1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 return Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep"); 177 } 178 } 179 // Short-circuit unnecessary bitcasts. 180 if (Op == Instruction::BitCast) { 181 if (V->getType() == Ty) 182 return V; 183 if (CastInst *CI = dyn_cast<CastInst>(V)) { 184 if (CI->getOperand(0)->getType() == Ty) 185 return CI->getOperand(0); 186 } 187 } 188 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 189 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 190 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 191 if (CastInst *CI = dyn_cast<CastInst>(V)) 192 if ((CI->getOpcode() == Instruction::PtrToInt || 193 CI->getOpcode() == Instruction::IntToPtr) && 194 SE.getTypeSizeInBits(CI->getType()) == 195 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 196 return CI->getOperand(0); 197 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 198 if ((CE->getOpcode() == Instruction::PtrToInt || 199 CE->getOpcode() == Instruction::IntToPtr) && 200 SE.getTypeSizeInBits(CE->getType()) == 201 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 202 return CE->getOperand(0); 203 } 204 205 // Fold a cast of a constant. 206 if (Constant *C = dyn_cast<Constant>(V)) 207 return ConstantExpr::getCast(Op, C, Ty); 208 209 // Try to reuse existing cast, or insert one. 210 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 211 } 212 213 /// InsertBinop - Insert the specified binary operator, doing a small amount 214 /// of work to avoid inserting an obviously redundant operation, and hoisting 215 /// to an outer loop when the opportunity is there and it is safe. 216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 217 Value *LHS, Value *RHS, 218 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 219 // Fold a binop with constant operands. 220 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 221 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 222 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 223 return Res; 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 // TODO: Use the Builder, which will make CreateBinOp below fold with 277 // InstSimplifyFolder. 278 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// expandAddToGEP - Expand an addition expression with a pointer type into 289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 290 /// BasicAliasAnalysis and other passes analyze the result. See the rules 291 /// for getelementptr vs. inttoptr in 292 /// http://llvm.org/docs/LangRef.html#pointeraliasing 293 /// for details. 294 /// 295 /// Design note: The correctness of using getelementptr here depends on 296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 297 /// they may introduce pointer arithmetic which may not be safely converted 298 /// into getelementptr. 299 /// 300 /// Design note: It might seem desirable for this function to be more 301 /// loop-aware. If some of the indices are loop-invariant while others 302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 303 /// loop-invariant portions of the overall computation outside the loop. 304 /// However, there are a few reasons this is not done here. Hoisting simple 305 /// arithmetic is a low-level optimization that often isn't very 306 /// important until late in the optimization process. In fact, passes 307 /// like InstructionCombining will combine GEPs, even if it means 308 /// pushing loop-invariant computation down into loops, so even if the 309 /// GEPs were split here, the work would quickly be undone. The 310 /// LoopStrengthReduction pass, which is usually run quite late (and 311 /// after the last InstructionCombining pass), takes care of hoisting 312 /// loop-invariant portions of expressions, after considering what 313 /// can be folded using target addressing modes. 314 /// 315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 316 assert(!isa<Instruction>(V) || 317 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 318 319 Value *Idx = expand(Offset); 320 321 // Fold a GEP with constant operands. 322 if (Constant *CLHS = dyn_cast<Constant>(V)) 323 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 324 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 325 326 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 327 unsigned ScanLimit = 6; 328 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 329 // Scanning starts from the last instruction before the insertion point. 330 BasicBlock::iterator IP = Builder.GetInsertPoint(); 331 if (IP != BlockBegin) { 332 --IP; 333 for (; ScanLimit; --IP, --ScanLimit) { 334 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 335 // generated code. 336 if (isa<DbgInfoIntrinsic>(IP)) 337 ScanLimit++; 338 if (IP->getOpcode() == Instruction::GetElementPtr && 339 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 340 cast<GEPOperator>(&*IP)->getSourceElementType() == 341 Builder.getInt8Ty()) 342 return &*IP; 343 if (IP == BlockBegin) break; 344 } 345 } 346 347 // Save the original insertion point so we can restore it when we're done. 348 SCEVInsertPointGuard Guard(Builder, this); 349 350 // Move the insertion point out of as many loops as we can. 351 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 352 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 353 BasicBlock *Preheader = L->getLoopPreheader(); 354 if (!Preheader) break; 355 356 // Ok, move up a level. 357 Builder.SetInsertPoint(Preheader->getTerminator()); 358 } 359 360 // Emit a GEP. 361 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 362 } 363 364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 365 /// SCEV expansion. If they are nested, this is the most nested. If they are 366 /// neighboring, pick the later. 367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 368 DominatorTree &DT) { 369 if (!A) return B; 370 if (!B) return A; 371 if (A->contains(B)) return B; 372 if (B->contains(A)) return A; 373 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 374 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 375 return A; // Arbitrarily break the tie. 376 } 377 378 /// getRelevantLoop - Get the most relevant loop associated with the given 379 /// expression, according to PickMostRelevantLoop. 380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 381 // Test whether we've already computed the most relevant loop for this SCEV. 382 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 383 if (!Pair.second) 384 return Pair.first->second; 385 386 switch (S->getSCEVType()) { 387 case scConstant: 388 case scVScale: 389 return nullptr; // A constant has no relevant loops. 390 case scTruncate: 391 case scZeroExtend: 392 case scSignExtend: 393 case scPtrToInt: 394 case scAddExpr: 395 case scMulExpr: 396 case scUDivExpr: 397 case scAddRecExpr: 398 case scUMaxExpr: 399 case scSMaxExpr: 400 case scUMinExpr: 401 case scSMinExpr: 402 case scSequentialUMinExpr: { 403 const Loop *L = nullptr; 404 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 405 L = AR->getLoop(); 406 for (const SCEV *Op : S->operands()) 407 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 408 return RelevantLoops[S] = L; 409 } 410 case scUnknown: { 411 const SCEVUnknown *U = cast<SCEVUnknown>(S); 412 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 413 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 414 // A non-instruction has no relevant loops. 415 return nullptr; 416 } 417 case scCouldNotCompute: 418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 419 } 420 llvm_unreachable("Unexpected SCEV type!"); 421 } 422 423 namespace { 424 425 /// LoopCompare - Compare loops by PickMostRelevantLoop. 426 class LoopCompare { 427 DominatorTree &DT; 428 public: 429 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 430 431 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 432 std::pair<const Loop *, const SCEV *> RHS) const { 433 // Keep pointer operands sorted at the end. 434 if (LHS.second->getType()->isPointerTy() != 435 RHS.second->getType()->isPointerTy()) 436 return LHS.second->getType()->isPointerTy(); 437 438 // Compare loops with PickMostRelevantLoop. 439 if (LHS.first != RHS.first) 440 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 441 442 // If one operand is a non-constant negative and the other is not, 443 // put the non-constant negative on the right so that a sub can 444 // be used instead of a negate and add. 445 if (LHS.second->isNonConstantNegative()) { 446 if (!RHS.second->isNonConstantNegative()) 447 return false; 448 } else if (RHS.second->isNonConstantNegative()) 449 return true; 450 451 // Otherwise they are equivalent according to this comparison. 452 return false; 453 } 454 }; 455 456 } 457 458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 459 // Collect all the add operands in a loop, along with their associated loops. 460 // Iterate in reverse so that constants are emitted last, all else equal, and 461 // so that pointer operands are inserted first, which the code below relies on 462 // to form more involved GEPs. 463 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 464 for (const SCEV *Op : reverse(S->operands())) 465 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 466 467 // Sort by loop. Use a stable sort so that constants follow non-constants and 468 // pointer operands precede non-pointer operands. 469 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 470 471 // Emit instructions to add all the operands. Hoist as much as possible 472 // out of loops, and form meaningful getelementptrs where possible. 473 Value *Sum = nullptr; 474 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 475 const Loop *CurLoop = I->first; 476 const SCEV *Op = I->second; 477 if (!Sum) { 478 // This is the first operand. Just expand it. 479 Sum = expand(Op); 480 ++I; 481 continue; 482 } 483 484 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 485 if (isa<PointerType>(Sum->getType())) { 486 // The running sum expression is a pointer. Try to form a getelementptr 487 // at this level with that as the base. 488 SmallVector<const SCEV *, 4> NewOps; 489 for (; I != E && I->first == CurLoop; ++I) { 490 // If the operand is SCEVUnknown and not instructions, peek through 491 // it, to enable more of it to be folded into the GEP. 492 const SCEV *X = I->second; 493 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 494 if (!isa<Instruction>(U->getValue())) 495 X = SE.getSCEV(U->getValue()); 496 NewOps.push_back(X); 497 } 498 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 499 } else if (Op->isNonConstantNegative()) { 500 // Instead of doing a negate and add, just do a subtract. 