xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision b8a3705896d254682a4ba36dd79a436ec4a917d4)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 using namespace llvm;
33 
34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
35     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
36     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
37              "controls the budget that is considered cheap (default = 4)"));
38 
39 using namespace PatternMatch;
40 
41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users()) {
62     if (U->getType() != Ty)
63       continue;
64     CastInst *CI = dyn_cast<CastInst>(U);
65     if (!CI || CI->getOpcode() != Op)
66       continue;
67 
68     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
69     // the cast must also properly dominate the Builder's insertion point.
70     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
71         (&*IP == CI || CI->comesBefore(&*IP))) {
72       Ret = CI;
73       break;
74     }
75   }
76 
77   // Create a new cast.
78   if (!Ret) {
79     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
80     rememberInstruction(Ret);
81   }
82 
83   // We assert at the end of the function since IP might point to an
84   // instruction with different dominance properties than a cast
85   // (an invoke for example) and not dominate BIP (but the cast does).
86   assert(SE.DT.dominates(Ret, &*BIP));
87 
88   return Ret;
89 }
90 
91 BasicBlock::iterator
92 SCEVExpander::findInsertPointAfter(Instruction *I,
93                                    Instruction *MustDominate) const {
94   BasicBlock::iterator IP = ++I->getIterator();
95   if (auto *II = dyn_cast<InvokeInst>(I))
96     IP = II->getNormalDest()->begin();
97 
98   while (isa<PHINode>(IP))
99     ++IP;
100 
101   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
102     ++IP;
103   } else if (isa<CatchSwitchInst>(IP)) {
104     IP = MustDominate->getParent()->getFirstInsertionPt();
105   } else {
106     assert(!IP->isEHPad() && "unexpected eh pad!");
107   }
108 
109   // Adjust insert point to be after instructions inserted by the expander, so
110   // we can re-use already inserted instructions. Avoid skipping past the
111   // original \p MustDominate, in case it is an inserted instruction.
112   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
113     ++IP;
114 
115   return IP;
116 }
117 
118 BasicBlock::iterator
119 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
120   // Cast the argument at the beginning of the entry block, after
121   // any bitcasts of other arguments.
122   if (Argument *A = dyn_cast<Argument>(V)) {
123     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
124     while ((isa<BitCastInst>(IP) &&
125             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
126             cast<BitCastInst>(IP)->getOperand(0) != A) ||
127            isa<DbgInfoIntrinsic>(IP))
128       ++IP;
129     return IP;
130   }
131 
132   // Cast the instruction immediately after the instruction.
133   Instruction *I = cast<Instruction>(V);
134   return findInsertPointAfter(I, &*Builder.GetInsertPoint());
135 }
136 
137 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
138 /// which must be possible with a noop cast, doing what we can to share
139 /// the casts.
140 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
141   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
142   assert((Op == Instruction::BitCast ||
143           Op == Instruction::PtrToInt ||
144           Op == Instruction::IntToPtr) &&
145          "InsertNoopCastOfTo cannot perform non-noop casts!");
146   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
147          "InsertNoopCastOfTo cannot change sizes!");
148 
149   // inttoptr only works for integral pointers. For non-integral pointers, we
150   // can create a GEP on i8* null  with the integral value as index. Note that
151   // it is safe to use GEP of null instead of inttoptr here, because only
152   // expressions already based on a GEP of null should be converted to pointers
153   // during expansion.
154   if (Op == Instruction::IntToPtr) {
155     auto *PtrTy = cast<PointerType>(Ty);
156     if (DL.isNonIntegralPointerType(PtrTy)) {
157       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
158       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
159              "alloc size of i8 must by 1 byte for the GEP to be correct");
160       auto *GEP = Builder.CreateGEP(
161           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
162       return Builder.CreateBitCast(GEP, Ty);
163     }
164   }
165   // Short-circuit unnecessary bitcasts.
166   if (Op == Instruction::BitCast) {
167     if (V->getType() == Ty)
168       return V;
169     if (CastInst *CI = dyn_cast<CastInst>(V)) {
170       if (CI->getOperand(0)->getType() == Ty)
171         return CI->getOperand(0);
172     }
173   }
174   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
175   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
176       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
177     if (CastInst *CI = dyn_cast<CastInst>(V))
178       if ((CI->getOpcode() == Instruction::PtrToInt ||
179            CI->getOpcode() == Instruction::IntToPtr) &&
180           SE.getTypeSizeInBits(CI->getType()) ==
181           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
182         return CI->getOperand(0);
183     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
184       if ((CE->getOpcode() == Instruction::PtrToInt ||
185            CE->getOpcode() == Instruction::IntToPtr) &&
186           SE.getTypeSizeInBits(CE->getType()) ==
187           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
188         return CE->getOperand(0);
189   }
190 
191   // Fold a cast of a constant.
192   if (Constant *C = dyn_cast<Constant>(V))
193     return ConstantExpr::getCast(Op, C, Ty);
194 
195   // Try to reuse existing cast, or insert one.
196   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
197 }
198 
199 /// InsertBinop - Insert the specified binary operator, doing a small amount
200 /// of work to avoid inserting an obviously redundant operation, and hoisting
201 /// to an outer loop when the opportunity is there and it is safe.
202 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
203                                  Value *LHS, Value *RHS,
204                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
205   // Fold a binop with constant operands.
206   if (Constant *CLHS = dyn_cast<Constant>(LHS))
207     if (Constant *CRHS = dyn_cast<Constant>(RHS))
208       return ConstantExpr::get(Opcode, CLHS, CRHS);
209 
210   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
211   unsigned ScanLimit = 6;
212   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
213   // Scanning starts from the last instruction before the insertion point.
214   BasicBlock::iterator IP = Builder.GetInsertPoint();
215   if (IP != BlockBegin) {
216     --IP;
217     for (; ScanLimit; --IP, --ScanLimit) {
218       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
219       // generated code.
220       if (isa<DbgInfoIntrinsic>(IP))
221         ScanLimit++;
222 
223       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
224         // Ensure that no-wrap flags match.
225         if (isa<OverflowingBinaryOperator>(I)) {
226           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
227             return true;
228           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
229             return true;
230         }
231         // Conservatively, do not use any instruction which has any of exact
232         // flags installed.
233         if (isa<PossiblyExactOperator>(I) && I->isExact())
234           return true;
235         return false;
236       };
237       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
238           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
239         return &*IP;
240       if (IP == BlockBegin) break;
241     }
242   }
243 
244   // Save the original insertion point so we can restore it when we're done.
245   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
246   SCEVInsertPointGuard Guard(Builder, this);
247 
248   if (IsSafeToHoist) {
249     // Move the insertion point out of as many loops as we can.
250     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
251       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
252       BasicBlock *Preheader = L->getLoopPreheader();
253       if (!Preheader) break;
254 
255       // Ok, move up a level.
256       Builder.SetInsertPoint(Preheader->getTerminator());
257     }
258   }
259 
260   // If we haven't found this binop, insert it.
261   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
262   BO->setDebugLoc(Loc);
263   if (Flags & SCEV::FlagNUW)
264     BO->setHasNoUnsignedWrap();
265   if (Flags & SCEV::FlagNSW)
266     BO->setHasNoSignedWrap();
267 
268   return BO;
269 }
270 
271 /// FactorOutConstant - Test if S is divisible by Factor, using signed
272 /// division. If so, update S with Factor divided out and return true.
273 /// S need not be evenly divisible if a reasonable remainder can be
274 /// computed.
275 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
276                               const SCEV *Factor, ScalarEvolution &SE,
277                               const DataLayout &DL) {
278   // Everything is divisible by one.
279   if (Factor->isOne())
280     return true;
281 
282   // x/x == 1.
283   if (S == Factor) {
284     S = SE.getConstant(S->getType(), 1);
285     return true;
286   }
287 
288   // For a Constant, check for a multiple of the given factor.
289   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
290     // 0/x == 0.
291     if (C->isZero())
292       return true;
293     // Check for divisibility.
294     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
295       ConstantInt *CI =
296           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
297       // If the quotient is zero and the remainder is non-zero, reject
298       // the value at this scale. It will be considered for subsequent
299       // smaller scales.
300       if (!CI->isZero()) {
301         const SCEV *Div = SE.getConstant(CI);
302         S = Div;
303         Remainder = SE.getAddExpr(
304             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
305         return true;
306       }
307     }
308   }
309 
310   // In a Mul, check if there is a constant operand which is a multiple
311   // of the given factor.
312   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
313     // Size is known, check if there is a constant operand which is a multiple
314     // of the given factor. If so, we can factor it.
315     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
316       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
317         if (!C->getAPInt().srem(FC->getAPInt())) {
318           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
319           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
320           S = SE.getMulExpr(NewMulOps);
321           return true;
322         }
323   }
324 
325   // In an AddRec, check if both start and step are divisible.
326   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
327     const SCEV *Step = A->getStepRecurrence(SE);
328     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
329     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
330       return false;
331     if (!StepRem->isZero())
332       return false;
333     const SCEV *Start = A->getStart();
334     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
335       return false;
336     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
337                          A->getNoWrapFlags(SCEV::FlagNW));
338     return true;
339   }
340 
341   return false;
342 }
343 
344 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
345 /// is the number of SCEVAddRecExprs present, which are kept at the end of
346 /// the list.
347 ///
348 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
349                                 Type *Ty,
350                                 ScalarEvolution &SE) {
351   unsigned NumAddRecs = 0;
352   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
353     ++NumAddRecs;
354   // Group Ops into non-addrecs and addrecs.
355   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
356   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
357   // Let ScalarEvolution sort and simplify the non-addrecs list.
358   const SCEV *Sum = NoAddRecs.empty() ?
359                     SE.getConstant(Ty, 0) :
360                     SE.getAddExpr(NoAddRecs);
361   // If it returned an add, use the operands. Otherwise it simplified
362   // the sum into a single value, so just use that.
363   Ops.clear();
364   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
365     Ops.append(Add->op_begin(), Add->op_end());
366   else if (!Sum->isZero())
367     Ops.push_back(Sum);
368   // Then append the addrecs.
369   Ops.append(AddRecs.begin(), AddRecs.end());
370 }
371 
372 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
373 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
374 /// This helps expose more opportunities for folding parts of the expressions
375 /// into GEP indices.
376 ///
377 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
378                          Type *Ty,
379                          ScalarEvolution &SE) {
380   // Find the addrecs.
381   SmallVector<const SCEV *, 8> AddRecs;
382   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
383     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
384       const SCEV *Start = A->getStart();
385       if (Start->isZero()) break;
386       const SCEV *Zero = SE.getConstant(Ty, 0);
387       AddRecs.push_back(SE.getAddRecExpr(Zero,
388                                          A->getStepRecurrence(SE),
389                                          A->getLoop(),
390                                          A->getNoWrapFlags(SCEV::FlagNW)));
391       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
392         Ops[i] = Zero;
393         Ops.append(Add->op_begin(), Add->op_end());
394         e += Add->getNumOperands();
395       } else {
396         Ops[i] = Start;
397       }
398     }
399   if (!AddRecs.empty()) {
400     // Add the addrecs onto the end of the list.
