xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision dc2867576886247cbe351e7c63618c09ab6af808)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 
33 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
34     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
35     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
36              "controls the budget that is considered cheap (default = 4)"));
37 
38 using namespace PatternMatch;
39 
40 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
41 /// reusing an existing cast if a suitable one exists, moving an existing
42 /// cast if a suitable one exists but isn't in the right place, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users())
62     if (U->getType() == Ty)
63       if (CastInst *CI = dyn_cast<CastInst>(U))
64         if (CI->getOpcode() == Op) {
65           // If the cast isn't where we want it, create a new cast at IP.
66           // Likewise, do not reuse a cast at BIP because it must dominate
67           // instructions that might be inserted before BIP.
68           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
69             // Create a new cast, and leave the old cast in place in case
70             // it is being used as an insert point.
71             Ret = CastInst::Create(Op, V, Ty, "", &*IP);
72             Ret->takeName(CI);
73             CI->replaceAllUsesWith(Ret);
74             break;
75           }
76           Ret = CI;
77           break;
78         }
79 
80   // Create a new cast.
81   if (!Ret)
82     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
83 
84   // We assert at the end of the function since IP might point to an
85   // instruction with different dominance properties than a cast
86   // (an invoke for example) and not dominate BIP (but the cast does).
87   assert(SE.DT.dominates(Ret, &*BIP));
88 
89   rememberInstruction(Ret);
90   return Ret;
91 }
92 
93 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
94                                                  BasicBlock *MustDominate) {
95   BasicBlock::iterator IP = ++I->getIterator();
96   if (auto *II = dyn_cast<InvokeInst>(I))
97     IP = II->getNormalDest()->begin();
98 
99   while (isa<PHINode>(IP))
100     ++IP;
101 
102   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
103     ++IP;
104   } else if (isa<CatchSwitchInst>(IP)) {
105     IP = MustDominate->getFirstInsertionPt();
106   } else {
107     assert(!IP->isEHPad() && "unexpected eh pad!");
108   }
109 
110   return IP;
111 }
112 
113 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
114 /// which must be possible with a noop cast, doing what we can to share
115 /// the casts.
116 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
117   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
118   assert((Op == Instruction::BitCast ||
119           Op == Instruction::PtrToInt ||
120           Op == Instruction::IntToPtr) &&
121          "InsertNoopCastOfTo cannot perform non-noop casts!");
122   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
123          "InsertNoopCastOfTo cannot change sizes!");
124 
125   // Short-circuit unnecessary bitcasts.
126   if (Op == Instruction::BitCast) {
127     if (V->getType() == Ty)
128       return V;
129     if (CastInst *CI = dyn_cast<CastInst>(V)) {
130       if (CI->getOperand(0)->getType() == Ty)
131         return CI->getOperand(0);
132     }
133   }
134   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
135   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
136       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
137     if (CastInst *CI = dyn_cast<CastInst>(V))
138       if ((CI->getOpcode() == Instruction::PtrToInt ||
139            CI->getOpcode() == Instruction::IntToPtr) &&
140           SE.getTypeSizeInBits(CI->getType()) ==
141           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
142         return CI->getOperand(0);
143     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
144       if ((CE->getOpcode() == Instruction::PtrToInt ||
145            CE->getOpcode() == Instruction::IntToPtr) &&
146           SE.getTypeSizeInBits(CE->getType()) ==
147           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
148         return CE->getOperand(0);
149   }
150 
151   // Fold a cast of a constant.
152   if (Constant *C = dyn_cast<Constant>(V))
153     return ConstantExpr::getCast(Op, C, Ty);
154 
155   // Cast the argument at the beginning of the entry block, after
156   // any bitcasts of other arguments.
157   if (Argument *A = dyn_cast<Argument>(V)) {
158     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
159     while ((isa<BitCastInst>(IP) &&
160             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
161             cast<BitCastInst>(IP)->getOperand(0) != A) ||
162            isa<DbgInfoIntrinsic>(IP))
163       ++IP;
164     return ReuseOrCreateCast(A, Ty, Op, IP);
165   }
166 
167   // Cast the instruction immediately after the instruction.
168   Instruction *I = cast<Instruction>(V);
169   BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
170   return ReuseOrCreateCast(I, Ty, Op, IP);
171 }
172 
173 /// InsertBinop - Insert the specified binary operator, doing a small amount
174 /// of work to avoid inserting an obviously redundant operation, and hoisting
175 /// to an outer loop when the opportunity is there and it is safe.
176 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
177                                  Value *LHS, Value *RHS,
178                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
179   // Fold a binop with constant operands.
180   if (Constant *CLHS = dyn_cast<Constant>(LHS))
181     if (Constant *CRHS = dyn_cast<Constant>(RHS))
182       return ConstantExpr::get(Opcode, CLHS, CRHS);
183 
184   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
185   unsigned ScanLimit = 6;
186   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
187   // Scanning starts from the last instruction before the insertion point.
188   BasicBlock::iterator IP = Builder.GetInsertPoint();
189   if (IP != BlockBegin) {
190     --IP;
191     for (; ScanLimit; --IP, --ScanLimit) {
192       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
193       // generated code.
194       if (isa<DbgInfoIntrinsic>(IP))
195         ScanLimit++;
196 
197       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
198         // Ensure that no-wrap flags match.
199         if (isa<OverflowingBinaryOperator>(I)) {
200           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
201             return true;
202           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
203             return true;
204         }
205         // Conservatively, do not use any instruction which has any of exact
206         // flags installed.
207         if (isa<PossiblyExactOperator>(I) && I->isExact())
208           return true;
209         return false;
210       };
211       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
212           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
213         return &*IP;
214       if (IP == BlockBegin) break;
215     }
216   }
217 
218   // Save the original insertion point so we can restore it when we're done.
219   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
220   SCEVInsertPointGuard Guard(Builder, this);
221 
222   if (IsSafeToHoist) {
223     // Move the insertion point out of as many loops as we can.
224     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
225       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
226       BasicBlock *Preheader = L->getLoopPreheader();
227       if (!Preheader) break;
228 
229       // Ok, move up a level.
230       Builder.SetInsertPoint(Preheader->getTerminator());
231     }
232   }
233 
234   // If we haven't found this binop, insert it.
235   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
236   BO->setDebugLoc(Loc);
237   if (Flags & SCEV::FlagNUW)
238     BO->setHasNoUnsignedWrap();
239   if (Flags & SCEV::FlagNSW)
240     BO->setHasNoSignedWrap();
241 
242   return BO;
243 }
244 
245 /// FactorOutConstant - Test if S is divisible by Factor, using signed
246 /// division. If so, update S with Factor divided out and return true.
247 /// S need not be evenly divisible if a reasonable remainder can be
248 /// computed.
249 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
250                               const SCEV *Factor, ScalarEvolution &SE,
251                               const DataLayout &DL) {
252   // Everything is divisible by one.
253   if (Factor->isOne())
254     return true;
255 
256   // x/x == 1.
257   if (S == Factor) {
258     S = SE.getConstant(S->getType(), 1);
259     return true;
260   }
261 
262   // For a Constant, check for a multiple of the given factor.
263   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
264     // 0/x == 0.
265     if (C->isZero())
266       return true;
267     // Check for divisibility.
268     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
269       ConstantInt *CI =
270           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
271       // If the quotient is zero and the remainder is non-zero, reject
272       // the value at this scale. It will be considered for subsequent
273       // smaller scales.
274       if (!CI->isZero()) {
275         const SCEV *Div = SE.getConstant(CI);
276         S = Div;
277         Remainder = SE.getAddExpr(
278             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
279         return true;
280       }
281     }
282   }
283 
284   // In a Mul, check if there is a constant operand which is a multiple
285   // of the given factor.
286   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
287     // Size is known, check if there is a constant operand which is a multiple
288     // of the given factor. If so, we can factor it.
289     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
290       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
291         if (!C->getAPInt().srem(FC->getAPInt())) {
292           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
293           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
294           S = SE.getMulExpr(NewMulOps);
295           return true;
296         }
297   }
298 
299   // In an AddRec, check if both start and step are divisible.
300   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
301     const SCEV *Step = A->getStepRecurrence(SE);
302     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
303     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
304       return false;
305     if (!StepRem->isZero())
306       return false;
307     const SCEV *Start = A->getStart();
308     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
309       return false;
310     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
311                          A->getNoWrapFlags(SCEV::FlagNW));
312     return true;
313   }
314 
315   return false;
316 }
317 
318 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
319 /// is the number of SCEVAddRecExprs present, which are kept at the end of
320 /// the list.
321 ///
322 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
323                                 Type *Ty,
324                                 ScalarEvolution &SE) {
325   unsigned NumAddRecs = 0;
326   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
327     ++NumAddRecs;
328   // Group Ops into non-addrecs and addrecs.
329   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
330   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
331   // Let ScalarEvolution sort and simplify the non-addrecs list.
332   const SCEV *Sum = NoAddRecs.empty() ?
333                     SE.getConstant(Ty, 0) :
334                     SE.getAddExpr(NoAddRecs);
335   // If it returned an add, use the operands. Otherwise it simplified
336   // the sum into a single value, so just use that.
337   Ops.clear();
338   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
339     Ops.append(Add->op_begin(), Add->op_end());
340   else if (!Sum->isZero())
341     Ops.push_back(Sum);
342   // Then append the addrecs.
343   Ops.append(AddRecs.begin(), AddRecs.end());
344 }
345 
346 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
347 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
348 /// This helps expose more opportunities for folding parts of the expressions
349 /// into GEP indices.
350 ///
351 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
352                          Type *Ty,
353                          ScalarEvolution &SE) {
354   // Find the addrecs.
355   SmallVector<const SCEV *, 8> AddRecs;
356   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
357     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
358       const SCEV *Start = A->getStart();
359       if (Start->isZero()) break;
360       const SCEV *Zero = SE.getConstant(Ty, 0);
361       AddRecs.push_back(SE.getAddRecExpr(Zero,
362                                          A->getStepRecurrence(SE),
363                                          A->getLoop(),
364                                          A->getNoWrapFlags(SCEV::FlagNW)));
365       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
366         Ops[i] = Zero;
367         Ops.append(Add->op_begin(), Add->op_end());
368         e += Add->getNumOperands();
369       } else {
370         Ops[i] = Start;
371       }
372     }
373   if (!AddRecs.empty()) {
374     // Add the addrecs onto the end of the list.