501 Value *W = expand(SE.getNegativeSCEV(Op)); 502 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 503 /*IsSafeToHoist*/ true); 504 ++I; 505 } else { 506 // A simple add. 507 Value *W = expand(Op); 508 // Canonicalize a constant to the RHS. 509 if (isa<Constant>(Sum)) 510 std::swap(Sum, W); 511 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 512 /*IsSafeToHoist*/ true); 513 ++I; 514 } 515 } 516 517 return Sum; 518 } 519 520 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 521 Type *Ty = S->getType(); 522 523 // Collect all the mul operands in a loop, along with their associated loops. 524 // Iterate in reverse so that constants are emitted last, all else equal. 525 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 526 for (const SCEV *Op : reverse(S->operands())) 527 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 528 529 // Sort by loop. Use a stable sort so that constants follow non-constants. 530 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 531 532 // Emit instructions to mul all the operands. Hoist as much as possible 533 // out of loops. 534 Value *Prod = nullptr; 535 auto I = OpsAndLoops.begin(); 536 537 // Expand the calculation of X pow N in the following manner: 538 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 539 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 540 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 541 auto E = I; 542 // Calculate how many times the same operand from the same loop is included 543 // into this power. 544 uint64_t Exponent = 0; 545 const uint64_t MaxExponent = UINT64_MAX >> 1; 546 // No one sane will ever try to calculate such huge exponents, but if we 547 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 548 // below when the power of 2 exceeds our Exponent, and we want it to be 549 // 1u << 31 at most to not deal with unsigned overflow. 550 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 551 ++Exponent; 552 ++E; 553 } 554 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 555 556 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 557 // that are needed into the result. 558 Value *P = expand(I->second); 559 Value *Result = nullptr; 560 if (Exponent & 1) 561 Result = P; 562 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 563 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 564 /*IsSafeToHoist*/ true); 565 if (Exponent & BinExp) 566 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 567 SCEV::FlagAnyWrap, 568 /*IsSafeToHoist*/ true) 569 : P; 570 } 571 572 I = E; 573 assert(Result && "Nothing was expanded?"); 574 return Result; 575 }; 576 577 while (I != OpsAndLoops.end()) { 578 if (!Prod) { 579 // This is the first operand. Just expand it. 580 Prod = ExpandOpBinPowN(); 581 } else if (I->second->isAllOnesValue()) { 582 // Instead of doing a multiply by negative one, just do a negate. 583 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 584 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 585 ++I; 586 } else { 587 // A simple mul. 588 Value *W = ExpandOpBinPowN(); 589 // Canonicalize a constant to the RHS. 590 if (isa<Constant>(Prod)) std::swap(Prod, W); 591 const APInt *RHS; 592 if (match(W, m_Power2(RHS))) { 593 // Canonicalize Prod*(1<<C) to Prod<<C. 594 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 595 auto NWFlags = S->getNoWrapFlags(); 596 // clear nsw flag if shl will produce poison value. 597 if (RHS->logBase2() == RHS->getBitWidth() - 1) 598 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 599 Prod = InsertBinop(Instruction::Shl, Prod, 600 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 601 /*IsSafeToHoist*/ true); 602 } else { 603 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 604 /*IsSafeToHoist*/ true); 605 } 606 } 607 } 608 609 return Prod; 610 } 611 612 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 613 Value *LHS = expand(S->getLHS()); 614 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 615 const APInt &RHS = SC->getAPInt(); 616 if (RHS.isPowerOf2()) 617 return InsertBinop(Instruction::LShr, LHS, 618 ConstantInt::get(SC->getType(), RHS.logBase2()), 619 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 620 } 621 622 Value *RHS = expand(S->getRHS()); 623 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 624 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 625 } 626 627 /// Determine if this is a well-behaved chain of instructions leading back to 628 /// the PHI. If so, it may be reused by expanded expressions. 629 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 630 const Loop *L) { 631 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 632 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 633 return false; 634 // If any of the operands don't dominate the insert position, bail. 635 // Addrec operands are always loop-invariant, so this can only happen 636 // if there are instructions which haven't been hoisted. 637 if (L == IVIncInsertLoop) { 638 for (Use &Op : llvm::drop_begin(IncV->operands())) 639 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 640 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 641 return false; 642 } 643 // Advance to the next instruction. 644 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 645 if (!IncV) 646 return false; 647 648 if (IncV->mayHaveSideEffects()) 649 return false; 650 651 if (IncV == PN) 652 return true; 653 654 return isNormalAddRecExprPHI(PN, IncV, L); 655 } 656 657 /// getIVIncOperand returns an induction variable increment's induction 658 /// variable operand. 659 /// 660 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 661 /// operands dominate InsertPos. 662 /// 663 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 664 /// simple patterns generated by getAddRecExprPHILiterally and 665 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 666 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 667 Instruction *InsertPos, 668 bool allowScale) { 669 if (IncV == InsertPos) 670 return nullptr; 671 672 switch (IncV->getOpcode()) { 673 default: 674 return nullptr; 675 // Check for a simple Add/Sub or GEP of a loop invariant step. 676 case Instruction::Add: 677 case Instruction::Sub: { 678 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 679 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 680 return dyn_cast<Instruction>(IncV->getOperand(0)); 681 return nullptr; 682 } 683 case Instruction::BitCast: 684 return dyn_cast<Instruction>(IncV->getOperand(0)); 685 case Instruction::GetElementPtr: 686 for (Use &U : llvm::drop_begin(IncV->operands())) { 687 if (isa<Constant>(U)) 688 continue; 689 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 690 if (!SE.DT.dominates(OInst, InsertPos)) 691 return nullptr; 692 } 693 if (allowScale) { 694 // allow any kind of GEP as long as it can be hoisted. 695 continue; 696 } 697 // GEPs produced by SCEVExpander use i8 element type. 698 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 699 return nullptr; 700 break; 701 } 702 return dyn_cast<Instruction>(IncV->getOperand(0)); 703 } 704 } 705 706 /// If the insert point of the current builder or any of the builders on the 707 /// stack of saved builders has 'I' as its insert point, update it to point to 708 /// the instruction after 'I'. This is intended to be used when the instruction 709 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 710 /// different block, the inconsistent insert point (with a mismatched 711 /// Instruction and Block) can lead to an instruction being inserted in a block 712 /// other than its parent. 713 void SCEVExpander::fixupInsertPoints(Instruction *I) { 714 BasicBlock::iterator It(*I); 715 BasicBlock::iterator NewInsertPt = std::next(It); 716 if (Builder.GetInsertPoint() == It) 717 Builder.SetInsertPoint(&*NewInsertPt); 718 for (auto *InsertPtGuard : InsertPointGuards) 719 if (InsertPtGuard->GetInsertPoint() == It) 720 InsertPtGuard->SetInsertPoint(NewInsertPt); 721 } 722 723 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 724 /// it available to other uses in this loop. Recursively hoist any operands, 725 /// until we reach a value that dominates InsertPos. 726 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 727 bool RecomputePoisonFlags) { 728 auto FixupPoisonFlags = [this](Instruction *I) { 729 // Drop flags that are potentially inferred from old context and infer flags 730 // in new context. 731 I->dropPoisonGeneratingFlags(); 732 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 733 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 734 auto *BO = cast<BinaryOperator>(I); 735 BO->setHasNoUnsignedWrap( 736 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 737 BO->setHasNoSignedWrap( 738 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 739 } 740 }; 741 742 if (SE.DT.dominates(IncV, InsertPos)) { 743 if (RecomputePoisonFlags) 744 FixupPoisonFlags(IncV); 745 return true; 746 } 747 748 // InsertPos must itself dominate IncV so that IncV's new position satisfies 749 // its existing users. 750 if (isa<PHINode>(InsertPos) || 751 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 752 return false; 753 754 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 755 return false; 756 757 // Check that the chain of IV operands leading back to Phi can be hoisted. 758 SmallVector<Instruction*, 4> IVIncs; 759 for(;;) { 760 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 761 if (!Oper) 762 return false; 763 // IncV is safe to hoist. 764 IVIncs.push_back(IncV); 765 IncV = Oper; 766 if (SE.DT.dominates(IncV, InsertPos)) 767 break; 768 } 769 for (Instruction *I : llvm::reverse(IVIncs)) { 770 fixupInsertPoints(I); 771 I->moveBefore(InsertPos); 772 if (RecomputePoisonFlags) 773 FixupPoisonFlags(I); 774 } 775 return true; 776 } 777 778 /// Determine if this cyclic phi is in a form that would have been generated by 779 /// LSR. We don't care if the phi was actually expanded in this pass, as long 780 /// as it is in a low-cost form, for example, no implied multiplication. This 781 /// should match any patterns generated by getAddRecExprPHILiterally and 782 /// expandAddtoGEP. 