1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 32 #else 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 34 #endif 35 36 using namespace llvm; 37 38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 39 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 40 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 41 "controls the budget that is considered cheap (default = 4)")); 42 43 using namespace PatternMatch; 44 45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 47 /// creating a new one. 48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 49 Instruction::CastOps Op, 50 BasicBlock::iterator IP) { 51 // This function must be called with the builder having a valid insertion 52 // point. It doesn't need to be the actual IP where the uses of the returned 53 // cast will be added, but it must dominate such IP. 54 // We use this precondition to produce a cast that will dominate all its 55 // uses. In particular, this is crucial for the case where the builder's 56 // insertion point *is* the point where we were asked to put the cast. 57 // Since we don't know the builder's insertion point is actually 58 // where the uses will be added (only that it dominates it), we are 59 // not allowed to move it. 60 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 61 62 Value *Ret = nullptr; 63 64 // Check to see if there is already a cast! 65 for (User *U : V->users()) { 66 if (U->getType() != Ty) 67 continue; 68 CastInst *CI = dyn_cast<CastInst>(U); 69 if (!CI || CI->getOpcode() != Op) 70 continue; 71 72 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 73 // the cast must also properly dominate the Builder's insertion point. 74 if (IP->getParent() == CI->getParent() && &*BIP != CI && 75 (&*IP == CI || CI->comesBefore(&*IP))) { 76 Ret = CI; 77 break; 78 } 79 } 80 81 // Create a new cast. 82 if (!Ret) { 83 SCEVInsertPointGuard Guard(Builder, this); 84 Builder.SetInsertPoint(&*IP); 85 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 86 } 87 88 // We assert at the end of the function since IP might point to an 89 // instruction with different dominance properties than a cast 90 // (an invoke for example) and not dominate BIP (but the cast does). 91 assert(!isa<Instruction>(Ret) || 92 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 93 94 return Ret; 95 } 96 97 BasicBlock::iterator 98 SCEVExpander::findInsertPointAfter(Instruction *I, 99 Instruction *MustDominate) const { 100 BasicBlock::iterator IP = ++I->getIterator(); 101 if (auto *II = dyn_cast<InvokeInst>(I)) 102 IP = II->getNormalDest()->begin(); 103 104 while (isa<PHINode>(IP)) 105 ++IP; 106 107 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 108 ++IP; 109 } else if (isa<CatchSwitchInst>(IP)) { 110 IP = MustDominate->getParent()->getFirstInsertionPt(); 111 } else { 112 assert(!IP->isEHPad() && "unexpected eh pad!"); 113 } 114 115 // Adjust insert point to be after instructions inserted by the expander, so 116 // we can re-use already inserted instructions. Avoid skipping past the 117 // original \p MustDominate, in case it is an inserted instruction. 118 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 119 ++IP; 120 121 return IP; 122 } 123 124 BasicBlock::iterator 125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 126 // Cast the argument at the beginning of the entry block, after 127 // any bitcasts of other arguments. 128 if (Argument *A = dyn_cast<Argument>(V)) { 129 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 130 while ((isa<BitCastInst>(IP) && 131 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 132 cast<BitCastInst>(IP)->getOperand(0) != A) || 133 isa<DbgInfoIntrinsic>(IP)) 134 ++IP; 135 return IP; 136 } 137 138 // Cast the instruction immediately after the instruction. 139 if (Instruction *I = dyn_cast<Instruction>(V)) 140 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 141 142 // Otherwise, this must be some kind of a constant, 143 // so let's plop this cast into the function's entry block. 144 assert(isa<Constant>(V) && 145 "Expected the cast argument to be a global/constant"); 146 return Builder.GetInsertBlock() 147 ->getParent() 148 ->getEntryBlock() 149 .getFirstInsertionPt(); 150 } 151 152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 153 /// which must be possible with a noop cast, doing what we can to share 154 /// the casts. 155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 156 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 157 assert((Op == Instruction::BitCast || 158 Op == Instruction::PtrToInt || 159 Op == Instruction::IntToPtr) && 160 "InsertNoopCastOfTo cannot perform non-noop casts!"); 161 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 162 "InsertNoopCastOfTo cannot change sizes!"); 163 164 // inttoptr only works for integral pointers. For non-integral pointers, we 165 // can create a GEP on i8* null with the integral value as index. Note that 166 // it is safe to use GEP of null instead of inttoptr here, because only 167 // expressions already based on a GEP of null should be converted to pointers 168 // during expansion. 169 if (Op == Instruction::IntToPtr) { 170 auto *PtrTy = cast<PointerType>(Ty); 171 if (DL.isNonIntegralPointerType(PtrTy)) { 172 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 auto *GEP = Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 177 return Builder.CreateBitCast(GEP, Ty); 178 } 179 } 180 // Short-circuit unnecessary bitcasts. 181 if (Op == Instruction::BitCast) { 182 if (V->getType() == Ty) 183 return V; 184 if (CastInst *CI = dyn_cast<CastInst>(V)) { 185 if (CI->getOperand(0)->getType() == Ty) 186 return CI->getOperand(0); 187 } 188 } 189 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 190 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 192 if (CastInst *CI = dyn_cast<CastInst>(V)) 193 if ((CI->getOpcode() == Instruction::PtrToInt || 194 CI->getOpcode() == Instruction::IntToPtr) && 195 SE.getTypeSizeInBits(CI->getType()) == 196 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 197 return CI->getOperand(0); 198 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 199 if ((CE->getOpcode() == Instruction::PtrToInt || 200 CE->getOpcode() == Instruction::IntToPtr) && 201 SE.getTypeSizeInBits(CE->getType()) == 202 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 203 return CE->getOperand(0); 204 } 205 206 // Fold a cast of a constant. 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return ConstantExpr::getCast(Op, C, Ty); 209 210 // Try to reuse existing cast, or insert one. 211 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 212 } 213 214 /// InsertBinop - Insert the specified binary operator, doing a small amount 215 /// of work to avoid inserting an obviously redundant operation, and hoisting 216 /// to an outer loop when the opportunity is there and it is safe. 217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 218 Value *LHS, Value *RHS, 219 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 220 // Fold a binop with constant operands. 221 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 222 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 224 return Res; 225 226 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 227 unsigned ScanLimit = 6; 228 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 229 // Scanning starts from the last instruction before the insertion point. 230 BasicBlock::iterator IP = Builder.GetInsertPoint(); 231 if (IP != BlockBegin) { 232 --IP; 233 for (; ScanLimit; --IP, --ScanLimit) { 234 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 235 // generated code. 236 if (isa<DbgInfoIntrinsic>(IP)) 237 ScanLimit++; 238 239 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 240 // Ensure that no-wrap flags match. 241 if (isa<OverflowingBinaryOperator>(I)) { 242 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 243 return true; 244 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 245 return true; 246 } 247 // Conservatively, do not use any instruction which has any of exact 248 // flags installed. 249 if (isa<PossiblyExactOperator>(I) && I->isExact()) 250 return true; 251 return false; 252 }; 253 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 254 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 255 return &*IP; 256 if (IP == BlockBegin) break; 257 } 258 } 259 260 // Save the original insertion point so we can restore it when we're done. 261 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 262 SCEVInsertPointGuard Guard(Builder, this); 263 264 if (IsSafeToHoist) { 265 // Move the insertion point out of as many loops as we can. 266 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 267 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 268 BasicBlock *Preheader = L->getLoopPreheader(); 269 if (!Preheader) break; 270 271 // Ok, move up a level. 272 Builder.SetInsertPoint(Preheader->getTerminator()); 273 } 274 } 275 276 // If we haven't found this binop, insert it. 277 // TODO: Use the Builder, which will make CreateBinOp below fold with 278 // InstSimplifyFolder. 279 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 280 BO->setDebugLoc(Loc); 281 if (Flags & SCEV::FlagNUW) 282 BO->setHasNoUnsignedWrap(); 283 if (Flags & SCEV::FlagNSW) 284 BO->setHasNoSignedWrap(); 285 286 return BO; 287 } 288 289 /// FactorOutConstant - Test if S is divisible by Factor, using signed 290 /// division. If so, update S with Factor divided out and return true. 291 /// S need not be evenly divisible if a reasonable remainder can be 292 /// computed. 293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 294 const SCEV *Factor, ScalarEvolution &SE, 295 const DataLayout &DL) { 296 // Everything is divisible by one. 297 if (Factor->isOne()) 298 return true; 299 300 // x/x == 1. 301 if (S == Factor) { 302 S = SE.getConstant(S->getType(), 1); 303 return true; 304 } 305 306 // For a Constant, check for a multiple of the given factor. 307 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 308 // 0/x == 0. 309 if (C->isZero()) 310 return true; 311 // Check for divisibility. 312 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 313 ConstantInt *CI = 314 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 315 // If the quotient is zero and the remainder is non-zero, reject 316 // the value at this scale. It will be considered for subsequent 317 // smaller scales. 318 if (!CI->isZero()) { 319 const SCEV *Div = SE.getConstant(CI); 320 S = Div; 321 Remainder = SE.getAddExpr( 322 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 323 return true; 324 } 325 } 326 } 327 328 // In a Mul, check if there is a constant operand which is a multiple 329 // of the given factor. 330 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 331 // Size is known, check if there is a constant operand which is a multiple 332 // of the given factor. If so, we can factor it. 333 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 334 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 335 if (!C->getAPInt().srem(FC->getAPInt())) { 336 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 337 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 338 S = SE.getMulExpr(NewMulOps); 339 return true; 340 } 341 } 342 343 // In an AddRec, check if both start and step are divisible. 344 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 345 const SCEV *Step = A->getStepRecurrence(SE); 346 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 347 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 348 return false; 349 if (!StepRem->isZero()) 350 return false; 351 const SCEV *Start = A->getStart(); 352 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 353 return false; 354 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 355 A->getNoWrapFlags(SCEV::FlagNW)); 356 return true; 357 } 358 359 return false; 360 } 361 362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 363 /// is the number of SCEVAddRecExprs present, which are kept at the end of 364 /// the list. 365 /// 366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 367 Type *Ty, 368 ScalarEvolution &SE) { 369 unsigned NumAddRecs = 0; 370 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 371 ++NumAddRecs; 372 // Group Ops into non-addrecs and addrecs. 373 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 374 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 375 // Let ScalarEvolution sort and simplify the non-addrecs list. 376 const SCEV *Sum = NoAddRecs.empty() ? 