElTy->isSized()) {
470       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
471       if (!ElSize->isZero()) {
472         SmallVector<const SCEV *, 8> NewOps;
473         for (const SCEV *Op : Ops) {
474           const SCEV *Remainder = SE.getConstant(Ty, 0);
475           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
476             // Op now has ElSize factored out.
477             ScaledOps.push_back(Op);
478             if (!Remainder->isZero())
479               NewOps.push_back(Remainder);
480             AnyNonZeroIndices = true;
481           } else {
482             // The operand was not divisible, so add it to the list of operands
483             // we'll scan next iteration.
484             NewOps.push_back(Op);
485           }
486         }
487         // If we made any changes, update Ops.
488         if (!ScaledOps.empty()) {
489           Ops = NewOps;
490           SimplifyAddOperands(Ops, Ty, SE);
491         }
492       }
493     }
494 
495     // Record the scaled array index for this level of the type. If
496     // we didn't find any operands that could be factored, tentatively
497     // assume that element zero was selected (since the zero offset
498     // would obviously be folded away).
499     Value *Scaled =
500         ScaledOps.empty()
501             ? Constant::getNullValue(Ty)
502             : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
503     GepIndices.push_back(Scaled);
504 
505     // Collect struct field index operands.
506     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
507       bool FoundFieldNo = false;
508       // An empty struct has no fields.
509       if (STy->getNumElements() == 0) break;
510       // Field offsets are known. See if a constant offset falls within any of
511       // the struct fields.
512       if (Ops.empty())
513         break;
514       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
515         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
516           const StructLayout &SL = *DL.getStructLayout(STy);
517           uint64_t FullOffset = C->getValue()->getZExtValue();
518           if (FullOffset < SL.getSizeInBytes()) {
519             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
520             GepIndices.push_back(
521                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
522             ElTy = STy->getTypeAtIndex(ElIdx);
523             Ops[0] =
524                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
525             AnyNonZeroIndices = true;
526             FoundFieldNo = true;
527           }
528         }
529       // If no struct field offsets were found, tentatively assume that
530       // field zero was selected (since the zero offset would obviously
531       // be folded away).
532       if (!FoundFieldNo) {
533         ElTy = STy->getTypeAtIndex(0u);
534         GepIndices.push_back(
535           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
536       }
537     }
538 
539     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
540       ElTy = ATy->getElementType();
541     else
542       // FIXME: Handle VectorType.
543       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
544       // constant, therefore can not be factored out. The generated IR is less
545       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
546       break;
547   }
548 
549   // If none of the operands were convertible to proper GEP indices, cast
550   // the base to i8* and do an ugly getelementptr with that. It's still
551   // better than ptrtoint+arithmetic+inttoptr at least.
552   if (!AnyNonZeroIndices) {
553     // Cast the base to i8*.
554     V = InsertNoopCastOfTo(V,
555        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
556 
557     assert(!isa<Instruction>(V) ||
558            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
559 
560     // Expand the operands for a plain byte offset.
561     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
562 
563     // Fold a GEP with constant operands.
564     if (Constant *CLHS = dyn_cast<Constant>(V))
565       if (Constant *CRHS = dyn_cast<Constant>(Idx))
566         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
567                                               CLHS, CRHS);
568 
569     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
570     unsigned ScanLimit = 6;
571     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
572     // Scanning starts from the last instruction before the insertion point.
573     BasicBlock::iterator IP = Builder.GetInsertPoint();
574     if (IP != BlockBegin) {
575       --IP;
576       for (; ScanLimit; --IP, --ScanLimit) {
577         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
578         // generated code.
579         if (isa<DbgInfoIntrinsic>(IP))
580           ScanLimit++;
581         if (IP->getOpcode() == Instruction::GetElementPtr &&
582             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
583           return &*IP;
584         if (IP == BlockBegin) break;
585       }
586     }
587 
588     // Save the original insertion point so we can restore it when we're done.
589     SCEVInsertPointGuard Guard(Builder, this);
590 
591     // Move the insertion point out of as many loops as we can.
592     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
593       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
594       BasicBlock *Preheader = L->getLoopPreheader();
595       if (!Preheader) break;
596 
597       // Ok, move up a level.
598       Builder.SetInsertPoint(Preheader->getTerminator());
599     }
600 
601     // Emit a GEP.
602     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
603   }
604 
605   {
606     SCEVInsertPointGuard Guard(Builder, this);
607 
608     // Move the insertion point out of as many loops as we can.
609     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
610       if (!L->isLoopInvariant(V)) break;
611 
612       bool AnyIndexNotLoopInvariant = any_of(
613           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
614 
615       if (AnyIndexNotLoopInvariant)
616         break;
617 
618       BasicBlock *Preheader = L->getLoopPreheader();
619       if (!Preheader) break;
620 
621       // Ok, move up a level.
622       Builder.SetInsertPoint(Preheader->getTerminator());
623     }
624 
625     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
626     // because ScalarEvolution may have changed the address arithmetic to
627     // compute a value which is beyond the end of the allocated object.
628     Value *Casted = V;
629     if (V->getType() != PTy)
630       Casted = InsertNoopCastOfTo(Casted, PTy);
631     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
632     Ops.push_back(SE.getUnknown(GEP));
633   }
634 
635   return expand(SE.getAddExpr(Ops));
636 }
637 
638 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
639                                     Value *V) {
640   const SCEV *const Ops[1] = {Op};
641   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
642 }
643 
644 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
645 /// SCEV expansion. If they are nested, this is the most nested. If they are
646 /// neighboring, pick the later.
647 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
648                                         DominatorTree &DT) {
649   if (!A) return B;
650   if (!B) return A;
651   if (A->contains(B)) return B;
652   if (B->contains(A)) return A;
653   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
654   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
655   return A; // Arbitrarily break the tie.
656 }
657 
658 /// getRelevantLoop - Get the most relevant loop associated with the given
659 /// expression, according to PickMostRelevantLoop.
660 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
661   // Test whether we've already computed the most relevant loop for this SCEV.
662   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
663   if (!Pair.second)
664     return Pair.first->second;
665 
666   if (isa<SCEVConstant>(S))
667     // A constant has no relevant loops.
668     return nullptr;
669   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
670     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
671       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
672     // A non-instruction has no relevant loops.
673     return nullptr;
674   }
675   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
676     const Loop *L = nullptr;
677     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
678       L = AR->getLoop();
679     for (const SCEV *Op : N->operands())
680       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
681     return RelevantLoops[N] = L;
682   }
683   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
684     const Loop *Result = getRelevantLoop(C->getOperand());
685     return RelevantLoops[C] = Result;
686   }
687   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
688     const Loop *Result = PickMostRelevantLoop(
689         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
690     return RelevantLoops[D] = Result;
691   }
692   llvm_unreachable("Unexpected SCEV type!");
693 }
694 
695 namespace {
696 
697 /// LoopCompare - Compare loops by PickMostRelevantLoop.
698 class LoopCompare {
699   DominatorTree &DT;
700 public:
701   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
702 
703   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
704                   std::pair<const Loop *, const SCEV *> RHS) const {
705     // Keep pointer operands sorted at the end.
706     if (LHS.second->getType()->isPointerTy() !=
707         RHS.second->getType()->isPointerTy())
708       return LHS.second->getType()->isPointerTy();
709 
710     // Compare loops with PickMostRelevantLoop.
711     if (LHS.first != RHS.first)
712       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
713 
714     // If one operand is a non-constant negative and the other is not,
715     // put the non-constant negative on the right so that a sub can
716     // be used instead of a negate and add.
717     if (LHS.second->isNonConstantNegative()) {
718       if (!RHS.second->isNonConstantNegative())
719         return false;
720     } else if (RHS.second->isNonConstantNegative())
721       return true;
722 
723     // Otherwise they are equivalent according to this comparison.
724     return false;
725   }
726 };
727 
728 }
729 
730 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
731   Type *Ty = SE.getEffectiveSCEVType(S->getType());
732 
733   // Collect all the add operands in a loop, along with their associated loops.
734   // Iterate in reverse so that constants are emitted last, all else equal, and
735   // so that pointer operands are inserted first, which the code below relies on
736   // to form more involved GEPs.
737   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
738   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
739        E(S->op_begin()); I != E; ++I)
740     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
741 
742   // Sort by loop. Use a stable sort so that constants follow non-constants and
743   // pointer operands precede non-pointer operands.
744   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
745 
746   // Emit instructions to add all the operands. Hoist as much as possible
747   // out of loops, and form meaningful getelementptrs where possible.
748   Value *Sum = nullptr;
749   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
750     const Loop *CurLoop = I->first;
751     const SCEV *Op = I->second;
752     if (!Sum) {
753       // This is the first operand. Just expand it.
754       Sum = expand(Op);
755       ++I;
756     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
757       // The running sum expression is a pointer. Try to form a getelementptr
758       // at this level with that as the base.
759       SmallVector<const SCEV *, 4> NewOps;
760       for (; I != E && I->first == CurLoop; ++I) {
761         // If the operand is SCEVUnknown and not instructions, peek through
762         // it, to enable more of it to be folded into the GEP.
