xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 9247b012d6dda9add8a46329acd9641eb5af24e3)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 
30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
32 #else
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
34 #endif
35 
36 using namespace llvm;
37 
38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
39     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
40     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
41              "controls the budget that is considered cheap (default = 4)"));
42 
43 using namespace PatternMatch;
44 
45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
47 /// creating a new one.
48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
49                                        Instruction::CastOps Op,
50                                        BasicBlock::iterator IP) {
51   // This function must be called with the builder having a valid insertion
52   // point. It doesn't need to be the actual IP where the uses of the returned
53   // cast will be added, but it must dominate such IP.
54   // We use this precondition to produce a cast that will dominate all its
55   // uses. In particular, this is crucial for the case where the builder's
56   // insertion point *is* the point where we were asked to put the cast.
57   // Since we don't know the builder's insertion point is actually
58   // where the uses will be added (only that it dominates it), we are
59   // not allowed to move it.
60   BasicBlock::iterator BIP = Builder.GetInsertPoint();
61 
62   Value *Ret = nullptr;
63 
64   // Check to see if there is already a cast!
65   for (User *U : V->users()) {
66     if (U->getType() != Ty)
67       continue;
68     CastInst *CI = dyn_cast<CastInst>(U);
69     if (!CI || CI->getOpcode() != Op)
70       continue;
71 
72     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
73     // the cast must also properly dominate the Builder's insertion point.
74     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
75         (&*IP == CI || CI->comesBefore(&*IP))) {
76       Ret = CI;
77       break;
78     }
79   }
80 
81   // Create a new cast.
82   if (!Ret) {
83     SCEVInsertPointGuard Guard(Builder, this);
84     Builder.SetInsertPoint(&*IP);
85     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
86   }
87 
88   // We assert at the end of the function since IP might point to an
89   // instruction with different dominance properties than a cast
90   // (an invoke for example) and not dominate BIP (but the cast does).
91   assert(!isa<Instruction>(Ret) ||
92          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
93 
94   return Ret;
95 }
96 
97 BasicBlock::iterator
98 SCEVExpander::findInsertPointAfter(Instruction *I,
99                                    Instruction *MustDominate) const {
100   BasicBlock::iterator IP = ++I->getIterator();
101   if (auto *II = dyn_cast<InvokeInst>(I))
102     IP = II->getNormalDest()->begin();
103 
104   while (isa<PHINode>(IP))
105     ++IP;
106 
107   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
108     ++IP;
109   } else if (isa<CatchSwitchInst>(IP)) {
110     IP = MustDominate->getParent()->getFirstInsertionPt();
111   } else {
112     assert(!IP->isEHPad() && "unexpected eh pad!");
113   }
114 
115   // Adjust insert point to be after instructions inserted by the expander, so
116   // we can re-use already inserted instructions. Avoid skipping past the
117   // original \p MustDominate, in case it is an inserted instruction.
118   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
119     ++IP;
120 
121   return IP;
122 }
123 
124 BasicBlock::iterator
125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
126   // Cast the argument at the beginning of the entry block, after
127   // any bitcasts of other arguments.
128   if (Argument *A = dyn_cast<Argument>(V)) {
129     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
130     while ((isa<BitCastInst>(IP) &&
131             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
132             cast<BitCastInst>(IP)->getOperand(0) != A) ||
133            isa<DbgInfoIntrinsic>(IP))
134       ++IP;
135     return IP;
136   }
137 
138   // Cast the instruction immediately after the instruction.
139   if (Instruction *I = dyn_cast<Instruction>(V))
140     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
141 
142   // Otherwise, this must be some kind of a constant,
143   // so let's plop this cast into the function's entry block.
144   assert(isa<Constant>(V) &&
145          "Expected the cast argument to be a global/constant");
146   return Builder.GetInsertBlock()
147       ->getParent()
148       ->getEntryBlock()
149       .getFirstInsertionPt();
150 }
151 
152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
153 /// which must be possible with a noop cast, doing what we can to share
154 /// the casts.
155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
156   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
157   assert((Op == Instruction::BitCast ||
158           Op == Instruction::PtrToInt ||
159           Op == Instruction::IntToPtr) &&
160          "InsertNoopCastOfTo cannot perform non-noop casts!");
161   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
162          "InsertNoopCastOfTo cannot change sizes!");
163 
164   // inttoptr only works for integral pointers. For non-integral pointers, we
165   // can create a GEP on i8* null  with the integral value as index. Note that
166   // it is safe to use GEP of null instead of inttoptr here, because only
167   // expressions already based on a GEP of null should be converted to pointers
168   // during expansion.
169   if (Op == Instruction::IntToPtr) {
170     auto *PtrTy = cast<PointerType>(Ty);
171     if (DL.isNonIntegralPointerType(PtrTy)) {
172       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       auto *GEP = Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
177       return Builder.CreateBitCast(GEP, Ty);
178     }
179   }
180   // Short-circuit unnecessary bitcasts.
181   if (Op == Instruction::BitCast) {
182     if (V->getType() == Ty)
183       return V;
184     if (CastInst *CI = dyn_cast<CastInst>(V)) {
185       if (CI->getOperand(0)->getType() == Ty)
186         return CI->getOperand(0);
187     }
188   }
189   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
190   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
191       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
192     if (CastInst *CI = dyn_cast<CastInst>(V))
193       if ((CI->getOpcode() == Instruction::PtrToInt ||
194            CI->getOpcode() == Instruction::IntToPtr) &&
195           SE.getTypeSizeInBits(CI->getType()) ==
196           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
197         return CI->getOperand(0);
198     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199       if ((CE->getOpcode() == Instruction::PtrToInt ||
200            CE->getOpcode() == Instruction::IntToPtr) &&
201           SE.getTypeSizeInBits(CE->getType()) ==
202           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
203         return CE->getOperand(0);
204   }
205 
206   // Fold a cast of a constant.
207   if (Constant *C = dyn_cast<Constant>(V))
208     return ConstantExpr::getCast(Op, C, Ty);
209 
210   // Try to reuse existing cast, or insert one.
211   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
212 }
213 
214 /// InsertBinop - Insert the specified binary operator, doing a small amount
215 /// of work to avoid inserting an obviously redundant operation, and hoisting
216 /// to an outer loop when the opportunity is there and it is safe.
217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
218                                  Value *LHS, Value *RHS,
219                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
220   // Fold a binop with constant operands.
221   if (Constant *CLHS = dyn_cast<Constant>(LHS))
222     if (Constant *CRHS = dyn_cast<Constant>(RHS))
223       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
224         return Res;
225 
226   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
227   unsigned ScanLimit = 6;
228   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
229   // Scanning starts from the last instruction before the insertion point.
230   BasicBlock::iterator IP = Builder.GetInsertPoint();
231   if (IP != BlockBegin) {
232     --IP;
233     for (; ScanLimit; --IP, --ScanLimit) {
234       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
235       // generated code.
236       if (isa<DbgInfoIntrinsic>(IP))
237         ScanLimit++;
238 
239       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
240         // Ensure that no-wrap flags match.
241         if (isa<OverflowingBinaryOperator>(I)) {
242           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
243             return true;
244           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
245             return true;
246         }
247         // Conservatively, do not use any instruction which has any of exact
248         // flags installed.
249         if (isa<PossiblyExactOperator>(I) && I->isExact())
250           return true;
251         return false;
252       };
253       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
254           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
255         return &*IP;
256       if (IP == BlockBegin) break;
257     }
258   }
259 
260   // Save the original insertion point so we can restore it when we're done.
261   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
262   SCEVInsertPointGuard Guard(Builder, this);
263 
264   if (IsSafeToHoist) {
265     // Move the insertion point out of as many loops as we can.
266     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
267       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
268       BasicBlock *Preheader = L->getLoopPreheader();
269       if (!Preheader) break;
270 
271       // Ok, move up a level.
272       Builder.SetInsertPoint(Preheader->getTerminator());
273     }
274   }
275 
276   // If we haven't found this binop, insert it.
277   // TODO: Use the Builder, which will make CreateBinOp below fold with
278   // InstSimplifyFolder.
279   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
280   BO->setDebugLoc(Loc);
281   if (Flags & SCEV::FlagNUW)
282     BO->setHasNoUnsignedWrap();
283   if (Flags & SCEV::FlagNSW)
284     BO->setHasNoSignedWrap();
285 
286   return BO;
287 }
288 
289 /// FactorOutConstant - Test if S is divisible by Factor, using signed
290 /// division. If so, update S with Factor divided out and return true.
291 /// S need not be evenly divisible if a reasonable remainder can be
292 /// computed.
293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
294                               const SCEV *Factor, ScalarEvolution &SE,
295                               const DataLayout &DL) {
296   // Everything is divisible by one.
297   if (Factor->isOne())
298     return true;
299 
300   // x/x == 1.
301   if (S == Factor) {
302     S = SE.getConstant(S->getType(), 1);
303     return true;
304   }
305 
306   // For a Constant, check for a multiple of the given factor.
307   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
308     // 0/x == 0.
309     if (C->isZero())
310       return true;
311     // Check for divisibility.
312     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
313       ConstantInt *CI =
314           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
315       // If the quotient is zero and the remainder is non-zero, reject
316       // the value at this scale. It will be considered for subsequent
317       // smaller scales.
318       if (!CI->isZero()) {
319         const SCEV *Div = SE.getConstant(CI);
320         S = Div;
321         Remainder = SE.getAddExpr(
322             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
323         return true;
324       }
325     }
326   }
327 
328   // In a Mul, check if there is a constant operand which is a multiple
329   // of the given factor.
330   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
331     // Size is known, check if there is a constant operand which is a multiple
332     // of the given factor. If so, we can factor it.
333     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
334       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
335         if (!C->getAPInt().srem(FC->getAPInt())) {
336           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
337           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
338           S = SE.getMulExpr(NewMulOps);
339           return true;
340         }
341   }
342 
343   // In an AddRec, check if both start and step are divisible.
344   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
345     const SCEV *Step = A->getStepRecurrence(SE);
346     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
347     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
348       return false;
349     if (!StepRem->isZero())
350       return false;
351     const SCEV *Start = A->getStart();
352     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
353       return false;
354     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
355                          A->getNoWrapFlags(SCEV::FlagNW));
356     return true;
357   }
358 
359   return false;
360 }
361 
362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
363 /// is the number of SCEVAddRecExprs present, which are kept at the end of
364 /// the list.
365 ///
366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
367                                 Type *Ty,
368                                 ScalarEvolution &SE) {
369   unsigned NumAddRecs = 0;
370   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
371     ++NumAddRecs;
372   // Group Ops into non-addrecs and addrecs.
373   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
374   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
375   // Let ScalarEvolution sort and simplify the non-addrecs list.
376   const SCEV *Sum = NoAddRecs.empty() ?
