1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 return Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep"); 177 } 178 } 179 // Short-circuit unnecessary bitcasts. 180 if (Op == Instruction::BitCast) { 181 if (V->getType() == Ty) 182 return V; 183 if (CastInst *CI = dyn_cast<CastInst>(V)) { 184 if (CI->getOperand(0)->getType() == Ty) 185 return CI->getOperand(0); 186 } 187 } 188 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 189 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 190 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 191 if (CastInst *CI = dyn_cast<CastInst>(V)) 192 if ((CI->getOpcode() == Instruction::PtrToInt || 193 CI->getOpcode() == Instruction::IntToPtr) && 194 SE.getTypeSizeInBits(CI->getType()) == 195 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 196 return CI->getOperand(0); 197 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 198 if ((CE->getOpcode() == Instruction::PtrToInt || 199 CE->getOpcode() == Instruction::IntToPtr) && 200 SE.getTypeSizeInBits(CE->getType()) == 201 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 202 return CE->getOperand(0); 203 } 204 205 // Fold a cast of a constant. 206 if (Constant *C = dyn_cast<Constant>(V)) 207 return ConstantExpr::getCast(Op, C, Ty); 208 209 // Try to reuse existing cast, or insert one. 210 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 211 } 212 213 /// InsertBinop - Insert the specified binary operator, doing a small amount 214 /// of work to avoid inserting an obviously redundant operation, and hoisting 215 /// to an outer loop when the opportunity is there and it is safe. 216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 217 Value *LHS, Value *RHS, 218 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 219 // Fold a binop with constant operands. 220 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 221 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 222 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 223 return Res; 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 // TODO: Use the Builder, which will make CreateBinOp below fold with 277 // InstSimplifyFolder. 278 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// expandAddToGEP - Expand an addition expression with a pointer type into 289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 290 /// BasicAliasAnalysis and other passes analyze the result. See the rules 291 /// for getelementptr vs. inttoptr in 292 /// http://llvm.org/docs/LangRef.html#pointeraliasing 293 /// for details. 294 /// 295 /// Design note: The correctness of using getelementptr here depends on 296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 297 /// they may introduce pointer arithmetic which may not be safely converted 298 /// into getelementptr. 299 /// 300 /// Design note: It might seem desirable for this function to be more 301 /// loop-aware. If some of the indices are loop-invariant while others 302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 303 /// loop-invariant portions of the overall computation outside the loop. 304 /// However, there are a few reasons this is not done here. Hoisting simple 305 /// arithmetic is a low-level optimization that often isn't very 306 /// important until late in the optimization process. In fact, passes 307 /// like InstructionCombining will combine GEPs, even if it means 308 /// pushing loop-invariant computation down into loops, so even if the 309 /// GEPs were split here, the work would quickly be undone. The 310 /// LoopStrengthReduction pass, which is usually run quite late (and 311 /// after the last InstructionCombining pass), takes care of hoisting 312 /// loop-invariant portions of expressions, after considering what 313 /// can be folded using target addressing modes. 314 /// 315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 316 assert(!isa<Instruction>(V) || 317 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 318 319 Value *Idx = expand(Offset); 320 321 // Fold a GEP with constant operands. 322 if (Constant *CLHS = dyn_cast<Constant>(V)) 323 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 324 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 325 326 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 327 unsigned ScanLimit = 6; 328 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 329 // Scanning starts from the last instruction before the insertion point. 330 BasicBlock::iterator IP = Builder.GetInsertPoint(); 331 if (IP != BlockBegin) { 332 --IP; 333 for (; ScanLimit; --IP, --ScanLimit) { 334 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 335 // generated code. 336 if (isa<DbgInfoIntrinsic>(IP)) 337 ScanLimit++; 338 if (IP->getOpcode() == Instruction::GetElementPtr && 339 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 340 cast<GEPOperator>(&*IP)->getSourceElementType() == 341 Builder.getInt8Ty()) 342 return &*IP; 343 if (IP == BlockBegin) break; 344 } 345 } 346 347 // Save the original insertion point so we can restore it when we're done. 348 SCEVInsertPointGuard Guard(Builder, this); 349 350 // Move the insertion point out of as many loops as we can. 351 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 352 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 353 BasicBlock *Preheader = L->getLoopPreheader(); 354 if (!Preheader) break; 355 356 // Ok, move up a level. 357 Builder.SetInsertPoint(Preheader->getTerminator()); 358 } 359 360 // Emit a GEP. 361 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 362 } 363 364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 365 /// SCEV expansion. If they are nested, this is the most nested. If they are 366 /// neighboring, pick the later. 367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 368 DominatorTree &DT) { 369 if (!A) return B; 370 if (!B) return A; 371 if (A->contains(B)) return B; 372 if (B->contains(A)) return A; 373 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 374 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 375 return A; // Arbitrarily break the tie. 376 } 377 378 /// getRelevantLoop - Get the most relevant loop associated with the given 379 /// expression, according to PickMostRelevantLoop. 380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 381 // Test whether we've already computed the most relevant loop for this SCEV. 382 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 383 if (!Pair.second) 384 return Pair.first->second; 385 386 switch (S->getSCEVType()) { 387 case scConstant: 388 case scVScale: 389 return nullptr; // A constant has no relevant loops. 390 case scTruncate: 391 case scZeroExtend: 392 case scSignExtend: 393 case scPtrToInt: 394 case scAddExpr: 395 case scMulExpr: 396 case scUDivExpr: 397 case scAddRecExpr: 398 case scUMaxExpr: 399 case scSMaxExpr: 400 case scUMinExpr: 401 case scSMinExpr: 402 case scSequentialUMinExpr: { 403 const Loop *L = nullptr; 404 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 405 L = AR->getLoop(); 406 for (const SCEV *Op : S->operands()) 407 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 408 return RelevantLoops[S] = L; 409 } 410 case scUnknown: { 411 const SCEVUnknown *U = cast<SCEVUnknown>(S); 412 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 413 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 414 // A non-instruction has no relevant loops. 415 return nullptr; 416 } 417 case scCouldNotCompute: 418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 419 } 420 llvm_unreachable("Unexpected SCEV type!"); 421 } 422 423 namespace { 424 425 /// LoopCompare - Compare loops by PickMostRelevantLoop. 426 class LoopCompare { 427 DominatorTree &DT; 428 public: 429 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 430 431 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 432 std::pair<const Loop *, const SCEV *> RHS) const { 433 // Keep pointer operands sorted at the end. 434 if (LHS.second->getType()->isPointerTy() != 435 RHS.second->getType()->isPointerTy()) 436 return LHS.second->getType()->isPointerTy(); 437 438 // Compare loops with PickMostRelevantLoop. 439 if (LHS.first != RHS.first) 440 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 441 442 // If one operand is a non-constant negative and the other is not, 443 // put the non-constant negative on the right so that a sub can 444 // be used instead of a negate and add. 445 if (LHS.second->isNonConstantNegative()) { 446 if (!RHS.second->isNonConstantNegative()) 447 return false; 448 } else if (RHS.second->isNonConstantNegative()) 449 return true; 450 451 // Otherwise they are equivalent according to this comparison. 452 return false; 453 } 454 }; 455 456 } 457 458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 459 // Collect all the add operands in a loop, along with their associated loops. 460 // Iterate in reverse so that constants are emitted last, all else equal, and 461 // so that pointer operands are inserted first, which the code below relies on 462 // to form more involved GEPs. 463 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 464 for (const SCEV *Op : reverse(S->operands())) 465 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 466 467 // Sort by loop. Use a stable sort so that constants follow non-constants and 468 // pointer operands precede non-pointer operands. 469 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 470 471 // Emit instructions to add all the operands. Hoist as much as possible 472 // out of loops, and form meaningful getelementptrs where possible. 