401     Ops.append(AddRecs.begin(), AddRecs.end());
402     // Resort the operand list, moving any constants to the front.
403     SimplifyAddOperands(Ops, Ty, SE);
404   }
405 }
406 
407 /// expandAddToGEP - Expand an addition expression with a pointer type into
408 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
409 /// BasicAliasAnalysis and other passes analyze the result. See the rules
410 /// for getelementptr vs. inttoptr in
411 /// http://llvm.org/docs/LangRef.html#pointeraliasing
412 /// for details.
413 ///
414 /// Design note: The correctness of using getelementptr here depends on
415 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
416 /// they may introduce pointer arithmetic which may not be safely converted
417 /// into getelementptr.
418 ///
419 /// Design note: It might seem desirable for this function to be more
420 /// loop-aware. If some of the indices are loop-invariant while others
421 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
422 /// loop-invariant portions of the overall computation outside the loop.
423 /// However, there are a few reasons this is not done here. Hoisting simple
424 /// arithmetic is a low-level optimization that often isn't very
425 /// important until late in the optimization process. In fact, passes
426 /// like InstructionCombining will combine GEPs, even if it means
427 /// pushing loop-invariant computation down into loops, so even if the
428 /// GEPs were split here, the work would quickly be undone. The
429 /// LoopStrengthReduction pass, which is usually run quite late (and
430 /// after the last InstructionCombining pass), takes care of hoisting
431 /// loop-invariant portions of expressions, after considering what
432 /// can be folded using target addressing modes.
433 ///
434 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
435                                     const SCEV *const *op_end,
436                                     PointerType *PTy,
437                                     Type *Ty,
438                                     Value *V) {
439   Type *OriginalElTy = PTy->getElementType();
440   Type *ElTy = OriginalElTy;
441   SmallVector<Value *, 4> GepIndices;
442   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
443   bool AnyNonZeroIndices = false;
444 
445   // Split AddRecs up into parts as either of the parts may be usable
446   // without the other.
447   SplitAddRecs(Ops, Ty, SE);
448 
449   Type *IntIdxTy = DL.getIndexType(PTy);
450 
451   // Descend down the pointer's type and attempt to convert the other
452   // operands into GEP indices, at each level. The first index in a GEP
453   // indexes into the array implied by the pointer operand; the rest of
454   // the indices index into the element or field type selected by the
455   // preceding index.
456   for (;;) {
457     // If the scale size is not 0, attempt to factor out a scale for
458     // array indexing.
459     SmallVector<const SCEV *, 8> ScaledOps;
460     if (ElTy->isSized()) {
461       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
462       if (!ElSize->isZero()) {
463         SmallVector<const SCEV *, 8> NewOps;
464         for (const SCEV *Op : Ops) {
465           const SCEV *Remainder = SE.getConstant(Ty, 0);
466           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
467             // Op now has ElSize factored out.
468             ScaledOps.push_back(Op);
469             if (!Remainder->isZero())
470               NewOps.push_back(Remainder);
471             AnyNonZeroIndices = true;
472           } else {
473             // The operand was not divisible, so add it to the list of operands
474             // we'll scan next iteration.
475             NewOps.push_back(Op);
476           }
477         }
478         // If we made any changes, update Ops.
479         if (!ScaledOps.empty()) {
480           Ops = NewOps;
481           SimplifyAddOperands(Ops, Ty, SE);
482         }
483       }
484     }
485 
486     // Record the scaled array index for this level of the type. If
487     // we didn't find any operands that could be factored, tentatively
488     // assume that element zero was selected (since the zero offset
489     // would obviously be folded away).
490     Value *Scaled =
491         ScaledOps.empty()
492             ? Constant::getNullValue(Ty)
493             : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
494     GepIndices.push_back(Scaled);
495 
496     // Collect struct field index operands.
497     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
498       bool FoundFieldNo = false;
499       // An empty struct has no fields.
500       if (STy->getNumElements() == 0) break;
501       // Field offsets are known. See if a constant offset falls within any of
502       // the struct fields.
503       if (Ops.empty())
504         break;
505       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
506         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
507           const StructLayout &SL = *DL.getStructLayout(STy);
508           uint64_t FullOffset = C->getValue()->getZExtValue();
509           if (FullOffset < SL.getSizeInBytes()) {
510             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
511             GepIndices.push_back(
512                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
513             ElTy = STy->getTypeAtIndex(ElIdx);
514             Ops[0] =
515                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
516             AnyNonZeroIndices = true;
517             FoundFieldNo = true;
518           }
519         }
520       // If no struct field offsets were found, tentatively assume that
521       // field zero was selected (since the zero offset would obviously
522       // be folded away).
523       if (!FoundFieldNo) {
524         ElTy = STy->getTypeAtIndex(0u);
525         GepIndices.push_back(
526           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
527       }
528     }
529 
530     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
531       ElTy = ATy->getElementType();
532     else
533       // FIXME: Handle VectorType.
534       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
535       // constant, therefore can not be factored out. The generated IR is less
536       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
537       break;
538   }
539 
540   // If none of the operands were convertible to proper GEP indices, cast
541   // the base to i8* and do an ugly getelementptr with that. It's still
542   // better than ptrtoint+arithmetic+inttoptr at least.
543   if (!AnyNonZeroIndices) {
544     // Cast the base to i8*.
545     V = InsertNoopCastOfTo(V,
546        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
547 
548     assert(!isa<Instruction>(V) ||
549            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
550 
551     // Expand the operands for a plain byte offset.
552     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
553 
554     // Fold a GEP with constant operands.
555     if (Constant *CLHS = dyn_cast<Constant>(V))
556       if (Constant *CRHS = dyn_cast<Constant>(Idx))
557         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
558                                               CLHS, CRHS);
559 
560     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
561     unsigned ScanLimit = 6;
562     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
563     // Scanning starts from the last instruction before the insertion point.
564     BasicBlock::iterator IP = Builder.GetInsertPoint();
565     if (IP != BlockBegin) {
566       --IP;
567       for (; ScanLimit; --IP, --ScanLimit) {
568         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
569         // generated code.
570         if (isa<DbgInfoIntrinsic>(IP))
571           ScanLimit++;
572         if (IP->getOpcode() == Instruction::GetElementPtr &&
573             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
574           return &*IP;
575         if (IP == BlockBegin) break;
576       }
577     }
578 
579     // Save the original insertion point so we can restore it when we're done.
580     SCEVInsertPointGuard Guard(Builder, this);
581 
582     // Move the insertion point out of as many loops as we can.
583     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
584       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
585       BasicBlock *Preheader = L->getLoopPreheader();
586       if (!Preheader) break;
587 
588       // Ok, move up a level.
589       Builder.SetInsertPoint(Preheader->getTerminator());
590     }
591 
592     // Emit a GEP.
593     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
594   }
595 
596   {
597     SCEVInsertPointGuard Guard(Builder, this);
598 
599     // Move the insertion point out of as many loops as we can.
600     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
601       if (!L->isLoopInvariant(V)) break;
602 
603       bool AnyIndexNotLoopInvariant = any_of(
604           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
605 
606       if (AnyIndexNotLoopInvariant)
607         break;
608 
609       BasicBlock *Preheader = L->getLoopPreheader();
610       if (!Preheader) break;
611 
612       // Ok, move up a level.
613       Builder.SetInsertPoint(Preheader->getTerminator());
614     }
615 
616     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
617     // because ScalarEvolution may have changed the address arithmetic to
618     // compute a value which is beyond the end of the allocated object.
619     Value *Casted = V;
620     if (V->getType() != PTy)
621       Casted = InsertNoopCastOfTo(Casted, PTy);
622     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
623     Ops.push_back(SE.getUnknown(GEP));
624   }
625 
626   return expand(SE.getAddExpr(Ops));
627 }
628 
629 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
630                                     Value *V) {
631   const SCEV *const Ops[1] = {Op};
632   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
633 }
634 
635 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
636 /// SCEV expansion. If they are nested, this is the most nested. If they are
637 /// neighboring, pick the later.
638 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
639                                         DominatorTree &DT) {
640   if (!A) return B;
641   if (!B) return A;
642   if (A->contains(B)) return B;
643   if (B->contains(A)) return A;
644   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
645   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
646   return A; // Arbitrarily break the tie.
647 }
648 
649 /// getRelevantLoop - Get the most relevant loop associated with the given
650 /// expression, according to PickMostRelevantLoop.
651 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
652   // Test whether we've already computed the most relevant loop for this SCEV.
653   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
654   if (!Pair.second)
655     return Pair.first->second;
656 
657   if (isa<SCEVConstant>(S))
658     // A constant has no relevant loops.
659     return nullptr;
660   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
661     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
662       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
663     // A non-instruction has no relevant loops.
664     return nullptr;
665   }
666   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
667     const Loop *L = nullptr;
668     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
669       L = AR->getLoop();
670     for (const SCEV *Op : N->operands())
671       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
672     return RelevantLoops[N] = L;
673   }
674   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
675     const Loop *Result = getRelevantLoop(C->getOperand());
676     return RelevantLoops[C] = Result;
677   }
678   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
679     const Loop *Result = PickMostRelevantLoop(
680         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
681     return RelevantLoops[D] = Result;
682   }
683   llvm_unreachable("Unexpected SCEV type!");
684 }
685 
686 namespace {
687 
688 /// LoopCompare - Compare loops by PickMostRelevantLoop.
689 class LoopCompare {
690   DominatorTree &DT;
691 public:
692   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
693 
694   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
695                   std::pair<const Loop *, const SCEV *> RHS) const {
696     // Keep pointer operands sorted at the end.
697     if (LHS.second->getType()->isPointerTy() !=
698         RHS.second->getType()->isPointerTy())
699       return LHS.second->getType()->isPointerTy();
700 
701     // Compare loops with PickMostRelevantLoop.
702     if (LHS.first != RHS.first)
703       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
704 
705     // If one operand is a non-constant negative and the other is not,
706     // put the non-constant negative on the right so that a sub can
707     // be used instead of a negate and add.
708     if (LHS.second->isNonConstantNegative()) {
709       if (!RHS.second->isNonConstantNegative())
710         return false;
711     } else if (RHS.second->isNonConstantNegative())
712       return true;
713 
714     // Otherwise they are equivalent according to this comparison.
715     return false;
716   }
717 };
718 
719 }
720 
721 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
722   Type *Ty = SE.getEffectiveSCEVType(S->getType());
723 
724   // Collect all the add operands in a loop, along with their associated loops.
725   // Iterate in reverse so that constants are emitted last, all else equal, and
726   // so that pointer operands are inserted first, which the code below relies on
727   // to form more involved GEPs.
