xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision e949b54a5b7cd7cd0690fa126be3363a21f05a8e)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 PoisonFlags::PoisonFlags(const Instruction *I) {
47   NUW = false;
48   NSW = false;
49   Exact = false;
50   Disjoint = false;
51   NNeg = false;
52   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
53     NUW = OBO->hasNoUnsignedWrap();
54     NSW = OBO->hasNoSignedWrap();
55   }
56   if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
57     Exact = PEO->isExact();
58   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
59     Disjoint = PDI->isDisjoint();
60   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
61     NNeg = PNI->hasNonNeg();
62   if (auto *TI = dyn_cast<TruncInst>(I)) {
63     NUW = TI->hasNoUnsignedWrap();
64     NSW = TI->hasNoSignedWrap();
65   }
66 }
67 
68 void PoisonFlags::apply(Instruction *I) {
69   if (isa<OverflowingBinaryOperator>(I)) {
70     I->setHasNoUnsignedWrap(NUW);
71     I->setHasNoSignedWrap(NSW);
72   }
73   if (isa<PossiblyExactOperator>(I))
74     I->setIsExact(Exact);
75   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
76     PDI->setIsDisjoint(Disjoint);
77   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
78     PNI->setNonNeg(NNeg);
79   if (isa<TruncInst>(I)) {
80     I->setHasNoUnsignedWrap(NUW);
81     I->setHasNoSignedWrap(NSW);
82   }
83 }
84 
85 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
86 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
87 /// creating a new one.
88 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
89                                        Instruction::CastOps Op,
90                                        BasicBlock::iterator IP) {
91   // This function must be called with the builder having a valid insertion
92   // point. It doesn't need to be the actual IP where the uses of the returned
93   // cast will be added, but it must dominate such IP.
94   // We use this precondition to produce a cast that will dominate all its
95   // uses. In particular, this is crucial for the case where the builder's
96   // insertion point *is* the point where we were asked to put the cast.
97   // Since we don't know the builder's insertion point is actually
98   // where the uses will be added (only that it dominates it), we are
99   // not allowed to move it.
100   BasicBlock::iterator BIP = Builder.GetInsertPoint();
101 
102   Value *Ret = nullptr;
103 
104   // Check to see if there is already a cast!
105   for (User *U : V->users()) {
106     if (U->getType() != Ty)
107       continue;
108     CastInst *CI = dyn_cast<CastInst>(U);
109     if (!CI || CI->getOpcode() != Op)
110       continue;
111 
112     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
113     // the cast must also properly dominate the Builder's insertion point.
114     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
115         (&*IP == CI || CI->comesBefore(&*IP))) {
116       Ret = CI;
117       break;
118     }
119   }
120 
121   // Create a new cast.
122   if (!Ret) {
123     SCEVInsertPointGuard Guard(Builder, this);
124     Builder.SetInsertPoint(&*IP);
125     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
126   }
127 
128   // We assert at the end of the function since IP might point to an
129   // instruction with different dominance properties than a cast
130   // (an invoke for example) and not dominate BIP (but the cast does).
131   assert(!isa<Instruction>(Ret) ||
132          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
133 
134   return Ret;
135 }
136 
137 BasicBlock::iterator
138 SCEVExpander::findInsertPointAfter(Instruction *I,
139                                    Instruction *MustDominate) const {
140   BasicBlock::iterator IP = ++I->getIterator();
141   if (auto *II = dyn_cast<InvokeInst>(I))
142     IP = II->getNormalDest()->begin();
143 
144   while (isa<PHINode>(IP))
145     ++IP;
146 
147   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
148     ++IP;
149   } else if (isa<CatchSwitchInst>(IP)) {
150     IP = MustDominate->getParent()->getFirstInsertionPt();
151   } else {
152     assert(!IP->isEHPad() && "unexpected eh pad!");
153   }
154 
155   // Adjust insert point to be after instructions inserted by the expander, so
156   // we can re-use already inserted instructions. Avoid skipping past the
157   // original \p MustDominate, in case it is an inserted instruction.
158   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
159     ++IP;
160 
161   return IP;
162 }
163 
164 BasicBlock::iterator
165 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
166   // Cast the argument at the beginning of the entry block, after
167   // any bitcasts of other arguments.
168   if (Argument *A = dyn_cast<Argument>(V)) {
169     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
170     while ((isa<BitCastInst>(IP) &&
171             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
172             cast<BitCastInst>(IP)->getOperand(0) != A) ||
173            isa<DbgInfoIntrinsic>(IP))
174       ++IP;
175     return IP;
176   }
177 
178   // Cast the instruction immediately after the instruction.
179   if (Instruction *I = dyn_cast<Instruction>(V))
180     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
181 
182   // Otherwise, this must be some kind of a constant,
183   // so let's plop this cast into the function's entry block.
184   assert(isa<Constant>(V) &&
185          "Expected the cast argument to be a global/constant");
186   return Builder.GetInsertBlock()
187       ->getParent()
188       ->getEntryBlock()
189       .getFirstInsertionPt();
190 }
191 
192 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
193 /// which must be possible with a noop cast, doing what we can to share
194 /// the casts.
195 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
196   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
197   assert((Op == Instruction::BitCast ||
198           Op == Instruction::PtrToInt ||
199           Op == Instruction::IntToPtr) &&
200          "InsertNoopCastOfTo cannot perform non-noop casts!");
201   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
202          "InsertNoopCastOfTo cannot change sizes!");
203 
204   // inttoptr only works for integral pointers. For non-integral pointers, we
205   // can create a GEP on null with the integral value as index. Note that
206   // it is safe to use GEP of null instead of inttoptr here, because only
207   // expressions already based on a GEP of null should be converted to pointers
208   // during expansion.
209   if (Op == Instruction::IntToPtr) {
210     auto *PtrTy = cast<PointerType>(Ty);
211     if (DL.isNonIntegralPointerType(PtrTy))
212       return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
213   }
214   // Short-circuit unnecessary bitcasts.
215   if (Op == Instruction::BitCast) {
216     if (V->getType() == Ty)
217       return V;
218     if (CastInst *CI = dyn_cast<CastInst>(V)) {
219       if (CI->getOperand(0)->getType() == Ty)
220         return CI->getOperand(0);
221     }
222   }
223   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
224   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
225       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
226     if (CastInst *CI = dyn_cast<CastInst>(V))
227       if ((CI->getOpcode() == Instruction::PtrToInt ||
228            CI->getOpcode() == Instruction::IntToPtr) &&
229           SE.getTypeSizeInBits(CI->getType()) ==
230           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
231         return CI->getOperand(0);
232     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
233       if ((CE->getOpcode() == Instruction::PtrToInt ||
234            CE->getOpcode() == Instruction::IntToPtr) &&
235           SE.getTypeSizeInBits(CE->getType()) ==
236           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
237         return CE->getOperand(0);
238   }
239 
240   // Fold a cast of a constant.
241   if (Constant *C = dyn_cast<Constant>(V))
242     return ConstantExpr::getCast(Op, C, Ty);
243 
244   // Try to reuse existing cast, or insert one.
245   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
246 }
247 
248 /// InsertBinop - Insert the specified binary operator, doing a small amount
249 /// of work to avoid inserting an obviously redundant operation, and hoisting
250 /// to an outer loop when the opportunity is there and it is safe.
251 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
252                                  Value *LHS, Value *RHS,
253                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
254   // Fold a binop with constant operands.
255   if (Constant *CLHS = dyn_cast<Constant>(LHS))
256     if (Constant *CRHS = dyn_cast<Constant>(RHS))
257       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
258         return Res;
259 
260   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
261   unsigned ScanLimit = 6;
262   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
263   // Scanning starts from the last instruction before the insertion point.
264   BasicBlock::iterator IP = Builder.GetInsertPoint();
265   if (IP != BlockBegin) {
266     --IP;
267     for (; ScanLimit; --IP, --ScanLimit) {
268       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
269       // generated code.
270       if (isa<DbgInfoIntrinsic>(IP))
271         ScanLimit++;
272 
273       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
274         // Ensure that no-wrap flags match.
275         if (isa<OverflowingBinaryOperator>(I)) {
276           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
277             return true;
278           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
279             return true;
280         }
281         // Conservatively, do not use any instruction which has any of exact
282         // flags installed.
283         if (isa<PossiblyExactOperator>(I) && I->isExact())
284           return true;
285         return false;
286       };
287       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
288           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
289         return &*IP;
290       if (IP == BlockBegin) break;
291     }
292   }
293 
294   // Save the original insertion point so we can restore it when we're done.
295   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
296   SCEVInsertPointGuard Guard(Builder, this);
297 
298   if (IsSafeToHoist) {
299     // Move the insertion point out of as many loops as we can.
300     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
301       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
302       BasicBlock *Preheader = L->getLoopPreheader();
303       if (!Preheader) break;
304 
305       // Ok, move up a level.
306       Builder.SetInsertPoint(Preheader->getTerminator());
307     }
308   }
309 
310   // If we haven't found this binop, insert it.
311   // TODO: Use the Builder, which will make CreateBinOp below fold with
312   // InstSimplifyFolder.
313   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
314   BO->setDebugLoc(Loc);
315   if (Flags & SCEV::FlagNUW)
316     BO->setHasNoUnsignedWrap();
317   if (Flags & SCEV::FlagNSW)
318     BO->setHasNoSignedWrap();
319 
320   return BO;
321 }
322 
323 /// expandAddToGEP - Expand an addition expression with a pointer type into
324 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
325 /// BasicAliasAnalysis and other passes analyze the result. See the rules
326 /// for getelementptr vs. inttoptr in
327 /// http://llvm.org/docs/LangRef.html#pointeraliasing
328 /// for details.