473 Value *Sum = nullptr; 474 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 475 const Loop *CurLoop = I->first; 476 const SCEV *Op = I->second; 477 if (!Sum) { 478 // This is the first operand. Just expand it. 479 Sum = expand(Op); 480 ++I; 481 continue; 482 } 483 484 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 485 if (isa<PointerType>(Sum->getType())) { 486 // The running sum expression is a pointer. Try to form a getelementptr 487 // at this level with that as the base. 488 SmallVector<const SCEV *, 4> NewOps; 489 for (; I != E && I->first == CurLoop; ++I) { 490 // If the operand is SCEVUnknown and not instructions, peek through 491 // it, to enable more of it to be folded into the GEP. 492 const SCEV *X = I->second; 493 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 494 if (!isa<Instruction>(U->getValue())) 495 X = SE.getSCEV(U->getValue()); 496 NewOps.push_back(X); 497 } 498 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 499 } else if (Op->isNonConstantNegative()) { 500 // Instead of doing a negate and add, just do a subtract. 501 Value *W = expand(SE.getNegativeSCEV(Op)); 502 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 503 /*IsSafeToHoist*/ true); 504 ++I; 505 } else { 506 // A simple add. 507 Value *W = expand(Op); 508 // Canonicalize a constant to the RHS. 509 if (isa<Constant>(Sum)) 510 std::swap(Sum, W); 511 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 512 /*IsSafeToHoist*/ true); 513 ++I; 514 } 515 } 516 517 return Sum; 518 } 519 520 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 521 Type *Ty = S->getType(); 522 523 // Collect all the mul operands in a loop, along with their associated loops. 524 // Iterate in reverse so that constants are emitted last, all else equal. 525 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 526 for (const SCEV *Op : reverse(S->operands())) 527 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 528 529 // Sort by loop. Use a stable sort so that constants follow non-constants. 530 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 531 532 // Emit instructions to mul all the operands. Hoist as much as possible 533 // out of loops. 534 Value *Prod = nullptr; 535 auto I = OpsAndLoops.begin(); 536 537 // Expand the calculation of X pow N in the following manner: 538 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 539 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 540 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 541 auto E = I; 542 // Calculate how many times the same operand from the same loop is included 543 // into this power. 544 uint64_t Exponent = 0; 545 const uint64_t MaxExponent = UINT64_MAX >> 1; 546 // No one sane will ever try to calculate such huge exponents, but if we 547 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 548 // below when the power of 2 exceeds our Exponent, and we want it to be 549 // 1u << 31 at most to not deal with unsigned overflow. 550 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 551 ++Exponent; 552 ++E; 553 } 554 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 555 556 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 557 // that are needed into the result. 558 Value *P = expand(I->second); 559 Value *Result = nullptr; 560 if (Exponent & 1) 561 Result = P; 562 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 563 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 564 /*IsSafeToHoist*/ true); 565 if (Exponent & BinExp) 566 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 567 SCEV::FlagAnyWrap, 568 /*IsSafeToHoist*/ true) 569 : P; 570 } 571 572 I = E; 573 assert(Result && "Nothing was expanded?"); 574 return Result; 575 }; 576 577 while (I != OpsAndLoops.end()) { 578 if (!Prod) { 579 // This is the first operand. Just expand it. 580 Prod = ExpandOpBinPowN(); 581 } else if (I->second->isAllOnesValue()) { 582 // Instead of doing a multiply by negative one, just do a negate. 583 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 584 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 585 ++I; 586 } else { 587 // A simple mul. 588 Value *W = ExpandOpBinPowN(); 589 // Canonicalize a constant to the RHS. 590 if (isa<Constant>(Prod)) std::swap(Prod, W); 591 const APInt *RHS; 592 if (match(W, m_Power2(RHS))) { 593 // Canonicalize Prod*(1<<C) to Prod<<C. 594 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 595 auto NWFlags = S->getNoWrapFlags(); 596 // clear nsw flag if shl will produce poison value. 597 if (RHS->logBase2() == RHS->getBitWidth() - 1) 598 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 599 Prod = InsertBinop(Instruction::Shl, Prod, 600 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 601 /*IsSafeToHoist*/ true); 602 } else { 603 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 604 /*IsSafeToHoist*/ true); 605 } 606 } 607 } 608 609 return Prod; 610 } 611 612 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 613 Value *LHS = expand(S->getLHS()); 614 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 615 const APInt &RHS = SC->getAPInt(); 616 if (RHS.isPowerOf2()) 617 return InsertBinop(Instruction::LShr, LHS, 618 ConstantInt::get(SC->getType(), RHS.logBase2()), 619 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 620 } 621 622 Value *RHS = expand(S->getRHS()); 623 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 624 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 625 } 626 627 /// Determine if this is a well-behaved chain of instructions leading back to 628 /// the PHI. If so, it may be reused by expanded expressions. 629 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 630 const Loop *L) { 631 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 632 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 633 return false; 634 // If any of the operands don't dominate the insert position, bail. 635 // Addrec operands are always loop-invariant, so this can only happen 636 // if there are instructions which haven't been hoisted. 637 if (L == IVIncInsertLoop) { 638 for (Use &Op : llvm::drop_begin(IncV->operands())) 639 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 640 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 641 return false; 642 } 643 // Advance to the next instruction. 644 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 645 if (!IncV) 646 return false; 647 648 if (IncV->mayHaveSideEffects()) 649 return false; 650 651 if (IncV == PN) 652 return true; 653 654 return isNormalAddRecExprPHI(PN, IncV, L); 655 } 656 657 /// getIVIncOperand returns an induction variable increment's induction 658 /// variable operand. 659 /// 660 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 661 /// operands dominate InsertPos. 662 /// 663 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 664 /// simple patterns generated by getAddRecExprPHILiterally and 665 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 666 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 667 Instruction *InsertPos, 668 bool allowScale) { 669 if (IncV == InsertPos) 670 return nullptr; 671 672 switch (IncV->getOpcode()) { 673 default: 674 return nullptr; 675 // Check for a simple Add/Sub or GEP of a loop invariant step. 676 case Instruction::Add: 677 case Instruction::Sub: { 678 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 679 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 680 return dyn_cast<Instruction>(IncV->getOperand(0)); 681 return nullptr; 682 } 683 case Instruction::BitCast: 684 return dyn_cast<Instruction>(IncV->getOperand(0)); 685 case Instruction::GetElementPtr: 686 for (Use &U : llvm::drop_begin(IncV->operands())) { 687 if (isa<Constant>(U)) 688 continue; 689 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 690 if (!SE.DT.dominates(OInst, InsertPos)) 691 return nullptr; 692 } 693 if (allowScale) { 694 // allow any kind of GEP as long as it can be hoisted. 695 continue; 696 } 697 // GEPs produced by SCEVExpander use i8 element type. 698 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 699 return nullptr; 700 break; 701 } 702 return dyn_cast<Instruction>(IncV->getOperand(0)); 703 } 704 } 705 706 /// If the insert point of the current builder or any of the builders on the 707 /// stack of saved builders has 'I' as its insert point, update it to point to 708 /// the instruction after 'I'. This is intended to be used when the instruction 709 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 710 /// different block, the inconsistent insert point (with a mismatched 711 /// Instruction and Block) can lead to an instruction being inserted in a block 712 /// other than its parent. 713 void SCEVExpander::fixupInsertPoints(Instruction *I) { 714 BasicBlock::iterator It(*I); 715 BasicBlock::iterator NewInsertPt = std::next(It); 716 if (Builder.GetInsertPoint() == It) 717 Builder.SetInsertPoint(&*NewInsertPt); 718 for (auto *InsertPtGuard : InsertPointGuards) 719 if (InsertPtGuard->GetInsertPoint() == It) 720 InsertPtGuard->SetInsertPoint(NewInsertPt); 721 } 722 723 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 724 /// it available to other uses in this loop. Recursively hoist any operands, 725 /// until we reach a value that dominates InsertPos. 726 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 727 bool RecomputePoisonFlags) { 728 auto FixupPoisonFlags = [this](Instruction *I) { 729 // Drop flags that are potentially inferred from old context and infer flags 730 // in new context. 731 I->dropPoisonGeneratingFlags(); 732 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 733 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 734 auto *BO = cast<BinaryOperator>(I); 735 BO->setHasNoUnsignedWrap( 736 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 737 BO->setHasNoSignedWrap( 738 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 739 } 740 }; 741 742 if (SE.DT.dominates(IncV, InsertPos)) { 743 if (RecomputePoisonFlags) 744 FixupPoisonFlags(IncV); 745 return true; 746 } 747 748 // InsertPos must itself dominate IncV so that IncV's new position satisfies 749 // its existing users. 750 if (isa<PHINode>(InsertPos) || 751 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 752 return false; 753 754 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 755 return false; 756 757 // Check that the chain of IV operands leading back to Phi can be hoisted. 