763         const SCEV *X = I->second;
764         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
765           if (!isa<Instruction>(U->getValue()))
766             X = SE.getSCEV(U->getValue());
767         NewOps.push_back(X);
768       }
769       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
770     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
771       // The running sum is an integer, and there's a pointer at this level.
772       // Try to form a getelementptr. If the running sum is instructions,
773       // use a SCEVUnknown to avoid re-analyzing them.
774       SmallVector<const SCEV *, 4> NewOps;
775       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
776                                                SE.getSCEV(Sum));
777       for (++I; I != E && I->first == CurLoop; ++I)
778         NewOps.push_back(I->second);
779       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
780     } else if (Op->isNonConstantNegative()) {
781       // Instead of doing a negate and add, just do a subtract.
782       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
783       Sum = InsertNoopCastOfTo(Sum, Ty);
784       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
785                         /*IsSafeToHoist*/ true);
786       ++I;
787     } else {
788       // A simple add.
789       Value *W = expandCodeForImpl(Op, Ty, false);
790       Sum = InsertNoopCastOfTo(Sum, Ty);
791       // Canonicalize a constant to the RHS.
792       if (isa<Constant>(Sum)) std::swap(Sum, W);
793       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
794                         /*IsSafeToHoist*/ true);
795       ++I;
796     }
797   }
798 
799   return Sum;
800 }
801 
802 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
803   Type *Ty = SE.getEffectiveSCEVType(S->getType());
804 
805   // Collect all the mul operands in a loop, along with their associated loops.
806   // Iterate in reverse so that constants are emitted last, all else equal.
807   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
808   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
809        E(S->op_begin()); I != E; ++I)
810     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
811 
812   // Sort by loop. Use a stable sort so that constants follow non-constants.
813   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
814 
815   // Emit instructions to mul all the operands. Hoist as much as possible
816   // out of loops.
817   Value *Prod = nullptr;
818   auto I = OpsAndLoops.begin();
819 
820   // Expand the calculation of X pow N in the following manner:
821   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
822   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
823   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
824     auto E = I;
825     // Calculate how many times the same operand from the same loop is included
826     // into this power.
827     uint64_t Exponent = 0;
828     const uint64_t MaxExponent = UINT64_MAX >> 1;
829     // No one sane will ever try to calculate such huge exponents, but if we
830     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
831     // below when the power of 2 exceeds our Exponent, and we want it to be
832     // 1u << 31 at most to not deal with unsigned overflow.
833     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
834       ++Exponent;
835       ++E;
836     }
837     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
838 
839     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
840     // that are needed into the result.
841     Value *P = expandCodeForImpl(I->second, Ty, false);
842     Value *Result = nullptr;
843     if (Exponent & 1)
844       Result = P;
845     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
846       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
847                       /*IsSafeToHoist*/ true);
848       if (Exponent & BinExp)
849         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
850                                       SCEV::FlagAnyWrap,
851                                       /*IsSafeToHoist*/ true)
852                         : P;
853     }
854 
855     I = E;
856     assert(Result && "Nothing was expanded?");
857     return Result;
858   };
859 
860   while (I != OpsAndLoops.end()) {
861     if (!Prod) {
862       // This is the first operand. Just expand it.
863       Prod = ExpandOpBinPowN();
864     } else if (I->second->isAllOnesValue()) {
865       // Instead of doing a multiply by negative one, just do a negate.
866       Prod = InsertNoopCastOfTo(Prod, Ty);
867       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
868                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
869       ++I;
870     } else {
871       // A simple mul.
872       Value *W = ExpandOpBinPowN();
873       Prod = InsertNoopCastOfTo(Prod, Ty);
874       // Canonicalize a constant to the RHS.
875       if (isa<Constant>(Prod)) std::swap(Prod, W);
876       const APInt *RHS;
877       if (match(W, m_Power2(RHS))) {
878         // Canonicalize Prod*(1<<C) to Prod<<C.
879         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
880         auto NWFlags = S->getNoWrapFlags();
881         // clear nsw flag if shl will produce poison value.
882         if (RHS->logBase2() == RHS->getBitWidth() - 1)
883           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
884         Prod = InsertBinop(Instruction::Shl, Prod,
885                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
886                            /*IsSafeToHoist*/ true);
887       } else {
888         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
889                            /*IsSafeToHoist*/ true);
890       }
891     }
892   }
893 
894   return Prod;
895 }
896 
897 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
898   Type *Ty = SE.getEffectiveSCEVType(S->getType());
899 
900   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
901   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
902     const APInt &RHS = SC->getAPInt();
903     if (RHS.isPowerOf2())
904       return InsertBinop(Instruction::LShr, LHS,
905                          ConstantInt::get(Ty, RHS.logBase2()),
906                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
907   }
908 
909   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
910   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
911                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
912 }
913 
914 /// Move parts of Base into Rest to leave Base with the minimal
915 /// expression that provides a pointer operand suitable for a
916 /// GEP expansion.
917 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
918                               ScalarEvolution &SE) {
919   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
920     Base = A->getStart();
921     Rest = SE.getAddExpr(Rest,
922                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
923                                           A->getStepRecurrence(SE),
924                                           A->getLoop(),
925                                           A->getNoWrapFlags(SCEV::FlagNW)));
926   }
927   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
928     Base = A->getOperand(A->getNumOperands()-1);
929     SmallVector<const SCEV *, 8> NewAddOps(A->operands());
930     NewAddOps.back() = Rest;
931     Rest = SE.getAddExpr(NewAddOps);
932     ExposePointerBase(Base, Rest, SE);
933   }
934 }
935 
936 /// Determine if this is a well-behaved chain of instructions leading back to
937 /// the PHI. If so, it may be reused by expanded expressions.
938 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
939                                          const Loop *L) {
940   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
941       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
942     return false;
943   // If any of the operands don't dominate the insert position, bail.
944   // Addrec operands are always loop-invariant, so this can only happen
945   // if there are instructions which haven't been hoisted.
946   if (L == IVIncInsertLoop) {
947     for (Use &Op : llvm::drop_begin(IncV->operands()))
948       if (Instruction *OInst = dyn_cast<Instruction>(Op))
949         if (!SE.DT.dominates(OInst, IVIncInsertPos))
950           return false;
951   }
952   // Advance to the next instruction.
953   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
954   if (!IncV)
955     return false;
956 
957   if (IncV->mayHaveSideEffects())
958     return false;
959 
960   if (IncV == PN)
961     return true;
962 
963   return isNormalAddRecExprPHI(PN, IncV, L);
964 }
965 
966 /// getIVIncOperand returns an induction variable increment's induction
967 /// variable operand.
968 ///
969 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
970 /// operands dominate InsertPos.
971 ///
972 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
973 /// simple patterns generated by getAddRecExprPHILiterally and
974 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
975 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
976                                            Instruction *InsertPos,
977                                            bool allowScale) {
978   if (IncV == InsertPos)
979     return nullptr;
980 
981   switch (IncV->getOpcode()) {
982   default:
983     return nullptr;
984   // Check for a simple Add/Sub or GEP of a loop invariant step.
985   case Instruction::Add:
986   case Instruction::Sub: {
987     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
988     if (!OInst || SE.DT.dominates(OInst, InsertPos))
989       return dyn_cast<Instruction>(IncV->getOperand(0));
990     return nullptr;
991   }
992   case Instruction::BitCast:
993     return dyn_cast<Instruction>(IncV->getOperand(0));
994   case Instruction::GetElementPtr:
995     for (Use &U : llvm::drop_begin(IncV->operands())) {
996       if (isa<Constant>(U))
997         continue;
998       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
999         if (!SE.DT.dominates(OInst, InsertPos))
1000           return nullptr;
1001       }
1002       if (allowScale) {
1003         // allow any kind of GEP as long as it can be hoisted.
1004         continue;
1005       }
1006       // This must be a pointer addition of constants (pretty), which is already
1007       // handled, or some number of address-size elements (ugly). Ugly geps
1008       // have 2 operands. i1* is used by the expander to represent an
1009       // address-size element.
1010       if (IncV->getNumOperands() != 2)
1011         return nullptr;
1012       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1013       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1014           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1015         return nullptr;
1016       break;
1017     }
1018     return dyn_cast<Instruction>(IncV->getOperand(0));
1019   }
1020 }
1021 
1022 /// If the insert point of the current builder or any of the builders on the
1023 /// stack of saved builders has 'I' as its insert point, update it to point to
1024 /// the instruction after 'I'.  This is intended to be used when the instruction
1025 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1026 /// different block, the inconsistent insert point (with a mismatched
1027 /// Instruction and Block) can lead to an instruction being inserted in a block
1028 /// other than its parent.
1029 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1030   BasicBlock::iterator It(*I);
1031   BasicBlock::iterator NewInsertPt = std::next(It);
1032   if (Builder.GetInsertPoint() == It)
1033     Builder.SetInsertPoint(&*NewInsertPt);
1034   for (auto *InsertPtGuard : InsertPointGuards)
1035     if (InsertPtGuard->GetInsertPoint() == It)
1036       InsertPtGuard->SetInsertPoint(NewInsertPt);
1037 }
1038 
1039 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1040 /// it available to other uses in this loop. Recursively hoist any operands,
1041 /// until we reach a value that dominates InsertPos.