329 ///
330 /// Design note: The correctness of using getelementptr here depends on
331 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
332 /// they may introduce pointer arithmetic which may not be safely converted
333 /// into getelementptr.
334 ///
335 /// Design note: It might seem desirable for this function to be more
336 /// loop-aware. If some of the indices are loop-invariant while others
337 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
338 /// loop-invariant portions of the overall computation outside the loop.
339 /// However, there are a few reasons this is not done here. Hoisting simple
340 /// arithmetic is a low-level optimization that often isn't very
341 /// important until late in the optimization process. In fact, passes
342 /// like InstructionCombining will combine GEPs, even if it means
343 /// pushing loop-invariant computation down into loops, so even if the
344 /// GEPs were split here, the work would quickly be undone. The
345 /// LoopStrengthReduction pass, which is usually run quite late (and
346 /// after the last InstructionCombining pass), takes care of hoisting
347 /// loop-invariant portions of expressions, after considering what
348 /// can be folded using target addressing modes.
349 ///
350 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
351   assert(!isa<Instruction>(V) ||
352          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
353 
354   Value *Idx = expand(Offset);
355 
356   // Fold a GEP with constant operands.
357   if (Constant *CLHS = dyn_cast<Constant>(V))
358     if (Constant *CRHS = dyn_cast<Constant>(Idx))
359       return Builder.CreatePtrAdd(CLHS, CRHS);
360 
361   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
362   unsigned ScanLimit = 6;
363   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
364   // Scanning starts from the last instruction before the insertion point.
365   BasicBlock::iterator IP = Builder.GetInsertPoint();
366   if (IP != BlockBegin) {
367     --IP;
368     for (; ScanLimit; --IP, --ScanLimit) {
369       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
370       // generated code.
371       if (isa<DbgInfoIntrinsic>(IP))
372         ScanLimit++;
373       if (IP->getOpcode() == Instruction::GetElementPtr &&
374           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
375           cast<GEPOperator>(&*IP)->getSourceElementType() ==
376               Builder.getInt8Ty())
377         return &*IP;
378       if (IP == BlockBegin) break;
379     }
380   }
381 
382   // Save the original insertion point so we can restore it when we're done.
383   SCEVInsertPointGuard Guard(Builder, this);
384 
385   // Move the insertion point out of as many loops as we can.
386   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
387     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
388     BasicBlock *Preheader = L->getLoopPreheader();
389     if (!Preheader) break;
390 
391     // Ok, move up a level.
392     Builder.SetInsertPoint(Preheader->getTerminator());
393   }
394 
395   // Emit a GEP.
396   return Builder.CreatePtrAdd(V, Idx, "scevgep");
397 }
398 
399 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
400 /// SCEV expansion. If they are nested, this is the most nested. If they are
401 /// neighboring, pick the later.
402 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
403                                         DominatorTree &DT) {
404   if (!A) return B;
405   if (!B) return A;
406   if (A->contains(B)) return B;
407   if (B->contains(A)) return A;
408   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
409   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
410   return A; // Arbitrarily break the tie.
411 }
412 
413 /// getRelevantLoop - Get the most relevant loop associated with the given
414 /// expression, according to PickMostRelevantLoop.
415 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
416   // Test whether we've already computed the most relevant loop for this SCEV.
417   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
418   if (!Pair.second)
419     return Pair.first->second;
420 
421   switch (S->getSCEVType()) {
422   case scConstant:
423   case scVScale:
424     return nullptr; // A constant has no relevant loops.
425   case scTruncate:
426   case scZeroExtend:
427   case scSignExtend:
428   case scPtrToInt:
429   case scAddExpr:
430   case scMulExpr:
431   case scUDivExpr:
432   case scAddRecExpr:
433   case scUMaxExpr:
434   case scSMaxExpr:
435   case scUMinExpr:
436   case scSMinExpr:
437   case scSequentialUMinExpr: {
438     const Loop *L = nullptr;
439     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440       L = AR->getLoop();
441     for (const SCEV *Op : S->operands())
442       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
443     return RelevantLoops[S] = L;
444   }
445   case scUnknown: {
446     const SCEVUnknown *U = cast<SCEVUnknown>(S);
447     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
448       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
449     // A non-instruction has no relevant loops.
450     return nullptr;
451   }
452   case scCouldNotCompute:
453     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
454   }
455   llvm_unreachable("Unexpected SCEV type!");
456 }
457 
458 namespace {
459 
460 /// LoopCompare - Compare loops by PickMostRelevantLoop.
461 class LoopCompare {
462   DominatorTree &DT;
463 public:
464   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
465 
466   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
467                   std::pair<const Loop *, const SCEV *> RHS) const {
468     // Keep pointer operands sorted at the end.
469     if (LHS.second->getType()->isPointerTy() !=
470         RHS.second->getType()->isPointerTy())
471       return LHS.second->getType()->isPointerTy();
472 
473     // Compare loops with PickMostRelevantLoop.
474     if (LHS.first != RHS.first)
475       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
476 
477     // If one operand is a non-constant negative and the other is not,
478     // put the non-constant negative on the right so that a sub can
479     // be used instead of a negate and add.
480     if (LHS.second->isNonConstantNegative()) {
481       if (!RHS.second->isNonConstantNegative())
482         return false;
483     } else if (RHS.second->isNonConstantNegative())
484       return true;
485 
486     // Otherwise they are equivalent according to this comparison.
487     return false;
488   }
489 };
490 
491 }
492 
493 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
494   // Collect all the add operands in a loop, along with their associated loops.
495   // Iterate in reverse so that constants are emitted last, all else equal, and
496   // so that pointer operands are inserted first, which the code below relies on
497   // to form more involved GEPs.
498   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
499   for (const SCEV *Op : reverse(S->operands()))
500     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
501 
502   // Sort by loop. Use a stable sort so that constants follow non-constants and
503   // pointer operands precede non-pointer operands.
504   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
505 
506   // Emit instructions to add all the operands. Hoist as much as possible
507   // out of loops, and form meaningful getelementptrs where possible.
508   Value *Sum = nullptr;
509   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
510     const Loop *CurLoop = I->first;
511     const SCEV *Op = I->second;
512     if (!Sum) {
513       // This is the first operand. Just expand it.
514       Sum = expand(Op);
515       ++I;
516       continue;
517     }
518 
519     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
520     if (isa<PointerType>(Sum->getType())) {
521       // The running sum expression is a pointer. Try to form a getelementptr
522       // at this level with that as the base.
523       SmallVector<const SCEV *, 4> NewOps;
524       for (; I != E && I->first == CurLoop; ++I) {
525         // If the operand is SCEVUnknown and not instructions, peek through
526         // it, to enable more of it to be folded into the GEP.
527         const SCEV *X = I->second;
528         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
529           if (!isa<Instruction>(U->getValue()))
530             X = SE.getSCEV(U->getValue());
531         NewOps.push_back(X);
532       }
533       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
534     } else if (Op->isNonConstantNegative()) {
535       // Instead of doing a negate and add, just do a subtract.
536       Value *W = expand(SE.getNegativeSCEV(Op));
537       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
538                         /*IsSafeToHoist*/ true);
539       ++I;
540     } else {
541       // A simple add.
542       Value *W = expand(Op);
543       // Canonicalize a constant to the RHS.
544       if (isa<Constant>(Sum))
545         std::swap(Sum, W);
546       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
547                         /*IsSafeToHoist*/ true);
548       ++I;
549     }
550   }
551 
552   return Sum;
553 }
554 
555 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
556   Type *Ty = S->getType();
557 
558   // Collect all the mul operands in a loop, along with their associated loops.
559   // Iterate in reverse so that constants are emitted last, all else equal.
560   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
561   for (const SCEV *Op : reverse(S->operands()))
562     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
563 
564   // Sort by loop. Use a stable sort so that constants follow non-constants.
565   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
566 
567   // Emit instructions to mul all the operands. Hoist as much as possible
568   // out of loops.
569   Value *Prod = nullptr;
570   auto I = OpsAndLoops.begin();
571 
572   // Expand the calculation of X pow N in the following manner:
573   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
574   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
575   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
576     auto E = I;
577     // Calculate how many times the same operand from the same loop is included
578     // into this power.
579     uint64_t Exponent = 0;
580     const uint64_t MaxExponent = UINT64_MAX >> 1;
581     // No one sane will ever try to calculate such huge exponents, but if we
582     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
583     // below when the power of 2 exceeds our Exponent, and we want it to be
584     // 1u << 31 at most to not deal with unsigned overflow.
585     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
586       ++Exponent;
587       ++E;
588     }
589     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
590 
591     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
592     // that are needed into the result.
593     Value *P = expand(I->second);
594     Value *Result = nullptr;
595     if (Exponent & 1)
596       Result = P;
597     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
598       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
599                       /*IsSafeToHoist*/ true);
600       if (Exponent & BinExp)
601         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
602                                       SCEV::FlagAnyWrap,
603                                       /*IsSafeToHoist*/ true)
604                         : P;
605     }
606 
607     I = E;
608     assert(Result && "Nothing was expanded?");
609     return Result;
610   };
611 
612   while (I != OpsAndLoops.end()) {
613     if (!Prod) {
614       // This is the first operand. Just expand it.
615       Prod = ExpandOpBinPowN();
616     } else if (I->second->isAllOnesValue()) {
617       // Instead of doing a multiply by negative one, just do a negate.
618       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
619                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
620       ++I;
621     } else {
622       // A simple mul.
623       Value *W = ExpandOpBinPowN();
624       // Canonicalize a constant to the RHS.