375     Ops.append(AddRecs.begin(), AddRecs.end());
376     // Resort the operand list, moving any constants to the front.
377     SimplifyAddOperands(Ops, Ty, SE);
378   }
379 }
380 
381 /// expandAddToGEP - Expand an addition expression with a pointer type into
382 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
383 /// BasicAliasAnalysis and other passes analyze the result. See the rules
384 /// for getelementptr vs. inttoptr in
385 /// http://llvm.org/docs/LangRef.html#pointeraliasing
386 /// for details.
387 ///
388 /// Design note: The correctness of using getelementptr here depends on
389 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
390 /// they may introduce pointer arithmetic which may not be safely converted
391 /// into getelementptr.
392 ///
393 /// Design note: It might seem desirable for this function to be more
394 /// loop-aware. If some of the indices are loop-invariant while others
395 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
396 /// loop-invariant portions of the overall computation outside the loop.
397 /// However, there are a few reasons this is not done here. Hoisting simple
398 /// arithmetic is a low-level optimization that often isn't very
399 /// important until late in the optimization process. In fact, passes
400 /// like InstructionCombining will combine GEPs, even if it means
401 /// pushing loop-invariant computation down into loops, so even if the
402 /// GEPs were split here, the work would quickly be undone. The
403 /// LoopStrengthReduction pass, which is usually run quite late (and
404 /// after the last InstructionCombining pass), takes care of hoisting
405 /// loop-invariant portions of expressions, after considering what
406 /// can be folded using target addressing modes.
407 ///
408 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
409                                     const SCEV *const *op_end,
410                                     PointerType *PTy,
411                                     Type *Ty,
412                                     Value *V) {
413   Type *OriginalElTy = PTy->getElementType();
414   Type *ElTy = OriginalElTy;
415   SmallVector<Value *, 4> GepIndices;
416   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
417   bool AnyNonZeroIndices = false;
418 
419   // Split AddRecs up into parts as either of the parts may be usable
420   // without the other.
421   SplitAddRecs(Ops, Ty, SE);
422 
423   Type *IntIdxTy = DL.getIndexType(PTy);
424 
425   // Descend down the pointer's type and attempt to convert the other
426   // operands into GEP indices, at each level. The first index in a GEP
427   // indexes into the array implied by the pointer operand; the rest of
428   // the indices index into the element or field type selected by the
429   // preceding index.
430   for (;;) {
431     // If the scale size is not 0, attempt to factor out a scale for
432     // array indexing.
433     SmallVector<const SCEV *, 8> ScaledOps;
434     if (ElTy->isSized()) {
435       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
436       if (!ElSize->isZero()) {
437         SmallVector<const SCEV *, 8> NewOps;
438         for (const SCEV *Op : Ops) {
439           const SCEV *Remainder = SE.getConstant(Ty, 0);
440           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
441             // Op now has ElSize factored out.
442             ScaledOps.push_back(Op);
443             if (!Remainder->isZero())
444               NewOps.push_back(Remainder);
445             AnyNonZeroIndices = true;
446           } else {
447             // The operand was not divisible, so add it to the list of operands
448             // we'll scan next iteration.
449             NewOps.push_back(Op);
450           }
451         }
452         // If we made any changes, update Ops.
453         if (!ScaledOps.empty()) {
454           Ops = NewOps;
455           SimplifyAddOperands(Ops, Ty, SE);
456         }
457       }
458     }
459 
460     // Record the scaled array index for this level of the type. If
461     // we didn't find any operands that could be factored, tentatively
462     // assume that element zero was selected (since the zero offset
463     // would obviously be folded away).
464     Value *Scaled = ScaledOps.empty() ?
465                     Constant::getNullValue(Ty) :
466                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
467     GepIndices.push_back(Scaled);
468 
469     // Collect struct field index operands.
470     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
471       bool FoundFieldNo = false;
472       // An empty struct has no fields.
473       if (STy->getNumElements() == 0) break;
474       // Field offsets are known. See if a constant offset falls within any of
475       // the struct fields.
476       if (Ops.empty())
477         break;
478       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
479         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
480           const StructLayout &SL = *DL.getStructLayout(STy);
481           uint64_t FullOffset = C->getValue()->getZExtValue();
482           if (FullOffset < SL.getSizeInBytes()) {
483             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
484             GepIndices.push_back(
485                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
486             ElTy = STy->getTypeAtIndex(ElIdx);
487             Ops[0] =
488                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
489             AnyNonZeroIndices = true;
490             FoundFieldNo = true;
491           }
492         }
493       // If no struct field offsets were found, tentatively assume that
494       // field zero was selected (since the zero offset would obviously
495       // be folded away).
496       if (!FoundFieldNo) {
497         ElTy = STy->getTypeAtIndex(0u);
498         GepIndices.push_back(
499           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
500       }
501     }
502 
503     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
504       ElTy = ATy->getElementType();
505     else
506       // FIXME: Handle VectorType.
507       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
508       // constant, therefore can not be factored out. The generated IR is less
509       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
510       break;
511   }
512 
513   // If none of the operands were convertible to proper GEP indices, cast
514   // the base to i8* and do an ugly getelementptr with that. It's still
515   // better than ptrtoint+arithmetic+inttoptr at least.
516   if (!AnyNonZeroIndices) {
517     // Cast the base to i8*.
518     V = InsertNoopCastOfTo(V,
519        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
520 
521     assert(!isa<Instruction>(V) ||
522            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
523 
524     // Expand the operands for a plain byte offset.
525     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
526 
527     // Fold a GEP with constant operands.
528     if (Constant *CLHS = dyn_cast<Constant>(V))
529       if (Constant *CRHS = dyn_cast<Constant>(Idx))
530         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
531                                               CLHS, CRHS);
532 
533     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
534     unsigned ScanLimit = 6;
535     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
536     // Scanning starts from the last instruction before the insertion point.
537     BasicBlock::iterator IP = Builder.GetInsertPoint();
538     if (IP != BlockBegin) {
539       --IP;
540       for (; ScanLimit; --IP, --ScanLimit) {
541         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
542         // generated code.
543         if (isa<DbgInfoIntrinsic>(IP))
544           ScanLimit++;
545         if (IP->getOpcode() == Instruction::GetElementPtr &&
546             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
547           return &*IP;
548         if (IP == BlockBegin) break;
549       }
550     }
551 
552     // Save the original insertion point so we can restore it when we're done.
553     SCEVInsertPointGuard Guard(Builder, this);
554 
555     // Move the insertion point out of as many loops as we can.
556     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
557       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
558       BasicBlock *Preheader = L->getLoopPreheader();
559       if (!Preheader) break;
560 
561       // Ok, move up a level.
562       Builder.SetInsertPoint(Preheader->getTerminator());
563     }
564 
565     // Emit a GEP.
566     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
567   }
568 
569   {
570     SCEVInsertPointGuard Guard(Builder, this);
571 
572     // Move the insertion point out of as many loops as we can.
573     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
574       if (!L->isLoopInvariant(V)) break;
575 
576       bool AnyIndexNotLoopInvariant = any_of(
577           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
578 
579       if (AnyIndexNotLoopInvariant)
580         break;
581 
582       BasicBlock *Preheader = L->getLoopPreheader();
583       if (!Preheader) break;
584 
585       // Ok, move up a level.
586       Builder.SetInsertPoint(Preheader->getTerminator());
587     }
588 
589     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
590     // because ScalarEvolution may have changed the address arithmetic to
591     // compute a value which is beyond the end of the allocated object.
592     Value *Casted = V;
593     if (V->getType() != PTy)
594       Casted = InsertNoopCastOfTo(Casted, PTy);
595     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
596     Ops.push_back(SE.getUnknown(GEP));
597   }
598 
599   return expand(SE.getAddExpr(Ops));
600 }
601 
602 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
603                                     Value *V) {
604   const SCEV *const Ops[1] = {Op};
605   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
606 }
607 
608 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
609 /// SCEV expansion. If they are nested, this is the most nested. If they are
610 /// neighboring, pick the later.
611 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
612                                         DominatorTree &DT) {
613   if (!A) return B;
614   if (!B) return A;
615   if (A->contains(B)) return B;
616   if (B->contains(A)) return A;
617   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
618   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
619   return A; // Arbitrarily break the tie.
620 }
621 
622 /// getRelevantLoop - Get the most relevant loop associated with the given
623 /// expression, according to PickMostRelevantLoop.
624 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
625   // Test whether we've already computed the most relevant loop for this SCEV.
626   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
627   if (!Pair.second)
628     return Pair.first->second;
629 
630   if (isa<SCEVConstant>(S))
631     // A constant has no relevant loops.
632     return nullptr;
633   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
634     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
635       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
636     // A non-instruction has no relevant loops.
637     return nullptr;
638   }
639   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
640     const Loop *L = nullptr;
641     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
642       L = AR->getLoop();
643     for (const SCEV *Op : N->operands())
644       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
645     return RelevantLoops[N] = L;
646   }
647   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
648     const Loop *Result = getRelevantLoop(C->getOperand());
649     return RelevantLoops[C] = Result;
650   }
651   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
652     const Loop *Result = PickMostRelevantLoop(
653         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
654     return RelevantLoops[D] = Result;
655   }
656   llvm_unreachable("Unexpected SCEV type!");
657 }
658 
659 namespace {
660 
661 /// LoopCompare - Compare loops by PickMostRelevantLoop.
662 class LoopCompare {
663   DominatorTree &DT;
664 public:
665   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
666 
667   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
668                   std::pair<const Loop *, const SCEV *> RHS) const {
669     // Keep pointer operands sorted at the end.
670     if (LHS.second->getType()->isPointerTy() !=
671         RHS.second->getType()->isPointerTy())
672       return LHS.second->getType()->isPointerTy();
673 
674     // Compare loops with PickMostRelevantLoop.
675     if (LHS.first != RHS.first)
676       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
677 
678     // If one operand is a non-constant negative and the other is not,
679     // put the non-constant negative on the right so that a sub can
680     // be used instead of a negate and add.