758 SmallVector<Instruction*, 4> IVIncs; 759 for(;;) { 760 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 761 if (!Oper) 762 return false; 763 // IncV is safe to hoist. 764 IVIncs.push_back(IncV); 765 IncV = Oper; 766 if (SE.DT.dominates(IncV, InsertPos)) 767 break; 768 } 769 for (Instruction *I : llvm::reverse(IVIncs)) { 770 fixupInsertPoints(I); 771 I->moveBefore(InsertPos); 772 if (RecomputePoisonFlags) 773 FixupPoisonFlags(I); 774 } 775 return true; 776 } 777 778 /// Determine if this cyclic phi is in a form that would have been generated by 779 /// LSR. We don't care if the phi was actually expanded in this pass, as long 780 /// as it is in a low-cost form, for example, no implied multiplication. This 781 /// should match any patterns generated by getAddRecExprPHILiterally and 782 /// expandAddtoGEP. 783 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 784 const Loop *L) { 785 for(Instruction *IVOper = IncV; 786 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 787 /*allowScale=*/false));) { 788 if (IVOper == PN) 789 return true; 790 } 791 return false; 792 } 793 794 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 795 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 796 /// need to materialize IV increments elsewhere to handle difficult situations. 797 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 798 bool useSubtract) { 799 Value *IncV; 800 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 801 if (PN->getType()->isPointerTy()) { 802 IncV = expandAddToGEP(SE.getSCEV(StepV), PN); 803 } else { 804 IncV = useSubtract ? 805 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 806 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 807 } 808 return IncV; 809 } 810 811 /// Check whether we can cheaply express the requested SCEV in terms of 812 /// the available PHI SCEV by truncation and/or inversion of the step. 813 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 814 const SCEVAddRecExpr *Phi, 815 const SCEVAddRecExpr *Requested, 816 bool &InvertStep) { 817 // We can't transform to match a pointer PHI. 818 if (Phi->getType()->isPointerTy()) 819 return false; 820 821 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 822 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 823 824 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 825 return false; 826 827 // Try truncate it if necessary. 828 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 829 if (!Phi) 830 return false; 831 832 // Check whether truncation will help. 833 if (Phi == Requested) { 834 InvertStep = false; 835 return true; 836 } 837 838 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 839 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 840 InvertStep = true; 841 return true; 842 } 843 844 return false; 845 } 846 847 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 848 if (!isa<IntegerType>(AR->getType())) 849 return false; 850 851 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 852 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 853 const SCEV *Step = AR->getStepRecurrence(SE); 854 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 855 SE.getSignExtendExpr(AR, WideTy)); 856 const SCEV *ExtendAfterOp = 857 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 858 return ExtendAfterOp == OpAfterExtend; 859 } 860 861 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 862 if (!isa<IntegerType>(AR->getType())) 863 return false; 864 865 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 866 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 867 const SCEV *Step = AR->getStepRecurrence(SE); 868 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 869 SE.getZeroExtendExpr(AR, WideTy)); 870 const SCEV *ExtendAfterOp = 871 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 872 return ExtendAfterOp == OpAfterExtend; 873 } 874 875 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 876 /// the base addrec, which is the addrec without any non-loop-dominating 877 /// values, and return the PHI. 878 PHINode * 879 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 880 const Loop *L, 881 Type *ExpandTy, 882 Type *IntTy, 883 Type *&TruncTy, 884 bool &InvertStep) { 885 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 886 887 // Reuse a previously-inserted PHI, if present. 888 BasicBlock *LatchBlock = L->getLoopLatch(); 889 if (LatchBlock) { 890 PHINode *AddRecPhiMatch = nullptr; 891 Instruction *IncV = nullptr; 892 TruncTy = nullptr; 893 InvertStep = false; 894 895 // Only try partially matching scevs that need truncation and/or 896 // step-inversion if we know this loop is outside the current loop. 897 bool TryNonMatchingSCEV = 898 IVIncInsertLoop && 899 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 900 901 for (PHINode &PN : L->getHeader()->phis()) { 902 if (!SE.isSCEVable(PN.getType())) 903 continue; 904 905 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 906 // PHI has no meaning at all. 907 if (!PN.isComplete()) { 908 SCEV_DEBUG_WITH_TYPE( 909 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 910 continue; 911 } 912 913 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 914 if (!PhiSCEV) 915 continue; 916 917 bool IsMatchingSCEV = PhiSCEV == Normalized; 918 // We only handle truncation and inversion of phi recurrences for the 919 // expanded expression if the expanded expression's loop dominates the 920 // loop we insert to. Check now, so we can bail out early. 921 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 922 continue; 923 924 // TODO: this possibly can be reworked to avoid this cast at all. 925 Instruction *TempIncV = 926 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 927 if (!TempIncV) 928 continue; 929 930 // Check whether we can reuse this PHI node. 931 if (LSRMode) { 932 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 933 continue; 934 } else { 935 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 936 continue; 937 } 938 939 // Stop if we have found an exact match SCEV. 940 if (IsMatchingSCEV) { 941 IncV = TempIncV; 942 TruncTy = nullptr; 943 InvertStep = false; 944 AddRecPhiMatch = &PN; 945 break; 946 } 947 948 // Try whether the phi can be translated into the requested form 949 // (truncated and/or offset by a constant). 950 if ((!TruncTy || InvertStep) && 951 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 952 // Record the phi node. But don't stop we might find an exact match 953 // later. 954 AddRecPhiMatch = &PN; 955 IncV = TempIncV; 956 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 957 } 958 } 959 960 if (AddRecPhiMatch) { 961 // Ok, the add recurrence looks usable. 962 // Remember this PHI, even in post-inc mode. 963 InsertedValues.insert(AddRecPhiMatch); 964 // Remember the increment. 965 rememberInstruction(IncV); 966 // Those values were not actually inserted but re-used. 967 ReusedValues.insert(AddRecPhiMatch); 968 ReusedValues.insert(IncV); 969 return AddRecPhiMatch; 970 } 971 } 972 973 // Save the original insertion point so we can restore it when we're done. 974 SCEVInsertPointGuard Guard(Builder, this); 975 976 // Another AddRec may need to be recursively expanded below. For example, if 977 // this AddRec is quadratic, the StepV may itself be an AddRec in this 978 // loop. Remove this loop from the PostIncLoops set before expanding such 979 // AddRecs. Otherwise, we cannot find a valid position for the step 980 // (i.e. StepV can never dominate its loop header). Ideally, we could do 981 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 982 // so it's not worth implementing SmallPtrSet::swap. 983 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 984 PostIncLoops.clear(); 985 986 // Expand code for the start value into the loop preheader. 987 assert(L->getLoopPreheader() && 988 "Can't expand add recurrences without a loop preheader!"); 989 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 990 L->getLoopPreheader()->getTerminator()); 991 992 // StartV must have been be inserted into L's preheader to dominate the new 993 // phi. 994 assert(!isa<Instruction>(StartV) || 995 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 996 L->getHeader())); 997 998 // Expand code for the step value. Do this before creating the PHI so that PHI 999 // reuse code doesn't see an incomplete PHI. 1000 const SCEV *Step = Normalized->getStepRecurrence(SE); 1001 // If the stride is negative, insert a sub instead of an add for the increment 1002 // (unless it's a constant, because subtracts of constants are canonicalized 1003 // to adds). 1004 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1005 if (useSubtract) 1006 Step = SE.getNegativeSCEV(Step); 1007 // Expand the step somewhere that dominates the loop header. 1008 Value *StepV = 1009 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1010 1011 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1012 // we actually do emit an addition. It does not apply if we emit a 1013 // subtraction. 1014 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1015 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1016 1017 // Create the PHI. 1018 BasicBlock *Header = L->getHeader(); 1019 Builder.SetInsertPoint(Header, Header->begin()); 1020 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1021 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1022 Twine(IVName) + ".iv"); 1023 1024 // Create the step instructions and populate the PHI. 1025 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1026 BasicBlock *Pred = *HPI; 1027 1028 // Add a start value. 1029 if (!L->contains(Pred)) { 1030 PN->addIncoming(StartV, Pred); 1031 continue; 1032 } 1033 1034 // Create a step value and add it to the PHI. 1035 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1036 // instructions at IVIncInsertPos. 1037 Instruction *InsertPos = L == IVIncInsertLoop ? 