xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision eb31208be15326e6e6523611e6d3d8fdabbbc127)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
48 /// creating a new one.
49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
50                                        Instruction::CastOps Op,
51                                        BasicBlock::iterator IP) {
52   // This function must be called with the builder having a valid insertion
53   // point. It doesn't need to be the actual IP where the uses of the returned
54   // cast will be added, but it must dominate such IP.
55   // We use this precondition to produce a cast that will dominate all its
56   // uses. In particular, this is crucial for the case where the builder's
57   // insertion point *is* the point where we were asked to put the cast.
58   // Since we don't know the builder's insertion point is actually
59   // where the uses will be added (only that it dominates it), we are
60   // not allowed to move it.
61   BasicBlock::iterator BIP = Builder.GetInsertPoint();
62 
63   Value *Ret = nullptr;
64 
65   // Check to see if there is already a cast!
66   for (User *U : V->users()) {
67     if (U->getType() != Ty)
68       continue;
69     CastInst *CI = dyn_cast<CastInst>(U);
70     if (!CI || CI->getOpcode() != Op)
71       continue;
72 
73     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74     // the cast must also properly dominate the Builder's insertion point.
75     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76         (&*IP == CI || CI->comesBefore(&*IP))) {
77       Ret = CI;
78       break;
79     }
80   }
81 
82   // Create a new cast.
83   if (!Ret) {
84     SCEVInsertPointGuard Guard(Builder, this);
85     Builder.SetInsertPoint(&*IP);
86     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87   }
88 
89   // We assert at the end of the function since IP might point to an
90   // instruction with different dominance properties than a cast
91   // (an invoke for example) and not dominate BIP (but the cast does).
92   assert(!isa<Instruction>(Ret) ||
93          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
94 
95   return Ret;
96 }
97 
98 BasicBlock::iterator
99 SCEVExpander::findInsertPointAfter(Instruction *I,
100                                    Instruction *MustDominate) const {
101   BasicBlock::iterator IP = ++I->getIterator();
102   if (auto *II = dyn_cast<InvokeInst>(I))
103     IP = II->getNormalDest()->begin();
104 
105   while (isa<PHINode>(IP))
106     ++IP;
107 
108   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
109     ++IP;
110   } else if (isa<CatchSwitchInst>(IP)) {
111     IP = MustDominate->getParent()->getFirstInsertionPt();
112   } else {
113     assert(!IP->isEHPad() && "unexpected eh pad!");
114   }
115 
116   // Adjust insert point to be after instructions inserted by the expander, so
117   // we can re-use already inserted instructions. Avoid skipping past the
118   // original \p MustDominate, in case it is an inserted instruction.
119   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120     ++IP;
121 
122   return IP;
123 }
124 
125 BasicBlock::iterator
126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127   // Cast the argument at the beginning of the entry block, after
128   // any bitcasts of other arguments.
129   if (Argument *A = dyn_cast<Argument>(V)) {
130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131     while ((isa<BitCastInst>(IP) &&
132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134            isa<DbgInfoIntrinsic>(IP))
135       ++IP;
136     return IP;
137   }
138 
139   // Cast the instruction immediately after the instruction.
140   if (Instruction *I = dyn_cast<Instruction>(V))
141     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142 
143   // Otherwise, this must be some kind of a constant,
144   // so let's plop this cast into the function's entry block.
145   assert(isa<Constant>(V) &&
146          "Expected the cast argument to be a global/constant");
147   return Builder.GetInsertBlock()
148       ->getParent()
149       ->getEntryBlock()
150       .getFirstInsertionPt();
151 }
152 
153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
154 /// which must be possible with a noop cast, doing what we can to share
155 /// the casts.
156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
157   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
158   assert((Op == Instruction::BitCast ||
159           Op == Instruction::PtrToInt ||
160           Op == Instruction::IntToPtr) &&
161          "InsertNoopCastOfTo cannot perform non-noop casts!");
162   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
163          "InsertNoopCastOfTo cannot change sizes!");
164 
165   // inttoptr only works for integral pointers. For non-integral pointers, we
166   // can create a GEP on null with the integral value as index. Note that
167   // it is safe to use GEP of null instead of inttoptr here, because only
168   // expressions already based on a GEP of null should be converted to pointers
169   // during expansion.
170   if (Op == Instruction::IntToPtr) {
171     auto *PtrTy = cast<PointerType>(Ty);
172     if (DL.isNonIntegralPointerType(PtrTy)) {
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       return Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep");
177     }
178   }
179   // Short-circuit unnecessary bitcasts.
180   if (Op == Instruction::BitCast) {
181     if (V->getType() == Ty)
182       return V;
183     if (CastInst *CI = dyn_cast<CastInst>(V)) {
184       if (CI->getOperand(0)->getType() == Ty)
185         return CI->getOperand(0);
186     }
187   }
188   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
189   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
190       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
191     if (CastInst *CI = dyn_cast<CastInst>(V))
192       if ((CI->getOpcode() == Instruction::PtrToInt ||
193            CI->getOpcode() == Instruction::IntToPtr) &&
194           SE.getTypeSizeInBits(CI->getType()) ==
195           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
196         return CI->getOperand(0);
197     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
198       if ((CE->getOpcode() == Instruction::PtrToInt ||
199            CE->getOpcode() == Instruction::IntToPtr) &&
200           SE.getTypeSizeInBits(CE->getType()) ==
201           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
202         return CE->getOperand(0);
203   }
204 
205   // Fold a cast of a constant.
206   if (Constant *C = dyn_cast<Constant>(V))
207     return ConstantExpr::getCast(Op, C, Ty);
208 
209   // Try to reuse existing cast, or insert one.
210   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
211 }
212 
213 /// InsertBinop - Insert the specified binary operator, doing a small amount
214 /// of work to avoid inserting an obviously redundant operation, and hoisting
215 /// to an outer loop when the opportunity is there and it is safe.
216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
217                                  Value *LHS, Value *RHS,
218                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
219   // Fold a binop with constant operands.
220   if (Constant *CLHS = dyn_cast<Constant>(LHS))
221     if (Constant *CRHS = dyn_cast<Constant>(RHS))
222       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
223         return Res;
224 
225   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
226   unsigned ScanLimit = 6;
227   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
228   // Scanning starts from the last instruction before the insertion point.
229   BasicBlock::iterator IP = Builder.GetInsertPoint();
230   if (IP != BlockBegin) {
231     --IP;
232     for (; ScanLimit; --IP, --ScanLimit) {
233       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
234       // generated code.
235       if (isa<DbgInfoIntrinsic>(IP))
236         ScanLimit++;
237 
238       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
239         // Ensure that no-wrap flags match.
240         if (isa<OverflowingBinaryOperator>(I)) {
241           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
242             return true;
243           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
244             return true;
245         }
246         // Conservatively, do not use any instruction which has any of exact
247         // flags installed.
248         if (isa<PossiblyExactOperator>(I) && I->isExact())
249           return true;
250         return false;
251       };
252       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
253           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
254         return &*IP;
255       if (IP == BlockBegin) break;
256     }
257   }
258 
259   // Save the original insertion point so we can restore it when we're done.
260   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
261   SCEVInsertPointGuard Guard(Builder, this);
262 
263   if (IsSafeToHoist) {
264     // Move the insertion point out of as many loops as we can.
265     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
266       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
267       BasicBlock *Preheader = L->getLoopPreheader();
268       if (!Preheader) break;
269 
270       // Ok, move up a level.
271       Builder.SetInsertPoint(Preheader->getTerminator());
272     }
273   }
274 
275   // If we haven't found this binop, insert it.
276   // TODO: Use the Builder, which will make CreateBinOp below fold with
277   // InstSimplifyFolder.
278   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
279   BO->setDebugLoc(Loc);
280   if (Flags & SCEV::FlagNUW)
281     BO->setHasNoUnsignedWrap();
282   if (Flags & SCEV::FlagNSW)
283     BO->setHasNoSignedWrap();
284 
285   return BO;
286 }
287 
288 /// expandAddToGEP - Expand an addition expression with a pointer type into
289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
290 /// BasicAliasAnalysis and other passes analyze the result. See the rules
291 /// for getelementptr vs. inttoptr in
292 /// http://llvm.org/docs/LangRef.html#pointeraliasing
293 /// for details.
294 ///
295 /// Design note: The correctness of using getelementptr here depends on
296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
297 /// they may introduce pointer arithmetic which may not be safely converted
298 /// into getelementptr.
299 ///
300 /// Design note: It might seem desirable for this function to be more
301 /// loop-aware. If some of the indices are loop-invariant while others
302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
303 /// loop-invariant portions of the overall computation outside the loop.
304 /// However, there are a few reasons this is not done here. Hoisting simple
305 /// arithmetic is a low-level optimization that often isn't very
306 /// important until late in the optimization process. In fact, passes
307 /// like InstructionCombining will combine GEPs, even if it means
308 /// pushing loop-invariant computation down into loops, so even if the
309 /// GEPs were split here, the work would quickly be undone. The
310 /// LoopStrengthReduction pass, which is usually run quite late (and
311 /// after the last InstructionCombining pass), takes care of hoisting
312 /// loop-invariant portions of expressions, after considering what
313 /// can be folded using target addressing modes.
314 ///
315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
316   assert(!isa<Instruction>(V) ||
317          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
318 
319   Value *Idx = expand(Offset);
320 
321   // Fold a GEP with constant operands.
322   if (Constant *CLHS = dyn_cast<Constant>(V))
323     if (Constant *CRHS = dyn_cast<Constant>(Idx))
324       return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS);
325 
326   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
327   unsigned ScanLimit = 6;
328   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
329   // Scanning starts from the last instruction before the insertion point.
