1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 34 #else 35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 36 #endif 37 38 using namespace llvm; 39 40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 41 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 42 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 43 "controls the budget that is considered cheap (default = 4)")); 44 45 using namespace PatternMatch; 46 47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 49 /// creating a new one. 50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 51 Instruction::CastOps Op, 52 BasicBlock::iterator IP) { 53 // This function must be called with the builder having a valid insertion 54 // point. It doesn't need to be the actual IP where the uses of the returned 55 // cast will be added, but it must dominate such IP. 56 // We use this precondition to produce a cast that will dominate all its 57 // uses. In particular, this is crucial for the case where the builder's 58 // insertion point *is* the point where we were asked to put the cast. 59 // Since we don't know the builder's insertion point is actually 60 // where the uses will be added (only that it dominates it), we are 61 // not allowed to move it. 62 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 63 64 Value *Ret = nullptr; 65 66 // Check to see if there is already a cast! 67 for (User *U : V->users()) { 68 if (U->getType() != Ty) 69 continue; 70 CastInst *CI = dyn_cast<CastInst>(U); 71 if (!CI || CI->getOpcode() != Op) 72 continue; 73 74 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 75 // the cast must also properly dominate the Builder's insertion point. 76 if (IP->getParent() == CI->getParent() && &*BIP != CI && 77 (&*IP == CI || CI->comesBefore(&*IP))) { 78 Ret = CI; 79 break; 80 } 81 } 82 83 // Create a new cast. 84 if (!Ret) { 85 SCEVInsertPointGuard Guard(Builder, this); 86 Builder.SetInsertPoint(&*IP); 87 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 88 } 89 90 // We assert at the end of the function since IP might point to an 91 // instruction with different dominance properties than a cast 92 // (an invoke for example) and not dominate BIP (but the cast does). 93 assert(!isa<Instruction>(Ret) || 94 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 95 96 return Ret; 97 } 98 99 BasicBlock::iterator 100 SCEVExpander::findInsertPointAfter(Instruction *I, 101 Instruction *MustDominate) const { 102 BasicBlock::iterator IP = ++I->getIterator(); 103 if (auto *II = dyn_cast<InvokeInst>(I)) 104 IP = II->getNormalDest()->begin(); 105 106 while (isa<PHINode>(IP)) 107 ++IP; 108 109 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 110 ++IP; 111 } else if (isa<CatchSwitchInst>(IP)) { 112 IP = MustDominate->getParent()->getFirstInsertionPt(); 113 } else { 114 assert(!IP->isEHPad() && "unexpected eh pad!"); 115 } 116 117 // Adjust insert point to be after instructions inserted by the expander, so 118 // we can re-use already inserted instructions. Avoid skipping past the 119 // original \p MustDominate, in case it is an inserted instruction. 120 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 121 ++IP; 122 123 return IP; 124 } 125 126 BasicBlock::iterator 127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 128 // Cast the argument at the beginning of the entry block, after 129 // any bitcasts of other arguments. 130 if (Argument *A = dyn_cast<Argument>(V)) { 131 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 132 while ((isa<BitCastInst>(IP) && 133 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 134 cast<BitCastInst>(IP)->getOperand(0) != A) || 135 isa<DbgInfoIntrinsic>(IP)) 136 ++IP; 137 return IP; 138 } 139 140 // Cast the instruction immediately after the instruction. 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 143 144 // Otherwise, this must be some kind of a constant, 145 // so let's plop this cast into the function's entry block. 146 assert(isa<Constant>(V) && 147 "Expected the cast argument to be a global/constant"); 148 return Builder.GetInsertBlock() 149 ->getParent() 150 ->getEntryBlock() 151 .getFirstInsertionPt(); 152 } 153 154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 155 /// which must be possible with a noop cast, doing what we can to share 156 /// the casts. 157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 158 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 159 assert((Op == Instruction::BitCast || 160 Op == Instruction::PtrToInt || 161 Op == Instruction::IntToPtr) && 162 "InsertNoopCastOfTo cannot perform non-noop casts!"); 163 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 164 "InsertNoopCastOfTo cannot change sizes!"); 165 166 // inttoptr only works for integral pointers. For non-integral pointers, we 167 // can create a GEP on i8* null with the integral value as index. Note that 168 // it is safe to use GEP of null instead of inttoptr here, because only 169 // expressions already based on a GEP of null should be converted to pointers 170 // during expansion. 171 if (Op == Instruction::IntToPtr) { 172 auto *PtrTy = cast<PointerType>(Ty); 173 if (DL.isNonIntegralPointerType(PtrTy)) { 174 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 175 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && 176 "alloc size of i8 must by 1 byte for the GEP to be correct"); 177 auto *GEP = Builder.CreateGEP( 178 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 179 return Builder.CreateBitCast(GEP, Ty); 180 } 181 } 182 // Short-circuit unnecessary bitcasts. 183 if (Op == Instruction::BitCast) { 184 if (V->getType() == Ty) 185 return V; 186 if (CastInst *CI = dyn_cast<CastInst>(V)) { 187 if (CI->getOperand(0)->getType() == Ty) 188 return CI->getOperand(0); 189 } 190 } 191 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 192 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 193 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 194 if (CastInst *CI = dyn_cast<CastInst>(V)) 195 if ((CI->getOpcode() == Instruction::PtrToInt || 196 CI->getOpcode() == Instruction::IntToPtr) && 197 SE.getTypeSizeInBits(CI->getType()) == 198 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 199 return CI->getOperand(0); 200 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 201 if ((CE->getOpcode() == Instruction::PtrToInt || 202 CE->getOpcode() == Instruction::IntToPtr) && 203 SE.getTypeSizeInBits(CE->getType()) == 204 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 205 return CE->getOperand(0); 206 } 207 208 // Fold a cast of a constant. 209 if (Constant *C = dyn_cast<Constant>(V)) 210 return ConstantExpr::getCast(Op, C, Ty); 211 212 // Try to reuse existing cast, or insert one. 213 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 214 } 215 216 /// InsertBinop - Insert the specified binary operator, doing a small amount 217 /// of work to avoid inserting an obviously redundant operation, and hoisting 218 /// to an outer loop when the opportunity is there and it is safe. 219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 220 Value *LHS, Value *RHS, 221 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 222 // Fold a binop with constant operands. 223 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 224 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 225 return ConstantExpr::get(Opcode, CLHS, CRHS); 226 227 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 228 unsigned ScanLimit = 6; 229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 230 // Scanning starts from the last instruction before the insertion point. 231 BasicBlock::iterator IP = Builder.GetInsertPoint(); 232 if (IP != BlockBegin) { 233 --IP; 234 for (; ScanLimit; --IP, --ScanLimit) { 235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 236 // generated code. 237 if (isa<DbgInfoIntrinsic>(IP)) 238 ScanLimit++; 239 240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 241 // Ensure that no-wrap flags match. 242 if (isa<OverflowingBinaryOperator>(I)) { 243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 244 return true; 245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 246 return true; 247 } 248 // Conservatively, do not use any instruction which has any of exact 249 // flags installed. 250 if (isa<PossiblyExactOperator>(I) && I->isExact()) 251 return true; 252 return false; 253 }; 254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 256 return &*IP; 257 if (IP == BlockBegin) break; 258 } 259 } 260 261 // Save the original insertion point so we can restore it when we're done. 262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 263 SCEVInsertPointGuard Guard(Builder, this); 264 265 if (IsSafeToHoist) { 266 // Move the insertion point out of as many loops as we can. 267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 269 BasicBlock *Preheader = L->getLoopPreheader(); 270 if (!Preheader) break; 271 272 // Ok, move up a level. 273 Builder.SetInsertPoint(Preheader->getTerminator()); 274 } 275 } 276 277 // If we haven't found this binop, insert it. 278 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// FactorOutConstant - Test if S is divisible by Factor, using signed 289 /// division. If so, update S with Factor divided out and return true. 290 /// S need not be evenly divisible if a reasonable remainder can be 291 /// computed. 292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 293 const SCEV *Factor, ScalarEvolution &SE, 294 const DataLayout &DL) { 295 // Everything is divisible by one. 296 if (Factor->isOne()) 297 return true; 298 299 // x/x == 1. 300 if (S == Factor) { 301 S = SE.getConstant(S->getType(), 1); 302 return true; 303 } 304 305 // For a Constant, check for a multiple of the given factor. 306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 307 // 0/x == 0. 308 if (C->isZero()) 309 return true; 310 // Check for divisibility. 311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 312 ConstantInt *CI = 313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 314 // If the quotient is zero and the remainder is non-zero, reject 315 // the value at this scale. It will be considered for subsequent 316 // smaller scales. 