783 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 784 const Loop *L) { 785 for(Instruction *IVOper = IncV; 786 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 787 /*allowScale=*/false));) { 788 if (IVOper == PN) 789 return true; 790 } 791 return false; 792 } 793 794 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 795 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 796 /// need to materialize IV increments elsewhere to handle difficult situations. 797 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 798 Type *ExpandTy, bool useSubtract) { 799 Value *IncV; 800 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 801 if (ExpandTy->isPointerTy()) { 802 IncV = expandAddToGEP(SE.getSCEV(StepV), PN); 803 } else { 804 IncV = useSubtract ? 805 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 806 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 807 } 808 return IncV; 809 } 810 811 /// Check whether we can cheaply express the requested SCEV in terms of 812 /// the available PHI SCEV by truncation and/or inversion of the step. 813 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 814 const SCEVAddRecExpr *Phi, 815 const SCEVAddRecExpr *Requested, 816 bool &InvertStep) { 817 // We can't transform to match a pointer PHI. 818 if (Phi->getType()->isPointerTy()) 819 return false; 820 821 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 822 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 823 824 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 825 return false; 826 827 // Try truncate it if necessary. 828 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 829 if (!Phi) 830 return false; 831 832 // Check whether truncation will help. 833 if (Phi == Requested) { 834 InvertStep = false; 835 return true; 836 } 837 838 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 839 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 840 InvertStep = true; 841 return true; 842 } 843 844 return false; 845 } 846 847 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 848 if (!isa<IntegerType>(AR->getType())) 849 return false; 850 851 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 852 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 853 const SCEV *Step = AR->getStepRecurrence(SE); 854 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 855 SE.getSignExtendExpr(AR, WideTy)); 856 const SCEV *ExtendAfterOp = 857 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 858 return ExtendAfterOp == OpAfterExtend; 859 } 860 861 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 862 if (!isa<IntegerType>(AR->getType())) 863 return false; 864 865 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 866 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 867 const SCEV *Step = AR->getStepRecurrence(SE); 868 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 869 SE.getZeroExtendExpr(AR, WideTy)); 870 const SCEV *ExtendAfterOp = 871 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 872 return ExtendAfterOp == OpAfterExtend; 873 } 874 875 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 876 /// the base addrec, which is the addrec without any non-loop-dominating 877 /// values, and return the PHI. 878 PHINode * 879 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 880 const Loop *L, 881 Type *ExpandTy, 882 Type *IntTy, 883 Type *&TruncTy, 884 bool &InvertStep) { 885 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 886 887 // Reuse a previously-inserted PHI, if present. 888 BasicBlock *LatchBlock = L->getLoopLatch(); 889 if (LatchBlock) { 890 PHINode *AddRecPhiMatch = nullptr; 891 Instruction *IncV = nullptr; 892 TruncTy = nullptr; 893 InvertStep = false; 894 895 // Only try partially matching scevs that need truncation and/or 896 // step-inversion if we know this loop is outside the current loop. 897 bool TryNonMatchingSCEV = 898 IVIncInsertLoop && 899 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 900 901 for (PHINode &PN : L->getHeader()->phis()) { 902 if (!SE.isSCEVable(PN.getType())) 903 continue; 904 905 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 906 // PHI has no meaning at all. 907 if (!PN.isComplete()) { 908 SCEV_DEBUG_WITH_TYPE( 909 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 910 continue; 911 } 912 913 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 914 if (!PhiSCEV) 915 continue; 916 917 bool IsMatchingSCEV = PhiSCEV == Normalized; 918 // We only handle truncation and inversion of phi recurrences for the 919 // expanded expression if the expanded expression's loop dominates the 920 // loop we insert to. Check now, so we can bail out early. 921 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 922 continue; 923 924 // TODO: this possibly can be reworked to avoid this cast at all. 925 Instruction *TempIncV = 926 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 927 if (!TempIncV) 928 continue; 929 930 // Check whether we can reuse this PHI node. 931 if (LSRMode) { 932 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 933 continue; 934 } else { 935 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 936 continue; 937 } 938 939 // Stop if we have found an exact match SCEV. 940 if (IsMatchingSCEV) { 941 IncV = TempIncV; 942 TruncTy = nullptr; 943 InvertStep = false; 944 AddRecPhiMatch = &PN; 945 break; 946 } 947 948 // Try whether the phi can be translated into the requested form 949 // (truncated and/or offset by a constant). 950 if ((!TruncTy || InvertStep) && 951 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 952 // Record the phi node. But don't stop we might find an exact match 953 // later. 954 AddRecPhiMatch = &PN; 955 IncV = TempIncV; 956 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 957 } 958 } 959 960 if (AddRecPhiMatch) { 961 // Ok, the add recurrence looks usable. 962 // Remember this PHI, even in post-inc mode. 963 InsertedValues.insert(AddRecPhiMatch); 964 // Remember the increment. 965 rememberInstruction(IncV); 966 // Those values were not actually inserted but re-used. 967 ReusedValues.insert(AddRecPhiMatch); 968 ReusedValues.insert(IncV); 969 return AddRecPhiMatch; 970 } 971 } 972 973 // Save the original insertion point so we can restore it when we're done. 974 SCEVInsertPointGuard Guard(Builder, this); 975 976 // Another AddRec may need to be recursively expanded below. For example, if 977 // this AddRec is quadratic, the StepV may itself be an AddRec in this 978 // loop. Remove this loop from the PostIncLoops set before expanding such 979 // AddRecs. Otherwise, we cannot find a valid position for the step 980 // (i.e. StepV can never dominate its loop header). Ideally, we could do 981 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 982 // so it's not worth implementing SmallPtrSet::swap. 983 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 984 PostIncLoops.clear(); 985 986 // Expand code for the start value into the loop preheader. 987 assert(L->getLoopPreheader() && 988 "Can't expand add recurrences without a loop preheader!"); 989 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 990 L->getLoopPreheader()->getTerminator()); 991 992 // StartV must have been be inserted into L's preheader to dominate the new 993 // phi. 994 assert(!isa<Instruction>(StartV) || 995 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 996 L->getHeader())); 997 998 // Expand code for the step value. Do this before creating the PHI so that PHI 999 // reuse code doesn't see an incomplete PHI. 1000 const SCEV *Step = Normalized->getStepRecurrence(SE); 1001 // If the stride is negative, insert a sub instead of an add for the increment 1002 // (unless it's a constant, because subtracts of constants are canonicalized 1003 // to adds). 1004 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1005 if (useSubtract) 1006 Step = SE.getNegativeSCEV(Step); 1007 // Expand the step somewhere that dominates the loop header. 1008 Value *StepV = 1009 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1010 1011 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1012 // we actually do emit an addition. It does not apply if we emit a 1013 // subtraction. 1014 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1015 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1016 1017 // Create the PHI. 1018 BasicBlock *Header = L->getHeader(); 1019 Builder.SetInsertPoint(Header, Header->begin()); 1020 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1021 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1022 Twine(IVName) + ".iv"); 1023 1024 // Create the step instructions and populate the PHI. 1025 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1026 BasicBlock *Pred = *HPI; 1027 1028 // Add a start value. 1029 if (!L->contains(Pred)) { 1030 PN->addIncoming(StartV, Pred); 1031 continue; 1032 } 1033 1034 // Create a step value and add it to the PHI. 1035 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1036 // instructions at IVIncInsertPos. 1037 Instruction *InsertPos = L == IVIncInsertLoop ? 1038 IVIncInsertPos : Pred->getTerminator(); 1039 Builder.SetInsertPoint(InsertPos); 1040 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, useSubtract); 1041 1042 if (isa<OverflowingBinaryOperator>(IncV)) { 1043 if (IncrementIsNUW) 1044 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1045 if (IncrementIsNSW) 1046 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1047 } 1048 PN->addIncoming(IncV, Pred); 1049 } 1050 1051 // After expanding subexpressions, restore the PostIncLoops set so the caller 1052 // can ensure that IVIncrement dominates the current uses. 1053 PostIncLoops = SavedPostIncLoops; 1054 1055 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1056 // effective when we are able to use an IV inserted here, so record it. 1057 InsertedValues.insert(PN); 1058 InsertedIVs.push_back(PN); 1059 return PN; 1060 } 1061 1062 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1063 Type *STy = S->getType(); 1064 Type *IntTy = SE.getEffectiveSCEVType(STy); 1065 const Loop *L = S->getLoop(); 1066 1067 // Determine a normalized form of this expression, which is the expression 1068 // before any post-inc adjustment is made. 1069 const SCEVAddRecExpr *Normalized = S; 1070 if (PostIncLoops.count(L)) { 1071 PostIncLoopSet Loops; 1072 Loops.insert(L); 1073 Normalized = cast<SCEVAddRecExpr>( 1074 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1075 } 1076 1077 // Strip off any non-loop-dominating component from the addrec start. 