1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 PoisonFlags::PoisonFlags(const Instruction *I) { 47 NUW = false; 48 NSW = false; 49 Exact = false; 50 Disjoint = false; 51 NNeg = false; 52 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 53 NUW = OBO->hasNoUnsignedWrap(); 54 NSW = OBO->hasNoSignedWrap(); 55 } 56 if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) 57 Exact = PEO->isExact(); 58 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 59 Disjoint = PDI->isDisjoint(); 60 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 61 NNeg = PNI->hasNonNeg(); 62 if (auto *TI = dyn_cast<TruncInst>(I)) { 63 NUW = TI->hasNoUnsignedWrap(); 64 NSW = TI->hasNoSignedWrap(); 65 } 66 } 67 68 void PoisonFlags::apply(Instruction *I) { 69 if (isa<OverflowingBinaryOperator>(I)) { 70 I->setHasNoUnsignedWrap(NUW); 71 I->setHasNoSignedWrap(NSW); 72 } 73 if (isa<PossiblyExactOperator>(I)) 74 I->setIsExact(Exact); 75 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 76 PDI->setIsDisjoint(Disjoint); 77 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 78 PNI->setNonNeg(NNeg); 79 if (isa<TruncInst>(I)) { 80 I->setHasNoUnsignedWrap(NUW); 81 I->setHasNoSignedWrap(NSW); 82 } 83 } 84 85 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 86 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 87 /// creating a new one. 88 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 89 Instruction::CastOps Op, 90 BasicBlock::iterator IP) { 91 // This function must be called with the builder having a valid insertion 92 // point. It doesn't need to be the actual IP where the uses of the returned 93 // cast will be added, but it must dominate such IP. 94 // We use this precondition to produce a cast that will dominate all its 95 // uses. In particular, this is crucial for the case where the builder's 96 // insertion point *is* the point where we were asked to put the cast. 97 // Since we don't know the builder's insertion point is actually 98 // where the uses will be added (only that it dominates it), we are 99 // not allowed to move it. 100 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 101 102 Value *Ret = nullptr; 103 104 // Check to see if there is already a cast! 105 for (User *U : V->users()) { 106 if (U->getType() != Ty) 107 continue; 108 CastInst *CI = dyn_cast<CastInst>(U); 109 if (!CI || CI->getOpcode() != Op) 110 continue; 111 112 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 113 // the cast must also properly dominate the Builder's insertion point. 114 if (IP->getParent() == CI->getParent() && &*BIP != CI && 115 (&*IP == CI || CI->comesBefore(&*IP))) { 116 Ret = CI; 117 break; 118 } 119 } 120 121 // Create a new cast. 122 if (!Ret) { 123 SCEVInsertPointGuard Guard(Builder, this); 124 Builder.SetInsertPoint(&*IP); 125 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 126 } 127 128 // We assert at the end of the function since IP might point to an 129 // instruction with different dominance properties than a cast 130 // (an invoke for example) and not dominate BIP (but the cast does). 131 assert(!isa<Instruction>(Ret) || 132 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 133 134 return Ret; 135 } 136 137 BasicBlock::iterator 138 SCEVExpander::findInsertPointAfter(Instruction *I, 139 Instruction *MustDominate) const { 140 BasicBlock::iterator IP = ++I->getIterator(); 141 if (auto *II = dyn_cast<InvokeInst>(I)) 142 IP = II->getNormalDest()->begin(); 143 144 while (isa<PHINode>(IP)) 145 ++IP; 146 147 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 148 ++IP; 149 } else if (isa<CatchSwitchInst>(IP)) { 150 IP = MustDominate->getParent()->getFirstInsertionPt(); 151 } else { 152 assert(!IP->isEHPad() && "unexpected eh pad!"); 153 } 154 155 // Adjust insert point to be after instructions inserted by the expander, so 156 // we can re-use already inserted instructions. Avoid skipping past the 157 // original \p MustDominate, in case it is an inserted instruction. 158 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 159 ++IP; 160 161 return IP; 162 } 163 164 BasicBlock::iterator 165 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 166 // Cast the argument at the beginning of the entry block, after 167 // any bitcasts of other arguments. 168 if (Argument *A = dyn_cast<Argument>(V)) { 169 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 170 while ((isa<BitCastInst>(IP) && 171 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 172 cast<BitCastInst>(IP)->getOperand(0) != A) || 173 isa<DbgInfoIntrinsic>(IP)) 174 ++IP; 175 return IP; 176 } 177 178 // Cast the instruction immediately after the instruction. 179 if (Instruction *I = dyn_cast<Instruction>(V)) 180 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 181 182 // Otherwise, this must be some kind of a constant, 183 // so let's plop this cast into the function's entry block. 184 assert(isa<Constant>(V) && 185 "Expected the cast argument to be a global/constant"); 186 return Builder.GetInsertBlock() 187 ->getParent() 188 ->getEntryBlock() 189 .getFirstInsertionPt(); 190 } 191 192 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 193 /// which must be possible with a noop cast, doing what we can to share 194 /// the casts. 195 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 196 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 197 assert((Op == Instruction::BitCast || 198 Op == Instruction::PtrToInt || 199 Op == Instruction::IntToPtr) && 200 "InsertNoopCastOfTo cannot perform non-noop casts!"); 201 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 202 "InsertNoopCastOfTo cannot change sizes!"); 203 204 // inttoptr only works for integral pointers. For non-integral pointers, we 205 // can create a GEP on null with the integral value as index. Note that 206 // it is safe to use GEP of null instead of inttoptr here, because only 207 // expressions already based on a GEP of null should be converted to pointers 208 // during expansion. 209 if (Op == Instruction::IntToPtr) { 210 auto *PtrTy = cast<PointerType>(Ty); 211 if (DL.isNonIntegralPointerType(PtrTy)) 212 return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 213 } 214 // Short-circuit unnecessary bitcasts. 215 if (Op == Instruction::BitCast) { 216 if (V->getType() == Ty) 217 return V; 218 if (CastInst *CI = dyn_cast<CastInst>(V)) { 219 if (CI->getOperand(0)->getType() == Ty) 220 return CI->getOperand(0); 221 } 222 } 223 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 224 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 225 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 226 if (CastInst *CI = dyn_cast<CastInst>(V)) 227 if ((CI->getOpcode() == Instruction::PtrToInt || 228 CI->getOpcode() == Instruction::IntToPtr) && 229 SE.getTypeSizeInBits(CI->getType()) == 230 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 231 return CI->getOperand(0); 232 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 233 if ((CE->getOpcode() == Instruction::PtrToInt || 234 CE->getOpcode() == Instruction::IntToPtr) && 235 SE.getTypeSizeInBits(CE->getType()) == 236 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 237 return CE->getOperand(0); 238 } 239 240 // Fold a cast of a constant. 241 if (Constant *C = dyn_cast<Constant>(V)) 242 return ConstantExpr::getCast(Op, C, Ty); 243 244 // Try to reuse existing cast, or insert one. 245 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 246 } 247 248 /// InsertBinop - Insert the specified binary operator, doing a small amount 249 /// of work to avoid inserting an obviously redundant operation, and hoisting 250 /// to an outer loop when the opportunity is there and it is safe. 251 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 252 Value *LHS, Value *RHS, 253 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 254 // Fold a binop with constant operands. 255 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 256 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 257 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 258 return Res; 259 260 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 261 unsigned ScanLimit = 6; 262 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 263 // Scanning starts from the last instruction before the insertion point. 264 BasicBlock::iterator IP = Builder.GetInsertPoint(); 265 if (IP != BlockBegin) { 266 --IP; 267 for (; ScanLimit; --IP, --ScanLimit) { 268 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 269 // generated code. 270 if (isa<DbgInfoIntrinsic>(IP)) 271 ScanLimit++; 272 273 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 274 // Ensure that no-wrap flags match. 275 if (isa<OverflowingBinaryOperator>(I)) { 276 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 277 return true; 278 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 279 return true; 280 } 281 // Conservatively, do not use any instruction which has any of exact 282 // flags installed. 283 if (isa<PossiblyExactOperator>(I) && I->isExact()) 284 return true; 285 return false; 286 }; 287 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 288 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 289 return &*IP; 290 if (IP == BlockBegin) break; 291 } 292 } 293 294 // Save the original insertion point so we can restore it when we're done. 295 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 296 SCEVInsertPointGuard Guard(Builder, this); 297 298 if (IsSafeToHoist) { 299 // Move the insertion point out of as many loops as we can. 300 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 301 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 302 BasicBlock *Preheader = L->getLoopPreheader(); 303 if (!Preheader) break; 304 305 // Ok, move up a level. 306 Builder.SetInsertPoint(Preheader->getTerminator()); 307 } 308 } 309 310 // If we haven't found this binop, insert it. 311 // TODO: Use the Builder, which will make CreateBinOp below fold with 312 // InstSimplifyFolder. 313 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 314 BO->setDebugLoc(Loc); 315 if (Flags & SCEV::FlagNUW) 316 BO->setHasNoUnsignedWrap(); 317 if (Flags & SCEV::FlagNSW) 318 BO->setHasNoSignedWrap(); 319 320 return BO; 321 } 322 323 /// expandAddToGEP - Expand an addition expression with a pointer type into 324 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 325 /// BasicAliasAnalysis and other passes analyze the result. See the rules 326 /// for getelementptr vs. inttoptr in 327 /// http://llvm.org/docs/LangRef.html#pointeraliasing 328 /// for details. 329 /// 330 /// Design note: The correctness of using getelementptr here depends on 331 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 332 /// they may introduce pointer arithmetic which may not be safely converted 333 /// into getelementptr. 