625       if (isa<Constant>(Prod)) std::swap(Prod, W);
626       const APInt *RHS;
627       if (match(W, m_Power2(RHS))) {
628         // Canonicalize Prod*(1<<C) to Prod<<C.
629         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
630         auto NWFlags = S->getNoWrapFlags();
631         // clear nsw flag if shl will produce poison value.
632         if (RHS->logBase2() == RHS->getBitWidth() - 1)
633           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
634         Prod = InsertBinop(Instruction::Shl, Prod,
635                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
636                            /*IsSafeToHoist*/ true);
637       } else {
638         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
639                            /*IsSafeToHoist*/ true);
640       }
641     }
642   }
643 
644   return Prod;
645 }
646 
647 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
648   Value *LHS = expand(S->getLHS());
649   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
650     const APInt &RHS = SC->getAPInt();
651     if (RHS.isPowerOf2())
652       return InsertBinop(Instruction::LShr, LHS,
653                          ConstantInt::get(SC->getType(), RHS.logBase2()),
654                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
655   }
656 
657   Value *RHS = expand(S->getRHS());
658   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
659                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
660 }
661 
662 /// Determine if this is a well-behaved chain of instructions leading back to
663 /// the PHI. If so, it may be reused by expanded expressions.
664 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
665                                          const Loop *L) {
666   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
667       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
668     return false;
669   // If any of the operands don't dominate the insert position, bail.
670   // Addrec operands are always loop-invariant, so this can only happen
671   // if there are instructions which haven't been hoisted.
672   if (L == IVIncInsertLoop) {
673     for (Use &Op : llvm::drop_begin(IncV->operands()))
674       if (Instruction *OInst = dyn_cast<Instruction>(Op))
675         if (!SE.DT.dominates(OInst, IVIncInsertPos))
676           return false;
677   }
678   // Advance to the next instruction.
679   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
680   if (!IncV)
681     return false;
682 
683   if (IncV->mayHaveSideEffects())
684     return false;
685 
686   if (IncV == PN)
687     return true;
688 
689   return isNormalAddRecExprPHI(PN, IncV, L);
690 }
691 
692 /// getIVIncOperand returns an induction variable increment's induction
693 /// variable operand.
694 ///
695 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
696 /// operands dominate InsertPos.
697 ///
698 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
699 /// simple patterns generated by getAddRecExprPHILiterally and
700 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
701 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
702                                            Instruction *InsertPos,
703                                            bool allowScale) {
704   if (IncV == InsertPos)
705     return nullptr;
706 
707   switch (IncV->getOpcode()) {
708   default:
709     return nullptr;
710   // Check for a simple Add/Sub or GEP of a loop invariant step.
711   case Instruction::Add:
712   case Instruction::Sub: {
713     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
714     if (!OInst || SE.DT.dominates(OInst, InsertPos))
715       return dyn_cast<Instruction>(IncV->getOperand(0));
716     return nullptr;
717   }
718   case Instruction::BitCast:
719     return dyn_cast<Instruction>(IncV->getOperand(0));
720   case Instruction::GetElementPtr:
721     for (Use &U : llvm::drop_begin(IncV->operands())) {
722       if (isa<Constant>(U))
723         continue;
724       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
725         if (!SE.DT.dominates(OInst, InsertPos))
726           return nullptr;
727       }
728       if (allowScale) {
729         // allow any kind of GEP as long as it can be hoisted.
730         continue;
731       }
732       // GEPs produced by SCEVExpander use i8 element type.
733       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
734         return nullptr;
735       break;
736     }
737     return dyn_cast<Instruction>(IncV->getOperand(0));
738   }
739 }
740 
741 /// If the insert point of the current builder or any of the builders on the
742 /// stack of saved builders has 'I' as its insert point, update it to point to
743 /// the instruction after 'I'.  This is intended to be used when the instruction
744 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
745 /// different block, the inconsistent insert point (with a mismatched
746 /// Instruction and Block) can lead to an instruction being inserted in a block
747 /// other than its parent.
748 void SCEVExpander::fixupInsertPoints(Instruction *I) {
749   BasicBlock::iterator It(*I);
750   BasicBlock::iterator NewInsertPt = std::next(It);
751   if (Builder.GetInsertPoint() == It)
752     Builder.SetInsertPoint(&*NewInsertPt);
753   for (auto *InsertPtGuard : InsertPointGuards)
754     if (InsertPtGuard->GetInsertPoint() == It)
755       InsertPtGuard->SetInsertPoint(NewInsertPt);
756 }
757 
758 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
759 /// it available to other uses in this loop. Recursively hoist any operands,
760 /// until we reach a value that dominates InsertPos.
761 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
762                               bool RecomputePoisonFlags) {
763   auto FixupPoisonFlags = [this](Instruction *I) {
764     // Drop flags that are potentially inferred from old context and infer flags
765     // in new context.
766     rememberFlags(I);
767     I->dropPoisonGeneratingFlags();
768     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
769       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
770         auto *BO = cast<BinaryOperator>(I);
771         BO->setHasNoUnsignedWrap(
772             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
773         BO->setHasNoSignedWrap(
774             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
775       }
776   };
777 
778   if (SE.DT.dominates(IncV, InsertPos)) {
779     if (RecomputePoisonFlags)
780       FixupPoisonFlags(IncV);
781     return true;
782   }
783 
784   // InsertPos must itself dominate IncV so that IncV's new position satisfies
785   // its existing users.
786   if (isa<PHINode>(InsertPos) ||
787       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
788     return false;
789 
790   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
791     return false;
792 
793   // Check that the chain of IV operands leading back to Phi can be hoisted.
794   SmallVector<Instruction*, 4> IVIncs;
795   for(;;) {
796     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
797     if (!Oper)
798       return false;
799     // IncV is safe to hoist.
800     IVIncs.push_back(IncV);
801     IncV = Oper;
802     if (SE.DT.dominates(IncV, InsertPos))
803       break;
804   }
805   for (Instruction *I : llvm::reverse(IVIncs)) {
806     fixupInsertPoints(I);
807     I->moveBefore(InsertPos);
808     if (RecomputePoisonFlags)
809       FixupPoisonFlags(I);
810   }
811   return true;
812 }
813 
814 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi,
815                                                   PHINode *WidePhi,
816                                                   Instruction *OrigInc,
817                                                   Instruction *WideInc) {
818   return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) &&
819          match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) &&
820          OrigInc->getOpcode() == WideInc->getOpcode();
821 }
822 
823 /// Determine if this cyclic phi is in a form that would have been generated by
824 /// LSR. We don't care if the phi was actually expanded in this pass, as long
825 /// as it is in a low-cost form, for example, no implied multiplication. This
826 /// should match any patterns generated by getAddRecExprPHILiterally and
827 /// expandAddtoGEP.
828 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
829                                            const Loop *L) {
830   for(Instruction *IVOper = IncV;
831       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
832                                 /*allowScale=*/false));) {
833     if (IVOper == PN)
834       return true;
835   }
836   return false;
837 }
838 
839 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
840 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
841 /// need to materialize IV increments elsewhere to handle difficult situations.
842 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
843                                  bool useSubtract) {
844   Value *IncV;
845   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
846   if (PN->getType()->isPointerTy()) {
847     // TODO: Change name to IVName.iv.next.
848     IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep");
849   } else {
850     IncV = useSubtract ?
851       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
852       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
853   }
854   return IncV;
855 }
856 
857 /// Check whether we can cheaply express the requested SCEV in terms of
858 /// the available PHI SCEV by truncation and/or inversion of the step.
859 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
860                                     const SCEVAddRecExpr *Phi,
861                                     const SCEVAddRecExpr *Requested,
862                                     bool &InvertStep) {
863   // We can't transform to match a pointer PHI.
864   Type *PhiTy = Phi->getType();
865   Type *RequestedTy = Requested->getType();
866   if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
867     return false;
868 
869   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
870     return false;
871 
872   // Try truncate it if necessary.
873   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
874   if (!Phi)
875     return false;
876 
877   // Check whether truncation will help.
878   if (Phi == Requested) {
879     InvertStep = false;
880     return true;
881   }
882 
883   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
884   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
885     InvertStep = true;
886     return true;
887   }
888 
889   return false;
890 }
891 
892 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
893   if (!isa<IntegerType>(AR->getType()))
894     return false;
895 
896   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
897   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
898   const SCEV *Step = AR->getStepRecurrence(SE);
899   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
900                                             SE.getSignExtendExpr(AR, WideTy));
901   const SCEV *ExtendAfterOp =
902     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
903   return ExtendAfterOp == OpAfterExtend;
904 }
905 
906 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
907   if (!isa<IntegerType>(AR->getType()))
908     return false;
909 
910   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
911   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
912   const SCEV *Step = AR->getStepRecurrence(SE);
913   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
914                                             SE.getZeroExtendExpr(AR, WideTy));
915   const SCEV *ExtendAfterOp =
916     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
917   return ExtendAfterOp == OpAfterExtend;
918 }
919 
920 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
921 /// the base addrec, which is the addrec without any non-loop-dominating
922 /// values, and return the PHI.
923 PHINode *
924 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
925                                         const Loop *L, Type *&TruncTy,
926                                         bool &InvertStep) {
927   assert((!IVIncInsertLoop || IVIncInsertPos) &&
928          "Uninitialized insert position");
929 
930   // Reuse a previously-inserted PHI, if present.
931   BasicBlock *LatchBlock = L->getLoopLatch();
932   if (LatchBlock) {
933     PHINode *AddRecPhiMatch = nullptr;
934     Instruction *IncV = nullptr;
935     TruncTy = nullptr;
936     InvertStep = false;
937 
938     // Only try partially matching scevs that need truncation and/or
939     // step-inversion if we know this loop is outside the current loop.