1042 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1043   if (SE.DT.dominates(IncV, InsertPos))
1044       return true;
1045 
1046   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1047   // its existing users.
1048   if (isa<PHINode>(InsertPos) ||
1049       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1050     return false;
1051 
1052   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1053     return false;
1054 
1055   // Check that the chain of IV operands leading back to Phi can be hoisted.
1056   SmallVector<Instruction*, 4> IVIncs;
1057   for(;;) {
1058     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1059     if (!Oper)
1060       return false;
1061     // IncV is safe to hoist.
1062     IVIncs.push_back(IncV);
1063     IncV = Oper;
1064     if (SE.DT.dominates(IncV, InsertPos))
1065       break;
1066   }
1067   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1068     fixupInsertPoints(*I);
1069     (*I)->moveBefore(InsertPos);
1070   }
1071   return true;
1072 }
1073 
1074 /// Determine if this cyclic phi is in a form that would have been generated by
1075 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1076 /// as it is in a low-cost form, for example, no implied multiplication. This
1077 /// should match any patterns generated by getAddRecExprPHILiterally and
1078 /// expandAddtoGEP.
1079 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1080                                            const Loop *L) {
1081   for(Instruction *IVOper = IncV;
1082       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1083                                 /*allowScale=*/false));) {
1084     if (IVOper == PN)
1085       return true;
1086   }
1087   return false;
1088 }
1089 
1090 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1091 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1092 /// need to materialize IV increments elsewhere to handle difficult situations.
1093 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1094                                  Type *ExpandTy, Type *IntTy,
1095                                  bool useSubtract) {
1096   Value *IncV;
1097   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1098   if (ExpandTy->isPointerTy()) {
1099     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1100     // If the step isn't constant, don't use an implicitly scaled GEP, because
1101     // that would require a multiply inside the loop.
1102     if (!isa<ConstantInt>(StepV))
1103       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1104                                   GEPPtrTy->getAddressSpace());
1105     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1106     if (IncV->getType() != PN->getType())
1107       IncV = Builder.CreateBitCast(IncV, PN->getType());
1108   } else {
1109     IncV = useSubtract ?
1110       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1111       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1112   }
1113   return IncV;
1114 }
1115 
1116 /// Hoist the addrec instruction chain rooted in the loop phi above the
1117 /// position. This routine assumes that this is possible (has been checked).
1118 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1119                                   Instruction *Pos, PHINode *LoopPhi) {
1120   do {
1121     if (DT->dominates(InstToHoist, Pos))
1122       break;
1123     // Make sure the increment is where we want it. But don't move it
1124     // down past a potential existing post-inc user.
1125     fixupInsertPoints(InstToHoist);
1126     InstToHoist->moveBefore(Pos);
1127     Pos = InstToHoist;
1128     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1129   } while (InstToHoist != LoopPhi);
1130 }
1131 
1132 /// Check whether we can cheaply express the requested SCEV in terms of
1133 /// the available PHI SCEV by truncation and/or inversion of the step.
1134 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1135                                     const SCEVAddRecExpr *Phi,
1136                                     const SCEVAddRecExpr *Requested,
1137                                     bool &InvertStep) {
1138   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1139   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1140 
1141   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1142     return false;
1143 
1144   // Try truncate it if necessary.
1145   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1146   if (!Phi)
1147     return false;
1148 
1149   // Check whether truncation will help.
1150   if (Phi == Requested) {
1151     InvertStep = false;
1152     return true;
1153   }
1154 
1155   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1156   if (SE.getAddExpr(Requested->getStart(),
1157                     SE.getNegativeSCEV(Requested)) == Phi) {
1158     InvertStep = true;
1159     return true;
1160   }
1161 
1162   return false;
1163 }
1164 
1165 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1166   if (!isa<IntegerType>(AR->getType()))
1167     return false;
1168 
1169   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1170   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1171   const SCEV *Step = AR->getStepRecurrence(SE);
1172   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1173                                             SE.getSignExtendExpr(AR, WideTy));
1174   const SCEV *ExtendAfterOp =
1175     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1176   return ExtendAfterOp == OpAfterExtend;
1177 }
1178 
1179 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1180   if (!isa<IntegerType>(AR->getType()))
1181     return false;
1182 
1183   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1184   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1185   const SCEV *Step = AR->getStepRecurrence(SE);
1186   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1187                                             SE.getZeroExtendExpr(AR, WideTy));
1188   const SCEV *ExtendAfterOp =
1189     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1190   return ExtendAfterOp == OpAfterExtend;
1191 }
1192 
1193 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1194 /// the base addrec, which is the addrec without any non-loop-dominating
1195 /// values, and return the PHI.
1196 PHINode *
1197 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1198                                         const Loop *L,
1199                                         Type *ExpandTy,
1200                                         Type *IntTy,
1201                                         Type *&TruncTy,
1202                                         bool &InvertStep) {
1203   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1204 
1205   // Reuse a previously-inserted PHI, if present.
1206   BasicBlock *LatchBlock = L->getLoopLatch();
1207   if (LatchBlock) {
1208     PHINode *AddRecPhiMatch = nullptr;
1209     Instruction *IncV = nullptr;
1210     TruncTy = nullptr;
1211     InvertStep = false;
1212 
1213     // Only try partially matching scevs that need truncation and/or
1214     // step-inversion if we know this loop is outside the current loop.
1215     bool TryNonMatchingSCEV =
1216         IVIncInsertLoop &&
1217         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1218 
1219     for (PHINode &PN : L->getHeader()->phis()) {
1220       if (!SE.isSCEVable(PN.getType()))
1221         continue;
1222 
1223       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1224       // PHI has no meaning at all.
1225       if (!PN.isComplete()) {
1226         DEBUG_WITH_TYPE(
1227             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1228         continue;
1229       }
1230 
1231       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1232       if (!PhiSCEV)
1233         continue;
1234 
1235       bool IsMatchingSCEV = PhiSCEV == Normalized;
1236       // We only handle truncation and inversion of phi recurrences for the
1237       // expanded expression if the expanded expression's loop dominates the
1238       // loop we insert to. Check now, so we can bail out early.
1239       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1240           continue;
1241 
1242       // TODO: this possibly can be reworked to avoid this cast at all.
1243       Instruction *TempIncV =
1244           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1245       if (!TempIncV)
1246         continue;
1247 
1248       // Check whether we can reuse this PHI node.
1249       if (LSRMode) {
1250         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1251           continue;
1252         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1253           continue;
1254       } else {
1255         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1256           continue;
1257       }
1258 
1259       // Stop if we have found an exact match SCEV.
1260       if (IsMatchingSCEV) {
1261         IncV = TempIncV;
1262         TruncTy = nullptr;
1263         InvertStep = false;
1264         AddRecPhiMatch = &PN;
1265         break;
1266       }
1267 
1268       // Try whether the phi can be translated into the requested form
1269       // (truncated and/or offset by a constant).
1270       if ((!TruncTy || InvertStep) &&
1271           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1272         // Record the phi node. But don't stop we might find an exact match
1273         // later.
1274         AddRecPhiMatch = &PN;
1275         IncV = TempIncV;
1276         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1277       }
1278     }
1279 
1280     if (AddRecPhiMatch) {
1281       // Potentially, move the increment. We have made sure in
1282       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1283       if (L == IVIncInsertLoop)
1284         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1285 
1286       // Ok, the add recurrence looks usable.
1287       // Remember this PHI, even in post-inc mode.
1288       InsertedValues.insert(AddRecPhiMatch);
1289       // Remember the increment.
1290       rememberInstruction(IncV);
1291       // Those values were not actually inserted but re-used.
1292       ReusedValues.insert(AddRecPhiMatch);
1293       ReusedValues.insert(IncV);
1294       return AddRecPhiMatch;
1295     }
1296   }
1297 
1298   // Save the original insertion point so we can restore it when we're done.
1299   SCEVInsertPointGuard Guard(Builder, this);
1300 
1301   // Another AddRec may need to be recursively expanded below. For example, if
1302   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1303   // loop. Remove this loop from the PostIncLoops set before expanding such
1304   // AddRecs. Otherwise, we cannot find a valid position for the step
1305   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1306   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1307   // so it's not worth implementing SmallPtrSet::swap.
1308   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1309   PostIncLoops.clear();
1310 
1311   // Expand code for the start value into the loop preheader.
1312   assert(L->getLoopPreheader() &&
1313          "Can't expand add recurrences without a loop preheader!");
1314   Value *StartV =
1315       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1316                         L->getLoopPreheader()->getTerminator(), false);
1317 
1318   // StartV must have been be inserted into L's preheader to dominate the new
1319   // phi.
1320   assert(!isa<Instruction>(StartV) ||
1321          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1322                                  L->getHeader()));
1323 
1324   // Expand code for the step value. Do this before creating the PHI so that PHI
1325   // reuse code doesn't see an incomplete PHI.
1326   const SCEV *Step = Normalized->getStepRecurrence(SE);
1327   // If the stride is negative, insert a sub instead of an add for the increment
1328   // (unless it's a constant, because subtracts of constants are canonicalized
1329   // to adds).
1330   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1331   if (useSubtract)
1332     Step = SE.getNegativeSCEV(Step);
1333   // Expand the step somewhere that dominates the loop header.