334 /// 335 /// Design note: It might seem desirable for this function to be more 336 /// loop-aware. If some of the indices are loop-invariant while others 337 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 338 /// loop-invariant portions of the overall computation outside the loop. 339 /// However, there are a few reasons this is not done here. Hoisting simple 340 /// arithmetic is a low-level optimization that often isn't very 341 /// important until late in the optimization process. In fact, passes 342 /// like InstructionCombining will combine GEPs, even if it means 343 /// pushing loop-invariant computation down into loops, so even if the 344 /// GEPs were split here, the work would quickly be undone. The 345 /// LoopStrengthReduction pass, which is usually run quite late (and 346 /// after the last InstructionCombining pass), takes care of hoisting 347 /// loop-invariant portions of expressions, after considering what 348 /// can be folded using target addressing modes. 349 /// 350 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 351 assert(!isa<Instruction>(V) || 352 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 353 354 Value *Idx = expand(Offset); 355 356 // Fold a GEP with constant operands. 357 if (Constant *CLHS = dyn_cast<Constant>(V)) 358 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 359 return Builder.CreatePtrAdd(CLHS, CRHS); 360 361 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 362 unsigned ScanLimit = 6; 363 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 364 // Scanning starts from the last instruction before the insertion point. 365 BasicBlock::iterator IP = Builder.GetInsertPoint(); 366 if (IP != BlockBegin) { 367 --IP; 368 for (; ScanLimit; --IP, --ScanLimit) { 369 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 370 // generated code. 371 if (isa<DbgInfoIntrinsic>(IP)) 372 ScanLimit++; 373 if (IP->getOpcode() == Instruction::GetElementPtr && 374 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 375 cast<GEPOperator>(&*IP)->getSourceElementType() == 376 Builder.getInt8Ty()) 377 return &*IP; 378 if (IP == BlockBegin) break; 379 } 380 } 381 382 // Save the original insertion point so we can restore it when we're done. 383 SCEVInsertPointGuard Guard(Builder, this); 384 385 // Move the insertion point out of as many loops as we can. 386 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 387 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 388 BasicBlock *Preheader = L->getLoopPreheader(); 389 if (!Preheader) break; 390 391 // Ok, move up a level. 392 Builder.SetInsertPoint(Preheader->getTerminator()); 393 } 394 395 // Emit a GEP. 396 return Builder.CreatePtrAdd(V, Idx, "scevgep"); 397 } 398 399 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 400 /// SCEV expansion. If they are nested, this is the most nested. If they are 401 /// neighboring, pick the later. 402 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 403 DominatorTree &DT) { 404 if (!A) return B; 405 if (!B) return A; 406 if (A->contains(B)) return B; 407 if (B->contains(A)) return A; 408 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 409 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 410 return A; // Arbitrarily break the tie. 411 } 412 413 /// getRelevantLoop - Get the most relevant loop associated with the given 414 /// expression, according to PickMostRelevantLoop. 415 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 416 // Test whether we've already computed the most relevant loop for this SCEV. 417 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 418 if (!Pair.second) 419 return Pair.first->second; 420 421 switch (S->getSCEVType()) { 422 case scConstant: 423 case scVScale: 424 return nullptr; // A constant has no relevant loops. 425 case scTruncate: 426 case scZeroExtend: 427 case scSignExtend: 428 case scPtrToInt: 429 case scAddExpr: 430 case scMulExpr: 431 case scUDivExpr: 432 case scAddRecExpr: 433 case scUMaxExpr: 434 case scSMaxExpr: 435 case scUMinExpr: 436 case scSMinExpr: 437 case scSequentialUMinExpr: { 438 const Loop *L = nullptr; 439 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 440 L = AR->getLoop(); 441 for (const SCEV *Op : S->operands()) 442 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 443 return RelevantLoops[S] = L; 444 } 445 case scUnknown: { 446 const SCEVUnknown *U = cast<SCEVUnknown>(S); 447 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 448 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 449 // A non-instruction has no relevant loops. 450 return nullptr; 451 } 452 case scCouldNotCompute: 453 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 454 } 455 llvm_unreachable("Unexpected SCEV type!"); 456 } 457 458 namespace { 459 460 /// LoopCompare - Compare loops by PickMostRelevantLoop. 461 class LoopCompare { 462 DominatorTree &DT; 463 public: 464 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 465 466 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 467 std::pair<const Loop *, const SCEV *> RHS) const { 468 // Keep pointer operands sorted at the end. 469 if (LHS.second->getType()->isPointerTy() != 470 RHS.second->getType()->isPointerTy()) 471 return LHS.second->getType()->isPointerTy(); 472 473 // Compare loops with PickMostRelevantLoop. 474 if (LHS.first != RHS.first) 475 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 476 477 // If one operand is a non-constant negative and the other is not, 478 // put the non-constant negative on the right so that a sub can 479 // be used instead of a negate and add. 480 if (LHS.second->isNonConstantNegative()) { 481 if (!RHS.second->isNonConstantNegative()) 482 return false; 483 } else if (RHS.second->isNonConstantNegative()) 484 return true; 485 486 // Otherwise they are equivalent according to this comparison. 487 return false; 488 } 489 }; 490 491 } 492 493 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 494 // Collect all the add operands in a loop, along with their associated loops. 495 // Iterate in reverse so that constants are emitted last, all else equal, and 496 // so that pointer operands are inserted first, which the code below relies on 497 // to form more involved GEPs. 498 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 499 for (const SCEV *Op : reverse(S->operands())) 500 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 501 502 // Sort by loop. Use a stable sort so that constants follow non-constants and 503 // pointer operands precede non-pointer operands. 504 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 505 506 // Emit instructions to add all the operands. Hoist as much as possible 507 // out of loops, and form meaningful getelementptrs where possible. 508 Value *Sum = nullptr; 509 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 510 const Loop *CurLoop = I->first; 511 const SCEV *Op = I->second; 512 if (!Sum) { 513 // This is the first operand. Just expand it. 514 Sum = expand(Op); 515 ++I; 516 continue; 517 } 518 519 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 520 if (isa<PointerType>(Sum->getType())) { 521 // The running sum expression is a pointer. Try to form a getelementptr 522 // at this level with that as the base. 523 SmallVector<const SCEV *, 4> NewOps; 524 for (; I != E && I->first == CurLoop; ++I) { 525 // If the operand is SCEVUnknown and not instructions, peek through 526 // it, to enable more of it to be folded into the GEP. 527 const SCEV *X = I->second; 528 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 529 if (!isa<Instruction>(U->getValue())) 530 X = SE.getSCEV(U->getValue()); 531 NewOps.push_back(X); 532 } 533 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 534 } else if (Op->isNonConstantNegative()) { 535 // Instead of doing a negate and add, just do a subtract. 536 Value *W = expand(SE.getNegativeSCEV(Op)); 537 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 538 /*IsSafeToHoist*/ true); 539 ++I; 540 } else { 541 // A simple add. 542 Value *W = expand(Op); 543 // Canonicalize a constant to the RHS. 544 if (isa<Constant>(Sum)) 545 std::swap(Sum, W); 546 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 547 /*IsSafeToHoist*/ true); 548 ++I; 549 } 550 } 551 552 return Sum; 553 } 554 555 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 556 Type *Ty = S->getType(); 557 558 // Collect all the mul operands in a loop, along with their associated loops. 559 // Iterate in reverse so that constants are emitted last, all else equal. 560 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 561 for (const SCEV *Op : reverse(S->operands())) 562 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 563 564 // Sort by loop. Use a stable sort so that constants follow non-constants. 565 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 566 567 // Emit instructions to mul all the operands. Hoist as much as possible 568 // out of loops. 569 Value *Prod = nullptr; 570 auto I = OpsAndLoops.begin(); 571 572 // Expand the calculation of X pow N in the following manner: 573 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 574 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 575 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 576 auto E = I; 577 // Calculate how many times the same operand from the same loop is included 578 // into this power. 579 uint64_t Exponent = 0; 580 const uint64_t MaxExponent = UINT64_MAX >> 1; 581 // No one sane will ever try to calculate such huge exponents, but if we 582 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 583 // below when the power of 2 exceeds our Exponent, and we want it to be 584 // 1u << 31 at most to not deal with unsigned overflow. 585 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 586 ++Exponent; 587 ++E; 588 } 589 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 590 591 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 592 // that are needed into the result. 593 Value *P = expand(I->second); 594 Value *Result = nullptr; 595 if (Exponent & 1) 596 Result = P; 597 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 598 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 599 /*IsSafeToHoist*/ true); 600 if (Exponent & BinExp) 601 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 602 SCEV::FlagAnyWrap, 603 /*IsSafeToHoist*/ true) 604 : P; 605 } 606 607 I = E; 608 assert(Result && "Nothing was expanded?"); 609 return Result; 610 }; 611 612 while (I != OpsAndLoops.end()) { 613 if (!Prod) { 614 // This is the first operand. Just expand it. 615 Prod = ExpandOpBinPowN(); 616 } else if (I->second->isAllOnesValue()) { 617 // Instead of doing a multiply by negative one, just do a negate. 618 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 619 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 620 ++I; 621 } else { 622 // A simple mul. 623 Value *W = ExpandOpBinPowN(); 624 // Canonicalize a constant to the RHS. 625 if (isa<Constant>(Prod)) std::swap(Prod, W); 626 const APInt *RHS; 627 if (match(W, m_Power2(RHS))) { 628 // Canonicalize Prod*(1<<C) to Prod<<C. 629 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 630 auto NWFlags = S->getNoWrapFlags(); 631 // clear nsw flag if shl will produce poison value. 