330   BasicBlock::iterator IP = Builder.GetInsertPoint();
331   if (IP != BlockBegin) {
332     --IP;
333     for (; ScanLimit; --IP, --ScanLimit) {
334       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
335       // generated code.
336       if (isa<DbgInfoIntrinsic>(IP))
337         ScanLimit++;
338       if (IP->getOpcode() == Instruction::GetElementPtr &&
339           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
340           cast<GEPOperator>(&*IP)->getSourceElementType() ==
341               Builder.getInt8Ty())
342         return &*IP;
343       if (IP == BlockBegin) break;
344     }
345   }
346 
347   // Save the original insertion point so we can restore it when we're done.
348   SCEVInsertPointGuard Guard(Builder, this);
349 
350   // Move the insertion point out of as many loops as we can.
351   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
352     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
353     BasicBlock *Preheader = L->getLoopPreheader();
354     if (!Preheader) break;
355 
356     // Ok, move up a level.
357     Builder.SetInsertPoint(Preheader->getTerminator());
358   }
359 
360   // Emit a GEP.
361   return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep");
362 }
363 
364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
365 /// SCEV expansion. If they are nested, this is the most nested. If they are
366 /// neighboring, pick the later.
367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
368                                         DominatorTree &DT) {
369   if (!A) return B;
370   if (!B) return A;
371   if (A->contains(B)) return B;
372   if (B->contains(A)) return A;
373   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
374   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
375   return A; // Arbitrarily break the tie.
376 }
377 
378 /// getRelevantLoop - Get the most relevant loop associated with the given
379 /// expression, according to PickMostRelevantLoop.
380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
381   // Test whether we've already computed the most relevant loop for this SCEV.
382   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
383   if (!Pair.second)
384     return Pair.first->second;
385 
386   switch (S->getSCEVType()) {
387   case scConstant:
388   case scVScale:
389     return nullptr; // A constant has no relevant loops.
390   case scTruncate:
391   case scZeroExtend:
392   case scSignExtend:
393   case scPtrToInt:
394   case scAddExpr:
395   case scMulExpr:
396   case scUDivExpr:
397   case scAddRecExpr:
398   case scUMaxExpr:
399   case scSMaxExpr:
400   case scUMinExpr:
401   case scSMinExpr:
402   case scSequentialUMinExpr: {
403     const Loop *L = nullptr;
404     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
405       L = AR->getLoop();
406     for (const SCEV *Op : S->operands())
407       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
408     return RelevantLoops[S] = L;
409   }
410   case scUnknown: {
411     const SCEVUnknown *U = cast<SCEVUnknown>(S);
412     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
413       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
414     // A non-instruction has no relevant loops.
415     return nullptr;
416   }
417   case scCouldNotCompute:
418     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
419   }
420   llvm_unreachable("Unexpected SCEV type!");
421 }
422 
423 namespace {
424 
425 /// LoopCompare - Compare loops by PickMostRelevantLoop.
426 class LoopCompare {
427   DominatorTree &DT;
428 public:
429   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
430 
431   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
432                   std::pair<const Loop *, const SCEV *> RHS) const {
433     // Keep pointer operands sorted at the end.
434     if (LHS.second->getType()->isPointerTy() !=
435         RHS.second->getType()->isPointerTy())
436       return LHS.second->getType()->isPointerTy();
437 
438     // Compare loops with PickMostRelevantLoop.
439     if (LHS.first != RHS.first)
440       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
441 
442     // If one operand is a non-constant negative and the other is not,
443     // put the non-constant negative on the right so that a sub can
444     // be used instead of a negate and add.
445     if (LHS.second->isNonConstantNegative()) {
446       if (!RHS.second->isNonConstantNegative())
447         return false;
448     } else if (RHS.second->isNonConstantNegative())
449       return true;
450 
451     // Otherwise they are equivalent according to this comparison.
452     return false;
453   }
454 };
455 
456 }
457 
458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
459   // Collect all the add operands in a loop, along with their associated loops.
460   // Iterate in reverse so that constants are emitted last, all else equal, and
461   // so that pointer operands are inserted first, which the code below relies on
462   // to form more involved GEPs.
463   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
464   for (const SCEV *Op : reverse(S->operands()))
465     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
466 
467   // Sort by loop. Use a stable sort so that constants follow non-constants and
468   // pointer operands precede non-pointer operands.
469   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
470 
471   // Emit instructions to add all the operands. Hoist as much as possible
472   // out of loops, and form meaningful getelementptrs where possible.
473   Value *Sum = nullptr;
474   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
475     const Loop *CurLoop = I->first;
476     const SCEV *Op = I->second;
477     if (!Sum) {
478       // This is the first operand. Just expand it.
479       Sum = expand(Op);
480       ++I;
481       continue;
482     }
483 
484     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
485     if (isa<PointerType>(Sum->getType())) {
486       // The running sum expression is a pointer. Try to form a getelementptr
487       // at this level with that as the base.
488       SmallVector<const SCEV *, 4> NewOps;
489       for (; I != E && I->first == CurLoop; ++I) {
490         // If the operand is SCEVUnknown and not instructions, peek through
491         // it, to enable more of it to be folded into the GEP.
492         const SCEV *X = I->second;
493         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
494           if (!isa<Instruction>(U->getValue()))
495             X = SE.getSCEV(U->getValue());
496         NewOps.push_back(X);
497       }
498       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
499     } else if (Op->isNonConstantNegative()) {
500       // Instead of doing a negate and add, just do a subtract.
501       Value *W = expand(SE.getNegativeSCEV(Op));
502       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
503                         /*IsSafeToHoist*/ true);
504       ++I;
505     } else {
506       // A simple add.
507       Value *W = expand(Op);
508       // Canonicalize a constant to the RHS.
509       if (isa<Constant>(Sum))
510         std::swap(Sum, W);
511       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
512                         /*IsSafeToHoist*/ true);
513       ++I;
514     }
515   }
516 
517   return Sum;
518 }
519 
520 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
521   Type *Ty = S->getType();
522 
523   // Collect all the mul operands in a loop, along with their associated loops.
524   // Iterate in reverse so that constants are emitted last, all else equal.
525   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
526   for (const SCEV *Op : reverse(S->operands()))
527     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
528 
529   // Sort by loop. Use a stable sort so that constants follow non-constants.
530   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
531 
532   // Emit instructions to mul all the operands. Hoist as much as possible
533   // out of loops.
534   Value *Prod = nullptr;
535   auto I = OpsAndLoops.begin();
536 
537   // Expand the calculation of X pow N in the following manner:
538   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
539   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
540   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
541     auto E = I;
542     // Calculate how many times the same operand from the same loop is included
543     // into this power.
544     uint64_t Exponent = 0;
545     const uint64_t MaxExponent = UINT64_MAX >> 1;
546     // No one sane will ever try to calculate such huge exponents, but if we
547     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
548     // below when the power of 2 exceeds our Exponent, and we want it to be
549     // 1u << 31 at most to not deal with unsigned overflow.
550     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
551       ++Exponent;
552       ++E;
553     }
554     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
555 
556     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
557     // that are needed into the result.
558     Value *P = expand(I->second);
559     Value *Result = nullptr;
560     if (Exponent & 1)
561       Result = P;
562     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
563       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
564                       /*IsSafeToHoist*/ true);
565       if (Exponent & BinExp)
566         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
567                                       SCEV::FlagAnyWrap,
568                                       /*IsSafeToHoist*/ true)
569                         : P;
570     }
571 
572     I = E;
573     assert(Result && "Nothing was expanded?");
574     return Result;
575   };
576 
577   while (I != OpsAndLoops.end()) {
578     if (!Prod) {
579       // This is the first operand. Just expand it.
580       Prod = ExpandOpBinPowN();
581     } else if (I->second->isAllOnesValue()) {
582       // Instead of doing a multiply by negative one, just do a negate.
583       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
584                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
585       ++I;
586     } else {
587       // A simple mul.
588       Value *W = ExpandOpBinPowN();
589       // Canonicalize a constant to the RHS.
590       if (isa<Constant>(Prod)) std::swap(Prod, W);
591       const APInt *RHS;
592       if (match(W, m_Power2(RHS))) {
593         // Canonicalize Prod*(1<<C) to Prod<<C.
594         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
595         auto NWFlags = S->getNoWrapFlags();
596         // clear nsw flag if shl will produce poison value.
597         if (RHS->logBase2() == RHS->getBitWidth() - 1)
598           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
599         Prod = InsertBinop(Instruction::Shl, Prod,
600                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
601                            /*IsSafeToHoist*/ true);
602       } else {
603         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
604                            /*IsSafeToHoist*/ true);
605       }
606     }
607   }
608 
609   return Prod;
610 }
611 
612 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
613   Value *LHS = expand(S->getLHS());
614   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
615     const APInt &RHS = SC->getAPInt();
616     if (RHS.isPowerOf2())
617       return InsertBinop(Instruction::LShr, LHS,
618                          ConstantInt::get(SC->getType(), RHS.logBase2()),
619                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
620   }
621 
622   Value *RHS = expand(S->getRHS());
623   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
624                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
625 }
626 
627 /// Determine if this is a well-behaved chain of instructions leading back to
628 /// the PHI. If so, it may be reused by expanded expressions.
629 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
630                                          const Loop *L) {
631   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
632       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
633     return false;
634   // If any of the operands don't dominate the insert position, bail.
635   // Addrec operands are always loop-invariant, so this can only happen
636   // if there are instructions which haven't been hoisted.
637   if (L == IVIncInsertLoop) {
638     for (Use &Op : llvm::drop_begin(IncV->operands()))
639       if (Instruction *OInst = dyn_cast<Instruction>(Op))
640         if (!SE.DT.dominates(OInst, IVIncInsertPos))
641           return false;
642   }
643   // Advance to the next instruction.