940     bool TryNonMatchingSCEV =
941         IVIncInsertLoop &&
942         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
943 
944     for (PHINode &PN : L->getHeader()->phis()) {
945       if (!SE.isSCEVable(PN.getType()))
946         continue;
947 
948       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
949       // PHI has no meaning at all.
950       if (!PN.isComplete()) {
951         SCEV_DEBUG_WITH_TYPE(
952             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
953         continue;
954       }
955 
956       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
957       if (!PhiSCEV)
958         continue;
959 
960       bool IsMatchingSCEV = PhiSCEV == Normalized;
961       // We only handle truncation and inversion of phi recurrences for the
962       // expanded expression if the expanded expression's loop dominates the
963       // loop we insert to. Check now, so we can bail out early.
964       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
965           continue;
966 
967       // TODO: this possibly can be reworked to avoid this cast at all.
968       Instruction *TempIncV =
969           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
970       if (!TempIncV)
971         continue;
972 
973       // Check whether we can reuse this PHI node.
974       if (LSRMode) {
975         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
976           continue;
977       } else {
978         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
979           continue;
980       }
981 
982       // Stop if we have found an exact match SCEV.
983       if (IsMatchingSCEV) {
984         IncV = TempIncV;
985         TruncTy = nullptr;
986         InvertStep = false;
987         AddRecPhiMatch = &PN;
988         break;
989       }
990 
991       // Try whether the phi can be translated into the requested form
992       // (truncated and/or offset by a constant).
993       if ((!TruncTy || InvertStep) &&
994           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
995         // Record the phi node. But don't stop we might find an exact match
996         // later.
997         AddRecPhiMatch = &PN;
998         IncV = TempIncV;
999         TruncTy = Normalized->getType();
1000       }
1001     }
1002 
1003     if (AddRecPhiMatch) {
1004       // Ok, the add recurrence looks usable.
1005       // Remember this PHI, even in post-inc mode.
1006       InsertedValues.insert(AddRecPhiMatch);
1007       // Remember the increment.
1008       rememberInstruction(IncV);
1009       // Those values were not actually inserted but re-used.
1010       ReusedValues.insert(AddRecPhiMatch);
1011       ReusedValues.insert(IncV);
1012       return AddRecPhiMatch;
1013     }
1014   }
1015 
1016   // Save the original insertion point so we can restore it when we're done.
1017   SCEVInsertPointGuard Guard(Builder, this);
1018 
1019   // Another AddRec may need to be recursively expanded below. For example, if
1020   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1021   // loop. Remove this loop from the PostIncLoops set before expanding such
1022   // AddRecs. Otherwise, we cannot find a valid position for the step
1023   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1024   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1025   // so it's not worth implementing SmallPtrSet::swap.
1026   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1027   PostIncLoops.clear();
1028 
1029   // Expand code for the start value into the loop preheader.
1030   assert(L->getLoopPreheader() &&
1031          "Can't expand add recurrences without a loop preheader!");
1032   Value *StartV =
1033       expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
1034 
1035   // StartV must have been be inserted into L's preheader to dominate the new
1036   // phi.
1037   assert(!isa<Instruction>(StartV) ||
1038          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1039                                  L->getHeader()));
1040 
1041   // Expand code for the step value. Do this before creating the PHI so that PHI
1042   // reuse code doesn't see an incomplete PHI.
1043   const SCEV *Step = Normalized->getStepRecurrence(SE);
1044   Type *ExpandTy = Normalized->getType();
1045   // If the stride is negative, insert a sub instead of an add for the increment
1046   // (unless it's a constant, because subtracts of constants are canonicalized
1047   // to adds).
1048   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1049   if (useSubtract)
1050     Step = SE.getNegativeSCEV(Step);
1051   // Expand the step somewhere that dominates the loop header.
1052   Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1053 
1054   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1055   // we actually do emit an addition.  It does not apply if we emit a
1056   // subtraction.
1057   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1058   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1059 
1060   // Create the PHI.
1061   BasicBlock *Header = L->getHeader();
1062   Builder.SetInsertPoint(Header, Header->begin());
1063   PHINode *PN =
1064       Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv");
1065 
1066   // Create the step instructions and populate the PHI.
1067   for (BasicBlock *Pred : predecessors(Header)) {
1068     // Add a start value.
1069     if (!L->contains(Pred)) {
1070       PN->addIncoming(StartV, Pred);
1071       continue;
1072     }
1073 
1074     // Create a step value and add it to the PHI.
1075     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1076     // instructions at IVIncInsertPos.
1077     Instruction *InsertPos = L == IVIncInsertLoop ?
1078       IVIncInsertPos : Pred->getTerminator();
1079     Builder.SetInsertPoint(InsertPos);
1080     Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
1081 
1082     if (isa<OverflowingBinaryOperator>(IncV)) {
1083       if (IncrementIsNUW)
1084         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1085       if (IncrementIsNSW)
1086         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1087     }
1088     PN->addIncoming(IncV, Pred);
1089   }
1090 
1091   // After expanding subexpressions, restore the PostIncLoops set so the caller
1092   // can ensure that IVIncrement dominates the current uses.
1093   PostIncLoops = SavedPostIncLoops;
1094 
1095   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1096   // effective when we are able to use an IV inserted here, so record it.
1097   InsertedValues.insert(PN);
1098   InsertedIVs.push_back(PN);
1099   return PN;
1100 }
1101 
1102 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1103   const Loop *L = S->getLoop();
1104 
1105   // Determine a normalized form of this expression, which is the expression
1106   // before any post-inc adjustment is made.
1107   const SCEVAddRecExpr *Normalized = S;
1108   if (PostIncLoops.count(L)) {
1109     PostIncLoopSet Loops;
1110     Loops.insert(L);
1111     Normalized = cast<SCEVAddRecExpr>(
1112         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1113   }
1114 
1115   [[maybe_unused]] const SCEV *Start = Normalized->getStart();
1116   const SCEV *Step = Normalized->getStepRecurrence(SE);
1117   assert(SE.properlyDominates(Start, L->getHeader()) &&
1118          "Start does not properly dominate loop header");
1119   assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
1120 
1121   // In some cases, we decide to reuse an existing phi node but need to truncate
1122   // it and/or invert the step.
1123   Type *TruncTy = nullptr;
1124   bool InvertStep = false;
1125   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
1126 
1127   // Accommodate post-inc mode, if necessary.
1128   Value *Result;
1129   if (!PostIncLoops.count(L))
1130     Result = PN;
1131   else {
1132     // In PostInc mode, use the post-incremented value.
1133     BasicBlock *LatchBlock = L->getLoopLatch();
1134     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1135     Result = PN->getIncomingValueForBlock(LatchBlock);
1136 
1137     // We might be introducing a new use of the post-inc IV that is not poison
1138     // safe, in which case we should drop poison generating flags. Only keep
1139     // those flags for which SCEV has proven that they always hold.
1140     if (isa<OverflowingBinaryOperator>(Result)) {
1141       auto *I = cast<Instruction>(Result);
1142       if (!S->hasNoUnsignedWrap())
1143         I->setHasNoUnsignedWrap(false);
1144       if (!S->hasNoSignedWrap())
1145         I->setHasNoSignedWrap(false);
1146     }
1147 
1148     // For an expansion to use the postinc form, the client must call
1149     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1150     // or dominated by IVIncInsertPos.
1151     if (isa<Instruction>(Result) &&
1152         !SE.DT.dominates(cast<Instruction>(Result),
1153                          &*Builder.GetInsertPoint())) {
1154       // The induction variable's postinc expansion does not dominate this use.
1155       // IVUsers tries to prevent this case, so it is rare. However, it can
1156       // happen when an IVUser outside the loop is not dominated by the latch
1157       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1158       // all cases. Consider a phi outside whose operand is replaced during
1159       // expansion with the value of the postinc user. Without fundamentally
1160       // changing the way postinc users are tracked, the only remedy is
1161       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1162       // but hopefully expandCodeFor handles that.
1163       bool useSubtract =
1164           !S->getType()->isPointerTy() && Step->isNonConstantNegative();
1165       if (useSubtract)
1166         Step = SE.getNegativeSCEV(Step);
1167       Value *StepV;
1168       {
1169         // Expand the step somewhere that dominates the loop header.
1170         SCEVInsertPointGuard Guard(Builder, this);
1171         StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1172       }
1173       Result = expandIVInc(PN, StepV, L, useSubtract);
1174     }
1175   }
1176 
1177   // We have decided to reuse an induction variable of a dominating loop. Apply
1178   // truncation and/or inversion of the step.
1179   if (TruncTy) {
1180     // Truncate the result.
1181     if (TruncTy != Result->getType())
1182       Result = Builder.CreateTrunc(Result, TruncTy);
1183 
1184     // Invert the result.
1185     if (InvertStep)
1186       Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
1187   }
1188 
1189   return Result;
1190 }
1191 
1192 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1193   // In canonical mode we compute the addrec as an expression of a canonical IV
1194   // using evaluateAtIteration and expand the resulting SCEV expression. This
1195   // way we avoid introducing new IVs to carry on the computation of the addrec
1196   // throughout the loop.
1197   //
1198   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1199   // type wider than the addrec itself. Emitting a canonical IV of the
1200   // proper type might produce non-legal types, for example expanding an i64
1201   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1202   // back to non-canonical mode for nested addrecs.
1203   if (!CanonicalMode || (S->getNumOperands() > 2))
1204     return expandAddRecExprLiterally(S);
1205 
1206   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1207   const Loop *L = S->getLoop();
1208 
1209   // First check for an existing canonical IV in a suitable type.