1038 IVIncInsertPos : Pred->getTerminator(); 1039 Builder.SetInsertPoint(InsertPos); 1040 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1041 1042 if (isa<OverflowingBinaryOperator>(IncV)) { 1043 if (IncrementIsNUW) 1044 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1045 if (IncrementIsNSW) 1046 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1047 } 1048 PN->addIncoming(IncV, Pred); 1049 } 1050 1051 // After expanding subexpressions, restore the PostIncLoops set so the caller 1052 // can ensure that IVIncrement dominates the current uses. 1053 PostIncLoops = SavedPostIncLoops; 1054 1055 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1056 // effective when we are able to use an IV inserted here, so record it. 1057 InsertedValues.insert(PN); 1058 InsertedIVs.push_back(PN); 1059 return PN; 1060 } 1061 1062 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1063 Type *STy = S->getType(); 1064 Type *IntTy = SE.getEffectiveSCEVType(STy); 1065 const Loop *L = S->getLoop(); 1066 1067 // Determine a normalized form of this expression, which is the expression 1068 // before any post-inc adjustment is made. 1069 const SCEVAddRecExpr *Normalized = S; 1070 if (PostIncLoops.count(L)) { 1071 PostIncLoopSet Loops; 1072 Loops.insert(L); 1073 Normalized = cast<SCEVAddRecExpr>( 1074 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1075 } 1076 1077 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1078 const SCEV *Step = Normalized->getStepRecurrence(SE); 1079 assert(SE.properlyDominates(Start, L->getHeader()) && 1080 "Start does not properly dominate loop header"); 1081 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1082 1083 // Expand the core addrec. 1084 Type *ExpandTy = STy; 1085 // We can't use a pointer type for the addrec if the pointer type is 1086 // non-integral. 1087 Type *AddRecPHIExpandTy = 1088 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1089 1090 // In some cases, we decide to reuse an existing phi node but need to truncate 1091 // it and/or invert the step. 1092 Type *TruncTy = nullptr; 1093 bool InvertStep = false; 1094 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1095 IntTy, TruncTy, InvertStep); 1096 1097 // Accommodate post-inc mode, if necessary. 1098 Value *Result; 1099 if (!PostIncLoops.count(L)) 1100 Result = PN; 1101 else { 1102 // In PostInc mode, use the post-incremented value. 1103 BasicBlock *LatchBlock = L->getLoopLatch(); 1104 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1105 Result = PN->getIncomingValueForBlock(LatchBlock); 1106 1107 // We might be introducing a new use of the post-inc IV that is not poison 1108 // safe, in which case we should drop poison generating flags. Only keep 1109 // those flags for which SCEV has proven that they always hold. 1110 if (isa<OverflowingBinaryOperator>(Result)) { 1111 auto *I = cast<Instruction>(Result); 1112 if (!S->hasNoUnsignedWrap()) 1113 I->setHasNoUnsignedWrap(false); 1114 if (!S->hasNoSignedWrap()) 1115 I->setHasNoSignedWrap(false); 1116 } 1117 1118 // For an expansion to use the postinc form, the client must call 1119 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1120 // or dominated by IVIncInsertPos. 1121 if (isa<Instruction>(Result) && 1122 !SE.DT.dominates(cast<Instruction>(Result), 1123 &*Builder.GetInsertPoint())) { 1124 // The induction variable's postinc expansion does not dominate this use. 1125 // IVUsers tries to prevent this case, so it is rare. However, it can 1126 // happen when an IVUser outside the loop is not dominated by the latch 1127 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1128 // all cases. Consider a phi outside whose operand is replaced during 1129 // expansion with the value of the postinc user. Without fundamentally 1130 // changing the way postinc users are tracked, the only remedy is 1131 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1132 // but hopefully expandCodeFor handles that. 1133 bool useSubtract = 1134 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1135 if (useSubtract) 1136 Step = SE.getNegativeSCEV(Step); 1137 Value *StepV; 1138 { 1139 // Expand the step somewhere that dominates the loop header. 1140 SCEVInsertPointGuard Guard(Builder, this); 1141 StepV = 1142 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1143 } 1144 Result = expandIVInc(PN, StepV, L, useSubtract); 1145 } 1146 } 1147 1148 // We have decided to reuse an induction variable of a dominating loop. Apply 1149 // truncation and/or inversion of the step. 1150 if (TruncTy) { 1151 Type *ResTy = Result->getType(); 1152 // Normalize the result type. 1153 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1154 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1155 // Truncate the result. 1156 if (TruncTy != Result->getType()) 1157 Result = Builder.CreateTrunc(Result, TruncTy); 1158 1159 // Invert the result. 1160 if (InvertStep) 1161 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1162 Result); 1163 } 1164 1165 return Result; 1166 } 1167 1168 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1169 // In canonical mode we compute the addrec as an expression of a canonical IV 1170 // using evaluateAtIteration and expand the resulting SCEV expression. This 1171 // way we avoid introducing new IVs to carry on the computation of the addrec 1172 // throughout the loop. 1173 // 1174 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1175 // type wider than the addrec itself. Emitting a canonical IV of the 1176 // proper type might produce non-legal types, for example expanding an i64 1177 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1178 // back to non-canonical mode for nested addrecs. 1179 if (!CanonicalMode || (S->getNumOperands() > 2)) 1180 return expandAddRecExprLiterally(S); 1181 1182 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1183 const Loop *L = S->getLoop(); 1184 1185 // First check for an existing canonical IV in a suitable type. 1186 PHINode *CanonicalIV = nullptr; 1187 if (PHINode *PN = L->getCanonicalInductionVariable()) 1188 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1189 CanonicalIV = PN; 1190 1191 // Rewrite an AddRec in terms of the canonical induction variable, if 1192 // its type is more narrow. 1193 if (CanonicalIV && 1194 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1195 !S->getType()->isPointerTy()) { 1196 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1197 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1198 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1199 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1200 S->getNoWrapFlags(SCEV::FlagNW))); 1201 BasicBlock::iterator NewInsertPt = 1202 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1203 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1204 NewInsertPt); 1205 return V; 1206 } 1207 1208 // {X,+,F} --> X + {0,+,F} 1209 if (!S->getStart()->isZero()) { 1210 if (isa<PointerType>(S->getType())) { 1211 Value *StartV = expand(SE.getPointerBase(S)); 1212 return expandAddToGEP(SE.removePointerBase(S), StartV); 1213 } 1214 1215 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1216 NewOps[0] = SE.getConstant(Ty, 0); 1217 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1218 S->getNoWrapFlags(SCEV::FlagNW)); 1219 1220 // Just do a normal add. Pre-expand the operands to suppress folding. 1221 // 1222 // The LHS and RHS values are factored out of the expand call to make the 1223 // output independent of the argument evaluation order. 1224 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1225 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1226 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1227 } 1228 1229 // If we don't yet have a canonical IV, create one. 1230 if (!CanonicalIV) { 1231 // Create and insert the PHI node for the induction variable in the 1232 // specified loop. 1233 BasicBlock *Header = L->getHeader(); 1234 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1235 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1236 CanonicalIV->insertBefore(Header->begin()); 1237 rememberInstruction(CanonicalIV); 1238 1239 SmallSet<BasicBlock *, 4> PredSeen; 1240 Constant *One = ConstantInt::get(Ty, 1); 1241 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1242 BasicBlock *HP = *HPI; 1243 if (!PredSeen.insert(HP).second) { 1244 // There must be an incoming value for each predecessor, even the 1245 // duplicates! 1246 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1247 continue; 1248 } 1249 1250 if (L->contains(HP)) { 1251 // Insert a unit add instruction right before the terminator 1252 // corresponding to the back-edge. 1253 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1254 "indvar.next", 1255 HP->getTerminator()); 1256 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1257 rememberInstruction(Add); 1258 CanonicalIV->addIncoming(Add, HP); 1259 } else { 1260 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1261 } 1262 } 1263 } 1264 1265 // {0,+,1} --> Insert a canonical induction variable into the loop! 1266 if (S->isAffine() && S->getOperand(1)->isOne()) { 1267 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1268 "IVs with types different from the canonical IV should " 1269 "already have been handled!"); 1270 return CanonicalIV; 1271 } 1272 1273 // {0,+,F} --> {0,+,1} * F 1274 1275 // If this is a simple linear addrec, emit it now as a special case. 1276 if (S->isAffine()) // {0,+,F} --> i*F 1277 return 1278 expand(SE.getTruncateOrNoop( 1279 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1280 SE.getNoopOrAnyExtend(S->getOperand(1), 1281 CanonicalIV->getType())), 1282 Ty)); 1283 1284 // If this is a chain of recurrences, turn it into a closed form, using the 1285 // folders, then expandCodeFor the closed form. This allows the folders to 1286 // simplify the expression without having to build a bunch of special code 1287 // into this folder. 1288 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1289 1290 // Promote S up to the canonical IV type, if the cast is foldable. 