1078 const SCEV *Start = Normalized->getStart(); 1079 const SCEV *PostLoopOffset = nullptr; 1080 if (!SE.properlyDominates(Start, L->getHeader())) { 1081 PostLoopOffset = Start; 1082 Start = SE.getConstant(Normalized->getType(), 0); 1083 Normalized = cast<SCEVAddRecExpr>( 1084 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1085 Normalized->getLoop(), 1086 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1087 } 1088 1089 // Strip off any non-loop-dominating component from the addrec step. 1090 const SCEV *Step = Normalized->getStepRecurrence(SE); 1091 const SCEV *PostLoopScale = nullptr; 1092 if (!SE.dominates(Step, L->getHeader())) { 1093 PostLoopScale = Step; 1094 Step = SE.getConstant(Normalized->getType(), 1); 1095 if (!Start->isZero()) { 1096 // The normalization below assumes that Start is constant zero, so if 1097 // it isn't re-associate Start to PostLoopOffset. 1098 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1099 PostLoopOffset = Start; 1100 Start = SE.getConstant(Normalized->getType(), 0); 1101 } 1102 Normalized = 1103 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1104 Start, Step, Normalized->getLoop(), 1105 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1106 } 1107 1108 // Expand the core addrec. If we need post-loop scaling, force it to 1109 // expand to an integer type to avoid the need for additional casting. 1110 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1111 // We can't use a pointer type for the addrec if the pointer type is 1112 // non-integral. 1113 Type *AddRecPHIExpandTy = 1114 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1115 1116 // In some cases, we decide to reuse an existing phi node but need to truncate 1117 // it and/or invert the step. 1118 Type *TruncTy = nullptr; 1119 bool InvertStep = false; 1120 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1121 IntTy, TruncTy, InvertStep); 1122 1123 // Accommodate post-inc mode, if necessary. 1124 Value *Result; 1125 if (!PostIncLoops.count(L)) 1126 Result = PN; 1127 else { 1128 // In PostInc mode, use the post-incremented value. 1129 BasicBlock *LatchBlock = L->getLoopLatch(); 1130 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1131 Result = PN->getIncomingValueForBlock(LatchBlock); 1132 1133 // We might be introducing a new use of the post-inc IV that is not poison 1134 // safe, in which case we should drop poison generating flags. Only keep 1135 // those flags for which SCEV has proven that they always hold. 1136 if (isa<OverflowingBinaryOperator>(Result)) { 1137 auto *I = cast<Instruction>(Result); 1138 if (!S->hasNoUnsignedWrap()) 1139 I->setHasNoUnsignedWrap(false); 1140 if (!S->hasNoSignedWrap()) 1141 I->setHasNoSignedWrap(false); 1142 } 1143 1144 // For an expansion to use the postinc form, the client must call 1145 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1146 // or dominated by IVIncInsertPos. 1147 if (isa<Instruction>(Result) && 1148 !SE.DT.dominates(cast<Instruction>(Result), 1149 &*Builder.GetInsertPoint())) { 1150 // The induction variable's postinc expansion does not dominate this use. 1151 // IVUsers tries to prevent this case, so it is rare. However, it can 1152 // happen when an IVUser outside the loop is not dominated by the latch 1153 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1154 // all cases. Consider a phi outside whose operand is replaced during 1155 // expansion with the value of the postinc user. Without fundamentally 1156 // changing the way postinc users are tracked, the only remedy is 1157 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1158 // but hopefully expandCodeFor handles that. 1159 bool useSubtract = 1160 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1161 if (useSubtract) 1162 Step = SE.getNegativeSCEV(Step); 1163 Value *StepV; 1164 { 1165 // Expand the step somewhere that dominates the loop header. 1166 SCEVInsertPointGuard Guard(Builder, this); 1167 StepV = 1168 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1169 } 1170 Result = expandIVInc(PN, StepV, L, ExpandTy, useSubtract); 1171 } 1172 } 1173 1174 // We have decided to reuse an induction variable of a dominating loop. Apply 1175 // truncation and/or inversion of the step. 1176 if (TruncTy) { 1177 Type *ResTy = Result->getType(); 1178 // Normalize the result type. 1179 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1180 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1181 // Truncate the result. 1182 if (TruncTy != Result->getType()) 1183 Result = Builder.CreateTrunc(Result, TruncTy); 1184 1185 // Invert the result. 1186 if (InvertStep) 1187 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1188 Result); 1189 } 1190 1191 // Re-apply any non-loop-dominating scale. 1192 if (PostLoopScale) { 1193 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1194 Result = InsertNoopCastOfTo(Result, IntTy); 1195 Result = Builder.CreateMul(Result, expandCodeFor(PostLoopScale, IntTy)); 1196 } 1197 1198 // Re-apply any non-loop-dominating offset. 1199 if (PostLoopOffset) { 1200 if (isa<PointerType>(ExpandTy)) { 1201 if (Result->getType()->isIntegerTy()) { 1202 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); 1203 Result = expandAddToGEP(SE.getUnknown(Result), Base); 1204 } else { 1205 Result = expandAddToGEP(PostLoopOffset, Result); 1206 } 1207 } else { 1208 Result = InsertNoopCastOfTo(Result, IntTy); 1209 Result = Builder.CreateAdd(Result, expandCodeFor(PostLoopOffset, IntTy)); 1210 } 1211 } 1212 1213 return Result; 1214 } 1215 1216 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1217 // In canonical mode we compute the addrec as an expression of a canonical IV 1218 // using evaluateAtIteration and expand the resulting SCEV expression. This 1219 // way we avoid introducing new IVs to carry on the computation of the addrec 1220 // throughout the loop. 1221 // 1222 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1223 // type wider than the addrec itself. Emitting a canonical IV of the 1224 // proper type might produce non-legal types, for example expanding an i64 1225 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1226 // back to non-canonical mode for nested addrecs. 1227 if (!CanonicalMode || (S->getNumOperands() > 2)) 1228 return expandAddRecExprLiterally(S); 1229 1230 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1231 const Loop *L = S->getLoop(); 1232 1233 // First check for an existing canonical IV in a suitable type. 1234 PHINode *CanonicalIV = nullptr; 1235 if (PHINode *PN = L->getCanonicalInductionVariable()) 1236 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1237 CanonicalIV = PN; 1238 1239 // Rewrite an AddRec in terms of the canonical induction variable, if 1240 // its type is more narrow. 1241 if (CanonicalIV && 1242 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1243 !S->getType()->isPointerTy()) { 1244 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1245 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1246 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1247 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1248 S->getNoWrapFlags(SCEV::FlagNW))); 1249 BasicBlock::iterator NewInsertPt = 1250 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1251 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1252 NewInsertPt); 1253 return V; 1254 } 1255 1256 // {X,+,F} --> X + {0,+,F} 1257 if (!S->getStart()->isZero()) { 1258 if (isa<PointerType>(S->getType())) { 1259 Value *StartV = expand(SE.getPointerBase(S)); 1260 return expandAddToGEP(SE.removePointerBase(S), StartV); 1261 } 1262 1263 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1264 NewOps[0] = SE.getConstant(Ty, 0); 1265 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1266 S->getNoWrapFlags(SCEV::FlagNW)); 1267 1268 // Just do a normal add. Pre-expand the operands to suppress folding. 1269 // 1270 // The LHS and RHS values are factored out of the expand call to make the 1271 // output independent of the argument evaluation order. 1272 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1273 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1274 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1275 } 1276 1277 // If we don't yet have a canonical IV, create one. 1278 if (!CanonicalIV) { 1279 // Create and insert the PHI node for the induction variable in the 1280 // specified loop. 1281 BasicBlock *Header = L->getHeader(); 1282 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1283 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1284 CanonicalIV->insertBefore(Header->begin()); 1285 rememberInstruction(CanonicalIV); 1286 1287 SmallSet<BasicBlock *, 4> PredSeen; 1288 Constant *One = ConstantInt::get(Ty, 1); 1289 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1290 BasicBlock *HP = *HPI; 1291 if (!PredSeen.insert(HP).second) { 1292 // There must be an incoming value for each predecessor, even the 1293 // duplicates! 1294 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1295 continue; 1296 } 1297 1298 if (L->contains(HP)) { 1299 // Insert a unit add instruction right before the terminator 1300 // corresponding to the back-edge. 1301 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1302 "indvar.next", 1303 HP->getTerminator()); 1304 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1305 rememberInstruction(Add); 1306 CanonicalIV->addIncoming(Add, HP); 1307 } else { 1308 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1309 } 1310 } 1311 } 1312 1313 // {0,+,1} --> Insert a canonical induction variable into the loop! 1314 if (S->isAffine() && S->getOperand(1)->isOne()) { 1315 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1316 "IVs with types different from the canonical IV should " 1317 "already have been handled!"); 1318 return CanonicalIV; 1319 } 1320 1321 // {0,+,F} --> {0,+,1} * F 1322 1323 // If this is a simple linear addrec, emit it now as a special case. 1324 if (S->isAffine()) // {0,+,F} --> i*F 1325 return 1326 expand(SE.getTruncateOrNoop( 1327 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1328 SE.getNoopOrAnyExtend(S->getOperand(1), 1329 CanonicalIV->getType())), 1330 Ty)); 1331 1332 // If this is a chain of recurrences, turn it into a closed form, using the 1333 // folders, then expandCodeFor the closed form. This allows the folders to 1334 // simplify the expression without having to build a bunch of special code 1335 // into this folder. 