644   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
645   if (!IncV)
646     return false;
647 
648   if (IncV->mayHaveSideEffects())
649     return false;
650 
651   if (IncV == PN)
652     return true;
653 
654   return isNormalAddRecExprPHI(PN, IncV, L);
655 }
656 
657 /// getIVIncOperand returns an induction variable increment's induction
658 /// variable operand.
659 ///
660 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
661 /// operands dominate InsertPos.
662 ///
663 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
664 /// simple patterns generated by getAddRecExprPHILiterally and
665 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
666 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
667                                            Instruction *InsertPos,
668                                            bool allowScale) {
669   if (IncV == InsertPos)
670     return nullptr;
671 
672   switch (IncV->getOpcode()) {
673   default:
674     return nullptr;
675   // Check for a simple Add/Sub or GEP of a loop invariant step.
676   case Instruction::Add:
677   case Instruction::Sub: {
678     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
679     if (!OInst || SE.DT.dominates(OInst, InsertPos))
680       return dyn_cast<Instruction>(IncV->getOperand(0));
681     return nullptr;
682   }
683   case Instruction::BitCast:
684     return dyn_cast<Instruction>(IncV->getOperand(0));
685   case Instruction::GetElementPtr:
686     for (Use &U : llvm::drop_begin(IncV->operands())) {
687       if (isa<Constant>(U))
688         continue;
689       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
690         if (!SE.DT.dominates(OInst, InsertPos))
691           return nullptr;
692       }
693       if (allowScale) {
694         // allow any kind of GEP as long as it can be hoisted.
695         continue;
696       }
697       // GEPs produced by SCEVExpander use i8 element type.
698       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
699         return nullptr;
700       break;
701     }
702     return dyn_cast<Instruction>(IncV->getOperand(0));
703   }
704 }
705 
706 /// If the insert point of the current builder or any of the builders on the
707 /// stack of saved builders has 'I' as its insert point, update it to point to
708 /// the instruction after 'I'.  This is intended to be used when the instruction
709 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
710 /// different block, the inconsistent insert point (with a mismatched
711 /// Instruction and Block) can lead to an instruction being inserted in a block
712 /// other than its parent.
713 void SCEVExpander::fixupInsertPoints(Instruction *I) {
714   BasicBlock::iterator It(*I);
715   BasicBlock::iterator NewInsertPt = std::next(It);
716   if (Builder.GetInsertPoint() == It)
717     Builder.SetInsertPoint(&*NewInsertPt);
718   for (auto *InsertPtGuard : InsertPointGuards)
719     if (InsertPtGuard->GetInsertPoint() == It)
720       InsertPtGuard->SetInsertPoint(NewInsertPt);
721 }
722 
723 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
724 /// it available to other uses in this loop. Recursively hoist any operands,
725 /// until we reach a value that dominates InsertPos.
726 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
727                               bool RecomputePoisonFlags) {
728   auto FixupPoisonFlags = [this](Instruction *I) {
729     // Drop flags that are potentially inferred from old context and infer flags
730     // in new context.
731     I->dropPoisonGeneratingFlags();
732     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
733       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
734         auto *BO = cast<BinaryOperator>(I);
735         BO->setHasNoUnsignedWrap(
736             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
737         BO->setHasNoSignedWrap(
738             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
739       }
740   };
741 
742   if (SE.DT.dominates(IncV, InsertPos)) {
743     if (RecomputePoisonFlags)
744       FixupPoisonFlags(IncV);
745     return true;
746   }
747 
748   // InsertPos must itself dominate IncV so that IncV's new position satisfies
749   // its existing users.
750   if (isa<PHINode>(InsertPos) ||
751       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
752     return false;
753 
754   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
755     return false;
756 
757   // Check that the chain of IV operands leading back to Phi can be hoisted.
758   SmallVector<Instruction*, 4> IVIncs;
759   for(;;) {
760     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
761     if (!Oper)
762       return false;
763     // IncV is safe to hoist.
764     IVIncs.push_back(IncV);
765     IncV = Oper;
766     if (SE.DT.dominates(IncV, InsertPos))
767       break;
768   }
769   for (Instruction *I : llvm::reverse(IVIncs)) {
770     fixupInsertPoints(I);
771     I->moveBefore(InsertPos);
772     if (RecomputePoisonFlags)
773       FixupPoisonFlags(I);
774   }
775   return true;
776 }
777 
778 /// Determine if this cyclic phi is in a form that would have been generated by
779 /// LSR. We don't care if the phi was actually expanded in this pass, as long
780 /// as it is in a low-cost form, for example, no implied multiplication. This
781 /// should match any patterns generated by getAddRecExprPHILiterally and
782 /// expandAddtoGEP.
783 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
784                                            const Loop *L) {
785   for(Instruction *IVOper = IncV;
786       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
787                                 /*allowScale=*/false));) {
788     if (IVOper == PN)
789       return true;
790   }
791   return false;
792 }
793 
794 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
795 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
796 /// need to materialize IV increments elsewhere to handle difficult situations.
797 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
798                                  Type *ExpandTy, bool useSubtract) {
799   Value *IncV;
800   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
801   if (ExpandTy->isPointerTy()) {
802     IncV = expandAddToGEP(SE.getSCEV(StepV), PN);
803   } else {
804     IncV = useSubtract ?
805       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
806       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
807   }
808   return IncV;
809 }
810 
811 /// Check whether we can cheaply express the requested SCEV in terms of
812 /// the available PHI SCEV by truncation and/or inversion of the step.
813 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
814                                     const SCEVAddRecExpr *Phi,
815                                     const SCEVAddRecExpr *Requested,
816                                     bool &InvertStep) {
817   // We can't transform to match a pointer PHI.
818   if (Phi->getType()->isPointerTy())
819     return false;
820 
821   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
822   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
823 
824   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
825     return false;
826 
827   // Try truncate it if necessary.
828   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
829   if (!Phi)
830     return false;
831 
832   // Check whether truncation will help.
833   if (Phi == Requested) {
834     InvertStep = false;
835     return true;
836   }
837 
838   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
839   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
840     InvertStep = true;
841     return true;
842   }
843 
844   return false;
845 }
846 
847 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
848   if (!isa<IntegerType>(AR->getType()))
849     return false;
850 
851   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
852   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
853   const SCEV *Step = AR->getStepRecurrence(SE);
854   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
855                                             SE.getSignExtendExpr(AR, WideTy));
856   const SCEV *ExtendAfterOp =
857     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
858   return ExtendAfterOp == OpAfterExtend;
859 }
860 
861 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
862   if (!isa<IntegerType>(AR->getType()))
863     return false;
864 
865   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
866   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
867   const SCEV *Step = AR->getStepRecurrence(SE);
868   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
869                                             SE.getZeroExtendExpr(AR, WideTy));
870   const SCEV *ExtendAfterOp =
871     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
872   return ExtendAfterOp == OpAfterExtend;
873 }
874 
875 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
876 /// the base addrec, which is the addrec without any non-loop-dominating
877 /// values, and return the PHI.
878 PHINode *
879 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
880                                         const Loop *L,
881                                         Type *ExpandTy,
882                                         Type *IntTy,
883                                         Type *&TruncTy,
884                                         bool &InvertStep) {
885   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
886 
887   // Reuse a previously-inserted PHI, if present.
888   BasicBlock *LatchBlock = L->getLoopLatch();
889   if (LatchBlock) {
890     PHINode *AddRecPhiMatch = nullptr;
891     Instruction *IncV = nullptr;
892     TruncTy = nullptr;
893     InvertStep = false;
894 
895     // Only try partially matching scevs that need truncation and/or
896     // step-inversion if we know this loop is outside the current loop.
897     bool TryNonMatchingSCEV =
898         IVIncInsertLoop &&
899         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
900 
901     for (PHINode &PN : L->getHeader()->phis()) {
902       if (!SE.isSCEVable(PN.getType()))
903         continue;
904 
905       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
906       // PHI has no meaning at all.
907       if (!PN.isComplete()) {
908         SCEV_DEBUG_WITH_TYPE(
909             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
910         continue;
911       }
912 
913       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
914       if (!PhiSCEV)
915         continue;
916 
917       bool IsMatchingSCEV = PhiSCEV == Normalized;
918       // We only handle truncation and inversion of phi recurrences for the
919       // expanded expression if the expanded expression's loop dominates the
920       // loop we insert to. Check now, so we can bail out early.
921       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
922           continue;
923 
924       // TODO: this possibly can be reworked to avoid this cast at all.
925       Instruction *TempIncV =
926           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
927       if (!TempIncV)
928         continue;
929 
930       // Check whether we can reuse this PHI node.
931       if (LSRMode) {
932         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
933           continue;
934       } else {
935         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
936           continue;
937       }
938 
939       // Stop if we have found an exact match SCEV.
940       if (IsMatchingSCEV) {
941         IncV = TempIncV;
942         TruncTy = nullptr;
943         InvertStep = false;
944         AddRecPhiMatch = &PN;
945         break;
946       }
947 
948       // Try whether the phi can be translated into the requested form
949       // (truncated and/or offset by a constant).
950       if ((!TruncTy || InvertStep) &&
951           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
952         // Record the phi node. But don't stop we might find an exact match
953         // later.
954         AddRecPhiMatch = &PN;
955         IncV = TempIncV;
956         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
957       }
958     }
959 
960     if (AddRecPhiMatch) {
961       // Ok, the add recurrence looks usable.
962       // Remember this PHI, even in post-inc mode.
963       InsertedValues.insert(AddRecPhiMatch);
964       // Remember the increment.
965       rememberInstruction(IncV);
966       // Those values were not actually inserted but re-used.