681     if (LHS.second->isNonConstantNegative()) {
682       if (!RHS.second->isNonConstantNegative())
683         return false;
684     } else if (RHS.second->isNonConstantNegative())
685       return true;
686 
687     // Otherwise they are equivalent according to this comparison.
688     return false;
689   }
690 };
691 
692 }
693 
694 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
695   Type *Ty = SE.getEffectiveSCEVType(S->getType());
696 
697   // Collect all the add operands in a loop, along with their associated loops.
698   // Iterate in reverse so that constants are emitted last, all else equal, and
699   // so that pointer operands are inserted first, which the code below relies on
700   // to form more involved GEPs.
701   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
702   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
703        E(S->op_begin()); I != E; ++I)
704     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
705 
706   // Sort by loop. Use a stable sort so that constants follow non-constants and
707   // pointer operands precede non-pointer operands.
708   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
709 
710   // Emit instructions to add all the operands. Hoist as much as possible
711   // out of loops, and form meaningful getelementptrs where possible.
712   Value *Sum = nullptr;
713   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
714     const Loop *CurLoop = I->first;
715     const SCEV *Op = I->second;
716     if (!Sum) {
717       // This is the first operand. Just expand it.
718       Sum = expand(Op);
719       ++I;
720     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
721       // The running sum expression is a pointer. Try to form a getelementptr
722       // at this level with that as the base.
723       SmallVector<const SCEV *, 4> NewOps;
724       for (; I != E && I->first == CurLoop; ++I) {
725         // If the operand is SCEVUnknown and not instructions, peek through
726         // it, to enable more of it to be folded into the GEP.
727         const SCEV *X = I->second;
728         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
729           if (!isa<Instruction>(U->getValue()))
730             X = SE.getSCEV(U->getValue());
731         NewOps.push_back(X);
732       }
733       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
734     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
735       // The running sum is an integer, and there's a pointer at this level.
736       // Try to form a getelementptr. If the running sum is instructions,
737       // use a SCEVUnknown to avoid re-analyzing them.
738       SmallVector<const SCEV *, 4> NewOps;
739       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
740                                                SE.getSCEV(Sum));
741       for (++I; I != E && I->first == CurLoop; ++I)
742         NewOps.push_back(I->second);
743       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
744     } else if (Op->isNonConstantNegative()) {
745       // Instead of doing a negate and add, just do a subtract.
746       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
747       Sum = InsertNoopCastOfTo(Sum, Ty);
748       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
749                         /*IsSafeToHoist*/ true);
750       ++I;
751     } else {
752       // A simple add.
753       Value *W = expandCodeFor(Op, Ty);
754       Sum = InsertNoopCastOfTo(Sum, Ty);
755       // Canonicalize a constant to the RHS.
756       if (isa<Constant>(Sum)) std::swap(Sum, W);
757       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
758                         /*IsSafeToHoist*/ true);
759       ++I;
760     }
761   }
762 
763   return Sum;
764 }
765 
766 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
767   Type *Ty = SE.getEffectiveSCEVType(S->getType());
768 
769   // Collect all the mul operands in a loop, along with their associated loops.
770   // Iterate in reverse so that constants are emitted last, all else equal.
771   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
772   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
773        E(S->op_begin()); I != E; ++I)
774     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
775 
776   // Sort by loop. Use a stable sort so that constants follow non-constants.
777   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
778 
779   // Emit instructions to mul all the operands. Hoist as much as possible
780   // out of loops.
781   Value *Prod = nullptr;
782   auto I = OpsAndLoops.begin();
783 
784   // Expand the calculation of X pow N in the following manner:
785   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
786   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
787   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
788     auto E = I;
789     // Calculate how many times the same operand from the same loop is included
790     // into this power.
791     uint64_t Exponent = 0;
792     const uint64_t MaxExponent = UINT64_MAX >> 1;
793     // No one sane will ever try to calculate such huge exponents, but if we
794     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
795     // below when the power of 2 exceeds our Exponent, and we want it to be
796     // 1u << 31 at most to not deal with unsigned overflow.
797     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
798       ++Exponent;
799       ++E;
800     }
801     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
802 
803     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
804     // that are needed into the result.
805     Value *P = expandCodeFor(I->second, Ty);
806     Value *Result = nullptr;
807     if (Exponent & 1)
808       Result = P;
809     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
810       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
811                       /*IsSafeToHoist*/ true);
812       if (Exponent & BinExp)
813         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
814                                       SCEV::FlagAnyWrap,
815                                       /*IsSafeToHoist*/ true)
816                         : P;
817     }
818 
819     I = E;
820     assert(Result && "Nothing was expanded?");
821     return Result;
822   };
823 
824   while (I != OpsAndLoops.end()) {
825     if (!Prod) {
826       // This is the first operand. Just expand it.
827       Prod = ExpandOpBinPowN();
828     } else if (I->second->isAllOnesValue()) {
829       // Instead of doing a multiply by negative one, just do a negate.
830       Prod = InsertNoopCastOfTo(Prod, Ty);
831       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
832                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
833       ++I;
834     } else {
835       // A simple mul.
836       Value *W = ExpandOpBinPowN();
837       Prod = InsertNoopCastOfTo(Prod, Ty);
838       // Canonicalize a constant to the RHS.
839       if (isa<Constant>(Prod)) std::swap(Prod, W);
840       const APInt *RHS;
841       if (match(W, m_Power2(RHS))) {
842         // Canonicalize Prod*(1<<C) to Prod<<C.
843         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
844         auto NWFlags = S->getNoWrapFlags();
845         // clear nsw flag if shl will produce poison value.
846         if (RHS->logBase2() == RHS->getBitWidth() - 1)
847           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
848         Prod = InsertBinop(Instruction::Shl, Prod,
849                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
850                            /*IsSafeToHoist*/ true);
851       } else {
852         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
853                            /*IsSafeToHoist*/ true);
854       }
855     }
856   }
857 
858   return Prod;
859 }
860 
861 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
862   Type *Ty = SE.getEffectiveSCEVType(S->getType());
863 
864   Value *LHS = expandCodeFor(S->getLHS(), Ty);
865   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
866     const APInt &RHS = SC->getAPInt();
867     if (RHS.isPowerOf2())
868       return InsertBinop(Instruction::LShr, LHS,
869                          ConstantInt::get(Ty, RHS.logBase2()),
870                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
871   }
872 
873   Value *RHS = expandCodeFor(S->getRHS(), Ty);
874   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
875                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
876 }
877 
878 /// Move parts of Base into Rest to leave Base with the minimal
879 /// expression that provides a pointer operand suitable for a
880 /// GEP expansion.
881 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
882                               ScalarEvolution &SE) {
883   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
884     Base = A->getStart();
885     Rest = SE.getAddExpr(Rest,
886                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
887                                           A->getStepRecurrence(SE),
888                                           A->getLoop(),
889                                           A->getNoWrapFlags(SCEV::FlagNW)));
890   }
891   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
892     Base = A->getOperand(A->getNumOperands()-1);
893     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
894     NewAddOps.back() = Rest;
895     Rest = SE.getAddExpr(NewAddOps);
896     ExposePointerBase(Base, Rest, SE);
897   }
898 }
899 
900 /// Determine if this is a well-behaved chain of instructions leading back to
901 /// the PHI. If so, it may be reused by expanded expressions.
902 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
903                                          const Loop *L) {
904   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
905       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
906     return false;
907   // If any of the operands don't dominate the insert position, bail.
908   // Addrec operands are always loop-invariant, so this can only happen
909   // if there are instructions which haven't been hoisted.
910   if (L == IVIncInsertLoop) {
911     for (User::op_iterator OI = IncV->op_begin()+1,
912            OE = IncV->op_end(); OI != OE; ++OI)
913       if (Instruction *OInst = dyn_cast<Instruction>(OI))
914         if (!SE.DT.dominates(OInst, IVIncInsertPos))
915           return false;
916   }
917   // Advance to the next instruction.
918   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
919   if (!IncV)
920     return false;
921 
922   if (IncV->mayHaveSideEffects())
923     return false;
924 
925   if (IncV == PN)
926     return true;
927 
928   return isNormalAddRecExprPHI(PN, IncV, L);
929 }
930 
931 /// getIVIncOperand returns an induction variable increment's induction
932 /// variable operand.
933 ///
934 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
935 /// operands dominate InsertPos.
936 ///
937 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
938 /// simple patterns generated by getAddRecExprPHILiterally and
939 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
940 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
941                                            Instruction *InsertPos,
942                                            bool allowScale) {
943   if (IncV == InsertPos)
944     return nullptr;
945 
946   switch (IncV->getOpcode()) {
947   default:
948     return nullptr;
949   // Check for a simple Add/Sub or GEP of a loop invariant step.
950   case Instruction::Add:
951   case Instruction::Sub: {
952     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
953     if (!OInst || SE.DT.dominates(OInst, InsertPos))
954       return dyn_cast<Instruction>(IncV->getOperand(0));
955     return nullptr;
956   }
957   case Instruction::BitCast:
958     return dyn_cast<Instruction>(IncV->getOperand(0));
959   case Instruction::GetElementPtr:
960     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
961       if (isa<Constant>(*I))
962         continue;
963       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
964         if (!SE.DT.dominates(OInst, InsertPos))
965           return nullptr;
966       }
967       if (allowScale) {
968         // allow any kind of GEP as long as it can be hoisted.
969         continue;
970       }
971       // This must be a pointer addition of constants (pretty), which is already
972       // handled, or some number of address-size elements (ugly). Ugly geps
973       // have 2 operands. i1* is used by the expander to represent an
974       // address-size element.
975       if (IncV->getNumOperands() != 2)
976         return nullptr;
977       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
978       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
979           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
980         return nullptr;
981       break;
982     }
983     return dyn_cast<Instruction>(IncV->getOperand(0));
984   }
985 }
986 
987 /// If the insert point of the current builder or any of the builders on the
988 /// stack of saved builders has 'I' as its insert point, update it to point to
989 /// the instruction after 'I'.  This is intended to be used when the instruction
990 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
991 /// different block, the inconsistent insert point (with a mismatched
992 /// Instruction and Block) can lead to an instruction being inserted in a block
993 /// other than its parent.