1336 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1337 1338 // Promote S up to the canonical IV type, if the cast is foldable. 1339 const SCEV *NewS = S; 1340 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1341 if (isa<SCEVAddRecExpr>(Ext)) 1342 NewS = Ext; 1343 1344 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1345 1346 // Truncate the result down to the original type, if needed. 1347 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1348 return expand(T); 1349 } 1350 1351 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1352 Value *V = expand(S->getOperand()); 1353 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1354 GetOptimalInsertionPointForCastOf(V)); 1355 } 1356 1357 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1358 Value *V = expand(S->getOperand()); 1359 return Builder.CreateTrunc(V, S->getType()); 1360 } 1361 1362 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1363 Value *V = expand(S->getOperand()); 1364 return Builder.CreateZExt(V, S->getType()); 1365 } 1366 1367 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1368 Value *V = expand(S->getOperand()); 1369 return Builder.CreateSExt(V, S->getType()); 1370 } 1371 1372 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1373 Intrinsic::ID IntrinID, Twine Name, 1374 bool IsSequential) { 1375 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1376 Type *Ty = LHS->getType(); 1377 if (IsSequential) 1378 LHS = Builder.CreateFreeze(LHS); 1379 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1380 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1381 if (IsSequential && i != 0) 1382 RHS = Builder.CreateFreeze(RHS); 1383 Value *Sel; 1384 if (Ty->isIntegerTy()) 1385 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1386 /*FMFSource=*/nullptr, Name); 1387 else { 1388 Value *ICmp = 1389 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1390 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1391 } 1392 LHS = Sel; 1393 } 1394 return LHS; 1395 } 1396 1397 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1398 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1399 } 1400 1401 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1402 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1403 } 1404 1405 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1406 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1407 } 1408 1409 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1410 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1411 } 1412 1413 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1414 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1415 } 1416 1417 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1418 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1419 } 1420 1421 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1422 BasicBlock::iterator IP) { 1423 setInsertPoint(IP); 1424 Value *V = expandCodeFor(SH, Ty); 1425 return V; 1426 } 1427 1428 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1429 // Expand the code for this SCEV. 1430 Value *V = expand(SH); 1431 1432 if (Ty) { 1433 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1434 "non-trivial casts should be done with the SCEVs directly!"); 1435 V = InsertNoopCastOfTo(V, Ty); 1436 } 1437 return V; 1438 } 1439 1440 static bool 1441 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I, 1442 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1443 // If the instruction cannot be poison, it's always safe to reuse. 1444 if (programUndefinedIfPoison(I)) 1445 return true; 1446 1447 // Otherwise, it is possible that I is more poisonous that S. Collect the 1448 // poison-contributors of S, and then check whether I has any additional 1449 // poison-contributors. Poison that is contributed through poison-generating 1450 // flags is handled by dropping those flags instead. 1451 SmallPtrSet<const Value *, 8> PoisonVals; 1452 SE.getPoisonGeneratingValues(PoisonVals, S); 1453 1454 SmallVector<Value *> Worklist; 1455 SmallPtrSet<Value *, 8> Visited; 1456 Worklist.push_back(I); 1457 while (!Worklist.empty()) { 1458 Value *V = Worklist.pop_back_val(); 1459 if (!Visited.insert(V).second) 1460 continue; 1461 1462 // Avoid walking large instruction graphs. 1463 if (Visited.size() > 16) 1464 return false; 1465 1466 // Either the value can't be poison, or the S would also be poison if it 1467 // is. 1468 if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V)) 1469 continue; 1470 1471 auto *I = dyn_cast<Instruction>(V); 1472 if (!I) 1473 return false; 1474 1475 // FIXME: Ignore vscale, even though it technically could be poison. Do this 1476 // because SCEV currently assumes it can't be poison. Remove this special 1477 // case once we proper model when vscale can be poison. 1478 if (auto *II = dyn_cast<IntrinsicInst>(I); 1479 II && II->getIntrinsicID() == Intrinsic::vscale) 1480 continue; 1481 1482 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 1483 return false; 1484 1485 // If the instruction can't create poison, we can recurse to its operands. 1486 if (I->hasPoisonGeneratingFlagsOrMetadata()) 1487 DropPoisonGeneratingInsts.push_back(I); 1488 1489 for (Value *Op : I->operands()) 1490 Worklist.push_back(Op); 1491 } 1492 return true; 1493 } 1494 1495 Value *SCEVExpander::FindValueInExprValueMap( 1496 const SCEV *S, const Instruction *InsertPt, 1497 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1498 // If the expansion is not in CanonicalMode, and the SCEV contains any 1499 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1500 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1501 return nullptr; 1502 1503 // If S is a constant, it may be worse to reuse an existing Value. 1504 if (isa<SCEVConstant>(S)) 1505 return nullptr; 1506 1507 for (Value *V : SE.getSCEVValues(S)) { 1508 Instruction *EntInst = dyn_cast<Instruction>(V); 1509 if (!EntInst) 1510 continue; 1511 1512 // Choose a Value from the set which dominates the InsertPt. 1513 // InsertPt should be inside the Value's parent loop so as not to break 1514 // the LCSSA form. 1515 assert(EntInst->getFunction() == InsertPt->getFunction()); 1516 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1517 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1518 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1519 continue; 1520 1521 // Make sure reusing the instruction is poison-safe. 1522 if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts)) 1523 return V; 1524 DropPoisonGeneratingInsts.clear(); 1525 } 1526 return nullptr; 1527 } 1528 1529 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1530 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1531 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1532 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1533 // the expansion will try to reuse Value from ExprValueMap, and only when it 1534 // fails, expand the SCEV literally. 1535 Value *SCEVExpander::expand(const SCEV *S) { 1536 // Compute an insertion point for this SCEV object. Hoist the instructions 1537 // as far out in the loop nest as possible. 1538 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1539 1540 // We can move insertion point only if there is no div or rem operations 1541 // otherwise we are risky to move it over the check for zero denominator. 1542 auto SafeToHoist = [](const SCEV *S) { 1543 return !SCEVExprContains(S, [](const SCEV *S) { 1544 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1545 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1546 // Division by non-zero constants can be hoisted. 1547 return SC->getValue()->isZero(); 1548 // All other divisions should not be moved as they may be 1549 // divisions by zero and should be kept within the 1550 // conditions of the surrounding loops that guard their 1551 // execution (see PR35406). 1552 return true; 1553 } 1554 return false; 1555 }); 1556 }; 1557 if (SafeToHoist(S)) { 1558 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1559 L = L->getParentLoop()) { 1560 if (SE.isLoopInvariant(S, L)) { 1561 if (!L) break; 1562 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1563 InsertPt = Preheader->getTerminator()->getIterator(); 1564 } else { 1565 // LSR sets the insertion point for AddRec start/step values to the 1566 // block start to simplify value reuse, even though it's an invalid 1567 // position. SCEVExpander must correct for this in all cases. 1568 InsertPt = L->getHeader()->getFirstInsertionPt(); 1569 } 1570 } else { 1571 // If the SCEV is computable at this level, insert it into the header 1572 // after the PHIs (and after any other instructions that we've inserted 1573 // there) so that it is guaranteed to dominate any user inside the loop. 1574 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1575 InsertPt = L->getHeader()->getFirstInsertionPt(); 1576 1577 while (InsertPt != Builder.GetInsertPoint() && 1578 (isInsertedInstruction(&*InsertPt) || 1579 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1580 InsertPt = std::next(InsertPt); 1581 } 1582 break; 1583 } 1584 } 1585 } 1586 1587 // Check to see if we already expanded this here. 1588 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1589 if (I != InsertedExpressions.end()) 1590 return I->second; 1591 1592 SCEVInsertPointGuard Guard(Builder, this); 1593 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1594 1595 // Expand the expression into instructions. 