377                     SE.getConstant(Ty, 0) :
378                     SE.getAddExpr(NoAddRecs);
379   // If it returned an add, use the operands. Otherwise it simplified
380   // the sum into a single value, so just use that.
381   Ops.clear();
382   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
383     Ops.append(Add->op_begin(), Add->op_end());
384   else if (!Sum->isZero())
385     Ops.push_back(Sum);
386   // Then append the addrecs.
387   Ops.append(AddRecs.begin(), AddRecs.end());
388 }
389 
390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
392 /// This helps expose more opportunities for folding parts of the expressions
393 /// into GEP indices.
394 ///
395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
396                          Type *Ty,
397                          ScalarEvolution &SE) {
398   // Find the addrecs.
399   SmallVector<const SCEV *, 8> AddRecs;
400   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
401     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
402       const SCEV *Start = A->getStart();
403       if (Start->isZero()) break;
404       const SCEV *Zero = SE.getConstant(Ty, 0);
405       AddRecs.push_back(SE.getAddRecExpr(Zero,
406                                          A->getStepRecurrence(SE),
407                                          A->getLoop(),
408                                          A->getNoWrapFlags(SCEV::FlagNW)));
409       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
410         Ops[i] = Zero;
411         Ops.append(Add->op_begin(), Add->op_end());
412         e += Add->getNumOperands();
413       } else {
414         Ops[i] = Start;
415       }
416     }
417   if (!AddRecs.empty()) {
418     // Add the addrecs onto the end of the list.
419     Ops.append(AddRecs.begin(), AddRecs.end());
420     // Resort the operand list, moving any constants to the front.
421     SimplifyAddOperands(Ops, Ty, SE);
422   }
423 }
424 
425 /// expandAddToGEP - Expand an addition expression with a pointer type into
426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
427 /// BasicAliasAnalysis and other passes analyze the result. See the rules
428 /// for getelementptr vs. inttoptr in
429 /// http://llvm.org/docs/LangRef.html#pointeraliasing
430 /// for details.
431 ///
432 /// Design note: The correctness of using getelementptr here depends on
433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
434 /// they may introduce pointer arithmetic which may not be safely converted
435 /// into getelementptr.
436 ///
437 /// Design note: It might seem desirable for this function to be more
438 /// loop-aware. If some of the indices are loop-invariant while others
439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
440 /// loop-invariant portions of the overall computation outside the loop.
441 /// However, there are a few reasons this is not done here. Hoisting simple
442 /// arithmetic is a low-level optimization that often isn't very
443 /// important until late in the optimization process. In fact, passes
444 /// like InstructionCombining will combine GEPs, even if it means
445 /// pushing loop-invariant computation down into loops, so even if the
446 /// GEPs were split here, the work would quickly be undone. The
447 /// LoopStrengthReduction pass, which is usually run quite late (and
448 /// after the last InstructionCombining pass), takes care of hoisting
449 /// loop-invariant portions of expressions, after considering what
450 /// can be folded using target addressing modes.
451 ///
452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
453                                     const SCEV *const *op_end,
454                                     PointerType *PTy,
455                                     Type *Ty,
456                                     Value *V) {
457   SmallVector<Value *, 4> GepIndices;
458   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
459   bool AnyNonZeroIndices = false;
460 
461   // Split AddRecs up into parts as either of the parts may be usable
462   // without the other.
463   SplitAddRecs(Ops, Ty, SE);
464 
465   Type *IntIdxTy = DL.getIndexType(PTy);
466 
467   // For opaque pointers, always generate i8 GEP.
468   if (!PTy->isOpaque()) {
469     // Descend down the pointer's type and attempt to convert the other
470     // operands into GEP indices, at each level. The first index in a GEP
471     // indexes into the array implied by the pointer operand; the rest of
472     // the indices index into the element or field type selected by the
473     // preceding index.
474     Type *ElTy = PTy->getNonOpaquePointerElementType();
475     for (;;) {
476       // If the scale size is not 0, attempt to factor out a scale for
477       // array indexing.
478       SmallVector<const SCEV *, 8> ScaledOps;
479       if (ElTy->isSized()) {
480         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
481         if (!ElSize->isZero()) {
482           SmallVector<const SCEV *, 8> NewOps;
483           for (const SCEV *Op : Ops) {
484             const SCEV *Remainder = SE.getConstant(Ty, 0);
485             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
486               // Op now has ElSize factored out.
487               ScaledOps.push_back(Op);
488               if (!Remainder->isZero())
489                 NewOps.push_back(Remainder);
490               AnyNonZeroIndices = true;
491             } else {
492               // The operand was not divisible, so add it to the list of
493               // operands we'll scan next iteration.
494               NewOps.push_back(Op);
495             }
496           }
497           // If we made any changes, update Ops.
498           if (!ScaledOps.empty()) {
499             Ops = NewOps;
500             SimplifyAddOperands(Ops, Ty, SE);
501           }
502         }
503       }
504 
505       // Record the scaled array index for this level of the type. If
506       // we didn't find any operands that could be factored, tentatively
507       // assume that element zero was selected (since the zero offset
508       // would obviously be folded away).
509       Value *Scaled =
510           ScaledOps.empty()
511               ? Constant::getNullValue(Ty)
512               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty);
513       GepIndices.push_back(Scaled);
514 
515       // Collect struct field index operands.
516       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
517         bool FoundFieldNo = false;
518         // An empty struct has no fields.
519         if (STy->getNumElements() == 0) break;
520         // Field offsets are known. See if a constant offset falls within any of
521         // the struct fields.
522         if (Ops.empty())
523           break;
524         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
525           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
526             const StructLayout &SL = *DL.getStructLayout(STy);
527             uint64_t FullOffset = C->getValue()->getZExtValue();
528             if (FullOffset < SL.getSizeInBytes()) {
529               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
530               GepIndices.push_back(
531                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
532               ElTy = STy->getTypeAtIndex(ElIdx);
533               Ops[0] =
534                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
535               AnyNonZeroIndices = true;
536               FoundFieldNo = true;
537             }
538           }
539         // If no struct field offsets were found, tentatively assume that
540         // field zero was selected (since the zero offset would obviously
541         // be folded away).
542         if (!FoundFieldNo) {
543           ElTy = STy->getTypeAtIndex(0u);
544           GepIndices.push_back(
545             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
546         }
547       }
548 
549       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
550         ElTy = ATy->getElementType();
551       else
552         // FIXME: Handle VectorType.
553         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
554         // constant, therefore can not be factored out. The generated IR is less
555         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
556         break;
557     }
558   }
559 
560   // If none of the operands were convertible to proper GEP indices, cast
561   // the base to i8* and do an ugly getelementptr with that. It's still
562   // better than ptrtoint+arithmetic+inttoptr at least.
563   if (!AnyNonZeroIndices) {
564     // Cast the base to i8*.
565     if (!PTy->isOpaque())
566       V = InsertNoopCastOfTo(V,
567          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
568 
569     assert(!isa<Instruction>(V) ||
570            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
571 
572     // Expand the operands for a plain byte offset.
573     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty);
574 
575     // Fold a GEP with constant operands.
576     if (Constant *CLHS = dyn_cast<Constant>(V))
577       if (Constant *CRHS = dyn_cast<Constant>(Idx))
578         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
579                                               CLHS, CRHS);
580 
581     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
582     unsigned ScanLimit = 6;
583     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
584     // Scanning starts from the last instruction before the insertion point.
585     BasicBlock::iterator IP = Builder.GetInsertPoint();
586     if (IP != BlockBegin) {
587       --IP;
588       for (; ScanLimit; --IP, --ScanLimit) {
589         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
590         // generated code.
591         if (isa<DbgInfoIntrinsic>(IP))
592           ScanLimit++;
593         if (IP->getOpcode() == Instruction::GetElementPtr &&
594             IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
595             cast<GEPOperator>(&*IP)->getSourceElementType() ==
596                 Type::getInt8Ty(Ty->getContext()))
597           return &*IP;
598         if (IP == BlockBegin) break;
599       }
600     }
601 
602     // Save the original insertion point so we can restore it when we're done.
603     SCEVInsertPointGuard Guard(Builder, this);
604 
605     // Move the insertion point out of as many loops as we can.
606     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
607       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
608       BasicBlock *Preheader = L->getLoopPreheader();
609       if (!Preheader) break;
610 
611       // Ok, move up a level.
612       Builder.SetInsertPoint(Preheader->getTerminator());
613     }
614 
615     // Emit a GEP.
616     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
617   }
618 
619   {
620     SCEVInsertPointGuard Guard(Builder, this);
621 
622     // Move the insertion point out of as many loops as we can.
623     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
624       if (!L->isLoopInvariant(V)) break;
625 
626       bool AnyIndexNotLoopInvariant = any_of(
627           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
628 
629       if (AnyIndexNotLoopInvariant)
630         break;
631 
632       BasicBlock *Preheader = L->getLoopPreheader();
633       if (!Preheader) break;
634 
635       // Ok, move up a level.
636       Builder.SetInsertPoint(Preheader->getTerminator());
637     }
638 
639     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
640     // because ScalarEvolution may have changed the address arithmetic to
641     // compute a value which is beyond the end of the allocated object.
642     Value *Casted = V;
643     if (V->getType() != PTy)
644       Casted = InsertNoopCastOfTo(Casted, PTy);
645     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
646                                    Casted, GepIndices, "scevgep");
647     Ops.push_back(SE.getUnknown(GEP));
648   }
649 
650   return expand(SE.getAddExpr(Ops));
651 }
652 
653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
654                                     Value *V) {
655   const SCEV *const Ops[1] = {Op};
656   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
657 }
658 
659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
660 /// SCEV expansion. If they are nested, this is the most nested. If they are
661 /// neighboring, pick the later.
662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
663                                         DominatorTree &DT) {
664   if (!A) return B;
665   if (!B) return A;
666   if (A->contains(B)) return B;
667   if (B->contains(A)) return A;
668   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
669   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
670   return A; // Arbitrarily break the tie.
671 }
672 
673 /// getRelevantLoop - Get the most relevant loop associated with the given
674 /// expression, according to PickMostRelevantLoop.
675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
676   // Test whether we've already computed the most relevant loop for this SCEV.
677   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
678   if (!Pair.second)
679     return Pair.first->second;
680 
681   if (isa<SCEVConstant>(S))
682     // A constant has no relevant loops.
683     return nullptr;
684   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
685     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
686       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
687     // A non-instruction has no relevant loops.