1334   Value *StepV = expandCodeForImpl(
1335       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1336 
1337   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1338   // we actually do emit an addition.  It does not apply if we emit a
1339   // subtraction.
1340   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1341   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1342 
1343   // Create the PHI.
1344   BasicBlock *Header = L->getHeader();
1345   Builder.SetInsertPoint(Header, Header->begin());
1346   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1347   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1348                                   Twine(IVName) + ".iv");
1349 
1350   // Create the step instructions and populate the PHI.
1351   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1352     BasicBlock *Pred = *HPI;
1353 
1354     // Add a start value.
1355     if (!L->contains(Pred)) {
1356       PN->addIncoming(StartV, Pred);
1357       continue;
1358     }
1359 
1360     // Create a step value and add it to the PHI.
1361     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1362     // instructions at IVIncInsertPos.
1363     Instruction *InsertPos = L == IVIncInsertLoop ?
1364       IVIncInsertPos : Pred->getTerminator();
1365     Builder.SetInsertPoint(InsertPos);
1366     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1367 
1368     if (isa<OverflowingBinaryOperator>(IncV)) {
1369       if (IncrementIsNUW)
1370         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1371       if (IncrementIsNSW)
1372         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1373     }
1374     PN->addIncoming(IncV, Pred);
1375   }
1376 
1377   // After expanding subexpressions, restore the PostIncLoops set so the caller
1378   // can ensure that IVIncrement dominates the current uses.
1379   PostIncLoops = SavedPostIncLoops;
1380 
1381   // Remember this PHI, even in post-inc mode.
1382   InsertedValues.insert(PN);
1383 
1384   return PN;
1385 }
1386 
1387 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1388   Type *STy = S->getType();
1389   Type *IntTy = SE.getEffectiveSCEVType(STy);
1390   const Loop *L = S->getLoop();
1391 
1392   // Determine a normalized form of this expression, which is the expression
1393   // before any post-inc adjustment is made.
1394   const SCEVAddRecExpr *Normalized = S;
1395   if (PostIncLoops.count(L)) {
1396     PostIncLoopSet Loops;
1397     Loops.insert(L);
1398     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1399   }
1400 
1401   // Strip off any non-loop-dominating component from the addrec start.
1402   const SCEV *Start = Normalized->getStart();
1403   const SCEV *PostLoopOffset = nullptr;
1404   if (!SE.properlyDominates(Start, L->getHeader())) {
1405     PostLoopOffset = Start;
1406     Start = SE.getConstant(Normalized->getType(), 0);
1407     Normalized = cast<SCEVAddRecExpr>(
1408       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1409                        Normalized->getLoop(),
1410                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1411   }
1412 
1413   // Strip off any non-loop-dominating component from the addrec step.
1414   const SCEV *Step = Normalized->getStepRecurrence(SE);
1415   const SCEV *PostLoopScale = nullptr;
1416   if (!SE.dominates(Step, L->getHeader())) {
1417     PostLoopScale = Step;
1418     Step = SE.getConstant(Normalized->getType(), 1);
1419     if (!Start->isZero()) {
1420         // The normalization below assumes that Start is constant zero, so if
1421         // it isn't re-associate Start to PostLoopOffset.
1422         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1423         PostLoopOffset = Start;
1424         Start = SE.getConstant(Normalized->getType(), 0);
1425     }
1426     Normalized =
1427       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1428                              Start, Step, Normalized->getLoop(),
1429                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1430   }
1431 
1432   // Expand the core addrec. If we need post-loop scaling, force it to
1433   // expand to an integer type to avoid the need for additional casting.
1434   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1435   // We can't use a pointer type for the addrec if the pointer type is
1436   // non-integral.
1437   Type *AddRecPHIExpandTy =
1438       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1439 
1440   // In some cases, we decide to reuse an existing phi node but need to truncate
1441   // it and/or invert the step.
1442   Type *TruncTy = nullptr;
1443   bool InvertStep = false;
1444   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1445                                           IntTy, TruncTy, InvertStep);
1446 
1447   // Accommodate post-inc mode, if necessary.
1448   Value *Result;
1449   if (!PostIncLoops.count(L))
1450     Result = PN;
1451   else {
1452     // In PostInc mode, use the post-incremented value.
1453     BasicBlock *LatchBlock = L->getLoopLatch();
1454     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1455     Result = PN->getIncomingValueForBlock(LatchBlock);
1456 
1457     // We might be introducing a new use of the post-inc IV that is not poison
1458     // safe, in which case we should drop poison generating flags. Only keep
1459     // those flags for which SCEV has proven that they always hold.
1460     if (isa<OverflowingBinaryOperator>(Result)) {
1461       auto *I = cast<Instruction>(Result);
1462       if (!S->hasNoUnsignedWrap())
1463         I->setHasNoUnsignedWrap(false);
1464       if (!S->hasNoSignedWrap())
1465         I->setHasNoSignedWrap(false);
1466     }
1467 
1468     // For an expansion to use the postinc form, the client must call
1469     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1470     // or dominated by IVIncInsertPos.
1471     if (isa<Instruction>(Result) &&
1472         !SE.DT.dominates(cast<Instruction>(Result),
1473                          &*Builder.GetInsertPoint())) {
1474       // The induction variable's postinc expansion does not dominate this use.
1475       // IVUsers tries to prevent this case, so it is rare. However, it can
1476       // happen when an IVUser outside the loop is not dominated by the latch
1477       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1478       // all cases. Consider a phi outside whose operand is replaced during
1479       // expansion with the value of the postinc user. Without fundamentally
1480       // changing the way postinc users are tracked, the only remedy is
1481       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1482       // but hopefully expandCodeFor handles that.
1483       bool useSubtract =
1484         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1485       if (useSubtract)
1486         Step = SE.getNegativeSCEV(Step);
1487       Value *StepV;
1488       {
1489         // Expand the step somewhere that dominates the loop header.
1490         SCEVInsertPointGuard Guard(Builder, this);
1491         StepV = expandCodeForImpl(
1492             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1493       }
1494       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1495     }
1496   }
1497 
1498   // We have decided to reuse an induction variable of a dominating loop. Apply
1499   // truncation and/or inversion of the step.
1500   if (TruncTy) {
1501     Type *ResTy = Result->getType();
1502     // Normalize the result type.
1503     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1504       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1505     // Truncate the result.
1506     if (TruncTy != Result->getType())
1507       Result = Builder.CreateTrunc(Result, TruncTy);
1508 
1509     // Invert the result.
1510     if (InvertStep)
1511       Result = Builder.CreateSub(
1512           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1513   }
1514 
1515   // Re-apply any non-loop-dominating scale.
1516   if (PostLoopScale) {
1517     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1518     Result = InsertNoopCastOfTo(Result, IntTy);
1519     Result = Builder.CreateMul(Result,
1520                                expandCodeForImpl(PostLoopScale, IntTy, false));
1521   }
1522 
1523   // Re-apply any non-loop-dominating offset.
1524   if (PostLoopOffset) {
1525     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1526       if (Result->getType()->isIntegerTy()) {
1527         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1528         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1529       } else {
1530         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1531       }
1532     } else {
1533       Result = InsertNoopCastOfTo(Result, IntTy);
1534       Result = Builder.CreateAdd(
1535           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1536     }
1537   }
1538 
1539   return Result;
1540 }
1541 
1542 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1543   // In canonical mode we compute the addrec as an expression of a canonical IV
1544   // using evaluateAtIteration and expand the resulting SCEV expression. This
1545   // way we avoid introducing new IVs to carry on the comutation of the addrec
1546   // throughout the loop.
1547   //
1548   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1549   // type wider than the addrec itself. Emitting a canonical IV of the
1550   // proper type might produce non-legal types, for example expanding an i64
1551   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1552   // back to non-canonical mode for nested addrecs.
1553   if (!CanonicalMode || (S->getNumOperands() > 2))
1554     return expandAddRecExprLiterally(S);
1555 
1556   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1557   const Loop *L = S->getLoop();
1558 
1559   // First check for an existing canonical IV in a suitable type.
1560   PHINode *CanonicalIV = nullptr;
1561   if (PHINode *PN = L->getCanonicalInductionVariable())
1562     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1563       CanonicalIV = PN;
1564 
1565   // Rewrite an AddRec in terms of the canonical induction variable, if
1566   // its type is more narrow.
1567   if (CanonicalIV &&
1568       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1569       SE.getTypeSizeInBits(Ty)) {
1570     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1571     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1572       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1573     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1574                                        S->getNoWrapFlags(SCEV::FlagNW)));
1575     BasicBlock::iterator NewInsertPt =
1576         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1577     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1578                           &*NewInsertPt, false);
1579     return V;
1580   }
1581 
1582   // {X,+,F} --> X + {0,+,F}
1583   if (!S->getStart()->isZero()) {
1584     SmallVector<const SCEV *, 4> NewOps(S->operands());
1585     NewOps[0] = SE.getConstant(Ty, 0);
1586     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1587                                         S->getNoWrapFlags(SCEV::FlagNW));
1588 
1589     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1590     // comments on expandAddToGEP for details.
1591     const SCEV *Base = S->getStart();
1592     // Dig into the expression to find the pointer base for a GEP.