967       ReusedValues.insert(AddRecPhiMatch);
968       ReusedValues.insert(IncV);
969       return AddRecPhiMatch;
970     }
971   }
972 
973   // Save the original insertion point so we can restore it when we're done.
974   SCEVInsertPointGuard Guard(Builder, this);
975 
976   // Another AddRec may need to be recursively expanded below. For example, if
977   // this AddRec is quadratic, the StepV may itself be an AddRec in this
978   // loop. Remove this loop from the PostIncLoops set before expanding such
979   // AddRecs. Otherwise, we cannot find a valid position for the step
980   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
981   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
982   // so it's not worth implementing SmallPtrSet::swap.
983   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
984   PostIncLoops.clear();
985 
986   // Expand code for the start value into the loop preheader.
987   assert(L->getLoopPreheader() &&
988          "Can't expand add recurrences without a loop preheader!");
989   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
990                                 L->getLoopPreheader()->getTerminator());
991 
992   // StartV must have been be inserted into L's preheader to dominate the new
993   // phi.
994   assert(!isa<Instruction>(StartV) ||
995          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
996                                  L->getHeader()));
997 
998   // Expand code for the step value. Do this before creating the PHI so that PHI
999   // reuse code doesn't see an incomplete PHI.
1000   const SCEV *Step = Normalized->getStepRecurrence(SE);
1001   // If the stride is negative, insert a sub instead of an add for the increment
1002   // (unless it's a constant, because subtracts of constants are canonicalized
1003   // to adds).
1004   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1005   if (useSubtract)
1006     Step = SE.getNegativeSCEV(Step);
1007   // Expand the step somewhere that dominates the loop header.
1008   Value *StepV =
1009       expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt());
1010 
1011   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1012   // we actually do emit an addition.  It does not apply if we emit a
1013   // subtraction.
1014   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1015   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1016 
1017   // Create the PHI.
1018   BasicBlock *Header = L->getHeader();
1019   Builder.SetInsertPoint(Header, Header->begin());
1020   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1021   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1022                                   Twine(IVName) + ".iv");
1023 
1024   // Create the step instructions and populate the PHI.
1025   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1026     BasicBlock *Pred = *HPI;
1027 
1028     // Add a start value.
1029     if (!L->contains(Pred)) {
1030       PN->addIncoming(StartV, Pred);
1031       continue;
1032     }
1033 
1034     // Create a step value and add it to the PHI.
1035     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1036     // instructions at IVIncInsertPos.
1037     Instruction *InsertPos = L == IVIncInsertLoop ?
1038       IVIncInsertPos : Pred->getTerminator();
1039     Builder.SetInsertPoint(InsertPos);
1040     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, useSubtract);
1041 
1042     if (isa<OverflowingBinaryOperator>(IncV)) {
1043       if (IncrementIsNUW)
1044         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1045       if (IncrementIsNSW)
1046         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1047     }
1048     PN->addIncoming(IncV, Pred);
1049   }
1050 
1051   // After expanding subexpressions, restore the PostIncLoops set so the caller
1052   // can ensure that IVIncrement dominates the current uses.
1053   PostIncLoops = SavedPostIncLoops;
1054 
1055   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1056   // effective when we are able to use an IV inserted here, so record it.
1057   InsertedValues.insert(PN);
1058   InsertedIVs.push_back(PN);
1059   return PN;
1060 }
1061 
1062 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1063   Type *STy = S->getType();
1064   Type *IntTy = SE.getEffectiveSCEVType(STy);
1065   const Loop *L = S->getLoop();
1066 
1067   // Determine a normalized form of this expression, which is the expression
1068   // before any post-inc adjustment is made.
1069   const SCEVAddRecExpr *Normalized = S;
1070   if (PostIncLoops.count(L)) {
1071     PostIncLoopSet Loops;
1072     Loops.insert(L);
1073     Normalized = cast<SCEVAddRecExpr>(
1074         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1075   }
1076 
1077   // Strip off any non-loop-dominating component from the addrec start.
1078   const SCEV *Start = Normalized->getStart();
1079   const SCEV *PostLoopOffset = nullptr;
1080   if (!SE.properlyDominates(Start, L->getHeader())) {
1081     PostLoopOffset = Start;
1082     Start = SE.getConstant(Normalized->getType(), 0);
1083     Normalized = cast<SCEVAddRecExpr>(
1084       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1085                        Normalized->getLoop(),
1086                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1087   }
1088 
1089   // Strip off any non-loop-dominating component from the addrec step.
1090   const SCEV *Step = Normalized->getStepRecurrence(SE);
1091   const SCEV *PostLoopScale = nullptr;
1092   if (!SE.dominates(Step, L->getHeader())) {
1093     PostLoopScale = Step;
1094     Step = SE.getConstant(Normalized->getType(), 1);
1095     if (!Start->isZero()) {
1096         // The normalization below assumes that Start is constant zero, so if
1097         // it isn't re-associate Start to PostLoopOffset.
1098         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1099         PostLoopOffset = Start;
1100         Start = SE.getConstant(Normalized->getType(), 0);
1101     }
1102     Normalized =
1103       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1104                              Start, Step, Normalized->getLoop(),
1105                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1106   }
1107 
1108   // Expand the core addrec. If we need post-loop scaling, force it to
1109   // expand to an integer type to avoid the need for additional casting.
1110   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1111   // We can't use a pointer type for the addrec if the pointer type is
1112   // non-integral.
1113   Type *AddRecPHIExpandTy =
1114       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1115 
1116   // In some cases, we decide to reuse an existing phi node but need to truncate
1117   // it and/or invert the step.
1118   Type *TruncTy = nullptr;
1119   bool InvertStep = false;
1120   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1121                                           IntTy, TruncTy, InvertStep);
1122 
1123   // Accommodate post-inc mode, if necessary.
1124   Value *Result;
1125   if (!PostIncLoops.count(L))
1126     Result = PN;
1127   else {
1128     // In PostInc mode, use the post-incremented value.
1129     BasicBlock *LatchBlock = L->getLoopLatch();
1130     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1131     Result = PN->getIncomingValueForBlock(LatchBlock);
1132 
1133     // We might be introducing a new use of the post-inc IV that is not poison
1134     // safe, in which case we should drop poison generating flags. Only keep
1135     // those flags for which SCEV has proven that they always hold.
1136     if (isa<OverflowingBinaryOperator>(Result)) {
1137       auto *I = cast<Instruction>(Result);
1138       if (!S->hasNoUnsignedWrap())
1139         I->setHasNoUnsignedWrap(false);
1140       if (!S->hasNoSignedWrap())
1141         I->setHasNoSignedWrap(false);
1142     }
1143 
1144     // For an expansion to use the postinc form, the client must call
1145     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1146     // or dominated by IVIncInsertPos.
1147     if (isa<Instruction>(Result) &&
1148         !SE.DT.dominates(cast<Instruction>(Result),
1149                          &*Builder.GetInsertPoint())) {
1150       // The induction variable's postinc expansion does not dominate this use.
1151       // IVUsers tries to prevent this case, so it is rare. However, it can
1152       // happen when an IVUser outside the loop is not dominated by the latch
1153       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1154       // all cases. Consider a phi outside whose operand is replaced during
1155       // expansion with the value of the postinc user. Without fundamentally
1156       // changing the way postinc users are tracked, the only remedy is
1157       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1158       // but hopefully expandCodeFor handles that.
1159       bool useSubtract =
1160         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1161       if (useSubtract)
1162         Step = SE.getNegativeSCEV(Step);
1163       Value *StepV;
1164       {
1165         // Expand the step somewhere that dominates the loop header.
1166         SCEVInsertPointGuard Guard(Builder, this);
1167         StepV =
1168             expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt());
1169       }
1170       Result = expandIVInc(PN, StepV, L, ExpandTy, useSubtract);
1171     }
1172   }
1173 
1174   // We have decided to reuse an induction variable of a dominating loop. Apply
1175   // truncation and/or inversion of the step.
1176   if (TruncTy) {
1177     Type *ResTy = Result->getType();
1178     // Normalize the result type.
1179     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1180       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1181     // Truncate the result.
1182     if (TruncTy != Result->getType())
1183       Result = Builder.CreateTrunc(Result, TruncTy);
1184 
1185     // Invert the result.
1186     if (InvertStep)
1187       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1188                                  Result);
1189   }
1190 
1191   // Re-apply any non-loop-dominating scale.
1192   if (PostLoopScale) {
1193     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1194     Result = InsertNoopCastOfTo(Result, IntTy);
1195     Result = Builder.CreateMul(Result, expandCodeFor(PostLoopScale, IntTy));
1196   }
1197 
1198   // Re-apply any non-loop-dominating offset.
1199   if (PostLoopOffset) {
1200     if (isa<PointerType>(ExpandTy)) {
1201       if (Result->getType()->isIntegerTy()) {
1202         Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1203         Result = expandAddToGEP(SE.getUnknown(Result), Base);
1204       } else {
1205         Result = expandAddToGEP(PostLoopOffset, Result);
1206       }
1207     } else {
1208       Result = InsertNoopCastOfTo(Result, IntTy);
1209       Result = Builder.CreateAdd(Result, expandCodeFor(PostLoopOffset, IntTy));
1210     }
1211   }
1212 
1213   return Result;
1214 }
1215 
1216 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1217   // In canonical mode we compute the addrec as an expression of a canonical IV
1218   // using evaluateAtIteration and expand the resulting SCEV expression. This
1219   // way we avoid introducing new IVs to carry on the computation of the addrec
1220   // throughout the loop.
1221   //
1222   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1223   // type wider than the addrec itself. Emitting a canonical IV of the
1224   // proper type might produce non-legal types, for example expanding an i64
1225   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1226   // back to non-canonical mode for nested addrecs.