688     return nullptr;
689   }
690   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
691     const Loop *L = nullptr;
692     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
693       L = AR->getLoop();
694     for (const SCEV *Op : N->operands())
695       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
696     return RelevantLoops[N] = L;
697   }
698   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
699     const Loop *Result = getRelevantLoop(C->getOperand());
700     return RelevantLoops[C] = Result;
701   }
702   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
703     const Loop *Result = PickMostRelevantLoop(
704         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
705     return RelevantLoops[D] = Result;
706   }
707   llvm_unreachable("Unexpected SCEV type!");
708 }
709 
710 namespace {
711 
712 /// LoopCompare - Compare loops by PickMostRelevantLoop.
713 class LoopCompare {
714   DominatorTree &DT;
715 public:
716   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
717 
718   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
719                   std::pair<const Loop *, const SCEV *> RHS) const {
720     // Keep pointer operands sorted at the end.
721     if (LHS.second->getType()->isPointerTy() !=
722         RHS.second->getType()->isPointerTy())
723       return LHS.second->getType()->isPointerTy();
724 
725     // Compare loops with PickMostRelevantLoop.
726     if (LHS.first != RHS.first)
727       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
728 
729     // If one operand is a non-constant negative and the other is not,
730     // put the non-constant negative on the right so that a sub can
731     // be used instead of a negate and add.
732     if (LHS.second->isNonConstantNegative()) {
733       if (!RHS.second->isNonConstantNegative())
734         return false;
735     } else if (RHS.second->isNonConstantNegative())
736       return true;
737 
738     // Otherwise they are equivalent according to this comparison.
739     return false;
740   }
741 };
742 
743 }
744 
745 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
746   Type *Ty = SE.getEffectiveSCEVType(S->getType());
747 
748   // Collect all the add operands in a loop, along with their associated loops.
749   // Iterate in reverse so that constants are emitted last, all else equal, and
750   // so that pointer operands are inserted first, which the code below relies on
751   // to form more involved GEPs.
752   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
753   for (const SCEV *Op : reverse(S->operands()))
754     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
755 
756   // Sort by loop. Use a stable sort so that constants follow non-constants and
757   // pointer operands precede non-pointer operands.
758   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
759 
760   // Emit instructions to add all the operands. Hoist as much as possible
761   // out of loops, and form meaningful getelementptrs where possible.
762   Value *Sum = nullptr;
763   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
764     const Loop *CurLoop = I->first;
765     const SCEV *Op = I->second;
766     if (!Sum) {
767       // This is the first operand. Just expand it.
768       Sum = expand(Op);
769       ++I;
770       continue;
771     }
772 
773     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
774     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
775       // The running sum expression is a pointer. Try to form a getelementptr
776       // at this level with that as the base.
777       SmallVector<const SCEV *, 4> NewOps;
778       for (; I != E && I->first == CurLoop; ++I) {
779         // If the operand is SCEVUnknown and not instructions, peek through
780         // it, to enable more of it to be folded into the GEP.
781         const SCEV *X = I->second;
782         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
783           if (!isa<Instruction>(U->getValue()))
784             X = SE.getSCEV(U->getValue());
785         NewOps.push_back(X);
786       }
787       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
788     } else if (Op->isNonConstantNegative()) {
789       // Instead of doing a negate and add, just do a subtract.
790       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty);
791       Sum = InsertNoopCastOfTo(Sum, Ty);
792       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
793                         /*IsSafeToHoist*/ true);
794       ++I;
795     } else {
796       // A simple add.
797       Value *W = expandCodeForImpl(Op, Ty);
798       Sum = InsertNoopCastOfTo(Sum, Ty);
799       // Canonicalize a constant to the RHS.
800       if (isa<Constant>(Sum)) std::swap(Sum, W);
801       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
802                         /*IsSafeToHoist*/ true);
803       ++I;
804     }
805   }
806 
807   return Sum;
808 }
809 
810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
811   Type *Ty = SE.getEffectiveSCEVType(S->getType());
812 
813   // Collect all the mul operands in a loop, along with their associated loops.
814   // Iterate in reverse so that constants are emitted last, all else equal.
815   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
816   for (const SCEV *Op : reverse(S->operands()))
817     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
818 
819   // Sort by loop. Use a stable sort so that constants follow non-constants.
820   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
821 
822   // Emit instructions to mul all the operands. Hoist as much as possible
823   // out of loops.
824   Value *Prod = nullptr;
825   auto I = OpsAndLoops.begin();
826 
827   // Expand the calculation of X pow N in the following manner:
828   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
829   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
830   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
831     auto E = I;
832     // Calculate how many times the same operand from the same loop is included
833     // into this power.
834     uint64_t Exponent = 0;
835     const uint64_t MaxExponent = UINT64_MAX >> 1;
836     // No one sane will ever try to calculate such huge exponents, but if we
837     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
838     // below when the power of 2 exceeds our Exponent, and we want it to be
839     // 1u << 31 at most to not deal with unsigned overflow.
840     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
841       ++Exponent;
842       ++E;
843     }
844     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
845 
846     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
847     // that are needed into the result.
848     Value *P = expandCodeForImpl(I->second, Ty);
849     Value *Result = nullptr;
850     if (Exponent & 1)
851       Result = P;
852     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
853       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
854                       /*IsSafeToHoist*/ true);
855       if (Exponent & BinExp)
856         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
857                                       SCEV::FlagAnyWrap,
858                                       /*IsSafeToHoist*/ true)
859                         : P;
860     }
861 
862     I = E;
863     assert(Result && "Nothing was expanded?");
864     return Result;
865   };
866 
867   while (I != OpsAndLoops.end()) {
868     if (!Prod) {
869       // This is the first operand. Just expand it.
870       Prod = ExpandOpBinPowN();
871     } else if (I->second->isAllOnesValue()) {
872       // Instead of doing a multiply by negative one, just do a negate.
873       Prod = InsertNoopCastOfTo(Prod, Ty);
874       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
875                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
876       ++I;
877     } else {
878       // A simple mul.
879       Value *W = ExpandOpBinPowN();
880       Prod = InsertNoopCastOfTo(Prod, Ty);
881       // Canonicalize a constant to the RHS.
882       if (isa<Constant>(Prod)) std::swap(Prod, W);
883       const APInt *RHS;
884       if (match(W, m_Power2(RHS))) {
885         // Canonicalize Prod*(1<<C) to Prod<<C.
886         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
887         auto NWFlags = S->getNoWrapFlags();
888         // clear nsw flag if shl will produce poison value.
889         if (RHS->logBase2() == RHS->getBitWidth() - 1)
890           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
891         Prod = InsertBinop(Instruction::Shl, Prod,
892                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
893                            /*IsSafeToHoist*/ true);
894       } else {
895         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
896                            /*IsSafeToHoist*/ true);
897       }
898     }
899   }
900 
901   return Prod;
902 }
903 
904 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
905   Type *Ty = SE.getEffectiveSCEVType(S->getType());
906 
907   Value *LHS = expandCodeForImpl(S->getLHS(), Ty);
908   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
909     const APInt &RHS = SC->getAPInt();
910     if (RHS.isPowerOf2())
911       return InsertBinop(Instruction::LShr, LHS,
912                          ConstantInt::get(Ty, RHS.logBase2()),
913                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
914   }
915 
916   Value *RHS = expandCodeForImpl(S->getRHS(), Ty);
917   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
918                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
919 }
920 
921 /// Determine if this is a well-behaved chain of instructions leading back to
922 /// the PHI. If so, it may be reused by expanded expressions.
923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
924                                          const Loop *L) {
925   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
926       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
927     return false;
928   // If any of the operands don't dominate the insert position, bail.
929   // Addrec operands are always loop-invariant, so this can only happen
930   // if there are instructions which haven't been hoisted.
931   if (L == IVIncInsertLoop) {
932     for (Use &Op : llvm::drop_begin(IncV->operands()))
933       if (Instruction *OInst = dyn_cast<Instruction>(Op))
934         if (!SE.DT.dominates(OInst, IVIncInsertPos))
935           return false;
936   }
937   // Advance to the next instruction.
938   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
939   if (!IncV)
940     return false;
941 
942   if (IncV->mayHaveSideEffects())
943     return false;
944 
945   if (IncV == PN)
946     return true;
947 
948   return isNormalAddRecExprPHI(PN, IncV, L);
949 }
950 
951 /// getIVIncOperand returns an induction variable increment's induction
952 /// variable operand.
953 ///
954 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
955 /// operands dominate InsertPos.
956 ///
957 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
958 /// simple patterns generated by getAddRecExprPHILiterally and
959 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
960 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
961                                            Instruction *InsertPos,
962                                            bool allowScale) {
963   if (IncV == InsertPos)
964     return nullptr;
965 
966   switch (IncV->getOpcode()) {
967   default:
968     return nullptr;
969   // Check for a simple Add/Sub or GEP of a loop invariant step.
970   case Instruction::Add:
971   case Instruction::Sub: {
972     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
973     if (!OInst || SE.DT.dominates(OInst, InsertPos))
974       return dyn_cast<Instruction>(IncV->getOperand(0));
975     return nullptr;
976   }
977   case Instruction::BitCast:
978     return dyn_cast<Instruction>(IncV->getOperand(0));
979   case Instruction::GetElementPtr:
980     for (Use &U : llvm::drop_begin(IncV->operands())) {
981       if (isa<Constant>(U))
982         continue;
983       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
984         if (!SE.DT.dominates(OInst, InsertPos))
985           return nullptr;
986       }
987       if (allowScale) {
988         // allow any kind of GEP as long as it can be hoisted.
989         continue;
990       }
991       // This must be a pointer addition of constants (pretty), which is already
992       // handled, or some number of address-size elements (ugly). Ugly geps
993       // have 2 operands. i1* is used by the expander to represent an
994       // address-size element.
995       if (IncV->getNumOperands() != 2)
996         return nullptr;
997       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
998       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
999           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1000         return nullptr;
1001       break;
1002     }
1003     return dyn_cast<Instruction>(IncV->getOperand(0));
1004   }
1005 }
1006 
1007 /// If the insert point of the current builder or any of the builders on the
1008 /// stack of saved builders has 'I' as its insert point, update it to point to
1009 /// the instruction after 'I'.  This is intended to be used when the instruction
1010 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1011 /// different block, the inconsistent insert point (with a mismatched
1012 /// Instruction and Block) can lead to an instruction being inserted in a block
1013 /// other than its parent.
1014 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1015   BasicBlock::iterator It(*I);
1016   BasicBlock::iterator NewInsertPt = std::next(It);
1017   if (Builder.GetInsertPoint() == It)
1018     Builder.SetInsertPoint(&*NewInsertPt);
1019   for (auto *InsertPtGuard : InsertPointGuards)
1020     if (InsertPtGuard->GetInsertPoint() == It)
1021       InsertPtGuard->SetInsertPoint(NewInsertPt);
1022 }
1023 
1024 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1025 /// it available to other uses in this loop. Recursively hoist any operands,
1026 /// until we reach a value that dominates InsertPos.