728   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
729   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
730        E(S->op_begin()); I != E; ++I)
731     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
732 
733   // Sort by loop. Use a stable sort so that constants follow non-constants and
734   // pointer operands precede non-pointer operands.
735   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
736 
737   // Emit instructions to add all the operands. Hoist as much as possible
738   // out of loops, and form meaningful getelementptrs where possible.
739   Value *Sum = nullptr;
740   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
741     const Loop *CurLoop = I->first;
742     const SCEV *Op = I->second;
743     if (!Sum) {
744       // This is the first operand. Just expand it.
745       Sum = expand(Op);
746       ++I;
747     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
748       // The running sum expression is a pointer. Try to form a getelementptr
749       // at this level with that as the base.
750       SmallVector<const SCEV *, 4> NewOps;
751       for (; I != E && I->first == CurLoop; ++I) {
752         // If the operand is SCEVUnknown and not instructions, peek through
753         // it, to enable more of it to be folded into the GEP.
754         const SCEV *X = I->second;
755         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
756           if (!isa<Instruction>(U->getValue()))
757             X = SE.getSCEV(U->getValue());
758         NewOps.push_back(X);
759       }
760       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
761     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
762       // The running sum is an integer, and there's a pointer at this level.
763       // Try to form a getelementptr. If the running sum is instructions,
764       // use a SCEVUnknown to avoid re-analyzing them.
765       SmallVector<const SCEV *, 4> NewOps;
766       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
767                                                SE.getSCEV(Sum));
768       for (++I; I != E && I->first == CurLoop; ++I)
769         NewOps.push_back(I->second);
770       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
771     } else if (Op->isNonConstantNegative()) {
772       // Instead of doing a negate and add, just do a subtract.
773       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
774       Sum = InsertNoopCastOfTo(Sum, Ty);
775       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
776                         /*IsSafeToHoist*/ true);
777       ++I;
778     } else {
779       // A simple add.
780       Value *W = expandCodeForImpl(Op, Ty, false);
781       Sum = InsertNoopCastOfTo(Sum, Ty);
782       // Canonicalize a constant to the RHS.
783       if (isa<Constant>(Sum)) std::swap(Sum, W);
784       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
785                         /*IsSafeToHoist*/ true);
786       ++I;
787     }
788   }
789 
790   return Sum;
791 }
792 
793 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
794   Type *Ty = SE.getEffectiveSCEVType(S->getType());
795 
796   // Collect all the mul operands in a loop, along with their associated loops.
797   // Iterate in reverse so that constants are emitted last, all else equal.
798   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
799   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
800        E(S->op_begin()); I != E; ++I)
801     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
802 
803   // Sort by loop. Use a stable sort so that constants follow non-constants.
804   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
805 
806   // Emit instructions to mul all the operands. Hoist as much as possible
807   // out of loops.
808   Value *Prod = nullptr;
809   auto I = OpsAndLoops.begin();
810 
811   // Expand the calculation of X pow N in the following manner:
812   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
813   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
814   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
815     auto E = I;
816     // Calculate how many times the same operand from the same loop is included
817     // into this power.
818     uint64_t Exponent = 0;
819     const uint64_t MaxExponent = UINT64_MAX >> 1;
820     // No one sane will ever try to calculate such huge exponents, but if we
821     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
822     // below when the power of 2 exceeds our Exponent, and we want it to be
823     // 1u << 31 at most to not deal with unsigned overflow.
824     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
825       ++Exponent;
826       ++E;
827     }
828     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
829 
830     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
831     // that are needed into the result.
832     Value *P = expandCodeForImpl(I->second, Ty, false);
833     Value *Result = nullptr;
834     if (Exponent & 1)
835       Result = P;
836     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
837       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
838                       /*IsSafeToHoist*/ true);
839       if (Exponent & BinExp)
840         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
841                                       SCEV::FlagAnyWrap,
842                                       /*IsSafeToHoist*/ true)
843                         : P;
844     }
845 
846     I = E;
847     assert(Result && "Nothing was expanded?");
848     return Result;
849   };
850 
851   while (I != OpsAndLoops.end()) {
852     if (!Prod) {
853       // This is the first operand. Just expand it.
854       Prod = ExpandOpBinPowN();
855     } else if (I->second->isAllOnesValue()) {
856       // Instead of doing a multiply by negative one, just do a negate.
857       Prod = InsertNoopCastOfTo(Prod, Ty);
858       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
859                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
860       ++I;
861     } else {
862       // A simple mul.
863       Value *W = ExpandOpBinPowN();
864       Prod = InsertNoopCastOfTo(Prod, Ty);
865       // Canonicalize a constant to the RHS.
866       if (isa<Constant>(Prod)) std::swap(Prod, W);
867       const APInt *RHS;
868       if (match(W, m_Power2(RHS))) {
869         // Canonicalize Prod*(1<<C) to Prod<<C.
870         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
871         auto NWFlags = S->getNoWrapFlags();
872         // clear nsw flag if shl will produce poison value.
873         if (RHS->logBase2() == RHS->getBitWidth() - 1)
874           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
875         Prod = InsertBinop(Instruction::Shl, Prod,
876                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
877                            /*IsSafeToHoist*/ true);
878       } else {
879         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
880                            /*IsSafeToHoist*/ true);
881       }
882     }
883   }
884 
885   return Prod;
886 }
887 
888 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
889   Type *Ty = SE.getEffectiveSCEVType(S->getType());
890 
891   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
892   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
893     const APInt &RHS = SC->getAPInt();
894     if (RHS.isPowerOf2())
895       return InsertBinop(Instruction::LShr, LHS,
896                          ConstantInt::get(Ty, RHS.logBase2()),
897                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
898   }
899 
900   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
901   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
902                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
903 }
904 
905 /// Move parts of Base into Rest to leave Base with the minimal
906 /// expression that provides a pointer operand suitable for a
907 /// GEP expansion.
908 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
909                               ScalarEvolution &SE) {
910   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
911     Base = A->getStart();
912     Rest = SE.getAddExpr(Rest,
913                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
914                                           A->getStepRecurrence(SE),
915                                           A->getLoop(),
916                                           A->getNoWrapFlags(SCEV::FlagNW)));
917   }
918   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
919     Base = A->getOperand(A->getNumOperands()-1);
920     SmallVector<const SCEV *, 8> NewAddOps(A->operands());
921     NewAddOps.back() = Rest;
922     Rest = SE.getAddExpr(NewAddOps);
923     ExposePointerBase(Base, Rest, SE);
924   }
925 }
926 
927 /// Determine if this is a well-behaved chain of instructions leading back to
928 /// the PHI. If so, it may be reused by expanded expressions.
929 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
930                                          const Loop *L) {
931   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
932       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
933     return false;
934   // If any of the operands don't dominate the insert position, bail.
935   // Addrec operands are always loop-invariant, so this can only happen
936   // if there are instructions which haven't been hoisted.
937   if (L == IVIncInsertLoop) {
938     for (Use &Op : llvm::drop_begin(IncV->operands()))
939       if (Instruction *OInst = dyn_cast<Instruction>(Op))
940         if (!SE.DT.dominates(OInst, IVIncInsertPos))
941           return false;
942   }
943   // Advance to the next instruction.
944   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
945   if (!IncV)
946     return false;
947 
948   if (IncV->mayHaveSideEffects())
949     return false;
950 
951   if (IncV == PN)
952     return true;
953 
954   return isNormalAddRecExprPHI(PN, IncV, L);
955 }
956 
957 /// getIVIncOperand returns an induction variable increment's induction
958 /// variable operand.
959 ///
960 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
961 /// operands dominate InsertPos.
962 ///
963 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
964 /// simple patterns generated by getAddRecExprPHILiterally and
965 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
966 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
967                                            Instruction *InsertPos,
968                                            bool allowScale) {
969   if (IncV == InsertPos)
970     return nullptr;
971 
972   switch (IncV->getOpcode()) {
973   default:
974     return nullptr;
975   // Check for a simple Add/Sub or GEP of a loop invariant step.
976   case Instruction::Add:
977   case Instruction::Sub: {
978     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
979     if (!OInst || SE.DT.dominates(OInst, InsertPos))
980       return dyn_cast<Instruction>(IncV->getOperand(0));
981     return nullptr;
982   }
983   case Instruction::BitCast:
984     return dyn_cast<Instruction>(IncV->getOperand(0));
985   case Instruction::GetElementPtr:
986     for (Use &U : llvm::drop_begin(IncV->operands())) {
987       if (isa<Constant>(U))
988         continue;
989       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
990         if (!SE.DT.dominates(OInst, InsertPos))
991           return nullptr;
992       }
993       if (allowScale) {
994         // allow any kind of GEP as long as it can be hoisted.
995         continue;
996       }
997       // This must be a pointer addition of constants (pretty), which is already
998       // handled, or some number of address-size elements (ugly). Ugly geps
999       // have 2 operands. i1* is used by the expander to represent an
1000       // address-size element.
1001       if (IncV->getNumOperands() != 2)
1002         return nullptr;
1003       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1004       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1005           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1006         return nullptr;
1007       break;
1008     }
1009     return dyn_cast<Instruction>(IncV->getOperand(0));
1010   }
1011 }
1012 
1013 /// If the insert point of the current builder or any of the builders on the
1014 /// stack of saved builders has 'I' as its insert point, update it to point to
1015 /// the instruction after 'I'.  This is intended to be used when the instruction
1016 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1017 /// different block, the inconsistent insert point (with a mismatched
1018 /// Instruction and Block) can lead to an instruction being inserted in a block
1019 /// other than its parent.
1020 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1021   BasicBlock::iterator It(*I);
1022   BasicBlock::iterator NewInsertPt = std::next(It);
1023   if (Builder.GetInsertPoint() == It)
1024     Builder.SetInsertPoint(&*NewInsertPt);
1025   for (auto *InsertPtGuard : InsertPointGuards)
1026     if (InsertPtGuard->GetInsertPoint() == It)
1027       InsertPtGuard->SetInsertPoint(NewInsertPt);
1028 }
1029 
1030 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1031 /// it available to other uses in this loop. Recursively hoist any operands,
1032 /// until we reach a value that dominates InsertPos.
1033 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1034   if (SE.DT.dominates(IncV, InsertPos))
1035       return true;
1036 
1037   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1038   // its existing users.
1039   if (isa<PHINode>(InsertPos) ||
1040       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1041     return false;
1042 
1043   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1044     return false;
1045 
1046   // Check that the chain of IV operands leading back to Phi can be hoisted.
1047   SmallVector<Instruction*, 4> IVIncs;
1048   for(;;) {
1049     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1050     if (!Oper)
1051       return false;
1052     // IncV is safe to hoist.