377 SE.getConstant(Ty, 0) : 378 SE.getAddExpr(NoAddRecs); 379 // If it returned an add, use the operands. Otherwise it simplified 380 // the sum into a single value, so just use that. 381 Ops.clear(); 382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 383 Ops.append(Add->op_begin(), Add->op_end()); 384 else if (!Sum->isZero()) 385 Ops.push_back(Sum); 386 // Then append the addrecs. 387 Ops.append(AddRecs.begin(), AddRecs.end()); 388 } 389 390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 392 /// This helps expose more opportunities for folding parts of the expressions 393 /// into GEP indices. 394 /// 395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 396 Type *Ty, 397 ScalarEvolution &SE) { 398 // Find the addrecs. 399 SmallVector<const SCEV *, 8> AddRecs; 400 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 401 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 402 const SCEV *Start = A->getStart(); 403 if (Start->isZero()) break; 404 const SCEV *Zero = SE.getConstant(Ty, 0); 405 AddRecs.push_back(SE.getAddRecExpr(Zero, 406 A->getStepRecurrence(SE), 407 A->getLoop(), 408 A->getNoWrapFlags(SCEV::FlagNW))); 409 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 410 Ops[i] = Zero; 411 Ops.append(Add->op_begin(), Add->op_end()); 412 e += Add->getNumOperands(); 413 } else { 414 Ops[i] = Start; 415 } 416 } 417 if (!AddRecs.empty()) { 418 // Add the addrecs onto the end of the list. 419 Ops.append(AddRecs.begin(), AddRecs.end()); 420 // Resort the operand list, moving any constants to the front. 421 SimplifyAddOperands(Ops, Ty, SE); 422 } 423 } 424 425 /// expandAddToGEP - Expand an addition expression with a pointer type into 426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 427 /// BasicAliasAnalysis and other passes analyze the result. See the rules 428 /// for getelementptr vs. inttoptr in 429 /// http://llvm.org/docs/LangRef.html#pointeraliasing 430 /// for details. 431 /// 432 /// Design note: The correctness of using getelementptr here depends on 433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 434 /// they may introduce pointer arithmetic which may not be safely converted 435 /// into getelementptr. 436 /// 437 /// Design note: It might seem desirable for this function to be more 438 /// loop-aware. If some of the indices are loop-invariant while others 439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 440 /// loop-invariant portions of the overall computation outside the loop. 441 /// However, there are a few reasons this is not done here. Hoisting simple 442 /// arithmetic is a low-level optimization that often isn't very 443 /// important until late in the optimization process. In fact, passes 444 /// like InstructionCombining will combine GEPs, even if it means 445 /// pushing loop-invariant computation down into loops, so even if the 446 /// GEPs were split here, the work would quickly be undone. The 447 /// LoopStrengthReduction pass, which is usually run quite late (and 448 /// after the last InstructionCombining pass), takes care of hoisting 449 /// loop-invariant portions of expressions, after considering what 450 /// can be folded using target addressing modes. 451 /// 452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 453 const SCEV *const *op_end, 454 PointerType *PTy, 455 Type *Ty, 456 Value *V) { 457 SmallVector<Value *, 4> GepIndices; 458 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 459 bool AnyNonZeroIndices = false; 460 461 // Split AddRecs up into parts as either of the parts may be usable 462 // without the other. 463 SplitAddRecs(Ops, Ty, SE); 464 465 Type *IntIdxTy = DL.getIndexType(PTy); 466 467 // For opaque pointers, always generate i8 GEP. 468 if (!PTy->isOpaque()) { 469 // Descend down the pointer's type and attempt to convert the other 470 // operands into GEP indices, at each level. The first index in a GEP 471 // indexes into the array implied by the pointer operand; the rest of 472 // the indices index into the element or field type selected by the 473 // preceding index. 474 Type *ElTy = PTy->getNonOpaquePointerElementType(); 475 for (;;) { 476 // If the scale size is not 0, attempt to factor out a scale for 477 // array indexing. 478 SmallVector<const SCEV *, 8> ScaledOps; 479 if (ElTy->isSized()) { 480 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 481 if (!ElSize->isZero()) { 482 SmallVector<const SCEV *, 8> NewOps; 483 for (const SCEV *Op : Ops) { 484 const SCEV *Remainder = SE.getConstant(Ty, 0); 485 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 486 // Op now has ElSize factored out. 487 ScaledOps.push_back(Op); 488 if (!Remainder->isZero()) 489 NewOps.push_back(Remainder); 490 AnyNonZeroIndices = true; 491 } else { 492 // The operand was not divisible, so add it to the list of 493 // operands we'll scan next iteration. 494 NewOps.push_back(Op); 495 } 496 } 497 // If we made any changes, update Ops. 498 if (!ScaledOps.empty()) { 499 Ops = NewOps; 500 SimplifyAddOperands(Ops, Ty, SE); 501 } 502 } 503 } 504 505 // Record the scaled array index for this level of the type. If 506 // we didn't find any operands that could be factored, tentatively 507 // assume that element zero was selected (since the zero offset 508 // would obviously be folded away). 509 Value *Scaled = 510 ScaledOps.empty() 511 ? Constant::getNullValue(Ty) 512 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 513 GepIndices.push_back(Scaled); 514 515 // Collect struct field index operands. 516 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 517 bool FoundFieldNo = false; 518 // An empty struct has no fields. 519 if (STy->getNumElements() == 0) break; 520 // Field offsets are known. See if a constant offset falls within any of 521 // the struct fields. 522 if (Ops.empty()) 523 break; 524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 525 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 526 const StructLayout &SL = *DL.getStructLayout(STy); 527 uint64_t FullOffset = C->getValue()->getZExtValue(); 528 if (FullOffset < SL.getSizeInBytes()) { 529 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 530 GepIndices.push_back( 531 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 532 ElTy = STy->getTypeAtIndex(ElIdx); 533 Ops[0] = 534 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 535 AnyNonZeroIndices = true; 536 FoundFieldNo = true; 537 } 538 } 539 // If no struct field offsets were found, tentatively assume that 540 // field zero was selected (since the zero offset would obviously 541 // be folded away). 542 if (!FoundFieldNo) { 543 ElTy = STy->getTypeAtIndex(0u); 544 GepIndices.push_back( 545 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 546 } 547 } 548 549 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 550 ElTy = ATy->getElementType(); 551 else 552 // FIXME: Handle VectorType. 553 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 554 // constant, therefore can not be factored out. The generated IR is less 555 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 556 break; 557 } 558 } 559 560 // If none of the operands were convertible to proper GEP indices, cast 561 // the base to i8* and do an ugly getelementptr with that. It's still 562 // better than ptrtoint+arithmetic+inttoptr at least. 563 if (!AnyNonZeroIndices) { 564 // Cast the base to i8*. 565 if (!PTy->isOpaque()) 566 V = InsertNoopCastOfTo(V, 567 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 568 569 assert(!isa<Instruction>(V) || 570 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 571 572 // Expand the operands for a plain byte offset. 573 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 574 575 // Fold a GEP with constant operands. 576 if (Constant *CLHS = dyn_cast<Constant>(V)) 577 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 578 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 579 CLHS, CRHS); 580 581 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 582 unsigned ScanLimit = 6; 583 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 584 // Scanning starts from the last instruction before the insertion point. 585 BasicBlock::iterator IP = Builder.GetInsertPoint(); 586 if (IP != BlockBegin) { 587 --IP; 588 for (; ScanLimit; --IP, --ScanLimit) { 589 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 590 // generated code. 591 if (isa<DbgInfoIntrinsic>(IP)) 592 ScanLimit++; 593 if (IP->getOpcode() == Instruction::GetElementPtr && 594 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 595 cast<GEPOperator>(&*IP)->getSourceElementType() == 596 Type::getInt8Ty(Ty->getContext())) 597 return &*IP; 598 if (IP == BlockBegin) break; 599 } 600 } 601 602 // Save the original insertion point so we can restore it when we're done. 603 SCEVInsertPointGuard Guard(Builder, this); 604 605 // Move the insertion point out of as many loops as we can. 606 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 607 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 608 BasicBlock *Preheader = L->getLoopPreheader(); 609 if (!Preheader) break; 610 611 // Ok, move up a level. 612 Builder.SetInsertPoint(Preheader->getTerminator()); 613 } 614 615 // Emit a GEP. 616 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 617 } 618 619 { 620 SCEVInsertPointGuard Guard(Builder, this); 621 622 // Move the insertion point out of as many loops as we can. 623 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 624 if (!L->isLoopInvariant(V)) break; 625 626 bool AnyIndexNotLoopInvariant = any_of( 627 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 628 629 if (AnyIndexNotLoopInvariant) 630 break; 631 632 BasicBlock *Preheader = L->getLoopPreheader(); 633 if (!Preheader) break; 634 635 // Ok, move up a level. 636 Builder.SetInsertPoint(Preheader->getTerminator()); 637 } 638 639 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 640 // because ScalarEvolution may have changed the address arithmetic to 641 // compute a value which is beyond the end of the allocated object. 642 Value *Casted = V; 643 if (V->getType() != PTy) 644 Casted = InsertNoopCastOfTo(Casted, PTy); 645 Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 646 Casted, GepIndices, "scevgep"); 647 Ops.push_back(SE.getUnknown(GEP)); 648 } 649 650 return expand(SE.getAddExpr(Ops)); 651 } 652 653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 654 Value *V) { 655 const SCEV *const Ops[1] = {Op}; 656 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 657 } 658 659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 660 /// SCEV expansion. If they are nested, this is the most nested. If they are 661 /// neighboring, pick the later. 662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 663 DominatorTree &DT) { 664 if (!A) return B; 665 if (!B) return A; 666 if (A->contains(B)) return B; 667 if (B->contains(A)) return A; 668 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 669 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 670 return A; // Arbitrarily break the tie. 671 } 672 673 /// getRelevantLoop - Get the most relevant loop associated with the given 674 /// expression, according to PickMostRelevantLoop. 675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 676 // Test whether we've already computed the most relevant loop for this SCEV. 677 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 678 if (!Pair.second) 679 return Pair.first->second; 680 681 if (isa<SCEVConstant>(S)) 682 // A constant has no relevant loops. 683 return nullptr; 684 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 685 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 686 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 687 // A non-instruction has no relevant loops. 688 return nullptr; 689 } 690 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 691 const Loop *L = nullptr; 692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 693 L = AR->getLoop(); 694 for (const SCEV *Op : N->operands()) 695 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 696 return RelevantLoops[N] = L; 697 } 698 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 699 const Loop *Result = getRelevantLoop(C->getOperand()); 700 return RelevantLoops[C] = Result; 701 } 702 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 703 const Loop *Result = PickMostRelevantLoop( 704 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 705 return RelevantLoops[D] = Result; 706 } 707 llvm_unreachable("Unexpected SCEV type!"); 708 } 709 710 namespace { 711 712 /// LoopCompare - Compare loops by PickMostRelevantLoop. 