1027 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
1028                               bool RecomputePoisonFlags) {
1029   if (SE.DT.dominates(IncV, InsertPos))
1030       return true;
1031 
1032   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1033   // its existing users.
1034   if (isa<PHINode>(InsertPos) ||
1035       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1036     return false;
1037 
1038   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1039     return false;
1040 
1041   // Check that the chain of IV operands leading back to Phi can be hoisted.
1042   SmallVector<Instruction*, 4> IVIncs;
1043   for(;;) {
1044     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1045     if (!Oper)
1046       return false;
1047     // IncV is safe to hoist.
1048     IVIncs.push_back(IncV);
1049     IncV = Oper;
1050     if (SE.DT.dominates(IncV, InsertPos))
1051       break;
1052   }
1053   for (Instruction *I : llvm::reverse(IVIncs)) {
1054     fixupInsertPoints(I);
1055     I->moveBefore(InsertPos);
1056     if (!RecomputePoisonFlags)
1057       continue;
1058     // Drop flags that are potentially inferred from old context and infer flags
1059     // in new context.
1060     I->dropPoisonGeneratingFlags();
1061     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1062       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1063         auto *BO = cast<BinaryOperator>(I);
1064         BO->setHasNoUnsignedWrap(
1065             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1066         BO->setHasNoSignedWrap(
1067             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1068       }
1069   }
1070   return true;
1071 }
1072 
1073 /// Determine if this cyclic phi is in a form that would have been generated by
1074 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1075 /// as it is in a low-cost form, for example, no implied multiplication. This
1076 /// should match any patterns generated by getAddRecExprPHILiterally and
1077 /// expandAddtoGEP.
1078 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1079                                            const Loop *L) {
1080   for(Instruction *IVOper = IncV;
1081       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1082                                 /*allowScale=*/false));) {
1083     if (IVOper == PN)
1084       return true;
1085   }
1086   return false;
1087 }
1088 
1089 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1090 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1091 /// need to materialize IV increments elsewhere to handle difficult situations.
1092 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1093                                  Type *ExpandTy, Type *IntTy,
1094                                  bool useSubtract) {
1095   Value *IncV;
1096   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1097   if (ExpandTy->isPointerTy()) {
1098     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1099     // If the step isn't constant, don't use an implicitly scaled GEP, because
1100     // that would require a multiply inside the loop.
1101     if (!isa<ConstantInt>(StepV))
1102       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1103                                   GEPPtrTy->getAddressSpace());
1104     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1105     if (IncV->getType() != PN->getType())
1106       IncV = Builder.CreateBitCast(IncV, PN->getType());
1107   } else {
1108     IncV = useSubtract ?
1109       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1110       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1111   }
1112   return IncV;
1113 }
1114 
1115 /// Check whether we can cheaply express the requested SCEV in terms of
1116 /// the available PHI SCEV by truncation and/or inversion of the step.
1117 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1118                                     const SCEVAddRecExpr *Phi,
1119                                     const SCEVAddRecExpr *Requested,
1120                                     bool &InvertStep) {
1121   // We can't transform to match a pointer PHI.
1122   if (Phi->getType()->isPointerTy())
1123     return false;
1124 
1125   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1126   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1127 
1128   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1129     return false;
1130 
1131   // Try truncate it if necessary.
1132   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1133   if (!Phi)
1134     return false;
1135 
1136   // Check whether truncation will help.
1137   if (Phi == Requested) {
1138     InvertStep = false;
1139     return true;
1140   }
1141 
1142   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1143   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1144     InvertStep = true;
1145     return true;
1146   }
1147 
1148   return false;
1149 }
1150 
1151 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1152   if (!isa<IntegerType>(AR->getType()))
1153     return false;
1154 
1155   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1156   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1157   const SCEV *Step = AR->getStepRecurrence(SE);
1158   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1159                                             SE.getSignExtendExpr(AR, WideTy));
1160   const SCEV *ExtendAfterOp =
1161     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1162   return ExtendAfterOp == OpAfterExtend;
1163 }
1164 
1165 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1166   if (!isa<IntegerType>(AR->getType()))
1167     return false;
1168 
1169   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1170   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1171   const SCEV *Step = AR->getStepRecurrence(SE);
1172   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1173                                             SE.getZeroExtendExpr(AR, WideTy));
1174   const SCEV *ExtendAfterOp =
1175     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1176   return ExtendAfterOp == OpAfterExtend;
1177 }
1178 
1179 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1180 /// the base addrec, which is the addrec without any non-loop-dominating
1181 /// values, and return the PHI.
1182 PHINode *
1183 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1184                                         const Loop *L,
1185                                         Type *ExpandTy,
1186                                         Type *IntTy,
1187                                         Type *&TruncTy,
1188                                         bool &InvertStep) {
1189   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1190 
1191   // Reuse a previously-inserted PHI, if present.
1192   BasicBlock *LatchBlock = L->getLoopLatch();
1193   if (LatchBlock) {
1194     PHINode *AddRecPhiMatch = nullptr;
1195     Instruction *IncV = nullptr;
1196     TruncTy = nullptr;
1197     InvertStep = false;
1198 
1199     // Only try partially matching scevs that need truncation and/or
1200     // step-inversion if we know this loop is outside the current loop.
1201     bool TryNonMatchingSCEV =
1202         IVIncInsertLoop &&
1203         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1204 
1205     for (PHINode &PN : L->getHeader()->phis()) {
1206       if (!SE.isSCEVable(PN.getType()))
1207         continue;
1208 
1209       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1210       // PHI has no meaning at all.
1211       if (!PN.isComplete()) {
1212         SCEV_DEBUG_WITH_TYPE(
1213             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1214         continue;
1215       }
1216 
1217       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1218       if (!PhiSCEV)
1219         continue;
1220 
1221       bool IsMatchingSCEV = PhiSCEV == Normalized;
1222       // We only handle truncation and inversion of phi recurrences for the
1223       // expanded expression if the expanded expression's loop dominates the
1224       // loop we insert to. Check now, so we can bail out early.
1225       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1226           continue;
1227 
1228       // TODO: this possibly can be reworked to avoid this cast at all.
1229       Instruction *TempIncV =
1230           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1231       if (!TempIncV)
1232         continue;
1233 
1234       // Check whether we can reuse this PHI node.
1235       if (LSRMode) {
1236         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1237           continue;
1238       } else {
1239         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1240           continue;
1241       }
1242 
1243       // Stop if we have found an exact match SCEV.
1244       if (IsMatchingSCEV) {
1245         IncV = TempIncV;
1246         TruncTy = nullptr;
1247         InvertStep = false;
1248         AddRecPhiMatch = &PN;
1249         break;
1250       }
1251 
1252       // Try whether the phi can be translated into the requested form
1253       // (truncated and/or offset by a constant).
1254       if ((!TruncTy || InvertStep) &&
1255           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1256         // Record the phi node. But don't stop we might find an exact match
1257         // later.
1258         AddRecPhiMatch = &PN;
1259         IncV = TempIncV;
1260         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1261       }
1262     }
1263 
1264     if (AddRecPhiMatch) {
1265       // Ok, the add recurrence looks usable.
1266       // Remember this PHI, even in post-inc mode.
1267       InsertedValues.insert(AddRecPhiMatch);
1268       // Remember the increment.
1269       rememberInstruction(IncV);
1270       // Those values were not actually inserted but re-used.
1271       ReusedValues.insert(AddRecPhiMatch);
1272       ReusedValues.insert(IncV);
1273       return AddRecPhiMatch;
1274     }
1275   }
1276 
1277   // Save the original insertion point so we can restore it when we're done.
1278   SCEVInsertPointGuard Guard(Builder, this);
1279 
1280   // Another AddRec may need to be recursively expanded below. For example, if
1281   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1282   // loop. Remove this loop from the PostIncLoops set before expanding such
1283   // AddRecs. Otherwise, we cannot find a valid position for the step
1284   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1285   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1286   // so it's not worth implementing SmallPtrSet::swap.
1287   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1288   PostIncLoops.clear();
1289 
1290   // Expand code for the start value into the loop preheader.
1291   assert(L->getLoopPreheader() &&
1292          "Can't expand add recurrences without a loop preheader!");
1293   Value *StartV =
1294       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1295                         L->getLoopPreheader()->getTerminator());
1296 
1297   // StartV must have been be inserted into L's preheader to dominate the new
1298   // phi.
1299   assert(!isa<Instruction>(StartV) ||
1300          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1301                                  L->getHeader()));
1302 
1303   // Expand code for the step value. Do this before creating the PHI so that PHI
1304   // reuse code doesn't see an incomplete PHI.
1305   const SCEV *Step = Normalized->getStepRecurrence(SE);
1306   // If the stride is negative, insert a sub instead of an add for the increment
1307   // (unless it's a constant, because subtracts of constants are canonicalized
1308   // to adds).
1309   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1310   if (useSubtract)
1311     Step = SE.getNegativeSCEV(Step);
1312   // Expand the step somewhere that dominates the loop header.
1313   Value *StepV = expandCodeForImpl(
1314       Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1315 
1316   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1317   // we actually do emit an addition.  It does not apply if we emit a
1318   // subtraction.
1319   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1320   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1321 
1322   // Create the PHI.
1323   BasicBlock *Header = L->getHeader();
1324   Builder.SetInsertPoint(Header, Header->begin());
1325   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1326   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1327                                   Twine(IVName) + ".iv");
1328 
1329   // Create the step instructions and populate the PHI.
1330   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1331     BasicBlock *Pred = *HPI;
1332 
1333     // Add a start value.
1334     if (!L->contains(Pred)) {
1335       PN->addIncoming(StartV, Pred);
1336       continue;
1337     }
1338 
1339     // Create a step value and add it to the PHI.
1340     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1341     // instructions at IVIncInsertPos.
1342     Instruction *InsertPos = L == IVIncInsertLoop ?
1343       IVIncInsertPos : Pred->getTerminator();
1344     Builder.SetInsertPoint(InsertPos);
1345     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1346 
1347     if (isa<OverflowingBinaryOperator>(IncV)) {
1348       if (IncrementIsNUW)
1349         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1350       if (IncrementIsNSW)
1351         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1352     }
1353     PN->addIncoming(IncV, Pred);
1354   }
1355 
1356   // After expanding subexpressions, restore the PostIncLoops set so the caller
1357   // can ensure that IVIncrement dominates the current uses.
1358   PostIncLoops = SavedPostIncLoops;
1359 
1360   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1361   // effective when we are able to use an IV inserted here, so record it.
1362   InsertedValues.insert(PN);
1363   InsertedIVs.push_back(PN);
1364   return PN;
1365 }
1366 
1367 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1368   Type *STy = S->getType();
1369   Type *IntTy = SE.getEffectiveSCEVType(STy);
1370   const Loop *L = S->getLoop();
1371 
1372   // Determine a normalized form of this expression, which is the expression
1373   // before any post-inc adjustment is made.