317 if (!CI->isZero()) { 318 const SCEV *Div = SE.getConstant(CI); 319 S = Div; 320 Remainder = SE.getAddExpr( 321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 322 return true; 323 } 324 } 325 } 326 327 // In a Mul, check if there is a constant operand which is a multiple 328 // of the given factor. 329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 330 // Size is known, check if there is a constant operand which is a multiple 331 // of the given factor. If so, we can factor it. 332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 334 if (!C->getAPInt().srem(FC->getAPInt())) { 335 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 337 S = SE.getMulExpr(NewMulOps); 338 return true; 339 } 340 } 341 342 // In an AddRec, check if both start and step are divisible. 343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 344 const SCEV *Step = A->getStepRecurrence(SE); 345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 347 return false; 348 if (!StepRem->isZero()) 349 return false; 350 const SCEV *Start = A->getStart(); 351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 352 return false; 353 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 354 A->getNoWrapFlags(SCEV::FlagNW)); 355 return true; 356 } 357 358 return false; 359 } 360 361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 362 /// is the number of SCEVAddRecExprs present, which are kept at the end of 363 /// the list. 364 /// 365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 366 Type *Ty, 367 ScalarEvolution &SE) { 368 unsigned NumAddRecs = 0; 369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 370 ++NumAddRecs; 371 // Group Ops into non-addrecs and addrecs. 372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 374 // Let ScalarEvolution sort and simplify the non-addrecs list. 375 const SCEV *Sum = NoAddRecs.empty() ? 376 SE.getConstant(Ty, 0) : 377 SE.getAddExpr(NoAddRecs); 378 // If it returned an add, use the operands. Otherwise it simplified 379 // the sum into a single value, so just use that. 380 Ops.clear(); 381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 382 Ops.append(Add->op_begin(), Add->op_end()); 383 else if (!Sum->isZero()) 384 Ops.push_back(Sum); 385 // Then append the addrecs. 386 Ops.append(AddRecs.begin(), AddRecs.end()); 387 } 388 389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 391 /// This helps expose more opportunities for folding parts of the expressions 392 /// into GEP indices. 393 /// 394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 395 Type *Ty, 396 ScalarEvolution &SE) { 397 // Find the addrecs. 398 SmallVector<const SCEV *, 8> AddRecs; 399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 401 const SCEV *Start = A->getStart(); 402 if (Start->isZero()) break; 403 const SCEV *Zero = SE.getConstant(Ty, 0); 404 AddRecs.push_back(SE.getAddRecExpr(Zero, 405 A->getStepRecurrence(SE), 406 A->getLoop(), 407 A->getNoWrapFlags(SCEV::FlagNW))); 408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 409 Ops[i] = Zero; 410 Ops.append(Add->op_begin(), Add->op_end()); 411 e += Add->getNumOperands(); 412 } else { 413 Ops[i] = Start; 414 } 415 } 416 if (!AddRecs.empty()) { 417 // Add the addrecs onto the end of the list. 418 Ops.append(AddRecs.begin(), AddRecs.end()); 419 // Resort the operand list, moving any constants to the front. 420 SimplifyAddOperands(Ops, Ty, SE); 421 } 422 } 423 424 /// expandAddToGEP - Expand an addition expression with a pointer type into 425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 426 /// BasicAliasAnalysis and other passes analyze the result. See the rules 427 /// for getelementptr vs. inttoptr in 428 /// http://llvm.org/docs/LangRef.html#pointeraliasing 429 /// for details. 430 /// 431 /// Design note: The correctness of using getelementptr here depends on 432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 433 /// they may introduce pointer arithmetic which may not be safely converted 434 /// into getelementptr. 435 /// 436 /// Design note: It might seem desirable for this function to be more 437 /// loop-aware. If some of the indices are loop-invariant while others 438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 439 /// loop-invariant portions of the overall computation outside the loop. 440 /// However, there are a few reasons this is not done here. Hoisting simple 441 /// arithmetic is a low-level optimization that often isn't very 442 /// important until late in the optimization process. In fact, passes 443 /// like InstructionCombining will combine GEPs, even if it means 444 /// pushing loop-invariant computation down into loops, so even if the 445 /// GEPs were split here, the work would quickly be undone. The 446 /// LoopStrengthReduction pass, which is usually run quite late (and 447 /// after the last InstructionCombining pass), takes care of hoisting 448 /// loop-invariant portions of expressions, after considering what 449 /// can be folded using target addressing modes. 450 /// 451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 452 const SCEV *const *op_end, 453 PointerType *PTy, 454 Type *Ty, 455 Value *V) { 456 SmallVector<Value *, 4> GepIndices; 457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 458 bool AnyNonZeroIndices = false; 459 460 // Split AddRecs up into parts as either of the parts may be usable 461 // without the other. 462 SplitAddRecs(Ops, Ty, SE); 463 464 Type *IntIdxTy = DL.getIndexType(PTy); 465 466 // For opaque pointers, always generate i8 GEP. 467 if (!PTy->isOpaque()) { 468 // Descend down the pointer's type and attempt to convert the other 469 // operands into GEP indices, at each level. The first index in a GEP 470 // indexes into the array implied by the pointer operand; the rest of 471 // the indices index into the element or field type selected by the 472 // preceding index. 473 Type *ElTy = PTy->getElementType(); 474 for (;;) { 475 // If the scale size is not 0, attempt to factor out a scale for 476 // array indexing. 477 SmallVector<const SCEV *, 8> ScaledOps; 478 if (ElTy->isSized()) { 479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 480 if (!ElSize->isZero()) { 481 SmallVector<const SCEV *, 8> NewOps; 482 for (const SCEV *Op : Ops) { 483 const SCEV *Remainder = SE.getConstant(Ty, 0); 484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 485 // Op now has ElSize factored out. 486 ScaledOps.push_back(Op); 487 if (!Remainder->isZero()) 488 NewOps.push_back(Remainder); 489 AnyNonZeroIndices = true; 490 } else { 491 // The operand was not divisible, so add it to the list of 492 // operands we'll scan next iteration. 493 NewOps.push_back(Op); 494 } 495 } 496 // If we made any changes, update Ops. 497 if (!ScaledOps.empty()) { 498 Ops = NewOps; 499 SimplifyAddOperands(Ops, Ty, SE); 500 } 501 } 502 } 503 504 // Record the scaled array index for this level of the type. If 505 // we didn't find any operands that could be factored, tentatively 506 // assume that element zero was selected (since the zero offset 507 // would obviously be folded away). 508 Value *Scaled = 509 ScaledOps.empty() 510 ? Constant::getNullValue(Ty) 511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 512 GepIndices.push_back(Scaled); 513 514 // Collect struct field index operands. 515 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 516 bool FoundFieldNo = false; 517 // An empty struct has no fields. 518 if (STy->getNumElements() == 0) break; 519 // Field offsets are known. See if a constant offset falls within any of 520 // the struct fields. 521 if (Ops.empty()) 522 break; 523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 524 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 525 const StructLayout &SL = *DL.getStructLayout(STy); 526 uint64_t FullOffset = C->getValue()->getZExtValue(); 527 if (FullOffset < SL.getSizeInBytes()) { 528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 529 GepIndices.push_back( 530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 531 ElTy = STy->getTypeAtIndex(ElIdx); 532 Ops[0] = 533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 534 AnyNonZeroIndices = true; 535 FoundFieldNo = true; 536 } 537 } 538 // If no struct field offsets were found, tentatively assume that 539 // field zero was selected (since the zero offset would obviously 540 // be folded away). 541 if (!FoundFieldNo) { 542 ElTy = STy->getTypeAtIndex(0u); 543 GepIndices.push_back( 544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 545 } 546 } 547 548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 549 ElTy = ATy->getElementType(); 550 else 551 // FIXME: Handle VectorType. 552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 553 // constant, therefore can not be factored out. The generated IR is less 554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 555 break; 556 } 557 } 558 559 // If none of the operands were convertible to proper GEP indices, cast 560 // the base to i8* and do an ugly getelementptr with that. It's still 561 // better than ptrtoint+arithmetic+inttoptr at least. 562 if (!AnyNonZeroIndices) { 563 // Cast the base to i8*. 564 if (!PTy->isOpaque()) 565 V = InsertNoopCastOfTo(V, 566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 567 568 assert(!isa<Instruction>(V) || 569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 570 571 // Expand the operands for a plain byte offset. 572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 573 574 // Fold a GEP with constant operands. 575 if (Constant *CLHS = dyn_cast<Constant>(V)) 576 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 578 CLHS, CRHS); 579 580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 581 unsigned ScanLimit = 6; 582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 583 // Scanning starts from the last instruction before the insertion point. 