713 class LoopCompare { 714 DominatorTree &DT; 715 public: 716 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 717 718 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 719 std::pair<const Loop *, const SCEV *> RHS) const { 720 // Keep pointer operands sorted at the end. 721 if (LHS.second->getType()->isPointerTy() != 722 RHS.second->getType()->isPointerTy()) 723 return LHS.second->getType()->isPointerTy(); 724 725 // Compare loops with PickMostRelevantLoop. 726 if (LHS.first != RHS.first) 727 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 728 729 // If one operand is a non-constant negative and the other is not, 730 // put the non-constant negative on the right so that a sub can 731 // be used instead of a negate and add. 732 if (LHS.second->isNonConstantNegative()) { 733 if (!RHS.second->isNonConstantNegative()) 734 return false; 735 } else if (RHS.second->isNonConstantNegative()) 736 return true; 737 738 // Otherwise they are equivalent according to this comparison. 739 return false; 740 } 741 }; 742 743 } 744 745 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 746 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 747 748 // Collect all the add operands in a loop, along with their associated loops. 749 // Iterate in reverse so that constants are emitted last, all else equal, and 750 // so that pointer operands are inserted first, which the code below relies on 751 // to form more involved GEPs. 752 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 753 for (const SCEV *Op : reverse(S->operands())) 754 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 755 756 // Sort by loop. Use a stable sort so that constants follow non-constants and 757 // pointer operands precede non-pointer operands. 758 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 759 760 // Emit instructions to add all the operands. Hoist as much as possible 761 // out of loops, and form meaningful getelementptrs where possible. 762 Value *Sum = nullptr; 763 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 764 const Loop *CurLoop = I->first; 765 const SCEV *Op = I->second; 766 if (!Sum) { 767 // This is the first operand. Just expand it. 768 Sum = expand(Op); 769 ++I; 770 continue; 771 } 772 773 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 774 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 775 // The running sum expression is a pointer. Try to form a getelementptr 776 // at this level with that as the base. 777 SmallVector<const SCEV *, 4> NewOps; 778 for (; I != E && I->first == CurLoop; ++I) { 779 // If the operand is SCEVUnknown and not instructions, peek through 780 // it, to enable more of it to be folded into the GEP. 781 const SCEV *X = I->second; 782 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 783 if (!isa<Instruction>(U->getValue())) 784 X = SE.getSCEV(U->getValue()); 785 NewOps.push_back(X); 786 } 787 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 788 } else if (Op->isNonConstantNegative()) { 789 // Instead of doing a negate and add, just do a subtract. 790 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 791 Sum = InsertNoopCastOfTo(Sum, Ty); 792 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 793 /*IsSafeToHoist*/ true); 794 ++I; 795 } else { 796 // A simple add. 797 Value *W = expandCodeForImpl(Op, Ty, false); 798 Sum = InsertNoopCastOfTo(Sum, Ty); 799 // Canonicalize a constant to the RHS. 800 if (isa<Constant>(Sum)) std::swap(Sum, W); 801 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 802 /*IsSafeToHoist*/ true); 803 ++I; 804 } 805 } 806 807 return Sum; 808 } 809 810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 811 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 812 813 // Collect all the mul operands in a loop, along with their associated loops. 814 // Iterate in reverse so that constants are emitted last, all else equal. 815 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 816 for (const SCEV *Op : reverse(S->operands())) 817 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 818 819 // Sort by loop. Use a stable sort so that constants follow non-constants. 820 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 821 822 // Emit instructions to mul all the operands. Hoist as much as possible 823 // out of loops. 824 Value *Prod = nullptr; 825 auto I = OpsAndLoops.begin(); 826 827 // Expand the calculation of X pow N in the following manner: 828 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 829 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 830 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 831 auto E = I; 832 // Calculate how many times the same operand from the same loop is included 833 // into this power. 834 uint64_t Exponent = 0; 835 const uint64_t MaxExponent = UINT64_MAX >> 1; 836 // No one sane will ever try to calculate such huge exponents, but if we 837 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 838 // below when the power of 2 exceeds our Exponent, and we want it to be 839 // 1u << 31 at most to not deal with unsigned overflow. 840 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 841 ++Exponent; 842 ++E; 843 } 844 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 845 846 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 847 // that are needed into the result. 848 Value *P = expandCodeForImpl(I->second, Ty, false); 849 Value *Result = nullptr; 850 if (Exponent & 1) 851 Result = P; 852 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 853 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 854 /*IsSafeToHoist*/ true); 855 if (Exponent & BinExp) 856 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 857 SCEV::FlagAnyWrap, 858 /*IsSafeToHoist*/ true) 859 : P; 860 } 861 862 I = E; 863 assert(Result && "Nothing was expanded?"); 864 return Result; 865 }; 866 867 while (I != OpsAndLoops.end()) { 868 if (!Prod) { 869 // This is the first operand. Just expand it. 870 Prod = ExpandOpBinPowN(); 871 } else if (I->second->isAllOnesValue()) { 872 // Instead of doing a multiply by negative one, just do a negate. 873 Prod = InsertNoopCastOfTo(Prod, Ty); 874 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 875 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 876 ++I; 877 } else { 878 // A simple mul. 879 Value *W = ExpandOpBinPowN(); 880 Prod = InsertNoopCastOfTo(Prod, Ty); 881 // Canonicalize a constant to the RHS. 882 if (isa<Constant>(Prod)) std::swap(Prod, W); 883 const APInt *RHS; 884 if (match(W, m_Power2(RHS))) { 885 // Canonicalize Prod*(1<<C) to Prod<<C. 886 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 887 auto NWFlags = S->getNoWrapFlags(); 888 // clear nsw flag if shl will produce poison value. 889 if (RHS->logBase2() == RHS->getBitWidth() - 1) 890 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 891 Prod = InsertBinop(Instruction::Shl, Prod, 892 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 893 /*IsSafeToHoist*/ true); 894 } else { 895 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 896 /*IsSafeToHoist*/ true); 897 } 898 } 899 } 900 901 return Prod; 902 } 903 904 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 905 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 906 907 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 909 const APInt &RHS = SC->getAPInt(); 910 if (RHS.isPowerOf2()) 911 return InsertBinop(Instruction::LShr, LHS, 912 ConstantInt::get(Ty, RHS.logBase2()), 913 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 914 } 915 916 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 917 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 918 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 919 } 920 921 /// Determine if this is a well-behaved chain of instructions leading back to 922 /// the PHI. If so, it may be reused by expanded expressions. 923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 924 const Loop *L) { 925 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 926 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 927 return false; 928 // If any of the operands don't dominate the insert position, bail. 929 // Addrec operands are always loop-invariant, so this can only happen 930 // if there are instructions which haven't been hoisted. 931 if (L == IVIncInsertLoop) { 932 for (Use &Op : llvm::drop_begin(IncV->operands())) 933 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 934 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 935 return false; 936 } 937 // Advance to the next instruction. 938 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 939 if (!IncV) 940 return false; 941 942 if (IncV->mayHaveSideEffects()) 943 return false; 944 945 if (IncV == PN) 946 return true; 947 948 return isNormalAddRecExprPHI(PN, IncV, L); 949 } 950 951 /// getIVIncOperand returns an induction variable increment's induction 952 /// variable operand. 953 /// 954 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 955 /// operands dominate InsertPos. 956 /// 957 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 958 /// simple patterns generated by getAddRecExprPHILiterally and 959 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 960 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 961 Instruction *InsertPos, 962 bool allowScale) { 963 if (IncV == InsertPos) 964 return nullptr; 965 966 switch (IncV->getOpcode()) { 967 default: 968 return nullptr; 969 // Check for a simple Add/Sub or GEP of a loop invariant step. 970 case Instruction::Add: 971 case Instruction::Sub: { 972 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 973 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 974 return dyn_cast<Instruction>(IncV->getOperand(0)); 975 return nullptr; 976 } 977 case Instruction::BitCast: 978 return dyn_cast<Instruction>(IncV->getOperand(0)); 979 case Instruction::GetElementPtr: 980 for (Use &U : llvm::drop_begin(IncV->operands())) { 981 if (isa<Constant>(U)) 982 continue; 983 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 984 if (!SE.DT.dominates(OInst, InsertPos)) 985 return nullptr; 986 } 987 if (allowScale) { 988 // allow any kind of GEP as long as it can be hoisted. 989 continue; 990 } 991 // This must be a pointer addition of constants (pretty), which is already 992 // handled, or some number of address-size elements (ugly). Ugly geps 993 // have 2 operands. i1* is used by the expander to represent an 994 // address-size element. 995 if (IncV->getNumOperands() != 2) 996 return nullptr; 997 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 998 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 999 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1000 return nullptr; 1001 break; 1002 } 1003 return dyn_cast<Instruction>(IncV->getOperand(0)); 1004 } 1005 } 1006 1007 /// If the insert point of the current builder or any of the builders on the 1008 /// stack of saved builders has 'I' as its insert point, update it to point to 1009 /// the instruction after 'I'. This is intended to be used when the instruction 1010 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1011 /// different block, the inconsistent insert point (with a mismatched 1012 /// Instruction and Block) can lead to an instruction being inserted in a block 1013 /// other than its parent. 1014 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1015 BasicBlock::iterator It(*I); 1016 BasicBlock::iterator NewInsertPt = std::next(It); 1017 if (Builder.GetInsertPoint() == It) 1018 Builder.SetInsertPoint(&*NewInsertPt); 1019 for (auto *InsertPtGuard : InsertPointGuards) 1020 if (InsertPtGuard->GetInsertPoint() == It) 1021 InsertPtGuard->SetInsertPoint(NewInsertPt); 1022 } 1023 1024 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1025 /// it available to other uses in this loop. Recursively hoist any operands, 1026 /// until we reach a value that dominates InsertPos. 1027 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 1028 bool RecomputePoisonFlags) { 1029 if (SE.DT.dominates(IncV, InsertPos)) 1030 return true; 1031 1032 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1033 // its existing users. 