1593     const SCEV *ExposedRest = Rest;
1594     ExposePointerBase(Base, ExposedRest, SE);
1595     // If we found a pointer, expand the AddRec with a GEP.
1596     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1597       // Make sure the Base isn't something exotic, such as a multiplied
1598       // or divided pointer value. In those cases, the result type isn't
1599       // actually a pointer type.
1600       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1601         Value *StartV = expand(Base);
1602         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1603         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1604       }
1605     }
1606 
1607     // Just do a normal add. Pre-expand the operands to suppress folding.
1608     //
1609     // The LHS and RHS values are factored out of the expand call to make the
1610     // output independent of the argument evaluation order.
1611     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1612     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1613     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1614   }
1615 
1616   // If we don't yet have a canonical IV, create one.
1617   if (!CanonicalIV) {
1618     // Create and insert the PHI node for the induction variable in the
1619     // specified loop.
1620     BasicBlock *Header = L->getHeader();
1621     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1622     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1623                                   &Header->front());
1624     rememberInstruction(CanonicalIV);
1625 
1626     SmallSet<BasicBlock *, 4> PredSeen;
1627     Constant *One = ConstantInt::get(Ty, 1);
1628     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1629       BasicBlock *HP = *HPI;
1630       if (!PredSeen.insert(HP).second) {
1631         // There must be an incoming value for each predecessor, even the
1632         // duplicates!
1633         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1634         continue;
1635       }
1636 
1637       if (L->contains(HP)) {
1638         // Insert a unit add instruction right before the terminator
1639         // corresponding to the back-edge.
1640         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1641                                                      "indvar.next",
1642                                                      HP->getTerminator());
1643         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1644         rememberInstruction(Add);
1645         CanonicalIV->addIncoming(Add, HP);
1646       } else {
1647         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1648       }
1649     }
1650   }
1651 
1652   // {0,+,1} --> Insert a canonical induction variable into the loop!
1653   if (S->isAffine() && S->getOperand(1)->isOne()) {
1654     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1655            "IVs with types different from the canonical IV should "
1656            "already have been handled!");
1657     return CanonicalIV;
1658   }
1659 
1660   // {0,+,F} --> {0,+,1} * F
1661 
1662   // If this is a simple linear addrec, emit it now as a special case.
1663   if (S->isAffine())    // {0,+,F} --> i*F
1664     return
1665       expand(SE.getTruncateOrNoop(
1666         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1667                       SE.getNoopOrAnyExtend(S->getOperand(1),
1668                                             CanonicalIV->getType())),
1669         Ty));
1670 
1671   // If this is a chain of recurrences, turn it into a closed form, using the
1672   // folders, then expandCodeFor the closed form.  This allows the folders to
1673   // simplify the expression without having to build a bunch of special code
1674   // into this folder.
1675   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1676 
1677   // Promote S up to the canonical IV type, if the cast is foldable.
1678   const SCEV *NewS = S;
1679   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1680   if (isa<SCEVAddRecExpr>(Ext))
1681     NewS = Ext;
1682 
1683   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1684   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1685 
1686   // Truncate the result down to the original type, if needed.
1687   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1688   return expand(T);
1689 }
1690 
1691 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1692   Value *V =
1693       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1694   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1695                            GetOptimalInsertionPointForCastOf(V));
1696 }
1697 
1698 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1699   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1700   Value *V = expandCodeForImpl(
1701       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1702       false);
1703   return Builder.CreateTrunc(V, Ty);
1704 }
1705 
1706 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1707   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1708   Value *V = expandCodeForImpl(
1709       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1710       false);
1711   return Builder.CreateZExt(V, Ty);
1712 }
1713 
1714 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1715   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1716   Value *V = expandCodeForImpl(
1717       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1718       false);
1719   return Builder.CreateSExt(V, Ty);
1720 }
1721 
1722 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1723   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1724   Type *Ty = LHS->getType();
1725   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1726     // In the case of mixed integer and pointer types, do the
1727     // rest of the comparisons as integer.
1728     Type *OpTy = S->getOperand(i)->getType();
1729     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1730       Ty = SE.getEffectiveSCEVType(Ty);
1731       LHS = InsertNoopCastOfTo(LHS, Ty);
1732     }
1733     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1734     Value *Sel;
1735     if (Ty->isIntegerTy())
1736       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1737                                     /*FMFSource=*/nullptr, "smax");
1738     else {
1739       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1740       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1741     }
1742     LHS = Sel;
1743   }
1744   // In the case of mixed integer and pointer types, cast the
1745   // final result back to the pointer type.
1746   if (LHS->getType() != S->getType())
1747     LHS = InsertNoopCastOfTo(LHS, S->getType());
1748   return LHS;
1749 }
1750 
1751 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1752   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1753   Type *Ty = LHS->getType();
1754   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1755     // In the case of mixed integer and pointer types, do the
1756     // rest of the comparisons as integer.
1757     Type *OpTy = S->getOperand(i)->getType();
1758     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1759       Ty = SE.getEffectiveSCEVType(Ty);
1760       LHS = InsertNoopCastOfTo(LHS, Ty);
1761     }
1762     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1763     Value *Sel;
1764     if (Ty->isIntegerTy())
1765       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1766                                     /*FMFSource=*/nullptr, "umax");
1767     else {
1768       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1769       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1770     }
1771     LHS = Sel;
1772   }
1773   // In the case of mixed integer and pointer types, cast the
1774   // final result back to the pointer type.
1775   if (LHS->getType() != S->getType())
1776     LHS = InsertNoopCastOfTo(LHS, S->getType());
1777   return LHS;
1778 }
1779 
1780 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1781   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1782   Type *Ty = LHS->getType();
1783   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1784     // In the case of mixed integer and pointer types, do the
1785     // rest of the comparisons as integer.
1786     Type *OpTy = S->getOperand(i)->getType();
1787     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1788       Ty = SE.getEffectiveSCEVType(Ty);
1789       LHS = InsertNoopCastOfTo(LHS, Ty);
1790     }
1791     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1792     Value *Sel;
1793     if (Ty->isIntegerTy())
1794       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1795                                     /*FMFSource=*/nullptr, "smin");
1796     else {
1797       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1798       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1799     }
1800     LHS = Sel;
1801   }
1802   // In the case of mixed integer and pointer types, cast the
1803   // final result back to the pointer type.
1804   if (LHS->getType() != S->getType())
1805     LHS = InsertNoopCastOfTo(LHS, S->getType());
1806   return LHS;
1807 }
1808 
1809 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1810   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1811   Type *Ty = LHS->getType();
1812   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1813     // In the case of mixed integer and pointer types, do the
1814     // rest of the comparisons as integer.
1815     Type *OpTy = S->getOperand(i)->getType();
1816     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1817       Ty = SE.getEffectiveSCEVType(Ty);
1818       LHS = InsertNoopCastOfTo(LHS, Ty);
1819     }
1820     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1821     Value *Sel;
1822     if (Ty->isIntegerTy())
1823       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1824                                     /*FMFSource=*/nullptr, "umin");
1825     else {
1826       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1827       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1828     }
1829     LHS = Sel;
1830   }
1831   // In the case of mixed integer and pointer types, cast the
1832   // final result back to the pointer type.
1833   if (LHS->getType() != S->getType())
1834     LHS = InsertNoopCastOfTo(LHS, S->getType());
1835   return LHS;
1836 }
1837 
1838 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1839                                        Instruction *IP, bool Root) {
1840   setInsertPoint(IP);
1841   Value *V = expandCodeForImpl(SH, Ty, Root);
1842   return V;
1843 }
1844 
1845 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1846   // Expand the code for this SCEV.
1847   Value *V = expand(SH);
1848 
1849   if (PreserveLCSSA) {
1850     if (auto *Inst = dyn_cast<Instruction>(V)) {
1851       // Create a temporary instruction to at the current insertion point, so we
1852       // can hand it off to the helper to create LCSSA PHIs if required for the
1853       // new use.
1854       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1855       // would accept a insertion point and return an LCSSA phi for that
1856       // insertion point, so there is no need to insert & remove the temporary
1857       // instruction.
1858       Instruction *Tmp;
1859       if (Inst->getType()->isIntegerTy())
1860         Tmp =
1861             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1862       else {
1863         assert(Inst->getType()->isPointerTy());
1864         Tmp = cast<Instruction>(
1865             Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user"));
1866       }
1867       V = fixupLCSSAFormFor(Tmp, 0);
1868 
1869       // Clean up temporary instruction.
1870       InsertedValues.erase(Tmp);
1871       InsertedPostIncValues.erase(Tmp);
1872       Tmp->eraseFromParent();
1873     }
1874   }
1875 
1876   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1877   if (Ty) {
1878     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1879            "non-trivial casts should be done with the SCEVs directly!");
1880     V = InsertNoopCastOfTo(V, Ty);
1881   }
1882   return V;
1883 }
1884 
1885 ScalarEvolution::ValueOffsetPair
1886 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1887                                       const Instruction *InsertPt) {
1888   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1889   // If the expansion is not in CanonicalMode, and the SCEV contains any
1890   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1891   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1892     // If S is scConstant, it may be worse to reuse an existing Value.
1893     if (S->getSCEVType() != scConstant && Set) {
1894       // Choose a Value from the set which dominates the insertPt.