584 BasicBlock::iterator IP = Builder.GetInsertPoint(); 585 if (IP != BlockBegin) { 586 --IP; 587 for (; ScanLimit; --IP, --ScanLimit) { 588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 589 // generated code. 590 if (isa<DbgInfoIntrinsic>(IP)) 591 ScanLimit++; 592 if (IP->getOpcode() == Instruction::GetElementPtr && 593 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 594 return &*IP; 595 if (IP == BlockBegin) break; 596 } 597 } 598 599 // Save the original insertion point so we can restore it when we're done. 600 SCEVInsertPointGuard Guard(Builder, this); 601 602 // Move the insertion point out of as many loops as we can. 603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 605 BasicBlock *Preheader = L->getLoopPreheader(); 606 if (!Preheader) break; 607 608 // Ok, move up a level. 609 Builder.SetInsertPoint(Preheader->getTerminator()); 610 } 611 612 // Emit a GEP. 613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 614 } 615 616 { 617 SCEVInsertPointGuard Guard(Builder, this); 618 619 // Move the insertion point out of as many loops as we can. 620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 621 if (!L->isLoopInvariant(V)) break; 622 623 bool AnyIndexNotLoopInvariant = any_of( 624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 625 626 if (AnyIndexNotLoopInvariant) 627 break; 628 629 BasicBlock *Preheader = L->getLoopPreheader(); 630 if (!Preheader) break; 631 632 // Ok, move up a level. 633 Builder.SetInsertPoint(Preheader->getTerminator()); 634 } 635 636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 637 // because ScalarEvolution may have changed the address arithmetic to 638 // compute a value which is beyond the end of the allocated object. 639 Value *Casted = V; 640 if (V->getType() != PTy) 641 Casted = InsertNoopCastOfTo(Casted, PTy); 642 Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices, 643 "scevgep"); 644 Ops.push_back(SE.getUnknown(GEP)); 645 } 646 647 return expand(SE.getAddExpr(Ops)); 648 } 649 650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 651 Value *V) { 652 const SCEV *const Ops[1] = {Op}; 653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 654 } 655 656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 657 /// SCEV expansion. If they are nested, this is the most nested. If they are 658 /// neighboring, pick the later. 659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 660 DominatorTree &DT) { 661 if (!A) return B; 662 if (!B) return A; 663 if (A->contains(B)) return B; 664 if (B->contains(A)) return A; 665 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 666 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 667 return A; // Arbitrarily break the tie. 668 } 669 670 /// getRelevantLoop - Get the most relevant loop associated with the given 671 /// expression, according to PickMostRelevantLoop. 672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 673 // Test whether we've already computed the most relevant loop for this SCEV. 674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 675 if (!Pair.second) 676 return Pair.first->second; 677 678 if (isa<SCEVConstant>(S)) 679 // A constant has no relevant loops. 680 return nullptr; 681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 683 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 684 // A non-instruction has no relevant loops. 685 return nullptr; 686 } 687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 688 const Loop *L = nullptr; 689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 690 L = AR->getLoop(); 691 for (const SCEV *Op : N->operands()) 692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 693 return RelevantLoops[N] = L; 694 } 695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 696 const Loop *Result = getRelevantLoop(C->getOperand()); 697 return RelevantLoops[C] = Result; 698 } 699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 700 const Loop *Result = PickMostRelevantLoop( 701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 702 return RelevantLoops[D] = Result; 703 } 704 llvm_unreachable("Unexpected SCEV type!"); 705 } 706 707 namespace { 708 709 /// LoopCompare - Compare loops by PickMostRelevantLoop. 710 class LoopCompare { 711 DominatorTree &DT; 712 public: 713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 714 715 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 716 std::pair<const Loop *, const SCEV *> RHS) const { 717 // Keep pointer operands sorted at the end. 718 if (LHS.second->getType()->isPointerTy() != 719 RHS.second->getType()->isPointerTy()) 720 return LHS.second->getType()->isPointerTy(); 721 722 // Compare loops with PickMostRelevantLoop. 723 if (LHS.first != RHS.first) 724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 725 726 // If one operand is a non-constant negative and the other is not, 727 // put the non-constant negative on the right so that a sub can 728 // be used instead of a negate and add. 729 if (LHS.second->isNonConstantNegative()) { 730 if (!RHS.second->isNonConstantNegative()) 731 return false; 732 } else if (RHS.second->isNonConstantNegative()) 733 return true; 734 735 // Otherwise they are equivalent according to this comparison. 736 return false; 737 } 738 }; 739 740 } 741 742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 743 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 744 745 // Collect all the add operands in a loop, along with their associated loops. 746 // Iterate in reverse so that constants are emitted last, all else equal, and 747 // so that pointer operands are inserted first, which the code below relies on 748 // to form more involved GEPs. 749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 750 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 751 E(S->op_begin()); I != E; ++I) 752 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 753 754 // Sort by loop. Use a stable sort so that constants follow non-constants and 755 // pointer operands precede non-pointer operands. 756 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 757 758 // Emit instructions to add all the operands. Hoist as much as possible 759 // out of loops, and form meaningful getelementptrs where possible. 760 Value *Sum = nullptr; 761 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 762 const Loop *CurLoop = I->first; 763 const SCEV *Op = I->second; 764 if (!Sum) { 765 // This is the first operand. Just expand it. 766 Sum = expand(Op); 767 ++I; 768 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 769 // The running sum expression is a pointer. Try to form a getelementptr 770 // at this level with that as the base. 771 SmallVector<const SCEV *, 4> NewOps; 772 for (; I != E && I->first == CurLoop; ++I) { 773 // If the operand is SCEVUnknown and not instructions, peek through 774 // it, to enable more of it to be folded into the GEP. 775 const SCEV *X = I->second; 776 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 777 if (!isa<Instruction>(U->getValue())) 778 X = SE.getSCEV(U->getValue()); 779 NewOps.push_back(X); 780 } 781 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 782 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 783 // The running sum is an integer, and there's a pointer at this level. 784 // Try to form a getelementptr. If the running sum is instructions, 785 // use a SCEVUnknown to avoid re-analyzing them. 786 SmallVector<const SCEV *, 4> NewOps; 787 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 788 SE.getSCEV(Sum)); 789 for (++I; I != E && I->first == CurLoop; ++I) 790 NewOps.push_back(I->second); 791 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 792 } else if (Op->isNonConstantNegative()) { 793 // Instead of doing a negate and add, just do a subtract. 794 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 795 Sum = InsertNoopCastOfTo(Sum, Ty); 796 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 797 /*IsSafeToHoist*/ true); 798 ++I; 799 } else { 800 // A simple add. 801 Value *W = expandCodeForImpl(Op, Ty, false); 802 Sum = InsertNoopCastOfTo(Sum, Ty); 803 // Canonicalize a constant to the RHS. 804 if (isa<Constant>(Sum)) std::swap(Sum, W); 805 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 806 /*IsSafeToHoist*/ true); 807 ++I; 808 } 809 } 810 811 return Sum; 812 } 813 814 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 815 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 816 817 // Collect all the mul operands in a loop, along with their associated loops. 818 // Iterate in reverse so that constants are emitted last, all else equal. 819 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 820 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 821 E(S->op_begin()); I != E; ++I) 822 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 823 824 // Sort by loop. Use a stable sort so that constants follow non-constants. 825 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 826 827 // Emit instructions to mul all the operands. Hoist as much as possible 828 // out of loops. 829 Value *Prod = nullptr; 830 auto I = OpsAndLoops.begin(); 831 832 // Expand the calculation of X pow N in the following manner: 833 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 834 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 835 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 836 auto E = I; 837 // Calculate how many times the same operand from the same loop is included 838 // into this power. 839 uint64_t Exponent = 0; 840 const uint64_t MaxExponent = UINT64_MAX >> 1; 841 // No one sane will ever try to calculate such huge exponents, but if we 842 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 843 // below when the power of 2 exceeds our Exponent, and we want it to be 844 // 1u << 31 at most to not deal with unsigned overflow. 845 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 846 ++Exponent; 847 ++E; 848 } 849 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 850 851 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 852 // that are needed into the result. 