1210   PHINode *CanonicalIV = nullptr;
1211   if (PHINode *PN = L->getCanonicalInductionVariable())
1212     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1213       CanonicalIV = PN;
1214 
1215   // Rewrite an AddRec in terms of the canonical induction variable, if
1216   // its type is more narrow.
1217   if (CanonicalIV &&
1218       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1219       !S->getType()->isPointerTy()) {
1220     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1221     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1222       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1223     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1224                                        S->getNoWrapFlags(SCEV::FlagNW)));
1225     BasicBlock::iterator NewInsertPt =
1226         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1227     V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
1228     return V;
1229   }
1230 
1231   // {X,+,F} --> X + {0,+,F}
1232   if (!S->getStart()->isZero()) {
1233     if (isa<PointerType>(S->getType())) {
1234       Value *StartV = expand(SE.getPointerBase(S));
1235       return expandAddToGEP(SE.removePointerBase(S), StartV);
1236     }
1237 
1238     SmallVector<const SCEV *, 4> NewOps(S->operands());
1239     NewOps[0] = SE.getConstant(Ty, 0);
1240     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1241                                         S->getNoWrapFlags(SCEV::FlagNW));
1242 
1243     // Just do a normal add. Pre-expand the operands to suppress folding.
1244     //
1245     // The LHS and RHS values are factored out of the expand call to make the
1246     // output independent of the argument evaluation order.
1247     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1248     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1249     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1250   }
1251 
1252   // If we don't yet have a canonical IV, create one.
1253   if (!CanonicalIV) {
1254     // Create and insert the PHI node for the induction variable in the
1255     // specified loop.
1256     BasicBlock *Header = L->getHeader();
1257     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1258     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1259     CanonicalIV->insertBefore(Header->begin());
1260     rememberInstruction(CanonicalIV);
1261 
1262     SmallSet<BasicBlock *, 4> PredSeen;
1263     Constant *One = ConstantInt::get(Ty, 1);
1264     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1265       BasicBlock *HP = *HPI;
1266       if (!PredSeen.insert(HP).second) {
1267         // There must be an incoming value for each predecessor, even the
1268         // duplicates!
1269         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1270         continue;
1271       }
1272 
1273       if (L->contains(HP)) {
1274         // Insert a unit add instruction right before the terminator
1275         // corresponding to the back-edge.
1276         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1277                                                      "indvar.next",
1278                                                      HP->getTerminator()->getIterator());
1279         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1280         rememberInstruction(Add);
1281         CanonicalIV->addIncoming(Add, HP);
1282       } else {
1283         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1284       }
1285     }
1286   }
1287 
1288   // {0,+,1} --> Insert a canonical induction variable into the loop!
1289   if (S->isAffine() && S->getOperand(1)->isOne()) {
1290     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1291            "IVs with types different from the canonical IV should "
1292            "already have been handled!");
1293     return CanonicalIV;
1294   }
1295 
1296   // {0,+,F} --> {0,+,1} * F
1297 
1298   // If this is a simple linear addrec, emit it now as a special case.
1299   if (S->isAffine())    // {0,+,F} --> i*F
1300     return
1301       expand(SE.getTruncateOrNoop(
1302         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1303                       SE.getNoopOrAnyExtend(S->getOperand(1),
1304                                             CanonicalIV->getType())),
1305         Ty));
1306 
1307   // If this is a chain of recurrences, turn it into a closed form, using the
1308   // folders, then expandCodeFor the closed form.  This allows the folders to
1309   // simplify the expression without having to build a bunch of special code
1310   // into this folder.
1311   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1312 
1313   // Promote S up to the canonical IV type, if the cast is foldable.
1314   const SCEV *NewS = S;
1315   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1316   if (isa<SCEVAddRecExpr>(Ext))
1317     NewS = Ext;
1318 
1319   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1320 
1321   // Truncate the result down to the original type, if needed.
1322   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1323   return expand(T);
1324 }
1325 
1326 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1327   Value *V = expand(S->getOperand());
1328   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1329                            GetOptimalInsertionPointForCastOf(V));
1330 }
1331 
1332 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1333   Value *V = expand(S->getOperand());
1334   return Builder.CreateTrunc(V, S->getType());
1335 }
1336 
1337 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1338   Value *V = expand(S->getOperand());
1339   return Builder.CreateZExt(V, S->getType(), "",
1340                             SE.isKnownNonNegative(S->getOperand()));
1341 }
1342 
1343 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1344   Value *V = expand(S->getOperand());
1345   return Builder.CreateSExt(V, S->getType());
1346 }
1347 
1348 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1349                                       Intrinsic::ID IntrinID, Twine Name,
1350                                       bool IsSequential) {
1351   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1352   Type *Ty = LHS->getType();
1353   if (IsSequential)
1354     LHS = Builder.CreateFreeze(LHS);
1355   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1356     Value *RHS = expand(S->getOperand(i));
1357     if (IsSequential && i != 0)
1358       RHS = Builder.CreateFreeze(RHS);
1359     Value *Sel;
1360     if (Ty->isIntegerTy())
1361       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1362                                     /*FMFSource=*/nullptr, Name);
1363     else {
1364       Value *ICmp =
1365           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1366       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1367     }
1368     LHS = Sel;
1369   }
1370   return LHS;
1371 }
1372 
1373 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1374   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1375 }
1376 
1377 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1378   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1379 }
1380 
1381 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1382   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1383 }
1384 
1385 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1386   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1387 }
1388 
1389 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1390   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1391 }
1392 
1393 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1394   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1395 }
1396 
1397 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1398                                    BasicBlock::iterator IP) {
1399   setInsertPoint(IP);
1400   Value *V = expandCodeFor(SH, Ty);
1401   return V;
1402 }
1403 
1404 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1405   // Expand the code for this SCEV.
1406   Value *V = expand(SH);
1407 
1408   if (Ty) {
1409     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1410            "non-trivial casts should be done with the SCEVs directly!");
1411     V = InsertNoopCastOfTo(V, Ty);
1412   }
1413   return V;
1414 }
1415 
1416 Value *SCEVExpander::FindValueInExprValueMap(
1417     const SCEV *S, const Instruction *InsertPt,
1418     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1419   // If the expansion is not in CanonicalMode, and the SCEV contains any
1420   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1421   if (!CanonicalMode && SE.containsAddRecurrence(S))
1422     return nullptr;
1423 
1424   // If S is a constant, it may be worse to reuse an existing Value.
1425   if (isa<SCEVConstant>(S))
1426     return nullptr;
1427 
1428   for (Value *V : SE.getSCEVValues(S)) {
1429     Instruction *EntInst = dyn_cast<Instruction>(V);
1430     if (!EntInst)
1431       continue;
1432 
1433     // Choose a Value from the set which dominates the InsertPt.
1434     // InsertPt should be inside the Value's parent loop so as not to break
1435     // the LCSSA form.
1436     assert(EntInst->getFunction() == InsertPt->getFunction());
1437     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1438         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1439           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1440       continue;
1441 
1442     // Make sure reusing the instruction is poison-safe.
1443     if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
1444       return V;
1445     DropPoisonGeneratingInsts.clear();
1446   }
1447   return nullptr;
1448 }
1449 
1450 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1451 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1452 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1453 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1454 // the expansion will try to reuse Value from ExprValueMap, and only when it
1455 // fails, expand the SCEV literally.
1456 Value *SCEVExpander::expand(const SCEV *S) {
1457   // Compute an insertion point for this SCEV object. Hoist the instructions
1458   // as far out in the loop nest as possible.
1459   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1460 
1461   // We can move insertion point only if there is no div or rem operations
1462   // otherwise we are risky to move it over the check for zero denominator.
1463   auto SafeToHoist = [](const SCEV *S) {
1464     return !SCEVExprContains(S, [](const SCEV *S) {
1465               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1466                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1467                   // Division by non-zero constants can be hoisted.
1468                   return SC->getValue()->isZero();
1469                 // All other divisions should not be moved as they may be
1470                 // divisions by zero and should be kept within the
1471                 // conditions of the surrounding loops that guard their
1472                 // execution (see PR35406).
1473                 return true;
1474               }
1475               return false;
1476             });
1477   };
1478   if (SafeToHoist(S)) {
1479     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1480          L = L->getParentLoop()) {
1481       if (SE.isLoopInvariant(S, L)) {
1482         if (!L) break;
1483         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1484           InsertPt = Preheader->getTerminator()->getIterator();
1485         } else {
1486           // LSR sets the insertion point for AddRec start/step values to the
1487           // block start to simplify value reuse, even though it's an invalid
1488           // position. SCEVExpander must correct for this in all cases.
1489           InsertPt = L->getHeader()->getFirstInsertionPt();
1490         }
1491       } else {
1492         // If the SCEV is computable at this level, insert it into the header
1493         // after the PHIs (and after any other instructions that we've inserted
1494         // there) so that it is guaranteed to dominate any user inside the loop.
1495         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1496           InsertPt = L->getHeader()->getFirstInsertionPt();
1497 
1498         while (InsertPt != Builder.GetInsertPoint() &&
1499                (isInsertedInstruction(&*InsertPt) ||
1500                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1501           InsertPt = std::next(InsertPt);
1502         }
1503         break;
1504       }
1505     }
1506   }
1507 
1508   // Check to see if we already expanded this here.
1509   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1510   if (I != InsertedExpressions.end())
1511     return I->second;
1512 
1513   SCEVInsertPointGuard Guard(Builder, this);
1514   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1515 
1516   // Expand the expression into instructions.
1517   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1518   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1519   if (!V) {
1520     V = visit(S);
1521     V = fixupLCSSAFormFor(V);
1522   } else {
1523     for (Instruction *I : DropPoisonGeneratingInsts) {
1524       rememberFlags(I);
1525       I->dropPoisonGeneratingAnnotations();
1526       // See if we can re-infer from first principles any of the flags we just
1527       // dropped.