1034 if (isa<PHINode>(InsertPos) || 1035 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1036 return false; 1037 1038 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1039 return false; 1040 1041 // Check that the chain of IV operands leading back to Phi can be hoisted. 1042 SmallVector<Instruction*, 4> IVIncs; 1043 for(;;) { 1044 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1045 if (!Oper) 1046 return false; 1047 // IncV is safe to hoist. 1048 IVIncs.push_back(IncV); 1049 IncV = Oper; 1050 if (SE.DT.dominates(IncV, InsertPos)) 1051 break; 1052 } 1053 for (Instruction *I : llvm::reverse(IVIncs)) { 1054 fixupInsertPoints(I); 1055 I->moveBefore(InsertPos); 1056 if (!RecomputePoisonFlags) 1057 continue; 1058 // Drop flags that are potentially inferred from old context and infer flags 1059 // in new context. 1060 I->dropPoisonGeneratingFlags(); 1061 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1062 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1063 auto *BO = cast<BinaryOperator>(I); 1064 BO->setHasNoUnsignedWrap( 1065 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1066 BO->setHasNoSignedWrap( 1067 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1068 } 1069 } 1070 return true; 1071 } 1072 1073 /// Determine if this cyclic phi is in a form that would have been generated by 1074 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1075 /// as it is in a low-cost form, for example, no implied multiplication. This 1076 /// should match any patterns generated by getAddRecExprPHILiterally and 1077 /// expandAddtoGEP. 1078 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1079 const Loop *L) { 1080 for(Instruction *IVOper = IncV; 1081 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1082 /*allowScale=*/false));) { 1083 if (IVOper == PN) 1084 return true; 1085 } 1086 return false; 1087 } 1088 1089 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1090 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1091 /// need to materialize IV increments elsewhere to handle difficult situations. 1092 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1093 Type *ExpandTy, Type *IntTy, 1094 bool useSubtract) { 1095 Value *IncV; 1096 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1097 if (ExpandTy->isPointerTy()) { 1098 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1099 // If the step isn't constant, don't use an implicitly scaled GEP, because 1100 // that would require a multiply inside the loop. 1101 if (!isa<ConstantInt>(StepV)) 1102 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1103 GEPPtrTy->getAddressSpace()); 1104 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1105 if (IncV->getType() != PN->getType()) 1106 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1107 } else { 1108 IncV = useSubtract ? 1109 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1110 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1111 } 1112 return IncV; 1113 } 1114 1115 /// Check whether we can cheaply express the requested SCEV in terms of 1116 /// the available PHI SCEV by truncation and/or inversion of the step. 1117 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1118 const SCEVAddRecExpr *Phi, 1119 const SCEVAddRecExpr *Requested, 1120 bool &InvertStep) { 1121 // We can't transform to match a pointer PHI. 1122 if (Phi->getType()->isPointerTy()) 1123 return false; 1124 1125 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1126 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1127 1128 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1129 return false; 1130 1131 // Try truncate it if necessary. 1132 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1133 if (!Phi) 1134 return false; 1135 1136 // Check whether truncation will help. 1137 if (Phi == Requested) { 1138 InvertStep = false; 1139 return true; 1140 } 1141 1142 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1143 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1144 InvertStep = true; 1145 return true; 1146 } 1147 1148 return false; 1149 } 1150 1151 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1152 if (!isa<IntegerType>(AR->getType())) 1153 return false; 1154 1155 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1156 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1157 const SCEV *Step = AR->getStepRecurrence(SE); 1158 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1159 SE.getSignExtendExpr(AR, WideTy)); 1160 const SCEV *ExtendAfterOp = 1161 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1162 return ExtendAfterOp == OpAfterExtend; 1163 } 1164 1165 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1166 if (!isa<IntegerType>(AR->getType())) 1167 return false; 1168 1169 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1170 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1171 const SCEV *Step = AR->getStepRecurrence(SE); 1172 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1173 SE.getZeroExtendExpr(AR, WideTy)); 1174 const SCEV *ExtendAfterOp = 1175 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1176 return ExtendAfterOp == OpAfterExtend; 1177 } 1178 1179 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1180 /// the base addrec, which is the addrec without any non-loop-dominating 1181 /// values, and return the PHI. 1182 PHINode * 1183 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1184 const Loop *L, 1185 Type *ExpandTy, 1186 Type *IntTy, 1187 Type *&TruncTy, 1188 bool &InvertStep) { 1189 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1190 1191 // Reuse a previously-inserted PHI, if present. 1192 BasicBlock *LatchBlock = L->getLoopLatch(); 1193 if (LatchBlock) { 1194 PHINode *AddRecPhiMatch = nullptr; 1195 Instruction *IncV = nullptr; 1196 TruncTy = nullptr; 1197 InvertStep = false; 1198 1199 // Only try partially matching scevs that need truncation and/or 1200 // step-inversion if we know this loop is outside the current loop. 1201 bool TryNonMatchingSCEV = 1202 IVIncInsertLoop && 1203 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1204 1205 for (PHINode &PN : L->getHeader()->phis()) { 1206 if (!SE.isSCEVable(PN.getType())) 1207 continue; 1208 1209 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1210 // PHI has no meaning at all. 1211 if (!PN.isComplete()) { 1212 SCEV_DEBUG_WITH_TYPE( 1213 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1214 continue; 1215 } 1216 1217 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1218 if (!PhiSCEV) 1219 continue; 1220 1221 bool IsMatchingSCEV = PhiSCEV == Normalized; 1222 // We only handle truncation and inversion of phi recurrences for the 1223 // expanded expression if the expanded expression's loop dominates the 1224 // loop we insert to. Check now, so we can bail out early. 1225 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1226 continue; 1227 1228 // TODO: this possibly can be reworked to avoid this cast at all. 1229 Instruction *TempIncV = 1230 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1231 if (!TempIncV) 1232 continue; 1233 1234 // Check whether we can reuse this PHI node. 1235 if (LSRMode) { 1236 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1237 continue; 1238 } else { 1239 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1240 continue; 1241 } 1242 1243 // Stop if we have found an exact match SCEV. 1244 if (IsMatchingSCEV) { 1245 IncV = TempIncV; 1246 TruncTy = nullptr; 1247 InvertStep = false; 1248 AddRecPhiMatch = &PN; 1249 break; 1250 } 1251 1252 // Try whether the phi can be translated into the requested form 1253 // (truncated and/or offset by a constant). 1254 if ((!TruncTy || InvertStep) && 1255 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1256 // Record the phi node. But don't stop we might find an exact match 1257 // later. 1258 AddRecPhiMatch = &PN; 1259 IncV = TempIncV; 1260 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1261 } 1262 } 1263 1264 if (AddRecPhiMatch) { 1265 // Ok, the add recurrence looks usable. 1266 // Remember this PHI, even in post-inc mode. 1267 InsertedValues.insert(AddRecPhiMatch); 1268 // Remember the increment. 1269 rememberInstruction(IncV); 1270 // Those values were not actually inserted but re-used. 1271 ReusedValues.insert(AddRecPhiMatch); 1272 ReusedValues.insert(IncV); 1273 return AddRecPhiMatch; 1274 } 1275 } 1276 1277 // Save the original insertion point so we can restore it when we're done. 1278 SCEVInsertPointGuard Guard(Builder, this); 1279 1280 // Another AddRec may need to be recursively expanded below. For example, if 1281 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1282 // loop. Remove this loop from the PostIncLoops set before expanding such 1283 // AddRecs. Otherwise, we cannot find a valid position for the step 1284 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1285 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1286 // so it's not worth implementing SmallPtrSet::swap. 1287 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1288 PostIncLoops.clear(); 1289 1290 // Expand code for the start value into the loop preheader. 1291 assert(L->getLoopPreheader() && 1292 "Can't expand add recurrences without a loop preheader!"); 1293 Value *StartV = 1294 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1295 L->getLoopPreheader()->getTerminator(), false); 1296 1297 // StartV must have been be inserted into L's preheader to dominate the new 1298 // phi. 1299 assert(!isa<Instruction>(StartV) || 1300 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1301 L->getHeader())); 1302 1303 // Expand code for the step value. Do this before creating the PHI so that PHI 1304 // reuse code doesn't see an incomplete PHI. 1305 const SCEV *Step = Normalized->getStepRecurrence(SE); 1306 // If the stride is negative, insert a sub instead of an add for the increment 1307 // (unless it's a constant, because subtracts of constants are canonicalized 1308 // to adds). 1309 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1310 if (useSubtract) 1311 Step = SE.getNegativeSCEV(Step); 1312 // Expand the step somewhere that dominates the loop header. 1313 Value *StepV = expandCodeForImpl( 1314 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1315 1316 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1317 // we actually do emit an addition. It does not apply if we emit a 1318 // subtraction. 1319 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1320 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1321 1322 // Create the PHI. 1323 BasicBlock *Header = L->getHeader(); 1324 Builder.SetInsertPoint(Header, Header->begin()); 1325 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1326 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1327 Twine(IVName) + ".iv"); 1328 1329 // Create the step instructions and populate the PHI. 1330 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1331 BasicBlock *Pred = *HPI; 1332 1333 // Add a start value. 1334 if (!L->contains(Pred)) { 1335 PN->addIncoming(StartV, Pred); 1336 continue; 1337 } 1338 1339 // Create a step value and add it to the PHI. 1340 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1341 // instructions at IVIncInsertPos. 1342 Instruction *InsertPos = L == IVIncInsertLoop ? 1343 IVIncInsertPos : Pred->getTerminator(); 1344 Builder.SetInsertPoint(InsertPos); 1345 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1346 1347 if (isa<OverflowingBinaryOperator>(IncV)) { 1348 if (IncrementIsNUW) 1349 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1350 if (IncrementIsNSW) 1351 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1352 } 1353 PN->addIncoming(IncV, Pred); 1354 } 1355 1356 // After expanding subexpressions, restore the PostIncLoops set so the caller 1357 // can ensure that IVIncrement dominates the current uses. 1358 PostIncLoops = SavedPostIncLoops; 1359 1360 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1361 // effective when we are able to use an IV inserted here, so record it. 1362 InsertedValues.insert(PN); 1363 InsertedIVs.push_back(PN); 1364 return PN; 1365 } 1366 1367 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1368 Type *STy = S->getType(); 1369 Type *IntTy = SE.getEffectiveSCEVType(STy); 1370 const Loop *L = S->getLoop(); 1371 1372 // Determine a normalized form of this expression, which is the expression 1373 // before any post-inc adjustment is made. 1374 const SCEVAddRecExpr *Normalized = S; 1375 if (PostIncLoops.count(L)) { 1376 PostIncLoopSet Loops; 1377 Loops.insert(L); 1378 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1379 } 1380 1381 // Strip off any non-loop-dominating component from the addrec start. 