853 Value *P = expandCodeForImpl(I->second, Ty, false); 854 Value *Result = nullptr; 855 if (Exponent & 1) 856 Result = P; 857 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 858 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 859 /*IsSafeToHoist*/ true); 860 if (Exponent & BinExp) 861 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 862 SCEV::FlagAnyWrap, 863 /*IsSafeToHoist*/ true) 864 : P; 865 } 866 867 I = E; 868 assert(Result && "Nothing was expanded?"); 869 return Result; 870 }; 871 872 while (I != OpsAndLoops.end()) { 873 if (!Prod) { 874 // This is the first operand. Just expand it. 875 Prod = ExpandOpBinPowN(); 876 } else if (I->second->isAllOnesValue()) { 877 // Instead of doing a multiply by negative one, just do a negate. 878 Prod = InsertNoopCastOfTo(Prod, Ty); 879 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 880 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 881 ++I; 882 } else { 883 // A simple mul. 884 Value *W = ExpandOpBinPowN(); 885 Prod = InsertNoopCastOfTo(Prod, Ty); 886 // Canonicalize a constant to the RHS. 887 if (isa<Constant>(Prod)) std::swap(Prod, W); 888 const APInt *RHS; 889 if (match(W, m_Power2(RHS))) { 890 // Canonicalize Prod*(1<<C) to Prod<<C. 891 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 892 auto NWFlags = S->getNoWrapFlags(); 893 // clear nsw flag if shl will produce poison value. 894 if (RHS->logBase2() == RHS->getBitWidth() - 1) 895 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 896 Prod = InsertBinop(Instruction::Shl, Prod, 897 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 898 /*IsSafeToHoist*/ true); 899 } else { 900 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 901 /*IsSafeToHoist*/ true); 902 } 903 } 904 } 905 906 return Prod; 907 } 908 909 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 910 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 911 912 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 913 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 914 const APInt &RHS = SC->getAPInt(); 915 if (RHS.isPowerOf2()) 916 return InsertBinop(Instruction::LShr, LHS, 917 ConstantInt::get(Ty, RHS.logBase2()), 918 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 919 } 920 921 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 922 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 923 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 924 } 925 926 /// Move parts of Base into Rest to leave Base with the minimal 927 /// expression that provides a pointer operand suitable for a 928 /// GEP expansion. 929 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 930 ScalarEvolution &SE) { 931 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 932 Base = A->getStart(); 933 Rest = SE.getAddExpr(Rest, 934 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 935 A->getStepRecurrence(SE), 936 A->getLoop(), 937 A->getNoWrapFlags(SCEV::FlagNW))); 938 } 939 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 940 Base = A->getOperand(A->getNumOperands()-1); 941 SmallVector<const SCEV *, 8> NewAddOps(A->operands()); 942 NewAddOps.back() = Rest; 943 Rest = SE.getAddExpr(NewAddOps); 944 ExposePointerBase(Base, Rest, SE); 945 } 946 } 947 948 /// Determine if this is a well-behaved chain of instructions leading back to 949 /// the PHI. If so, it may be reused by expanded expressions. 950 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 951 const Loop *L) { 952 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 953 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 954 return false; 955 // If any of the operands don't dominate the insert position, bail. 956 // Addrec operands are always loop-invariant, so this can only happen 957 // if there are instructions which haven't been hoisted. 958 if (L == IVIncInsertLoop) { 959 for (Use &Op : llvm::drop_begin(IncV->operands())) 960 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 961 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 962 return false; 963 } 964 // Advance to the next instruction. 965 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 966 if (!IncV) 967 return false; 968 969 if (IncV->mayHaveSideEffects()) 970 return false; 971 972 if (IncV == PN) 973 return true; 974 975 return isNormalAddRecExprPHI(PN, IncV, L); 976 } 977 978 /// getIVIncOperand returns an induction variable increment's induction 979 /// variable operand. 980 /// 981 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 982 /// operands dominate InsertPos. 983 /// 984 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 985 /// simple patterns generated by getAddRecExprPHILiterally and 986 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 987 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 988 Instruction *InsertPos, 989 bool allowScale) { 990 if (IncV == InsertPos) 991 return nullptr; 992 993 switch (IncV->getOpcode()) { 994 default: 995 return nullptr; 996 // Check for a simple Add/Sub or GEP of a loop invariant step. 997 case Instruction::Add: 998 case Instruction::Sub: { 999 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 1000 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 1001 return dyn_cast<Instruction>(IncV->getOperand(0)); 1002 return nullptr; 1003 } 1004 case Instruction::BitCast: 1005 return dyn_cast<Instruction>(IncV->getOperand(0)); 1006 case Instruction::GetElementPtr: 1007 for (Use &U : llvm::drop_begin(IncV->operands())) { 1008 if (isa<Constant>(U)) 1009 continue; 1010 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 1011 if (!SE.DT.dominates(OInst, InsertPos)) 1012 return nullptr; 1013 } 1014 if (allowScale) { 1015 // allow any kind of GEP as long as it can be hoisted. 1016 continue; 1017 } 1018 // This must be a pointer addition of constants (pretty), which is already 1019 // handled, or some number of address-size elements (ugly). Ugly geps 1020 // have 2 operands. i1* is used by the expander to represent an 1021 // address-size element. 1022 if (IncV->getNumOperands() != 2) 1023 return nullptr; 1024 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1025 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1026 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1027 return nullptr; 1028 break; 1029 } 1030 return dyn_cast<Instruction>(IncV->getOperand(0)); 1031 } 1032 } 1033 1034 /// If the insert point of the current builder or any of the builders on the 1035 /// stack of saved builders has 'I' as its insert point, update it to point to 1036 /// the instruction after 'I'. This is intended to be used when the instruction 1037 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1038 /// different block, the inconsistent insert point (with a mismatched 1039 /// Instruction and Block) can lead to an instruction being inserted in a block 1040 /// other than its parent. 1041 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1042 BasicBlock::iterator It(*I); 1043 BasicBlock::iterator NewInsertPt = std::next(It); 1044 if (Builder.GetInsertPoint() == It) 1045 Builder.SetInsertPoint(&*NewInsertPt); 1046 for (auto *InsertPtGuard : InsertPointGuards) 1047 if (InsertPtGuard->GetInsertPoint() == It) 1048 InsertPtGuard->SetInsertPoint(NewInsertPt); 1049 } 1050 1051 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1052 /// it available to other uses in this loop. Recursively hoist any operands, 1053 /// until we reach a value that dominates InsertPos. 1054 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1055 if (SE.DT.dominates(IncV, InsertPos)) 1056 return true; 1057 1058 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1059 // its existing users. 1060 if (isa<PHINode>(InsertPos) || 1061 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1062 return false; 1063 1064 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1065 return false; 1066 1067 // Check that the chain of IV operands leading back to Phi can be hoisted. 1068 SmallVector<Instruction*, 4> IVIncs; 1069 for(;;) { 1070 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1071 if (!Oper) 1072 return false; 1073 // IncV is safe to hoist. 1074 IVIncs.push_back(IncV); 1075 IncV = Oper; 1076 if (SE.DT.dominates(IncV, InsertPos)) 1077 break; 1078 } 1079 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1080 fixupInsertPoints(*I); 1081 (*I)->moveBefore(InsertPos); 1082 } 1083 return true; 1084 } 1085 1086 /// Determine if this cyclic phi is in a form that would have been generated by 1087 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1088 /// as it is in a low-cost form, for example, no implied multiplication. This 1089 /// should match any patterns generated by getAddRecExprPHILiterally and 1090 /// expandAddtoGEP. 1091 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1092 const Loop *L) { 1093 for(Instruction *IVOper = IncV; 1094 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1095 /*allowScale=*/false));) { 1096 if (IVOper == PN) 1097 return true; 1098 } 1099 return false; 1100 } 1101 1102 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1103 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1104 /// need to materialize IV increments elsewhere to handle difficult situations. 1105 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1106 Type *ExpandTy, Type *IntTy, 1107 bool useSubtract) { 1108 Value *IncV; 1109 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1110 if (ExpandTy->isPointerTy()) { 1111 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1112 // If the step isn't constant, don't use an implicitly scaled GEP, because 1113 // that would require a multiply inside the loop. 1114 if (!isa<ConstantInt>(StepV)) 1115 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1116 GEPPtrTy->getAddressSpace()); 1117 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1118 if (IncV->getType() != PN->getType()) 1119 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1120 } else { 1121 IncV = useSubtract ? 1122 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1123 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1124 } 1125 return IncV; 1126 } 1127 1128 /// Hoist the addrec instruction chain rooted in the loop phi above the 1129 /// position. This routine assumes that this is possible (has been checked). 