632 if (RHS->logBase2() == RHS->getBitWidth() - 1) 633 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 634 Prod = InsertBinop(Instruction::Shl, Prod, 635 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 636 /*IsSafeToHoist*/ true); 637 } else { 638 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 639 /*IsSafeToHoist*/ true); 640 } 641 } 642 } 643 644 return Prod; 645 } 646 647 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 648 Value *LHS = expand(S->getLHS()); 649 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 650 const APInt &RHS = SC->getAPInt(); 651 if (RHS.isPowerOf2()) 652 return InsertBinop(Instruction::LShr, LHS, 653 ConstantInt::get(SC->getType(), RHS.logBase2()), 654 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 655 } 656 657 Value *RHS = expand(S->getRHS()); 658 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 659 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 660 } 661 662 /// Determine if this is a well-behaved chain of instructions leading back to 663 /// the PHI. If so, it may be reused by expanded expressions. 664 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 665 const Loop *L) { 666 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 667 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 668 return false; 669 // If any of the operands don't dominate the insert position, bail. 670 // Addrec operands are always loop-invariant, so this can only happen 671 // if there are instructions which haven't been hoisted. 672 if (L == IVIncInsertLoop) { 673 for (Use &Op : llvm::drop_begin(IncV->operands())) 674 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 675 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 676 return false; 677 } 678 // Advance to the next instruction. 679 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 680 if (!IncV) 681 return false; 682 683 if (IncV->mayHaveSideEffects()) 684 return false; 685 686 if (IncV == PN) 687 return true; 688 689 return isNormalAddRecExprPHI(PN, IncV, L); 690 } 691 692 /// getIVIncOperand returns an induction variable increment's induction 693 /// variable operand. 694 /// 695 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 696 /// operands dominate InsertPos. 697 /// 698 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 699 /// simple patterns generated by getAddRecExprPHILiterally and 700 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 701 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 702 Instruction *InsertPos, 703 bool allowScale) { 704 if (IncV == InsertPos) 705 return nullptr; 706 707 switch (IncV->getOpcode()) { 708 default: 709 return nullptr; 710 // Check for a simple Add/Sub or GEP of a loop invariant step. 711 case Instruction::Add: 712 case Instruction::Sub: { 713 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 714 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 715 return dyn_cast<Instruction>(IncV->getOperand(0)); 716 return nullptr; 717 } 718 case Instruction::BitCast: 719 return dyn_cast<Instruction>(IncV->getOperand(0)); 720 case Instruction::GetElementPtr: 721 for (Use &U : llvm::drop_begin(IncV->operands())) { 722 if (isa<Constant>(U)) 723 continue; 724 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 725 if (!SE.DT.dominates(OInst, InsertPos)) 726 return nullptr; 727 } 728 if (allowScale) { 729 // allow any kind of GEP as long as it can be hoisted. 730 continue; 731 } 732 // GEPs produced by SCEVExpander use i8 element type. 733 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 734 return nullptr; 735 break; 736 } 737 return dyn_cast<Instruction>(IncV->getOperand(0)); 738 } 739 } 740 741 /// If the insert point of the current builder or any of the builders on the 742 /// stack of saved builders has 'I' as its insert point, update it to point to 743 /// the instruction after 'I'. This is intended to be used when the instruction 744 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 745 /// different block, the inconsistent insert point (with a mismatched 746 /// Instruction and Block) can lead to an instruction being inserted in a block 747 /// other than its parent. 748 void SCEVExpander::fixupInsertPoints(Instruction *I) { 749 BasicBlock::iterator It(*I); 750 BasicBlock::iterator NewInsertPt = std::next(It); 751 if (Builder.GetInsertPoint() == It) 752 Builder.SetInsertPoint(&*NewInsertPt); 753 for (auto *InsertPtGuard : InsertPointGuards) 754 if (InsertPtGuard->GetInsertPoint() == It) 755 InsertPtGuard->SetInsertPoint(NewInsertPt); 756 } 757 758 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 759 /// it available to other uses in this loop. Recursively hoist any operands, 760 /// until we reach a value that dominates InsertPos. 761 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 762 bool RecomputePoisonFlags) { 763 auto FixupPoisonFlags = [this](Instruction *I) { 764 // Drop flags that are potentially inferred from old context and infer flags 765 // in new context. 766 rememberFlags(I); 767 I->dropPoisonGeneratingFlags(); 768 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 769 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 770 auto *BO = cast<BinaryOperator>(I); 771 BO->setHasNoUnsignedWrap( 772 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 773 BO->setHasNoSignedWrap( 774 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 775 } 776 }; 777 778 if (SE.DT.dominates(IncV, InsertPos)) { 779 if (RecomputePoisonFlags) 780 FixupPoisonFlags(IncV); 781 return true; 782 } 783 784 // InsertPos must itself dominate IncV so that IncV's new position satisfies 785 // its existing users. 786 if (isa<PHINode>(InsertPos) || 787 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 788 return false; 789 790 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 791 return false; 792 793 // Check that the chain of IV operands leading back to Phi can be hoisted. 794 SmallVector<Instruction*, 4> IVIncs; 795 for(;;) { 796 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 797 if (!Oper) 798 return false; 799 // IncV is safe to hoist. 800 IVIncs.push_back(IncV); 801 IncV = Oper; 802 if (SE.DT.dominates(IncV, InsertPos)) 803 break; 804 } 805 for (Instruction *I : llvm::reverse(IVIncs)) { 806 fixupInsertPoints(I); 807 I->moveBefore(InsertPos); 808 if (RecomputePoisonFlags) 809 FixupPoisonFlags(I); 810 } 811 return true; 812 } 813 814 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, 815 PHINode *WidePhi, 816 Instruction *OrigInc, 817 Instruction *WideInc) { 818 return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) && 819 match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) && 820 OrigInc->getOpcode() == WideInc->getOpcode(); 821 } 822 823 /// Determine if this cyclic phi is in a form that would have been generated by 824 /// LSR. We don't care if the phi was actually expanded in this pass, as long 825 /// as it is in a low-cost form, for example, no implied multiplication. This 826 /// should match any patterns generated by getAddRecExprPHILiterally and 827 /// expandAddtoGEP. 828 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 829 const Loop *L) { 830 for(Instruction *IVOper = IncV; 831 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 832 /*allowScale=*/false));) { 833 if (IVOper == PN) 834 return true; 835 } 836 return false; 837 } 838 839 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 840 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 841 /// need to materialize IV increments elsewhere to handle difficult situations. 842 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 843 bool useSubtract) { 844 Value *IncV; 845 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 846 if (PN->getType()->isPointerTy()) { 847 // TODO: Change name to IVName.iv.next. 848 IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep"); 849 } else { 850 IncV = useSubtract ? 851 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 852 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 853 } 854 return IncV; 855 } 856 857 /// Check whether we can cheaply express the requested SCEV in terms of 858 /// the available PHI SCEV by truncation and/or inversion of the step. 859 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 860 const SCEVAddRecExpr *Phi, 861 const SCEVAddRecExpr *Requested, 862 bool &InvertStep) { 863 // We can't transform to match a pointer PHI. 864 Type *PhiTy = Phi->getType(); 865 Type *RequestedTy = Requested->getType(); 866 if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 867 return false; 868 869 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 870 return false; 871 872 // Try truncate it if necessary. 873 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 874 if (!Phi) 875 return false; 876 877 // Check whether truncation will help. 878 if (Phi == Requested) { 879 InvertStep = false; 880 return true; 881 } 882 883 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 884 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 885 InvertStep = true; 886 return true; 887 } 888 889 return false; 890 } 891 892 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 893 if (!isa<IntegerType>(AR->getType())) 894 return false; 895 896 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 897 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 898 const SCEV *Step = AR->getStepRecurrence(SE); 899 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 900 SE.getSignExtendExpr(AR, WideTy)); 901 const SCEV *ExtendAfterOp = 902 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 903 return ExtendAfterOp == OpAfterExtend; 904 } 905 906 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 907 if (!isa<IntegerType>(AR->getType())) 908 return false; 909 910 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 911 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 912 const SCEV *Step = AR->getStepRecurrence(SE); 913 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 914 SE.getZeroExtendExpr(AR, WideTy)); 915 const SCEV *ExtendAfterOp = 916 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 917 return ExtendAfterOp == OpAfterExtend; 918 } 919 920 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 921 /// the base addrec, which is the addrec without any non-loop-dominating 922 /// values, and return the PHI. 923 PHINode * 924 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 925 const Loop *L, Type *&TruncTy, 926 bool &InvertStep) { 927 assert((!IVIncInsertLoop || IVIncInsertPos) && 928 "Uninitialized insert position"); 929 930 // Reuse a previously-inserted PHI, if present. 