1382 const SCEV *Start = Normalized->getStart(); 1383 const SCEV *PostLoopOffset = nullptr; 1384 if (!SE.properlyDominates(Start, L->getHeader())) { 1385 PostLoopOffset = Start; 1386 Start = SE.getConstant(Normalized->getType(), 0); 1387 Normalized = cast<SCEVAddRecExpr>( 1388 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1389 Normalized->getLoop(), 1390 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1391 } 1392 1393 // Strip off any non-loop-dominating component from the addrec step. 1394 const SCEV *Step = Normalized->getStepRecurrence(SE); 1395 const SCEV *PostLoopScale = nullptr; 1396 if (!SE.dominates(Step, L->getHeader())) { 1397 PostLoopScale = Step; 1398 Step = SE.getConstant(Normalized->getType(), 1); 1399 if (!Start->isZero()) { 1400 // The normalization below assumes that Start is constant zero, so if 1401 // it isn't re-associate Start to PostLoopOffset. 1402 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1403 PostLoopOffset = Start; 1404 Start = SE.getConstant(Normalized->getType(), 0); 1405 } 1406 Normalized = 1407 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1408 Start, Step, Normalized->getLoop(), 1409 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1410 } 1411 1412 // Expand the core addrec. If we need post-loop scaling, force it to 1413 // expand to an integer type to avoid the need for additional casting. 1414 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1415 // We can't use a pointer type for the addrec if the pointer type is 1416 // non-integral. 1417 Type *AddRecPHIExpandTy = 1418 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1419 1420 // In some cases, we decide to reuse an existing phi node but need to truncate 1421 // it and/or invert the step. 1422 Type *TruncTy = nullptr; 1423 bool InvertStep = false; 1424 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1425 IntTy, TruncTy, InvertStep); 1426 1427 // Accommodate post-inc mode, if necessary. 1428 Value *Result; 1429 if (!PostIncLoops.count(L)) 1430 Result = PN; 1431 else { 1432 // In PostInc mode, use the post-incremented value. 1433 BasicBlock *LatchBlock = L->getLoopLatch(); 1434 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1435 Result = PN->getIncomingValueForBlock(LatchBlock); 1436 1437 // We might be introducing a new use of the post-inc IV that is not poison 1438 // safe, in which case we should drop poison generating flags. Only keep 1439 // those flags for which SCEV has proven that they always hold. 1440 if (isa<OverflowingBinaryOperator>(Result)) { 1441 auto *I = cast<Instruction>(Result); 1442 if (!S->hasNoUnsignedWrap()) 1443 I->setHasNoUnsignedWrap(false); 1444 if (!S->hasNoSignedWrap()) 1445 I->setHasNoSignedWrap(false); 1446 } 1447 1448 // For an expansion to use the postinc form, the client must call 1449 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1450 // or dominated by IVIncInsertPos. 1451 if (isa<Instruction>(Result) && 1452 !SE.DT.dominates(cast<Instruction>(Result), 1453 &*Builder.GetInsertPoint())) { 1454 // The induction variable's postinc expansion does not dominate this use. 1455 // IVUsers tries to prevent this case, so it is rare. However, it can 1456 // happen when an IVUser outside the loop is not dominated by the latch 1457 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1458 // all cases. Consider a phi outside whose operand is replaced during 1459 // expansion with the value of the postinc user. Without fundamentally 1460 // changing the way postinc users are tracked, the only remedy is 1461 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1462 // but hopefully expandCodeFor handles that. 1463 bool useSubtract = 1464 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1465 if (useSubtract) 1466 Step = SE.getNegativeSCEV(Step); 1467 Value *StepV; 1468 { 1469 // Expand the step somewhere that dominates the loop header. 1470 SCEVInsertPointGuard Guard(Builder, this); 1471 StepV = expandCodeForImpl( 1472 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1473 } 1474 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1475 } 1476 } 1477 1478 // We have decided to reuse an induction variable of a dominating loop. Apply 1479 // truncation and/or inversion of the step. 1480 if (TruncTy) { 1481 Type *ResTy = Result->getType(); 1482 // Normalize the result type. 1483 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1484 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1485 // Truncate the result. 1486 if (TruncTy != Result->getType()) 1487 Result = Builder.CreateTrunc(Result, TruncTy); 1488 1489 // Invert the result. 1490 if (InvertStep) 1491 Result = Builder.CreateSub( 1492 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1493 } 1494 1495 // Re-apply any non-loop-dominating scale. 1496 if (PostLoopScale) { 1497 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1498 Result = InsertNoopCastOfTo(Result, IntTy); 1499 Result = Builder.CreateMul(Result, 1500 expandCodeForImpl(PostLoopScale, IntTy, false)); 1501 } 1502 1503 // Re-apply any non-loop-dominating offset. 1504 if (PostLoopOffset) { 1505 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1506 if (Result->getType()->isIntegerTy()) { 1507 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1508 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1509 } else { 1510 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1511 } 1512 } else { 1513 Result = InsertNoopCastOfTo(Result, IntTy); 1514 Result = Builder.CreateAdd( 1515 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1516 } 1517 } 1518 1519 return Result; 1520 } 1521 1522 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1523 // In canonical mode we compute the addrec as an expression of a canonical IV 1524 // using evaluateAtIteration and expand the resulting SCEV expression. This 1525 // way we avoid introducing new IVs to carry on the computation of the addrec 1526 // throughout the loop. 1527 // 1528 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1529 // type wider than the addrec itself. Emitting a canonical IV of the 1530 // proper type might produce non-legal types, for example expanding an i64 1531 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1532 // back to non-canonical mode for nested addrecs. 1533 if (!CanonicalMode || (S->getNumOperands() > 2)) 1534 return expandAddRecExprLiterally(S); 1535 1536 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1537 const Loop *L = S->getLoop(); 1538 1539 // First check for an existing canonical IV in a suitable type. 1540 PHINode *CanonicalIV = nullptr; 1541 if (PHINode *PN = L->getCanonicalInductionVariable()) 1542 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1543 CanonicalIV = PN; 1544 1545 // Rewrite an AddRec in terms of the canonical induction variable, if 1546 // its type is more narrow. 1547 if (CanonicalIV && 1548 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1549 !S->getType()->isPointerTy()) { 1550 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1551 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1552 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1553 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1554 S->getNoWrapFlags(SCEV::FlagNW))); 1555 BasicBlock::iterator NewInsertPt = 1556 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1557 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1558 &*NewInsertPt, false); 1559 return V; 1560 } 1561 1562 // {X,+,F} --> X + {0,+,F} 1563 if (!S->getStart()->isZero()) { 1564 if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1565 Value *StartV = expand(SE.getPointerBase(S)); 1566 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1567 return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1568 } 1569 1570 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1571 NewOps[0] = SE.getConstant(Ty, 0); 1572 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1573 S->getNoWrapFlags(SCEV::FlagNW)); 1574 1575 // Just do a normal add. Pre-expand the operands to suppress folding. 1576 // 1577 // The LHS and RHS values are factored out of the expand call to make the 1578 // output independent of the argument evaluation order. 1579 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1580 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1581 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1582 } 1583 1584 // If we don't yet have a canonical IV, create one. 1585 if (!CanonicalIV) { 1586 // Create and insert the PHI node for the induction variable in the 1587 // specified loop. 1588 BasicBlock *Header = L->getHeader(); 1589 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1590 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1591 &Header->front()); 1592 rememberInstruction(CanonicalIV); 1593 1594 SmallSet<BasicBlock *, 4> PredSeen; 1595 Constant *One = ConstantInt::get(Ty, 1); 1596 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1597 BasicBlock *HP = *HPI; 1598 if (!PredSeen.insert(HP).second) { 1599 // There must be an incoming value for each predecessor, even the 1600 // duplicates! 1601 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1602 continue; 1603 } 1604 1605 if (L->contains(HP)) { 1606 // Insert a unit add instruction right before the terminator 1607 // corresponding to the back-edge. 1608 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1609 "indvar.next", 1610 HP->getTerminator()); 1611 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1612 rememberInstruction(Add); 1613 CanonicalIV->addIncoming(Add, HP); 1614 } else { 1615 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1616 } 1617 } 1618 } 1619 1620 // {0,+,1} --> Insert a canonical induction variable into the loop! 1621 if (S->isAffine() && S->getOperand(1)->isOne()) { 1622 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1623 "IVs with types different from the canonical IV should " 1624 "already have been handled!"); 1625 return CanonicalIV; 1626 } 1627 1628 // {0,+,F} --> {0,+,1} * F 1629 1630 // If this is a simple linear addrec, emit it now as a special case. 1631 if (S->isAffine()) // {0,+,F} --> i*F 1632 return 1633 expand(SE.getTruncateOrNoop( 1634 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1635 SE.getNoopOrAnyExtend(S->getOperand(1), 1636 CanonicalIV->getType())), 1637 Ty)); 1638 1639 // If this is a chain of recurrences, turn it into a closed form, using the 1640 // folders, then expandCodeFor the closed form. This allows the folders to 1641 // simplify the expression without having to build a bunch of special code 1642 // into this folder. 1643 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1644 1645 // Promote S up to the canonical IV type, if the cast is foldable. 1646 const SCEV *NewS = S; 1647 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1648 if (isa<SCEVAddRecExpr>(Ext)) 1649 NewS = Ext; 1650 1651 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1652 1653 // Truncate the result down to the original type, if needed. 