1291 const SCEV *NewS = S; 1292 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1293 if (isa<SCEVAddRecExpr>(Ext)) 1294 NewS = Ext; 1295 1296 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1297 1298 // Truncate the result down to the original type, if needed. 1299 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1300 return expand(T); 1301 } 1302 1303 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1304 Value *V = expand(S->getOperand()); 1305 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1306 GetOptimalInsertionPointForCastOf(V)); 1307 } 1308 1309 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1310 Value *V = expand(S->getOperand()); 1311 return Builder.CreateTrunc(V, S->getType()); 1312 } 1313 1314 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1315 Value *V = expand(S->getOperand()); 1316 return Builder.CreateZExt(V, S->getType()); 1317 } 1318 1319 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1320 Value *V = expand(S->getOperand()); 1321 return Builder.CreateSExt(V, S->getType()); 1322 } 1323 1324 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1325 Intrinsic::ID IntrinID, Twine Name, 1326 bool IsSequential) { 1327 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1328 Type *Ty = LHS->getType(); 1329 if (IsSequential) 1330 LHS = Builder.CreateFreeze(LHS); 1331 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1332 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1333 if (IsSequential && i != 0) 1334 RHS = Builder.CreateFreeze(RHS); 1335 Value *Sel; 1336 if (Ty->isIntegerTy()) 1337 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1338 /*FMFSource=*/nullptr, Name); 1339 else { 1340 Value *ICmp = 1341 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1342 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1343 } 1344 LHS = Sel; 1345 } 1346 return LHS; 1347 } 1348 1349 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1350 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1351 } 1352 1353 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1354 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1355 } 1356 1357 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1358 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1359 } 1360 1361 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1362 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1363 } 1364 1365 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1366 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1367 } 1368 1369 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1370 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1371 } 1372 1373 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1374 BasicBlock::iterator IP) { 1375 setInsertPoint(IP); 1376 Value *V = expandCodeFor(SH, Ty); 1377 return V; 1378 } 1379 1380 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1381 // Expand the code for this SCEV. 1382 Value *V = expand(SH); 1383 1384 if (Ty) { 1385 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1386 "non-trivial casts should be done with the SCEVs directly!"); 1387 V = InsertNoopCastOfTo(V, Ty); 1388 } 1389 return V; 1390 } 1391 1392 static bool 1393 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I, 1394 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1395 // If the instruction cannot be poison, it's always safe to reuse. 1396 if (programUndefinedIfPoison(I)) 1397 return true; 1398 1399 // Otherwise, it is possible that I is more poisonous that S. Collect the 1400 // poison-contributors of S, and then check whether I has any additional 1401 // poison-contributors. Poison that is contributed through poison-generating 1402 // flags is handled by dropping those flags instead. 1403 SmallPtrSet<const Value *, 8> PoisonVals; 1404 SE.getPoisonGeneratingValues(PoisonVals, S); 1405 1406 SmallVector<Value *> Worklist; 1407 SmallPtrSet<Value *, 8> Visited; 1408 Worklist.push_back(I); 1409 while (!Worklist.empty()) { 1410 Value *V = Worklist.pop_back_val(); 1411 if (!Visited.insert(V).second) 1412 continue; 1413 1414 // Avoid walking large instruction graphs. 1415 if (Visited.size() > 16) 1416 return false; 1417 1418 // Either the value can't be poison, or the S would also be poison if it 1419 // is. 1420 if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V)) 1421 continue; 1422 1423 auto *I = dyn_cast<Instruction>(V); 1424 if (!I) 1425 return false; 1426 1427 // FIXME: Ignore vscale, even though it technically could be poison. Do this 1428 // because SCEV currently assumes it can't be poison. Remove this special 1429 // case once we proper model when vscale can be poison. 1430 if (auto *II = dyn_cast<IntrinsicInst>(I); 1431 II && II->getIntrinsicID() == Intrinsic::vscale) 1432 continue; 1433 1434 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 1435 return false; 1436 1437 // If the instruction can't create poison, we can recurse to its operands. 1438 if (I->hasPoisonGeneratingFlagsOrMetadata()) 1439 DropPoisonGeneratingInsts.push_back(I); 1440 1441 for (Value *Op : I->operands()) 1442 Worklist.push_back(Op); 1443 } 1444 return true; 1445 } 1446 1447 Value *SCEVExpander::FindValueInExprValueMap( 1448 const SCEV *S, const Instruction *InsertPt, 1449 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1450 // If the expansion is not in CanonicalMode, and the SCEV contains any 1451 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1452 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1453 return nullptr; 1454 1455 // If S is a constant, it may be worse to reuse an existing Value. 1456 if (isa<SCEVConstant>(S)) 1457 return nullptr; 1458 1459 for (Value *V : SE.getSCEVValues(S)) { 1460 Instruction *EntInst = dyn_cast<Instruction>(V); 1461 if (!EntInst) 1462 continue; 1463 1464 // Choose a Value from the set which dominates the InsertPt. 1465 // InsertPt should be inside the Value's parent loop so as not to break 1466 // the LCSSA form. 1467 assert(EntInst->getFunction() == InsertPt->getFunction()); 1468 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1469 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1470 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1471 continue; 1472 1473 // Make sure reusing the instruction is poison-safe. 1474 if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts)) 1475 return V; 1476 DropPoisonGeneratingInsts.clear(); 1477 } 1478 return nullptr; 1479 } 1480 1481 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1482 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1483 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1484 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1485 // the expansion will try to reuse Value from ExprValueMap, and only when it 1486 // fails, expand the SCEV literally. 1487 Value *SCEVExpander::expand(const SCEV *S) { 1488 // Compute an insertion point for this SCEV object. Hoist the instructions 1489 // as far out in the loop nest as possible. 1490 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1491 1492 // We can move insertion point only if there is no div or rem operations 1493 // otherwise we are risky to move it over the check for zero denominator. 1494 auto SafeToHoist = [](const SCEV *S) { 1495 return !SCEVExprContains(S, [](const SCEV *S) { 1496 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1497 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1498 // Division by non-zero constants can be hoisted. 1499 return SC->getValue()->isZero(); 1500 // All other divisions should not be moved as they may be 1501 // divisions by zero and should be kept within the 1502 // conditions of the surrounding loops that guard their 1503 // execution (see PR35406). 1504 return true; 1505 } 1506 return false; 1507 }); 1508 }; 1509 if (SafeToHoist(S)) { 1510 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1511 L = L->getParentLoop()) { 1512 if (SE.isLoopInvariant(S, L)) { 1513 if (!L) break; 1514 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1515 InsertPt = Preheader->getTerminator()->getIterator(); 1516 } else { 1517 // LSR sets the insertion point for AddRec start/step values to the 1518 // block start to simplify value reuse, even though it's an invalid 1519 // position. SCEVExpander must correct for this in all cases. 1520 InsertPt = L->getHeader()->getFirstInsertionPt(); 1521 } 1522 } else { 1523 // If the SCEV is computable at this level, insert it into the header 1524 // after the PHIs (and after any other instructions that we've inserted 1525 // there) so that it is guaranteed to dominate any user inside the loop. 1526 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1527 InsertPt = L->getHeader()->getFirstInsertionPt(); 1528 1529 while (InsertPt != Builder.GetInsertPoint() && 1530 (isInsertedInstruction(&*InsertPt) || 1531 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1532 InsertPt = std::next(InsertPt); 1533 } 1534 break; 1535 } 1536 } 1537 } 1538 1539 // Check to see if we already expanded this here. 1540 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1541 if (I != InsertedExpressions.end()) 1542 return I->second; 1543 1544 SCEVInsertPointGuard Guard(Builder, this); 1545 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1546 1547 // Expand the expression into instructions. 1548 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1549 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1550 if (!V) { 1551 V = visit(S); 1552 V = fixupLCSSAFormFor(V); 1553 } else { 1554 for (Instruction *I : DropPoisonGeneratingInsts) 1555 I->dropPoisonGeneratingFlagsAndMetadata(); 1556 } 1557 // Remember the expanded value for this SCEV at this location. 