1053     IVIncs.push_back(IncV);
1054     IncV = Oper;
1055     if (SE.DT.dominates(IncV, InsertPos))
1056       break;
1057   }
1058   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1059     fixupInsertPoints(*I);
1060     (*I)->moveBefore(InsertPos);
1061   }
1062   return true;
1063 }
1064 
1065 /// Determine if this cyclic phi is in a form that would have been generated by
1066 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1067 /// as it is in a low-cost form, for example, no implied multiplication. This
1068 /// should match any patterns generated by getAddRecExprPHILiterally and
1069 /// expandAddtoGEP.
1070 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1071                                            const Loop *L) {
1072   for(Instruction *IVOper = IncV;
1073       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1074                                 /*allowScale=*/false));) {
1075     if (IVOper == PN)
1076       return true;
1077   }
1078   return false;
1079 }
1080 
1081 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1082 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1083 /// need to materialize IV increments elsewhere to handle difficult situations.
1084 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1085                                  Type *ExpandTy, Type *IntTy,
1086                                  bool useSubtract) {
1087   Value *IncV;
1088   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1089   if (ExpandTy->isPointerTy()) {
1090     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1091     // If the step isn't constant, don't use an implicitly scaled GEP, because
1092     // that would require a multiply inside the loop.
1093     if (!isa<ConstantInt>(StepV))
1094       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1095                                   GEPPtrTy->getAddressSpace());
1096     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1097     if (IncV->getType() != PN->getType())
1098       IncV = Builder.CreateBitCast(IncV, PN->getType());
1099   } else {
1100     IncV = useSubtract ?
1101       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1102       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1103   }
1104   return IncV;
1105 }
1106 
1107 /// Hoist the addrec instruction chain rooted in the loop phi above the
1108 /// position. This routine assumes that this is possible (has been checked).
1109 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1110                                   Instruction *Pos, PHINode *LoopPhi) {
1111   do {
1112     if (DT->dominates(InstToHoist, Pos))
1113       break;
1114     // Make sure the increment is where we want it. But don't move it
1115     // down past a potential existing post-inc user.
1116     fixupInsertPoints(InstToHoist);
1117     InstToHoist->moveBefore(Pos);
1118     Pos = InstToHoist;
1119     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1120   } while (InstToHoist != LoopPhi);
1121 }
1122 
1123 /// Check whether we can cheaply express the requested SCEV in terms of
1124 /// the available PHI SCEV by truncation and/or inversion of the step.
1125 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1126                                     const SCEVAddRecExpr *Phi,
1127                                     const SCEVAddRecExpr *Requested,
1128                                     bool &InvertStep) {
1129   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1130   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1131 
1132   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1133     return false;
1134 
1135   // Try truncate it if necessary.
1136   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1137   if (!Phi)
1138     return false;
1139 
1140   // Check whether truncation will help.
1141   if (Phi == Requested) {
1142     InvertStep = false;
1143     return true;
1144   }
1145 
1146   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1147   if (SE.getAddExpr(Requested->getStart(),
1148                     SE.getNegativeSCEV(Requested)) == Phi) {
1149     InvertStep = true;
1150     return true;
1151   }
1152 
1153   return false;
1154 }
1155 
1156 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1157   if (!isa<IntegerType>(AR->getType()))
1158     return false;
1159 
1160   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1161   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1162   const SCEV *Step = AR->getStepRecurrence(SE);
1163   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1164                                             SE.getSignExtendExpr(AR, WideTy));
1165   const SCEV *ExtendAfterOp =
1166     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1167   return ExtendAfterOp == OpAfterExtend;
1168 }
1169 
1170 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1171   if (!isa<IntegerType>(AR->getType()))
1172     return false;
1173 
1174   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1175   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1176   const SCEV *Step = AR->getStepRecurrence(SE);
1177   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1178                                             SE.getZeroExtendExpr(AR, WideTy));
1179   const SCEV *ExtendAfterOp =
1180     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1181   return ExtendAfterOp == OpAfterExtend;
1182 }
1183 
1184 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1185 /// the base addrec, which is the addrec without any non-loop-dominating
1186 /// values, and return the PHI.
1187 PHINode *
1188 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1189                                         const Loop *L,
1190                                         Type *ExpandTy,
1191                                         Type *IntTy,
1192                                         Type *&TruncTy,
1193                                         bool &InvertStep) {
1194   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1195 
1196   // Reuse a previously-inserted PHI, if present.
1197   BasicBlock *LatchBlock = L->getLoopLatch();
1198   if (LatchBlock) {
1199     PHINode *AddRecPhiMatch = nullptr;
1200     Instruction *IncV = nullptr;
1201     TruncTy = nullptr;
1202     InvertStep = false;
1203 
1204     // Only try partially matching scevs that need truncation and/or
1205     // step-inversion if we know this loop is outside the current loop.
1206     bool TryNonMatchingSCEV =
1207         IVIncInsertLoop &&
1208         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1209 
1210     for (PHINode &PN : L->getHeader()->phis()) {
1211       if (!SE.isSCEVable(PN.getType()))
1212         continue;
1213 
1214       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1215       // PHI has no meaning at all.
1216       if (!PN.isComplete()) {
1217         DEBUG_WITH_TYPE(
1218             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1219         continue;
1220       }
1221 
1222       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1223       if (!PhiSCEV)
1224         continue;
1225 
1226       bool IsMatchingSCEV = PhiSCEV == Normalized;
1227       // We only handle truncation and inversion of phi recurrences for the
1228       // expanded expression if the expanded expression's loop dominates the
1229       // loop we insert to. Check now, so we can bail out early.
1230       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1231           continue;
1232 
1233       // TODO: this possibly can be reworked to avoid this cast at all.
1234       Instruction *TempIncV =
1235           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1236       if (!TempIncV)
1237         continue;
1238 
1239       // Check whether we can reuse this PHI node.
1240       if (LSRMode) {
1241         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1242           continue;
1243         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1244           continue;
1245       } else {
1246         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1247           continue;
1248       }
1249 
1250       // Stop if we have found an exact match SCEV.
1251       if (IsMatchingSCEV) {
1252         IncV = TempIncV;
1253         TruncTy = nullptr;
1254         InvertStep = false;
1255         AddRecPhiMatch = &PN;
1256         break;
1257       }
1258 
1259       // Try whether the phi can be translated into the requested form
1260       // (truncated and/or offset by a constant).
1261       if ((!TruncTy || InvertStep) &&
1262           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1263         // Record the phi node. But don't stop we might find an exact match
1264         // later.
1265         AddRecPhiMatch = &PN;
1266         IncV = TempIncV;
1267         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1268       }
1269     }
1270 
1271     if (AddRecPhiMatch) {
1272       // Potentially, move the increment. We have made sure in
1273       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1274       if (L == IVIncInsertLoop)
1275         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1276 
1277       // Ok, the add recurrence looks usable.
1278       // Remember this PHI, even in post-inc mode.
1279       InsertedValues.insert(AddRecPhiMatch);
1280       // Remember the increment.
1281       rememberInstruction(IncV);
1282       // Those values were not actually inserted but re-used.
1283       ReusedValues.insert(AddRecPhiMatch);
1284       ReusedValues.insert(IncV);
1285       return AddRecPhiMatch;
1286     }
1287   }
1288 
1289   // Save the original insertion point so we can restore it when we're done.
1290   SCEVInsertPointGuard Guard(Builder, this);
1291 
1292   // Another AddRec may need to be recursively expanded below. For example, if
1293   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1294   // loop. Remove this loop from the PostIncLoops set before expanding such
1295   // AddRecs. Otherwise, we cannot find a valid position for the step
1296   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1297   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1298   // so it's not worth implementing SmallPtrSet::swap.
1299   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1300   PostIncLoops.clear();
1301 
1302   // Expand code for the start value into the loop preheader.
1303   assert(L->getLoopPreheader() &&
1304          "Can't expand add recurrences without a loop preheader!");
1305   Value *StartV =
1306       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1307                         L->getLoopPreheader()->getTerminator(), false);
1308 
1309   // StartV must have been be inserted into L's preheader to dominate the new
1310   // phi.
1311   assert(!isa<Instruction>(StartV) ||
1312          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1313                                  L->getHeader()));
1314 
1315   // Expand code for the step value. Do this before creating the PHI so that PHI
1316   // reuse code doesn't see an incomplete PHI.
1317   const SCEV *Step = Normalized->getStepRecurrence(SE);
1318   // If the stride is negative, insert a sub instead of an add for the increment
1319   // (unless it's a constant, because subtracts of constants are canonicalized
1320   // to adds).
1321   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1322   if (useSubtract)
1323     Step = SE.getNegativeSCEV(Step);
1324   // Expand the step somewhere that dominates the loop header.
1325   Value *StepV = expandCodeForImpl(
1326       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1327 
1328   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1329   // we actually do emit an addition.  It does not apply if we emit a
1330   // subtraction.
1331   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1332   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1333 
1334   // Create the PHI.
1335   BasicBlock *Header = L->getHeader();
1336   Builder.SetInsertPoint(Header, Header->begin());
1337   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1338   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1339                                   Twine(IVName) + ".iv");
1340 
1341   // Create the step instructions and populate the PHI.
1342   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1343     BasicBlock *Pred = *HPI;
1344 
1345     // Add a start value.
1346     if (!L->contains(Pred)) {
1347       PN->addIncoming(StartV, Pred);
1348       continue;
1349     }
1350 
1351     // Create a step value and add it to the PHI.
1352     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1353     // instructions at IVIncInsertPos.
1354     Instruction *InsertPos = L == IVIncInsertLoop ?
1355       IVIncInsertPos : Pred->getTerminator();
1356     Builder.SetInsertPoint(InsertPos);
1357     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1358 
1359     if (isa<OverflowingBinaryOperator>(IncV)) {
1360       if (IncrementIsNUW)
1361         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1362       if (IncrementIsNSW)
1363         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1364     }
1365     PN->addIncoming(IncV, Pred);
1366   }
1367 
1368   // After expanding subexpressions, restore the PostIncLoops set so the caller
1369   // can ensure that IVIncrement dominates the current uses.
1370   PostIncLoops = SavedPostIncLoops;
1371 
1372   // Remember this PHI, even in post-inc mode.
1373   InsertedValues.insert(PN);
1374 
1375   return PN;
1376 }
1377 
1378 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1379   Type *STy = S->getType();
1380   Type *IntTy = SE.getEffectiveSCEVType(STy);
1381   const Loop *L = S->getLoop();
1382 
1383   // Determine a normalized form of this expression, which is the expression
1384   // before any post-inc adjustment is made.
1385   const SCEVAddRecExpr *Normalized = S;
1386   if (PostIncLoops.count(L)) {
1387     PostIncLoopSet Loops;
1388     Loops.insert(L);
1389     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1390   }
1391 
1392   // Strip off any non-loop-dominating component from the addrec start.