1528       if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1529         if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1530           auto *BO = cast<BinaryOperator>(I);
1531           BO->setHasNoUnsignedWrap(
1532             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1533           BO->setHasNoSignedWrap(
1534             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1535         }
1536       if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
1537         auto *Src = NNI->getOperand(0);
1538         if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
1539                                     Constant::getNullValue(Src->getType()), I,
1540                                     DL).value_or(false))
1541           NNI->setNonNeg(true);
1542       }
1543     }
1544   }
1545   // Remember the expanded value for this SCEV at this location.
1546   //
1547   // This is independent of PostIncLoops. The mapped value simply materializes
1548   // the expression at this insertion point. If the mapped value happened to be
1549   // a postinc expansion, it could be reused by a non-postinc user, but only if
1550   // its insertion point was already at the head of the loop.
1551   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1552   return V;
1553 }
1554 
1555 void SCEVExpander::rememberInstruction(Value *I) {
1556   auto DoInsert = [this](Value *V) {
1557     if (!PostIncLoops.empty())
1558       InsertedPostIncValues.insert(V);
1559     else
1560       InsertedValues.insert(V);
1561   };
1562   DoInsert(I);
1563 }
1564 
1565 void SCEVExpander::rememberFlags(Instruction *I) {
1566   // If we already have flags for the instruction, keep the existing ones.
1567   OrigFlags.try_emplace(I, PoisonFlags(I));
1568 }
1569 
1570 void SCEVExpander::replaceCongruentIVInc(
1571     PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT,
1572     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1573   BasicBlock *LatchBlock = L->getLoopLatch();
1574   if (!LatchBlock)
1575     return;
1576 
1577   Instruction *OrigInc =
1578       dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1579   Instruction *IsomorphicInc =
1580       dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1581   if (!OrigInc || !IsomorphicInc)
1582     return;
1583 
1584   // If this phi has the same width but is more canonical, replace the
1585   // original with it. As part of the "more canonical" determination,
1586   // respect a prior decision to use an IV chain.
1587   if (OrigPhi->getType() == Phi->getType() &&
1588       !(ChainedPhis.count(Phi) ||
1589         isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) &&
1590       (ChainedPhis.count(Phi) ||
1591        isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1592     std::swap(OrigPhi, Phi);
1593     std::swap(OrigInc, IsomorphicInc);
1594   }
1595 
1596   // Replacing the congruent phi is sufficient because acyclic
1597   // redundancy elimination, CSE/GVN, should handle the
1598   // rest. However, once SCEV proves that a phi is congruent,
1599   // it's often the head of an IV user cycle that is isomorphic
1600   // with the original phi. It's worth eagerly cleaning up the
1601   // common case of a single IV increment so that DeleteDeadPHIs
1602   // can remove cycles that had postinc uses.
1603   // Because we may potentially introduce a new use of OrigIV that didn't
1604   // exist before at this point, its poison flags need readjustment.
1605   const SCEV *TruncExpr =
1606       SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1607   if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) ||
1608       !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc))
1609     return;
1610 
1611   bool BothHaveNUW = false;
1612   bool BothHaveNSW = false;
1613   auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc);
1614   auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc);
1615   if (OBOIncV && OBOIsomorphic) {
1616     BothHaveNUW =
1617         OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap();
1618     BothHaveNSW =
1619         OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap();
1620   }
1621 
1622   if (!hoistIVInc(OrigInc, IsomorphicInc,
1623                   /*RecomputePoisonFlags*/ true))
1624     return;
1625 
1626   // We are replacing with a wider increment. If both OrigInc and IsomorphicInc
1627   // are NUW/NSW, then we can preserve them on the wider increment; the narrower
1628   // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't
1629   // make IsomorphicInc's uses more poisonous.
1630   assert(OrigInc->getType()->getScalarSizeInBits() >=
1631              IsomorphicInc->getType()->getScalarSizeInBits() &&
1632          "Should only replace an increment with a wider one.");
1633   if (BothHaveNUW || BothHaveNSW) {
1634     OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW);
1635     OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW);
1636   }
1637 
1638   SCEV_DEBUG_WITH_TYPE(DebugType,
1639                        dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1640                               << *IsomorphicInc << '\n');
1641   Value *NewInc = OrigInc;
1642   if (OrigInc->getType() != IsomorphicInc->getType()) {
1643     BasicBlock::iterator IP;
1644     if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1645       IP = PN->getParent()->getFirstInsertionPt();
1646     else
1647       IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1648 
1649     IRBuilder<> Builder(IP->getParent(), IP);
1650     Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1651     NewInc =
1652         Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1653   }
1654   IsomorphicInc->replaceAllUsesWith(NewInc);
1655   DeadInsts.emplace_back(IsomorphicInc);
1656 }
1657 
1658 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1659 /// replace them with their most canonical representative. Return the number of
1660 /// phis eliminated.
1661 ///
1662 /// This does not depend on any SCEVExpander state but should be used in
1663 /// the same context that SCEVExpander is used.
1664 unsigned
1665 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1666                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1667                                   const TargetTransformInfo *TTI) {
1668   // Find integer phis in order of increasing width.
1669   SmallVector<PHINode*, 8> Phis;
1670   for (PHINode &PN : L->getHeader()->phis())
1671     Phis.push_back(&PN);
1672 
1673   if (TTI)
1674     // Use stable_sort to preserve order of equivalent PHIs, so the order
1675     // of the sorted Phis is the same from run to run on the same loop.
1676     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1677       // Put pointers at the back and make sure pointer < pointer = false.
1678       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1679         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1680       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1681              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1682     });
1683 
1684   unsigned NumElim = 0;
1685   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1686   // Process phis from wide to narrow. Map wide phis to their truncation
1687   // so narrow phis can reuse them.
1688   for (PHINode *Phi : Phis) {
1689     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1690       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1691         return V;
1692       if (!SE.isSCEVable(PN->getType()))
1693         return nullptr;
1694       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1695       if (!Const)
1696         return nullptr;
1697       return Const->getValue();
1698     };
1699 
1700     // Fold constant phis. They may be congruent to other constant phis and
1701     // would confuse the logic below that expects proper IVs.
1702     if (Value *V = SimplifyPHINode(Phi)) {
1703       if (V->getType() != Phi->getType())
1704         continue;
1705       SE.forgetValue(Phi);
1706       Phi->replaceAllUsesWith(V);
1707       DeadInsts.emplace_back(Phi);
1708       ++NumElim;
1709       SCEV_DEBUG_WITH_TYPE(DebugType,
1710                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1711                                   << '\n');
1712       continue;
1713     }
1714 
1715     if (!SE.isSCEVable(Phi->getType()))
1716       continue;
1717 
1718     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1719     if (!OrigPhiRef) {
1720       OrigPhiRef = Phi;
1721       if (Phi->getType()->isIntegerTy() && TTI &&
1722           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1723         // Make sure we only rewrite using simple induction variables;
1724         // otherwise, we can make the trip count of a loop unanalyzable
1725         // to SCEV.
1726         const SCEV *PhiExpr = SE.getSCEV(Phi);
1727         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1728           // This phi can be freely truncated to the narrowest phi type. Map the
1729           // truncated expression to it so it will be reused for narrow types.
1730           const SCEV *TruncExpr =
1731               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1732           ExprToIVMap[TruncExpr] = Phi;
1733         }
1734       }
1735       continue;
1736     }
1737 
1738     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1739     // sense.
1740     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1741       continue;
1742 
1743     replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts);
1744     SCEV_DEBUG_WITH_TYPE(DebugType,
1745                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1746                                 << '\n');
1747     SCEV_DEBUG_WITH_TYPE(
1748         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1749     ++NumElim;
1750     Value *NewIV = OrigPhiRef;
1751     if (OrigPhiRef->getType() != Phi->getType()) {
1752       IRBuilder<> Builder(L->getHeader(),
1753                           L->getHeader()->getFirstInsertionPt());
1754       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1755       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1756     }
1757     Phi->replaceAllUsesWith(NewIV);
1758     DeadInsts.emplace_back(Phi);
1759   }
1760   return NumElim;
1761 }
1762 
1763 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1764                                                const Instruction *At,
1765                                                Loop *L) {
1766   using namespace llvm::PatternMatch;
1767 
1768   SmallVector<BasicBlock *, 4> ExitingBlocks;
1769   L->getExitingBlocks(ExitingBlocks);
1770 
1771   // Look for suitable value in simple conditions at the loop exits.
1772   for (BasicBlock *BB : ExitingBlocks) {
1773     ICmpInst::Predicate Pred;
1774     Instruction *LHS, *RHS;
1775 
1776     if (!match(BB->getTerminator(),
1777                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1778                     m_BasicBlock(), m_BasicBlock())))
1779       continue;
1780 
1781     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1782       return true;
1783 
1784     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1785       return true;
1786   }
1787 
1788   // Use expand's logic which is used for reusing a previous Value in
1789   // ExprValueMap.  Note that we don't currently model the cost of
1790   // needing to drop poison generating flags on the instruction if we
1791   // want to reuse it.  We effectively assume that has zero cost.
1792   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1793   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1794 }
1795 
1796 template<typename T> static InstructionCost costAndCollectOperands(
1797   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1798   TargetTransformInfo::TargetCostKind CostKind,
1799   SmallVectorImpl<SCEVOperand> &Worklist) {
1800 
1801   const T *S = cast<T>(WorkItem.S);
1802   InstructionCost Cost = 0;
1803   // Object to help map SCEV operands to expanded IR instructions.