1130 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1131 Instruction *Pos, PHINode *LoopPhi) { 1132 do { 1133 if (DT->dominates(InstToHoist, Pos)) 1134 break; 1135 // Make sure the increment is where we want it. But don't move it 1136 // down past a potential existing post-inc user. 1137 fixupInsertPoints(InstToHoist); 1138 InstToHoist->moveBefore(Pos); 1139 Pos = InstToHoist; 1140 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1141 } while (InstToHoist != LoopPhi); 1142 } 1143 1144 /// Check whether we can cheaply express the requested SCEV in terms of 1145 /// the available PHI SCEV by truncation and/or inversion of the step. 1146 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1147 const SCEVAddRecExpr *Phi, 1148 const SCEVAddRecExpr *Requested, 1149 bool &InvertStep) { 1150 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1151 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1152 1153 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1154 return false; 1155 1156 // Try truncate it if necessary. 1157 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1158 if (!Phi) 1159 return false; 1160 1161 // Check whether truncation will help. 1162 if (Phi == Requested) { 1163 InvertStep = false; 1164 return true; 1165 } 1166 1167 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1168 if (SE.getAddExpr(Requested->getStart(), 1169 SE.getNegativeSCEV(Requested)) == Phi) { 1170 InvertStep = true; 1171 return true; 1172 } 1173 1174 return false; 1175 } 1176 1177 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1178 if (!isa<IntegerType>(AR->getType())) 1179 return false; 1180 1181 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1182 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1183 const SCEV *Step = AR->getStepRecurrence(SE); 1184 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1185 SE.getSignExtendExpr(AR, WideTy)); 1186 const SCEV *ExtendAfterOp = 1187 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1188 return ExtendAfterOp == OpAfterExtend; 1189 } 1190 1191 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1192 if (!isa<IntegerType>(AR->getType())) 1193 return false; 1194 1195 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1196 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1197 const SCEV *Step = AR->getStepRecurrence(SE); 1198 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1199 SE.getZeroExtendExpr(AR, WideTy)); 1200 const SCEV *ExtendAfterOp = 1201 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1202 return ExtendAfterOp == OpAfterExtend; 1203 } 1204 1205 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1206 /// the base addrec, which is the addrec without any non-loop-dominating 1207 /// values, and return the PHI. 1208 PHINode * 1209 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1210 const Loop *L, 1211 Type *ExpandTy, 1212 Type *IntTy, 1213 Type *&TruncTy, 1214 bool &InvertStep) { 1215 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1216 1217 // Reuse a previously-inserted PHI, if present. 1218 BasicBlock *LatchBlock = L->getLoopLatch(); 1219 if (LatchBlock) { 1220 PHINode *AddRecPhiMatch = nullptr; 1221 Instruction *IncV = nullptr; 1222 TruncTy = nullptr; 1223 InvertStep = false; 1224 1225 // Only try partially matching scevs that need truncation and/or 1226 // step-inversion if we know this loop is outside the current loop. 1227 bool TryNonMatchingSCEV = 1228 IVIncInsertLoop && 1229 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1230 1231 for (PHINode &PN : L->getHeader()->phis()) { 1232 if (!SE.isSCEVable(PN.getType())) 1233 continue; 1234 1235 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1236 // PHI has no meaning at all. 1237 if (!PN.isComplete()) { 1238 SCEV_DEBUG_WITH_TYPE( 1239 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1240 continue; 1241 } 1242 1243 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1244 if (!PhiSCEV) 1245 continue; 1246 1247 bool IsMatchingSCEV = PhiSCEV == Normalized; 1248 // We only handle truncation and inversion of phi recurrences for the 1249 // expanded expression if the expanded expression's loop dominates the 1250 // loop we insert to. Check now, so we can bail out early. 1251 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1252 continue; 1253 1254 // TODO: this possibly can be reworked to avoid this cast at all. 1255 Instruction *TempIncV = 1256 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1257 if (!TempIncV) 1258 continue; 1259 1260 // Check whether we can reuse this PHI node. 1261 if (LSRMode) { 1262 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1263 continue; 1264 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1265 continue; 1266 } else { 1267 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1268 continue; 1269 } 1270 1271 // Stop if we have found an exact match SCEV. 1272 if (IsMatchingSCEV) { 1273 IncV = TempIncV; 1274 TruncTy = nullptr; 1275 InvertStep = false; 1276 AddRecPhiMatch = &PN; 1277 break; 1278 } 1279 1280 // Try whether the phi can be translated into the requested form 1281 // (truncated and/or offset by a constant). 1282 if ((!TruncTy || InvertStep) && 1283 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1284 // Record the phi node. But don't stop we might find an exact match 1285 // later. 1286 AddRecPhiMatch = &PN; 1287 IncV = TempIncV; 1288 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1289 } 1290 } 1291 1292 if (AddRecPhiMatch) { 1293 // Potentially, move the increment. We have made sure in 1294 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1295 if (L == IVIncInsertLoop) 1296 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1297 1298 // Ok, the add recurrence looks usable. 1299 // Remember this PHI, even in post-inc mode. 1300 InsertedValues.insert(AddRecPhiMatch); 1301 // Remember the increment. 1302 rememberInstruction(IncV); 1303 // Those values were not actually inserted but re-used. 1304 ReusedValues.insert(AddRecPhiMatch); 1305 ReusedValues.insert(IncV); 1306 return AddRecPhiMatch; 1307 } 1308 } 1309 1310 // Save the original insertion point so we can restore it when we're done. 1311 SCEVInsertPointGuard Guard(Builder, this); 1312 1313 // Another AddRec may need to be recursively expanded below. For example, if 1314 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1315 // loop. Remove this loop from the PostIncLoops set before expanding such 1316 // AddRecs. Otherwise, we cannot find a valid position for the step 1317 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1318 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1319 // so it's not worth implementing SmallPtrSet::swap. 1320 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1321 PostIncLoops.clear(); 1322 1323 // Expand code for the start value into the loop preheader. 1324 assert(L->getLoopPreheader() && 1325 "Can't expand add recurrences without a loop preheader!"); 1326 Value *StartV = 1327 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1328 L->getLoopPreheader()->getTerminator(), false); 1329 1330 // StartV must have been be inserted into L's preheader to dominate the new 1331 // phi. 1332 assert(!isa<Instruction>(StartV) || 1333 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1334 L->getHeader())); 1335 1336 // Expand code for the step value. Do this before creating the PHI so that PHI 1337 // reuse code doesn't see an incomplete PHI. 1338 const SCEV *Step = Normalized->getStepRecurrence(SE); 1339 // If the stride is negative, insert a sub instead of an add for the increment 1340 // (unless it's a constant, because subtracts of constants are canonicalized 1341 // to adds). 1342 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1343 if (useSubtract) 1344 Step = SE.getNegativeSCEV(Step); 1345 // Expand the step somewhere that dominates the loop header. 1346 Value *StepV = expandCodeForImpl( 1347 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1348 1349 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1350 // we actually do emit an addition. It does not apply if we emit a 1351 // subtraction. 1352 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1353 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1354 1355 // Create the PHI. 1356 BasicBlock *Header = L->getHeader(); 1357 Builder.SetInsertPoint(Header, Header->begin()); 1358 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1359 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1360 Twine(IVName) + ".iv"); 1361 1362 // Create the step instructions and populate the PHI. 1363 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1364 BasicBlock *Pred = *HPI; 1365 1366 // Add a start value. 1367 if (!L->contains(Pred)) { 1368 PN->addIncoming(StartV, Pred); 1369 continue; 1370 } 1371 1372 // Create a step value and add it to the PHI. 1373 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1374 // instructions at IVIncInsertPos. 1375 Instruction *InsertPos = L == IVIncInsertLoop ? 1376 IVIncInsertPos : Pred->getTerminator(); 1377 Builder.SetInsertPoint(InsertPos); 1378 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1379 1380 if (isa<OverflowingBinaryOperator>(IncV)) { 1381 if (IncrementIsNUW) 1382 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1383 if (IncrementIsNSW) 1384 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1385 } 1386 PN->addIncoming(IncV, Pred); 1387 } 1388 1389 // After expanding subexpressions, restore the PostIncLoops set so the caller 1390 // can ensure that IVIncrement dominates the current uses. 1391 PostIncLoops = SavedPostIncLoops; 1392 1393 // Remember this PHI, even in post-inc mode. 1394 InsertedValues.insert(PN); 1395 1396 return PN; 1397 } 1398 1399 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1400 Type *STy = S->getType(); 1401 Type *IntTy = SE.getEffectiveSCEVType(STy); 1402 const Loop *L = S->getLoop(); 1403 1404 // Determine a normalized form of this expression, which is the expression 1405 // before any post-inc adjustment is made. 1406 const SCEVAddRecExpr *Normalized = S; 1407 if (PostIncLoops.count(L)) { 1408 PostIncLoopSet Loops; 1409 Loops.insert(L); 1410 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1411 } 1412 1413 // Strip off any non-loop-dominating component from the addrec start. 