1374   const SCEVAddRecExpr *Normalized = S;
1375   if (PostIncLoops.count(L)) {
1376     PostIncLoopSet Loops;
1377     Loops.insert(L);
1378     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1379   }
1380 
1381   // Strip off any non-loop-dominating component from the addrec start.
1382   const SCEV *Start = Normalized->getStart();
1383   const SCEV *PostLoopOffset = nullptr;
1384   if (!SE.properlyDominates(Start, L->getHeader())) {
1385     PostLoopOffset = Start;
1386     Start = SE.getConstant(Normalized->getType(), 0);
1387     Normalized = cast<SCEVAddRecExpr>(
1388       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1389                        Normalized->getLoop(),
1390                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1391   }
1392 
1393   // Strip off any non-loop-dominating component from the addrec step.
1394   const SCEV *Step = Normalized->getStepRecurrence(SE);
1395   const SCEV *PostLoopScale = nullptr;
1396   if (!SE.dominates(Step, L->getHeader())) {
1397     PostLoopScale = Step;
1398     Step = SE.getConstant(Normalized->getType(), 1);
1399     if (!Start->isZero()) {
1400         // The normalization below assumes that Start is constant zero, so if
1401         // it isn't re-associate Start to PostLoopOffset.
1402         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1403         PostLoopOffset = Start;
1404         Start = SE.getConstant(Normalized->getType(), 0);
1405     }
1406     Normalized =
1407       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1408                              Start, Step, Normalized->getLoop(),
1409                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1410   }
1411 
1412   // Expand the core addrec. If we need post-loop scaling, force it to
1413   // expand to an integer type to avoid the need for additional casting.
1414   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1415   // We can't use a pointer type for the addrec if the pointer type is
1416   // non-integral.
1417   Type *AddRecPHIExpandTy =
1418       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1419 
1420   // In some cases, we decide to reuse an existing phi node but need to truncate
1421   // it and/or invert the step.
1422   Type *TruncTy = nullptr;
1423   bool InvertStep = false;
1424   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1425                                           IntTy, TruncTy, InvertStep);
1426 
1427   // Accommodate post-inc mode, if necessary.
1428   Value *Result;
1429   if (!PostIncLoops.count(L))
1430     Result = PN;
1431   else {
1432     // In PostInc mode, use the post-incremented value.
1433     BasicBlock *LatchBlock = L->getLoopLatch();
1434     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1435     Result = PN->getIncomingValueForBlock(LatchBlock);
1436 
1437     // We might be introducing a new use of the post-inc IV that is not poison
1438     // safe, in which case we should drop poison generating flags. Only keep
1439     // those flags for which SCEV has proven that they always hold.
1440     if (isa<OverflowingBinaryOperator>(Result)) {
1441       auto *I = cast<Instruction>(Result);
1442       if (!S->hasNoUnsignedWrap())
1443         I->setHasNoUnsignedWrap(false);
1444       if (!S->hasNoSignedWrap())
1445         I->setHasNoSignedWrap(false);
1446     }
1447 
1448     // For an expansion to use the postinc form, the client must call
1449     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1450     // or dominated by IVIncInsertPos.
1451     if (isa<Instruction>(Result) &&
1452         !SE.DT.dominates(cast<Instruction>(Result),
1453                          &*Builder.GetInsertPoint())) {
1454       // The induction variable's postinc expansion does not dominate this use.
1455       // IVUsers tries to prevent this case, so it is rare. However, it can
1456       // happen when an IVUser outside the loop is not dominated by the latch
1457       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1458       // all cases. Consider a phi outside whose operand is replaced during
1459       // expansion with the value of the postinc user. Without fundamentally
1460       // changing the way postinc users are tracked, the only remedy is
1461       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1462       // but hopefully expandCodeFor handles that.
1463       bool useSubtract =
1464         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1465       if (useSubtract)
1466         Step = SE.getNegativeSCEV(Step);
1467       Value *StepV;
1468       {
1469         // Expand the step somewhere that dominates the loop header.
1470         SCEVInsertPointGuard Guard(Builder, this);
1471         StepV = expandCodeForImpl(
1472             Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1473       }
1474       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1475     }
1476   }
1477 
1478   // We have decided to reuse an induction variable of a dominating loop. Apply
1479   // truncation and/or inversion of the step.
1480   if (TruncTy) {
1481     Type *ResTy = Result->getType();
1482     // Normalize the result type.
1483     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1484       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1485     // Truncate the result.
1486     if (TruncTy != Result->getType())
1487       Result = Builder.CreateTrunc(Result, TruncTy);
1488 
1489     // Invert the result.
1490     if (InvertStep)
1491       Result = Builder.CreateSub(
1492           expandCodeForImpl(Normalized->getStart(), TruncTy), Result);
1493   }
1494 
1495   // Re-apply any non-loop-dominating scale.
1496   if (PostLoopScale) {
1497     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1498     Result = InsertNoopCastOfTo(Result, IntTy);
1499     Result = Builder.CreateMul(Result,
1500                                expandCodeForImpl(PostLoopScale, IntTy));
1501   }
1502 
1503   // Re-apply any non-loop-dominating offset.
1504   if (PostLoopOffset) {
1505     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1506       if (Result->getType()->isIntegerTy()) {
1507         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy);
1508         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1509       } else {
1510         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1511       }
1512     } else {
1513       Result = InsertNoopCastOfTo(Result, IntTy);
1514       Result = Builder.CreateAdd(
1515           Result, expandCodeForImpl(PostLoopOffset, IntTy));
1516     }
1517   }
1518 
1519   return Result;
1520 }
1521 
1522 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1523   // In canonical mode we compute the addrec as an expression of a canonical IV
1524   // using evaluateAtIteration and expand the resulting SCEV expression. This
1525   // way we avoid introducing new IVs to carry on the computation of the addrec
1526   // throughout the loop.
1527   //
1528   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1529   // type wider than the addrec itself. Emitting a canonical IV of the
1530   // proper type might produce non-legal types, for example expanding an i64
1531   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1532   // back to non-canonical mode for nested addrecs.
1533   if (!CanonicalMode || (S->getNumOperands() > 2))
1534     return expandAddRecExprLiterally(S);
1535 
1536   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1537   const Loop *L = S->getLoop();
1538 
1539   // First check for an existing canonical IV in a suitable type.
1540   PHINode *CanonicalIV = nullptr;
1541   if (PHINode *PN = L->getCanonicalInductionVariable())
1542     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1543       CanonicalIV = PN;
1544 
1545   // Rewrite an AddRec in terms of the canonical induction variable, if
1546   // its type is more narrow.
1547   if (CanonicalIV &&
1548       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1549       !S->getType()->isPointerTy()) {
1550     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1551     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1552       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1553     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1554                                        S->getNoWrapFlags(SCEV::FlagNW)));
1555     BasicBlock::iterator NewInsertPt =
1556         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1557     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1558                           &*NewInsertPt);
1559     return V;
1560   }
1561 
1562   // {X,+,F} --> X + {0,+,F}
1563   if (!S->getStart()->isZero()) {
1564     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1565       Value *StartV = expand(SE.getPointerBase(S));
1566       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1567       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1568     }
1569 
1570     SmallVector<const SCEV *, 4> NewOps(S->operands());
1571     NewOps[0] = SE.getConstant(Ty, 0);
1572     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1573                                         S->getNoWrapFlags(SCEV::FlagNW));
1574 
1575     // Just do a normal add. Pre-expand the operands to suppress folding.
1576     //
1577     // The LHS and RHS values are factored out of the expand call to make the
1578     // output independent of the argument evaluation order.
1579     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1580     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1581     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1582   }
1583 
1584   // If we don't yet have a canonical IV, create one.
1585   if (!CanonicalIV) {
1586     // Create and insert the PHI node for the induction variable in the
1587     // specified loop.
1588     BasicBlock *Header = L->getHeader();
1589     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1590     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1591                                   &Header->front());
1592     rememberInstruction(CanonicalIV);
1593 
1594     SmallSet<BasicBlock *, 4> PredSeen;
1595     Constant *One = ConstantInt::get(Ty, 1);
1596     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1597       BasicBlock *HP = *HPI;
1598       if (!PredSeen.insert(HP).second) {
1599         // There must be an incoming value for each predecessor, even the
1600         // duplicates!
1601         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1602         continue;
1603       }
1604 
1605       if (L->contains(HP)) {
1606         // Insert a unit add instruction right before the terminator
1607         // corresponding to the back-edge.
1608         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1609                                                      "indvar.next",
1610                                                      HP->getTerminator());
1611         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1612         rememberInstruction(Add);
1613         CanonicalIV->addIncoming(Add, HP);
1614       } else {
1615         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1616       }
1617     }
1618   }
1619 
1620   // {0,+,1} --> Insert a canonical induction variable into the loop!
1621   if (S->isAffine() && S->getOperand(1)->isOne()) {
1622     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1623            "IVs with types different from the canonical IV should "
1624            "already have been handled!");
1625     return CanonicalIV;
1626   }
1627 
1628   // {0,+,F} --> {0,+,1} * F
1629 
1630   // If this is a simple linear addrec, emit it now as a special case.
1631   if (S->isAffine())    // {0,+,F} --> i*F
1632     return
1633       expand(SE.getTruncateOrNoop(
1634         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1635                       SE.getNoopOrAnyExtend(S->getOperand(1),
1636                                             CanonicalIV->getType())),
1637         Ty));
1638 
1639   // If this is a chain of recurrences, turn it into a closed form, using the
1640   // folders, then expandCodeFor the closed form.  This allows the folders to
1641   // simplify the expression without having to build a bunch of special code
1642   // into this folder.
1643   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1644 
1645   // Promote S up to the canonical IV type, if the cast is foldable.
1646   const SCEV *NewS = S;
1647   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1648   if (isa<SCEVAddRecExpr>(Ext))
1649     NewS = Ext;
1650 
1651   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1652 
1653   // Truncate the result down to the original type, if needed.