931 BasicBlock *LatchBlock = L->getLoopLatch(); 932 if (LatchBlock) { 933 PHINode *AddRecPhiMatch = nullptr; 934 Instruction *IncV = nullptr; 935 TruncTy = nullptr; 936 InvertStep = false; 937 938 // Only try partially matching scevs that need truncation and/or 939 // step-inversion if we know this loop is outside the current loop. 940 bool TryNonMatchingSCEV = 941 IVIncInsertLoop && 942 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 943 944 for (PHINode &PN : L->getHeader()->phis()) { 945 if (!SE.isSCEVable(PN.getType())) 946 continue; 947 948 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 949 // PHI has no meaning at all. 950 if (!PN.isComplete()) { 951 SCEV_DEBUG_WITH_TYPE( 952 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 953 continue; 954 } 955 956 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 957 if (!PhiSCEV) 958 continue; 959 960 bool IsMatchingSCEV = PhiSCEV == Normalized; 961 // We only handle truncation and inversion of phi recurrences for the 962 // expanded expression if the expanded expression's loop dominates the 963 // loop we insert to. Check now, so we can bail out early. 964 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 965 continue; 966 967 // TODO: this possibly can be reworked to avoid this cast at all. 968 Instruction *TempIncV = 969 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 970 if (!TempIncV) 971 continue; 972 973 // Check whether we can reuse this PHI node. 974 if (LSRMode) { 975 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 976 continue; 977 } else { 978 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 979 continue; 980 } 981 982 // Stop if we have found an exact match SCEV. 983 if (IsMatchingSCEV) { 984 IncV = TempIncV; 985 TruncTy = nullptr; 986 InvertStep = false; 987 AddRecPhiMatch = &PN; 988 break; 989 } 990 991 // Try whether the phi can be translated into the requested form 992 // (truncated and/or offset by a constant). 993 if ((!TruncTy || InvertStep) && 994 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 995 // Record the phi node. But don't stop we might find an exact match 996 // later. 997 AddRecPhiMatch = &PN; 998 IncV = TempIncV; 999 TruncTy = Normalized->getType(); 1000 } 1001 } 1002 1003 if (AddRecPhiMatch) { 1004 // Ok, the add recurrence looks usable. 1005 // Remember this PHI, even in post-inc mode. 1006 InsertedValues.insert(AddRecPhiMatch); 1007 // Remember the increment. 1008 rememberInstruction(IncV); 1009 // Those values were not actually inserted but re-used. 1010 ReusedValues.insert(AddRecPhiMatch); 1011 ReusedValues.insert(IncV); 1012 return AddRecPhiMatch; 1013 } 1014 } 1015 1016 // Save the original insertion point so we can restore it when we're done. 1017 SCEVInsertPointGuard Guard(Builder, this); 1018 1019 // Another AddRec may need to be recursively expanded below. For example, if 1020 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1021 // loop. Remove this loop from the PostIncLoops set before expanding such 1022 // AddRecs. Otherwise, we cannot find a valid position for the step 1023 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1024 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1025 // so it's not worth implementing SmallPtrSet::swap. 1026 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1027 PostIncLoops.clear(); 1028 1029 // Expand code for the start value into the loop preheader. 1030 assert(L->getLoopPreheader() && 1031 "Can't expand add recurrences without a loop preheader!"); 1032 Value *StartV = 1033 expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 1034 1035 // StartV must have been be inserted into L's preheader to dominate the new 1036 // phi. 1037 assert(!isa<Instruction>(StartV) || 1038 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1039 L->getHeader())); 1040 1041 // Expand code for the step value. Do this before creating the PHI so that PHI 1042 // reuse code doesn't see an incomplete PHI. 1043 const SCEV *Step = Normalized->getStepRecurrence(SE); 1044 Type *ExpandTy = Normalized->getType(); 1045 // If the stride is negative, insert a sub instead of an add for the increment 1046 // (unless it's a constant, because subtracts of constants are canonicalized 1047 // to adds). 1048 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1049 if (useSubtract) 1050 Step = SE.getNegativeSCEV(Step); 1051 // Expand the step somewhere that dominates the loop header. 1052 Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1053 1054 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1055 // we actually do emit an addition. It does not apply if we emit a 1056 // subtraction. 1057 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1058 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1059 1060 // Create the PHI. 1061 BasicBlock *Header = L->getHeader(); 1062 Builder.SetInsertPoint(Header, Header->begin()); 1063 PHINode *PN = 1064 Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv"); 1065 1066 // Create the step instructions and populate the PHI. 1067 for (BasicBlock *Pred : predecessors(Header)) { 1068 // Add a start value. 1069 if (!L->contains(Pred)) { 1070 PN->addIncoming(StartV, Pred); 1071 continue; 1072 } 1073 1074 // Create a step value and add it to the PHI. 1075 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1076 // instructions at IVIncInsertPos. 1077 Instruction *InsertPos = L == IVIncInsertLoop ? 1078 IVIncInsertPos : Pred->getTerminator(); 1079 Builder.SetInsertPoint(InsertPos); 1080 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1081 1082 if (isa<OverflowingBinaryOperator>(IncV)) { 1083 if (IncrementIsNUW) 1084 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1085 if (IncrementIsNSW) 1086 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1087 } 1088 PN->addIncoming(IncV, Pred); 1089 } 1090 1091 // After expanding subexpressions, restore the PostIncLoops set so the caller 1092 // can ensure that IVIncrement dominates the current uses. 1093 PostIncLoops = SavedPostIncLoops; 1094 1095 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1096 // effective when we are able to use an IV inserted here, so record it. 1097 InsertedValues.insert(PN); 1098 InsertedIVs.push_back(PN); 1099 return PN; 1100 } 1101 1102 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1103 const Loop *L = S->getLoop(); 1104 1105 // Determine a normalized form of this expression, which is the expression 1106 // before any post-inc adjustment is made. 1107 const SCEVAddRecExpr *Normalized = S; 1108 if (PostIncLoops.count(L)) { 1109 PostIncLoopSet Loops; 1110 Loops.insert(L); 1111 Normalized = cast<SCEVAddRecExpr>( 1112 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1113 } 1114 1115 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1116 const SCEV *Step = Normalized->getStepRecurrence(SE); 1117 assert(SE.properlyDominates(Start, L->getHeader()) && 1118 "Start does not properly dominate loop header"); 1119 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1120 1121 // In some cases, we decide to reuse an existing phi node but need to truncate 1122 // it and/or invert the step. 1123 Type *TruncTy = nullptr; 1124 bool InvertStep = false; 1125 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 1126 1127 // Accommodate post-inc mode, if necessary. 1128 Value *Result; 1129 if (!PostIncLoops.count(L)) 1130 Result = PN; 1131 else { 1132 // In PostInc mode, use the post-incremented value. 1133 BasicBlock *LatchBlock = L->getLoopLatch(); 1134 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1135 Result = PN->getIncomingValueForBlock(LatchBlock); 1136 1137 // We might be introducing a new use of the post-inc IV that is not poison 1138 // safe, in which case we should drop poison generating flags. Only keep 1139 // those flags for which SCEV has proven that they always hold. 1140 if (isa<OverflowingBinaryOperator>(Result)) { 1141 auto *I = cast<Instruction>(Result); 1142 if (!S->hasNoUnsignedWrap()) 1143 I->setHasNoUnsignedWrap(false); 1144 if (!S->hasNoSignedWrap()) 1145 I->setHasNoSignedWrap(false); 1146 } 1147 1148 // For an expansion to use the postinc form, the client must call 1149 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1150 // or dominated by IVIncInsertPos. 1151 if (isa<Instruction>(Result) && 1152 !SE.DT.dominates(cast<Instruction>(Result), 1153 &*Builder.GetInsertPoint())) { 1154 // The induction variable's postinc expansion does not dominate this use. 1155 // IVUsers tries to prevent this case, so it is rare. However, it can 1156 // happen when an IVUser outside the loop is not dominated by the latch 1157 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1158 // all cases. Consider a phi outside whose operand is replaced during 1159 // expansion with the value of the postinc user. Without fundamentally 1160 // changing the way postinc users are tracked, the only remedy is 1161 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1162 // but hopefully expandCodeFor handles that. 1163 bool useSubtract = 1164 !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 1165 if (useSubtract) 1166 Step = SE.getNegativeSCEV(Step); 1167 Value *StepV; 1168 { 1169 // Expand the step somewhere that dominates the loop header. 1170 SCEVInsertPointGuard Guard(Builder, this); 1171 StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1172 } 1173 Result = expandIVInc(PN, StepV, L, useSubtract); 1174 } 1175 } 1176 1177 // We have decided to reuse an induction variable of a dominating loop. Apply 1178 // truncation and/or inversion of the step. 1179 if (TruncTy) { 1180 // Truncate the result. 1181 if (TruncTy != Result->getType()) 1182 Result = Builder.CreateTrunc(Result, TruncTy); 1183 1184 // Invert the result. 1185 if (InvertStep) 1186 Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 1187 } 1188 1189 return Result; 1190 } 1191 1192 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1193 // In canonical mode we compute the addrec as an expression of a canonical IV 1194 // using evaluateAtIteration and expand the resulting SCEV expression. This 1195 // way we avoid introducing new IVs to carry on the computation of the addrec 1196 // throughout the loop. 1197 // 1198 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1199 // type wider than the addrec itself. Emitting a canonical IV of the 1200 // proper type might produce non-legal types, for example expanding an i64 1201 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1202 // back to non-canonical mode for nested addrecs. 1203 if (!CanonicalMode || (S->getNumOperands() > 2)) 1204 return expandAddRecExprLiterally(S); 1205 1206 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1207 const Loop *L = S->getLoop(); 1208 1209 // First check for an existing canonical IV in a suitable type. 1210 PHINode *CanonicalIV = nullptr; 1211 if (PHINode *PN = L->getCanonicalInductionVariable()) 1212 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1213 CanonicalIV = PN; 1214 1215 // Rewrite an AddRec in terms of the canonical induction variable, if 1216 // its type is more narrow. 