994 void SCEVExpander::fixupInsertPoints(Instruction *I) {
995   BasicBlock::iterator It(*I);
996   BasicBlock::iterator NewInsertPt = std::next(It);
997   if (Builder.GetInsertPoint() == It)
998     Builder.SetInsertPoint(&*NewInsertPt);
999   for (auto *InsertPtGuard : InsertPointGuards)
1000     if (InsertPtGuard->GetInsertPoint() == It)
1001       InsertPtGuard->SetInsertPoint(NewInsertPt);
1002 }
1003 
1004 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1005 /// it available to other uses in this loop. Recursively hoist any operands,
1006 /// until we reach a value that dominates InsertPos.
1007 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1008   if (SE.DT.dominates(IncV, InsertPos))
1009       return true;
1010 
1011   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1012   // its existing users.
1013   if (isa<PHINode>(InsertPos) ||
1014       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1015     return false;
1016 
1017   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1018     return false;
1019 
1020   // Check that the chain of IV operands leading back to Phi can be hoisted.
1021   SmallVector<Instruction*, 4> IVIncs;
1022   for(;;) {
1023     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1024     if (!Oper)
1025       return false;
1026     // IncV is safe to hoist.
1027     IVIncs.push_back(IncV);
1028     IncV = Oper;
1029     if (SE.DT.dominates(IncV, InsertPos))
1030       break;
1031   }
1032   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1033     fixupInsertPoints(*I);
1034     (*I)->moveBefore(InsertPos);
1035   }
1036   return true;
1037 }
1038 
1039 /// Determine if this cyclic phi is in a form that would have been generated by
1040 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1041 /// as it is in a low-cost form, for example, no implied multiplication. This
1042 /// should match any patterns generated by getAddRecExprPHILiterally and
1043 /// expandAddtoGEP.
1044 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1045                                            const Loop *L) {
1046   for(Instruction *IVOper = IncV;
1047       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1048                                 /*allowScale=*/false));) {
1049     if (IVOper == PN)
1050       return true;
1051   }
1052   return false;
1053 }
1054 
1055 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1056 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1057 /// need to materialize IV increments elsewhere to handle difficult situations.
1058 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1059                                  Type *ExpandTy, Type *IntTy,
1060                                  bool useSubtract) {
1061   Value *IncV;
1062   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1063   if (ExpandTy->isPointerTy()) {
1064     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1065     // If the step isn't constant, don't use an implicitly scaled GEP, because
1066     // that would require a multiply inside the loop.
1067     if (!isa<ConstantInt>(StepV))
1068       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1069                                   GEPPtrTy->getAddressSpace());
1070     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1071     if (IncV->getType() != PN->getType())
1072       IncV = Builder.CreateBitCast(IncV, PN->getType());
1073   } else {
1074     IncV = useSubtract ?
1075       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1076       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1077   }
1078   return IncV;
1079 }
1080 
1081 /// Hoist the addrec instruction chain rooted in the loop phi above the
1082 /// position. This routine assumes that this is possible (has been checked).
1083 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1084                                   Instruction *Pos, PHINode *LoopPhi) {
1085   do {
1086     if (DT->dominates(InstToHoist, Pos))
1087       break;
1088     // Make sure the increment is where we want it. But don't move it
1089     // down past a potential existing post-inc user.
1090     fixupInsertPoints(InstToHoist);
1091     InstToHoist->moveBefore(Pos);
1092     Pos = InstToHoist;
1093     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1094   } while (InstToHoist != LoopPhi);
1095 }
1096 
1097 /// Check whether we can cheaply express the requested SCEV in terms of
1098 /// the available PHI SCEV by truncation and/or inversion of the step.
1099 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1100                                     const SCEVAddRecExpr *Phi,
1101                                     const SCEVAddRecExpr *Requested,
1102                                     bool &InvertStep) {
1103   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1104   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1105 
1106   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1107     return false;
1108 
1109   // Try truncate it if necessary.
1110   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1111   if (!Phi)
1112     return false;
1113 
1114   // Check whether truncation will help.
1115   if (Phi == Requested) {
1116     InvertStep = false;
1117     return true;
1118   }
1119 
1120   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1121   if (SE.getAddExpr(Requested->getStart(),
1122                     SE.getNegativeSCEV(Requested)) == Phi) {
1123     InvertStep = true;
1124     return true;
1125   }
1126 
1127   return false;
1128 }
1129 
1130 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1131   if (!isa<IntegerType>(AR->getType()))
1132     return false;
1133 
1134   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1135   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1136   const SCEV *Step = AR->getStepRecurrence(SE);
1137   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1138                                             SE.getSignExtendExpr(AR, WideTy));
1139   const SCEV *ExtendAfterOp =
1140     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1141   return ExtendAfterOp == OpAfterExtend;
1142 }
1143 
1144 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1145   if (!isa<IntegerType>(AR->getType()))
1146     return false;
1147 
1148   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1149   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1150   const SCEV *Step = AR->getStepRecurrence(SE);
1151   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1152                                             SE.getZeroExtendExpr(AR, WideTy));
1153   const SCEV *ExtendAfterOp =
1154     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1155   return ExtendAfterOp == OpAfterExtend;
1156 }
1157 
1158 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1159 /// the base addrec, which is the addrec without any non-loop-dominating
1160 /// values, and return the PHI.
1161 PHINode *
1162 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1163                                         const Loop *L,
1164                                         Type *ExpandTy,
1165                                         Type *IntTy,
1166                                         Type *&TruncTy,
1167                                         bool &InvertStep) {
1168   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1169 
1170   // Reuse a previously-inserted PHI, if present.
1171   BasicBlock *LatchBlock = L->getLoopLatch();
1172   if (LatchBlock) {
1173     PHINode *AddRecPhiMatch = nullptr;
1174     Instruction *IncV = nullptr;
1175     TruncTy = nullptr;
1176     InvertStep = false;
1177 
1178     // Only try partially matching scevs that need truncation and/or
1179     // step-inversion if we know this loop is outside the current loop.
1180     bool TryNonMatchingSCEV =
1181         IVIncInsertLoop &&
1182         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1183 
1184     for (PHINode &PN : L->getHeader()->phis()) {
1185       if (!SE.isSCEVable(PN.getType()))
1186         continue;
1187 
1188       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1189       if (!PhiSCEV)
1190         continue;
1191 
1192       bool IsMatchingSCEV = PhiSCEV == Normalized;
1193       // We only handle truncation and inversion of phi recurrences for the
1194       // expanded expression if the expanded expression's loop dominates the
1195       // loop we insert to. Check now, so we can bail out early.
1196       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1197           continue;
1198 
1199       // TODO: this possibly can be reworked to avoid this cast at all.
1200       Instruction *TempIncV =
1201           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1202       if (!TempIncV)
1203         continue;
1204 
1205       // Check whether we can reuse this PHI node.
1206       if (LSRMode) {
1207         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1208           continue;
1209         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1210           continue;
1211       } else {
1212         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1213           continue;
1214       }
1215 
1216       // Stop if we have found an exact match SCEV.
1217       if (IsMatchingSCEV) {
1218         IncV = TempIncV;
1219         TruncTy = nullptr;
1220         InvertStep = false;
1221         AddRecPhiMatch = &PN;
1222         break;
1223       }
1224 
1225       // Try whether the phi can be translated into the requested form
1226       // (truncated and/or offset by a constant).
1227       if ((!TruncTy || InvertStep) &&
1228           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1229         // Record the phi node. But don't stop we might find an exact match
1230         // later.
1231         AddRecPhiMatch = &PN;
1232         IncV = TempIncV;
1233         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1234       }
1235     }
1236 
1237     if (AddRecPhiMatch) {
1238       // Potentially, move the increment. We have made sure in
1239       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1240       if (L == IVIncInsertLoop)
1241         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1242 
1243       // Ok, the add recurrence looks usable.
1244       // Remember this PHI, even in post-inc mode.
1245       InsertedValues.insert(AddRecPhiMatch);
1246       // Remember the increment.
1247       rememberInstruction(IncV);
1248       return AddRecPhiMatch;
1249     }
1250   }
1251 
1252   // Save the original insertion point so we can restore it when we're done.
1253   SCEVInsertPointGuard Guard(Builder, this);
1254 
1255   // Another AddRec may need to be recursively expanded below. For example, if
1256   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1257   // loop. Remove this loop from the PostIncLoops set before expanding such
1258   // AddRecs. Otherwise, we cannot find a valid position for the step
1259   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1260   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1261   // so it's not worth implementing SmallPtrSet::swap.
1262   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1263   PostIncLoops.clear();
1264 
1265   // Expand code for the start value into the loop preheader.
1266   assert(L->getLoopPreheader() &&
1267          "Can't expand add recurrences without a loop preheader!");
1268   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1269                                 L->getLoopPreheader()->getTerminator());
1270 
1271   // StartV must have been be inserted into L's preheader to dominate the new
1272   // phi.
1273   assert(!isa<Instruction>(StartV) ||
1274          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1275                                  L->getHeader()));
1276 
1277   // Expand code for the step value. Do this before creating the PHI so that PHI
1278   // reuse code doesn't see an incomplete PHI.
1279   const SCEV *Step = Normalized->getStepRecurrence(SE);
1280   // If the stride is negative, insert a sub instead of an add for the increment
1281   // (unless it's a constant, because subtracts of constants are canonicalized
1282   // to adds).
1283   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1284   if (useSubtract)
1285     Step = SE.getNegativeSCEV(Step);
1286   // Expand the step somewhere that dominates the loop header.
1287   Value *StepV = expandCodeFor(Step, IntTy,
1288                                &*L->getHeader()->getFirstInsertionPt());
1289 
1290   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1291   // we actually do emit an addition.  It does not apply if we emit a
1292   // subtraction.
1293   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1294   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1295 
1296   // Create the PHI.
1297   BasicBlock *Header = L->getHeader();
1298   Builder.SetInsertPoint(Header, Header->begin());
1299   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1300   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1301                                   Twine(IVName) + ".iv");
1302 
1303   // Create the step instructions and populate the PHI.
1304   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1305     BasicBlock *Pred = *HPI;
1306 
1307     // Add a start value.
1308     if (!L->contains(Pred)) {
1309       PN->addIncoming(StartV, Pred);
1310       continue;
1311     }
1312 
1313     // Create a step value and add it to the PHI.