1558 // 1559 // This is independent of PostIncLoops. The mapped value simply materializes 1560 // the expression at this insertion point. If the mapped value happened to be 1561 // a postinc expansion, it could be reused by a non-postinc user, but only if 1562 // its insertion point was already at the head of the loop. 1563 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1564 return V; 1565 } 1566 1567 void SCEVExpander::rememberInstruction(Value *I) { 1568 auto DoInsert = [this](Value *V) { 1569 if (!PostIncLoops.empty()) 1570 InsertedPostIncValues.insert(V); 1571 else 1572 InsertedValues.insert(V); 1573 }; 1574 DoInsert(I); 1575 } 1576 1577 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1578 /// replace them with their most canonical representative. Return the number of 1579 /// phis eliminated. 1580 /// 1581 /// This does not depend on any SCEVExpander state but should be used in 1582 /// the same context that SCEVExpander is used. 1583 unsigned 1584 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1585 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1586 const TargetTransformInfo *TTI) { 1587 // Find integer phis in order of increasing width. 1588 SmallVector<PHINode*, 8> Phis; 1589 for (PHINode &PN : L->getHeader()->phis()) 1590 Phis.push_back(&PN); 1591 1592 if (TTI) 1593 // Use stable_sort to preserve order of equivalent PHIs, so the order 1594 // of the sorted Phis is the same from run to run on the same loop. 1595 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1596 // Put pointers at the back and make sure pointer < pointer = false. 1597 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1598 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1599 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1600 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1601 }); 1602 1603 unsigned NumElim = 0; 1604 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1605 // Process phis from wide to narrow. Map wide phis to their truncation 1606 // so narrow phis can reuse them. 1607 for (PHINode *Phi : Phis) { 1608 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1609 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1610 return V; 1611 if (!SE.isSCEVable(PN->getType())) 1612 return nullptr; 1613 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1614 if (!Const) 1615 return nullptr; 1616 return Const->getValue(); 1617 }; 1618 1619 // Fold constant phis. They may be congruent to other constant phis and 1620 // would confuse the logic below that expects proper IVs. 1621 if (Value *V = SimplifyPHINode(Phi)) { 1622 if (V->getType() != Phi->getType()) 1623 continue; 1624 SE.forgetValue(Phi); 1625 Phi->replaceAllUsesWith(V); 1626 DeadInsts.emplace_back(Phi); 1627 ++NumElim; 1628 SCEV_DEBUG_WITH_TYPE(DebugType, 1629 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1630 << '\n'); 1631 continue; 1632 } 1633 1634 if (!SE.isSCEVable(Phi->getType())) 1635 continue; 1636 1637 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1638 if (!OrigPhiRef) { 1639 OrigPhiRef = Phi; 1640 if (Phi->getType()->isIntegerTy() && TTI && 1641 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1642 // Make sure we only rewrite using simple induction variables; 1643 // otherwise, we can make the trip count of a loop unanalyzable 1644 // to SCEV. 1645 const SCEV *PhiExpr = SE.getSCEV(Phi); 1646 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1647 // This phi can be freely truncated to the narrowest phi type. Map the 1648 // truncated expression to it so it will be reused for narrow types. 1649 const SCEV *TruncExpr = 1650 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1651 ExprToIVMap[TruncExpr] = Phi; 1652 } 1653 } 1654 continue; 1655 } 1656 1657 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1658 // sense. 1659 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1660 continue; 1661 1662 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1663 Instruction *OrigInc = dyn_cast<Instruction>( 1664 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1665 Instruction *IsomorphicInc = 1666 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1667 1668 if (OrigInc && IsomorphicInc) { 1669 // If this phi has the same width but is more canonical, replace the 1670 // original with it. As part of the "more canonical" determination, 1671 // respect a prior decision to use an IV chain. 1672 if (OrigPhiRef->getType() == Phi->getType() && 1673 !(ChainedPhis.count(Phi) || 1674 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1675 (ChainedPhis.count(Phi) || 1676 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1677 std::swap(OrigPhiRef, Phi); 1678 std::swap(OrigInc, IsomorphicInc); 1679 } 1680 // Replacing the congruent phi is sufficient because acyclic 1681 // redundancy elimination, CSE/GVN, should handle the 1682 // rest. However, once SCEV proves that a phi is congruent, 1683 // it's often the head of an IV user cycle that is isomorphic 1684 // with the original phi. It's worth eagerly cleaning up the 1685 // common case of a single IV increment so that DeleteDeadPHIs 1686 // can remove cycles that had postinc uses. 1687 // Because we may potentially introduce a new use of OrigIV that didn't 1688 // exist before at this point, its poison flags need readjustment. 1689 const SCEV *TruncExpr = 1690 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1691 if (OrigInc != IsomorphicInc && 1692 TruncExpr == SE.getSCEV(IsomorphicInc) && 1693 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1694 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1695 SCEV_DEBUG_WITH_TYPE( 1696 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1697 << *IsomorphicInc << '\n'); 1698 Value *NewInc = OrigInc; 1699 if (OrigInc->getType() != IsomorphicInc->getType()) { 1700 BasicBlock::iterator IP; 1701 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1702 IP = PN->getParent()->getFirstInsertionPt(); 1703 else 1704 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1705 1706 IRBuilder<> Builder(IP->getParent(), IP); 1707 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1708 NewInc = Builder.CreateTruncOrBitCast( 1709 OrigInc, IsomorphicInc->getType(), IVName); 1710 } 1711 IsomorphicInc->replaceAllUsesWith(NewInc); 1712 DeadInsts.emplace_back(IsomorphicInc); 1713 } 1714 } 1715 } 1716 SCEV_DEBUG_WITH_TYPE(DebugType, 1717 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1718 << '\n'); 1719 SCEV_DEBUG_WITH_TYPE( 1720 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1721 ++NumElim; 1722 Value *NewIV = OrigPhiRef; 1723 if (OrigPhiRef->getType() != Phi->getType()) { 1724 IRBuilder<> Builder(L->getHeader(), 1725 L->getHeader()->getFirstInsertionPt()); 1726 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1727 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1728 } 1729 Phi->replaceAllUsesWith(NewIV); 1730 DeadInsts.emplace_back(Phi); 1731 } 1732 return NumElim; 1733 } 1734 1735 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1736 const Instruction *At, 1737 Loop *L) { 1738 using namespace llvm::PatternMatch; 1739 1740 SmallVector<BasicBlock *, 4> ExitingBlocks; 1741 L->getExitingBlocks(ExitingBlocks); 1742 1743 // Look for suitable value in simple conditions at the loop exits. 1744 for (BasicBlock *BB : ExitingBlocks) { 1745 ICmpInst::Predicate Pred; 1746 Instruction *LHS, *RHS; 1747 1748 if (!match(BB->getTerminator(), 1749 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1750 m_BasicBlock(), m_BasicBlock()))) 1751 continue; 1752 1753 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1754 return true; 1755 1756 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1757 return true; 1758 } 1759 1760 // Use expand's logic which is used for reusing a previous Value in 1761 // ExprValueMap. Note that we don't currently model the cost of 1762 // needing to drop poison generating flags on the instruction if we 1763 // want to reuse it. We effectively assume that has zero cost. 1764 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1765 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1766 } 1767 1768 template<typename T> static InstructionCost costAndCollectOperands( 1769 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1770 TargetTransformInfo::TargetCostKind CostKind, 1771 SmallVectorImpl<SCEVOperand> &Worklist) { 1772 1773 const T *S = cast<T>(WorkItem.S); 1774 InstructionCost Cost = 0; 1775 // Object to help map SCEV operands to expanded IR instructions. 1776 struct OperationIndices { 1777 OperationIndices(unsigned Opc, size_t min, size_t max) : 1778 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1779 unsigned Opcode; 1780 size_t MinIdx; 1781 size_t MaxIdx; 1782 }; 1783 1784 // Collect the operations of all the instructions that will be needed to 1785 // expand the SCEVExpr. This is so that when we come to cost the operands, 1786 // we know what the generated user(s) will be. 1787 SmallVector<OperationIndices, 2> Operations; 1788 1789 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1790 Operations.emplace_back(Opcode, 0, 0); 1791 return TTI.getCastInstrCost(Opcode, S->getType(), 1792 S->getOperand(0)->getType(), 1793 TTI::CastContextHint::None, CostKind); 1794 }; 1795 1796 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1797 unsigned MinIdx = 0, 1798 unsigned MaxIdx = 1) -> InstructionCost { 1799 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1800 return NumRequired * 1801 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1802 }; 1803 1804 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1805 unsigned MaxIdx) -> InstructionCost { 1806 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1807 Type *OpType = S->getType(); 1808 return NumRequired * TTI.getCmpSelInstrCost( 1809 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1810 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1811 }; 1812 1813 switch (S->getSCEVType()) { 1814 case scCouldNotCompute: 1815 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1816 case scUnknown: 1817 case scConstant: 1818 case scVScale: 1819 return 0; 1820 case scPtrToInt: 1821 Cost = CastCost(Instruction::PtrToInt); 1822 break; 1823 case scTruncate: 1824 Cost = CastCost(Instruction::Trunc); 1825 break; 1826 case scZeroExtend: 1827 Cost = CastCost(Instruction::ZExt); 1828 break; 1829 case scSignExtend: 1830 Cost = CastCost(Instruction::SExt); 1831 break; 1832 case scUDivExpr: { 1833 unsigned Opcode = Instruction::UDiv; 1834 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1835 if (SC->getAPInt().isPowerOf2()) 1836 Opcode = Instruction::LShr; 1837 Cost = ArithCost(Opcode, 1); 1838 break; 1839 } 1840 case scAddExpr: 1841 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1842 break; 1843 case scMulExpr: 1844 // TODO: this is a very pessimistic cost modelling for Mul, 1845 // because of Bin Pow algorithm actually used by the expander, 1846 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1847 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1848 break; 1849 case scSMaxExpr: 1850 case scUMaxExpr: 1851 case scSMinExpr: 1852 case scUMinExpr: 1853 case scSequentialUMinExpr: { 1854 // FIXME: should this ask the cost for Intrinsic's? 1855 // The reduction tree. 1856 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1857 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1858 switch (S->getSCEVType()) { 1859 case scSequentialUMinExpr: { 1860 // The safety net against poison. 