1217 if (CanonicalIV && 1218 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1219 !S->getType()->isPointerTy()) { 1220 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1221 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1222 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1223 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1224 S->getNoWrapFlags(SCEV::FlagNW))); 1225 BasicBlock::iterator NewInsertPt = 1226 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1227 V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 1228 return V; 1229 } 1230 1231 // {X,+,F} --> X + {0,+,F} 1232 if (!S->getStart()->isZero()) { 1233 if (isa<PointerType>(S->getType())) { 1234 Value *StartV = expand(SE.getPointerBase(S)); 1235 return expandAddToGEP(SE.removePointerBase(S), StartV); 1236 } 1237 1238 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1239 NewOps[0] = SE.getConstant(Ty, 0); 1240 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1241 S->getNoWrapFlags(SCEV::FlagNW)); 1242 1243 // Just do a normal add. Pre-expand the operands to suppress folding. 1244 // 1245 // The LHS and RHS values are factored out of the expand call to make the 1246 // output independent of the argument evaluation order. 1247 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1248 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1249 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1250 } 1251 1252 // If we don't yet have a canonical IV, create one. 1253 if (!CanonicalIV) { 1254 // Create and insert the PHI node for the induction variable in the 1255 // specified loop. 1256 BasicBlock *Header = L->getHeader(); 1257 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1258 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1259 CanonicalIV->insertBefore(Header->begin()); 1260 rememberInstruction(CanonicalIV); 1261 1262 SmallSet<BasicBlock *, 4> PredSeen; 1263 Constant *One = ConstantInt::get(Ty, 1); 1264 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1265 BasicBlock *HP = *HPI; 1266 if (!PredSeen.insert(HP).second) { 1267 // There must be an incoming value for each predecessor, even the 1268 // duplicates! 1269 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1270 continue; 1271 } 1272 1273 if (L->contains(HP)) { 1274 // Insert a unit add instruction right before the terminator 1275 // corresponding to the back-edge. 1276 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1277 "indvar.next", 1278 HP->getTerminator()->getIterator()); 1279 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1280 rememberInstruction(Add); 1281 CanonicalIV->addIncoming(Add, HP); 1282 } else { 1283 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1284 } 1285 } 1286 } 1287 1288 // {0,+,1} --> Insert a canonical induction variable into the loop! 1289 if (S->isAffine() && S->getOperand(1)->isOne()) { 1290 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1291 "IVs with types different from the canonical IV should " 1292 "already have been handled!"); 1293 return CanonicalIV; 1294 } 1295 1296 // {0,+,F} --> {0,+,1} * F 1297 1298 // If this is a simple linear addrec, emit it now as a special case. 1299 if (S->isAffine()) // {0,+,F} --> i*F 1300 return 1301 expand(SE.getTruncateOrNoop( 1302 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1303 SE.getNoopOrAnyExtend(S->getOperand(1), 1304 CanonicalIV->getType())), 1305 Ty)); 1306 1307 // If this is a chain of recurrences, turn it into a closed form, using the 1308 // folders, then expandCodeFor the closed form. This allows the folders to 1309 // simplify the expression without having to build a bunch of special code 1310 // into this folder. 1311 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1312 1313 // Promote S up to the canonical IV type, if the cast is foldable. 1314 const SCEV *NewS = S; 1315 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1316 if (isa<SCEVAddRecExpr>(Ext)) 1317 NewS = Ext; 1318 1319 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1320 1321 // Truncate the result down to the original type, if needed. 1322 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1323 return expand(T); 1324 } 1325 1326 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1327 Value *V = expand(S->getOperand()); 1328 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1329 GetOptimalInsertionPointForCastOf(V)); 1330 } 1331 1332 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1333 Value *V = expand(S->getOperand()); 1334 return Builder.CreateTrunc(V, S->getType()); 1335 } 1336 1337 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1338 Value *V = expand(S->getOperand()); 1339 return Builder.CreateZExt(V, S->getType(), "", 1340 SE.isKnownNonNegative(S->getOperand())); 1341 } 1342 1343 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1344 Value *V = expand(S->getOperand()); 1345 return Builder.CreateSExt(V, S->getType()); 1346 } 1347 1348 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1349 Intrinsic::ID IntrinID, Twine Name, 1350 bool IsSequential) { 1351 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1352 Type *Ty = LHS->getType(); 1353 if (IsSequential) 1354 LHS = Builder.CreateFreeze(LHS); 1355 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1356 Value *RHS = expand(S->getOperand(i)); 1357 if (IsSequential && i != 0) 1358 RHS = Builder.CreateFreeze(RHS); 1359 Value *Sel; 1360 if (Ty->isIntegerTy()) 1361 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1362 /*FMFSource=*/nullptr, Name); 1363 else { 1364 Value *ICmp = 1365 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1366 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1367 } 1368 LHS = Sel; 1369 } 1370 return LHS; 1371 } 1372 1373 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1374 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1375 } 1376 1377 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1378 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1379 } 1380 1381 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1382 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1383 } 1384 1385 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1386 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1387 } 1388 1389 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1390 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1391 } 1392 1393 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1394 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1395 } 1396 1397 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1398 BasicBlock::iterator IP) { 1399 setInsertPoint(IP); 1400 Value *V = expandCodeFor(SH, Ty); 1401 return V; 1402 } 1403 1404 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1405 // Expand the code for this SCEV. 1406 Value *V = expand(SH); 1407 1408 if (Ty) { 1409 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1410 "non-trivial casts should be done with the SCEVs directly!"); 1411 V = InsertNoopCastOfTo(V, Ty); 1412 } 1413 return V; 1414 } 1415 1416 Value *SCEVExpander::FindValueInExprValueMap( 1417 const SCEV *S, const Instruction *InsertPt, 1418 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1419 // If the expansion is not in CanonicalMode, and the SCEV contains any 1420 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1421 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1422 return nullptr; 1423 1424 // If S is a constant, it may be worse to reuse an existing Value. 1425 if (isa<SCEVConstant>(S)) 1426 return nullptr; 1427 1428 for (Value *V : SE.getSCEVValues(S)) { 1429 Instruction *EntInst = dyn_cast<Instruction>(V); 1430 if (!EntInst) 1431 continue; 1432 1433 // Choose a Value from the set which dominates the InsertPt. 1434 // InsertPt should be inside the Value's parent loop so as not to break 1435 // the LCSSA form. 1436 assert(EntInst->getFunction() == InsertPt->getFunction()); 1437 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1438 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1439 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1440 continue; 1441 1442 // Make sure reusing the instruction is poison-safe. 1443 if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 1444 return V; 1445 DropPoisonGeneratingInsts.clear(); 1446 } 1447 return nullptr; 1448 } 1449 1450 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1451 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1452 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1453 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1454 // the expansion will try to reuse Value from ExprValueMap, and only when it 1455 // fails, expand the SCEV literally. 1456 Value *SCEVExpander::expand(const SCEV *S) { 1457 // Compute an insertion point for this SCEV object. Hoist the instructions 1458 // as far out in the loop nest as possible. 1459 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1460 1461 // We can move insertion point only if there is no div or rem operations 1462 // otherwise we are risky to move it over the check for zero denominator. 1463 auto SafeToHoist = [](const SCEV *S) { 1464 return !SCEVExprContains(S, [](const SCEV *S) { 1465 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1466 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1467 // Division by non-zero constants can be hoisted. 1468 return SC->getValue()->isZero(); 1469 // All other divisions should not be moved as they may be 1470 // divisions by zero and should be kept within the 1471 // conditions of the surrounding loops that guard their 1472 // execution (see PR35406). 1473 return true; 1474 } 1475 return false; 1476 }); 1477 }; 1478 if (SafeToHoist(S)) { 1479 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1480 L = L->getParentLoop()) { 1481 if (SE.isLoopInvariant(S, L)) { 1482 if (!L) break; 1483 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1484 InsertPt = Preheader->getTerminator()->getIterator(); 1485 } else { 1486 // LSR sets the insertion point for AddRec start/step values to the 1487 // block start to simplify value reuse, even though it's an invalid 1488 // position. SCEVExpander must correct for this in all cases. 1489 InsertPt = L->getHeader()->getFirstInsertionPt(); 1490 } 1491 } else { 1492 // If the SCEV is computable at this level, insert it into the header 1493 // after the PHIs (and after any other instructions that we've inserted 1494 // there) so that it is guaranteed to dominate any user inside the loop. 1495 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1496 InsertPt = L->getHeader()->getFirstInsertionPt(); 1497 1498 while (InsertPt != Builder.GetInsertPoint() && 1499 (isInsertedInstruction(&*InsertPt) || 1500 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1501 InsertPt = std::next(InsertPt); 1502 } 1503 break; 1504 } 1505 } 1506 } 1507 1508 // Check to see if we already expanded this here. 1509 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1510 if (I != InsertedExpressions.end()) 1511 return I->second; 1512 1513 SCEVInsertPointGuard Guard(Builder, this); 1514 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1515 1516 // Expand the expression into instructions. 