1596 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1597 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1598 if (!V) { 1599 V = visit(S); 1600 V = fixupLCSSAFormFor(V); 1601 } else { 1602 for (Instruction *I : DropPoisonGeneratingInsts) 1603 I->dropPoisonGeneratingFlagsAndMetadata(); 1604 } 1605 // Remember the expanded value for this SCEV at this location. 1606 // 1607 // This is independent of PostIncLoops. The mapped value simply materializes 1608 // the expression at this insertion point. If the mapped value happened to be 1609 // a postinc expansion, it could be reused by a non-postinc user, but only if 1610 // its insertion point was already at the head of the loop. 1611 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1612 return V; 1613 } 1614 1615 void SCEVExpander::rememberInstruction(Value *I) { 1616 auto DoInsert = [this](Value *V) { 1617 if (!PostIncLoops.empty()) 1618 InsertedPostIncValues.insert(V); 1619 else 1620 InsertedValues.insert(V); 1621 }; 1622 DoInsert(I); 1623 } 1624 1625 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1626 /// replace them with their most canonical representative. Return the number of 1627 /// phis eliminated. 1628 /// 1629 /// This does not depend on any SCEVExpander state but should be used in 1630 /// the same context that SCEVExpander is used. 1631 unsigned 1632 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1633 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1634 const TargetTransformInfo *TTI) { 1635 // Find integer phis in order of increasing width. 1636 SmallVector<PHINode*, 8> Phis; 1637 for (PHINode &PN : L->getHeader()->phis()) 1638 Phis.push_back(&PN); 1639 1640 if (TTI) 1641 // Use stable_sort to preserve order of equivalent PHIs, so the order 1642 // of the sorted Phis is the same from run to run on the same loop. 1643 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1644 // Put pointers at the back and make sure pointer < pointer = false. 1645 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1646 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1647 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1648 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1649 }); 1650 1651 unsigned NumElim = 0; 1652 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1653 // Process phis from wide to narrow. Map wide phis to their truncation 1654 // so narrow phis can reuse them. 1655 for (PHINode *Phi : Phis) { 1656 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1657 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1658 return V; 1659 if (!SE.isSCEVable(PN->getType())) 1660 return nullptr; 1661 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1662 if (!Const) 1663 return nullptr; 1664 return Const->getValue(); 1665 }; 1666 1667 // Fold constant phis. They may be congruent to other constant phis and 1668 // would confuse the logic below that expects proper IVs. 1669 if (Value *V = SimplifyPHINode(Phi)) { 1670 if (V->getType() != Phi->getType()) 1671 continue; 1672 SE.forgetValue(Phi); 1673 Phi->replaceAllUsesWith(V); 1674 DeadInsts.emplace_back(Phi); 1675 ++NumElim; 1676 SCEV_DEBUG_WITH_TYPE(DebugType, 1677 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1678 << '\n'); 1679 continue; 1680 } 1681 1682 if (!SE.isSCEVable(Phi->getType())) 1683 continue; 1684 1685 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1686 if (!OrigPhiRef) { 1687 OrigPhiRef = Phi; 1688 if (Phi->getType()->isIntegerTy() && TTI && 1689 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1690 // Make sure we only rewrite using simple induction variables; 1691 // otherwise, we can make the trip count of a loop unanalyzable 1692 // to SCEV. 1693 const SCEV *PhiExpr = SE.getSCEV(Phi); 1694 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1695 // This phi can be freely truncated to the narrowest phi type. Map the 1696 // truncated expression to it so it will be reused for narrow types. 1697 const SCEV *TruncExpr = 1698 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1699 ExprToIVMap[TruncExpr] = Phi; 1700 } 1701 } 1702 continue; 1703 } 1704 1705 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1706 // sense. 1707 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1708 continue; 1709 1710 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1711 Instruction *OrigInc = dyn_cast<Instruction>( 1712 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1713 Instruction *IsomorphicInc = 1714 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1715 1716 if (OrigInc && IsomorphicInc) { 1717 // If this phi has the same width but is more canonical, replace the 1718 // original with it. As part of the "more canonical" determination, 1719 // respect a prior decision to use an IV chain. 1720 if (OrigPhiRef->getType() == Phi->getType() && 1721 !(ChainedPhis.count(Phi) || 1722 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1723 (ChainedPhis.count(Phi) || 1724 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1725 std::swap(OrigPhiRef, Phi); 1726 std::swap(OrigInc, IsomorphicInc); 1727 } 1728 // Replacing the congruent phi is sufficient because acyclic 1729 // redundancy elimination, CSE/GVN, should handle the 1730 // rest. However, once SCEV proves that a phi is congruent, 1731 // it's often the head of an IV user cycle that is isomorphic 1732 // with the original phi. It's worth eagerly cleaning up the 1733 // common case of a single IV increment so that DeleteDeadPHIs 1734 // can remove cycles that had postinc uses. 1735 // Because we may potentially introduce a new use of OrigIV that didn't 1736 // exist before at this point, its poison flags need readjustment. 1737 const SCEV *TruncExpr = 1738 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1739 if (OrigInc != IsomorphicInc && 1740 TruncExpr == SE.getSCEV(IsomorphicInc) && 1741 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1742 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1743 SCEV_DEBUG_WITH_TYPE( 1744 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1745 << *IsomorphicInc << '\n'); 1746 Value *NewInc = OrigInc; 1747 if (OrigInc->getType() != IsomorphicInc->getType()) { 1748 BasicBlock::iterator IP; 1749 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1750 IP = PN->getParent()->getFirstInsertionPt(); 1751 else 1752 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1753 1754 IRBuilder<> Builder(IP->getParent(), IP); 1755 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1756 NewInc = Builder.CreateTruncOrBitCast( 1757 OrigInc, IsomorphicInc->getType(), IVName); 1758 } 1759 IsomorphicInc->replaceAllUsesWith(NewInc); 1760 DeadInsts.emplace_back(IsomorphicInc); 1761 } 1762 } 1763 } 1764 SCEV_DEBUG_WITH_TYPE(DebugType, 1765 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1766 << '\n'); 1767 SCEV_DEBUG_WITH_TYPE( 1768 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1769 ++NumElim; 1770 Value *NewIV = OrigPhiRef; 1771 if (OrigPhiRef->getType() != Phi->getType()) { 1772 IRBuilder<> Builder(L->getHeader(), 1773 L->getHeader()->getFirstInsertionPt()); 1774 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1775 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1776 } 1777 Phi->replaceAllUsesWith(NewIV); 1778 DeadInsts.emplace_back(Phi); 1779 } 1780 return NumElim; 1781 } 1782 1783 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1784 const Instruction *At, 1785 Loop *L) { 1786 using namespace llvm::PatternMatch; 1787 1788 SmallVector<BasicBlock *, 4> ExitingBlocks; 1789 L->getExitingBlocks(ExitingBlocks); 1790 1791 // Look for suitable value in simple conditions at the loop exits. 1792 for (BasicBlock *BB : ExitingBlocks) { 1793 ICmpInst::Predicate Pred; 1794 Instruction *LHS, *RHS; 1795 1796 if (!match(BB->getTerminator(), 1797 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1798 m_BasicBlock(), m_BasicBlock()))) 1799 continue; 1800 1801 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1802 return true; 1803 1804 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1805 return true; 1806 } 1807 1808 // Use expand's logic which is used for reusing a previous Value in 1809 // ExprValueMap. Note that we don't currently model the cost of 1810 // needing to drop poison generating flags on the instruction if we 1811 // want to reuse it. We effectively assume that has zero cost. 1812 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1813 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1814 } 1815 1816 template<typename T> static InstructionCost costAndCollectOperands( 1817 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1818 TargetTransformInfo::TargetCostKind CostKind, 1819 SmallVectorImpl<SCEVOperand> &Worklist) { 1820 1821 const T *S = cast<T>(WorkItem.S); 1822 InstructionCost Cost = 0; 1823 // Object to help map SCEV operands to expanded IR instructions. 