1314     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1315     // instructions at IVIncInsertPos.
1316     Instruction *InsertPos = L == IVIncInsertLoop ?
1317       IVIncInsertPos : Pred->getTerminator();
1318     Builder.SetInsertPoint(InsertPos);
1319     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1320 
1321     if (isa<OverflowingBinaryOperator>(IncV)) {
1322       if (IncrementIsNUW)
1323         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1324       if (IncrementIsNSW)
1325         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1326     }
1327     PN->addIncoming(IncV, Pred);
1328   }
1329 
1330   // After expanding subexpressions, restore the PostIncLoops set so the caller
1331   // can ensure that IVIncrement dominates the current uses.
1332   PostIncLoops = SavedPostIncLoops;
1333 
1334   // Remember this PHI, even in post-inc mode.
1335   InsertedValues.insert(PN);
1336 
1337   return PN;
1338 }
1339 
1340 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1341   Type *STy = S->getType();
1342   Type *IntTy = SE.getEffectiveSCEVType(STy);
1343   const Loop *L = S->getLoop();
1344 
1345   // Determine a normalized form of this expression, which is the expression
1346   // before any post-inc adjustment is made.
1347   const SCEVAddRecExpr *Normalized = S;
1348   if (PostIncLoops.count(L)) {
1349     PostIncLoopSet Loops;
1350     Loops.insert(L);
1351     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1352   }
1353 
1354   // Strip off any non-loop-dominating component from the addrec start.
1355   const SCEV *Start = Normalized->getStart();
1356   const SCEV *PostLoopOffset = nullptr;
1357   if (!SE.properlyDominates(Start, L->getHeader())) {
1358     PostLoopOffset = Start;
1359     Start = SE.getConstant(Normalized->getType(), 0);
1360     Normalized = cast<SCEVAddRecExpr>(
1361       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1362                        Normalized->getLoop(),
1363                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1364   }
1365 
1366   // Strip off any non-loop-dominating component from the addrec step.
1367   const SCEV *Step = Normalized->getStepRecurrence(SE);
1368   const SCEV *PostLoopScale = nullptr;
1369   if (!SE.dominates(Step, L->getHeader())) {
1370     PostLoopScale = Step;
1371     Step = SE.getConstant(Normalized->getType(), 1);
1372     if (!Start->isZero()) {
1373         // The normalization below assumes that Start is constant zero, so if
1374         // it isn't re-associate Start to PostLoopOffset.
1375         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1376         PostLoopOffset = Start;
1377         Start = SE.getConstant(Normalized->getType(), 0);
1378     }
1379     Normalized =
1380       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1381                              Start, Step, Normalized->getLoop(),
1382                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1383   }
1384 
1385   // Expand the core addrec. If we need post-loop scaling, force it to
1386   // expand to an integer type to avoid the need for additional casting.
1387   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1388   // We can't use a pointer type for the addrec if the pointer type is
1389   // non-integral.
1390   Type *AddRecPHIExpandTy =
1391       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1392 
1393   // In some cases, we decide to reuse an existing phi node but need to truncate
1394   // it and/or invert the step.
1395   Type *TruncTy = nullptr;
1396   bool InvertStep = false;
1397   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1398                                           IntTy, TruncTy, InvertStep);
1399 
1400   // Accommodate post-inc mode, if necessary.
1401   Value *Result;
1402   if (!PostIncLoops.count(L))
1403     Result = PN;
1404   else {
1405     // In PostInc mode, use the post-incremented value.
1406     BasicBlock *LatchBlock = L->getLoopLatch();
1407     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1408     Result = PN->getIncomingValueForBlock(LatchBlock);
1409 
1410     // For an expansion to use the postinc form, the client must call
1411     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1412     // or dominated by IVIncInsertPos.
1413     if (isa<Instruction>(Result) &&
1414         !SE.DT.dominates(cast<Instruction>(Result),
1415                          &*Builder.GetInsertPoint())) {
1416       // The induction variable's postinc expansion does not dominate this use.
1417       // IVUsers tries to prevent this case, so it is rare. However, it can
1418       // happen when an IVUser outside the loop is not dominated by the latch
1419       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1420       // all cases. Consider a phi outside whose operand is replaced during
1421       // expansion with the value of the postinc user. Without fundamentally
1422       // changing the way postinc users are tracked, the only remedy is
1423       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1424       // but hopefully expandCodeFor handles that.
1425       bool useSubtract =
1426         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1427       if (useSubtract)
1428         Step = SE.getNegativeSCEV(Step);
1429       Value *StepV;
1430       {
1431         // Expand the step somewhere that dominates the loop header.
1432         SCEVInsertPointGuard Guard(Builder, this);
1433         StepV = expandCodeFor(Step, IntTy,
1434                               &*L->getHeader()->getFirstInsertionPt());
1435       }
1436       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1437     }
1438   }
1439 
1440   // We have decided to reuse an induction variable of a dominating loop. Apply
1441   // truncation and/or inversion of the step.
1442   if (TruncTy) {
1443     Type *ResTy = Result->getType();
1444     // Normalize the result type.
1445     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1446       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1447     // Truncate the result.
1448     if (TruncTy != Result->getType())
1449       Result = Builder.CreateTrunc(Result, TruncTy);
1450 
1451     // Invert the result.
1452     if (InvertStep)
1453       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1454                                  Result);
1455   }
1456 
1457   // Re-apply any non-loop-dominating scale.
1458   if (PostLoopScale) {
1459     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1460     Result = InsertNoopCastOfTo(Result, IntTy);
1461     Result = Builder.CreateMul(Result,
1462                                expandCodeFor(PostLoopScale, IntTy));
1463   }
1464 
1465   // Re-apply any non-loop-dominating offset.
1466   if (PostLoopOffset) {
1467     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1468       if (Result->getType()->isIntegerTy()) {
1469         Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1470         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1471       } else {
1472         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1473       }
1474     } else {
1475       Result = InsertNoopCastOfTo(Result, IntTy);
1476       Result = Builder.CreateAdd(Result,
1477                                  expandCodeFor(PostLoopOffset, IntTy));
1478     }
1479   }
1480 
1481   return Result;
1482 }
1483 
1484 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1485   // In canonical mode we compute the addrec as an expression of a canonical IV
1486   // using evaluateAtIteration and expand the resulting SCEV expression. This
1487   // way we avoid introducing new IVs to carry on the comutation of the addrec
1488   // throughout the loop.
1489   //
1490   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1491   // type wider than the addrec itself. Emitting a canonical IV of the
1492   // proper type might produce non-legal types, for example expanding an i64
1493   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1494   // back to non-canonical mode for nested addrecs.
1495   if (!CanonicalMode || (S->getNumOperands() > 2))
1496     return expandAddRecExprLiterally(S);
1497 
1498   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1499   const Loop *L = S->getLoop();
1500 
1501   // First check for an existing canonical IV in a suitable type.
1502   PHINode *CanonicalIV = nullptr;
1503   if (PHINode *PN = L->getCanonicalInductionVariable())
1504     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1505       CanonicalIV = PN;
1506 
1507   // Rewrite an AddRec in terms of the canonical induction variable, if
1508   // its type is more narrow.
1509   if (CanonicalIV &&
1510       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1511       SE.getTypeSizeInBits(Ty)) {
1512     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1513     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1514       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1515     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1516                                        S->getNoWrapFlags(SCEV::FlagNW)));
1517     BasicBlock::iterator NewInsertPt =
1518         findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1519     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1520                       &*NewInsertPt);
1521     return V;
1522   }
1523 
1524   // {X,+,F} --> X + {0,+,F}
1525   if (!S->getStart()->isZero()) {
1526     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1527     NewOps[0] = SE.getConstant(Ty, 0);
1528     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1529                                         S->getNoWrapFlags(SCEV::FlagNW));
1530 
1531     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1532     // comments on expandAddToGEP for details.
1533     const SCEV *Base = S->getStart();
1534     // Dig into the expression to find the pointer base for a GEP.
1535     const SCEV *ExposedRest = Rest;
1536     ExposePointerBase(Base, ExposedRest, SE);
1537     // If we found a pointer, expand the AddRec with a GEP.
1538     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1539       // Make sure the Base isn't something exotic, such as a multiplied
1540       // or divided pointer value. In those cases, the result type isn't
1541       // actually a pointer type.
1542       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1543         Value *StartV = expand(Base);
1544         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1545         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1546       }
1547     }
1548 
1549     // Just do a normal add. Pre-expand the operands to suppress folding.
1550     //
1551     // The LHS and RHS values are factored out of the expand call to make the
1552     // output independent of the argument evaluation order.
1553     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1554     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1555     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1556   }
1557 
1558   // If we don't yet have a canonical IV, create one.
1559   if (!CanonicalIV) {
1560     // Create and insert the PHI node for the induction variable in the
1561     // specified loop.
1562     BasicBlock *Header = L->getHeader();
1563     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1564     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1565                                   &Header->front());
1566     rememberInstruction(CanonicalIV);
1567 
1568     SmallSet<BasicBlock *, 4> PredSeen;
1569     Constant *One = ConstantInt::get(Ty, 1);
1570     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1571       BasicBlock *HP = *HPI;
1572       if (!PredSeen.insert(HP).second) {
1573         // There must be an incoming value for each predecessor, even the
1574         // duplicates!
1575         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1576         continue;
1577       }
1578 
1579       if (L->contains(HP)) {
1580         // Insert a unit add instruction right before the terminator
1581         // corresponding to the back-edge.
1582         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1583                                                      "indvar.next",
1584                                                      HP->getTerminator());
1585         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1586         rememberInstruction(Add);
1587         CanonicalIV->addIncoming(Add, HP);
1588       } else {
1589         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1590       }
1591     }
1592   }
1593 
1594   // {0,+,1} --> Insert a canonical induction variable into the loop!
1595   if (S->isAffine() && S->getOperand(1)->isOne()) {
1596     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1597            "IVs with types different from the canonical IV should "
1598            "already have been handled!");
1599     return CanonicalIV;
1600   }
1601 
1602   // {0,+,F} --> {0,+,1} * F
1603 
1604   // If this is a simple linear addrec, emit it now as a special case.