1414 const SCEV *Start = Normalized->getStart(); 1415 const SCEV *PostLoopOffset = nullptr; 1416 if (!SE.properlyDominates(Start, L->getHeader())) { 1417 PostLoopOffset = Start; 1418 Start = SE.getConstant(Normalized->getType(), 0); 1419 Normalized = cast<SCEVAddRecExpr>( 1420 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1421 Normalized->getLoop(), 1422 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1423 } 1424 1425 // Strip off any non-loop-dominating component from the addrec step. 1426 const SCEV *Step = Normalized->getStepRecurrence(SE); 1427 const SCEV *PostLoopScale = nullptr; 1428 if (!SE.dominates(Step, L->getHeader())) { 1429 PostLoopScale = Step; 1430 Step = SE.getConstant(Normalized->getType(), 1); 1431 if (!Start->isZero()) { 1432 // The normalization below assumes that Start is constant zero, so if 1433 // it isn't re-associate Start to PostLoopOffset. 1434 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1435 PostLoopOffset = Start; 1436 Start = SE.getConstant(Normalized->getType(), 0); 1437 } 1438 Normalized = 1439 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1440 Start, Step, Normalized->getLoop(), 1441 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1442 } 1443 1444 // Expand the core addrec. If we need post-loop scaling, force it to 1445 // expand to an integer type to avoid the need for additional casting. 1446 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1447 // We can't use a pointer type for the addrec if the pointer type is 1448 // non-integral. 1449 Type *AddRecPHIExpandTy = 1450 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1451 1452 // In some cases, we decide to reuse an existing phi node but need to truncate 1453 // it and/or invert the step. 1454 Type *TruncTy = nullptr; 1455 bool InvertStep = false; 1456 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1457 IntTy, TruncTy, InvertStep); 1458 1459 // Accommodate post-inc mode, if necessary. 1460 Value *Result; 1461 if (!PostIncLoops.count(L)) 1462 Result = PN; 1463 else { 1464 // In PostInc mode, use the post-incremented value. 1465 BasicBlock *LatchBlock = L->getLoopLatch(); 1466 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1467 Result = PN->getIncomingValueForBlock(LatchBlock); 1468 1469 // We might be introducing a new use of the post-inc IV that is not poison 1470 // safe, in which case we should drop poison generating flags. Only keep 1471 // those flags for which SCEV has proven that they always hold. 1472 if (isa<OverflowingBinaryOperator>(Result)) { 1473 auto *I = cast<Instruction>(Result); 1474 if (!S->hasNoUnsignedWrap()) 1475 I->setHasNoUnsignedWrap(false); 1476 if (!S->hasNoSignedWrap()) 1477 I->setHasNoSignedWrap(false); 1478 } 1479 1480 // For an expansion to use the postinc form, the client must call 1481 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1482 // or dominated by IVIncInsertPos. 1483 if (isa<Instruction>(Result) && 1484 !SE.DT.dominates(cast<Instruction>(Result), 1485 &*Builder.GetInsertPoint())) { 1486 // The induction variable's postinc expansion does not dominate this use. 1487 // IVUsers tries to prevent this case, so it is rare. However, it can 1488 // happen when an IVUser outside the loop is not dominated by the latch 1489 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1490 // all cases. Consider a phi outside whose operand is replaced during 1491 // expansion with the value of the postinc user. Without fundamentally 1492 // changing the way postinc users are tracked, the only remedy is 1493 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1494 // but hopefully expandCodeFor handles that. 1495 bool useSubtract = 1496 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1497 if (useSubtract) 1498 Step = SE.getNegativeSCEV(Step); 1499 Value *StepV; 1500 { 1501 // Expand the step somewhere that dominates the loop header. 1502 SCEVInsertPointGuard Guard(Builder, this); 1503 StepV = expandCodeForImpl( 1504 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1505 } 1506 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1507 } 1508 } 1509 1510 // We have decided to reuse an induction variable of a dominating loop. Apply 1511 // truncation and/or inversion of the step. 1512 if (TruncTy) { 1513 Type *ResTy = Result->getType(); 1514 // Normalize the result type. 1515 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1516 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1517 // Truncate the result. 1518 if (TruncTy != Result->getType()) 1519 Result = Builder.CreateTrunc(Result, TruncTy); 1520 1521 // Invert the result. 1522 if (InvertStep) 1523 Result = Builder.CreateSub( 1524 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1525 } 1526 1527 // Re-apply any non-loop-dominating scale. 1528 if (PostLoopScale) { 1529 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1530 Result = InsertNoopCastOfTo(Result, IntTy); 1531 Result = Builder.CreateMul(Result, 1532 expandCodeForImpl(PostLoopScale, IntTy, false)); 1533 } 1534 1535 // Re-apply any non-loop-dominating offset. 1536 if (PostLoopOffset) { 1537 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1538 if (Result->getType()->isIntegerTy()) { 1539 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1540 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1541 } else { 1542 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1543 } 1544 } else { 1545 Result = InsertNoopCastOfTo(Result, IntTy); 1546 Result = Builder.CreateAdd( 1547 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1548 } 1549 } 1550 1551 return Result; 1552 } 1553 1554 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1555 // In canonical mode we compute the addrec as an expression of a canonical IV 1556 // using evaluateAtIteration and expand the resulting SCEV expression. This 1557 // way we avoid introducing new IVs to carry on the comutation of the addrec 1558 // throughout the loop. 1559 // 1560 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1561 // type wider than the addrec itself. Emitting a canonical IV of the 1562 // proper type might produce non-legal types, for example expanding an i64 1563 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1564 // back to non-canonical mode for nested addrecs. 1565 if (!CanonicalMode || (S->getNumOperands() > 2)) 1566 return expandAddRecExprLiterally(S); 1567 1568 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1569 const Loop *L = S->getLoop(); 1570 1571 // First check for an existing canonical IV in a suitable type. 1572 PHINode *CanonicalIV = nullptr; 1573 if (PHINode *PN = L->getCanonicalInductionVariable()) 1574 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1575 CanonicalIV = PN; 1576 1577 // Rewrite an AddRec in terms of the canonical induction variable, if 1578 // its type is more narrow. 1579 if (CanonicalIV && 1580 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1581 SE.getTypeSizeInBits(Ty)) { 1582 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1583 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1584 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1585 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1586 S->getNoWrapFlags(SCEV::FlagNW))); 1587 BasicBlock::iterator NewInsertPt = 1588 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1589 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1590 &*NewInsertPt, false); 1591 return V; 1592 } 1593 1594 // {X,+,F} --> X + {0,+,F} 1595 if (!S->getStart()->isZero()) { 1596 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1597 NewOps[0] = SE.getConstant(Ty, 0); 1598 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1599 S->getNoWrapFlags(SCEV::FlagNW)); 1600 1601 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1602 // comments on expandAddToGEP for details. 1603 const SCEV *Base = S->getStart(); 1604 // Dig into the expression to find the pointer base for a GEP. 1605 const SCEV *ExposedRest = Rest; 1606 ExposePointerBase(Base, ExposedRest, SE); 1607 // If we found a pointer, expand the AddRec with a GEP. 1608 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1609 // Make sure the Base isn't something exotic, such as a multiplied 1610 // or divided pointer value. In those cases, the result type isn't 1611 // actually a pointer type. 1612 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1613 Value *StartV = expand(Base); 1614 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1615 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1616 } 1617 } 1618 1619 // Just do a normal add. Pre-expand the operands to suppress folding. 1620 // 1621 // The LHS and RHS values are factored out of the expand call to make the 1622 // output independent of the argument evaluation order. 1623 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1624 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1625 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1626 } 1627 1628 // If we don't yet have a canonical IV, create one. 1629 if (!CanonicalIV) { 1630 // Create and insert the PHI node for the induction variable in the 1631 // specified loop. 1632 BasicBlock *Header = L->getHeader(); 1633 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1634 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1635 &Header->front()); 1636 rememberInstruction(CanonicalIV); 1637 1638 SmallSet<BasicBlock *, 4> PredSeen; 1639 Constant *One = ConstantInt::get(Ty, 1); 1640 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1641 BasicBlock *HP = *HPI; 1642 if (!PredSeen.insert(HP).second) { 1643 // There must be an incoming value for each predecessor, even the 1644 // duplicates! 