1393   const SCEV *Start = Normalized->getStart();
1394   const SCEV *PostLoopOffset = nullptr;
1395   if (!SE.properlyDominates(Start, L->getHeader())) {
1396     PostLoopOffset = Start;
1397     Start = SE.getConstant(Normalized->getType(), 0);
1398     Normalized = cast<SCEVAddRecExpr>(
1399       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1400                        Normalized->getLoop(),
1401                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1402   }
1403 
1404   // Strip off any non-loop-dominating component from the addrec step.
1405   const SCEV *Step = Normalized->getStepRecurrence(SE);
1406   const SCEV *PostLoopScale = nullptr;
1407   if (!SE.dominates(Step, L->getHeader())) {
1408     PostLoopScale = Step;
1409     Step = SE.getConstant(Normalized->getType(), 1);
1410     if (!Start->isZero()) {
1411         // The normalization below assumes that Start is constant zero, so if
1412         // it isn't re-associate Start to PostLoopOffset.
1413         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1414         PostLoopOffset = Start;
1415         Start = SE.getConstant(Normalized->getType(), 0);
1416     }
1417     Normalized =
1418       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1419                              Start, Step, Normalized->getLoop(),
1420                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1421   }
1422 
1423   // Expand the core addrec. If we need post-loop scaling, force it to
1424   // expand to an integer type to avoid the need for additional casting.
1425   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1426   // We can't use a pointer type for the addrec if the pointer type is
1427   // non-integral.
1428   Type *AddRecPHIExpandTy =
1429       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1430 
1431   // In some cases, we decide to reuse an existing phi node but need to truncate
1432   // it and/or invert the step.
1433   Type *TruncTy = nullptr;
1434   bool InvertStep = false;
1435   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1436                                           IntTy, TruncTy, InvertStep);
1437 
1438   // Accommodate post-inc mode, if necessary.
1439   Value *Result;
1440   if (!PostIncLoops.count(L))
1441     Result = PN;
1442   else {
1443     // In PostInc mode, use the post-incremented value.
1444     BasicBlock *LatchBlock = L->getLoopLatch();
1445     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1446     Result = PN->getIncomingValueForBlock(LatchBlock);
1447 
1448     // We might be introducing a new use of the post-inc IV that is not poison
1449     // safe, in which case we should drop poison generating flags. Only keep
1450     // those flags for which SCEV has proven that they always hold.
1451     if (isa<OverflowingBinaryOperator>(Result)) {
1452       auto *I = cast<Instruction>(Result);
1453       if (!S->hasNoUnsignedWrap())
1454         I->setHasNoUnsignedWrap(false);
1455       if (!S->hasNoSignedWrap())
1456         I->setHasNoSignedWrap(false);
1457     }
1458 
1459     // For an expansion to use the postinc form, the client must call
1460     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1461     // or dominated by IVIncInsertPos.
1462     if (isa<Instruction>(Result) &&
1463         !SE.DT.dominates(cast<Instruction>(Result),
1464                          &*Builder.GetInsertPoint())) {
1465       // The induction variable's postinc expansion does not dominate this use.
1466       // IVUsers tries to prevent this case, so it is rare. However, it can
1467       // happen when an IVUser outside the loop is not dominated by the latch
1468       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1469       // all cases. Consider a phi outside whose operand is replaced during
1470       // expansion with the value of the postinc user. Without fundamentally
1471       // changing the way postinc users are tracked, the only remedy is
1472       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1473       // but hopefully expandCodeFor handles that.
1474       bool useSubtract =
1475         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1476       if (useSubtract)
1477         Step = SE.getNegativeSCEV(Step);
1478       Value *StepV;
1479       {
1480         // Expand the step somewhere that dominates the loop header.
1481         SCEVInsertPointGuard Guard(Builder, this);
1482         StepV = expandCodeForImpl(
1483             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1484       }
1485       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1486     }
1487   }
1488 
1489   // We have decided to reuse an induction variable of a dominating loop. Apply
1490   // truncation and/or inversion of the step.
1491   if (TruncTy) {
1492     Type *ResTy = Result->getType();
1493     // Normalize the result type.
1494     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1495       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1496     // Truncate the result.
1497     if (TruncTy != Result->getType())
1498       Result = Builder.CreateTrunc(Result, TruncTy);
1499 
1500     // Invert the result.
1501     if (InvertStep)
1502       Result = Builder.CreateSub(
1503           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1504   }
1505 
1506   // Re-apply any non-loop-dominating scale.
1507   if (PostLoopScale) {
1508     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1509     Result = InsertNoopCastOfTo(Result, IntTy);
1510     Result = Builder.CreateMul(Result,
1511                                expandCodeForImpl(PostLoopScale, IntTy, false));
1512   }
1513 
1514   // Re-apply any non-loop-dominating offset.
1515   if (PostLoopOffset) {
1516     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1517       if (Result->getType()->isIntegerTy()) {
1518         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1519         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1520       } else {
1521         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1522       }
1523     } else {
1524       Result = InsertNoopCastOfTo(Result, IntTy);
1525       Result = Builder.CreateAdd(
1526           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1527     }
1528   }
1529 
1530   return Result;
1531 }
1532 
1533 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1534   // In canonical mode we compute the addrec as an expression of a canonical IV
1535   // using evaluateAtIteration and expand the resulting SCEV expression. This
1536   // way we avoid introducing new IVs to carry on the comutation of the addrec
1537   // throughout the loop.
1538   //
1539   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1540   // type wider than the addrec itself. Emitting a canonical IV of the
1541   // proper type might produce non-legal types, for example expanding an i64
1542   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1543   // back to non-canonical mode for nested addrecs.
1544   if (!CanonicalMode || (S->getNumOperands() > 2))
1545     return expandAddRecExprLiterally(S);
1546 
1547   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1548   const Loop *L = S->getLoop();
1549 
1550   // First check for an existing canonical IV in a suitable type.
1551   PHINode *CanonicalIV = nullptr;
1552   if (PHINode *PN = L->getCanonicalInductionVariable())
1553     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1554       CanonicalIV = PN;
1555 
1556   // Rewrite an AddRec in terms of the canonical induction variable, if
1557   // its type is more narrow.
1558   if (CanonicalIV &&
1559       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1560       SE.getTypeSizeInBits(Ty)) {
1561     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1562     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1563       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1564     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1565                                        S->getNoWrapFlags(SCEV::FlagNW)));
1566     BasicBlock::iterator NewInsertPt =
1567         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1568     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1569                           &*NewInsertPt, false);
1570     return V;
1571   }
1572 
1573   // {X,+,F} --> X + {0,+,F}
1574   if (!S->getStart()->isZero()) {
1575     SmallVector<const SCEV *, 4> NewOps(S->operands());
1576     NewOps[0] = SE.getConstant(Ty, 0);
1577     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1578                                         S->getNoWrapFlags(SCEV::FlagNW));
1579 
1580     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1581     // comments on expandAddToGEP for details.
1582     const SCEV *Base = S->getStart();
1583     // Dig into the expression to find the pointer base for a GEP.
1584     const SCEV *ExposedRest = Rest;
1585     ExposePointerBase(Base, ExposedRest, SE);
1586     // If we found a pointer, expand the AddRec with a GEP.
1587     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1588       // Make sure the Base isn't something exotic, such as a multiplied
1589       // or divided pointer value. In those cases, the result type isn't
1590       // actually a pointer type.
1591       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1592         Value *StartV = expand(Base);
1593         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1594         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1595       }
1596     }
1597 
1598     // Just do a normal add. Pre-expand the operands to suppress folding.
1599     //
1600     // The LHS and RHS values are factored out of the expand call to make the
1601     // output independent of the argument evaluation order.
1602     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1603     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1604     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1605   }
1606 
1607   // If we don't yet have a canonical IV, create one.
1608   if (!CanonicalIV) {
1609     // Create and insert the PHI node for the induction variable in the
1610     // specified loop.
1611     BasicBlock *Header = L->getHeader();
1612     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1613     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1614                                   &Header->front());
1615     rememberInstruction(CanonicalIV);
1616 
1617     SmallSet<BasicBlock *, 4> PredSeen;
1618     Constant *One = ConstantInt::get(Ty, 1);
1619     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1620       BasicBlock *HP = *HPI;
1621       if (!PredSeen.insert(HP).second) {
1622         // There must be an incoming value for each predecessor, even the
1623         // duplicates!
1624         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1625         continue;
1626       }
1627 
1628       if (L->contains(HP)) {
1629         // Insert a unit add instruction right before the terminator
1630         // corresponding to the back-edge.
1631         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1632                                                      "indvar.next",
1633                                                      HP->getTerminator());
1634         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1635         rememberInstruction(Add);
1636         CanonicalIV->addIncoming(Add, HP);
1637       } else {
1638         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1639       }
1640     }
1641   }
1642 
1643   // {0,+,1} --> Insert a canonical induction variable into the loop!
1644   if (S->isAffine() && S->getOperand(1)->isOne()) {
1645     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1646            "IVs with types different from the canonical IV should "
1647            "already have been handled!");
1648     return CanonicalIV;
1649   }
1650 
1651   // {0,+,F} --> {0,+,1} * F
1652 
1653   // If this is a simple linear addrec, emit it now as a special case.
1654   if (S->isAffine())    // {0,+,F} --> i*F
1655     return
1656       expand(SE.getTruncateOrNoop(
1657         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1658                       SE.getNoopOrAnyExtend(S->getOperand(1),
1659                                             CanonicalIV->getType())),
1660         Ty));
1661 
1662   // If this is a chain of recurrences, turn it into a closed form, using the
1663   // folders, then expandCodeFor the closed form.  This allows the folders to
1664   // simplify the expression without having to build a bunch of special code
1665   // into this folder.
1666   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1667 
1668   // Promote S up to the canonical IV type, if the cast is foldable.
1669   const SCEV *NewS = S;
1670   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1671   if (isa<SCEVAddRecExpr>(Ext))
1672     NewS = Ext;
1673 
1674   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1675   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1676 
1677   // Truncate the result down to the original type, if needed.
1678   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1679   return expand(T);
1680 }
1681 
1682 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1683   Value *V =
1684       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1685   return Builder.CreatePtrToInt(V, S->getType());
1686 }
1687 
1688 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1689   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1690   Value *V = expandCodeForImpl(
1691       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1692       false);
1693   return Builder.CreateTrunc(V, Ty);
1694 }
1695 
1696 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1697   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1698   Value *V = expandCodeForImpl(
1699       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1700       false);
1701   return Builder.CreateZExt(V, Ty);
1702 }
1703 
1704 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1705   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1706   Value *V = expandCodeForImpl(
1707       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1708       false);
1709   return Builder.CreateSExt(V, Ty);
1710 }
1711 
1712 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1713   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1714   Type *Ty = LHS->getType();
1715   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1716     // In the case of mixed integer and pointer types, do the
1717     // rest of the comparisons as integer.