1824 struct OperationIndices { 1825 OperationIndices(unsigned Opc, size_t min, size_t max) : 1826 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1827 unsigned Opcode; 1828 size_t MinIdx; 1829 size_t MaxIdx; 1830 }; 1831 1832 // Collect the operations of all the instructions that will be needed to 1833 // expand the SCEVExpr. This is so that when we come to cost the operands, 1834 // we know what the generated user(s) will be. 1835 SmallVector<OperationIndices, 2> Operations; 1836 1837 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1838 Operations.emplace_back(Opcode, 0, 0); 1839 return TTI.getCastInstrCost(Opcode, S->getType(), 1840 S->getOperand(0)->getType(), 1841 TTI::CastContextHint::None, CostKind); 1842 }; 1843 1844 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1845 unsigned MinIdx = 0, 1846 unsigned MaxIdx = 1) -> InstructionCost { 1847 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1848 return NumRequired * 1849 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1850 }; 1851 1852 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1853 unsigned MaxIdx) -> InstructionCost { 1854 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1855 Type *OpType = S->getType(); 1856 return NumRequired * TTI.getCmpSelInstrCost( 1857 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1858 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1859 }; 1860 1861 switch (S->getSCEVType()) { 1862 case scCouldNotCompute: 1863 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1864 case scUnknown: 1865 case scConstant: 1866 case scVScale: 1867 return 0; 1868 case scPtrToInt: 1869 Cost = CastCost(Instruction::PtrToInt); 1870 break; 1871 case scTruncate: 1872 Cost = CastCost(Instruction::Trunc); 1873 break; 1874 case scZeroExtend: 1875 Cost = CastCost(Instruction::ZExt); 1876 break; 1877 case scSignExtend: 1878 Cost = CastCost(Instruction::SExt); 1879 break; 1880 case scUDivExpr: { 1881 unsigned Opcode = Instruction::UDiv; 1882 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1883 if (SC->getAPInt().isPowerOf2()) 1884 Opcode = Instruction::LShr; 1885 Cost = ArithCost(Opcode, 1); 1886 break; 1887 } 1888 case scAddExpr: 1889 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1890 break; 1891 case scMulExpr: 1892 // TODO: this is a very pessimistic cost modelling for Mul, 1893 // because of Bin Pow algorithm actually used by the expander, 1894 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1895 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1896 break; 1897 case scSMaxExpr: 1898 case scUMaxExpr: 1899 case scSMinExpr: 1900 case scUMinExpr: 1901 case scSequentialUMinExpr: { 1902 // FIXME: should this ask the cost for Intrinsic's? 1903 // The reduction tree. 1904 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1905 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1906 switch (S->getSCEVType()) { 1907 case scSequentialUMinExpr: { 1908 // The safety net against poison. 1909 // FIXME: this is broken. 1910 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1911 Cost += ArithCost(Instruction::Or, 1912 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1913 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1914 break; 1915 } 1916 default: 1917 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1918 "Unhandled SCEV expression type?"); 1919 break; 1920 } 1921 break; 1922 } 1923 case scAddRecExpr: { 1924 // In this polynominal, we may have some zero operands, and we shouldn't 1925 // really charge for those. So how many non-zero coefficients are there? 1926 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1927 return !Op->isZero(); 1928 }); 1929 1930 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1931 assert(!(*std::prev(S->operands().end()))->isZero() && 1932 "Last operand should not be zero"); 1933 1934 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1935 int NumNonZeroDegreeNonOneTerms = 1936 llvm::count_if(S->operands(), [](const SCEV *Op) { 1937 auto *SConst = dyn_cast<SCEVConstant>(Op); 1938 return !SConst || SConst->getAPInt().ugt(1); 1939 }); 1940 1941 // Much like with normal add expr, the polynominal will require 1942 // one less addition than the number of it's terms. 1943 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1944 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1945 // Here, *each* one of those will require a multiplication. 1946 InstructionCost MulCost = 1947 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1948 Cost = AddCost + MulCost; 1949 1950 // What is the degree of this polynominal? 1951 int PolyDegree = S->getNumOperands() - 1; 1952 assert(PolyDegree >= 1 && "Should be at least affine."); 1953 1954 // The final term will be: 1955 // Op_{PolyDegree} * x ^ {PolyDegree} 1956 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1957 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1958 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1959 // FIXME: this is conservatively correct, but might be overly pessimistic. 1960 Cost += MulCost * (PolyDegree - 1); 1961 break; 1962 } 1963 } 1964 1965 for (auto &CostOp : Operations) { 1966 for (auto SCEVOp : enumerate(S->operands())) { 1967 // Clamp the index to account for multiple IR operations being chained. 1968 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1969 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1970 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1971 } 1972 } 1973 return Cost; 1974 } 1975 1976 bool SCEVExpander::isHighCostExpansionHelper( 1977 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1978 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1979 SmallPtrSetImpl<const SCEV *> &Processed, 1980 SmallVectorImpl<SCEVOperand> &Worklist) { 1981 if (Cost > Budget) 1982 return true; // Already run out of budget, give up. 1983 1984 const SCEV *S = WorkItem.S; 1985 // Was the cost of expansion of this expression already accounted for? 1986 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1987 return false; // We have already accounted for this expression. 1988 1989 // If we can find an existing value for this scev available at the point "At" 1990 // then consider the expression cheap. 1991 if (hasRelatedExistingExpansion(S, &At, L)) 1992 return false; // Consider the expression to be free. 1993 1994 TargetTransformInfo::TargetCostKind CostKind = 1995 L->getHeader()->getParent()->hasMinSize() 1996 ? TargetTransformInfo::TCK_CodeSize 1997 : TargetTransformInfo::TCK_RecipThroughput; 1998 1999 switch (S->getSCEVType()) { 2000 case scCouldNotCompute: 2001 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2002 case scUnknown: 2003 case scVScale: 2004 // Assume to be zero-cost. 2005 return false; 2006 case scConstant: { 2007 // Only evalulate the costs of constants when optimizing for size. 2008 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2009 return false; 2010 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2011 Type *Ty = S->getType(); 2012 Cost += TTI.getIntImmCostInst( 2013 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2014 return Cost > Budget; 2015 } 2016 case scTruncate: 2017 case scPtrToInt: 2018 case scZeroExtend: 2019 case scSignExtend: { 2020 Cost += 2021 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2022 return false; // Will answer upon next entry into this function. 2023 } 2024 case scUDivExpr: { 2025 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2026 // HowManyLessThans produced to compute a precise expression, rather than a 2027 // UDiv from the user's code. If we can't find a UDiv in the code with some 2028 // simple searching, we need to account for it's cost. 2029 2030 // At the beginning of this function we already tried to find existing 2031 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2032 // pattern involving division. This is just a simple search heuristic. 2033 if (hasRelatedExistingExpansion( 2034 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2035 return false; // Consider it to be free. 2036 2037 Cost += 2038 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2039 return false; // Will answer upon next entry into this function. 2040 } 2041 case scAddExpr: 2042 case scMulExpr: 2043 case scUMaxExpr: 2044 case scSMaxExpr: 2045 case scUMinExpr: 2046 case scSMinExpr: 2047 case scSequentialUMinExpr: { 2048 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2049 "Nary expr should have more than 1 operand."); 2050 // The simple nary expr will require one less op (or pair of ops) 2051 // than the number of it's terms. 2052 Cost += 2053 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2054 return Cost > Budget; 2055 } 2056 case scAddRecExpr: { 2057 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2058 "Polynomial should be at least linear"); 2059 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2060 WorkItem, TTI, CostKind, Worklist); 2061 return Cost > Budget; 2062 } 2063 } 2064 llvm_unreachable("Unknown SCEV kind!"); 2065 } 2066 2067 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2068 Instruction *IP) { 2069 assert(IP); 2070 switch (Pred->getKind()) { 2071 case SCEVPredicate::P_Union: 2072 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2073 case SCEVPredicate::P_Compare: 2074 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2075 case SCEVPredicate::P_Wrap: { 2076 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2077 return expandWrapPredicate(AddRecPred, IP); 2078 } 2079 } 2080 llvm_unreachable("Unknown SCEV predicate type"); 2081 } 2082 2083 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2084 Instruction *IP) { 2085 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2086 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2087 2088 Builder.SetInsertPoint(IP); 2089 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2090 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2091 return I; 2092 } 2093 2094 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2095 Instruction *Loc, bool Signed) { 2096 assert(AR->isAffine() && "Cannot generate RT check for " 2097 "non-affine expression"); 2098 2099 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2100 SmallVector<const SCEVPredicate *, 4> Pred; 2101 const SCEV *ExitCount = 2102 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2103 2104 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2105 2106 const SCEV *Step = AR->getStepRecurrence(SE); 2107 const SCEV *Start = AR->getStart(); 2108 2109 Type *ARTy = AR->getType(); 2110 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2111 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2112 2113 // The expression {Start,+,Step} has nusw/nssw if 2114 // Step < 0, Start - |Step| * Backedge <= Start 2115 // Step >= 0, Start + |Step| * Backedge > Start 2116 // and |Step| * Backedge doesn't unsigned overflow. 2117 2118 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2119 Builder.SetInsertPoint(Loc); 2120 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2121 2122 IntegerType *Ty = 2123 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2124 2125 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2126 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2127 Value *StartValue = expandCodeFor(Start, ARTy, Loc); 2128 2129 ConstantInt *Zero = 2130 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2131 2132 Builder.SetInsertPoint(Loc); 2133 // Compute |Step| 2134 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2135 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2136 2137 // Compute |Step| * Backedge 2138 // Compute: 2139 // 1. Start + |Step| * Backedge < Start 2140 // 2. Start - |Step| * Backedge > Start 2141 // 2142 // And select either 1. or 2. depending on whether step is positive or 2143 // negative. If Step is known to be positive or negative, only create 2144 // either 1. or 2. 