1605   if (S->isAffine())    // {0,+,F} --> i*F
1606     return
1607       expand(SE.getTruncateOrNoop(
1608         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1609                       SE.getNoopOrAnyExtend(S->getOperand(1),
1610                                             CanonicalIV->getType())),
1611         Ty));
1612 
1613   // If this is a chain of recurrences, turn it into a closed form, using the
1614   // folders, then expandCodeFor the closed form.  This allows the folders to
1615   // simplify the expression without having to build a bunch of special code
1616   // into this folder.
1617   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1618 
1619   // Promote S up to the canonical IV type, if the cast is foldable.
1620   const SCEV *NewS = S;
1621   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1622   if (isa<SCEVAddRecExpr>(Ext))
1623     NewS = Ext;
1624 
1625   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1626   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1627 
1628   // Truncate the result down to the original type, if needed.
1629   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1630   return expand(T);
1631 }
1632 
1633 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1634   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1635   Value *V = expandCodeFor(S->getOperand(),
1636                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1637   return Builder.CreateTrunc(V, Ty);
1638 }
1639 
1640 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1641   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1642   Value *V = expandCodeFor(S->getOperand(),
1643                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1644   return Builder.CreateZExt(V, Ty);
1645 }
1646 
1647 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1648   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1649   Value *V = expandCodeFor(S->getOperand(),
1650                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1651   return Builder.CreateSExt(V, Ty);
1652 }
1653 
1654 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1655   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1656   Type *Ty = LHS->getType();
1657   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1658     // In the case of mixed integer and pointer types, do the
1659     // rest of the comparisons as integer.
1660     Type *OpTy = S->getOperand(i)->getType();
1661     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1662       Ty = SE.getEffectiveSCEVType(Ty);
1663       LHS = InsertNoopCastOfTo(LHS, Ty);
1664     }
1665     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1666     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1667     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1668     LHS = Sel;
1669   }
1670   // In the case of mixed integer and pointer types, cast the
1671   // final result back to the pointer type.
1672   if (LHS->getType() != S->getType())
1673     LHS = InsertNoopCastOfTo(LHS, S->getType());
1674   return LHS;
1675 }
1676 
1677 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1678   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1679   Type *Ty = LHS->getType();
1680   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1681     // In the case of mixed integer and pointer types, do the
1682     // rest of the comparisons as integer.
1683     Type *OpTy = S->getOperand(i)->getType();
1684     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1685       Ty = SE.getEffectiveSCEVType(Ty);
1686       LHS = InsertNoopCastOfTo(LHS, Ty);
1687     }
1688     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1689     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1690     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1691     LHS = Sel;
1692   }
1693   // In the case of mixed integer and pointer types, cast the
1694   // final result back to the pointer type.
1695   if (LHS->getType() != S->getType())
1696     LHS = InsertNoopCastOfTo(LHS, S->getType());
1697   return LHS;
1698 }
1699 
1700 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1701   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1702   Type *Ty = LHS->getType();
1703   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1704     // In the case of mixed integer and pointer types, do the
1705     // rest of the comparisons as integer.
1706     Type *OpTy = S->getOperand(i)->getType();
1707     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1708       Ty = SE.getEffectiveSCEVType(Ty);
1709       LHS = InsertNoopCastOfTo(LHS, Ty);
1710     }
1711     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1712     Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1713     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1714     LHS = Sel;
1715   }
1716   // In the case of mixed integer and pointer types, cast the
1717   // final result back to the pointer type.
1718   if (LHS->getType() != S->getType())
1719     LHS = InsertNoopCastOfTo(LHS, S->getType());
1720   return LHS;
1721 }
1722 
1723 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1724   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1725   Type *Ty = LHS->getType();
1726   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1727     // In the case of mixed integer and pointer types, do the
1728     // rest of the comparisons as integer.
1729     Type *OpTy = S->getOperand(i)->getType();
1730     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1731       Ty = SE.getEffectiveSCEVType(Ty);
1732       LHS = InsertNoopCastOfTo(LHS, Ty);
1733     }
1734     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1735     Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1736     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1737     LHS = Sel;
1738   }
1739   // In the case of mixed integer and pointer types, cast the
1740   // final result back to the pointer type.
1741   if (LHS->getType() != S->getType())
1742     LHS = InsertNoopCastOfTo(LHS, S->getType());
1743   return LHS;
1744 }
1745 
1746 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1747                                    Instruction *IP) {
1748   setInsertPoint(IP);
1749   return expandCodeFor(SH, Ty);
1750 }
1751 
1752 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1753   // Expand the code for this SCEV.
1754   Value *V = expand(SH);
1755   if (Ty) {
1756     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1757            "non-trivial casts should be done with the SCEVs directly!");
1758     V = InsertNoopCastOfTo(V, Ty);
1759   }
1760   return V;
1761 }
1762 
1763 ScalarEvolution::ValueOffsetPair
1764 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1765                                       const Instruction *InsertPt) {
1766   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1767   // If the expansion is not in CanonicalMode, and the SCEV contains any
1768   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1769   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1770     // If S is scConstant, it may be worse to reuse an existing Value.
1771     if (S->getSCEVType() != scConstant && Set) {
1772       // Choose a Value from the set which dominates the insertPt.
1773       // insertPt should be inside the Value's parent loop so as not to break
1774       // the LCSSA form.
1775       for (auto const &VOPair : *Set) {
1776         Value *V = VOPair.first;
1777         ConstantInt *Offset = VOPair.second;
1778         Instruction *EntInst = nullptr;
1779         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1780             S->getType() == V->getType() &&
1781             EntInst->getFunction() == InsertPt->getFunction() &&
1782             SE.DT.dominates(EntInst, InsertPt) &&
1783             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1784              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1785           return {V, Offset};
1786       }
1787     }
1788   }
1789   return {nullptr, nullptr};
1790 }
1791 
1792 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1793 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1794 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1795 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1796 // the expansion will try to reuse Value from ExprValueMap, and only when it
1797 // fails, expand the SCEV literally.
1798 Value *SCEVExpander::expand(const SCEV *S) {
1799   // Compute an insertion point for this SCEV object. Hoist the instructions
1800   // as far out in the loop nest as possible.
1801   Instruction *InsertPt = &*Builder.GetInsertPoint();
1802 
1803   // We can move insertion point only if there is no div or rem operations
1804   // otherwise we are risky to move it over the check for zero denominator.
1805   auto SafeToHoist = [](const SCEV *S) {
1806     return !SCEVExprContains(S, [](const SCEV *S) {
1807               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1808                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1809                   // Division by non-zero constants can be hoisted.
1810                   return SC->getValue()->isZero();
1811                 // All other divisions should not be moved as they may be
1812                 // divisions by zero and should be kept within the
1813                 // conditions of the surrounding loops that guard their
1814                 // execution (see PR35406).
1815                 return true;
1816               }
1817               return false;
1818             });
1819   };
1820   if (SafeToHoist(S)) {
1821     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1822          L = L->getParentLoop()) {
1823       if (SE.isLoopInvariant(S, L)) {
1824         if (!L) break;
1825         if (BasicBlock *Preheader = L->getLoopPreheader())
1826           InsertPt = Preheader->getTerminator();
1827         else
1828           // LSR sets the insertion point for AddRec start/step values to the
1829           // block start to simplify value reuse, even though it's an invalid
1830           // position. SCEVExpander must correct for this in all cases.
1831           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1832       } else {
1833         // If the SCEV is computable at this level, insert it into the header
1834         // after the PHIs (and after any other instructions that we've inserted
1835         // there) so that it is guaranteed to dominate any user inside the loop.
1836         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1837           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1838         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1839                (isInsertedInstruction(InsertPt) ||
1840                 isa<DbgInfoIntrinsic>(InsertPt)))
1841           InsertPt = &*std::next(InsertPt->getIterator());
1842         break;
1843       }
1844     }
1845   }
1846 
1847   // Check to see if we already expanded this here.
1848   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1849   if (I != InsertedExpressions.end())
1850     return I->second;
1851 
1852   SCEVInsertPointGuard Guard(Builder, this);
1853   Builder.SetInsertPoint(InsertPt);
1854 
1855   // Expand the expression into instructions.
1856   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1857   Value *V = VO.first;
1858 
1859   if (!V)
1860     V = visit(S);
1861   else if (VO.second) {
1862     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1863       Type *Ety = Vty->getPointerElementType();
1864       int64_t Offset = VO.second->getSExtValue();
1865       int64_t ESize = SE.getTypeSizeInBits(Ety);
1866       if ((Offset * 8) % ESize == 0) {
1867         ConstantInt *Idx =
1868             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1869         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1870       } else {
1871         ConstantInt *Idx =
1872             ConstantInt::getSigned(VO.second->getType(), -Offset);
1873         unsigned AS = Vty->getAddressSpace();
1874         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1875         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1876                               "uglygep");
1877         V = Builder.CreateBitCast(V, Vty);
1878       }
1879     } else {
1880       V = Builder.CreateSub(V, VO.second);
1881     }
1882   }
1883   // Remember the expanded value for this SCEV at this location.
1884   //
1885   // This is independent of PostIncLoops. The mapped value simply materializes
1886   // the expression at this insertion point. If the mapped value happened to be
1887   // a postinc expansion, it could be reused by a non-postinc user, but only if
1888   // its insertion point was already at the head of the loop.
1889   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1890   return V;
1891 }
1892 
1893 void SCEVExpander::rememberInstruction(Value *I) {
1894   if (!PostIncLoops.empty())
1895     InsertedPostIncValues.insert(I);
1896   else
1897     InsertedValues.insert(I);
1898 }
1899 
1900 /// getOrInsertCanonicalInductionVariable - This method returns the
1901 /// canonical induction variable of the specified type for the specified
1902 /// loop (inserting one if there is none).  A canonical induction variable
1903 /// starts at zero and steps by one on each iteration.
1904 PHINode *
1905 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1906                                                     Type *Ty) {
1907   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1908 
1909   // Build a SCEV for {0,+,1}<L>.
1910   // Conservatively use FlagAnyWrap for now.
1911   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1912                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1913 
1914   // Emit code for it.
1915   SCEVInsertPointGuard Guard(Builder, this);
1916   PHINode *V =
1917       cast<PHINode>(expandCodeFor(H, nullptr,
1918                                   &*L->getHeader()->getFirstInsertionPt()));
1919 
1920   return V;
1921 }
1922 
1923 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1924 /// replace them with their most canonical representative. Return the number of
1925 /// phis eliminated.