1227   if (!CanonicalMode || (S->getNumOperands() > 2))
1228     return expandAddRecExprLiterally(S);
1229 
1230   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1231   const Loop *L = S->getLoop();
1232 
1233   // First check for an existing canonical IV in a suitable type.
1234   PHINode *CanonicalIV = nullptr;
1235   if (PHINode *PN = L->getCanonicalInductionVariable())
1236     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1237       CanonicalIV = PN;
1238 
1239   // Rewrite an AddRec in terms of the canonical induction variable, if
1240   // its type is more narrow.
1241   if (CanonicalIV &&
1242       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1243       !S->getType()->isPointerTy()) {
1244     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1245     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1246       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1247     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1248                                        S->getNoWrapFlags(SCEV::FlagNW)));
1249     BasicBlock::iterator NewInsertPt =
1250         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1251     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1252                       NewInsertPt);
1253     return V;
1254   }
1255 
1256   // {X,+,F} --> X + {0,+,F}
1257   if (!S->getStart()->isZero()) {
1258     if (isa<PointerType>(S->getType())) {
1259       Value *StartV = expand(SE.getPointerBase(S));
1260       return expandAddToGEP(SE.removePointerBase(S), StartV);
1261     }
1262 
1263     SmallVector<const SCEV *, 4> NewOps(S->operands());
1264     NewOps[0] = SE.getConstant(Ty, 0);
1265     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1266                                         S->getNoWrapFlags(SCEV::FlagNW));
1267 
1268     // Just do a normal add. Pre-expand the operands to suppress folding.
1269     //
1270     // The LHS and RHS values are factored out of the expand call to make the
1271     // output independent of the argument evaluation order.
1272     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1273     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1274     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1275   }
1276 
1277   // If we don't yet have a canonical IV, create one.
1278   if (!CanonicalIV) {
1279     // Create and insert the PHI node for the induction variable in the
1280     // specified loop.
1281     BasicBlock *Header = L->getHeader();
1282     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1283     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1284     CanonicalIV->insertBefore(Header->begin());
1285     rememberInstruction(CanonicalIV);
1286 
1287     SmallSet<BasicBlock *, 4> PredSeen;
1288     Constant *One = ConstantInt::get(Ty, 1);
1289     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1290       BasicBlock *HP = *HPI;
1291       if (!PredSeen.insert(HP).second) {
1292         // There must be an incoming value for each predecessor, even the
1293         // duplicates!
1294         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1295         continue;
1296       }
1297 
1298       if (L->contains(HP)) {
1299         // Insert a unit add instruction right before the terminator
1300         // corresponding to the back-edge.
1301         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1302                                                      "indvar.next",
1303                                                      HP->getTerminator());
1304         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1305         rememberInstruction(Add);
1306         CanonicalIV->addIncoming(Add, HP);
1307       } else {
1308         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1309       }
1310     }
1311   }
1312 
1313   // {0,+,1} --> Insert a canonical induction variable into the loop!
1314   if (S->isAffine() && S->getOperand(1)->isOne()) {
1315     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1316            "IVs with types different from the canonical IV should "
1317            "already have been handled!");
1318     return CanonicalIV;
1319   }
1320 
1321   // {0,+,F} --> {0,+,1} * F
1322 
1323   // If this is a simple linear addrec, emit it now as a special case.
1324   if (S->isAffine())    // {0,+,F} --> i*F
1325     return
1326       expand(SE.getTruncateOrNoop(
1327         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1328                       SE.getNoopOrAnyExtend(S->getOperand(1),
1329                                             CanonicalIV->getType())),
1330         Ty));
1331 
1332   // If this is a chain of recurrences, turn it into a closed form, using the
1333   // folders, then expandCodeFor the closed form.  This allows the folders to
1334   // simplify the expression without having to build a bunch of special code
1335   // into this folder.
1336   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1337 
1338   // Promote S up to the canonical IV type, if the cast is foldable.
1339   const SCEV *NewS = S;
1340   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1341   if (isa<SCEVAddRecExpr>(Ext))
1342     NewS = Ext;
1343 
1344   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1345 
1346   // Truncate the result down to the original type, if needed.
1347   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1348   return expand(T);
1349 }
1350 
1351 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1352   Value *V = expand(S->getOperand());
1353   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1354                            GetOptimalInsertionPointForCastOf(V));
1355 }
1356 
1357 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1358   Value *V = expand(S->getOperand());
1359   return Builder.CreateTrunc(V, S->getType());
1360 }
1361 
1362 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1363   Value *V = expand(S->getOperand());
1364   return Builder.CreateZExt(V, S->getType());
1365 }
1366 
1367 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1368   Value *V = expand(S->getOperand());
1369   return Builder.CreateSExt(V, S->getType());
1370 }
1371 
1372 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1373                                       Intrinsic::ID IntrinID, Twine Name,
1374                                       bool IsSequential) {
1375   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1376   Type *Ty = LHS->getType();
1377   if (IsSequential)
1378     LHS = Builder.CreateFreeze(LHS);
1379   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1380     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1381     if (IsSequential && i != 0)
1382       RHS = Builder.CreateFreeze(RHS);
1383     Value *Sel;
1384     if (Ty->isIntegerTy())
1385       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1386                                     /*FMFSource=*/nullptr, Name);
1387     else {
1388       Value *ICmp =
1389           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1390       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1391     }
1392     LHS = Sel;
1393   }
1394   return LHS;
1395 }
1396 
1397 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1398   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1399 }
1400 
1401 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1402   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1403 }
1404 
1405 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1406   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1407 }
1408 
1409 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1410   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1411 }
1412 
1413 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1414   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1415 }
1416 
1417 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1418   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1419 }
1420 
1421 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1422                                    BasicBlock::iterator IP) {
1423   setInsertPoint(IP);
1424   Value *V = expandCodeFor(SH, Ty);
1425   return V;
1426 }
1427 
1428 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1429   // Expand the code for this SCEV.
1430   Value *V = expand(SH);
1431 
1432   if (Ty) {
1433     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1434            "non-trivial casts should be done with the SCEVs directly!");
1435     V = InsertNoopCastOfTo(V, Ty);
1436   }
1437   return V;
1438 }
1439 
1440 static bool
1441 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I,
1442                     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1443   // If the instruction cannot be poison, it's always safe to reuse.
1444   if (programUndefinedIfPoison(I))
1445     return true;
1446 
1447   // Otherwise, it is possible that I is more poisonous that S. Collect the
1448   // poison-contributors of S, and then check whether I has any additional
1449   // poison-contributors. Poison that is contributed through poison-generating
1450   // flags is handled by dropping those flags instead.
1451   SmallPtrSet<const Value *, 8> PoisonVals;
1452   SE.getPoisonGeneratingValues(PoisonVals, S);
1453 
1454   SmallVector<Value *> Worklist;
1455   SmallPtrSet<Value *, 8> Visited;
1456   Worklist.push_back(I);
1457   while (!Worklist.empty()) {
1458     Value *V = Worklist.pop_back_val();
1459     if (!Visited.insert(V).second)
1460       continue;
1461 
1462     // Avoid walking large instruction graphs.
1463     if (Visited.size() > 16)
1464       return false;
1465 
1466     // Either the value can't be poison, or the S would also be poison if it
1467     // is.
1468     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
1469       continue;
1470 
1471     auto *I = dyn_cast<Instruction>(V);
1472     if (!I)
1473       return false;
1474 
1475     // FIXME: Ignore vscale, even though it technically could be poison. Do this
1476     // because SCEV currently assumes it can't be poison. Remove this special
1477     // case once we proper model when vscale can be poison.
1478     if (auto *II = dyn_cast<IntrinsicInst>(I);
1479         II && II->getIntrinsicID() == Intrinsic::vscale)
1480       continue;
1481 
1482     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
1483       return false;
1484 
1485     // If the instruction can't create poison, we can recurse to its operands.
1486     if (I->hasPoisonGeneratingFlagsOrMetadata())
1487       DropPoisonGeneratingInsts.push_back(I);
1488 
1489     for (Value *Op : I->operands())
1490       Worklist.push_back(Op);
1491   }
1492   return true;
1493 }
1494 
1495 Value *SCEVExpander::FindValueInExprValueMap(
1496     const SCEV *S, const Instruction *InsertPt,
1497     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1498   // If the expansion is not in CanonicalMode, and the SCEV contains any
1499   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1500   if (!CanonicalMode && SE.containsAddRecurrence(S))
1501     return nullptr;
1502 
1503   // If S is a constant, it may be worse to reuse an existing Value.
1504   if (isa<SCEVConstant>(S))
1505     return nullptr;
1506 
1507   for (Value *V : SE.getSCEVValues(S)) {
1508     Instruction *EntInst = dyn_cast<Instruction>(V);
1509     if (!EntInst)
1510       continue;
1511 
1512     // Choose a Value from the set which dominates the InsertPt.
1513     // InsertPt should be inside the Value's parent loop so as not to break
1514     // the LCSSA form.
1515     assert(EntInst->getFunction() == InsertPt->getFunction());
1516     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1517         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1518           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1519       continue;
1520 
1521     // Make sure reusing the instruction is poison-safe.
1522     if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts))
1523       return V;
1524     DropPoisonGeneratingInsts.clear();
1525   }
1526   return nullptr;
1527 }
1528 
1529 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1530 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1531 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1532 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1533 // the expansion will try to reuse Value from ExprValueMap, and only when it
1534 // fails, expand the SCEV literally.
1535 Value *SCEVExpander::expand(const SCEV *S) {
1536   // Compute an insertion point for this SCEV object. Hoist the instructions
1537   // as far out in the loop nest as possible.