1895       // insertPt should be inside the Value's parent loop so as not to break
1896       // the LCSSA form.
1897       for (auto const &VOPair : *Set) {
1898         Value *V = VOPair.first;
1899         ConstantInt *Offset = VOPair.second;
1900         Instruction *EntInst = nullptr;
1901         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1902             S->getType() == V->getType() &&
1903             EntInst->getFunction() == InsertPt->getFunction() &&
1904             SE.DT.dominates(EntInst, InsertPt) &&
1905             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1906              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1907           return {V, Offset};
1908       }
1909     }
1910   }
1911   return {nullptr, nullptr};
1912 }
1913 
1914 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1915 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1916 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1917 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1918 // the expansion will try to reuse Value from ExprValueMap, and only when it
1919 // fails, expand the SCEV literally.
1920 Value *SCEVExpander::expand(const SCEV *S) {
1921   // Compute an insertion point for this SCEV object. Hoist the instructions
1922   // as far out in the loop nest as possible.
1923   Instruction *InsertPt = &*Builder.GetInsertPoint();
1924 
1925   // We can move insertion point only if there is no div or rem operations
1926   // otherwise we are risky to move it over the check for zero denominator.
1927   auto SafeToHoist = [](const SCEV *S) {
1928     return !SCEVExprContains(S, [](const SCEV *S) {
1929               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1930                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1931                   // Division by non-zero constants can be hoisted.
1932                   return SC->getValue()->isZero();
1933                 // All other divisions should not be moved as they may be
1934                 // divisions by zero and should be kept within the
1935                 // conditions of the surrounding loops that guard their
1936                 // execution (see PR35406).
1937                 return true;
1938               }
1939               return false;
1940             });
1941   };
1942   if (SafeToHoist(S)) {
1943     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1944          L = L->getParentLoop()) {
1945       if (SE.isLoopInvariant(S, L)) {
1946         if (!L) break;
1947         if (BasicBlock *Preheader = L->getLoopPreheader())
1948           InsertPt = Preheader->getTerminator();
1949         else
1950           // LSR sets the insertion point for AddRec start/step values to the
1951           // block start to simplify value reuse, even though it's an invalid
1952           // position. SCEVExpander must correct for this in all cases.
1953           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1954       } else {
1955         // If the SCEV is computable at this level, insert it into the header
1956         // after the PHIs (and after any other instructions that we've inserted
1957         // there) so that it is guaranteed to dominate any user inside the loop.
1958         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1959           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1960 
1961         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1962                (isInsertedInstruction(InsertPt) ||
1963                 isa<DbgInfoIntrinsic>(InsertPt))) {
1964           InsertPt = &*std::next(InsertPt->getIterator());
1965         }
1966         break;
1967       }
1968     }
1969   }
1970 
1971   // Check to see if we already expanded this here.
1972   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1973   if (I != InsertedExpressions.end())
1974     return I->second;
1975 
1976   SCEVInsertPointGuard Guard(Builder, this);
1977   Builder.SetInsertPoint(InsertPt);
1978 
1979   // Expand the expression into instructions.
1980   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1981   Value *V = VO.first;
1982 
1983   if (!V)
1984     V = visit(S);
1985   else if (VO.second) {
1986     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1987       Type *Ety = Vty->getPointerElementType();
1988       int64_t Offset = VO.second->getSExtValue();
1989       int64_t ESize = SE.getTypeSizeInBits(Ety);
1990       if ((Offset * 8) % ESize == 0) {
1991         ConstantInt *Idx =
1992             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1993         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1994       } else {
1995         ConstantInt *Idx =
1996             ConstantInt::getSigned(VO.second->getType(), -Offset);
1997         unsigned AS = Vty->getAddressSpace();
1998         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1999         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
2000                               "uglygep");
2001         V = Builder.CreateBitCast(V, Vty);
2002       }
2003     } else {
2004       V = Builder.CreateSub(V, VO.second);
2005     }
2006   }
2007   // Remember the expanded value for this SCEV at this location.
2008   //
2009   // This is independent of PostIncLoops. The mapped value simply materializes
2010   // the expression at this insertion point. If the mapped value happened to be
2011   // a postinc expansion, it could be reused by a non-postinc user, but only if
2012   // its insertion point was already at the head of the loop.
2013   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2014   return V;
2015 }
2016 
2017 void SCEVExpander::rememberInstruction(Value *I) {
2018   auto DoInsert = [this](Value *V) {
2019     if (!PostIncLoops.empty())
2020       InsertedPostIncValues.insert(V);
2021     else
2022       InsertedValues.insert(V);
2023   };
2024   DoInsert(I);
2025 
2026   if (!PreserveLCSSA)
2027     return;
2028 
2029   if (auto *Inst = dyn_cast<Instruction>(I)) {
2030     // A new instruction has been added, which might introduce new uses outside
2031     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2032     // if required.
2033     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2034          OpIdx++)
2035       fixupLCSSAFormFor(Inst, OpIdx);
2036   }
2037 }
2038 
2039 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2040 /// replace them with their most canonical representative. Return the number of
2041 /// phis eliminated.
2042 ///
2043 /// This does not depend on any SCEVExpander state but should be used in
2044 /// the same context that SCEVExpander is used.
2045 unsigned
2046 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2047                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2048                                   const TargetTransformInfo *TTI) {
2049   // Find integer phis in order of increasing width.
2050   SmallVector<PHINode*, 8> Phis;
2051   for (PHINode &PN : L->getHeader()->phis())
2052     Phis.push_back(&PN);
2053 
2054   if (TTI)
2055     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2056       // Put pointers at the back and make sure pointer < pointer = false.
2057       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2058         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2059       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2060              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2061     });
2062 
2063   unsigned NumElim = 0;
2064   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2065   // Process phis from wide to narrow. Map wide phis to their truncation
2066   // so narrow phis can reuse them.
2067   for (PHINode *Phi : Phis) {
2068     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2069       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2070         return V;
2071       if (!SE.isSCEVable(PN->getType()))
2072         return nullptr;
2073       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2074       if (!Const)
2075         return nullptr;
2076       return Const->getValue();
2077     };
2078 
2079     // Fold constant phis. They may be congruent to other constant phis and
2080     // would confuse the logic below that expects proper IVs.
2081     if (Value *V = SimplifyPHINode(Phi)) {
2082       if (V->getType() != Phi->getType())
2083         continue;
2084       Phi->replaceAllUsesWith(V);
2085       DeadInsts.emplace_back(Phi);
2086       ++NumElim;
2087       DEBUG_WITH_TYPE(DebugType, dbgs()
2088                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
2089       continue;
2090     }
2091 
2092     if (!SE.isSCEVable(Phi->getType()))
2093       continue;
2094 
2095     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2096     if (!OrigPhiRef) {
2097       OrigPhiRef = Phi;
2098       if (Phi->getType()->isIntegerTy() && TTI &&
2099           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2100         // This phi can be freely truncated to the narrowest phi type. Map the
2101         // truncated expression to it so it will be reused for narrow types.
2102         const SCEV *TruncExpr =
2103           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2104         ExprToIVMap[TruncExpr] = Phi;
2105       }
2106       continue;
2107     }
2108 
2109     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2110     // sense.
2111     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2112       continue;
2113 
2114     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2115       Instruction *OrigInc = dyn_cast<Instruction>(
2116           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2117       Instruction *IsomorphicInc =
2118           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2119 
2120       if (OrigInc && IsomorphicInc) {
2121         // If this phi has the same width but is more canonical, replace the
2122         // original with it. As part of the "more canonical" determination,
2123         // respect a prior decision to use an IV chain.
2124         if (OrigPhiRef->getType() == Phi->getType() &&
2125             !(ChainedPhis.count(Phi) ||
2126               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2127             (ChainedPhis.count(Phi) ||
2128              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2129           std::swap(OrigPhiRef, Phi);
2130           std::swap(OrigInc, IsomorphicInc);
2131         }
2132         // Replacing the congruent phi is sufficient because acyclic
2133         // redundancy elimination, CSE/GVN, should handle the
2134         // rest. However, once SCEV proves that a phi is congruent,
2135         // it's often the head of an IV user cycle that is isomorphic
2136         // with the original phi. It's worth eagerly cleaning up the
2137         // common case of a single IV increment so that DeleteDeadPHIs
2138         // can remove cycles that had postinc uses.