1654 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1655 return expand(T); 1656 } 1657 1658 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1659 Value *V = 1660 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1661 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1662 GetOptimalInsertionPointForCastOf(V)); 1663 } 1664 1665 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1666 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1667 Value *V = expandCodeForImpl( 1668 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1669 false); 1670 return Builder.CreateTrunc(V, Ty); 1671 } 1672 1673 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1674 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1675 Value *V = expandCodeForImpl( 1676 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1677 false); 1678 return Builder.CreateZExt(V, Ty); 1679 } 1680 1681 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1682 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1683 Value *V = expandCodeForImpl( 1684 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1685 false); 1686 return Builder.CreateSExt(V, Ty); 1687 } 1688 1689 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1690 Intrinsic::ID IntrinID, Twine Name, 1691 bool IsSequential) { 1692 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1693 Type *Ty = LHS->getType(); 1694 if (IsSequential) 1695 LHS = Builder.CreateFreeze(LHS); 1696 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1697 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1698 if (IsSequential && i != 0) 1699 RHS = Builder.CreateFreeze(RHS); 1700 Value *Sel; 1701 if (Ty->isIntegerTy()) 1702 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1703 /*FMFSource=*/nullptr, Name); 1704 else { 1705 Value *ICmp = 1706 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1707 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1708 } 1709 LHS = Sel; 1710 } 1711 return LHS; 1712 } 1713 1714 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1715 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1716 } 1717 1718 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1719 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1720 } 1721 1722 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1723 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1724 } 1725 1726 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1727 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1728 } 1729 1730 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1731 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1732 } 1733 1734 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1735 Instruction *IP, bool Root) { 1736 setInsertPoint(IP); 1737 Value *V = expandCodeForImpl(SH, Ty, Root); 1738 return V; 1739 } 1740 1741 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1742 // Expand the code for this SCEV. 1743 Value *V = expand(SH); 1744 1745 if (PreserveLCSSA) { 1746 if (auto *Inst = dyn_cast<Instruction>(V)) { 1747 // Create a temporary instruction to at the current insertion point, so we 1748 // can hand it off to the helper to create LCSSA PHIs if required for the 1749 // new use. 1750 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1751 // would accept a insertion point and return an LCSSA phi for that 1752 // insertion point, so there is no need to insert & remove the temporary 1753 // instruction. 1754 Instruction *Tmp; 1755 if (Inst->getType()->isIntegerTy()) 1756 Tmp = cast<Instruction>(Builder.CreateIntToPtr( 1757 Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user")); 1758 else { 1759 assert(Inst->getType()->isPointerTy()); 1760 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1761 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1762 } 1763 V = fixupLCSSAFormFor(Tmp, 0); 1764 1765 // Clean up temporary instruction. 1766 InsertedValues.erase(Tmp); 1767 InsertedPostIncValues.erase(Tmp); 1768 Tmp->eraseFromParent(); 1769 } 1770 } 1771 1772 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1773 if (Ty) { 1774 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1775 "non-trivial casts should be done with the SCEVs directly!"); 1776 V = InsertNoopCastOfTo(V, Ty); 1777 } 1778 return V; 1779 } 1780 1781 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1782 const Instruction *InsertPt) { 1783 // If the expansion is not in CanonicalMode, and the SCEV contains any 1784 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1785 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1786 return nullptr; 1787 1788 // If S is a constant, it may be worse to reuse an existing Value. 1789 if (isa<SCEVConstant>(S)) 1790 return nullptr; 1791 1792 // Choose a Value from the set which dominates the InsertPt. 1793 // InsertPt should be inside the Value's parent loop so as not to break 1794 // the LCSSA form. 1795 for (Value *V : SE.getSCEVValues(S)) { 1796 Instruction *EntInst = dyn_cast<Instruction>(V); 1797 if (!EntInst) 1798 continue; 1799 1800 assert(EntInst->getFunction() == InsertPt->getFunction()); 1801 if (S->getType() == V->getType() && 1802 SE.DT.dominates(EntInst, InsertPt) && 1803 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1804 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1805 return V; 1806 } 1807 return nullptr; 1808 } 1809 1810 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1811 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1812 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1813 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1814 // the expansion will try to reuse Value from ExprValueMap, and only when it 1815 // fails, expand the SCEV literally. 1816 Value *SCEVExpander::expand(const SCEV *S) { 1817 // Compute an insertion point for this SCEV object. Hoist the instructions 1818 // as far out in the loop nest as possible. 1819 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1820 1821 // We can move insertion point only if there is no div or rem operations 1822 // otherwise we are risky to move it over the check for zero denominator. 1823 auto SafeToHoist = [](const SCEV *S) { 1824 return !SCEVExprContains(S, [](const SCEV *S) { 1825 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1826 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1827 // Division by non-zero constants can be hoisted. 1828 return SC->getValue()->isZero(); 1829 // All other divisions should not be moved as they may be 1830 // divisions by zero and should be kept within the 1831 // conditions of the surrounding loops that guard their 1832 // execution (see PR35406). 1833 return true; 1834 } 1835 return false; 1836 }); 1837 }; 1838 if (SafeToHoist(S)) { 1839 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1840 L = L->getParentLoop()) { 1841 if (SE.isLoopInvariant(S, L)) { 1842 if (!L) break; 1843 if (BasicBlock *Preheader = L->getLoopPreheader()) 1844 InsertPt = Preheader->getTerminator(); 1845 else 1846 // LSR sets the insertion point for AddRec start/step values to the 1847 // block start to simplify value reuse, even though it's an invalid 1848 // position. SCEVExpander must correct for this in all cases. 1849 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1850 } else { 1851 // If the SCEV is computable at this level, insert it into the header 1852 // after the PHIs (and after any other instructions that we've inserted 1853 // there) so that it is guaranteed to dominate any user inside the loop. 1854 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1855 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1856 1857 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1858 (isInsertedInstruction(InsertPt) || 1859 isa<DbgInfoIntrinsic>(InsertPt))) { 1860 InsertPt = &*std::next(InsertPt->getIterator()); 1861 } 1862 break; 1863 } 1864 } 1865 } 1866 1867 // Check to see if we already expanded this here. 1868 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1869 if (I != InsertedExpressions.end()) 1870 return I->second; 1871 1872 SCEVInsertPointGuard Guard(Builder, this); 1873 Builder.SetInsertPoint(InsertPt); 1874 1875 // Expand the expression into instructions. 1876 Value *V = FindValueInExprValueMap(S, InsertPt); 1877 if (!V) 1878 V = visit(S); 1879 else { 1880 // If we're reusing an existing instruction, we are effectively CSEing two 1881 // copies of the instruction (with potentially different flags). As such, 1882 // we need to drop any poison generating flags unless we can prove that 1883 // said flags must be valid for all new users. 1884 if (auto *I = dyn_cast<Instruction>(V)) 1885 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1886 I->dropPoisonGeneratingFlags(); 1887 } 1888 // Remember the expanded value for this SCEV at this location. 1889 // 1890 // This is independent of PostIncLoops. The mapped value simply materializes 1891 // the expression at this insertion point. If the mapped value happened to be 1892 // a postinc expansion, it could be reused by a non-postinc user, but only if 1893 // its insertion point was already at the head of the loop. 1894 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1895 return V; 1896 } 1897 1898 void SCEVExpander::rememberInstruction(Value *I) { 1899 auto DoInsert = [this](Value *V) { 1900 if (!PostIncLoops.empty()) 1901 InsertedPostIncValues.insert(V); 1902 else 1903 InsertedValues.insert(V); 1904 }; 1905 DoInsert(I); 1906 1907 if (!PreserveLCSSA) 1908 return; 1909 1910 if (auto *Inst = dyn_cast<Instruction>(I)) { 1911 // A new instruction has been added, which might introduce new uses outside 1912 // a defining loop. Fix LCSSA from for each operand of the new instruction, 1913 // if required. 1914 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 1915 OpIdx++) 1916 fixupLCSSAFormFor(Inst, OpIdx); 1917 } 1918 } 1919 1920 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1921 /// replace them with their most canonical representative. Return the number of 1922 /// phis eliminated. 1923 /// 1924 /// This does not depend on any SCEVExpander state but should be used in 1925 /// the same context that SCEVExpander is used. 1926 unsigned 1927 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1928 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1929 const TargetTransformInfo *TTI) { 1930 // Find integer phis in order of increasing width. 1931 SmallVector<PHINode*, 8> Phis; 1932 for (PHINode &PN : L->getHeader()->phis()) 1933 Phis.push_back(&PN); 1934 1935 if (TTI) 1936 // Use stable_sort to preserve order of equivalent PHIs, so the order 1937 // of the sorted Phis is the same from run to run on the same loop. 1938 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1939 // Put pointers at the back and make sure pointer < pointer = false. 1940 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1941 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1942 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 1943 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 1944 }); 1945 1946 unsigned NumElim = 0; 1947 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1948 // Process phis from wide to narrow. Map wide phis to their truncation 1949 // so narrow phis can reuse them. 1950 for (PHINode *Phi : Phis) { 1951 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1952 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1953 return V; 1954 if (!SE.isSCEVable(PN->getType())) 1955 return nullptr; 1956 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1957 if (!Const) 1958 return nullptr; 1959 return Const->getValue(); 1960 }; 1961 1962 // Fold constant phis. They may be congruent to other constant phis and 1963 // would confuse the logic below that expects proper IVs. 1964 if (Value *V = SimplifyPHINode(Phi)) { 1965 if (V->getType() != Phi->getType()) 1966 continue; 1967 Phi->replaceAllUsesWith(V); 1968 DeadInsts.emplace_back(Phi); 1969 ++NumElim; 1970 SCEV_DEBUG_WITH_TYPE(DebugType, 1971 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1972 << '\n'); 1973 continue; 1974 } 1975 1976 if (!SE.isSCEVable(Phi->getType())) 1977 continue; 1978 1979 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1980 if (!OrigPhiRef) { 1981 OrigPhiRef = Phi; 1982 if (Phi->getType()->isIntegerTy() && TTI && 1983 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1984 // This phi can be freely truncated to the narrowest phi type. Map the 1985 // truncated expression to it so it will be reused for narrow types. 1986 const SCEV *TruncExpr = 1987 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1988 ExprToIVMap[TruncExpr] = Phi; 1989 } 1990 continue; 1991 } 1992 1993 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1994 // sense. 1995 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1996 continue; 1997 1998 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1999 Instruction *OrigInc = dyn_cast<Instruction>( 2000 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2001 Instruction *IsomorphicInc = 2002 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2003 2004 if (OrigInc && IsomorphicInc) { 2005 // If this phi has the same width but is more canonical, replace the 2006 // original with it. As part of the "more canonical" determination, 2007 // respect a prior decision to use an IV chain. 2008 if (OrigPhiRef->getType() == Phi->getType() && 2009 !