1926 ///
1927 /// This does not depend on any SCEVExpander state but should be used in
1928 /// the same context that SCEVExpander is used.
1929 unsigned
1930 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1931                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1932                                   const TargetTransformInfo *TTI) {
1933   // Find integer phis in order of increasing width.
1934   SmallVector<PHINode*, 8> Phis;
1935   for (PHINode &PN : L->getHeader()->phis())
1936     Phis.push_back(&PN);
1937 
1938   if (TTI)
1939     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1940       // Put pointers at the back and make sure pointer < pointer = false.
1941       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1942         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1943       return RHS->getType()->getPrimitiveSizeInBits() <
1944              LHS->getType()->getPrimitiveSizeInBits();
1945     });
1946 
1947   unsigned NumElim = 0;
1948   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1949   // Process phis from wide to narrow. Map wide phis to their truncation
1950   // so narrow phis can reuse them.
1951   for (PHINode *Phi : Phis) {
1952     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1953       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1954         return V;
1955       if (!SE.isSCEVable(PN->getType()))
1956         return nullptr;
1957       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1958       if (!Const)
1959         return nullptr;
1960       return Const->getValue();
1961     };
1962 
1963     // Fold constant phis. They may be congruent to other constant phis and
1964     // would confuse the logic below that expects proper IVs.
1965     if (Value *V = SimplifyPHINode(Phi)) {
1966       if (V->getType() != Phi->getType())
1967         continue;
1968       Phi->replaceAllUsesWith(V);
1969       DeadInsts.emplace_back(Phi);
1970       ++NumElim;
1971       DEBUG_WITH_TYPE(DebugType, dbgs()
1972                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1973       continue;
1974     }
1975 
1976     if (!SE.isSCEVable(Phi->getType()))
1977       continue;
1978 
1979     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1980     if (!OrigPhiRef) {
1981       OrigPhiRef = Phi;
1982       if (Phi->getType()->isIntegerTy() && TTI &&
1983           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1984         // This phi can be freely truncated to the narrowest phi type. Map the
1985         // truncated expression to it so it will be reused for narrow types.
1986         const SCEV *TruncExpr =
1987           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1988         ExprToIVMap[TruncExpr] = Phi;
1989       }
1990       continue;
1991     }
1992 
1993     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1994     // sense.
1995     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1996       continue;
1997 
1998     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1999       Instruction *OrigInc = dyn_cast<Instruction>(
2000           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2001       Instruction *IsomorphicInc =
2002           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2003 
2004       if (OrigInc && IsomorphicInc) {
2005         // If this phi has the same width but is more canonical, replace the
2006         // original with it. As part of the "more canonical" determination,
2007         // respect a prior decision to use an IV chain.
2008         if (OrigPhiRef->getType() == Phi->getType() &&
2009             !(ChainedPhis.count(Phi) ||
2010               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2011             (ChainedPhis.count(Phi) ||
2012              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2013           std::swap(OrigPhiRef, Phi);
2014           std::swap(OrigInc, IsomorphicInc);
2015         }
2016         // Replacing the congruent phi is sufficient because acyclic
2017         // redundancy elimination, CSE/GVN, should handle the
2018         // rest. However, once SCEV proves that a phi is congruent,
2019         // it's often the head of an IV user cycle that is isomorphic
2020         // with the original phi. It's worth eagerly cleaning up the
2021         // common case of a single IV increment so that DeleteDeadPHIs
2022         // can remove cycles that had postinc uses.
2023         const SCEV *TruncExpr =
2024             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2025         if (OrigInc != IsomorphicInc &&
2026             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2027             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2028             hoistIVInc(OrigInc, IsomorphicInc)) {
2029           DEBUG_WITH_TYPE(DebugType,
2030                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2031                                  << *IsomorphicInc << '\n');
2032           Value *NewInc = OrigInc;
2033           if (OrigInc->getType() != IsomorphicInc->getType()) {
2034             Instruction *IP = nullptr;
2035             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2036               IP = &*PN->getParent()->getFirstInsertionPt();
2037             else
2038               IP = OrigInc->getNextNode();
2039 
2040             IRBuilder<> Builder(IP);
2041             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2042             NewInc = Builder.CreateTruncOrBitCast(
2043                 OrigInc, IsomorphicInc->getType(), IVName);
2044           }
2045           IsomorphicInc->replaceAllUsesWith(NewInc);
2046           DeadInsts.emplace_back(IsomorphicInc);
2047         }
2048       }
2049     }
2050     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2051                                       << *Phi << '\n');
2052     ++NumElim;
2053     Value *NewIV = OrigPhiRef;
2054     if (OrigPhiRef->getType() != Phi->getType()) {
2055       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2056       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2057       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2058     }
2059     Phi->replaceAllUsesWith(NewIV);
2060     DeadInsts.emplace_back(Phi);
2061   }
2062   return NumElim;
2063 }
2064 
2065 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2066                                                const Instruction *At, Loop *L) {
2067   Optional<ScalarEvolution::ValueOffsetPair> VO =
2068       getRelatedExistingExpansion(S, At, L);
2069   if (VO && VO.getValue().second == nullptr)
2070     return VO.getValue().first;
2071   return nullptr;
2072 }
2073 
2074 Optional<ScalarEvolution::ValueOffsetPair>
2075 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2076                                           Loop *L) {
2077   using namespace llvm::PatternMatch;
2078 
2079   SmallVector<BasicBlock *, 4> ExitingBlocks;
2080   L->getExitingBlocks(ExitingBlocks);
2081 
2082   // Look for suitable value in simple conditions at the loop exits.
2083   for (BasicBlock *BB : ExitingBlocks) {
2084     ICmpInst::Predicate Pred;
2085     Instruction *LHS, *RHS;
2086 
2087     if (!match(BB->getTerminator(),
2088                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2089                     m_BasicBlock(), m_BasicBlock())))
2090       continue;
2091 
2092     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2093       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2094 
2095     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2096       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2097   }
2098 
2099   // Use expand's logic which is used for reusing a previous Value in
2100   // ExprValueMap.
2101   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2102   if (VO.first)
2103     return VO;
2104 
2105   // There is potential to make this significantly smarter, but this simple
2106   // heuristic already gets some interesting cases.
2107 
2108   // Can not find suitable value.
2109   return None;
2110 }
2111 
2112 bool SCEVExpander::isHighCostExpansionHelper(
2113     const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining,
2114     const TargetTransformInfo &TTI, SmallPtrSetImpl<const SCEV *> &Processed,
2115     SmallVectorImpl<const SCEV *> &Worklist) {
2116   if (BudgetRemaining < 0)
2117     return true; // Already run out of budget, give up.
2118 
2119   // Was the cost of expansion of this expression already accounted for?
2120   if (!Processed.insert(S).second)
2121     return false; // We have already accounted for this expression.
2122 
2123   // If we can find an existing value for this scev available at the point "At"
2124   // then consider the expression cheap.
2125   if (getRelatedExistingExpansion(S, &At, L))
2126     return false; // Consider the expression to be free.
2127 
2128   switch (S->getSCEVType()) {
2129   case scUnknown:
2130   case scConstant:
2131     return false; // Assume to be zero-cost.
2132   }
2133 
2134   TargetTransformInfo::TargetCostKind CostKind =
2135     TargetTransformInfo::TCK_RecipThroughput;
2136 
2137   if (auto *CastExpr = dyn_cast<SCEVCastExpr>(S)) {
2138     unsigned Opcode;
2139     switch (S->getSCEVType()) {
2140     case scTruncate:
2141       Opcode = Instruction::Trunc;
2142       break;
2143     case scZeroExtend:
2144       Opcode = Instruction::ZExt;
2145       break;
2146     case scSignExtend:
2147       Opcode = Instruction::SExt;
2148       break;
2149     default:
2150       llvm_unreachable("There are no other cast types.");
2151     }
2152     const SCEV *Op = CastExpr->getOperand();
2153     BudgetRemaining -= TTI.getCastInstrCost(
2154         Opcode, /*Dst=*/S->getType(),
2155         /*Src=*/Op->getType(), TTI::CastContextHint::None, CostKind);
2156     Worklist.emplace_back(Op);
2157     return false; // Will answer upon next entry into this function.
2158   }
2159 
2160   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2161     // If the divisor is a power of two count this as a logical right-shift.
2162     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) {
2163       if (SC->getAPInt().isPowerOf2()) {
2164         BudgetRemaining -=
2165             TTI.getArithmeticInstrCost(Instruction::LShr, S->getType(),
2166                                        CostKind);
2167         // Note that we don't count the cost of RHS, because it is a constant,
2168         // and we consider those to be free. But if that changes, we would need
2169         // to log2() it first before calling isHighCostExpansionHelper().
2170         Worklist.emplace_back(UDivExpr->getLHS());
2171         return false; // Will answer upon next entry into this function.
2172       }
2173     }
2174 
2175     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2176     // HowManyLessThans produced to compute a precise expression, rather than a
2177     // UDiv from the user's code. If we can't find a UDiv in the code with some
2178     // simple searching, we need to account for it's cost.
2179 
2180     // At the beginning of this function we already tried to find existing
2181     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2182     // pattern involving division. This is just a simple search heuristic.
2183     if (getRelatedExistingExpansion(
2184             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2185       return false; // Consider it to be free.
2186 
2187     // Need to count the cost of this UDiv.
2188     BudgetRemaining -=
2189         TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(),
2190                                    CostKind);
2191     Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()});
2192     return false; // Will answer upon next entry into this function.
2193   }
2194 
2195   if (const auto *NAry = dyn_cast<SCEVAddRecExpr>(S)) {
2196     Type *OpType = NAry->getType();
2197 
2198     assert(NAry->getNumOperands() >= 2 &&
2199            "Polynomial should be at least linear");
2200 
2201     int AddCost =
2202       TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind);
2203     int MulCost =
2204       TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind);
2205 
2206     // In this polynominal, we may have some zero operands, and we shouldn't
2207     // really charge for those. So how many non-zero coeffients are there?