1538   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1539 
1540   // We can move insertion point only if there is no div or rem operations
1541   // otherwise we are risky to move it over the check for zero denominator.
1542   auto SafeToHoist = [](const SCEV *S) {
1543     return !SCEVExprContains(S, [](const SCEV *S) {
1544               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1545                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1546                   // Division by non-zero constants can be hoisted.
1547                   return SC->getValue()->isZero();
1548                 // All other divisions should not be moved as they may be
1549                 // divisions by zero and should be kept within the
1550                 // conditions of the surrounding loops that guard their
1551                 // execution (see PR35406).
1552                 return true;
1553               }
1554               return false;
1555             });
1556   };
1557   if (SafeToHoist(S)) {
1558     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1559          L = L->getParentLoop()) {
1560       if (SE.isLoopInvariant(S, L)) {
1561         if (!L) break;
1562         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1563           InsertPt = Preheader->getTerminator()->getIterator();
1564         } else {
1565           // LSR sets the insertion point for AddRec start/step values to the
1566           // block start to simplify value reuse, even though it's an invalid
1567           // position. SCEVExpander must correct for this in all cases.
1568           InsertPt = L->getHeader()->getFirstInsertionPt();
1569         }
1570       } else {
1571         // If the SCEV is computable at this level, insert it into the header
1572         // after the PHIs (and after any other instructions that we've inserted
1573         // there) so that it is guaranteed to dominate any user inside the loop.
1574         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1575           InsertPt = L->getHeader()->getFirstInsertionPt();
1576 
1577         while (InsertPt != Builder.GetInsertPoint() &&
1578                (isInsertedInstruction(&*InsertPt) ||
1579                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1580           InsertPt = std::next(InsertPt);
1581         }
1582         break;
1583       }
1584     }
1585   }
1586 
1587   // Check to see if we already expanded this here.
1588   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1589   if (I != InsertedExpressions.end())
1590     return I->second;
1591 
1592   SCEVInsertPointGuard Guard(Builder, this);
1593   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1594 
1595   // Expand the expression into instructions.
1596   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1597   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1598   if (!V) {
1599     V = visit(S);
1600     V = fixupLCSSAFormFor(V);
1601   } else {
1602     for (Instruction *I : DropPoisonGeneratingInsts)
1603       I->dropPoisonGeneratingFlagsAndMetadata();
1604   }
1605   // Remember the expanded value for this SCEV at this location.
1606   //
1607   // This is independent of PostIncLoops. The mapped value simply materializes
1608   // the expression at this insertion point. If the mapped value happened to be
1609   // a postinc expansion, it could be reused by a non-postinc user, but only if
1610   // its insertion point was already at the head of the loop.
1611   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1612   return V;
1613 }
1614 
1615 void SCEVExpander::rememberInstruction(Value *I) {
1616   auto DoInsert = [this](Value *V) {
1617     if (!PostIncLoops.empty())
1618       InsertedPostIncValues.insert(V);
1619     else
1620       InsertedValues.insert(V);
1621   };
1622   DoInsert(I);
1623 }
1624 
1625 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1626 /// replace them with their most canonical representative. Return the number of
1627 /// phis eliminated.
1628 ///
1629 /// This does not depend on any SCEVExpander state but should be used in
1630 /// the same context that SCEVExpander is used.
1631 unsigned
1632 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1633                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1634                                   const TargetTransformInfo *TTI) {
1635   // Find integer phis in order of increasing width.
1636   SmallVector<PHINode*, 8> Phis;
1637   for (PHINode &PN : L->getHeader()->phis())
1638     Phis.push_back(&PN);
1639 
1640   if (TTI)
1641     // Use stable_sort to preserve order of equivalent PHIs, so the order
1642     // of the sorted Phis is the same from run to run on the same loop.
1643     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1644       // Put pointers at the back and make sure pointer < pointer = false.
1645       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1646         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1647       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1648              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1649     });
1650 
1651   unsigned NumElim = 0;
1652   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1653   // Process phis from wide to narrow. Map wide phis to their truncation
1654   // so narrow phis can reuse them.
1655   for (PHINode *Phi : Phis) {
1656     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1657       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1658         return V;
1659       if (!SE.isSCEVable(PN->getType()))
1660         return nullptr;
1661       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1662       if (!Const)
1663         return nullptr;
1664       return Const->getValue();
1665     };
1666 
1667     // Fold constant phis. They may be congruent to other constant phis and
1668     // would confuse the logic below that expects proper IVs.
1669     if (Value *V = SimplifyPHINode(Phi)) {
1670       if (V->getType() != Phi->getType())
1671         continue;
1672       SE.forgetValue(Phi);
1673       Phi->replaceAllUsesWith(V);
1674       DeadInsts.emplace_back(Phi);
1675       ++NumElim;
1676       SCEV_DEBUG_WITH_TYPE(DebugType,
1677                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1678                                   << '\n');
1679       continue;
1680     }
1681 
1682     if (!SE.isSCEVable(Phi->getType()))
1683       continue;
1684 
1685     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1686     if (!OrigPhiRef) {
1687       OrigPhiRef = Phi;
1688       if (Phi->getType()->isIntegerTy() && TTI &&
1689           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1690         // Make sure we only rewrite using simple induction variables;
1691         // otherwise, we can make the trip count of a loop unanalyzable
1692         // to SCEV.
1693         const SCEV *PhiExpr = SE.getSCEV(Phi);
1694         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1695           // This phi can be freely truncated to the narrowest phi type. Map the
1696           // truncated expression to it so it will be reused for narrow types.
1697           const SCEV *TruncExpr =
1698               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1699           ExprToIVMap[TruncExpr] = Phi;
1700         }
1701       }
1702       continue;
1703     }
1704 
1705     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1706     // sense.
1707     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1708       continue;
1709 
1710     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1711       Instruction *OrigInc = dyn_cast<Instruction>(
1712           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1713       Instruction *IsomorphicInc =
1714           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1715 
1716       if (OrigInc && IsomorphicInc) {
1717         // If this phi has the same width but is more canonical, replace the
1718         // original with it. As part of the "more canonical" determination,
1719         // respect a prior decision to use an IV chain.
1720         if (OrigPhiRef->getType() == Phi->getType() &&
1721             !(ChainedPhis.count(Phi) ||
1722               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1723             (ChainedPhis.count(Phi) ||
1724              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1725           std::swap(OrigPhiRef, Phi);
1726           std::swap(OrigInc, IsomorphicInc);
1727         }
1728         // Replacing the congruent phi is sufficient because acyclic
1729         // redundancy elimination, CSE/GVN, should handle the
1730         // rest. However, once SCEV proves that a phi is congruent,
1731         // it's often the head of an IV user cycle that is isomorphic
1732         // with the original phi. It's worth eagerly cleaning up the
1733         // common case of a single IV increment so that DeleteDeadPHIs
1734         // can remove cycles that had postinc uses.
1735         // Because we may potentially introduce a new use of OrigIV that didn't
1736         // exist before at this point, its poison flags need readjustment.
1737         const SCEV *TruncExpr =
1738             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1739         if (OrigInc != IsomorphicInc &&
1740             TruncExpr == SE.getSCEV(IsomorphicInc) &&
1741             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1742             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
1743           SCEV_DEBUG_WITH_TYPE(
1744               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1745                                 << *IsomorphicInc << '\n');
1746           Value *NewInc = OrigInc;
1747           if (OrigInc->getType() != IsomorphicInc->getType()) {
1748             BasicBlock::iterator IP;
1749             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1750               IP = PN->getParent()->getFirstInsertionPt();
1751             else
1752               IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1753 
1754             IRBuilder<> Builder(IP->getParent(), IP);
1755             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1756             NewInc = Builder.CreateTruncOrBitCast(
1757                 OrigInc, IsomorphicInc->getType(), IVName);
1758           }
1759           IsomorphicInc->replaceAllUsesWith(NewInc);
1760           DeadInsts.emplace_back(IsomorphicInc);
1761         }
1762       }
1763     }
1764     SCEV_DEBUG_WITH_TYPE(DebugType,
1765                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1766                                 << '\n');
1767     SCEV_DEBUG_WITH_TYPE(
1768         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1769     ++NumElim;
1770     Value *NewIV = OrigPhiRef;
1771     if (OrigPhiRef->getType() != Phi->getType()) {
1772       IRBuilder<> Builder(L->getHeader(),
1773                           L->getHeader()->getFirstInsertionPt());
1774       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1775       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1776     }
1777     Phi->replaceAllUsesWith(NewIV);
1778     DeadInsts.emplace_back(Phi);
1779   }
1780   return NumElim;
1781 }
1782 
1783 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1784                                                const Instruction *At,
1785                                                Loop *L) {
1786   using namespace llvm::PatternMatch;
1787 
1788   SmallVector<BasicBlock *, 4> ExitingBlocks;
1789   L->getExitingBlocks(ExitingBlocks);
1790 
1791   // Look for suitable value in simple conditions at the loop exits.
1792   for (BasicBlock *BB : ExitingBlocks) {
1793     ICmpInst::Predicate Pred;
1794     Instruction *LHS, *RHS;
1795 
1796     if (!match(BB->getTerminator(),
1797                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1798                     m_BasicBlock(), m_BasicBlock())))
1799       continue;
1800 
1801     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1802       return true;
1803 
1804     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1805       return true;
1806   }
1807 
1808   // Use expand's logic which is used for reusing a previous Value in
1809   // ExprValueMap.  Note that we don't currently model the cost of
1810   // needing to drop poison generating flags on the instruction if we
1811   // want to reuse it.  We effectively assume that has zero cost.