1654   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1655   return expand(T);
1656 }
1657 
1658 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1659   Value *V =
1660       expandCodeForImpl(S->getOperand(), S->getOperand()->getType());
1661   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1662                            GetOptimalInsertionPointForCastOf(V));
1663 }
1664 
1665 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1666   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1667   Value *V = expandCodeForImpl(
1668       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1669       );
1670   return Builder.CreateTrunc(V, Ty);
1671 }
1672 
1673 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1674   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1675   Value *V = expandCodeForImpl(
1676       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1677       );
1678   return Builder.CreateZExt(V, Ty);
1679 }
1680 
1681 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1682   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1683   Value *V = expandCodeForImpl(
1684       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1685       );
1686   return Builder.CreateSExt(V, Ty);
1687 }
1688 
1689 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1690                                       Intrinsic::ID IntrinID, Twine Name,
1691                                       bool IsSequential) {
1692   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1693   Type *Ty = LHS->getType();
1694   if (IsSequential)
1695     LHS = Builder.CreateFreeze(LHS);
1696   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1697     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty);
1698     if (IsSequential && i != 0)
1699       RHS = Builder.CreateFreeze(RHS);
1700     Value *Sel;
1701     if (Ty->isIntegerTy())
1702       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1703                                     /*FMFSource=*/nullptr, Name);
1704     else {
1705       Value *ICmp =
1706           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1707       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1708     }
1709     LHS = Sel;
1710   }
1711   return LHS;
1712 }
1713 
1714 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1715   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1716 }
1717 
1718 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1719   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1720 }
1721 
1722 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1723   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1724 }
1725 
1726 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1727   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1728 }
1729 
1730 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1731   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1732 }
1733 
1734 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1735                                        Instruction *IP) {
1736   setInsertPoint(IP);
1737   Value *V = expandCodeForImpl(SH, Ty);
1738   return V;
1739 }
1740 
1741 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) {
1742   // Expand the code for this SCEV.
1743   Value *V = expand(SH);
1744 
1745   if (PreserveLCSSA) {
1746     if (auto *Inst = dyn_cast<Instruction>(V)) {
1747       // Create a temporary instruction to at the current insertion point, so we
1748       // can hand it off to the helper to create LCSSA PHIs if required for the
1749       // new use.
1750       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1751       // would accept a insertion point and return an LCSSA phi for that
1752       // insertion point, so there is no need to insert & remove the temporary
1753       // instruction.
1754       Type *ToTy;
1755       if (Inst->getType()->isIntegerTy())
1756         ToTy = Inst->getType()->getPointerTo();
1757       else
1758         ToTy = Type::getInt32Ty(Inst->getContext());
1759       Instruction *Tmp = CastInst::CreateBitOrPointerCast(
1760           Inst, ToTy, "tmp.lcssa.user", &*Builder.GetInsertPoint());
1761       V = fixupLCSSAFormFor(Tmp, 0);
1762 
1763       // Clean up temporary instruction.
1764       Tmp->eraseFromParent();
1765     }
1766   }
1767 
1768   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1769   if (Ty) {
1770     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1771            "non-trivial casts should be done with the SCEVs directly!");
1772     V = InsertNoopCastOfTo(V, Ty);
1773   }
1774   return V;
1775 }
1776 
1777 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1778                                              const Instruction *InsertPt) {
1779   // If the expansion is not in CanonicalMode, and the SCEV contains any
1780   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1781   if (!CanonicalMode && SE.containsAddRecurrence(S))
1782     return nullptr;
1783 
1784   // If S is a constant, it may be worse to reuse an existing Value.
1785   if (isa<SCEVConstant>(S))
1786     return nullptr;
1787 
1788   // Choose a Value from the set which dominates the InsertPt.
1789   // InsertPt should be inside the Value's parent loop so as not to break
1790   // the LCSSA form.
1791   for (Value *V : SE.getSCEVValues(S)) {
1792     Instruction *EntInst = dyn_cast<Instruction>(V);
1793     if (!EntInst)
1794       continue;
1795 
1796     assert(EntInst->getFunction() == InsertPt->getFunction());
1797     if (S->getType() == V->getType() &&
1798         SE.DT.dominates(EntInst, InsertPt) &&
1799         (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1800          SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1801       return V;
1802   }
1803   return nullptr;
1804 }
1805 
1806 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1807 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1808 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1809 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1810 // the expansion will try to reuse Value from ExprValueMap, and only when it
1811 // fails, expand the SCEV literally.
1812 Value *SCEVExpander::expand(const SCEV *S) {
1813   // Compute an insertion point for this SCEV object. Hoist the instructions
1814   // as far out in the loop nest as possible.
1815   Instruction *InsertPt = &*Builder.GetInsertPoint();
1816 
1817   // We can move insertion point only if there is no div or rem operations
1818   // otherwise we are risky to move it over the check for zero denominator.
1819   auto SafeToHoist = [](const SCEV *S) {
1820     return !SCEVExprContains(S, [](const SCEV *S) {
1821               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1822                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1823                   // Division by non-zero constants can be hoisted.
1824                   return SC->getValue()->isZero();
1825                 // All other divisions should not be moved as they may be
1826                 // divisions by zero and should be kept within the
1827                 // conditions of the surrounding loops that guard their
1828                 // execution (see PR35406).
1829                 return true;
1830               }
1831               return false;
1832             });
1833   };
1834   if (SafeToHoist(S)) {
1835     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1836          L = L->getParentLoop()) {
1837       if (SE.isLoopInvariant(S, L)) {
1838         if (!L) break;
1839         if (BasicBlock *Preheader = L->getLoopPreheader())
1840           InsertPt = Preheader->getTerminator();
1841         else
1842           // LSR sets the insertion point for AddRec start/step values to the
1843           // block start to simplify value reuse, even though it's an invalid
1844           // position. SCEVExpander must correct for this in all cases.
1845           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1846       } else {
1847         // If the SCEV is computable at this level, insert it into the header
1848         // after the PHIs (and after any other instructions that we've inserted
1849         // there) so that it is guaranteed to dominate any user inside the loop.
1850         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1851           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1852 
1853         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1854                (isInsertedInstruction(InsertPt) ||
1855                 isa<DbgInfoIntrinsic>(InsertPt))) {
1856           InsertPt = &*std::next(InsertPt->getIterator());
1857         }
1858         break;
1859       }
1860     }
1861   }
1862 
1863   // Check to see if we already expanded this here.
1864   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1865   if (I != InsertedExpressions.end())
1866     return I->second;
1867 
1868   SCEVInsertPointGuard Guard(Builder, this);
1869   Builder.SetInsertPoint(InsertPt);
1870 
1871   // Expand the expression into instructions.
1872   Value *V = FindValueInExprValueMap(S, InsertPt);
1873   if (!V)
1874     V = visit(S);
1875   else {
1876     // If we're reusing an existing instruction, we are effectively CSEing two
1877     // copies of the instruction (with potentially different flags).  As such,
1878     // we need to drop any poison generating flags unless we can prove that
1879     // said flags must be valid for all new users.
1880     if (auto *I = dyn_cast<Instruction>(V))
1881       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1882         I->dropPoisonGeneratingFlags();
1883   }
1884   // Remember the expanded value for this SCEV at this location.
1885   //
1886   // This is independent of PostIncLoops. The mapped value simply materializes
1887   // the expression at this insertion point. If the mapped value happened to be
1888   // a postinc expansion, it could be reused by a non-postinc user, but only if
1889   // its insertion point was already at the head of the loop.
1890   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1891   return V;
1892 }
1893 
1894 void SCEVExpander::rememberInstruction(Value *I) {
1895   auto DoInsert = [this](Value *V) {
1896     if (!PostIncLoops.empty())
1897       InsertedPostIncValues.insert(V);
1898     else
1899       InsertedValues.insert(V);
1900   };
1901   DoInsert(I);
1902 
1903   if (!PreserveLCSSA)
1904     return;
1905 
1906   if (auto *Inst = dyn_cast<Instruction>(I)) {
1907     // A new instruction has been added, which might introduce new uses outside
1908     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1909     // if required.
1910     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1911          OpIdx++)
1912       fixupLCSSAFormFor(Inst, OpIdx);
1913   }
1914 }
1915 
1916 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1917 /// replace them with their most canonical representative. Return the number of
1918 /// phis eliminated.
1919 ///
1920 /// This does not depend on any SCEVExpander state but should be used in
1921 /// the same context that SCEVExpander is used.
1922 unsigned
1923 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1924                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1925                                   const TargetTransformInfo *TTI) {
1926   // Find integer phis in order of increasing width.
1927   SmallVector<PHINode*, 8> Phis;
1928   for (PHINode &PN : L->getHeader()->phis())
1929     Phis.push_back(&PN);
1930 
1931   if (TTI)
1932     // Use stable_sort to preserve order of equivalent PHIs, so the order
1933     // of the sorted Phis is the same from run to run on the same loop.
1934     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1935       // Put pointers at the back and make sure pointer < pointer = false.
1936       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1937         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1938       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
1939              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
1940     });
1941 
1942   unsigned NumElim = 0;
1943   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1944   // Process phis from wide to narrow. Map wide phis to their truncation
1945   // so narrow phis can reuse them.
1946   for (PHINode *Phi : Phis) {
1947     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1948       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1949         return V;
1950       if (!SE.isSCEVable(PN->getType()))
1951         return nullptr;
1952       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1953       if (!Const)
1954         return nullptr;
1955       return Const->getValue();
1956     };
1957 
1958     // Fold constant phis. They may be congruent to other constant phis and
1959     // would confuse the logic below that expects proper IVs.
1960     if (Value *V = SimplifyPHINode(Phi)) {
1961       if (V->getType() != Phi->getType())
1962         continue;
1963       Phi->replaceAllUsesWith(V);
1964       DeadInsts.emplace_back(Phi);
1965       ++NumElim;
1966       SCEV_DEBUG_WITH_TYPE(DebugType,
1967                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1968                                   << '\n');
1969       continue;
1970     }
1971 
1972     if (!SE.isSCEVable(Phi->getType()))
1973       continue;
1974 
1975     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1976     if (!OrigPhiRef) {
1977       OrigPhiRef = Phi;
1978       if (Phi->getType()->isIntegerTy() && TTI &&
1979           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1980         // This phi can be freely truncated to the narrowest phi type. Map the
1981         // truncated expression to it so it will be reused for narrow types.
1982         const SCEV *TruncExpr =
1983           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1984         ExprToIVMap[TruncExpr] = Phi;
1985       }
1986       continue;
1987     }
1988 
1989     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1990     // sense.
1991     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1992       continue;
1993 
1994     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1995       Instruction *OrigInc = dyn_cast<Instruction>(
1996           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1997       Instruction *IsomorphicInc =
1998           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1999 
2000       if (OrigInc && IsomorphicInc) {
2001         // If this phi has the same width but is more canonical, replace the
2002         // original with it. As part of the "more canonical" determination,
2003         // respect a prior decision to use an IV chain.
2004         if (OrigPhiRef->getType() == Phi->getType() &&
2005             !(ChainedPhis.count(Phi) ||
2006               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2007             (ChainedPhis.count(Phi) ||
2008              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2009           std::swap(OrigPhiRef, Phi);
2010           std::swap(OrigInc, IsomorphicInc);
2011         }
2012         // Replacing the congruent phi is sufficient because acyclic
2013         // redundancy elimination, CSE/GVN, should handle the
2014         // rest. However, once SCEV proves that a phi is congruent,
2015         // it's often the head of an IV user cycle that is isomorphic
2016         // with the original phi. It's worth eagerly cleaning up the
2017         // common case of a single IV increment so that DeleteDeadPHIs
2018         // can remove cycles that had postinc uses.