1861 // FIXME: this is broken. 1862 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1863 Cost += ArithCost(Instruction::Or, 1864 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1865 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1866 break; 1867 } 1868 default: 1869 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1870 "Unhandled SCEV expression type?"); 1871 break; 1872 } 1873 break; 1874 } 1875 case scAddRecExpr: { 1876 // In this polynominal, we may have some zero operands, and we shouldn't 1877 // really charge for those. So how many non-zero coefficients are there? 1878 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1879 return !Op->isZero(); 1880 }); 1881 1882 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1883 assert(!(*std::prev(S->operands().end()))->isZero() && 1884 "Last operand should not be zero"); 1885 1886 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1887 int NumNonZeroDegreeNonOneTerms = 1888 llvm::count_if(S->operands(), [](const SCEV *Op) { 1889 auto *SConst = dyn_cast<SCEVConstant>(Op); 1890 return !SConst || SConst->getAPInt().ugt(1); 1891 }); 1892 1893 // Much like with normal add expr, the polynominal will require 1894 // one less addition than the number of it's terms. 1895 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1896 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1897 // Here, *each* one of those will require a multiplication. 1898 InstructionCost MulCost = 1899 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1900 Cost = AddCost + MulCost; 1901 1902 // What is the degree of this polynominal? 1903 int PolyDegree = S->getNumOperands() - 1; 1904 assert(PolyDegree >= 1 && "Should be at least affine."); 1905 1906 // The final term will be: 1907 // Op_{PolyDegree} * x ^ {PolyDegree} 1908 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1909 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1910 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1911 // FIXME: this is conservatively correct, but might be overly pessimistic. 1912 Cost += MulCost * (PolyDegree - 1); 1913 break; 1914 } 1915 } 1916 1917 for (auto &CostOp : Operations) { 1918 for (auto SCEVOp : enumerate(S->operands())) { 1919 // Clamp the index to account for multiple IR operations being chained. 1920 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1921 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1922 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1923 } 1924 } 1925 return Cost; 1926 } 1927 1928 bool SCEVExpander::isHighCostExpansionHelper( 1929 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1930 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1931 SmallPtrSetImpl<const SCEV *> &Processed, 1932 SmallVectorImpl<SCEVOperand> &Worklist) { 1933 if (Cost > Budget) 1934 return true; // Already run out of budget, give up. 1935 1936 const SCEV *S = WorkItem.S; 1937 // Was the cost of expansion of this expression already accounted for? 1938 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1939 return false; // We have already accounted for this expression. 1940 1941 // If we can find an existing value for this scev available at the point "At" 1942 // then consider the expression cheap. 1943 if (hasRelatedExistingExpansion(S, &At, L)) 1944 return false; // Consider the expression to be free. 1945 1946 TargetTransformInfo::TargetCostKind CostKind = 1947 L->getHeader()->getParent()->hasMinSize() 1948 ? TargetTransformInfo::TCK_CodeSize 1949 : TargetTransformInfo::TCK_RecipThroughput; 1950 1951 switch (S->getSCEVType()) { 1952 case scCouldNotCompute: 1953 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1954 case scUnknown: 1955 case scVScale: 1956 // Assume to be zero-cost. 1957 return false; 1958 case scConstant: { 1959 // Only evalulate the costs of constants when optimizing for size. 1960 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1961 return false; 1962 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1963 Type *Ty = S->getType(); 1964 Cost += TTI.getIntImmCostInst( 1965 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1966 return Cost > Budget; 1967 } 1968 case scTruncate: 1969 case scPtrToInt: 1970 case scZeroExtend: 1971 case scSignExtend: { 1972 Cost += 1973 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 1974 return false; // Will answer upon next entry into this function. 1975 } 1976 case scUDivExpr: { 1977 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 1978 // HowManyLessThans produced to compute a precise expression, rather than a 1979 // UDiv from the user's code. If we can't find a UDiv in the code with some 1980 // simple searching, we need to account for it's cost. 1981 1982 // At the beginning of this function we already tried to find existing 1983 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 1984 // pattern involving division. This is just a simple search heuristic. 1985 if (hasRelatedExistingExpansion( 1986 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 1987 return false; // Consider it to be free. 1988 1989 Cost += 1990 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 1991 return false; // Will answer upon next entry into this function. 1992 } 1993 case scAddExpr: 1994 case scMulExpr: 1995 case scUMaxExpr: 1996 case scSMaxExpr: 1997 case scUMinExpr: 1998 case scSMinExpr: 1999 case scSequentialUMinExpr: { 2000 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2001 "Nary expr should have more than 1 operand."); 2002 // The simple nary expr will require one less op (or pair of ops) 2003 // than the number of it's terms. 2004 Cost += 2005 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2006 return Cost > Budget; 2007 } 2008 case scAddRecExpr: { 2009 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2010 "Polynomial should be at least linear"); 2011 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2012 WorkItem, TTI, CostKind, Worklist); 2013 return Cost > Budget; 2014 } 2015 } 2016 llvm_unreachable("Unknown SCEV kind!"); 2017 } 2018 2019 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2020 Instruction *IP) { 2021 assert(IP); 2022 switch (Pred->getKind()) { 2023 case SCEVPredicate::P_Union: 2024 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2025 case SCEVPredicate::P_Compare: 2026 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2027 case SCEVPredicate::P_Wrap: { 2028 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2029 return expandWrapPredicate(AddRecPred, IP); 2030 } 2031 } 2032 llvm_unreachable("Unknown SCEV predicate type"); 2033 } 2034 2035 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2036 Instruction *IP) { 2037 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2038 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2039 2040 Builder.SetInsertPoint(IP); 2041 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2042 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2043 return I; 2044 } 2045 2046 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2047 Instruction *Loc, bool Signed) { 2048 assert(AR->isAffine() && "Cannot generate RT check for " 2049 "non-affine expression"); 2050 2051 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2052 SmallVector<const SCEVPredicate *, 4> Pred; 2053 const SCEV *ExitCount = 2054 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2055 2056 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2057 2058 const SCEV *Step = AR->getStepRecurrence(SE); 2059 const SCEV *Start = AR->getStart(); 2060 2061 Type *ARTy = AR->getType(); 2062 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2063 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2064 2065 // The expression {Start,+,Step} has nusw/nssw if 2066 // Step < 0, Start - |Step| * Backedge <= Start 2067 // Step >= 0, Start + |Step| * Backedge > Start 2068 // and |Step| * Backedge doesn't unsigned overflow. 2069 2070 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2071 Builder.SetInsertPoint(Loc); 2072 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2073 2074 IntegerType *Ty = 2075 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2076 2077 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2078 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2079 Value *StartValue = expandCodeFor(Start, ARTy, Loc); 2080 2081 ConstantInt *Zero = 2082 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2083 2084 Builder.SetInsertPoint(Loc); 2085 // Compute |Step| 2086 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2087 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2088 2089 // Compute |Step| * Backedge 2090 // Compute: 2091 // 1. Start + |Step| * Backedge < Start 2092 // 2. Start - |Step| * Backedge > Start 2093 // 2094 // And select either 1. or 2. depending on whether step is positive or 2095 // negative. If Step is known to be positive or negative, only create 2096 // either 1. or 2. 