1812   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1813   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1814 }
1815 
1816 template<typename T> static InstructionCost costAndCollectOperands(
1817   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1818   TargetTransformInfo::TargetCostKind CostKind,
1819   SmallVectorImpl<SCEVOperand> &Worklist) {
1820 
1821   const T *S = cast<T>(WorkItem.S);
1822   InstructionCost Cost = 0;
1823   // Object to help map SCEV operands to expanded IR instructions.
1824   struct OperationIndices {
1825     OperationIndices(unsigned Opc, size_t min, size_t max) :
1826       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1827     unsigned Opcode;
1828     size_t MinIdx;
1829     size_t MaxIdx;
1830   };
1831 
1832   // Collect the operations of all the instructions that will be needed to
1833   // expand the SCEVExpr. This is so that when we come to cost the operands,
1834   // we know what the generated user(s) will be.
1835   SmallVector<OperationIndices, 2> Operations;
1836 
1837   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1838     Operations.emplace_back(Opcode, 0, 0);
1839     return TTI.getCastInstrCost(Opcode, S->getType(),
1840                                 S->getOperand(0)->getType(),
1841                                 TTI::CastContextHint::None, CostKind);
1842   };
1843 
1844   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1845                        unsigned MinIdx = 0,
1846                        unsigned MaxIdx = 1) -> InstructionCost {
1847     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1848     return NumRequired *
1849       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1850   };
1851 
1852   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1853                         unsigned MaxIdx) -> InstructionCost {
1854     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1855     Type *OpType = S->getType();
1856     return NumRequired * TTI.getCmpSelInstrCost(
1857                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1858                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1859   };
1860 
1861   switch (S->getSCEVType()) {
1862   case scCouldNotCompute:
1863     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1864   case scUnknown:
1865   case scConstant:
1866   case scVScale:
1867     return 0;
1868   case scPtrToInt:
1869     Cost = CastCost(Instruction::PtrToInt);
1870     break;
1871   case scTruncate:
1872     Cost = CastCost(Instruction::Trunc);
1873     break;
1874   case scZeroExtend:
1875     Cost = CastCost(Instruction::ZExt);
1876     break;
1877   case scSignExtend:
1878     Cost = CastCost(Instruction::SExt);
1879     break;
1880   case scUDivExpr: {
1881     unsigned Opcode = Instruction::UDiv;
1882     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1883       if (SC->getAPInt().isPowerOf2())
1884         Opcode = Instruction::LShr;
1885     Cost = ArithCost(Opcode, 1);
1886     break;
1887   }
1888   case scAddExpr:
1889     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1890     break;
1891   case scMulExpr:
1892     // TODO: this is a very pessimistic cost modelling for Mul,
1893     // because of Bin Pow algorithm actually used by the expander,
1894     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1895     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1896     break;
1897   case scSMaxExpr:
1898   case scUMaxExpr:
1899   case scSMinExpr:
1900   case scUMinExpr:
1901   case scSequentialUMinExpr: {
1902     // FIXME: should this ask the cost for Intrinsic's?
1903     // The reduction tree.
1904     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1905     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1906     switch (S->getSCEVType()) {
1907     case scSequentialUMinExpr: {
1908       // The safety net against poison.
1909       // FIXME: this is broken.
1910       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1911       Cost += ArithCost(Instruction::Or,
1912                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1913       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1914       break;
1915     }
1916     default:
1917       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1918              "Unhandled SCEV expression type?");
1919       break;
1920     }
1921     break;
1922   }
1923   case scAddRecExpr: {
1924     // In this polynominal, we may have some zero operands, and we shouldn't
1925     // really charge for those. So how many non-zero coefficients are there?
1926     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1927                                     return !Op->isZero();
1928                                   });
1929 
1930     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1931     assert(!(*std::prev(S->operands().end()))->isZero() &&
1932            "Last operand should not be zero");
1933 
1934     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1935     int NumNonZeroDegreeNonOneTerms =
1936       llvm::count_if(S->operands(), [](const SCEV *Op) {
1937                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1938                       return !SConst || SConst->getAPInt().ugt(1);
1939                     });
1940 
1941     // Much like with normal add expr, the polynominal will require
1942     // one less addition than the number of it's terms.
1943     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1944                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1945     // Here, *each* one of those will require a multiplication.
1946     InstructionCost MulCost =
1947         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1948     Cost = AddCost + MulCost;
1949 
1950     // What is the degree of this polynominal?
1951     int PolyDegree = S->getNumOperands() - 1;
1952     assert(PolyDegree >= 1 && "Should be at least affine.");
1953 
1954     // The final term will be:
1955     //   Op_{PolyDegree} * x ^ {PolyDegree}
1956     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1957     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1958     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1959     // FIXME: this is conservatively correct, but might be overly pessimistic.
1960     Cost += MulCost * (PolyDegree - 1);
1961     break;
1962   }
1963   }
1964 
1965   for (auto &CostOp : Operations) {
1966     for (auto SCEVOp : enumerate(S->operands())) {
1967       // Clamp the index to account for multiple IR operations being chained.
1968       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1969       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1970       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1971     }
1972   }
1973   return Cost;
1974 }
1975 
1976 bool SCEVExpander::isHighCostExpansionHelper(
1977     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1978     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1979     SmallPtrSetImpl<const SCEV *> &Processed,
1980     SmallVectorImpl<SCEVOperand> &Worklist) {
1981   if (Cost > Budget)
1982     return true; // Already run out of budget, give up.
1983 
1984   const SCEV *S = WorkItem.S;
1985   // Was the cost of expansion of this expression already accounted for?
1986   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
1987     return false; // We have already accounted for this expression.
1988 
1989   // If we can find an existing value for this scev available at the point "At"
1990   // then consider the expression cheap.
1991   if (hasRelatedExistingExpansion(S, &At, L))
1992     return false; // Consider the expression to be free.
1993 
1994   TargetTransformInfo::TargetCostKind CostKind =
1995       L->getHeader()->getParent()->hasMinSize()
1996           ? TargetTransformInfo::TCK_CodeSize
1997           : TargetTransformInfo::TCK_RecipThroughput;
1998 
1999   switch (S->getSCEVType()) {
2000   case scCouldNotCompute:
2001     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2002   case scUnknown:
2003   case scVScale:
2004     // Assume to be zero-cost.
2005     return false;
2006   case scConstant: {
2007     // Only evalulate the costs of constants when optimizing for size.
2008     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2009       return false;
2010     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2011     Type *Ty = S->getType();
2012     Cost += TTI.getIntImmCostInst(
2013         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2014     return Cost > Budget;
2015   }
2016   case scTruncate:
2017   case scPtrToInt:
2018   case scZeroExtend:
2019   case scSignExtend: {
2020     Cost +=
2021         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2022     return false; // Will answer upon next entry into this function.
2023   }
2024   case scUDivExpr: {
2025     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2026     // HowManyLessThans produced to compute a precise expression, rather than a
2027     // UDiv from the user's code. If we can't find a UDiv in the code with some
2028     // simple searching, we need to account for it's cost.
2029 
2030     // At the beginning of this function we already tried to find existing
2031     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2032     // pattern involving division. This is just a simple search heuristic.
2033     if (hasRelatedExistingExpansion(
2034             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2035       return false; // Consider it to be free.
2036 
2037     Cost +=
2038         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2039     return false; // Will answer upon next entry into this function.
2040   }
2041   case scAddExpr:
2042   case scMulExpr:
2043   case scUMaxExpr:
2044   case scSMaxExpr:
2045   case scUMinExpr:
2046   case scSMinExpr:
2047   case scSequentialUMinExpr: {
2048     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2049            "Nary expr should have more than 1 operand.");
2050     // The simple nary expr will require one less op (or pair of ops)
2051     // than the number of it's terms.
2052     Cost +=
2053         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2054     return Cost > Budget;
2055   }
2056   case scAddRecExpr: {
2057     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2058            "Polynomial should be at least linear");
2059     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2060         WorkItem, TTI, CostKind, Worklist);
2061     return Cost > Budget;
2062   }
2063   }
2064   llvm_unreachable("Unknown SCEV kind!");
2065 }
2066 
2067 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2068                                             Instruction *IP) {
2069   assert(IP);
2070   switch (Pred->getKind()) {
2071   case SCEVPredicate::P_Union:
2072     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2073   case SCEVPredicate::P_Compare:
2074     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2075   case SCEVPredicate::P_Wrap: {
2076     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2077     return expandWrapPredicate(AddRecPred, IP);
2078   }
2079   }
2080   llvm_unreachable("Unknown SCEV predicate type");
2081 }
2082 
2083 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2084                                             Instruction *IP) {
2085   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2086   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2087 
2088   Builder.SetInsertPoint(IP);
2089   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2090   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2091   return I;
2092 }
2093 
2094 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2095                                            Instruction *Loc, bool Signed) {
2096   assert(AR->isAffine() && "Cannot generate RT check for "
2097                            "non-affine expression");
2098 
2099   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2100   SmallVector<const SCEVPredicate *, 4> Pred;
2101   const SCEV *ExitCount =
2102       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2103 
2104   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2105 
2106   const SCEV *Step = AR->getStepRecurrence(SE);
2107   const SCEV *Start = AR->getStart();
2108 
2109   Type *ARTy = AR->getType();
2110   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2111   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2112 
2113   // The expression {Start,+,Step} has nusw/nssw if
2114   //   Step < 0, Start - |Step| * Backedge <= Start
2115   //   Step >= 0, Start + |Step| * Backedge > Start
2116   // and |Step| * Backedge doesn't unsigned overflow.