2139         const SCEV *TruncExpr =
2140             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2141         if (OrigInc != IsomorphicInc &&
2142             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2143             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2144             hoistIVInc(OrigInc, IsomorphicInc)) {
2145           DEBUG_WITH_TYPE(DebugType,
2146                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2147                                  << *IsomorphicInc << '\n');
2148           Value *NewInc = OrigInc;
2149           if (OrigInc->getType() != IsomorphicInc->getType()) {
2150             Instruction *IP = nullptr;
2151             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2152               IP = &*PN->getParent()->getFirstInsertionPt();
2153             else
2154               IP = OrigInc->getNextNode();
2155 
2156             IRBuilder<> Builder(IP);
2157             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2158             NewInc = Builder.CreateTruncOrBitCast(
2159                 OrigInc, IsomorphicInc->getType(), IVName);
2160           }
2161           IsomorphicInc->replaceAllUsesWith(NewInc);
2162           DeadInsts.emplace_back(IsomorphicInc);
2163         }
2164       }
2165     }
2166     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2167                                       << *Phi << '\n');
2168     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: "
2169                                       << *OrigPhiRef << '\n');
2170     ++NumElim;
2171     Value *NewIV = OrigPhiRef;
2172     if (OrigPhiRef->getType() != Phi->getType()) {
2173       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2174       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2175       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2176     }
2177     Phi->replaceAllUsesWith(NewIV);
2178     DeadInsts.emplace_back(Phi);
2179   }
2180   return NumElim;
2181 }
2182 
2183 Optional<ScalarEvolution::ValueOffsetPair>
2184 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2185                                           Loop *L) {
2186   using namespace llvm::PatternMatch;
2187 
2188   SmallVector<BasicBlock *, 4> ExitingBlocks;
2189   L->getExitingBlocks(ExitingBlocks);
2190 
2191   // Look for suitable value in simple conditions at the loop exits.
2192   for (BasicBlock *BB : ExitingBlocks) {
2193     ICmpInst::Predicate Pred;
2194     Instruction *LHS, *RHS;
2195 
2196     if (!match(BB->getTerminator(),
2197                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2198                     m_BasicBlock(), m_BasicBlock())))
2199       continue;
2200 
2201     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2202       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2203 
2204     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2205       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2206   }
2207 
2208   // Use expand's logic which is used for reusing a previous Value in
2209   // ExprValueMap.
2210   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2211   if (VO.first)
2212     return VO;
2213 
2214   // There is potential to make this significantly smarter, but this simple
2215   // heuristic already gets some interesting cases.
2216 
2217   // Can not find suitable value.
2218   return None;
2219 }
2220 
2221 template<typename T> static InstructionCost costAndCollectOperands(
2222   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2223   TargetTransformInfo::TargetCostKind CostKind,
2224   SmallVectorImpl<SCEVOperand> &Worklist) {
2225 
2226   const T *S = cast<T>(WorkItem.S);
2227   InstructionCost Cost = 0;
2228   // Object to help map SCEV operands to expanded IR instructions.
2229   struct OperationIndices {
2230     OperationIndices(unsigned Opc, size_t min, size_t max) :
2231       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2232     unsigned Opcode;
2233     size_t MinIdx;
2234     size_t MaxIdx;
2235   };
2236 
2237   // Collect the operations of all the instructions that will be needed to
2238   // expand the SCEVExpr. This is so that when we come to cost the operands,
2239   // we know what the generated user(s) will be.
2240   SmallVector<OperationIndices, 2> Operations;
2241 
2242   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2243     Operations.emplace_back(Opcode, 0, 0);
2244     return TTI.getCastInstrCost(Opcode, S->getType(),
2245                                 S->getOperand(0)->getType(),
2246                                 TTI::CastContextHint::None, CostKind);
2247   };
2248 
2249   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2250                        unsigned MinIdx = 0,
2251                        unsigned MaxIdx = 1) -> InstructionCost {
2252     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2253     return NumRequired *
2254       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2255   };
2256 
2257   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2258                         unsigned MaxIdx) -> InstructionCost {
2259     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2260     Type *OpType = S->getOperand(0)->getType();
2261     return NumRequired * TTI.getCmpSelInstrCost(
2262                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2263                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2264   };
2265 
2266   switch (S->getSCEVType()) {
2267   case scCouldNotCompute:
2268     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2269   case scUnknown:
2270   case scConstant:
2271     return 0;
2272   case scPtrToInt:
2273     Cost = CastCost(Instruction::PtrToInt);
2274     break;
2275   case scTruncate:
2276     Cost = CastCost(Instruction::Trunc);
2277     break;
2278   case scZeroExtend:
2279     Cost = CastCost(Instruction::ZExt);
2280     break;
2281   case scSignExtend:
2282     Cost = CastCost(Instruction::SExt);
2283     break;
2284   case scUDivExpr: {
2285     unsigned Opcode = Instruction::UDiv;
2286     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2287       if (SC->getAPInt().isPowerOf2())
2288         Opcode = Instruction::LShr;
2289     Cost = ArithCost(Opcode, 1);
2290     break;
2291   }
2292   case scAddExpr:
2293     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2294     break;
2295   case scMulExpr:
2296     // TODO: this is a very pessimistic cost modelling for Mul,
2297     // because of Bin Pow algorithm actually used by the expander,
2298     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2299     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2300     break;
2301   case scSMaxExpr:
2302   case scUMaxExpr:
2303   case scSMinExpr:
2304   case scUMinExpr: {
2305     // FIXME: should this ask the cost for Intrinsic's?
2306     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2307     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2308     break;
2309   }
2310   case scAddRecExpr: {
2311     // In this polynominal, we may have some zero operands, and we shouldn't
2312     // really charge for those. So how many non-zero coeffients are there?
2313     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2314                                     return !Op->isZero();
2315                                   });
2316 
2317     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2318     assert(!(*std::prev(S->operands().end()))->isZero() &&
2319            "Last operand should not be zero");
2320 
2321     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2322     int NumNonZeroDegreeNonOneTerms =
2323       llvm::count_if(S->operands(), [](const SCEV *Op) {
2324                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2325                       return !SConst || SConst->getAPInt().ugt(1);
2326                     });
2327 
2328     // Much like with normal add expr, the polynominal will require
2329     // one less addition than the number of it's terms.
2330     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2331                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2332     // Here, *each* one of those will require a multiplication.
2333     InstructionCost MulCost =
2334         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2335     Cost = AddCost + MulCost;
2336 
2337     // What is the degree of this polynominal?
2338     int PolyDegree = S->getNumOperands() - 1;
2339     assert(PolyDegree >= 1 && "Should be at least affine.");
2340 
2341     // The final term will be:
2342     //   Op_{PolyDegree} * x ^ {PolyDegree}
2343     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2344     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2345     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2346     // FIXME: this is conservatively correct, but might be overly pessimistic.
2347     Cost += MulCost * (PolyDegree - 1);
2348     break;
2349   }
2350   }
2351 
2352   for (auto &CostOp : Operations) {
2353     for (auto SCEVOp : enumerate(S->operands())) {
2354       // Clamp the index to account for multiple IR operations being chained.
2355       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2356       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2357       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2358     }
2359   }
2360   return Cost;
2361 }
2362 
2363 bool SCEVExpander::isHighCostExpansionHelper(
2364     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2365     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2366     SmallPtrSetImpl<const SCEV *> &Processed,
2367     SmallVectorImpl<SCEVOperand> &Worklist) {
2368   if (Cost > Budget)
2369     return true; // Already run out of budget, give up.
2370 
2371   const SCEV *S = WorkItem.S;
2372   // Was the cost of expansion of this expression already accounted for?
2373   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2374     return false; // We have already accounted for this expression.
2375 
2376   // If we can find an existing value for this scev available at the point "At"
2377   // then consider the expression cheap.
2378   if (getRelatedExistingExpansion(S, &At, L))
2379     return false; // Consider the expression to be free.
2380 
2381   TargetTransformInfo::TargetCostKind CostKind =
2382       L->getHeader()->getParent()->hasMinSize()
2383           ? TargetTransformInfo::TCK_CodeSize
2384           : TargetTransformInfo::TCK_RecipThroughput;
2385 
2386   switch (S->getSCEVType()) {
2387   case scCouldNotCompute:
2388     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2389   case scUnknown:
2390     // Assume to be zero-cost.
2391     return false;
2392   case scConstant: {
2393     // Only evalulate the costs of constants when optimizing for size.
2394     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2395       return 0;
2396     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2397     Type *Ty = S->getType();
2398     Cost += TTI.getIntImmCostInst(
2399         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2400     return Cost > Budget;
2401   }
2402   case scTruncate:
2403   case scPtrToInt:
2404   case scZeroExtend:
2405   case scSignExtend: {
2406     Cost +=
2407         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2408     return false; // Will answer upon next entry into this function.
2409   }
2410   case scUDivExpr: {
2411     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2412     // HowManyLessThans produced to compute a precise expression, rather than a
2413     // UDiv from the user's code. If we can't find a UDiv in the code with some
2414     // simple searching, we need to account for it's cost.
2415 
2416     // At the beginning of this function we already tried to find existing
2417     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2418     // pattern involving division. This is just a simple search heuristic.
2419     if (getRelatedExistingExpansion(
2420             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2421       return false; // Consider it to be free.
2422 
2423     Cost +=
2424         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2425     return false; // Will answer upon next entry into this function.
2426   }
2427   case scAddExpr:
2428   case scMulExpr:
2429   case scUMaxExpr:
2430   case scSMaxExpr:
2431   case scUMinExpr:
2432   case scSMinExpr: {
2433     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2434            "Nary expr should have more than 1 operand.");
2435     // The simple nary expr will require one less op (or pair of ops)
2436     // than the number of it's terms.