2145 auto ComputeEndCheck = [&]() -> Value * { 2146 // Checking <u 0 is always false. 2147 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2148 return ConstantInt::getFalse(Loc->getContext()); 2149 2150 // Get the backedge taken count and truncate or extended to the AR type. 2151 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2152 2153 Value *MulV, *OfMul; 2154 if (Step->isOne()) { 2155 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2156 // needed, there is never an overflow, so to avoid artificially inflating 2157 // the cost of the check, directly emit the optimized IR. 2158 MulV = TruncTripCount; 2159 OfMul = ConstantInt::getFalse(MulV->getContext()); 2160 } else { 2161 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2162 Intrinsic::umul_with_overflow, Ty); 2163 CallInst *Mul = 2164 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2165 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2166 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2167 } 2168 2169 Value *Add = nullptr, *Sub = nullptr; 2170 bool NeedPosCheck = !SE.isKnownNegative(Step); 2171 bool NeedNegCheck = !SE.isKnownPositive(Step); 2172 2173 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2174 StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy); 2175 Value *NegMulV = Builder.CreateNeg(MulV); 2176 if (NeedPosCheck) 2177 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2178 if (NeedNegCheck) 2179 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2180 } else { 2181 if (NeedPosCheck) 2182 Add = Builder.CreateAdd(StartValue, MulV); 2183 if (NeedNegCheck) 2184 Sub = Builder.CreateSub(StartValue, MulV); 2185 } 2186 2187 Value *EndCompareLT = nullptr; 2188 Value *EndCompareGT = nullptr; 2189 Value *EndCheck = nullptr; 2190 if (NeedPosCheck) 2191 EndCheck = EndCompareLT = Builder.CreateICmp( 2192 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2193 if (NeedNegCheck) 2194 EndCheck = EndCompareGT = Builder.CreateICmp( 2195 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2196 if (NeedPosCheck && NeedNegCheck) { 2197 // Select the answer based on the sign of Step. 2198 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2199 } 2200 return Builder.CreateOr(EndCheck, OfMul); 2201 }; 2202 Value *EndCheck = ComputeEndCheck(); 2203 2204 // If the backedge taken count type is larger than the AR type, 2205 // check that we don't drop any bits by truncating it. If we are 2206 // dropping bits, then we have overflow (unless the step is zero). 2207 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2208 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2209 auto *BackedgeCheck = 2210 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2211 ConstantInt::get(Loc->getContext(), MaxVal)); 2212 BackedgeCheck = Builder.CreateAnd( 2213 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2214 2215 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2216 } 2217 2218 return EndCheck; 2219 } 2220 2221 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2222 Instruction *IP) { 2223 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2224 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2225 2226 // Add a check for NUSW 2227 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2228 NUSWCheck = generateOverflowCheck(A, IP, false); 2229 2230 // Add a check for NSSW 2231 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2232 NSSWCheck = generateOverflowCheck(A, IP, true); 2233 2234 if (NUSWCheck && NSSWCheck) 2235 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2236 2237 if (NUSWCheck) 2238 return NUSWCheck; 2239 2240 if (NSSWCheck) 2241 return NSSWCheck; 2242 2243 return ConstantInt::getFalse(IP->getContext()); 2244 } 2245 2246 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2247 Instruction *IP) { 2248 // Loop over all checks in this set. 2249 SmallVector<Value *> Checks; 2250 for (const auto *Pred : Union->getPredicates()) { 2251 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2252 Builder.SetInsertPoint(IP); 2253 } 2254 2255 if (Checks.empty()) 2256 return ConstantInt::getFalse(IP->getContext()); 2257 return Builder.CreateOr(Checks); 2258 } 2259 2260 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2261 auto *DefI = dyn_cast<Instruction>(V); 2262 if (!PreserveLCSSA || !DefI) 2263 return V; 2264 2265 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2266 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2267 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2268 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2269 return V; 2270 2271 // Create a temporary instruction to at the current insertion point, so we 2272 // can hand it off to the helper to create LCSSA PHIs if required for the 2273 // new use. 2274 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2275 // would accept a insertion point and return an LCSSA phi for that 2276 // insertion point, so there is no need to insert & remove the temporary 2277 // instruction. 2278 Type *ToTy; 2279 if (DefI->getType()->isIntegerTy()) 2280 ToTy = PointerType::get(DefI->getContext(), 0); 2281 else 2282 ToTy = Type::getInt32Ty(DefI->getContext()); 2283 Instruction *User = 2284 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2285 auto RemoveUserOnExit = 2286 make_scope_exit([User]() { User->eraseFromParent(); }); 2287 2288 SmallVector<Instruction *, 1> ToUpdate; 2289 ToUpdate.push_back(DefI); 2290 SmallVector<PHINode *, 16> PHIsToRemove; 2291 SmallVector<PHINode *, 16> InsertedPHIs; 2292 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2293 &InsertedPHIs); 2294 for (PHINode *PN : InsertedPHIs) 2295 rememberInstruction(PN); 2296 for (PHINode *PN : PHIsToRemove) { 2297 if (!PN->use_empty()) 2298 continue; 2299 InsertedValues.erase(PN); 2300 InsertedPostIncValues.erase(PN); 2301 PN->eraseFromParent(); 2302 } 2303 2304 return User->getOperand(0); 2305 } 2306 2307 namespace { 2308 // Search for a SCEV subexpression that is not safe to expand. Any expression 2309 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2310 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2311 // instruction, but the important thing is that we prove the denominator is 2312 // nonzero before expansion. 2313 // 2314 // IVUsers already checks that IV-derived expressions are safe. So this check is 2315 // only needed when the expression includes some subexpression that is not IV 2316 // derived. 2317 // 2318 // Currently, we only allow division by a value provably non-zero here. 2319 // 2320 // We cannot generally expand recurrences unless the step dominates the loop 2321 // header. The expander handles the special case of affine recurrences by 2322 // scaling the recurrence outside the loop, but this technique isn't generally 2323 // applicable. Expanding a nested recurrence outside a loop requires computing 2324 // binomial coefficients. This could be done, but the recurrence has to be in a 2325 // perfectly reduced form, which can't be guaranteed. 2326 struct SCEVFindUnsafe { 2327 ScalarEvolution &SE; 2328 bool CanonicalMode; 2329 bool IsUnsafe = false; 2330 2331 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2332 : SE(SE), CanonicalMode(CanonicalMode) {} 2333 2334 bool follow(const SCEV *S) { 2335 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2336 if (!SE.isKnownNonZero(D->getRHS())) { 2337 IsUnsafe = true; 2338 return false; 2339 } 2340 } 2341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2342 const SCEV *Step = AR->getStepRecurrence(SE); 2343 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2344 IsUnsafe = true; 2345 return false; 2346 } 2347 2348 // For non-affine addrecs or in non-canonical mode we need a preheader 2349 // to insert into. 2350 if (!AR->getLoop()->getLoopPreheader() && 2351 (!CanonicalMode || !AR->isAffine())) { 2352 IsUnsafe = true; 2353 return false; 2354 } 2355 } 2356 return true; 2357 } 2358 bool isDone() const { return IsUnsafe; } 2359 }; 2360 } // namespace 2361 2362 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2363 SCEVFindUnsafe Search(SE, CanonicalMode); 2364 visitAll(S, Search); 2365 return !Search.IsUnsafe; 2366 } 2367 2368 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2369 const Instruction *InsertionPoint) const { 2370 if (!isSafeToExpand(S)) 2371 return false; 2372 // We have to prove that the expanded site of S dominates InsertionPoint. 2373 // This is easy when not in the same block, but hard when S is an instruction 2374 // to be expanded somewhere inside the same block as our insertion point. 2375 // What we really need here is something analogous to an OrderedBasicBlock, 2376 // but for the moment, we paper over the problem by handling two common and 2377 // cheap to check cases. 2378 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2379 return true; 2380 if (SE.dominates(S, InsertionPoint->getParent())) { 2381 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2382 return true; 2383 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2384 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2385 return true; 2386 } 2387 return false; 2388 } 2389 2390 void SCEVExpanderCleaner::cleanup() { 2391 // Result is used, nothing to remove. 2392 if (ResultUsed) 2393 return; 2394 2395 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2396 #ifndef NDEBUG 2397 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2398 InsertedInstructions.end()); 2399 (void)InsertedSet; 2400 #endif 2401 // Remove sets with value handles. 2402 Expander.clear(); 2403 2404 // Remove all inserted instructions. 2405 for (Instruction *I : reverse(InsertedInstructions)) { 2406 #ifndef NDEBUG 2407 assert(all_of(I->users(), 2408 [&InsertedSet](Value *U) { 2409 return InsertedSet.contains(cast<Instruction>(U)); 2410 }) && 2411 "removed instruction should only be used by instructions inserted " 2412 "during expansion"); 2413 #endif 2414 assert(!I->getType()->isVoidTy() && 2415 "inserted instruction should have non-void types"); 2416 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2417 I->eraseFromParent(); 2418 } 2419 } 2420