1645 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1646 continue; 1647 } 1648 1649 if (L->contains(HP)) { 1650 // Insert a unit add instruction right before the terminator 1651 // corresponding to the back-edge. 1652 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1653 "indvar.next", 1654 HP->getTerminator()); 1655 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1656 rememberInstruction(Add); 1657 CanonicalIV->addIncoming(Add, HP); 1658 } else { 1659 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1660 } 1661 } 1662 } 1663 1664 // {0,+,1} --> Insert a canonical induction variable into the loop! 1665 if (S->isAffine() && S->getOperand(1)->isOne()) { 1666 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1667 "IVs with types different from the canonical IV should " 1668 "already have been handled!"); 1669 return CanonicalIV; 1670 } 1671 1672 // {0,+,F} --> {0,+,1} * F 1673 1674 // If this is a simple linear addrec, emit it now as a special case. 1675 if (S->isAffine()) // {0,+,F} --> i*F 1676 return 1677 expand(SE.getTruncateOrNoop( 1678 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1679 SE.getNoopOrAnyExtend(S->getOperand(1), 1680 CanonicalIV->getType())), 1681 Ty)); 1682 1683 // If this is a chain of recurrences, turn it into a closed form, using the 1684 // folders, then expandCodeFor the closed form. This allows the folders to 1685 // simplify the expression without having to build a bunch of special code 1686 // into this folder. 1687 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1688 1689 // Promote S up to the canonical IV type, if the cast is foldable. 1690 const SCEV *NewS = S; 1691 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1692 if (isa<SCEVAddRecExpr>(Ext)) 1693 NewS = Ext; 1694 1695 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1696 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1697 1698 // Truncate the result down to the original type, if needed. 1699 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1700 return expand(T); 1701 } 1702 1703 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1704 Value *V = 1705 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1706 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1707 GetOptimalInsertionPointForCastOf(V)); 1708 } 1709 1710 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1711 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1712 Value *V = expandCodeForImpl( 1713 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1714 false); 1715 return Builder.CreateTrunc(V, Ty); 1716 } 1717 1718 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1719 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1720 Value *V = expandCodeForImpl( 1721 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1722 false); 1723 return Builder.CreateZExt(V, Ty); 1724 } 1725 1726 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1727 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1728 Value *V = expandCodeForImpl( 1729 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1730 false); 1731 return Builder.CreateSExt(V, Ty); 1732 } 1733 1734 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1735 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1736 Type *Ty = LHS->getType(); 1737 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1738 // In the case of mixed integer and pointer types, do the 1739 // rest of the comparisons as integer. 1740 Type *OpTy = S->getOperand(i)->getType(); 1741 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1742 Ty = SE.getEffectiveSCEVType(Ty); 1743 LHS = InsertNoopCastOfTo(LHS, Ty); 1744 } 1745 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1746 Value *Sel; 1747 if (Ty->isIntegerTy()) 1748 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS}, 1749 /*FMFSource=*/nullptr, "smax"); 1750 else { 1751 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1752 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1753 } 1754 LHS = Sel; 1755 } 1756 // In the case of mixed integer and pointer types, cast the 1757 // final result back to the pointer type. 1758 if (LHS->getType() != S->getType()) 1759 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1760 return LHS; 1761 } 1762 1763 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1764 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1765 Type *Ty = LHS->getType(); 1766 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1767 // In the case of mixed integer and pointer types, do the 1768 // rest of the comparisons as integer. 1769 Type *OpTy = S->getOperand(i)->getType(); 1770 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1771 Ty = SE.getEffectiveSCEVType(Ty); 1772 LHS = InsertNoopCastOfTo(LHS, Ty); 1773 } 1774 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1775 Value *Sel; 1776 if (Ty->isIntegerTy()) 1777 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS}, 1778 /*FMFSource=*/nullptr, "umax"); 1779 else { 1780 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1781 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1782 } 1783 LHS = Sel; 1784 } 1785 // In the case of mixed integer and pointer types, cast the 1786 // final result back to the pointer type. 1787 if (LHS->getType() != S->getType()) 1788 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1789 return LHS; 1790 } 1791 1792 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1793 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1794 Type *Ty = LHS->getType(); 1795 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1796 // In the case of mixed integer and pointer types, do the 1797 // rest of the comparisons as integer. 1798 Type *OpTy = S->getOperand(i)->getType(); 1799 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1800 Ty = SE.getEffectiveSCEVType(Ty); 1801 LHS = InsertNoopCastOfTo(LHS, Ty); 1802 } 1803 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1804 Value *Sel; 1805 if (Ty->isIntegerTy()) 1806 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS}, 1807 /*FMFSource=*/nullptr, "smin"); 1808 else { 1809 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1810 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1811 } 1812 LHS = Sel; 1813 } 1814 // In the case of mixed integer and pointer types, cast the 1815 // final result back to the pointer type. 1816 if (LHS->getType() != S->getType()) 1817 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1818 return LHS; 1819 } 1820 1821 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1822 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1823 Type *Ty = LHS->getType(); 1824 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1825 // In the case of mixed integer and pointer types, do the 1826 // rest of the comparisons as integer. 1827 Type *OpTy = S->getOperand(i)->getType(); 1828 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1829 Ty = SE.getEffectiveSCEVType(Ty); 1830 LHS = InsertNoopCastOfTo(LHS, Ty); 1831 } 1832 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1833 Value *Sel; 1834 if (Ty->isIntegerTy()) 1835 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS}, 1836 /*FMFSource=*/nullptr, "umin"); 1837 else { 1838 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1839 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1840 } 1841 LHS = Sel; 1842 } 1843 // In the case of mixed integer and pointer types, cast the 1844 // final result back to the pointer type. 1845 if (LHS->getType() != S->getType()) 1846 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1847 return LHS; 1848 } 1849 1850 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1851 Instruction *IP, bool Root) { 1852 setInsertPoint(IP); 1853 Value *V = expandCodeForImpl(SH, Ty, Root); 1854 return V; 1855 } 1856 1857 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1858 // Expand the code for this SCEV. 1859 Value *V = expand(SH); 1860 1861 if (PreserveLCSSA) { 1862 if (auto *Inst = dyn_cast<Instruction>(V)) { 1863 // Create a temporary instruction to at the current insertion point, so we 1864 // can hand it off to the helper to create LCSSA PHIs if required for the 1865 // new use. 1866 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1867 // would accept a insertion point and return an LCSSA phi for that 1868 // insertion point, so there is no need to insert & remove the temporary 1869 // instruction. 1870 Instruction *Tmp; 1871 if (Inst->getType()->isIntegerTy()) 1872 Tmp = 1873 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1874 else { 1875 assert(Inst->getType()->isPointerTy()); 1876 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1877 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1878 } 1879 V = fixupLCSSAFormFor(Tmp, 0); 1880 1881 // Clean up temporary instruction. 1882 InsertedValues.erase(Tmp); 1883 InsertedPostIncValues.erase(Tmp); 1884 Tmp->eraseFromParent(); 1885 } 1886 } 1887 1888 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1889 if (Ty) { 1890 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1891 "non-trivial casts should be done with the SCEVs directly!"); 1892 V = InsertNoopCastOfTo(V, Ty); 1893 } 1894 return V; 1895 } 1896 1897 ScalarEvolution::ValueOffsetPair 1898 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1899 const Instruction *InsertPt) { 1900 auto *Set = SE.getSCEVValues(S); 1901 // If the expansion is not in CanonicalMode, and the SCEV contains any 1902 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1903 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1904 // If S is scConstant, it may be worse to reuse an existing Value. 1905 if (S->getSCEVType() != scConstant && Set) { 1906 // Choose a Value from the set which dominates the insertPt. 1907 // insertPt should be inside the Value's parent loop so as not to break 1908 // the LCSSA form. 1909 for (auto const &VOPair : *Set) { 1910 Value *V = VOPair.first; 1911 ConstantInt *Offset = VOPair.second; 1912 Instruction *EntInst = nullptr; 1913 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1914 S->getType() == V->getType() && 1915 EntInst->getFunction() == InsertPt->getFunction() && 1916 SE.DT.dominates(EntInst, InsertPt) && 1917 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1918 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1919 return {V, Offset}; 1920 } 1921 } 1922 } 1923 return {nullptr, nullptr}; 1924 } 1925 1926 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1927 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1928 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1929 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1930 // the expansion will try to reuse Value from ExprValueMap, and only when it 1931 // fails, expand the SCEV literally. 