2437     Cost +=
2438         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2439     return Cost > Budget;
2440   }
2441   case scAddRecExpr: {
2442     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2443            "Polynomial should be at least linear");
2444     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2445         WorkItem, TTI, CostKind, Worklist);
2446     return Cost > Budget;
2447   }
2448   }
2449   llvm_unreachable("Unknown SCEV kind!");
2450 }
2451 
2452 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2453                                             Instruction *IP) {
2454   assert(IP);
2455   switch (Pred->getKind()) {
2456   case SCEVPredicate::P_Union:
2457     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2458   case SCEVPredicate::P_Equal:
2459     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2460   case SCEVPredicate::P_Wrap: {
2461     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2462     return expandWrapPredicate(AddRecPred, IP);
2463   }
2464   }
2465   llvm_unreachable("Unknown SCEV predicate type");
2466 }
2467 
2468 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2469                                           Instruction *IP) {
2470   Value *Expr0 =
2471       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2472   Value *Expr1 =
2473       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2474 
2475   Builder.SetInsertPoint(IP);
2476   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2477   return I;
2478 }
2479 
2480 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2481                                            Instruction *Loc, bool Signed) {
2482   assert(AR->isAffine() && "Cannot generate RT check for "
2483                            "non-affine expression");
2484 
2485   SCEVUnionPredicate Pred;
2486   const SCEV *ExitCount =
2487       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2488 
2489   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2490 
2491   const SCEV *Step = AR->getStepRecurrence(SE);
2492   const SCEV *Start = AR->getStart();
2493 
2494   Type *ARTy = AR->getType();
2495   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2496   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2497 
2498   // The expression {Start,+,Step} has nusw/nssw if
2499   //   Step < 0, Start - |Step| * Backedge <= Start
2500   //   Step >= 0, Start + |Step| * Backedge > Start
2501   // and |Step| * Backedge doesn't unsigned overflow.
2502 
2503   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2504   Builder.SetInsertPoint(Loc);
2505   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2506 
2507   IntegerType *Ty =
2508       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2509   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2510 
2511   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2512   Value *NegStepValue =
2513       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2514   Value *StartValue = expandCodeForImpl(
2515       isa<PointerType>(ARExpandTy) ? Start
2516                                    : SE.getPtrToIntExpr(Start, ARExpandTy),
2517       ARExpandTy, Loc, false);
2518 
2519   ConstantInt *Zero =
2520       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2521 
2522   Builder.SetInsertPoint(Loc);
2523   // Compute |Step|
2524   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2525   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2526 
2527   // Get the backedge taken count and truncate or extended to the AR type.
2528   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2529   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2530                                          Intrinsic::umul_with_overflow, Ty);
2531 
2532   // Compute |Step| * Backedge
2533   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2534   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2535   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2536 
2537   // Compute:
2538   //   Start + |Step| * Backedge < Start
2539   //   Start - |Step| * Backedge > Start
2540   Value *Add = nullptr, *Sub = nullptr;
2541   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2542     const SCEV *MulS = SE.getSCEV(MulV);
2543     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2544     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2545                                 ARPtrTy);
2546     Sub = Builder.CreateBitCast(
2547         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2548   } else {
2549     Add = Builder.CreateAdd(StartValue, MulV);
2550     Sub = Builder.CreateSub(StartValue, MulV);
2551   }
2552 
2553   Value *EndCompareGT = Builder.CreateICmp(
2554       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2555 
2556   Value *EndCompareLT = Builder.CreateICmp(
2557       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2558 
2559   // Select the answer based on the sign of Step.
2560   Value *EndCheck =
2561       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2562 
2563   // If the backedge taken count type is larger than the AR type,
2564   // check that we don't drop any bits by truncating it. If we are
2565   // dropping bits, then we have overflow (unless the step is zero).
2566   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2567     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2568     auto *BackedgeCheck =
2569         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2570                            ConstantInt::get(Loc->getContext(), MaxVal));
2571     BackedgeCheck = Builder.CreateAnd(
2572         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2573 
2574     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2575   }
2576 
2577   return Builder.CreateOr(EndCheck, OfMul);
2578 }
2579 
2580 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2581                                          Instruction *IP) {
2582   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2583   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2584 
2585   // Add a check for NUSW
2586   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2587     NUSWCheck = generateOverflowCheck(A, IP, false);
2588 
2589   // Add a check for NSSW
2590   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2591     NSSWCheck = generateOverflowCheck(A, IP, true);
2592 
2593   if (NUSWCheck && NSSWCheck)
2594     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2595 
2596   if (NUSWCheck)
2597     return NUSWCheck;
2598 
2599   if (NSSWCheck)
2600     return NSSWCheck;
2601 
2602   return ConstantInt::getFalse(IP->getContext());
2603 }
2604 
2605 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2606                                           Instruction *IP) {
2607   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2608   Value *Check = ConstantInt::getNullValue(BoolType);
2609 
2610   // Loop over all checks in this set.
2611   for (auto Pred : Union->getPredicates()) {
2612     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2613     Builder.SetInsertPoint(IP);
2614     Check = Builder.CreateOr(Check, NextCheck);
2615   }
2616 
2617   return Check;
2618 }
2619 
2620 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2621   assert(PreserveLCSSA);
2622   SmallVector<Instruction *, 1> ToUpdate;
2623 
2624   auto *OpV = User->getOperand(OpIdx);
2625   auto *OpI = dyn_cast<Instruction>(OpV);
2626   if (!OpI)
2627     return OpV;
2628 
2629   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2630   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2631   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2632     return OpV;
2633 
2634   ToUpdate.push_back(OpI);
2635   SmallVector<PHINode *, 16> PHIsToRemove;
2636   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2637   for (PHINode *PN : PHIsToRemove) {
2638     if (!PN->use_empty())
2639       continue;
2640     InsertedValues.erase(PN);
2641     InsertedPostIncValues.erase(PN);
2642     PN->eraseFromParent();
2643   }
2644 
2645   return User->getOperand(OpIdx);
2646 }
2647 
2648 namespace {
2649 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2650 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2651 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2652 // instruction, but the important thing is that we prove the denominator is
2653 // nonzero before expansion.
2654 //
2655 // IVUsers already checks that IV-derived expressions are safe. So this check is
2656 // only needed when the expression includes some subexpression that is not IV
2657 // derived.
2658 //
2659 // Currently, we only allow division by a nonzero constant here. If this is
2660 // inadequate, we could easily allow division by SCEVUnknown by using
2661 // ValueTracking to check isKnownNonZero().
2662 //
2663 // We cannot generally expand recurrences unless the step dominates the loop
2664 // header. The expander handles the special case of affine recurrences by
2665 // scaling the recurrence outside the loop, but this technique isn't generally
2666 // applicable. Expanding a nested recurrence outside a loop requires computing
2667 // binomial coefficients. This could be done, but the recurrence has to be in a
2668 // perfectly reduced form, which can't be guaranteed.
2669 struct SCEVFindUnsafe {
2670   ScalarEvolution &SE;
2671   bool IsUnsafe;
2672 
2673   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2674 
2675   bool follow(const SCEV *S) {
2676     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2677       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2678       if (!SC || SC->getValue()->isZero()) {
2679         IsUnsafe = true;
2680         return false;
2681       }
2682     }
2683     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2684       const SCEV *Step = AR->getStepRecurrence(SE);
2685       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2686         IsUnsafe = true;
2687         return false;
2688       }
2689     }
2690     return true;
2691   }
2692   bool isDone() const { return IsUnsafe; }
2693 };
2694 }
2695 
2696 namespace llvm {
2697 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2698   SCEVFindUnsafe Search(SE);
2699   visitAll(S, Search);
2700   return !Search.IsUnsafe;
2701 }
2702 
2703 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2704                       ScalarEvolution &SE) {
2705   if (!isSafeToExpand(S, SE))
2706     return false;
2707   // We have to prove that the expanded site of S dominates InsertionPoint.
2708   // This is easy when not in the same block, but hard when S is an instruction
2709   // to be expanded somewhere inside the same block as our insertion point.
2710   // What we really need here is something analogous to an OrderedBasicBlock,
2711   // but for the moment, we paper over the problem by handling two common and
2712   // cheap to check cases.
2713   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2714     return true;
2715   if (SE.dominates(S, InsertionPoint->getParent())) {
2716     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2717       return true;
2718     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2719       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2720         return true;
2721   }
2722   return false;
2723 }
2724 
2725 void SCEVExpanderCleaner::cleanup() {
2726   // Result is used, nothing to remove.
2727   if (ResultUsed)
2728     return;
2729 
2730   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2731 #ifndef NDEBUG
2732   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2733                                             InsertedInstructions.end());
2734   (void)InsertedSet;
2735 #endif
2736   // Remove sets with value handles.
2737   Expander.clear();
2738 
2739   // Sort so that earlier instructions do not dominate later instructions.
2740   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2741     return DT.dominates(B, A);
2742   });
2743   // Remove all inserted instructions.
2744   for (Instruction *I : InsertedInstructions) {
2745 
2746 #ifndef NDEBUG
2747     assert(all_of(I->users(),
2748                   [&InsertedSet](Value *U) {
2749                     return InsertedSet.contains(cast<Instruction>(U));
2750                   }) &&
2751            "removed instruction should only be used by instructions inserted "
2752            "during expansion");
2753 #endif
2754     assert(!I->getType()->isVoidTy() &&
2755            "inserted instruction should have non-void types");
2756     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2757     I->eraseFromParent();
2758   }
2759 }
2760 }
2761