(ChainedPhis.count(Phi) || 2010 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2011 (ChainedPhis.count(Phi) || 2012 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2013 std::swap(OrigPhiRef, Phi); 2014 std::swap(OrigInc, IsomorphicInc); 2015 } 2016 // Replacing the congruent phi is sufficient because acyclic 2017 // redundancy elimination, CSE/GVN, should handle the 2018 // rest. However, once SCEV proves that a phi is congruent, 2019 // it's often the head of an IV user cycle that is isomorphic 2020 // with the original phi. It's worth eagerly cleaning up the 2021 // common case of a single IV increment so that DeleteDeadPHIs 2022 // can remove cycles that had postinc uses. 2023 // Because we may potentially introduce a new use of OrigIV that didn't 2024 // exist before at this point, its poison flags need readjustment. 2025 const SCEV *TruncExpr = 2026 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2027 if (OrigInc != IsomorphicInc && 2028 TruncExpr == SE.getSCEV(IsomorphicInc) && 2029 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2030 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 2031 SCEV_DEBUG_WITH_TYPE( 2032 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2033 << *IsomorphicInc << '\n'); 2034 Value *NewInc = OrigInc; 2035 if (OrigInc->getType() != IsomorphicInc->getType()) { 2036 Instruction *IP = nullptr; 2037 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2038 IP = &*PN->getParent()->getFirstInsertionPt(); 2039 else 2040 IP = OrigInc->getNextNode(); 2041 2042 IRBuilder<> Builder(IP); 2043 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2044 NewInc = Builder.CreateTruncOrBitCast( 2045 OrigInc, IsomorphicInc->getType(), IVName); 2046 } 2047 IsomorphicInc->replaceAllUsesWith(NewInc); 2048 DeadInsts.emplace_back(IsomorphicInc); 2049 } 2050 } 2051 } 2052 SCEV_DEBUG_WITH_TYPE(DebugType, 2053 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2054 << '\n'); 2055 SCEV_DEBUG_WITH_TYPE( 2056 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2057 ++NumElim; 2058 Value *NewIV = OrigPhiRef; 2059 if (OrigPhiRef->getType() != Phi->getType()) { 2060 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2061 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2062 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2063 } 2064 Phi->replaceAllUsesWith(NewIV); 2065 DeadInsts.emplace_back(Phi); 2066 } 2067 return NumElim; 2068 } 2069 2070 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 2071 const Instruction *At, 2072 Loop *L) { 2073 using namespace llvm::PatternMatch; 2074 2075 SmallVector<BasicBlock *, 4> ExitingBlocks; 2076 L->getExitingBlocks(ExitingBlocks); 2077 2078 // Look for suitable value in simple conditions at the loop exits. 2079 for (BasicBlock *BB : ExitingBlocks) { 2080 ICmpInst::Predicate Pred; 2081 Instruction *LHS, *RHS; 2082 2083 if (!match(BB->getTerminator(), 2084 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2085 m_BasicBlock(), m_BasicBlock()))) 2086 continue; 2087 2088 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2089 return LHS; 2090 2091 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2092 return RHS; 2093 } 2094 2095 // Use expand's logic which is used for reusing a previous Value in 2096 // ExprValueMap. Note that we don't currently model the cost of 2097 // needing to drop poison generating flags on the instruction if we 2098 // want to reuse it. We effectively assume that has zero cost. 2099 return FindValueInExprValueMap(S, At); 2100 } 2101 2102 template<typename T> static InstructionCost costAndCollectOperands( 2103 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2104 TargetTransformInfo::TargetCostKind CostKind, 2105 SmallVectorImpl<SCEVOperand> &Worklist) { 2106 2107 const T *S = cast<T>(WorkItem.S); 2108 InstructionCost Cost = 0; 2109 // Object to help map SCEV operands to expanded IR instructions. 2110 struct OperationIndices { 2111 OperationIndices(unsigned Opc, size_t min, size_t max) : 2112 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2113 unsigned Opcode; 2114 size_t MinIdx; 2115 size_t MaxIdx; 2116 }; 2117 2118 // Collect the operations of all the instructions that will be needed to 2119 // expand the SCEVExpr. This is so that when we come to cost the operands, 2120 // we know what the generated user(s) will be. 2121 SmallVector<OperationIndices, 2> Operations; 2122 2123 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2124 Operations.emplace_back(Opcode, 0, 0); 2125 return TTI.getCastInstrCost(Opcode, S->getType(), 2126 S->getOperand(0)->getType(), 2127 TTI::CastContextHint::None, CostKind); 2128 }; 2129 2130 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2131 unsigned MinIdx = 0, 2132 unsigned MaxIdx = 1) -> InstructionCost { 2133 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2134 return NumRequired * 2135 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2136 }; 2137 2138 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2139 unsigned MaxIdx) -> InstructionCost { 2140 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2141 Type *OpType = S->getOperand(0)->getType(); 2142 return NumRequired * TTI.getCmpSelInstrCost( 2143 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2144 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2145 }; 2146 2147 switch (S->getSCEVType()) { 2148 case scCouldNotCompute: 2149 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2150 case scUnknown: 2151 case scConstant: 2152 return 0; 2153 case scPtrToInt: 2154 Cost = CastCost(Instruction::PtrToInt); 2155 break; 2156 case scTruncate: 2157 Cost = CastCost(Instruction::Trunc); 2158 break; 2159 case scZeroExtend: 2160 Cost = CastCost(Instruction::ZExt); 2161 break; 2162 case scSignExtend: 2163 Cost = CastCost(Instruction::SExt); 2164 break; 2165 case scUDivExpr: { 2166 unsigned Opcode = Instruction::UDiv; 2167 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2168 if (SC->getAPInt().isPowerOf2()) 2169 Opcode = Instruction::LShr; 2170 Cost = ArithCost(Opcode, 1); 2171 break; 2172 } 2173 case scAddExpr: 2174 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2175 break; 2176 case scMulExpr: 2177 // TODO: this is a very pessimistic cost modelling for Mul, 2178 // because of Bin Pow algorithm actually used by the expander, 2179 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2180 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2181 break; 2182 case scSMaxExpr: 2183 case scUMaxExpr: 2184 case scSMinExpr: 2185 case scUMinExpr: 2186 case scSequentialUMinExpr: { 2187 // FIXME: should this ask the cost for Intrinsic's? 2188 // The reduction tree. 2189 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2190 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2191 switch (S->getSCEVType()) { 2192 case scSequentialUMinExpr: { 2193 // The safety net against poison. 2194 // FIXME: this is broken. 2195 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 2196 Cost += ArithCost(Instruction::Or, 2197 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 2198 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 2199 break; 2200 } 2201 default: 2202 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 2203 "Unhandled SCEV expression type?"); 2204 break; 2205 } 2206 break; 2207 } 2208 case scAddRecExpr: { 2209 // In this polynominal, we may have some zero operands, and we shouldn't 2210 // really charge for those. So how many non-zero coefficients are there? 2211 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2212 return !Op->isZero(); 2213 }); 2214 2215 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2216 assert(!(*std::prev(S->operands().end()))->isZero() && 2217 "Last operand should not be zero"); 2218 2219 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 2220 int NumNonZeroDegreeNonOneTerms = 2221 llvm::count_if(S->operands(), [](const SCEV *Op) { 2222 auto *SConst = dyn_cast<SCEVConstant>(Op); 2223 return !SConst || SConst->getAPInt().ugt(1); 2224 }); 2225 2226 // Much like with normal add expr, the polynominal will require 2227 // one less addition than the number of it's terms. 2228 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2229 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2230 // Here, *each* one of those will require a multiplication. 2231 InstructionCost MulCost = 2232 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2233 Cost = AddCost + MulCost; 2234 2235 // What is the degree of this polynominal? 2236 int PolyDegree = S->getNumOperands() - 1; 2237 assert(PolyDegree >= 1 && "Should be at least affine."); 2238 2239 // The final term will be: 2240 // Op_{PolyDegree} * x ^ {PolyDegree} 2241 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2242 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2243 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2244 // FIXME: this is conservatively correct, but might be overly pessimistic. 2245 Cost += MulCost * (PolyDegree - 1); 2246 break; 2247 } 2248 } 2249 2250 for (auto &CostOp : Operations) { 2251 for (auto SCEVOp : enumerate(S->operands())) { 2252 // Clamp the index to account for multiple IR operations being chained. 2253 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2254 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2255 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2256 } 2257 } 2258 return Cost; 2259 } 2260 2261 bool SCEVExpander::isHighCostExpansionHelper( 2262 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2263 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2264 SmallPtrSetImpl<const SCEV *> &Processed, 2265 SmallVectorImpl<SCEVOperand> &Worklist) { 2266 if (Cost > Budget) 2267 return true; // Already run out of budget, give up. 2268 2269 const SCEV *S = WorkItem.S; 2270 // Was the cost of expansion of this expression already accounted for? 2271 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2272 return false; // We have already accounted for this expression. 2273 2274 // If we can find an existing value for this scev available at the point "At" 2275 // then consider the expression cheap. 2276 if (getRelatedExistingExpansion(S, &At, L)) 2277 return false; // Consider the expression to be free. 2278 2279 TargetTransformInfo::TargetCostKind CostKind = 2280 L->getHeader()->getParent()->hasMinSize() 2281 ? TargetTransformInfo::TCK_CodeSize 2282 : TargetTransformInfo::TCK_RecipThroughput; 2283 2284 switch (S->getSCEVType()) { 2285 case scCouldNotCompute: 2286 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2287 case scUnknown: 2288 // Assume to be zero-cost. 2289 return false; 2290 case scConstant: { 2291 // Only evalulate the costs of constants when optimizing for size. 2292 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2293 return false; 2294 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2295 Type *Ty = S->getType(); 2296 Cost += TTI.getIntImmCostInst( 2297 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2298 return Cost > Budget; 2299 } 2300 case scTruncate: 2301 case scPtrToInt: 2302 case scZeroExtend: 2303 case scSignExtend: { 2304 Cost += 2305 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2306 return false; // Will answer upon next entry into this function. 2307 } 2308 case scUDivExpr: { 2309 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2310 // HowManyLessThans produced to compute a precise expression, rather than a 2311 // UDiv from the user's code. If we can't find a UDiv in the code with some 2312 // simple searching, we need to account for it's cost. 2313 2314 // At the beginning of this function we already tried to find existing 2315 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2316 // pattern involving division. This is just a simple search heuristic. 2317 if (getRelatedExistingExpansion( 2318 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2319 return false; // Consider it to be free. 2320 2321 Cost += 2322 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2323 return false; // Will answer upon next entry into this function. 2324 } 2325 case scAddExpr: 2326 case scMulExpr: 2327 case scUMaxExpr: 2328 case scSMaxExpr: 2329 case scUMinExpr: 2330 case scSMinExpr: 2331 case scSequentialUMinExpr: { 2332 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2333 "Nary expr should have more than 1 operand."); 2334 // The simple nary expr will require one less op (or pair of ops) 2335 // than the number of it's terms. 