2117 
2118   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2119   Builder.SetInsertPoint(Loc);
2120   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2121 
2122   IntegerType *Ty =
2123       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2124 
2125   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2126   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2127   Value *StartValue = expandCodeFor(Start, ARTy, Loc);
2128 
2129   ConstantInt *Zero =
2130       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2131 
2132   Builder.SetInsertPoint(Loc);
2133   // Compute |Step|
2134   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2135   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2136 
2137   // Compute |Step| * Backedge
2138   // Compute:
2139   //   1. Start + |Step| * Backedge < Start
2140   //   2. Start - |Step| * Backedge > Start
2141   //
2142   // And select either 1. or 2. depending on whether step is positive or
2143   // negative. If Step is known to be positive or negative, only create
2144   // either 1. or 2.
2145   auto ComputeEndCheck = [&]() -> Value * {
2146     // Checking <u 0 is always false.
2147     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2148       return ConstantInt::getFalse(Loc->getContext());
2149 
2150     // Get the backedge taken count and truncate or extended to the AR type.
2151     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2152 
2153     Value *MulV, *OfMul;
2154     if (Step->isOne()) {
2155       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2156       // needed, there is never an overflow, so to avoid artificially inflating
2157       // the cost of the check, directly emit the optimized IR.
2158       MulV = TruncTripCount;
2159       OfMul = ConstantInt::getFalse(MulV->getContext());
2160     } else {
2161       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2162                                              Intrinsic::umul_with_overflow, Ty);
2163       CallInst *Mul =
2164           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2165       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2166       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2167     }
2168 
2169     Value *Add = nullptr, *Sub = nullptr;
2170     bool NeedPosCheck = !SE.isKnownNegative(Step);
2171     bool NeedNegCheck = !SE.isKnownPositive(Step);
2172 
2173     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2174       StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy);
2175       Value *NegMulV = Builder.CreateNeg(MulV);
2176       if (NeedPosCheck)
2177         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2178       if (NeedNegCheck)
2179         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2180     } else {
2181       if (NeedPosCheck)
2182         Add = Builder.CreateAdd(StartValue, MulV);
2183       if (NeedNegCheck)
2184         Sub = Builder.CreateSub(StartValue, MulV);
2185     }
2186 
2187     Value *EndCompareLT = nullptr;
2188     Value *EndCompareGT = nullptr;
2189     Value *EndCheck = nullptr;
2190     if (NeedPosCheck)
2191       EndCheck = EndCompareLT = Builder.CreateICmp(
2192           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2193     if (NeedNegCheck)
2194       EndCheck = EndCompareGT = Builder.CreateICmp(
2195           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2196     if (NeedPosCheck && NeedNegCheck) {
2197       // Select the answer based on the sign of Step.
2198       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2199     }
2200     return Builder.CreateOr(EndCheck, OfMul);
2201   };
2202   Value *EndCheck = ComputeEndCheck();
2203 
2204   // If the backedge taken count type is larger than the AR type,
2205   // check that we don't drop any bits by truncating it. If we are
2206   // dropping bits, then we have overflow (unless the step is zero).
2207   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2208     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2209     auto *BackedgeCheck =
2210         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2211                            ConstantInt::get(Loc->getContext(), MaxVal));
2212     BackedgeCheck = Builder.CreateAnd(
2213         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2214 
2215     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2216   }
2217 
2218   return EndCheck;
2219 }
2220 
2221 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2222                                          Instruction *IP) {
2223   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2224   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2225 
2226   // Add a check for NUSW
2227   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2228     NUSWCheck = generateOverflowCheck(A, IP, false);
2229 
2230   // Add a check for NSSW
2231   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2232     NSSWCheck = generateOverflowCheck(A, IP, true);
2233 
2234   if (NUSWCheck && NSSWCheck)
2235     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2236 
2237   if (NUSWCheck)
2238     return NUSWCheck;
2239 
2240   if (NSSWCheck)
2241     return NSSWCheck;
2242 
2243   return ConstantInt::getFalse(IP->getContext());
2244 }
2245 
2246 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2247                                           Instruction *IP) {
2248   // Loop over all checks in this set.
2249   SmallVector<Value *> Checks;
2250   for (const auto *Pred : Union->getPredicates()) {
2251     Checks.push_back(expandCodeForPredicate(Pred, IP));
2252     Builder.SetInsertPoint(IP);
2253   }
2254 
2255   if (Checks.empty())
2256     return ConstantInt::getFalse(IP->getContext());
2257   return Builder.CreateOr(Checks);
2258 }
2259 
2260 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2261   auto *DefI = dyn_cast<Instruction>(V);
2262   if (!PreserveLCSSA || !DefI)
2263     return V;
2264 
2265   Instruction *InsertPt = &*Builder.GetInsertPoint();
2266   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2267   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2268   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2269     return V;
2270 
2271   // Create a temporary instruction to at the current insertion point, so we
2272   // can hand it off to the helper to create LCSSA PHIs if required for the
2273   // new use.
2274   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2275   // would accept a insertion point and return an LCSSA phi for that
2276   // insertion point, so there is no need to insert & remove the temporary
2277   // instruction.
2278   Type *ToTy;
2279   if (DefI->getType()->isIntegerTy())
2280     ToTy = PointerType::get(DefI->getContext(), 0);
2281   else
2282     ToTy = Type::getInt32Ty(DefI->getContext());
2283   Instruction *User =
2284       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2285   auto RemoveUserOnExit =
2286       make_scope_exit([User]() { User->eraseFromParent(); });
2287 
2288   SmallVector<Instruction *, 1> ToUpdate;
2289   ToUpdate.push_back(DefI);
2290   SmallVector<PHINode *, 16> PHIsToRemove;
2291   SmallVector<PHINode *, 16> InsertedPHIs;
2292   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2293                            &InsertedPHIs);
2294   for (PHINode *PN : InsertedPHIs)
2295     rememberInstruction(PN);
2296   for (PHINode *PN : PHIsToRemove) {
2297     if (!PN->use_empty())
2298       continue;
2299     InsertedValues.erase(PN);
2300     InsertedPostIncValues.erase(PN);
2301     PN->eraseFromParent();
2302   }
2303 
2304   return User->getOperand(0);
2305 }
2306 
2307 namespace {
2308 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2309 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2310 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2311 // instruction, but the important thing is that we prove the denominator is
2312 // nonzero before expansion.
2313 //
2314 // IVUsers already checks that IV-derived expressions are safe. So this check is
2315 // only needed when the expression includes some subexpression that is not IV
2316 // derived.
2317 //
2318 // Currently, we only allow division by a value provably non-zero here.
2319 //
2320 // We cannot generally expand recurrences unless the step dominates the loop
2321 // header. The expander handles the special case of affine recurrences by
2322 // scaling the recurrence outside the loop, but this technique isn't generally
2323 // applicable. Expanding a nested recurrence outside a loop requires computing
2324 // binomial coefficients. This could be done, but the recurrence has to be in a
2325 // perfectly reduced form, which can't be guaranteed.
2326 struct SCEVFindUnsafe {
2327   ScalarEvolution &SE;
2328   bool CanonicalMode;
2329   bool IsUnsafe = false;
2330 
2331   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2332       : SE(SE), CanonicalMode(CanonicalMode) {}
2333 
2334   bool follow(const SCEV *S) {
2335     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2336       if (!SE.isKnownNonZero(D->getRHS())) {
2337         IsUnsafe = true;
2338         return false;
2339       }
2340     }
2341     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2342       const SCEV *Step = AR->getStepRecurrence(SE);
2343       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2344         IsUnsafe = true;
2345         return false;
2346       }
2347 
2348       // For non-affine addrecs or in non-canonical mode we need a preheader
2349       // to insert into.
2350       if (!AR->getLoop()->getLoopPreheader() &&
2351           (!CanonicalMode || !AR->isAffine())) {
2352         IsUnsafe = true;
2353         return false;
2354       }
2355     }
2356     return true;
2357   }
2358   bool isDone() const { return IsUnsafe; }
2359 };
2360 } // namespace
2361 
2362 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2363   SCEVFindUnsafe Search(SE, CanonicalMode);
2364   visitAll(S, Search);
2365   return !Search.IsUnsafe;
2366 }
2367 
2368 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2369                                     const Instruction *InsertionPoint) const {
2370   if (!isSafeToExpand(S))
2371     return false;
2372   // We have to prove that the expanded site of S dominates InsertionPoint.
2373   // This is easy when not in the same block, but hard when S is an instruction
2374   // to be expanded somewhere inside the same block as our insertion point.
2375   // What we really need here is something analogous to an OrderedBasicBlock,
2376   // but for the moment, we paper over the problem by handling two common and
2377   // cheap to check cases.
2378   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2379     return true;
2380   if (SE.dominates(S, InsertionPoint->getParent())) {
2381     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2382       return true;
2383     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2384       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2385         return true;
2386   }
2387   return false;
2388 }
2389 
2390 void SCEVExpanderCleaner::cleanup() {
2391   // Result is used, nothing to remove.
2392   if (ResultUsed)
2393     return;
2394 
2395   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2396 #ifndef NDEBUG
2397   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2398                                             InsertedInstructions.end());
2399   (void)InsertedSet;
2400 #endif
2401   // Remove sets with value handles.
2402   Expander.clear();
2403 
2404   // Remove all inserted instructions.
2405   for (Instruction *I : reverse(InsertedInstructions)) {
2406 #ifndef NDEBUG
2407     assert(all_of(I->users(),
2408                   [&InsertedSet](Value *U) {
2409                     return InsertedSet.contains(cast<Instruction>(U));
2410                   }) &&
2411            "removed instruction should only be used by instructions inserted "
2412            "during expansion");
2413 #endif
2414     assert(!I->getType()->isVoidTy() &&
2415            "inserted instruction should have non-void types");
2416     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2417     I->eraseFromParent();
2418   }
2419 }
2420