1517 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1518 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1519 if (!V) { 1520 V = visit(S); 1521 V = fixupLCSSAFormFor(V); 1522 } else { 1523 for (Instruction *I : DropPoisonGeneratingInsts) { 1524 rememberFlags(I); 1525 I->dropPoisonGeneratingAnnotations(); 1526 // See if we can re-infer from first principles any of the flags we just 1527 // dropped. 1528 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1529 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1530 auto *BO = cast<BinaryOperator>(I); 1531 BO->setHasNoUnsignedWrap( 1532 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1533 BO->setHasNoSignedWrap( 1534 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1535 } 1536 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 1537 auto *Src = NNI->getOperand(0); 1538 if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 1539 Constant::getNullValue(Src->getType()), I, 1540 DL).value_or(false)) 1541 NNI->setNonNeg(true); 1542 } 1543 } 1544 } 1545 // Remember the expanded value for this SCEV at this location. 1546 // 1547 // This is independent of PostIncLoops. The mapped value simply materializes 1548 // the expression at this insertion point. If the mapped value happened to be 1549 // a postinc expansion, it could be reused by a non-postinc user, but only if 1550 // its insertion point was already at the head of the loop. 1551 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1552 return V; 1553 } 1554 1555 void SCEVExpander::rememberInstruction(Value *I) { 1556 auto DoInsert = [this](Value *V) { 1557 if (!PostIncLoops.empty()) 1558 InsertedPostIncValues.insert(V); 1559 else 1560 InsertedValues.insert(V); 1561 }; 1562 DoInsert(I); 1563 } 1564 1565 void SCEVExpander::rememberFlags(Instruction *I) { 1566 // If we already have flags for the instruction, keep the existing ones. 1567 OrigFlags.try_emplace(I, PoisonFlags(I)); 1568 } 1569 1570 void SCEVExpander::replaceCongruentIVInc( 1571 PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT, 1572 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1573 BasicBlock *LatchBlock = L->getLoopLatch(); 1574 if (!LatchBlock) 1575 return; 1576 1577 Instruction *OrigInc = 1578 dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1579 Instruction *IsomorphicInc = 1580 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1581 if (!OrigInc || !IsomorphicInc) 1582 return; 1583 1584 // If this phi has the same width but is more canonical, replace the 1585 // original with it. As part of the "more canonical" determination, 1586 // respect a prior decision to use an IV chain. 1587 if (OrigPhi->getType() == Phi->getType() && 1588 !(ChainedPhis.count(Phi) || 1589 isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) && 1590 (ChainedPhis.count(Phi) || 1591 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1592 std::swap(OrigPhi, Phi); 1593 std::swap(OrigInc, IsomorphicInc); 1594 } 1595 1596 // Replacing the congruent phi is sufficient because acyclic 1597 // redundancy elimination, CSE/GVN, should handle the 1598 // rest. However, once SCEV proves that a phi is congruent, 1599 // it's often the head of an IV user cycle that is isomorphic 1600 // with the original phi. It's worth eagerly cleaning up the 1601 // common case of a single IV increment so that DeleteDeadPHIs 1602 // can remove cycles that had postinc uses. 1603 // Because we may potentially introduce a new use of OrigIV that didn't 1604 // exist before at this point, its poison flags need readjustment. 1605 const SCEV *TruncExpr = 1606 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1607 if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) || 1608 !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc)) 1609 return; 1610 1611 bool BothHaveNUW = false; 1612 bool BothHaveNSW = false; 1613 auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc); 1614 auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc); 1615 if (OBOIncV && OBOIsomorphic) { 1616 BothHaveNUW = 1617 OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap(); 1618 BothHaveNSW = 1619 OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap(); 1620 } 1621 1622 if (!hoistIVInc(OrigInc, IsomorphicInc, 1623 /*RecomputePoisonFlags*/ true)) 1624 return; 1625 1626 // We are replacing with a wider increment. If both OrigInc and IsomorphicInc 1627 // are NUW/NSW, then we can preserve them on the wider increment; the narrower 1628 // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't 1629 // make IsomorphicInc's uses more poisonous. 1630 assert(OrigInc->getType()->getScalarSizeInBits() >= 1631 IsomorphicInc->getType()->getScalarSizeInBits() && 1632 "Should only replace an increment with a wider one."); 1633 if (BothHaveNUW || BothHaveNSW) { 1634 OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW); 1635 OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW); 1636 } 1637 1638 SCEV_DEBUG_WITH_TYPE(DebugType, 1639 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1640 << *IsomorphicInc << '\n'); 1641 Value *NewInc = OrigInc; 1642 if (OrigInc->getType() != IsomorphicInc->getType()) { 1643 BasicBlock::iterator IP; 1644 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1645 IP = PN->getParent()->getFirstInsertionPt(); 1646 else 1647 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1648 1649 IRBuilder<> Builder(IP->getParent(), IP); 1650 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1651 NewInc = 1652 Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1653 } 1654 IsomorphicInc->replaceAllUsesWith(NewInc); 1655 DeadInsts.emplace_back(IsomorphicInc); 1656 } 1657 1658 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1659 /// replace them with their most canonical representative. Return the number of 1660 /// phis eliminated. 1661 /// 1662 /// This does not depend on any SCEVExpander state but should be used in 1663 /// the same context that SCEVExpander is used. 1664 unsigned 1665 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1666 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1667 const TargetTransformInfo *TTI) { 1668 // Find integer phis in order of increasing width. 1669 SmallVector<PHINode*, 8> Phis; 1670 for (PHINode &PN : L->getHeader()->phis()) 1671 Phis.push_back(&PN); 1672 1673 if (TTI) 1674 // Use stable_sort to preserve order of equivalent PHIs, so the order 1675 // of the sorted Phis is the same from run to run on the same loop. 1676 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1677 // Put pointers at the back and make sure pointer < pointer = false. 1678 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1679 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1680 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1681 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1682 }); 1683 1684 unsigned NumElim = 0; 1685 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1686 // Process phis from wide to narrow. Map wide phis to their truncation 1687 // so narrow phis can reuse them. 1688 for (PHINode *Phi : Phis) { 1689 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1690 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1691 return V; 1692 if (!SE.isSCEVable(PN->getType())) 1693 return nullptr; 1694 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1695 if (!Const) 1696 return nullptr; 1697 return Const->getValue(); 1698 }; 1699 1700 // Fold constant phis. They may be congruent to other constant phis and 1701 // would confuse the logic below that expects proper IVs. 1702 if (Value *V = SimplifyPHINode(Phi)) { 1703 if (V->getType() != Phi->getType()) 1704 continue; 1705 SE.forgetValue(Phi); 1706 Phi->replaceAllUsesWith(V); 1707 DeadInsts.emplace_back(Phi); 1708 ++NumElim; 1709 SCEV_DEBUG_WITH_TYPE(DebugType, 1710 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1711 << '\n'); 1712 continue; 1713 } 1714 1715 if (!SE.isSCEVable(Phi->getType())) 1716 continue; 1717 1718 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1719 if (!OrigPhiRef) { 1720 OrigPhiRef = Phi; 1721 if (Phi->getType()->isIntegerTy() && TTI && 1722 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1723 // Make sure we only rewrite using simple induction variables; 1724 // otherwise, we can make the trip count of a loop unanalyzable 1725 // to SCEV. 1726 const SCEV *PhiExpr = SE.getSCEV(Phi); 1727 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1728 // This phi can be freely truncated to the narrowest phi type. Map the 1729 // truncated expression to it so it will be reused for narrow types. 1730 const SCEV *TruncExpr = 1731 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1732 ExprToIVMap[TruncExpr] = Phi; 1733 } 1734 } 1735 continue; 1736 } 1737 1738 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1739 // sense. 1740 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1741 continue; 1742 1743 replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts); 1744 SCEV_DEBUG_WITH_TYPE(DebugType, 1745 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1746 << '\n'); 1747 SCEV_DEBUG_WITH_TYPE( 1748 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1749 ++NumElim; 1750 Value *NewIV = OrigPhiRef; 1751 if (OrigPhiRef->getType() != Phi->getType()) { 1752 IRBuilder<> Builder(L->getHeader(), 1753 L->getHeader()->getFirstInsertionPt()); 1754 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1755 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1756 } 1757 Phi->replaceAllUsesWith(NewIV); 1758 DeadInsts.emplace_back(Phi); 1759 } 1760 return NumElim; 1761 } 1762 1763 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1764 const Instruction *At, 1765 Loop *L) { 1766 using namespace llvm::PatternMatch; 1767 1768 SmallVector<BasicBlock *, 4> ExitingBlocks; 1769 L->getExitingBlocks(ExitingBlocks); 1770 1771 // Look for suitable value in simple conditions at the loop exits. 1772 for (BasicBlock *BB : ExitingBlocks) { 1773 ICmpInst::Predicate Pred; 1774 Instruction *LHS, *RHS; 1775 1776 if (!match(BB->getTerminator(), 1777 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1778 m_BasicBlock(), m_BasicBlock()))) 1779 continue; 1780 1781 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1782 return true; 1783 1784 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1785 return true; 1786 } 1787 1788 // Use expand's logic which is used for reusing a previous Value in 1789 // ExprValueMap. Note that we don't currently model the cost of 1790 // needing to drop poison generating flags on the instruction if we 1791 // want to reuse it. We effectively assume that has zero cost. 1792 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1793 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1794 } 1795 1796 template<typename T> static InstructionCost costAndCollectOperands( 1797 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1798 TargetTransformInfo::TargetCostKind CostKind, 1799 SmallVectorImpl<SCEVOperand> &Worklist) { 1800 1801 const T *S = cast<T>(WorkItem.S); 1802 InstructionCost Cost = 0; 1803 // Object to help map SCEV operands to expanded IR instructions. 