2097 auto ComputeEndCheck = [&]() -> Value * { 2098 // Checking <u 0 is always false. 2099 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2100 return ConstantInt::getFalse(Loc->getContext()); 2101 2102 // Get the backedge taken count and truncate or extended to the AR type. 2103 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2104 2105 Value *MulV, *OfMul; 2106 if (Step->isOne()) { 2107 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2108 // needed, there is never an overflow, so to avoid artificially inflating 2109 // the cost of the check, directly emit the optimized IR. 2110 MulV = TruncTripCount; 2111 OfMul = ConstantInt::getFalse(MulV->getContext()); 2112 } else { 2113 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2114 Intrinsic::umul_with_overflow, Ty); 2115 CallInst *Mul = 2116 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2117 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2118 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2119 } 2120 2121 Value *Add = nullptr, *Sub = nullptr; 2122 bool NeedPosCheck = !SE.isKnownNegative(Step); 2123 bool NeedNegCheck = !SE.isKnownPositive(Step); 2124 2125 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2126 StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy); 2127 Value *NegMulV = Builder.CreateNeg(MulV); 2128 if (NeedPosCheck) 2129 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2130 if (NeedNegCheck) 2131 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2132 } else { 2133 if (NeedPosCheck) 2134 Add = Builder.CreateAdd(StartValue, MulV); 2135 if (NeedNegCheck) 2136 Sub = Builder.CreateSub(StartValue, MulV); 2137 } 2138 2139 Value *EndCompareLT = nullptr; 2140 Value *EndCompareGT = nullptr; 2141 Value *EndCheck = nullptr; 2142 if (NeedPosCheck) 2143 EndCheck = EndCompareLT = Builder.CreateICmp( 2144 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2145 if (NeedNegCheck) 2146 EndCheck = EndCompareGT = Builder.CreateICmp( 2147 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2148 if (NeedPosCheck && NeedNegCheck) { 2149 // Select the answer based on the sign of Step. 2150 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2151 } 2152 return Builder.CreateOr(EndCheck, OfMul); 2153 }; 2154 Value *EndCheck = ComputeEndCheck(); 2155 2156 // If the backedge taken count type is larger than the AR type, 2157 // check that we don't drop any bits by truncating it. If we are 2158 // dropping bits, then we have overflow (unless the step is zero). 2159 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2160 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2161 auto *BackedgeCheck = 2162 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2163 ConstantInt::get(Loc->getContext(), MaxVal)); 2164 BackedgeCheck = Builder.CreateAnd( 2165 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2166 2167 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2168 } 2169 2170 return EndCheck; 2171 } 2172 2173 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2174 Instruction *IP) { 2175 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2176 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2177 2178 // Add a check for NUSW 2179 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2180 NUSWCheck = generateOverflowCheck(A, IP, false); 2181 2182 // Add a check for NSSW 2183 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2184 NSSWCheck = generateOverflowCheck(A, IP, true); 2185 2186 if (NUSWCheck && NSSWCheck) 2187 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2188 2189 if (NUSWCheck) 2190 return NUSWCheck; 2191 2192 if (NSSWCheck) 2193 return NSSWCheck; 2194 2195 return ConstantInt::getFalse(IP->getContext()); 2196 } 2197 2198 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2199 Instruction *IP) { 2200 // Loop over all checks in this set. 2201 SmallVector<Value *> Checks; 2202 for (const auto *Pred : Union->getPredicates()) { 2203 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2204 Builder.SetInsertPoint(IP); 2205 } 2206 2207 if (Checks.empty()) 2208 return ConstantInt::getFalse(IP->getContext()); 2209 return Builder.CreateOr(Checks); 2210 } 2211 2212 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2213 auto *DefI = dyn_cast<Instruction>(V); 2214 if (!PreserveLCSSA || !DefI) 2215 return V; 2216 2217 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2218 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2219 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2220 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2221 return V; 2222 2223 // Create a temporary instruction to at the current insertion point, so we 2224 // can hand it off to the helper to create LCSSA PHIs if required for the 2225 // new use. 2226 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2227 // would accept a insertion point and return an LCSSA phi for that 2228 // insertion point, so there is no need to insert & remove the temporary 2229 // instruction. 2230 Type *ToTy; 2231 if (DefI->getType()->isIntegerTy()) 2232 ToTy = PointerType::get(DefI->getContext(), 0); 2233 else 2234 ToTy = Type::getInt32Ty(DefI->getContext()); 2235 Instruction *User = 2236 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2237 auto RemoveUserOnExit = 2238 make_scope_exit([User]() { User->eraseFromParent(); }); 2239 2240 SmallVector<Instruction *, 1> ToUpdate; 2241 ToUpdate.push_back(DefI); 2242 SmallVector<PHINode *, 16> PHIsToRemove; 2243 SmallVector<PHINode *, 16> InsertedPHIs; 2244 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2245 &InsertedPHIs); 2246 for (PHINode *PN : InsertedPHIs) 2247 rememberInstruction(PN); 2248 for (PHINode *PN : PHIsToRemove) { 2249 if (!PN->use_empty()) 2250 continue; 2251 InsertedValues.erase(PN); 2252 InsertedPostIncValues.erase(PN); 2253 PN->eraseFromParent(); 2254 } 2255 2256 return User->getOperand(0); 2257 } 2258 2259 namespace { 2260 // Search for a SCEV subexpression that is not safe to expand. Any expression 2261 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2262 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2263 // instruction, but the important thing is that we prove the denominator is 2264 // nonzero before expansion. 2265 // 2266 // IVUsers already checks that IV-derived expressions are safe. So this check is 2267 // only needed when the expression includes some subexpression that is not IV 2268 // derived. 2269 // 2270 // Currently, we only allow division by a value provably non-zero here. 2271 // 2272 // We cannot generally expand recurrences unless the step dominates the loop 2273 // header. The expander handles the special case of affine recurrences by 2274 // scaling the recurrence outside the loop, but this technique isn't generally 2275 // applicable. Expanding a nested recurrence outside a loop requires computing 2276 // binomial coefficients. This could be done, but the recurrence has to be in a 2277 // perfectly reduced form, which can't be guaranteed. 2278 struct SCEVFindUnsafe { 2279 ScalarEvolution &SE; 2280 bool CanonicalMode; 2281 bool IsUnsafe = false; 2282 2283 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2284 : SE(SE), CanonicalMode(CanonicalMode) {} 2285 2286 bool follow(const SCEV *S) { 2287 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2288 if (!SE.isKnownNonZero(D->getRHS())) { 2289 IsUnsafe = true; 2290 return false; 2291 } 2292 } 2293 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2294 // For non-affine addrecs or in non-canonical mode we need a preheader 2295 // to insert into. 2296 if (!AR->getLoop()->getLoopPreheader() && 2297 (!CanonicalMode || !AR->isAffine())) { 2298 IsUnsafe = true; 2299 return false; 2300 } 2301 } 2302 return true; 2303 } 2304 bool isDone() const { return IsUnsafe; } 2305 }; 2306 } // namespace 2307 2308 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2309 SCEVFindUnsafe Search(SE, CanonicalMode); 2310 visitAll(S, Search); 2311 return !Search.IsUnsafe; 2312 } 2313 2314 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2315 const Instruction *InsertionPoint) const { 2316 if (!isSafeToExpand(S)) 2317 return false; 2318 // We have to prove that the expanded site of S dominates InsertionPoint. 2319 // This is easy when not in the same block, but hard when S is an instruction 2320 // to be expanded somewhere inside the same block as our insertion point. 2321 // What we really need here is something analogous to an OrderedBasicBlock, 2322 // but for the moment, we paper over the problem by handling two common and 2323 // cheap to check cases. 2324 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2325 return true; 2326 if (SE.dominates(S, InsertionPoint->getParent())) { 2327 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2328 return true; 2329 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2330 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2331 return true; 2332 } 2333 return false; 2334 } 2335 2336 void SCEVExpanderCleaner::cleanup() { 2337 // Result is used, nothing to remove. 2338 if (ResultUsed) 2339 return; 2340 2341 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2342 #ifndef NDEBUG 2343 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2344 InsertedInstructions.end()); 2345 (void)InsertedSet; 2346 #endif 2347 // Remove sets with value handles. 2348 Expander.clear(); 2349 2350 // Remove all inserted instructions. 2351 for (Instruction *I : reverse(InsertedInstructions)) { 2352 #ifndef NDEBUG 2353 assert(all_of(I->users(), 2354 [&InsertedSet](Value *U) { 2355 return InsertedSet.contains(cast<Instruction>(U)); 2356 }) && 2357 "removed instruction should only be used by instructions inserted " 2358 "during expansion"); 2359 #endif 2360 assert(!I->getType()->isVoidTy() && 2361 "inserted instruction should have non-void types"); 2362 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2363 I->eraseFromParent(); 2364 } 2365 } 2366