1718     Type *OpTy = S->getOperand(i)->getType();
1719     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1720       Ty = SE.getEffectiveSCEVType(Ty);
1721       LHS = InsertNoopCastOfTo(LHS, Ty);
1722     }
1723     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1724     Value *Sel;
1725     if (Ty->isIntegerTy())
1726       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1727                                     /*FMFSource=*/nullptr, "smax");
1728     else {
1729       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1730       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1731     }
1732     LHS = Sel;
1733   }
1734   // In the case of mixed integer and pointer types, cast the
1735   // final result back to the pointer type.
1736   if (LHS->getType() != S->getType())
1737     LHS = InsertNoopCastOfTo(LHS, S->getType());
1738   return LHS;
1739 }
1740 
1741 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1742   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1743   Type *Ty = LHS->getType();
1744   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1745     // In the case of mixed integer and pointer types, do the
1746     // rest of the comparisons as integer.
1747     Type *OpTy = S->getOperand(i)->getType();
1748     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1749       Ty = SE.getEffectiveSCEVType(Ty);
1750       LHS = InsertNoopCastOfTo(LHS, Ty);
1751     }
1752     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1753     Value *Sel;
1754     if (Ty->isIntegerTy())
1755       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1756                                     /*FMFSource=*/nullptr, "umax");
1757     else {
1758       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1759       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1760     }
1761     LHS = Sel;
1762   }
1763   // In the case of mixed integer and pointer types, cast the
1764   // final result back to the pointer type.
1765   if (LHS->getType() != S->getType())
1766     LHS = InsertNoopCastOfTo(LHS, S->getType());
1767   return LHS;
1768 }
1769 
1770 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1771   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1772   Type *Ty = LHS->getType();
1773   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1774     // In the case of mixed integer and pointer types, do the
1775     // rest of the comparisons as integer.
1776     Type *OpTy = S->getOperand(i)->getType();
1777     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1778       Ty = SE.getEffectiveSCEVType(Ty);
1779       LHS = InsertNoopCastOfTo(LHS, Ty);
1780     }
1781     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1782     Value *Sel;
1783     if (Ty->isIntegerTy())
1784       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1785                                     /*FMFSource=*/nullptr, "smin");
1786     else {
1787       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1788       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1789     }
1790     LHS = Sel;
1791   }
1792   // In the case of mixed integer and pointer types, cast the
1793   // final result back to the pointer type.
1794   if (LHS->getType() != S->getType())
1795     LHS = InsertNoopCastOfTo(LHS, S->getType());
1796   return LHS;
1797 }
1798 
1799 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1800   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1801   Type *Ty = LHS->getType();
1802   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1803     // In the case of mixed integer and pointer types, do the
1804     // rest of the comparisons as integer.
1805     Type *OpTy = S->getOperand(i)->getType();
1806     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1807       Ty = SE.getEffectiveSCEVType(Ty);
1808       LHS = InsertNoopCastOfTo(LHS, Ty);
1809     }
1810     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1811     Value *Sel;
1812     if (Ty->isIntegerTy())
1813       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1814                                     /*FMFSource=*/nullptr, "umin");
1815     else {
1816       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1817       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1818     }
1819     LHS = Sel;
1820   }
1821   // In the case of mixed integer and pointer types, cast the
1822   // final result back to the pointer type.
1823   if (LHS->getType() != S->getType())
1824     LHS = InsertNoopCastOfTo(LHS, S->getType());
1825   return LHS;
1826 }
1827 
1828 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1829                                        Instruction *IP, bool Root) {
1830   setInsertPoint(IP);
1831   Value *V = expandCodeForImpl(SH, Ty, Root);
1832   return V;
1833 }
1834 
1835 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1836   // Expand the code for this SCEV.
1837   Value *V = expand(SH);
1838 
1839   if (PreserveLCSSA) {
1840     if (auto *Inst = dyn_cast<Instruction>(V)) {
1841       // Create a temporary instruction to at the current insertion point, so we
1842       // can hand it off to the helper to create LCSSA PHIs if required for the
1843       // new use.
1844       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1845       // would accept a insertion point and return an LCSSA phi for that
1846       // insertion point, so there is no need to insert & remove the temporary
1847       // instruction.
1848       Instruction *Tmp;
1849       if (Inst->getType()->isIntegerTy())
1850         Tmp =
1851             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1852       else {
1853         assert(Inst->getType()->isPointerTy());
1854         Tmp = cast<Instruction>(
1855             Builder.CreateGEP(Inst, Builder.getInt32(1), "tmp.lcssa.user"));
1856       }
1857       V = fixupLCSSAFormFor(Tmp, 0);
1858 
1859       // Clean up temporary instruction.
1860       InsertedValues.erase(Tmp);
1861       InsertedPostIncValues.erase(Tmp);
1862       Tmp->eraseFromParent();
1863     }
1864   }
1865 
1866   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1867   if (Ty) {
1868     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1869            "non-trivial casts should be done with the SCEVs directly!");
1870     V = InsertNoopCastOfTo(V, Ty);
1871   }
1872   return V;
1873 }
1874 
1875 ScalarEvolution::ValueOffsetPair
1876 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1877                                       const Instruction *InsertPt) {
1878   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1879   // If the expansion is not in CanonicalMode, and the SCEV contains any
1880   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1881   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1882     // If S is scConstant, it may be worse to reuse an existing Value.
1883     if (S->getSCEVType() != scConstant && Set) {
1884       // Choose a Value from the set which dominates the insertPt.
1885       // insertPt should be inside the Value's parent loop so as not to break
1886       // the LCSSA form.
1887       for (auto const &VOPair : *Set) {
1888         Value *V = VOPair.first;
1889         ConstantInt *Offset = VOPair.second;
1890         Instruction *EntInst = nullptr;
1891         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1892             S->getType() == V->getType() &&
1893             EntInst->getFunction() == InsertPt->getFunction() &&
1894             SE.DT.dominates(EntInst, InsertPt) &&
1895             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1896              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1897           return {V, Offset};
1898       }
1899     }
1900   }
1901   return {nullptr, nullptr};
1902 }
1903 
1904 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1905 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1906 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1907 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1908 // the expansion will try to reuse Value from ExprValueMap, and only when it
1909 // fails, expand the SCEV literally.
1910 Value *SCEVExpander::expand(const SCEV *S) {
1911   // Compute an insertion point for this SCEV object. Hoist the instructions
1912   // as far out in the loop nest as possible.
1913   Instruction *InsertPt = &*Builder.GetInsertPoint();
1914 
1915   // We can move insertion point only if there is no div or rem operations
1916   // otherwise we are risky to move it over the check for zero denominator.
1917   auto SafeToHoist = [](const SCEV *S) {
1918     return !SCEVExprContains(S, [](const SCEV *S) {
1919               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1920                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1921                   // Division by non-zero constants can be hoisted.
1922                   return SC->getValue()->isZero();
1923                 // All other divisions should not be moved as they may be
1924                 // divisions by zero and should be kept within the
1925                 // conditions of the surrounding loops that guard their
1926                 // execution (see PR35406).
1927                 return true;
1928               }
1929               return false;
1930             });
1931   };
1932   if (SafeToHoist(S)) {
1933     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1934          L = L->getParentLoop()) {
1935       if (SE.isLoopInvariant(S, L)) {
1936         if (!L) break;
1937         if (BasicBlock *Preheader = L->getLoopPreheader())
1938           InsertPt = Preheader->getTerminator();
1939         else
1940           // LSR sets the insertion point for AddRec start/step values to the
1941           // block start to simplify value reuse, even though it's an invalid
1942           // position. SCEVExpander must correct for this in all cases.
1943           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1944       } else {
1945         // If the SCEV is computable at this level, insert it into the header
1946         // after the PHIs (and after any other instructions that we've inserted
1947         // there) so that it is guaranteed to dominate any user inside the loop.
1948         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1949           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1950 
1951         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1952                (isInsertedInstruction(InsertPt) ||
1953                 isa<DbgInfoIntrinsic>(InsertPt))) {
1954           InsertPt = &*std::next(InsertPt->getIterator());
1955         }
1956         break;
1957       }
1958     }
1959   }
1960 
1961   // Check to see if we already expanded this here.
1962   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1963   if (I != InsertedExpressions.end())
1964     return I->second;
1965 
1966   SCEVInsertPointGuard Guard(Builder, this);
1967   Builder.SetInsertPoint(InsertPt);
1968 
1969   // Expand the expression into instructions.
1970   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1971   Value *V = VO.first;
1972 
1973   if (!V)
1974     V = visit(S);
1975   else if (VO.second) {
1976     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1977       Type *Ety = Vty->getPointerElementType();
1978       int64_t Offset = VO.second->getSExtValue();
1979       int64_t ESize = SE.getTypeSizeInBits(Ety);
1980       if ((Offset * 8) % ESize == 0) {
1981         ConstantInt *Idx =
1982             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1983         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1984       } else {
1985         ConstantInt *Idx =
1986             ConstantInt::getSigned(VO.second->getType(), -Offset);
1987         unsigned AS = Vty->getAddressSpace();
1988         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1989         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1990                               "uglygep");
1991         V = Builder.CreateBitCast(V, Vty);
1992       }
1993     } else {
1994       V = Builder.CreateSub(V, VO.second);
1995     }
1996   }
1997   // Remember the expanded value for this SCEV at this location.
1998   //
1999   // This is independent of PostIncLoops. The mapped value simply materializes
2000   // the expression at this insertion point. If the mapped value happened to be
2001   // a postinc expansion, it could be reused by a non-postinc user, but only if
2002   // its insertion point was already at the head of the loop.
2003   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2004   return V;
2005 }
2006 
2007 void SCEVExpander::rememberInstruction(Value *I) {
2008   auto DoInsert = [this](Value *V) {
2009     if (!PostIncLoops.empty())
2010       InsertedPostIncValues.insert(V);
2011     else
2012       InsertedValues.insert(V);
2013   };
2014   DoInsert(I);
2015 
2016   if (!PreserveLCSSA)
2017     return;
2018 
2019   if (auto *Inst = dyn_cast<Instruction>(I)) {
2020     // A new instruction has been added, which might introduce new uses outside
2021     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2022     // if required.
2023     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2024          OpIdx++)
2025       fixupLCSSAFormFor(Inst, OpIdx);
2026   }
2027 }
2028 
2029 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2030 /// replace them with their most canonical representative. Return the number of
2031 /// phis eliminated.
2032 ///
2033 /// This does not depend on any SCEVExpander state but should be used in
2034 /// the same context that SCEVExpander is used.
2035 unsigned
2036 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2037                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2038                                   const TargetTransformInfo *TTI) {
2039   // Find integer phis in order of increasing width.
2040   SmallVector<PHINode*, 8> Phis;
2041   for (PHINode &PN : L->getHeader()->phis())
2042     Phis.push_back(&PN);
2043 
2044   if (TTI)
2045     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2046       // Put pointers at the back and make sure pointer < pointer = false.
2047       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2048         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2049       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2050              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2051     });
2052 
2053   unsigned NumElim = 0;
2054   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2055   // Process phis from wide to narrow. Map wide phis to their truncation
2056   // so narrow phis can reuse them.