1804   struct OperationIndices {
1805     OperationIndices(unsigned Opc, size_t min, size_t max) :
1806       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1807     unsigned Opcode;
1808     size_t MinIdx;
1809     size_t MaxIdx;
1810   };
1811 
1812   // Collect the operations of all the instructions that will be needed to
1813   // expand the SCEVExpr. This is so that when we come to cost the operands,
1814   // we know what the generated user(s) will be.
1815   SmallVector<OperationIndices, 2> Operations;
1816 
1817   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1818     Operations.emplace_back(Opcode, 0, 0);
1819     return TTI.getCastInstrCost(Opcode, S->getType(),
1820                                 S->getOperand(0)->getType(),
1821                                 TTI::CastContextHint::None, CostKind);
1822   };
1823 
1824   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1825                        unsigned MinIdx = 0,
1826                        unsigned MaxIdx = 1) -> InstructionCost {
1827     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1828     return NumRequired *
1829       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1830   };
1831 
1832   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1833                         unsigned MaxIdx) -> InstructionCost {
1834     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1835     Type *OpType = S->getType();
1836     return NumRequired * TTI.getCmpSelInstrCost(
1837                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1838                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1839   };
1840 
1841   switch (S->getSCEVType()) {
1842   case scCouldNotCompute:
1843     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1844   case scUnknown:
1845   case scConstant:
1846   case scVScale:
1847     return 0;
1848   case scPtrToInt:
1849     Cost = CastCost(Instruction::PtrToInt);
1850     break;
1851   case scTruncate:
1852     Cost = CastCost(Instruction::Trunc);
1853     break;
1854   case scZeroExtend:
1855     Cost = CastCost(Instruction::ZExt);
1856     break;
1857   case scSignExtend:
1858     Cost = CastCost(Instruction::SExt);
1859     break;
1860   case scUDivExpr: {
1861     unsigned Opcode = Instruction::UDiv;
1862     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1863       if (SC->getAPInt().isPowerOf2())
1864         Opcode = Instruction::LShr;
1865     Cost = ArithCost(Opcode, 1);
1866     break;
1867   }
1868   case scAddExpr:
1869     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1870     break;
1871   case scMulExpr:
1872     // TODO: this is a very pessimistic cost modelling for Mul,
1873     // because of Bin Pow algorithm actually used by the expander,
1874     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1875     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1876     break;
1877   case scSMaxExpr:
1878   case scUMaxExpr:
1879   case scSMinExpr:
1880   case scUMinExpr:
1881   case scSequentialUMinExpr: {
1882     // FIXME: should this ask the cost for Intrinsic's?
1883     // The reduction tree.
1884     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1885     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1886     switch (S->getSCEVType()) {
1887     case scSequentialUMinExpr: {
1888       // The safety net against poison.
1889       // FIXME: this is broken.
1890       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1891       Cost += ArithCost(Instruction::Or,
1892                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1893       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1894       break;
1895     }
1896     default:
1897       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1898              "Unhandled SCEV expression type?");
1899       break;
1900     }
1901     break;
1902   }
1903   case scAddRecExpr: {
1904     // In this polynominal, we may have some zero operands, and we shouldn't
1905     // really charge for those. So how many non-zero coefficients are there?
1906     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1907                                     return !Op->isZero();
1908                                   });
1909 
1910     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1911     assert(!(*std::prev(S->operands().end()))->isZero() &&
1912            "Last operand should not be zero");
1913 
1914     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1915     int NumNonZeroDegreeNonOneTerms =
1916       llvm::count_if(S->operands(), [](const SCEV *Op) {
1917                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1918                       return !SConst || SConst->getAPInt().ugt(1);
1919                     });
1920 
1921     // Much like with normal add expr, the polynominal will require
1922     // one less addition than the number of it's terms.
1923     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1924                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1925     // Here, *each* one of those will require a multiplication.
1926     InstructionCost MulCost =
1927         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1928     Cost = AddCost + MulCost;
1929 
1930     // What is the degree of this polynominal?
1931     int PolyDegree = S->getNumOperands() - 1;
1932     assert(PolyDegree >= 1 && "Should be at least affine.");
1933 
1934     // The final term will be:
1935     //   Op_{PolyDegree} * x ^ {PolyDegree}
1936     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1937     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1938     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1939     // FIXME: this is conservatively correct, but might be overly pessimistic.
1940     Cost += MulCost * (PolyDegree - 1);
1941     break;
1942   }
1943   }
1944 
1945   for (auto &CostOp : Operations) {
1946     for (auto SCEVOp : enumerate(S->operands())) {
1947       // Clamp the index to account for multiple IR operations being chained.
1948       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1949       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1950       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1951     }
1952   }
1953   return Cost;
1954 }
1955 
1956 bool SCEVExpander::isHighCostExpansionHelper(
1957     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1958     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1959     SmallPtrSetImpl<const SCEV *> &Processed,
1960     SmallVectorImpl<SCEVOperand> &Worklist) {
1961   if (Cost > Budget)
1962     return true; // Already run out of budget, give up.
1963 
1964   const SCEV *S = WorkItem.S;
1965   // Was the cost of expansion of this expression already accounted for?
1966   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
1967     return false; // We have already accounted for this expression.
1968 
1969   // If we can find an existing value for this scev available at the point "At"
1970   // then consider the expression cheap.
1971   if (hasRelatedExistingExpansion(S, &At, L))
1972     return false; // Consider the expression to be free.
1973 
1974   TargetTransformInfo::TargetCostKind CostKind =
1975       L->getHeader()->getParent()->hasMinSize()
1976           ? TargetTransformInfo::TCK_CodeSize
1977           : TargetTransformInfo::TCK_RecipThroughput;
1978 
1979   switch (S->getSCEVType()) {
1980   case scCouldNotCompute:
1981     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1982   case scUnknown:
1983   case scVScale:
1984     // Assume to be zero-cost.
1985     return false;
1986   case scConstant: {
1987     // Only evalulate the costs of constants when optimizing for size.
1988     if (CostKind != TargetTransformInfo::TCK_CodeSize)
1989       return false;
1990     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
1991     Type *Ty = S->getType();
1992     Cost += TTI.getIntImmCostInst(
1993         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
1994     return Cost > Budget;
1995   }
1996   case scTruncate:
1997   case scPtrToInt:
1998   case scZeroExtend:
1999   case scSignExtend: {
2000     Cost +=
2001         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2002     return false; // Will answer upon next entry into this function.
2003   }
2004   case scUDivExpr: {
2005     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2006     // HowManyLessThans produced to compute a precise expression, rather than a
2007     // UDiv from the user's code. If we can't find a UDiv in the code with some
2008     // simple searching, we need to account for it's cost.
2009 
2010     // At the beginning of this function we already tried to find existing
2011     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2012     // pattern involving division. This is just a simple search heuristic.
2013     if (hasRelatedExistingExpansion(
2014             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2015       return false; // Consider it to be free.
2016 
2017     Cost +=
2018         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2019     return false; // Will answer upon next entry into this function.
2020   }
2021   case scAddExpr:
2022   case scMulExpr:
2023   case scUMaxExpr:
2024   case scSMaxExpr:
2025   case scUMinExpr:
2026   case scSMinExpr:
2027   case scSequentialUMinExpr: {
2028     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2029            "Nary expr should have more than 1 operand.");
2030     // The simple nary expr will require one less op (or pair of ops)
2031     // than the number of it's terms.
2032     Cost +=
2033         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2034     return Cost > Budget;
2035   }
2036   case scAddRecExpr: {
2037     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2038            "Polynomial should be at least linear");
2039     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2040         WorkItem, TTI, CostKind, Worklist);
2041     return Cost > Budget;
2042   }
2043   }
2044   llvm_unreachable("Unknown SCEV kind!");
2045 }
2046 
2047 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2048                                             Instruction *IP) {
2049   assert(IP);
2050   switch (Pred->getKind()) {
2051   case SCEVPredicate::P_Union:
2052     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2053   case SCEVPredicate::P_Compare:
2054     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2055   case SCEVPredicate::P_Wrap: {
2056     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2057     return expandWrapPredicate(AddRecPred, IP);
2058   }
2059   }
2060   llvm_unreachable("Unknown SCEV predicate type");
2061 }
2062 
2063 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2064                                             Instruction *IP) {
2065   Value *Expr0 = expand(Pred->getLHS(), IP);
2066   Value *Expr1 = expand(Pred->getRHS(), IP);
2067 
2068   Builder.SetInsertPoint(IP);
2069   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2070   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2071   return I;
2072 }
2073 
2074 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2075                                            Instruction *Loc, bool Signed) {
2076   assert(AR->isAffine() && "Cannot generate RT check for "
2077                            "non-affine expression");
2078 
2079   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2080   SmallVector<const SCEVPredicate *, 4> Pred;
2081   const SCEV *ExitCount =
2082       SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred);
2083 
2084   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2085 
2086   const SCEV *Step = AR->getStepRecurrence(SE);
2087   const SCEV *Start = AR->getStart();
2088 
2089   Type *ARTy = AR->getType();
2090   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2091   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2092 
2093   // The expression {Start,+,Step} has nusw/nssw if
2094   //   Step < 0, Start - |Step| * Backedge <= Start
2095   //   Step >= 0, Start + |Step| * Backedge > Start
2096   // and |Step| * Backedge doesn't unsigned overflow.