2019         // Because we may potentially introduce a new use of OrigIV that didn't
2020         // exist before at this point, its poison flags need readjustment.
2021         const SCEV *TruncExpr =
2022             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2023         if (OrigInc != IsomorphicInc &&
2024             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2025             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2026             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
2027           SCEV_DEBUG_WITH_TYPE(
2028               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2029                                 << *IsomorphicInc << '\n');
2030           Value *NewInc = OrigInc;
2031           if (OrigInc->getType() != IsomorphicInc->getType()) {
2032             Instruction *IP = nullptr;
2033             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2034               IP = &*PN->getParent()->getFirstInsertionPt();
2035             else
2036               IP = OrigInc->getNextNode();
2037 
2038             IRBuilder<> Builder(IP);
2039             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2040             NewInc = Builder.CreateTruncOrBitCast(
2041                 OrigInc, IsomorphicInc->getType(), IVName);
2042           }
2043           IsomorphicInc->replaceAllUsesWith(NewInc);
2044           DeadInsts.emplace_back(IsomorphicInc);
2045         }
2046       }
2047     }
2048     SCEV_DEBUG_WITH_TYPE(DebugType,
2049                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2050                                 << '\n');
2051     SCEV_DEBUG_WITH_TYPE(
2052         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2053     ++NumElim;
2054     Value *NewIV = OrigPhiRef;
2055     if (OrigPhiRef->getType() != Phi->getType()) {
2056       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2057       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2058       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2059     }
2060     Phi->replaceAllUsesWith(NewIV);
2061     DeadInsts.emplace_back(Phi);
2062   }
2063   return NumElim;
2064 }
2065 
2066 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
2067                                                  const Instruction *At,
2068                                                  Loop *L) {
2069   using namespace llvm::PatternMatch;
2070 
2071   SmallVector<BasicBlock *, 4> ExitingBlocks;
2072   L->getExitingBlocks(ExitingBlocks);
2073 
2074   // Look for suitable value in simple conditions at the loop exits.
2075   for (BasicBlock *BB : ExitingBlocks) {
2076     ICmpInst::Predicate Pred;
2077     Instruction *LHS, *RHS;
2078 
2079     if (!match(BB->getTerminator(),
2080                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2081                     m_BasicBlock(), m_BasicBlock())))
2082       continue;
2083 
2084     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2085       return LHS;
2086 
2087     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2088       return RHS;
2089   }
2090 
2091   // Use expand's logic which is used for reusing a previous Value in
2092   // ExprValueMap.  Note that we don't currently model the cost of
2093   // needing to drop poison generating flags on the instruction if we
2094   // want to reuse it.  We effectively assume that has zero cost.
2095   return FindValueInExprValueMap(S, At);
2096 }
2097 
2098 template<typename T> static InstructionCost costAndCollectOperands(
2099   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2100   TargetTransformInfo::TargetCostKind CostKind,
2101   SmallVectorImpl<SCEVOperand> &Worklist) {
2102 
2103   const T *S = cast<T>(WorkItem.S);
2104   InstructionCost Cost = 0;
2105   // Object to help map SCEV operands to expanded IR instructions.
2106   struct OperationIndices {
2107     OperationIndices(unsigned Opc, size_t min, size_t max) :
2108       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2109     unsigned Opcode;
2110     size_t MinIdx;
2111     size_t MaxIdx;
2112   };
2113 
2114   // Collect the operations of all the instructions that will be needed to
2115   // expand the SCEVExpr. This is so that when we come to cost the operands,
2116   // we know what the generated user(s) will be.
2117   SmallVector<OperationIndices, 2> Operations;
2118 
2119   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2120     Operations.emplace_back(Opcode, 0, 0);
2121     return TTI.getCastInstrCost(Opcode, S->getType(),
2122                                 S->getOperand(0)->getType(),
2123                                 TTI::CastContextHint::None, CostKind);
2124   };
2125 
2126   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2127                        unsigned MinIdx = 0,
2128                        unsigned MaxIdx = 1) -> InstructionCost {
2129     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2130     return NumRequired *
2131       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2132   };
2133 
2134   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2135                         unsigned MaxIdx) -> InstructionCost {
2136     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2137     Type *OpType = S->getOperand(0)->getType();
2138     return NumRequired * TTI.getCmpSelInstrCost(
2139                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2140                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2141   };
2142 
2143   switch (S->getSCEVType()) {
2144   case scCouldNotCompute:
2145     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2146   case scUnknown:
2147   case scConstant:
2148     return 0;
2149   case scPtrToInt:
2150     Cost = CastCost(Instruction::PtrToInt);
2151     break;
2152   case scTruncate:
2153     Cost = CastCost(Instruction::Trunc);
2154     break;
2155   case scZeroExtend:
2156     Cost = CastCost(Instruction::ZExt);
2157     break;
2158   case scSignExtend:
2159     Cost = CastCost(Instruction::SExt);
2160     break;
2161   case scUDivExpr: {
2162     unsigned Opcode = Instruction::UDiv;
2163     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2164       if (SC->getAPInt().isPowerOf2())
2165         Opcode = Instruction::LShr;
2166     Cost = ArithCost(Opcode, 1);
2167     break;
2168   }
2169   case scAddExpr:
2170     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2171     break;
2172   case scMulExpr:
2173     // TODO: this is a very pessimistic cost modelling for Mul,
2174     // because of Bin Pow algorithm actually used by the expander,
2175     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2176     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2177     break;
2178   case scSMaxExpr:
2179   case scUMaxExpr:
2180   case scSMinExpr:
2181   case scUMinExpr:
2182   case scSequentialUMinExpr: {
2183     // FIXME: should this ask the cost for Intrinsic's?
2184     // The reduction tree.
2185     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2186     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2187     switch (S->getSCEVType()) {
2188     case scSequentialUMinExpr: {
2189       // The safety net against poison.
2190       // FIXME: this is broken.
2191       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2192       Cost += ArithCost(Instruction::Or,
2193                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2194       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2195       break;
2196     }
2197     default:
2198       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2199              "Unhandled SCEV expression type?");
2200       break;
2201     }
2202     break;
2203   }
2204   case scAddRecExpr: {
2205     // In this polynominal, we may have some zero operands, and we shouldn't
2206     // really charge for those. So how many non-zero coefficients are there?
2207     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2208                                     return !Op->isZero();
2209                                   });
2210 
2211     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2212     assert(!(*std::prev(S->operands().end()))->isZero() &&
2213            "Last operand should not be zero");
2214 
2215     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
2216     int NumNonZeroDegreeNonOneTerms =
2217       llvm::count_if(S->operands(), [](const SCEV *Op) {
2218                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2219                       return !SConst || SConst->getAPInt().ugt(1);
2220                     });
2221 
2222     // Much like with normal add expr, the polynominal will require
2223     // one less addition than the number of it's terms.
2224     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2225                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2226     // Here, *each* one of those will require a multiplication.
2227     InstructionCost MulCost =
2228         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2229     Cost = AddCost + MulCost;
2230 
2231     // What is the degree of this polynominal?
2232     int PolyDegree = S->getNumOperands() - 1;
2233     assert(PolyDegree >= 1 && "Should be at least affine.");
2234 
2235     // The final term will be:
2236     //   Op_{PolyDegree} * x ^ {PolyDegree}
2237     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2238     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2239     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2240     // FIXME: this is conservatively correct, but might be overly pessimistic.
2241     Cost += MulCost * (PolyDegree - 1);
2242     break;
2243   }
2244   }
2245 
2246   for (auto &CostOp : Operations) {
2247     for (auto SCEVOp : enumerate(S->operands())) {
2248       // Clamp the index to account for multiple IR operations being chained.
2249       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2250       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2251       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2252     }
2253   }
2254   return Cost;
2255 }
2256 
2257 bool SCEVExpander::isHighCostExpansionHelper(
2258     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2259     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2260     SmallPtrSetImpl<const SCEV *> &Processed,
2261     SmallVectorImpl<SCEVOperand> &Worklist) {
2262   if (Cost > Budget)
2263     return true; // Already run out of budget, give up.
2264 
2265   const SCEV *S = WorkItem.S;
2266   // Was the cost of expansion of this expression already accounted for?
2267   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2268     return false; // We have already accounted for this expression.
2269 
2270   // If we can find an existing value for this scev available at the point "At"
2271   // then consider the expression cheap.
2272   if (getRelatedExistingExpansion(S, &At, L))
2273     return false; // Consider the expression to be free.
2274 
2275   TargetTransformInfo::TargetCostKind CostKind =
2276       L->getHeader()->getParent()->hasMinSize()
2277           ? TargetTransformInfo::TCK_CodeSize
2278           : TargetTransformInfo::TCK_RecipThroughput;
2279 
2280   switch (S->getSCEVType()) {
2281   case scCouldNotCompute:
2282     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2283   case scUnknown:
2284     // Assume to be zero-cost.
2285     return false;
2286   case scConstant: {
2287     // Only evalulate the costs of constants when optimizing for size.
2288     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2289       return false;
2290     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2291     Type *Ty = S->getType();
2292     Cost += TTI.getIntImmCostInst(
2293         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2294     return Cost > Budget;
2295   }
2296   case scTruncate:
2297   case scPtrToInt:
2298   case scZeroExtend:
2299   case scSignExtend: {
2300     Cost +=
2301         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2302     return false; // Will answer upon next entry into this function.
2303   }
2304   case scUDivExpr: {
2305     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2306     // HowManyLessThans produced to compute a precise expression, rather than a
2307     // UDiv from the user's code. If we can't find a UDiv in the code with some
2308     // simple searching, we need to account for it's cost.
2309 
2310     // At the beginning of this function we already tried to find existing
2311     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2312     // pattern involving division. This is just a simple search heuristic.
2313     if (getRelatedExistingExpansion(
2314             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2315       return false; // Consider it to be free.
2316 
2317     Cost +=
2318         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2319     return false; // Will answer upon next entry into this function.
2320   }
2321   case scAddExpr:
2322   case scMulExpr:
2323   case scUMaxExpr:
2324   case scSMaxExpr:
2325   case scUMinExpr:
2326   case scSMinExpr:
2327   case scSequentialUMinExpr: {
2328     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2329            "Nary expr should have more than 1 operand.");
2330     // The simple nary expr will require one less op (or pair of ops)
2331     // than the number of it's terms.