2057   for (PHINode *Phi : Phis) {
2058     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2059       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2060         return V;
2061       if (!SE.isSCEVable(PN->getType()))
2062         return nullptr;
2063       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2064       if (!Const)
2065         return nullptr;
2066       return Const->getValue();
2067     };
2068 
2069     // Fold constant phis. They may be congruent to other constant phis and
2070     // would confuse the logic below that expects proper IVs.
2071     if (Value *V = SimplifyPHINode(Phi)) {
2072       if (V->getType() != Phi->getType())
2073         continue;
2074       Phi->replaceAllUsesWith(V);
2075       DeadInsts.emplace_back(Phi);
2076       ++NumElim;
2077       DEBUG_WITH_TYPE(DebugType, dbgs()
2078                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
2079       continue;
2080     }
2081 
2082     if (!SE.isSCEVable(Phi->getType()))
2083       continue;
2084 
2085     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2086     if (!OrigPhiRef) {
2087       OrigPhiRef = Phi;
2088       if (Phi->getType()->isIntegerTy() && TTI &&
2089           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2090         // This phi can be freely truncated to the narrowest phi type. Map the
2091         // truncated expression to it so it will be reused for narrow types.
2092         const SCEV *TruncExpr =
2093           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2094         ExprToIVMap[TruncExpr] = Phi;
2095       }
2096       continue;
2097     }
2098 
2099     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2100     // sense.
2101     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2102       continue;
2103 
2104     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2105       Instruction *OrigInc = dyn_cast<Instruction>(
2106           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2107       Instruction *IsomorphicInc =
2108           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2109 
2110       if (OrigInc && IsomorphicInc) {
2111         // If this phi has the same width but is more canonical, replace the
2112         // original with it. As part of the "more canonical" determination,
2113         // respect a prior decision to use an IV chain.
2114         if (OrigPhiRef->getType() == Phi->getType() &&
2115             !(ChainedPhis.count(Phi) ||
2116               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2117             (ChainedPhis.count(Phi) ||
2118              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2119           std::swap(OrigPhiRef, Phi);
2120           std::swap(OrigInc, IsomorphicInc);
2121         }
2122         // Replacing the congruent phi is sufficient because acyclic
2123         // redundancy elimination, CSE/GVN, should handle the
2124         // rest. However, once SCEV proves that a phi is congruent,
2125         // it's often the head of an IV user cycle that is isomorphic
2126         // with the original phi. It's worth eagerly cleaning up the
2127         // common case of a single IV increment so that DeleteDeadPHIs
2128         // can remove cycles that had postinc uses.
2129         const SCEV *TruncExpr =
2130             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2131         if (OrigInc != IsomorphicInc &&
2132             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2133             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2134             hoistIVInc(OrigInc, IsomorphicInc)) {
2135           DEBUG_WITH_TYPE(DebugType,
2136                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2137                                  << *IsomorphicInc << '\n');
2138           Value *NewInc = OrigInc;
2139           if (OrigInc->getType() != IsomorphicInc->getType()) {
2140             Instruction *IP = nullptr;
2141             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2142               IP = &*PN->getParent()->getFirstInsertionPt();
2143             else
2144               IP = OrigInc->getNextNode();
2145 
2146             IRBuilder<> Builder(IP);
2147             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2148             NewInc = Builder.CreateTruncOrBitCast(
2149                 OrigInc, IsomorphicInc->getType(), IVName);
2150           }
2151           IsomorphicInc->replaceAllUsesWith(NewInc);
2152           DeadInsts.emplace_back(IsomorphicInc);
2153         }
2154       }
2155     }
2156     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2157                                       << *Phi << '\n');
2158     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: "
2159                                       << *OrigPhiRef << '\n');
2160     ++NumElim;
2161     Value *NewIV = OrigPhiRef;
2162     if (OrigPhiRef->getType() != Phi->getType()) {
2163       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2164       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2165       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2166     }
2167     Phi->replaceAllUsesWith(NewIV);
2168     DeadInsts.emplace_back(Phi);
2169   }
2170   return NumElim;
2171 }
2172 
2173 Optional<ScalarEvolution::ValueOffsetPair>
2174 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2175                                           Loop *L) {
2176   using namespace llvm::PatternMatch;
2177 
2178   SmallVector<BasicBlock *, 4> ExitingBlocks;
2179   L->getExitingBlocks(ExitingBlocks);
2180 
2181   // Look for suitable value in simple conditions at the loop exits.
2182   for (BasicBlock *BB : ExitingBlocks) {
2183     ICmpInst::Predicate Pred;
2184     Instruction *LHS, *RHS;
2185 
2186     if (!match(BB->getTerminator(),
2187                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2188                     m_BasicBlock(), m_BasicBlock())))
2189       continue;
2190 
2191     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2192       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2193 
2194     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2195       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2196   }
2197 
2198   // Use expand's logic which is used for reusing a previous Value in
2199   // ExprValueMap.
2200   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2201   if (VO.first)
2202     return VO;
2203 
2204   // There is potential to make this significantly smarter, but this simple
2205   // heuristic already gets some interesting cases.
2206 
2207   // Can not find suitable value.
2208   return None;
2209 }
2210 
2211 template<typename T> static InstructionCost costAndCollectOperands(
2212   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2213   TargetTransformInfo::TargetCostKind CostKind,
2214   SmallVectorImpl<SCEVOperand> &Worklist) {
2215 
2216   const T *S = cast<T>(WorkItem.S);
2217   InstructionCost Cost = 0;
2218   // Object to help map SCEV operands to expanded IR instructions.
2219   struct OperationIndices {
2220     OperationIndices(unsigned Opc, size_t min, size_t max) :
2221       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2222     unsigned Opcode;
2223     size_t MinIdx;
2224     size_t MaxIdx;
2225   };
2226 
2227   // Collect the operations of all the instructions that will be needed to
2228   // expand the SCEVExpr. This is so that when we come to cost the operands,
2229   // we know what the generated user(s) will be.
2230   SmallVector<OperationIndices, 2> Operations;
2231 
2232   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2233     Operations.emplace_back(Opcode, 0, 0);
2234     return TTI.getCastInstrCost(Opcode, S->getType(),
2235                                 S->getOperand(0)->getType(),
2236                                 TTI::CastContextHint::None, CostKind);
2237   };
2238 
2239   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2240                        unsigned MinIdx = 0,
2241                        unsigned MaxIdx = 1) -> InstructionCost {
2242     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2243     return NumRequired *
2244       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2245   };
2246 
2247   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2248                         unsigned MaxIdx) -> InstructionCost {
2249     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2250     Type *OpType = S->getOperand(0)->getType();
2251     return NumRequired * TTI.getCmpSelInstrCost(
2252                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2253                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2254   };
2255 
2256   switch (S->getSCEVType()) {
2257   case scCouldNotCompute:
2258     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2259   case scUnknown:
2260   case scConstant:
2261     return 0;
2262   case scPtrToInt:
2263     Cost = CastCost(Instruction::PtrToInt);
2264     break;
2265   case scTruncate:
2266     Cost = CastCost(Instruction::Trunc);
2267     break;
2268   case scZeroExtend:
2269     Cost = CastCost(Instruction::ZExt);
2270     break;
2271   case scSignExtend:
2272     Cost = CastCost(Instruction::SExt);
2273     break;
2274   case scUDivExpr: {
2275     unsigned Opcode = Instruction::UDiv;
2276     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2277       if (SC->getAPInt().isPowerOf2())
2278         Opcode = Instruction::LShr;
2279     Cost = ArithCost(Opcode, 1);
2280     break;
2281   }
2282   case scAddExpr:
2283     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2284     break;
2285   case scMulExpr:
2286     // TODO: this is a very pessimistic cost modelling for Mul,
2287     // because of Bin Pow algorithm actually used by the expander,
2288     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2289     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2290     break;
2291   case scSMaxExpr:
2292   case scUMaxExpr:
2293   case scSMinExpr:
2294   case scUMinExpr: {
2295     // FIXME: should this ask the cost for Intrinsic's?
2296     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2297     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2298     break;
2299   }
2300   case scAddRecExpr: {
2301     // In this polynominal, we may have some zero operands, and we shouldn't
2302     // really charge for those. So how many non-zero coeffients are there?
2303     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2304                                     return !Op->isZero();
2305                                   });
2306 
2307     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2308     assert(!(*std::prev(S->operands().end()))->isZero() &&
2309            "Last operand should not be zero");
2310 
2311     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2312     int NumNonZeroDegreeNonOneTerms =
2313       llvm::count_if(S->operands(), [](const SCEV *Op) {
2314                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2315                       return !SConst || SConst->getAPInt().ugt(1);
2316                     });
2317 
2318     // Much like with normal add expr, the polynominal will require
2319     // one less addition than the number of it's terms.
2320     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2321                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2322     // Here, *each* one of those will require a multiplication.
2323     InstructionCost MulCost =
2324         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2325     Cost = AddCost + MulCost;
2326 
2327     // What is the degree of this polynominal?
2328     int PolyDegree = S->getNumOperands() - 1;
2329     assert(PolyDegree >= 1 && "Should be at least affine.");
2330 
2331     // The final term will be:
2332     //   Op_{PolyDegree} * x ^ {PolyDegree}
2333     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2334     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2335     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2336     // FIXME: this is conservatively correct, but might be overly pessimistic.
2337     Cost += MulCost * (PolyDegree - 1);
2338     break;
2339   }
2340   }
2341 
2342   for (auto &CostOp : Operations) {
2343     for (auto SCEVOp : enumerate(S->operands())) {
2344       // Clamp the index to account for multiple IR operations being chained.
2345       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2346       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2347       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2348     }
2349   }
2350   return Cost;
2351 }
2352 
2353 bool SCEVExpander::isHighCostExpansionHelper(
2354     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2355     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2356     SmallPtrSetImpl<const SCEV *> &Processed,
2357     SmallVectorImpl<SCEVOperand> &Worklist) {
2358   if (Cost > Budget)
2359     return true; // Already run out of budget, give up.
2360 
2361   const SCEV *S = WorkItem.S;
2362   // Was the cost of expansion of this expression already accounted for?
2363   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2364     return false; // We have already accounted for this expression.
2365 
2366   // If we can find an existing value for this scev available at the point "At"
2367   // then consider the expression cheap.
2368   if (getRelatedExistingExpansion(S, &At, L))
2369     return false; // Consider the expression to be free.
2370 
2371   TargetTransformInfo::TargetCostKind CostKind =
2372       L->getHeader()->getParent()->hasMinSize()
2373           ? TargetTransformInfo::TCK_CodeSize
2374           : TargetTransformInfo::TCK_RecipThroughput;
2375 
2376   switch (S->getSCEVType()) {
2377   case scCouldNotCompute:
2378     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2379   case scUnknown:
2380     // Assume to be zero-cost.