2097 
2098   Builder.SetInsertPoint(Loc);
2099   Value *TripCountVal = expand(ExitCount, Loc);
2100 
2101   IntegerType *Ty =
2102       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2103 
2104   Value *StepValue = expand(Step, Loc);
2105   Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
2106   Value *StartValue = expand(Start, Loc);
2107 
2108   ConstantInt *Zero =
2109       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2110 
2111   Builder.SetInsertPoint(Loc);
2112   // Compute |Step|
2113   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2114   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2115 
2116   // Compute |Step| * Backedge
2117   // Compute:
2118   //   1. Start + |Step| * Backedge < Start
2119   //   2. Start - |Step| * Backedge > Start
2120   //
2121   // And select either 1. or 2. depending on whether step is positive or
2122   // negative. If Step is known to be positive or negative, only create
2123   // either 1. or 2.
2124   auto ComputeEndCheck = [&]() -> Value * {
2125     // Checking <u 0 is always false.
2126     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2127       return ConstantInt::getFalse(Loc->getContext());
2128 
2129     // Get the backedge taken count and truncate or extended to the AR type.
2130     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2131 
2132     Value *MulV, *OfMul;
2133     if (Step->isOne()) {
2134       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2135       // needed, there is never an overflow, so to avoid artificially inflating
2136       // the cost of the check, directly emit the optimized IR.
2137       MulV = TruncTripCount;
2138       OfMul = ConstantInt::getFalse(MulV->getContext());
2139     } else {
2140       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2141                                              Intrinsic::umul_with_overflow, Ty);
2142       CallInst *Mul =
2143           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2144       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2145       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2146     }
2147 
2148     Value *Add = nullptr, *Sub = nullptr;
2149     bool NeedPosCheck = !SE.isKnownNegative(Step);
2150     bool NeedNegCheck = !SE.isKnownPositive(Step);
2151 
2152     if (isa<PointerType>(ARTy)) {
2153       Value *NegMulV = Builder.CreateNeg(MulV);
2154       if (NeedPosCheck)
2155         Add = Builder.CreatePtrAdd(StartValue, MulV);
2156       if (NeedNegCheck)
2157         Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
2158     } else {
2159       if (NeedPosCheck)
2160         Add = Builder.CreateAdd(StartValue, MulV);
2161       if (NeedNegCheck)
2162         Sub = Builder.CreateSub(StartValue, MulV);
2163     }
2164 
2165     Value *EndCompareLT = nullptr;
2166     Value *EndCompareGT = nullptr;
2167     Value *EndCheck = nullptr;
2168     if (NeedPosCheck)
2169       EndCheck = EndCompareLT = Builder.CreateICmp(
2170           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2171     if (NeedNegCheck)
2172       EndCheck = EndCompareGT = Builder.CreateICmp(
2173           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2174     if (NeedPosCheck && NeedNegCheck) {
2175       // Select the answer based on the sign of Step.
2176       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2177     }
2178     return Builder.CreateOr(EndCheck, OfMul);
2179   };
2180   Value *EndCheck = ComputeEndCheck();
2181 
2182   // If the backedge taken count type is larger than the AR type,
2183   // check that we don't drop any bits by truncating it. If we are
2184   // dropping bits, then we have overflow (unless the step is zero).
2185   if (SrcBits > DstBits) {
2186     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2187     auto *BackedgeCheck =
2188         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2189                            ConstantInt::get(Loc->getContext(), MaxVal));
2190     BackedgeCheck = Builder.CreateAnd(
2191         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2192 
2193     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2194   }
2195 
2196   return EndCheck;
2197 }
2198 
2199 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2200                                          Instruction *IP) {
2201   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2202   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2203 
2204   // Add a check for NUSW
2205   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2206     NUSWCheck = generateOverflowCheck(A, IP, false);
2207 
2208   // Add a check for NSSW
2209   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2210     NSSWCheck = generateOverflowCheck(A, IP, true);
2211 
2212   if (NUSWCheck && NSSWCheck)
2213     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2214 
2215   if (NUSWCheck)
2216     return NUSWCheck;
2217 
2218   if (NSSWCheck)
2219     return NSSWCheck;
2220 
2221   return ConstantInt::getFalse(IP->getContext());
2222 }
2223 
2224 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2225                                           Instruction *IP) {
2226   // Loop over all checks in this set.
2227   SmallVector<Value *> Checks;
2228   for (const auto *Pred : Union->getPredicates()) {
2229     Checks.push_back(expandCodeForPredicate(Pred, IP));
2230     Builder.SetInsertPoint(IP);
2231   }
2232 
2233   if (Checks.empty())
2234     return ConstantInt::getFalse(IP->getContext());
2235   return Builder.CreateOr(Checks);
2236 }
2237 
2238 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2239   auto *DefI = dyn_cast<Instruction>(V);
2240   if (!PreserveLCSSA || !DefI)
2241     return V;
2242 
2243   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
2244   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2245   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2246   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2247     return V;
2248 
2249   // Create a temporary instruction to at the current insertion point, so we
2250   // can hand it off to the helper to create LCSSA PHIs if required for the
2251   // new use.
2252   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2253   // would accept a insertion point and return an LCSSA phi for that
2254   // insertion point, so there is no need to insert & remove the temporary
2255   // instruction.
2256   Type *ToTy;
2257   if (DefI->getType()->isIntegerTy())
2258     ToTy = PointerType::get(DefI->getContext(), 0);
2259   else
2260     ToTy = Type::getInt32Ty(DefI->getContext());
2261   Instruction *User =
2262       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2263   auto RemoveUserOnExit =
2264       make_scope_exit([User]() { User->eraseFromParent(); });
2265 
2266   SmallVector<Instruction *, 1> ToUpdate;
2267   ToUpdate.push_back(DefI);
2268   SmallVector<PHINode *, 16> PHIsToRemove;
2269   SmallVector<PHINode *, 16> InsertedPHIs;
2270   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2271                            &InsertedPHIs);
2272   for (PHINode *PN : InsertedPHIs)
2273     rememberInstruction(PN);
2274   for (PHINode *PN : PHIsToRemove) {
2275     if (!PN->use_empty())
2276       continue;
2277     InsertedValues.erase(PN);
2278     InsertedPostIncValues.erase(PN);
2279     PN->eraseFromParent();
2280   }
2281 
2282   return User->getOperand(0);
2283 }
2284 
2285 namespace {
2286 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2287 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2288 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2289 // instruction, but the important thing is that we prove the denominator is
2290 // nonzero before expansion.
2291 //
2292 // IVUsers already checks that IV-derived expressions are safe. So this check is
2293 // only needed when the expression includes some subexpression that is not IV
2294 // derived.
2295 //
2296 // Currently, we only allow division by a value provably non-zero here.
2297 //
2298 // We cannot generally expand recurrences unless the step dominates the loop
2299 // header. The expander handles the special case of affine recurrences by
2300 // scaling the recurrence outside the loop, but this technique isn't generally
2301 // applicable. Expanding a nested recurrence outside a loop requires computing
2302 // binomial coefficients. This could be done, but the recurrence has to be in a
2303 // perfectly reduced form, which can't be guaranteed.
2304 struct SCEVFindUnsafe {
2305   ScalarEvolution &SE;
2306   bool CanonicalMode;
2307   bool IsUnsafe = false;
2308 
2309   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2310       : SE(SE), CanonicalMode(CanonicalMode) {}
2311 
2312   bool follow(const SCEV *S) {
2313     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2314       if (!SE.isKnownNonZero(D->getRHS())) {
2315         IsUnsafe = true;
2316         return false;
2317       }
2318     }
2319     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2320       // For non-affine addrecs or in non-canonical mode we need a preheader
2321       // to insert into.
2322       if (!AR->getLoop()->getLoopPreheader() &&
2323           (!CanonicalMode || !AR->isAffine())) {
2324         IsUnsafe = true;
2325         return false;
2326       }
2327     }
2328     return true;
2329   }
2330   bool isDone() const { return IsUnsafe; }
2331 };
2332 } // namespace
2333 
2334 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2335   SCEVFindUnsafe Search(SE, CanonicalMode);
2336   visitAll(S, Search);
2337   return !Search.IsUnsafe;
2338 }
2339 
2340 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2341                                     const Instruction *InsertionPoint) const {
2342   if (!isSafeToExpand(S))
2343     return false;
2344   // We have to prove that the expanded site of S dominates InsertionPoint.
2345   // This is easy when not in the same block, but hard when S is an instruction
2346   // to be expanded somewhere inside the same block as our insertion point.
2347   // What we really need here is something analogous to an OrderedBasicBlock,
2348   // but for the moment, we paper over the problem by handling two common and
2349   // cheap to check cases.
2350   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2351     return true;
2352   if (SE.dominates(S, InsertionPoint->getParent())) {
2353     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2354       return true;
2355     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2356       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2357         return true;
2358   }
2359   return false;
2360 }
2361 
2362 void SCEVExpanderCleaner::cleanup() {
2363   // Result is used, nothing to remove.
2364   if (ResultUsed)
2365     return;
2366 
2367   // Restore original poison flags.
2368   for (auto [I, Flags] : Expander.OrigFlags)
2369     Flags.apply(I);
2370 
2371   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2372 #ifndef NDEBUG
2373   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2374                                             InsertedInstructions.end());
2375   (void)InsertedSet;
2376 #endif
2377   // Remove sets with value handles.
2378   Expander.clear();
2379 
2380   // Remove all inserted instructions.
2381   for (Instruction *I : reverse(InsertedInstructions)) {
2382 #ifndef NDEBUG
2383     assert(all_of(I->users(),
2384                   [&InsertedSet](Value *U) {
2385                     return InsertedSet.contains(cast<Instruction>(U));
2386                   }) &&
2387            "removed instruction should only be used by instructions inserted "
2388            "during expansion");
2389 #endif
2390     assert(!I->getType()->isVoidTy() &&
2391            "inserted instruction should have non-void types");
2392     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2393     I->eraseFromParent();
2394   }
2395 }
2396