1804 struct OperationIndices { 1805 OperationIndices(unsigned Opc, size_t min, size_t max) : 1806 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1807 unsigned Opcode; 1808 size_t MinIdx; 1809 size_t MaxIdx; 1810 }; 1811 1812 // Collect the operations of all the instructions that will be needed to 1813 // expand the SCEVExpr. This is so that when we come to cost the operands, 1814 // we know what the generated user(s) will be. 1815 SmallVector<OperationIndices, 2> Operations; 1816 1817 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1818 Operations.emplace_back(Opcode, 0, 0); 1819 return TTI.getCastInstrCost(Opcode, S->getType(), 1820 S->getOperand(0)->getType(), 1821 TTI::CastContextHint::None, CostKind); 1822 }; 1823 1824 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1825 unsigned MinIdx = 0, 1826 unsigned MaxIdx = 1) -> InstructionCost { 1827 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1828 return NumRequired * 1829 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1830 }; 1831 1832 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1833 unsigned MaxIdx) -> InstructionCost { 1834 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1835 Type *OpType = S->getType(); 1836 return NumRequired * TTI.getCmpSelInstrCost( 1837 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1838 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1839 }; 1840 1841 switch (S->getSCEVType()) { 1842 case scCouldNotCompute: 1843 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1844 case scUnknown: 1845 case scConstant: 1846 case scVScale: 1847 return 0; 1848 case scPtrToInt: 1849 Cost = CastCost(Instruction::PtrToInt); 1850 break; 1851 case scTruncate: 1852 Cost = CastCost(Instruction::Trunc); 1853 break; 1854 case scZeroExtend: 1855 Cost = CastCost(Instruction::ZExt); 1856 break; 1857 case scSignExtend: 1858 Cost = CastCost(Instruction::SExt); 1859 break; 1860 case scUDivExpr: { 1861 unsigned Opcode = Instruction::UDiv; 1862 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1863 if (SC->getAPInt().isPowerOf2()) 1864 Opcode = Instruction::LShr; 1865 Cost = ArithCost(Opcode, 1); 1866 break; 1867 } 1868 case scAddExpr: 1869 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1870 break; 1871 case scMulExpr: 1872 // TODO: this is a very pessimistic cost modelling for Mul, 1873 // because of Bin Pow algorithm actually used by the expander, 1874 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1875 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1876 break; 1877 case scSMaxExpr: 1878 case scUMaxExpr: 1879 case scSMinExpr: 1880 case scUMinExpr: 1881 case scSequentialUMinExpr: { 1882 // FIXME: should this ask the cost for Intrinsic's? 1883 // The reduction tree. 1884 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1885 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1886 switch (S->getSCEVType()) { 1887 case scSequentialUMinExpr: { 1888 // The safety net against poison. 1889 // FIXME: this is broken. 1890 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1891 Cost += ArithCost(Instruction::Or, 1892 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1893 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1894 break; 1895 } 1896 default: 1897 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1898 "Unhandled SCEV expression type?"); 1899 break; 1900 } 1901 break; 1902 } 1903 case scAddRecExpr: { 1904 // In this polynominal, we may have some zero operands, and we shouldn't 1905 // really charge for those. So how many non-zero coefficients are there? 1906 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1907 return !Op->isZero(); 1908 }); 1909 1910 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1911 assert(!(*std::prev(S->operands().end()))->isZero() && 1912 "Last operand should not be zero"); 1913 1914 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1915 int NumNonZeroDegreeNonOneTerms = 1916 llvm::count_if(S->operands(), [](const SCEV *Op) { 1917 auto *SConst = dyn_cast<SCEVConstant>(Op); 1918 return !SConst || SConst->getAPInt().ugt(1); 1919 }); 1920 1921 // Much like with normal add expr, the polynominal will require 1922 // one less addition than the number of it's terms. 1923 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1924 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1925 // Here, *each* one of those will require a multiplication. 1926 InstructionCost MulCost = 1927 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1928 Cost = AddCost + MulCost; 1929 1930 // What is the degree of this polynominal? 1931 int PolyDegree = S->getNumOperands() - 1; 1932 assert(PolyDegree >= 1 && "Should be at least affine."); 1933 1934 // The final term will be: 1935 // Op_{PolyDegree} * x ^ {PolyDegree} 1936 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1937 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1938 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1939 // FIXME: this is conservatively correct, but might be overly pessimistic. 1940 Cost += MulCost * (PolyDegree - 1); 1941 break; 1942 } 1943 } 1944 1945 for (auto &CostOp : Operations) { 1946 for (auto SCEVOp : enumerate(S->operands())) { 1947 // Clamp the index to account for multiple IR operations being chained. 1948 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1949 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1950 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1951 } 1952 } 1953 return Cost; 1954 } 1955 1956 bool SCEVExpander::isHighCostExpansionHelper( 1957 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1958 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1959 SmallPtrSetImpl<const SCEV *> &Processed, 1960 SmallVectorImpl<SCEVOperand> &Worklist) { 1961 if (Cost > Budget) 1962 return true; // Already run out of budget, give up. 1963 1964 const SCEV *S = WorkItem.S; 1965 // Was the cost of expansion of this expression already accounted for? 1966 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1967 return false; // We have already accounted for this expression. 1968 1969 // If we can find an existing value for this scev available at the point "At" 1970 // then consider the expression cheap. 1971 if (hasRelatedExistingExpansion(S, &At, L)) 1972 return false; // Consider the expression to be free. 1973 1974 TargetTransformInfo::TargetCostKind CostKind = 1975 L->getHeader()->getParent()->hasMinSize() 1976 ? TargetTransformInfo::TCK_CodeSize 1977 : TargetTransformInfo::TCK_RecipThroughput; 1978 1979 switch (S->getSCEVType()) { 1980 case scCouldNotCompute: 1981 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1982 case scUnknown: 1983 case scVScale: 1984 // Assume to be zero-cost. 1985 return false; 1986 case scConstant: { 1987 // Only evalulate the costs of constants when optimizing for size. 1988 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1989 return false; 1990 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1991 Type *Ty = S->getType(); 1992 Cost += TTI.getIntImmCostInst( 1993 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1994 return Cost > Budget; 1995 } 1996 case scTruncate: 1997 case scPtrToInt: 1998 case scZeroExtend: 1999 case scSignExtend: { 2000 Cost += 2001 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2002 return false; // Will answer upon next entry into this function. 2003 } 2004 case scUDivExpr: { 2005 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2006 // HowManyLessThans produced to compute a precise expression, rather than a 2007 // UDiv from the user's code. If we can't find a UDiv in the code with some 2008 // simple searching, we need to account for it's cost. 2009 2010 // At the beginning of this function we already tried to find existing 2011 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2012 // pattern involving division. This is just a simple search heuristic. 2013 if (hasRelatedExistingExpansion( 2014 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2015 return false; // Consider it to be free. 2016 2017 Cost += 2018 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2019 return false; // Will answer upon next entry into this function. 2020 } 2021 case scAddExpr: 2022 case scMulExpr: 2023 case scUMaxExpr: 2024 case scSMaxExpr: 2025 case scUMinExpr: 2026 case scSMinExpr: 2027 case scSequentialUMinExpr: { 2028 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2029 "Nary expr should have more than 1 operand."); 2030 // The simple nary expr will require one less op (or pair of ops) 2031 // than the number of it's terms. 2032 Cost += 2033 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2034 return Cost > Budget; 2035 } 2036 case scAddRecExpr: { 2037 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2038 "Polynomial should be at least linear"); 2039 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2040 WorkItem, TTI, CostKind, Worklist); 2041 return Cost > Budget; 2042 } 2043 } 2044 llvm_unreachable("Unknown SCEV kind!"); 2045 } 2046 2047 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2048 Instruction *IP) { 2049 assert(IP); 2050 switch (Pred->getKind()) { 2051 case SCEVPredicate::P_Union: 2052 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2053 case SCEVPredicate::P_Compare: 2054 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2055 case SCEVPredicate::P_Wrap: { 2056 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2057 return expandWrapPredicate(AddRecPred, IP); 2058 } 2059 } 2060 llvm_unreachable("Unknown SCEV predicate type"); 2061 } 2062 2063 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2064 Instruction *IP) { 2065 Value *Expr0 = expand(Pred->getLHS(), IP); 2066 Value *Expr1 = expand(Pred->getRHS(), IP); 2067 2068 Builder.SetInsertPoint(IP); 2069 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2070 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2071 return I; 2072 } 2073 2074 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2075 Instruction *Loc, bool Signed) { 2076 assert(AR->isAffine() && "Cannot generate RT check for " 2077 "non-affine expression"); 2078 2079 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2080 SmallVector<const SCEVPredicate *, 4> Pred; 2081 const SCEV *ExitCount = 2082 SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred); 2083 2084 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2085 2086 const SCEV *Step = AR->getStepRecurrence(SE); 2087 const SCEV *Start = AR->getStart(); 2088 2089 Type *ARTy = AR->getType(); 2090 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2091 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2092 2093 // The expression {Start,+,Step} has nusw/nssw if 2094 // Step < 0, Start - |Step| * Backedge <= Start 2095 // Step >= 0, Start + |Step| * Backedge > Start 2096 // and |Step| * Backedge doesn't unsigned overflow. 