2381     return false;
2382   case scConstant: {
2383     // Only evalulate the costs of constants when optimizing for size.
2384     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2385       return 0;
2386     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2387     Type *Ty = S->getType();
2388     Cost += TTI.getIntImmCostInst(
2389         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2390     return Cost > Budget;
2391   }
2392   case scTruncate:
2393   case scPtrToInt:
2394   case scZeroExtend:
2395   case scSignExtend: {
2396     Cost +=
2397         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2398     return false; // Will answer upon next entry into this function.
2399   }
2400   case scUDivExpr: {
2401     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2402     // HowManyLessThans produced to compute a precise expression, rather than a
2403     // UDiv from the user's code. If we can't find a UDiv in the code with some
2404     // simple searching, we need to account for it's cost.
2405 
2406     // At the beginning of this function we already tried to find existing
2407     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2408     // pattern involving division. This is just a simple search heuristic.
2409     if (getRelatedExistingExpansion(
2410             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2411       return false; // Consider it to be free.
2412 
2413     Cost +=
2414         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2415     return false; // Will answer upon next entry into this function.
2416   }
2417   case scAddExpr:
2418   case scMulExpr:
2419   case scUMaxExpr:
2420   case scSMaxExpr:
2421   case scUMinExpr:
2422   case scSMinExpr: {
2423     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2424            "Nary expr should have more than 1 operand.");
2425     // The simple nary expr will require one less op (or pair of ops)
2426     // than the number of it's terms.
2427     Cost +=
2428         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2429     return Cost > Budget;
2430   }
2431   case scAddRecExpr: {
2432     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2433            "Polynomial should be at least linear");
2434     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2435         WorkItem, TTI, CostKind, Worklist);
2436     return Cost > Budget;
2437   }
2438   }
2439   llvm_unreachable("Unknown SCEV kind!");
2440 }
2441 
2442 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2443                                             Instruction *IP) {
2444   assert(IP);
2445   switch (Pred->getKind()) {
2446   case SCEVPredicate::P_Union:
2447     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2448   case SCEVPredicate::P_Equal:
2449     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2450   case SCEVPredicate::P_Wrap: {
2451     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2452     return expandWrapPredicate(AddRecPred, IP);
2453   }
2454   }
2455   llvm_unreachable("Unknown SCEV predicate type");
2456 }
2457 
2458 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2459                                           Instruction *IP) {
2460   Value *Expr0 =
2461       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2462   Value *Expr1 =
2463       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2464 
2465   Builder.SetInsertPoint(IP);
2466   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2467   return I;
2468 }
2469 
2470 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2471                                            Instruction *Loc, bool Signed) {
2472   assert(AR->isAffine() && "Cannot generate RT check for "
2473                            "non-affine expression");
2474 
2475   SCEVUnionPredicate Pred;
2476   const SCEV *ExitCount =
2477       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2478 
2479   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2480 
2481   const SCEV *Step = AR->getStepRecurrence(SE);
2482   const SCEV *Start = AR->getStart();
2483 
2484   Type *ARTy = AR->getType();
2485   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2486   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2487 
2488   // The expression {Start,+,Step} has nusw/nssw if
2489   //   Step < 0, Start - |Step| * Backedge <= Start
2490   //   Step >= 0, Start + |Step| * Backedge > Start
2491   // and |Step| * Backedge doesn't unsigned overflow.
2492 
2493   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2494   Builder.SetInsertPoint(Loc);
2495   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2496 
2497   IntegerType *Ty =
2498       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2499   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2500 
2501   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2502   Value *NegStepValue =
2503       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2504   Value *StartValue = expandCodeForImpl(
2505       isa<PointerType>(ARExpandTy) ? Start
2506                                    : SE.getPtrToIntExpr(Start, ARExpandTy),
2507       ARExpandTy, Loc, false);
2508 
2509   ConstantInt *Zero =
2510       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2511 
2512   Builder.SetInsertPoint(Loc);
2513   // Compute |Step|
2514   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2515   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2516 
2517   // Get the backedge taken count and truncate or extended to the AR type.
2518   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2519   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2520                                          Intrinsic::umul_with_overflow, Ty);
2521 
2522   // Compute |Step| * Backedge
2523   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2524   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2525   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2526 
2527   // Compute:
2528   //   Start + |Step| * Backedge < Start
2529   //   Start - |Step| * Backedge > Start
2530   Value *Add = nullptr, *Sub = nullptr;
2531   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2532     const SCEV *MulS = SE.getSCEV(MulV);
2533     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2534     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2535                                 ARPtrTy);
2536     Sub = Builder.CreateBitCast(
2537         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2538   } else {
2539     Add = Builder.CreateAdd(StartValue, MulV);
2540     Sub = Builder.CreateSub(StartValue, MulV);
2541   }
2542 
2543   Value *EndCompareGT = Builder.CreateICmp(
2544       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2545 
2546   Value *EndCompareLT = Builder.CreateICmp(
2547       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2548 
2549   // Select the answer based on the sign of Step.
2550   Value *EndCheck =
2551       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2552 
2553   // If the backedge taken count type is larger than the AR type,
2554   // check that we don't drop any bits by truncating it. If we are
2555   // dropping bits, then we have overflow (unless the step is zero).
2556   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2557     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2558     auto *BackedgeCheck =
2559         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2560                            ConstantInt::get(Loc->getContext(), MaxVal));
2561     BackedgeCheck = Builder.CreateAnd(
2562         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2563 
2564     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2565   }
2566 
2567   return Builder.CreateOr(EndCheck, OfMul);
2568 }
2569 
2570 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2571                                          Instruction *IP) {
2572   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2573   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2574 
2575   // Add a check for NUSW
2576   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2577     NUSWCheck = generateOverflowCheck(A, IP, false);
2578 
2579   // Add a check for NSSW
2580   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2581     NSSWCheck = generateOverflowCheck(A, IP, true);
2582 
2583   if (NUSWCheck && NSSWCheck)
2584     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2585 
2586   if (NUSWCheck)
2587     return NUSWCheck;
2588 
2589   if (NSSWCheck)
2590     return NSSWCheck;
2591 
2592   return ConstantInt::getFalse(IP->getContext());
2593 }
2594 
2595 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2596                                           Instruction *IP) {
2597   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2598   Value *Check = ConstantInt::getNullValue(BoolType);
2599 
2600   // Loop over all checks in this set.
2601   for (auto Pred : Union->getPredicates()) {
2602     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2603     Builder.SetInsertPoint(IP);
2604     Check = Builder.CreateOr(Check, NextCheck);
2605   }
2606 
2607   return Check;
2608 }
2609 
2610 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2611   assert(PreserveLCSSA);
2612   SmallVector<Instruction *, 1> ToUpdate;
2613 
2614   auto *OpV = User->getOperand(OpIdx);
2615   auto *OpI = dyn_cast<Instruction>(OpV);
2616   if (!OpI)
2617     return OpV;
2618 
2619   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2620   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2621   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2622     return OpV;
2623 
2624   ToUpdate.push_back(OpI);
2625   SmallVector<PHINode *, 16> PHIsToRemove;
2626   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2627   for (PHINode *PN : PHIsToRemove) {
2628     if (!PN->use_empty())
2629       continue;
2630     InsertedValues.erase(PN);
2631     InsertedPostIncValues.erase(PN);
2632     PN->eraseFromParent();
2633   }
2634 
2635   return User->getOperand(OpIdx);
2636 }
2637 
2638 namespace {
2639 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2640 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2641 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2642 // instruction, but the important thing is that we prove the denominator is
2643 // nonzero before expansion.
2644 //
2645 // IVUsers already checks that IV-derived expressions are safe. So this check is
2646 // only needed when the expression includes some subexpression that is not IV
2647 // derived.
2648 //
2649 // Currently, we only allow division by a nonzero constant here. If this is
2650 // inadequate, we could easily allow division by SCEVUnknown by using
2651 // ValueTracking to check isKnownNonZero().
2652 //
2653 // We cannot generally expand recurrences unless the step dominates the loop
2654 // header. The expander handles the special case of affine recurrences by
2655 // scaling the recurrence outside the loop, but this technique isn't generally
2656 // applicable. Expanding a nested recurrence outside a loop requires computing
2657 // binomial coefficients. This could be done, but the recurrence has to be in a
2658 // perfectly reduced form, which can't be guaranteed.
2659 struct SCEVFindUnsafe {
2660   ScalarEvolution &SE;
2661   bool IsUnsafe;
2662 
2663   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2664 
2665   bool follow(const SCEV *S) {
2666     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2667       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2668       if (!SC || SC->getValue()->isZero()) {
2669         IsUnsafe = true;
2670         return false;
2671       }
2672     }
2673     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2674       const SCEV *Step = AR->getStepRecurrence(SE);
2675       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2676         IsUnsafe = true;
2677         return false;
2678       }
2679     }
2680     return true;
2681   }
2682   bool isDone() const { return IsUnsafe; }
2683 };
2684 }
2685 
2686 namespace llvm {
2687 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2688   SCEVFindUnsafe Search(SE);
2689   visitAll(S, Search);
2690   return !Search.IsUnsafe;
2691 }
2692 
2693 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2694                       ScalarEvolution &SE) {
2695   if (!isSafeToExpand(S, SE))
2696     return false;
2697   // We have to prove that the expanded site of S dominates InsertionPoint.
2698   // This is easy when not in the same block, but hard when S is an instruction
2699   // to be expanded somewhere inside the same block as our insertion point.
2700   // What we really need here is something analogous to an OrderedBasicBlock,
2701   // but for the moment, we paper over the problem by handling two common and
2702   // cheap to check cases.
2703   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2704     return true;
2705   if (SE.dominates(S, InsertionPoint->getParent())) {
2706     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2707       return true;
2708     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2709       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2710         return true;
2711   }
2712   return false;
2713 }
2714 
2715 void SCEVExpanderCleaner::cleanup() {
2716   // Result is used, nothing to remove.
2717   if (ResultUsed)
2718     return;
2719 
2720   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2721 #ifndef NDEBUG
2722   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2723                                             InsertedInstructions.end());
2724   (void)InsertedSet;
2725 #endif
2726   // Remove sets with value handles.
2727   Expander.clear();
2728 
2729   // Sort so that earlier instructions do not dominate later instructions.
2730   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2731     return DT.dominates(B, A);
2732   });
2733   // Remove all inserted instructions.
2734   for (Instruction *I : InsertedInstructions) {
2735 
2736 #ifndef NDEBUG
2737     assert(all_of(I->users(),
2738                   [&InsertedSet](Value *U) {
2739                     return InsertedSet.contains(cast<Instruction>(U));
2740                   }) &&
2741            "removed instruction should only be used by instructions inserted "
2742            "during expansion");
2743 #endif
2744     assert(!I->getType()->isVoidTy() &&
2745            "inserted instruction should have non-void types");
2746     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2747     I->eraseFromParent();
2748   }
2749 }
2750 }
2751