2332     Cost +=
2333         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2334     return Cost > Budget;
2335   }
2336   case scAddRecExpr: {
2337     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2338            "Polynomial should be at least linear");
2339     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2340         WorkItem, TTI, CostKind, Worklist);
2341     return Cost > Budget;
2342   }
2343   }
2344   llvm_unreachable("Unknown SCEV kind!");
2345 }
2346 
2347 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2348                                             Instruction *IP) {
2349   assert(IP);
2350   switch (Pred->getKind()) {
2351   case SCEVPredicate::P_Union:
2352     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2353   case SCEVPredicate::P_Compare:
2354     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2355   case SCEVPredicate::P_Wrap: {
2356     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2357     return expandWrapPredicate(AddRecPred, IP);
2358   }
2359   }
2360   llvm_unreachable("Unknown SCEV predicate type");
2361 }
2362 
2363 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2364                                             Instruction *IP) {
2365   Value *Expr0 =
2366       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2367   Value *Expr1 =
2368       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2369 
2370   Builder.SetInsertPoint(IP);
2371   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2372   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2373   return I;
2374 }
2375 
2376 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2377                                            Instruction *Loc, bool Signed) {
2378   assert(AR->isAffine() && "Cannot generate RT check for "
2379                            "non-affine expression");
2380 
2381   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2382   SmallVector<const SCEVPredicate *, 4> Pred;
2383   const SCEV *ExitCount =
2384       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2385 
2386   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2387 
2388   const SCEV *Step = AR->getStepRecurrence(SE);
2389   const SCEV *Start = AR->getStart();
2390 
2391   Type *ARTy = AR->getType();
2392   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2393   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2394 
2395   // The expression {Start,+,Step} has nusw/nssw if
2396   //   Step < 0, Start - |Step| * Backedge <= Start
2397   //   Step >= 0, Start + |Step| * Backedge > Start
2398   // and |Step| * Backedge doesn't unsigned overflow.
2399 
2400   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2401   Builder.SetInsertPoint(Loc);
2402   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc);
2403 
2404   IntegerType *Ty =
2405       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2406 
2407   Value *StepValue = expandCodeForImpl(Step, Ty, Loc);
2408   Value *NegStepValue =
2409       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc);
2410   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc);
2411 
2412   ConstantInt *Zero =
2413       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2414 
2415   Builder.SetInsertPoint(Loc);
2416   // Compute |Step|
2417   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2418   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2419 
2420   // Compute |Step| * Backedge
2421   // Compute:
2422   //   1. Start + |Step| * Backedge < Start
2423   //   2. Start - |Step| * Backedge > Start
2424   //
2425   // And select either 1. or 2. depending on whether step is positive or
2426   // negative. If Step is known to be positive or negative, only create
2427   // either 1. or 2.
2428   auto ComputeEndCheck = [&]() -> Value * {
2429     // Checking <u 0 is always false.
2430     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2431       return ConstantInt::getFalse(Loc->getContext());
2432 
2433     // Get the backedge taken count and truncate or extended to the AR type.
2434     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2435 
2436     Value *MulV, *OfMul;
2437     if (Step->isOne()) {
2438       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2439       // needed, there is never an overflow, so to avoid artificially inflating
2440       // the cost of the check, directly emit the optimized IR.
2441       MulV = TruncTripCount;
2442       OfMul = ConstantInt::getFalse(MulV->getContext());
2443     } else {
2444       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2445                                              Intrinsic::umul_with_overflow, Ty);
2446       CallInst *Mul =
2447           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2448       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2449       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2450     }
2451 
2452     Value *Add = nullptr, *Sub = nullptr;
2453     bool NeedPosCheck = !SE.isKnownNegative(Step);
2454     bool NeedNegCheck = !SE.isKnownPositive(Step);
2455 
2456     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2457       StartValue = InsertNoopCastOfTo(
2458           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2459       Value *NegMulV = Builder.CreateNeg(MulV);
2460       if (NeedPosCheck)
2461         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2462       if (NeedNegCheck)
2463         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2464     } else {
2465       if (NeedPosCheck)
2466         Add = Builder.CreateAdd(StartValue, MulV);
2467       if (NeedNegCheck)
2468         Sub = Builder.CreateSub(StartValue, MulV);
2469     }
2470 
2471     Value *EndCompareLT = nullptr;
2472     Value *EndCompareGT = nullptr;
2473     Value *EndCheck = nullptr;
2474     if (NeedPosCheck)
2475       EndCheck = EndCompareLT = Builder.CreateICmp(
2476           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2477     if (NeedNegCheck)
2478       EndCheck = EndCompareGT = Builder.CreateICmp(
2479           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2480     if (NeedPosCheck && NeedNegCheck) {
2481       // Select the answer based on the sign of Step.
2482       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2483     }
2484     return Builder.CreateOr(EndCheck, OfMul);
2485   };
2486   Value *EndCheck = ComputeEndCheck();
2487 
2488   // If the backedge taken count type is larger than the AR type,
2489   // check that we don't drop any bits by truncating it. If we are
2490   // dropping bits, then we have overflow (unless the step is zero).
2491   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2492     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2493     auto *BackedgeCheck =
2494         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2495                            ConstantInt::get(Loc->getContext(), MaxVal));
2496     BackedgeCheck = Builder.CreateAnd(
2497         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2498 
2499     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2500   }
2501 
2502   return EndCheck;
2503 }
2504 
2505 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2506                                          Instruction *IP) {
2507   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2508   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2509 
2510   // Add a check for NUSW
2511   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2512     NUSWCheck = generateOverflowCheck(A, IP, false);
2513 
2514   // Add a check for NSSW
2515   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2516     NSSWCheck = generateOverflowCheck(A, IP, true);
2517 
2518   if (NUSWCheck && NSSWCheck)
2519     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2520 
2521   if (NUSWCheck)
2522     return NUSWCheck;
2523 
2524   if (NSSWCheck)
2525     return NSSWCheck;
2526 
2527   return ConstantInt::getFalse(IP->getContext());
2528 }
2529 
2530 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2531                                           Instruction *IP) {
2532   // Loop over all checks in this set.
2533   SmallVector<Value *> Checks;
2534   for (const auto *Pred : Union->getPredicates()) {
2535     Checks.push_back(expandCodeForPredicate(Pred, IP));
2536     Builder.SetInsertPoint(IP);
2537   }
2538 
2539   if (Checks.empty())
2540     return ConstantInt::getFalse(IP->getContext());
2541   return Builder.CreateOr(Checks);
2542 }
2543 
2544 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2545   assert(PreserveLCSSA);
2546   SmallVector<Instruction *, 1> ToUpdate;
2547 
2548   auto *OpV = User->getOperand(OpIdx);
2549   auto *OpI = dyn_cast<Instruction>(OpV);
2550   if (!OpI)
2551     return OpV;
2552 
2553   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2554   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2555   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2556     return OpV;
2557 
2558   ToUpdate.push_back(OpI);
2559   SmallVector<PHINode *, 16> PHIsToRemove;
2560   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2561   for (PHINode *PN : PHIsToRemove) {
2562     if (!PN->use_empty())
2563       continue;
2564     InsertedValues.erase(PN);
2565     InsertedPostIncValues.erase(PN);
2566     PN->eraseFromParent();
2567   }
2568 
2569   return User->getOperand(OpIdx);
2570 }
2571 
2572 namespace {
2573 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2574 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2575 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2576 // instruction, but the important thing is that we prove the denominator is
2577 // nonzero before expansion.
2578 //
2579 // IVUsers already checks that IV-derived expressions are safe. So this check is
2580 // only needed when the expression includes some subexpression that is not IV
2581 // derived.
2582 //
2583 // Currently, we only allow division by a value provably non-zero here.
2584 //
2585 // We cannot generally expand recurrences unless the step dominates the loop
2586 // header. The expander handles the special case of affine recurrences by
2587 // scaling the recurrence outside the loop, but this technique isn't generally
2588 // applicable. Expanding a nested recurrence outside a loop requires computing
2589 // binomial coefficients. This could be done, but the recurrence has to be in a
2590 // perfectly reduced form, which can't be guaranteed.
2591 struct SCEVFindUnsafe {
2592   ScalarEvolution &SE;
2593   bool CanonicalMode;
2594   bool IsUnsafe = false;
2595 
2596   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2597       : SE(SE), CanonicalMode(CanonicalMode) {}
2598 
2599   bool follow(const SCEV *S) {
2600     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2601       if (!SE.isKnownNonZero(D->getRHS())) {
2602         IsUnsafe = true;
2603         return false;
2604       }
2605     }
2606     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2607       const SCEV *Step = AR->getStepRecurrence(SE);
2608       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2609         IsUnsafe = true;
2610         return false;
2611       }
2612 
2613       // For non-affine addrecs or in non-canonical mode we need a preheader
2614       // to insert into.
2615       if (!AR->getLoop()->getLoopPreheader() &&
2616           (!CanonicalMode || !AR->isAffine())) {
2617         IsUnsafe = true;
2618         return false;
2619       }
2620     }
2621     return true;
2622   }
2623   bool isDone() const { return IsUnsafe; }
2624 };
2625 } // namespace
2626 
2627 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2628   SCEVFindUnsafe Search(SE, CanonicalMode);
2629   visitAll(S, Search);
2630   return !Search.IsUnsafe;
2631 }
2632 
2633 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2634                                     const Instruction *InsertionPoint) const {
2635   if (!isSafeToExpand(S))
2636     return false;
2637   // We have to prove that the expanded site of S dominates InsertionPoint.
2638   // This is easy when not in the same block, but hard when S is an instruction
2639   // to be expanded somewhere inside the same block as our insertion point.
2640   // What we really need here is something analogous to an OrderedBasicBlock,
2641   // but for the moment, we paper over the problem by handling two common and
2642   // cheap to check cases.
2643   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2644     return true;
2645   if (SE.dominates(S, InsertionPoint->getParent())) {
2646     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2647       return true;
2648     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2649       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2650         return true;
2651   }
2652   return false;
2653 }
2654 
2655 void SCEVExpanderCleaner::cleanup() {
2656   // Result is used, nothing to remove.
2657   if (ResultUsed)
2658     return;
2659 
2660   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2661 #ifndef NDEBUG
2662   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2663                                             InsertedInstructions.end());
2664   (void)InsertedSet;
2665 #endif
2666   // Remove sets with value handles.
2667   Expander.clear();
2668 
2669   // Remove all inserted instructions.
2670   for (Instruction *I : reverse(InsertedInstructions)) {
2671 #ifndef NDEBUG
2672     assert(all_of(I->users(),
2673                   [&InsertedSet](Value *U) {
2674                     return InsertedSet.contains(cast<Instruction>(U));
2675                   }) &&
2676            "removed instruction should only be used by instructions inserted "
2677            "during expansion");
2678 #endif
2679     assert(!I->getType()->isVoidTy() &&
2680            "inserted instruction should have non-void types");
2681     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2682     I->eraseFromParent();
2683   }
2684 }
2685