2336 Cost += 2337 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2338 return Cost > Budget; 2339 } 2340 case scAddRecExpr: { 2341 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2342 "Polynomial should be at least linear"); 2343 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2344 WorkItem, TTI, CostKind, Worklist); 2345 return Cost > Budget; 2346 } 2347 } 2348 llvm_unreachable("Unknown SCEV kind!"); 2349 } 2350 2351 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2352 Instruction *IP) { 2353 assert(IP); 2354 switch (Pred->getKind()) { 2355 case SCEVPredicate::P_Union: 2356 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2357 case SCEVPredicate::P_Compare: 2358 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2359 case SCEVPredicate::P_Wrap: { 2360 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2361 return expandWrapPredicate(AddRecPred, IP); 2362 } 2363 } 2364 llvm_unreachable("Unknown SCEV predicate type"); 2365 } 2366 2367 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2368 Instruction *IP) { 2369 Value *Expr0 = 2370 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2371 Value *Expr1 = 2372 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2373 2374 Builder.SetInsertPoint(IP); 2375 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2376 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2377 return I; 2378 } 2379 2380 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2381 Instruction *Loc, bool Signed) { 2382 assert(AR->isAffine() && "Cannot generate RT check for " 2383 "non-affine expression"); 2384 2385 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2386 SmallVector<const SCEVPredicate *, 4> Pred; 2387 const SCEV *ExitCount = 2388 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2389 2390 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2391 2392 const SCEV *Step = AR->getStepRecurrence(SE); 2393 const SCEV *Start = AR->getStart(); 2394 2395 Type *ARTy = AR->getType(); 2396 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2397 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2398 2399 // The expression {Start,+,Step} has nusw/nssw if 2400 // Step < 0, Start - |Step| * Backedge <= Start 2401 // Step >= 0, Start + |Step| * Backedge > Start 2402 // and |Step| * Backedge doesn't unsigned overflow. 2403 2404 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2405 Builder.SetInsertPoint(Loc); 2406 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2407 2408 IntegerType *Ty = 2409 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2410 2411 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2412 Value *NegStepValue = 2413 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2414 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false); 2415 2416 ConstantInt *Zero = 2417 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2418 2419 Builder.SetInsertPoint(Loc); 2420 // Compute |Step| 2421 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2422 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2423 2424 // Compute |Step| * Backedge 2425 // Compute: 2426 // 1. Start + |Step| * Backedge < Start 2427 // 2. Start - |Step| * Backedge > Start 2428 // 2429 // And select either 1. or 2. depending on whether step is positive or 2430 // negative. If Step is known to be positive or negative, only create 2431 // either 1. or 2. 2432 auto ComputeEndCheck = [&]() -> Value * { 2433 // Checking <u 0 is always false. 2434 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2435 return ConstantInt::getFalse(Loc->getContext()); 2436 2437 // Get the backedge taken count and truncate or extended to the AR type. 2438 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2439 2440 Value *MulV, *OfMul; 2441 if (Step->isOne()) { 2442 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2443 // needed, there is never an overflow, so to avoid artificially inflating 2444 // the cost of the check, directly emit the optimized IR. 2445 MulV = TruncTripCount; 2446 OfMul = ConstantInt::getFalse(MulV->getContext()); 2447 } else { 2448 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2449 Intrinsic::umul_with_overflow, Ty); 2450 CallInst *Mul = 2451 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2452 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2453 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2454 } 2455 2456 Value *Add = nullptr, *Sub = nullptr; 2457 bool NeedPosCheck = !SE.isKnownNegative(Step); 2458 bool NeedNegCheck = !SE.isKnownPositive(Step); 2459 2460 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2461 StartValue = InsertNoopCastOfTo( 2462 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2463 Value *NegMulV = Builder.CreateNeg(MulV); 2464 if (NeedPosCheck) 2465 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2466 if (NeedNegCheck) 2467 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2468 } else { 2469 if (NeedPosCheck) 2470 Add = Builder.CreateAdd(StartValue, MulV); 2471 if (NeedNegCheck) 2472 Sub = Builder.CreateSub(StartValue, MulV); 2473 } 2474 2475 Value *EndCompareLT = nullptr; 2476 Value *EndCompareGT = nullptr; 2477 Value *EndCheck = nullptr; 2478 if (NeedPosCheck) 2479 EndCheck = EndCompareLT = Builder.CreateICmp( 2480 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2481 if (NeedNegCheck) 2482 EndCheck = EndCompareGT = Builder.CreateICmp( 2483 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2484 if (NeedPosCheck && NeedNegCheck) { 2485 // Select the answer based on the sign of Step. 2486 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2487 } 2488 return Builder.CreateOr(EndCheck, OfMul); 2489 }; 2490 Value *EndCheck = ComputeEndCheck(); 2491 2492 // If the backedge taken count type is larger than the AR type, 2493 // check that we don't drop any bits by truncating it. If we are 2494 // dropping bits, then we have overflow (unless the step is zero). 2495 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2496 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2497 auto *BackedgeCheck = 2498 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2499 ConstantInt::get(Loc->getContext(), MaxVal)); 2500 BackedgeCheck = Builder.CreateAnd( 2501 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2502 2503 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2504 } 2505 2506 return EndCheck; 2507 } 2508 2509 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2510 Instruction *IP) { 2511 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2512 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2513 2514 // Add a check for NUSW 2515 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2516 NUSWCheck = generateOverflowCheck(A, IP, false); 2517 2518 // Add a check for NSSW 2519 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2520 NSSWCheck = generateOverflowCheck(A, IP, true); 2521 2522 if (NUSWCheck && NSSWCheck) 2523 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2524 2525 if (NUSWCheck) 2526 return NUSWCheck; 2527 2528 if (NSSWCheck) 2529 return NSSWCheck; 2530 2531 return ConstantInt::getFalse(IP->getContext()); 2532 } 2533 2534 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2535 Instruction *IP) { 2536 // Loop over all checks in this set. 2537 SmallVector<Value *> Checks; 2538 for (const auto *Pred : Union->getPredicates()) { 2539 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2540 Builder.SetInsertPoint(IP); 2541 } 2542 2543 if (Checks.empty()) 2544 return ConstantInt::getFalse(IP->getContext()); 2545 return Builder.CreateOr(Checks); 2546 } 2547 2548 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2549 assert(PreserveLCSSA); 2550 SmallVector<Instruction *, 1> ToUpdate; 2551 2552 auto *OpV = User->getOperand(OpIdx); 2553 auto *OpI = dyn_cast<Instruction>(OpV); 2554 if (!OpI) 2555 return OpV; 2556 2557 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2558 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2559 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2560 return OpV; 2561 2562 ToUpdate.push_back(OpI); 2563 SmallVector<PHINode *, 16> PHIsToRemove; 2564 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2565 for (PHINode *PN : PHIsToRemove) { 2566 if (!PN->use_empty()) 2567 continue; 2568 InsertedValues.erase(PN); 2569 InsertedPostIncValues.erase(PN); 2570 PN->eraseFromParent(); 2571 } 2572 2573 return User->getOperand(OpIdx); 2574 } 2575 2576 namespace { 2577 // Search for a SCEV subexpression that is not safe to expand. Any expression 2578 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2579 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2580 // instruction, but the important thing is that we prove the denominator is 2581 // nonzero before expansion. 2582 // 2583 // IVUsers already checks that IV-derived expressions are safe. So this check is 2584 // only needed when the expression includes some subexpression that is not IV 2585 // derived. 2586 // 2587 // Currently, we only allow division by a value provably non-zero here. 2588 // 2589 // We cannot generally expand recurrences unless the step dominates the loop 2590 // header. The expander handles the special case of affine recurrences by 2591 // scaling the recurrence outside the loop, but this technique isn't generally 2592 // applicable. Expanding a nested recurrence outside a loop requires computing 2593 // binomial coefficients. This could be done, but the recurrence has to be in a 2594 // perfectly reduced form, which can't be guaranteed. 2595 struct SCEVFindUnsafe { 2596 ScalarEvolution &SE; 2597 bool CanonicalMode; 2598 bool IsUnsafe = false; 2599 2600 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2601 : SE(SE), CanonicalMode(CanonicalMode) {} 2602 2603 bool follow(const SCEV *S) { 2604 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2605 if (!SE.isKnownNonZero(D->getRHS())) { 2606 IsUnsafe = true; 2607 return false; 2608 } 2609 } 2610 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2611 const SCEV *Step = AR->getStepRecurrence(SE); 2612 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2613 IsUnsafe = true; 2614 return false; 2615 } 2616 2617 // For non-affine addrecs or in non-canonical mode we need a preheader 2618 // to insert into. 2619 if (!AR->getLoop()->getLoopPreheader() && 2620 (!CanonicalMode || !AR->isAffine())) { 2621 IsUnsafe = true; 2622 return false; 2623 } 2624 } 2625 return true; 2626 } 2627 bool isDone() const { return IsUnsafe; } 2628 }; 2629 } // namespace 2630 2631 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2632 SCEVFindUnsafe Search(SE, CanonicalMode); 2633 visitAll(S, Search); 2634 return !Search.IsUnsafe; 2635 } 2636 2637 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2638 const Instruction *InsertionPoint) const { 2639 if (!isSafeToExpand(S)) 2640 return false; 2641 // We have to prove that the expanded site of S dominates InsertionPoint. 2642 // This is easy when not in the same block, but hard when S is an instruction 2643 // to be expanded somewhere inside the same block as our insertion point. 2644 // What we really need here is something analogous to an OrderedBasicBlock, 2645 // but for the moment, we paper over the problem by handling two common and 2646 // cheap to check cases. 2647 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2648 return true; 2649 if (SE.dominates(S, InsertionPoint->getParent())) { 2650 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2651 return true; 2652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2653 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2654 return true; 2655 } 2656 return false; 2657 } 2658 2659 void SCEVExpanderCleaner::cleanup() { 2660 // Result is used, nothing to remove. 2661 if (ResultUsed) 2662 return; 2663 2664 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2665 #ifndef NDEBUG 2666 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2667 InsertedInstructions.end()); 2668 (void)InsertedSet; 2669 #endif 2670 // Remove sets with value handles. 2671 Expander.clear(); 2672 2673 // Remove all inserted instructions. 2674 for (Instruction *I : reverse(InsertedInstructions)) { 2675 #ifndef NDEBUG 2676 assert(all_of(I->users(), 2677 [&InsertedSet](Value *U) { 2678 return InsertedSet.contains(cast<Instruction>(U)); 2679 }) && 2680 "removed instruction should only be used by instructions inserted " 2681 "during expansion"); 2682 #endif 2683 assert(!I->getType()->isVoidTy() && 2684 "inserted instruction should have non-void types"); 2685 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2686 I->eraseFromParent(); 2687 } 2688 } 2689