2208     int NumTerms = llvm::count_if(NAry->operands(),
2209                                   [](const SCEV *S) { return !S->isZero(); });
2210     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2211     assert(!(*std::prev(NAry->operands().end()))->isZero() &&
2212            "Last operand should not be zero");
2213 
2214     // Much like with normal add expr, the polynominal will require
2215     // one less addition than the number of it's terms.
2216     BudgetRemaining -= AddCost * (NumTerms - 1);
2217     if (BudgetRemaining < 0)
2218       return true;
2219 
2220     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2221     int NumNonZeroDegreeNonOneTerms =
2222         llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()),
2223                        [](const SCEV *S) {
2224                          auto *SConst = dyn_cast<SCEVConstant>(S);
2225                          return !SConst || SConst->getAPInt().ugt(1);
2226                        });
2227     // Here, *each* one of those will require a multiplication.
2228     BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms;
2229     if (BudgetRemaining < 0)
2230       return true;
2231 
2232     // What is the degree of this polynominal?
2233     int PolyDegree = NAry->getNumOperands() - 1;
2234     assert(PolyDegree >= 1 && "Should be at least affine.");
2235 
2236     // The final term will be:
2237     //   Op_{PolyDegree} * x ^ {PolyDegree}
2238     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2239     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2240     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2241     // FIXME: this is conservatively correct, but might be overly pessimistic.
2242     BudgetRemaining -= MulCost * (PolyDegree - 1);
2243     if (BudgetRemaining < 0)
2244       return true;
2245 
2246     // And finally, the operands themselves should fit within the budget.
2247     Worklist.insert(Worklist.end(), NAry->operands().begin(),
2248                     NAry->operands().end());
2249     return false; // So far so good, though ops may be too costly?
2250   }
2251 
2252   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2253     Type *OpType = NAry->getType();
2254 
2255     int PairCost;
2256     switch (S->getSCEVType()) {
2257     case scAddExpr:
2258       PairCost =
2259         TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind);
2260       break;
2261     case scMulExpr:
2262       // TODO: this is a very pessimistic cost modelling for Mul,
2263       // because of Bin Pow algorithm actually used by the expander,
2264       // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2265       PairCost =
2266         TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind);
2267       break;
2268     case scSMaxExpr:
2269     case scUMaxExpr:
2270     case scSMinExpr:
2271     case scUMinExpr:
2272       PairCost = TTI.getCmpSelInstrCost(Instruction::ICmp, OpType,
2273                                         CmpInst::makeCmpResultType(OpType),
2274                                         CostKind) +
2275                  TTI.getCmpSelInstrCost(Instruction::Select, OpType,
2276                                         CmpInst::makeCmpResultType(OpType),
2277                                         CostKind);
2278       break;
2279     default:
2280       llvm_unreachable("There are no other variants here.");
2281     }
2282 
2283     assert(NAry->getNumOperands() > 1 &&
2284            "Nary expr should have more than 1 operand.");
2285     // The simple nary expr will require one less op (or pair of ops)
2286     // than the number of it's terms.
2287     BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1);
2288     if (BudgetRemaining < 0)
2289       return true;
2290 
2291     // And finally, the operands themselves should fit within the budget.
2292     Worklist.insert(Worklist.end(), NAry->operands().begin(),
2293                     NAry->operands().end());
2294     return false; // So far so good, though ops may be too costly?
2295   }
2296 
2297   llvm_unreachable("No other scev expressions possible.");
2298 }
2299 
2300 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2301                                             Instruction *IP) {
2302   assert(IP);
2303   switch (Pred->getKind()) {
2304   case SCEVPredicate::P_Union:
2305     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2306   case SCEVPredicate::P_Equal:
2307     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2308   case SCEVPredicate::P_Wrap: {
2309     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2310     return expandWrapPredicate(AddRecPred, IP);
2311   }
2312   }
2313   llvm_unreachable("Unknown SCEV predicate type");
2314 }
2315 
2316 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2317                                           Instruction *IP) {
2318   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2319   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2320 
2321   Builder.SetInsertPoint(IP);
2322   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2323   return I;
2324 }
2325 
2326 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2327                                            Instruction *Loc, bool Signed) {
2328   assert(AR->isAffine() && "Cannot generate RT check for "
2329                            "non-affine expression");
2330 
2331   SCEVUnionPredicate Pred;
2332   const SCEV *ExitCount =
2333       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2334 
2335   assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2336 
2337   const SCEV *Step = AR->getStepRecurrence(SE);
2338   const SCEV *Start = AR->getStart();
2339 
2340   Type *ARTy = AR->getType();
2341   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2342   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2343 
2344   // The expression {Start,+,Step} has nusw/nssw if
2345   //   Step < 0, Start - |Step| * Backedge <= Start
2346   //   Step >= 0, Start + |Step| * Backedge > Start
2347   // and |Step| * Backedge doesn't unsigned overflow.
2348 
2349   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2350   Builder.SetInsertPoint(Loc);
2351   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2352 
2353   IntegerType *Ty =
2354       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2355   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2356 
2357   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2358   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2359   Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2360 
2361   ConstantInt *Zero =
2362       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2363 
2364   Builder.SetInsertPoint(Loc);
2365   // Compute |Step|
2366   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2367   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2368 
2369   // Get the backedge taken count and truncate or extended to the AR type.
2370   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2371   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2372                                          Intrinsic::umul_with_overflow, Ty);
2373 
2374   // Compute |Step| * Backedge
2375   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2376   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2377   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2378 
2379   // Compute:
2380   //   Start + |Step| * Backedge < Start
2381   //   Start - |Step| * Backedge > Start
2382   Value *Add = nullptr, *Sub = nullptr;
2383   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2384     const SCEV *MulS = SE.getSCEV(MulV);
2385     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2386     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2387                                 ARPtrTy);
2388     Sub = Builder.CreateBitCast(
2389         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2390   } else {
2391     Add = Builder.CreateAdd(StartValue, MulV);
2392     Sub = Builder.CreateSub(StartValue, MulV);
2393   }
2394 
2395   Value *EndCompareGT = Builder.CreateICmp(
2396       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2397 
2398   Value *EndCompareLT = Builder.CreateICmp(
2399       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2400 
2401   // Select the answer based on the sign of Step.
2402   Value *EndCheck =
2403       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2404 
2405   // If the backedge taken count type is larger than the AR type,
2406   // check that we don't drop any bits by truncating it. If we are
2407   // dropping bits, then we have overflow (unless the step is zero).
2408   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2409     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2410     auto *BackedgeCheck =
2411         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2412                            ConstantInt::get(Loc->getContext(), MaxVal));
2413     BackedgeCheck = Builder.CreateAnd(
2414         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2415 
2416     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2417   }
2418 
2419   return Builder.CreateOr(EndCheck, OfMul);
2420 }
2421 
2422 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2423                                          Instruction *IP) {
2424   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2425   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2426 
2427   // Add a check for NUSW
2428   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2429     NUSWCheck = generateOverflowCheck(A, IP, false);
2430 
2431   // Add a check for NSSW
2432   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2433     NSSWCheck = generateOverflowCheck(A, IP, true);
2434 
2435   if (NUSWCheck && NSSWCheck)
2436     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2437 
2438   if (NUSWCheck)
2439     return NUSWCheck;
2440 
2441   if (NSSWCheck)
2442     return NSSWCheck;
2443 
2444   return ConstantInt::getFalse(IP->getContext());
2445 }
2446 
2447 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2448                                           Instruction *IP) {
2449   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2450   Value *Check = ConstantInt::getNullValue(BoolType);
2451 
2452   // Loop over all checks in this set.
2453   for (auto Pred : Union->getPredicates()) {
2454     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2455     Builder.SetInsertPoint(IP);
2456     Check = Builder.CreateOr(Check, NextCheck);
2457   }
2458 
2459   return Check;
2460 }
2461 
2462 namespace {
2463 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2464 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2465 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2466 // instruction, but the important thing is that we prove the denominator is
2467 // nonzero before expansion.
2468 //
2469 // IVUsers already checks that IV-derived expressions are safe. So this check is
2470 // only needed when the expression includes some subexpression that is not IV
2471 // derived.
2472 //
2473 // Currently, we only allow division by a nonzero constant here. If this is
2474 // inadequate, we could easily allow division by SCEVUnknown by using
2475 // ValueTracking to check isKnownNonZero().
2476 //
2477 // We cannot generally expand recurrences unless the step dominates the loop
2478 // header. The expander handles the special case of affine recurrences by
2479 // scaling the recurrence outside the loop, but this technique isn't generally
2480 // applicable. Expanding a nested recurrence outside a loop requires computing
2481 // binomial coefficients. This could be done, but the recurrence has to be in a
2482 // perfectly reduced form, which can't be guaranteed.
2483 struct SCEVFindUnsafe {
2484   ScalarEvolution &SE;
2485   bool IsUnsafe;
2486 
2487   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2488 
2489   bool follow(const SCEV *S) {
2490     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2491       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2492       if (!SC || SC->getValue()->isZero()) {
2493         IsUnsafe = true;
2494         return false;
2495       }
2496     }
2497     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2498       const SCEV *Step = AR->getStepRecurrence(SE);
2499       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2500         IsUnsafe = true;
2501         return false;
2502       }
2503     }
2504     return true;
2505   }
2506   bool isDone() const { return IsUnsafe; }
2507 };
2508 }
2509 
2510 namespace llvm {
2511 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2512   SCEVFindUnsafe Search(SE);
2513   visitAll(S, Search);
2514   return !Search.IsUnsafe;
2515 }
2516 
2517 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2518                       ScalarEvolution &SE) {
2519   if (!isSafeToExpand(S, SE))
2520     return false;
2521   // We have to prove that the expanded site of S dominates InsertionPoint.
2522   // This is easy when not in the same block, but hard when S is an instruction
2523   // to be expanded somewhere inside the same block as our insertion point.
2524   // What we really need here is something analogous to an OrderedBasicBlock,
2525   // but for the moment, we paper over the problem by handling two common and
2526   // cheap to check cases.
2527   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2528     return true;
2529   if (SE.dominates(S, InsertionPoint->getParent())) {
2530     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2531       return true;
2532     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2533       for (const Value *V : InsertionPoint->operand_values())
2534         if (V == U->getValue())
2535           return true;
2536   }
2537   return false;
2538 }
2539 }
2540