2097 2098 Builder.SetInsertPoint(Loc); 2099 Value *TripCountVal = expand(ExitCount, Loc); 2100 2101 IntegerType *Ty = 2102 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2103 2104 Value *StepValue = expand(Step, Loc); 2105 Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 2106 Value *StartValue = expand(Start, Loc); 2107 2108 ConstantInt *Zero = 2109 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2110 2111 Builder.SetInsertPoint(Loc); 2112 // Compute |Step| 2113 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2114 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2115 2116 // Compute |Step| * Backedge 2117 // Compute: 2118 // 1. Start + |Step| * Backedge < Start 2119 // 2. Start - |Step| * Backedge > Start 2120 // 2121 // And select either 1. or 2. depending on whether step is positive or 2122 // negative. If Step is known to be positive or negative, only create 2123 // either 1. or 2. 2124 auto ComputeEndCheck = [&]() -> Value * { 2125 // Checking <u 0 is always false. 2126 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2127 return ConstantInt::getFalse(Loc->getContext()); 2128 2129 // Get the backedge taken count and truncate or extended to the AR type. 2130 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2131 2132 Value *MulV, *OfMul; 2133 if (Step->isOne()) { 2134 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2135 // needed, there is never an overflow, so to avoid artificially inflating 2136 // the cost of the check, directly emit the optimized IR. 2137 MulV = TruncTripCount; 2138 OfMul = ConstantInt::getFalse(MulV->getContext()); 2139 } else { 2140 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2141 Intrinsic::umul_with_overflow, Ty); 2142 CallInst *Mul = 2143 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2144 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2145 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2146 } 2147 2148 Value *Add = nullptr, *Sub = nullptr; 2149 bool NeedPosCheck = !SE.isKnownNegative(Step); 2150 bool NeedNegCheck = !SE.isKnownPositive(Step); 2151 2152 if (isa<PointerType>(ARTy)) { 2153 Value *NegMulV = Builder.CreateNeg(MulV); 2154 if (NeedPosCheck) 2155 Add = Builder.CreatePtrAdd(StartValue, MulV); 2156 if (NeedNegCheck) 2157 Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 2158 } else { 2159 if (NeedPosCheck) 2160 Add = Builder.CreateAdd(StartValue, MulV); 2161 if (NeedNegCheck) 2162 Sub = Builder.CreateSub(StartValue, MulV); 2163 } 2164 2165 Value *EndCompareLT = nullptr; 2166 Value *EndCompareGT = nullptr; 2167 Value *EndCheck = nullptr; 2168 if (NeedPosCheck) 2169 EndCheck = EndCompareLT = Builder.CreateICmp( 2170 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2171 if (NeedNegCheck) 2172 EndCheck = EndCompareGT = Builder.CreateICmp( 2173 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2174 if (NeedPosCheck && NeedNegCheck) { 2175 // Select the answer based on the sign of Step. 2176 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2177 } 2178 return Builder.CreateOr(EndCheck, OfMul); 2179 }; 2180 Value *EndCheck = ComputeEndCheck(); 2181 2182 // If the backedge taken count type is larger than the AR type, 2183 // check that we don't drop any bits by truncating it. If we are 2184 // dropping bits, then we have overflow (unless the step is zero). 2185 if (SrcBits > DstBits) { 2186 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2187 auto *BackedgeCheck = 2188 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2189 ConstantInt::get(Loc->getContext(), MaxVal)); 2190 BackedgeCheck = Builder.CreateAnd( 2191 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2192 2193 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2194 } 2195 2196 return EndCheck; 2197 } 2198 2199 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2200 Instruction *IP) { 2201 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2202 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2203 2204 // Add a check for NUSW 2205 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2206 NUSWCheck = generateOverflowCheck(A, IP, false); 2207 2208 // Add a check for NSSW 2209 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2210 NSSWCheck = generateOverflowCheck(A, IP, true); 2211 2212 if (NUSWCheck && NSSWCheck) 2213 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2214 2215 if (NUSWCheck) 2216 return NUSWCheck; 2217 2218 if (NSSWCheck) 2219 return NSSWCheck; 2220 2221 return ConstantInt::getFalse(IP->getContext()); 2222 } 2223 2224 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2225 Instruction *IP) { 2226 // Loop over all checks in this set. 2227 SmallVector<Value *> Checks; 2228 for (const auto *Pred : Union->getPredicates()) { 2229 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2230 Builder.SetInsertPoint(IP); 2231 } 2232 2233 if (Checks.empty()) 2234 return ConstantInt::getFalse(IP->getContext()); 2235 return Builder.CreateOr(Checks); 2236 } 2237 2238 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2239 auto *DefI = dyn_cast<Instruction>(V); 2240 if (!PreserveLCSSA || !DefI) 2241 return V; 2242 2243 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 2244 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2245 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2246 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2247 return V; 2248 2249 // Create a temporary instruction to at the current insertion point, so we 2250 // can hand it off to the helper to create LCSSA PHIs if required for the 2251 // new use. 2252 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2253 // would accept a insertion point and return an LCSSA phi for that 2254 // insertion point, so there is no need to insert & remove the temporary 2255 // instruction. 2256 Type *ToTy; 2257 if (DefI->getType()->isIntegerTy()) 2258 ToTy = PointerType::get(DefI->getContext(), 0); 2259 else 2260 ToTy = Type::getInt32Ty(DefI->getContext()); 2261 Instruction *User = 2262 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2263 auto RemoveUserOnExit = 2264 make_scope_exit([User]() { User->eraseFromParent(); }); 2265 2266 SmallVector<Instruction *, 1> ToUpdate; 2267 ToUpdate.push_back(DefI); 2268 SmallVector<PHINode *, 16> PHIsToRemove; 2269 SmallVector<PHINode *, 16> InsertedPHIs; 2270 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2271 &InsertedPHIs); 2272 for (PHINode *PN : InsertedPHIs) 2273 rememberInstruction(PN); 2274 for (PHINode *PN : PHIsToRemove) { 2275 if (!PN->use_empty()) 2276 continue; 2277 InsertedValues.erase(PN); 2278 InsertedPostIncValues.erase(PN); 2279 PN->eraseFromParent(); 2280 } 2281 2282 return User->getOperand(0); 2283 } 2284 2285 namespace { 2286 // Search for a SCEV subexpression that is not safe to expand. Any expression 2287 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2288 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2289 // instruction, but the important thing is that we prove the denominator is 2290 // nonzero before expansion. 2291 // 2292 // IVUsers already checks that IV-derived expressions are safe. So this check is 2293 // only needed when the expression includes some subexpression that is not IV 2294 // derived. 2295 // 2296 // Currently, we only allow division by a value provably non-zero here. 2297 // 2298 // We cannot generally expand recurrences unless the step dominates the loop 2299 // header. The expander handles the special case of affine recurrences by 2300 // scaling the recurrence outside the loop, but this technique isn't generally 2301 // applicable. Expanding a nested recurrence outside a loop requires computing 2302 // binomial coefficients. This could be done, but the recurrence has to be in a 2303 // perfectly reduced form, which can't be guaranteed. 2304 struct SCEVFindUnsafe { 2305 ScalarEvolution &SE; 2306 bool CanonicalMode; 2307 bool IsUnsafe = false; 2308 2309 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2310 : SE(SE), CanonicalMode(CanonicalMode) {} 2311 2312 bool follow(const SCEV *S) { 2313 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2314 if (!SE.isKnownNonZero(D->getRHS())) { 2315 IsUnsafe = true; 2316 return false; 2317 } 2318 } 2319 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2320 // For non-affine addrecs or in non-canonical mode we need a preheader 2321 // to insert into. 2322 if (!AR->getLoop()->getLoopPreheader() && 2323 (!CanonicalMode || !AR->isAffine())) { 2324 IsUnsafe = true; 2325 return false; 2326 } 2327 } 2328 return true; 2329 } 2330 bool isDone() const { return IsUnsafe; } 2331 }; 2332 } // namespace 2333 2334 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2335 SCEVFindUnsafe Search(SE, CanonicalMode); 2336 visitAll(S, Search); 2337 return !Search.IsUnsafe; 2338 } 2339 2340 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2341 const Instruction *InsertionPoint) const { 2342 if (!isSafeToExpand(S)) 2343 return false; 2344 // We have to prove that the expanded site of S dominates InsertionPoint. 2345 // This is easy when not in the same block, but hard when S is an instruction 2346 // to be expanded somewhere inside the same block as our insertion point. 2347 // What we really need here is something analogous to an OrderedBasicBlock, 2348 // but for the moment, we paper over the problem by handling two common and 2349 // cheap to check cases. 2350 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2351 return true; 2352 if (SE.dominates(S, InsertionPoint->getParent())) { 2353 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2354 return true; 2355 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2356 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2357 return true; 2358 } 2359 return false; 2360 } 2361 2362 void SCEVExpanderCleaner::cleanup() { 2363 // Result is used, nothing to remove. 2364 if (ResultUsed) 2365 return; 2366 2367 // Restore original poison flags. 2368 for (auto [I, Flags] : Expander.OrigFlags) 2369 Flags.apply(I); 2370 2371 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2372 #ifndef NDEBUG 2373 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2374 InsertedInstructions.end()); 2375 (void)InsertedSet; 2376 #endif 2377 // Remove sets with value handles. 2378 Expander.clear(); 2379 2380 // Remove all inserted instructions. 2381 for (Instruction *I : reverse(InsertedInstructions)) { 2382 #ifndef NDEBUG 2383 assert(all_of(I->users(), 2384 [&InsertedSet](Value *U) { 2385 return InsertedSet.contains(cast<Instruction>(U)); 2386 }) && 2387 "removed instruction should only be used by instructions inserted " 2388 "during expansion"); 2389 #endif 2390 assert(!I->getType()->isVoidTy() && 2391 "inserted instruction should have non-void types"); 2392 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2393 I->eraseFromParent(); 2394 } 2395 } 2396