1932 Value *SCEVExpander::expand(const SCEV *S) { 1933 // Compute an insertion point for this SCEV object. Hoist the instructions 1934 // as far out in the loop nest as possible. 1935 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1936 1937 // We can move insertion point only if there is no div or rem operations 1938 // otherwise we are risky to move it over the check for zero denominator. 1939 auto SafeToHoist = [](const SCEV *S) { 1940 return !SCEVExprContains(S, [](const SCEV *S) { 1941 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1942 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1943 // Division by non-zero constants can be hoisted. 1944 return SC->getValue()->isZero(); 1945 // All other divisions should not be moved as they may be 1946 // divisions by zero and should be kept within the 1947 // conditions of the surrounding loops that guard their 1948 // execution (see PR35406). 1949 return true; 1950 } 1951 return false; 1952 }); 1953 }; 1954 if (SafeToHoist(S)) { 1955 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1956 L = L->getParentLoop()) { 1957 if (SE.isLoopInvariant(S, L)) { 1958 if (!L) break; 1959 if (BasicBlock *Preheader = L->getLoopPreheader()) 1960 InsertPt = Preheader->getTerminator(); 1961 else 1962 // LSR sets the insertion point for AddRec start/step values to the 1963 // block start to simplify value reuse, even though it's an invalid 1964 // position. SCEVExpander must correct for this in all cases. 1965 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1966 } else { 1967 // If the SCEV is computable at this level, insert it into the header 1968 // after the PHIs (and after any other instructions that we've inserted 1969 // there) so that it is guaranteed to dominate any user inside the loop. 1970 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1971 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1972 1973 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1974 (isInsertedInstruction(InsertPt) || 1975 isa<DbgInfoIntrinsic>(InsertPt))) { 1976 InsertPt = &*std::next(InsertPt->getIterator()); 1977 } 1978 break; 1979 } 1980 } 1981 } 1982 1983 // Check to see if we already expanded this here. 1984 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1985 if (I != InsertedExpressions.end()) 1986 return I->second; 1987 1988 SCEVInsertPointGuard Guard(Builder, this); 1989 Builder.SetInsertPoint(InsertPt); 1990 1991 // Expand the expression into instructions. 1992 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1993 Value *V = VO.first; 1994 1995 if (!V) 1996 V = visit(S); 1997 else if (VO.second) { 1998 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1999 Type *Ety = Vty->getPointerElementType(); 2000 int64_t Offset = VO.second->getSExtValue(); 2001 int64_t ESize = SE.getTypeSizeInBits(Ety); 2002 if ((Offset * 8) % ESize == 0) { 2003 ConstantInt *Idx = 2004 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 2005 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 2006 } else { 2007 ConstantInt *Idx = 2008 ConstantInt::getSigned(VO.second->getType(), -Offset); 2009 unsigned AS = Vty->getAddressSpace(); 2010 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 2011 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 2012 "uglygep"); 2013 V = Builder.CreateBitCast(V, Vty); 2014 } 2015 } else { 2016 V = Builder.CreateSub(V, VO.second); 2017 } 2018 } 2019 // Remember the expanded value for this SCEV at this location. 2020 // 2021 // This is independent of PostIncLoops. The mapped value simply materializes 2022 // the expression at this insertion point. If the mapped value happened to be 2023 // a postinc expansion, it could be reused by a non-postinc user, but only if 2024 // its insertion point was already at the head of the loop. 2025 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 2026 return V; 2027 } 2028 2029 void SCEVExpander::rememberInstruction(Value *I) { 2030 auto DoInsert = [this](Value *V) { 2031 if (!PostIncLoops.empty()) 2032 InsertedPostIncValues.insert(V); 2033 else 2034 InsertedValues.insert(V); 2035 }; 2036 DoInsert(I); 2037 2038 if (!PreserveLCSSA) 2039 return; 2040 2041 if (auto *Inst = dyn_cast<Instruction>(I)) { 2042 // A new instruction has been added, which might introduce new uses outside 2043 // a defining loop. Fix LCSSA from for each operand of the new instruction, 2044 // if required. 2045 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 2046 OpIdx++) 2047 fixupLCSSAFormFor(Inst, OpIdx); 2048 } 2049 } 2050 2051 /// replaceCongruentIVs - Check for congruent phis in this loop header and 2052 /// replace them with their most canonical representative. Return the number of 2053 /// phis eliminated. 2054 /// 2055 /// This does not depend on any SCEVExpander state but should be used in 2056 /// the same context that SCEVExpander is used. 2057 unsigned 2058 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 2059 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2060 const TargetTransformInfo *TTI) { 2061 // Find integer phis in order of increasing width. 2062 SmallVector<PHINode*, 8> Phis; 2063 for (PHINode &PN : L->getHeader()->phis()) 2064 Phis.push_back(&PN); 2065 2066 if (TTI) 2067 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2068 // Put pointers at the back and make sure pointer < pointer = false. 2069 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2070 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2071 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 2072 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 2073 }); 2074 2075 unsigned NumElim = 0; 2076 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2077 // Process phis from wide to narrow. Map wide phis to their truncation 2078 // so narrow phis can reuse them. 2079 for (PHINode *Phi : Phis) { 2080 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2081 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2082 return V; 2083 if (!SE.isSCEVable(PN->getType())) 2084 return nullptr; 2085 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2086 if (!Const) 2087 return nullptr; 2088 return Const->getValue(); 2089 }; 2090 2091 // Fold constant phis. They may be congruent to other constant phis and 2092 // would confuse the logic below that expects proper IVs. 2093 if (Value *V = SimplifyPHINode(Phi)) { 2094 if (V->getType() != Phi->getType()) 2095 continue; 2096 Phi->replaceAllUsesWith(V); 2097 DeadInsts.emplace_back(Phi); 2098 ++NumElim; 2099 SCEV_DEBUG_WITH_TYPE(DebugType, 2100 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 2101 << '\n'); 2102 continue; 2103 } 2104 2105 if (!SE.isSCEVable(Phi->getType())) 2106 continue; 2107 2108 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2109 if (!OrigPhiRef) { 2110 OrigPhiRef = Phi; 2111 if (Phi->getType()->isIntegerTy() && TTI && 2112 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2113 // This phi can be freely truncated to the narrowest phi type. Map the 2114 // truncated expression to it so it will be reused for narrow types. 2115 const SCEV *TruncExpr = 2116 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2117 ExprToIVMap[TruncExpr] = Phi; 2118 } 2119 continue; 2120 } 2121 2122 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2123 // sense. 2124 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2125 continue; 2126 2127 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2128 Instruction *OrigInc = dyn_cast<Instruction>( 2129 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2130 Instruction *IsomorphicInc = 2131 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2132 2133 if (OrigInc && IsomorphicInc) { 2134 // If this phi has the same width but is more canonical, replace the 2135 // original with it. As part of the "more canonical" determination, 2136 // respect a prior decision to use an IV chain. 2137 if (OrigPhiRef->getType() == Phi->getType() && 2138 !(ChainedPhis.count(Phi) || 2139 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2140 (ChainedPhis.count(Phi) || 2141 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2142 std::swap(OrigPhiRef, Phi); 2143 std::swap(OrigInc, IsomorphicInc); 2144 } 2145 // Replacing the congruent phi is sufficient because acyclic 2146 // redundancy elimination, CSE/GVN, should handle the 2147 // rest. However, once SCEV proves that a phi is congruent, 2148 // it's often the head of an IV user cycle that is isomorphic 2149 // with the original phi. It's worth eagerly cleaning up the 2150 // common case of a single IV increment so that DeleteDeadPHIs 2151 // can remove cycles that had postinc uses. 2152 const SCEV *TruncExpr = 2153 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2154 if (OrigInc != IsomorphicInc && 2155 TruncExpr == SE.getSCEV(IsomorphicInc) && 2156 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2157 hoistIVInc(OrigInc, IsomorphicInc)) { 2158 SCEV_DEBUG_WITH_TYPE( 2159 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2160 << *IsomorphicInc << '\n'); 2161 Value *NewInc = OrigInc; 2162 if (OrigInc->getType() != IsomorphicInc->getType()) { 2163 Instruction *IP = nullptr; 2164 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2165 IP = &*PN->getParent()->getFirstInsertionPt(); 2166 else 2167 IP = OrigInc->getNextNode(); 2168 2169 IRBuilder<> Builder(IP); 2170 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2171 NewInc = Builder.CreateTruncOrBitCast( 2172 OrigInc, IsomorphicInc->getType(), IVName); 2173 } 2174 IsomorphicInc->replaceAllUsesWith(NewInc); 2175 DeadInsts.emplace_back(IsomorphicInc); 2176 } 2177 } 2178 } 2179 SCEV_DEBUG_WITH_TYPE(DebugType, 2180 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2181 << '\n'); 2182 SCEV_DEBUG_WITH_TYPE( 2183 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2184 ++NumElim; 2185 Value *NewIV = OrigPhiRef; 2186 if (OrigPhiRef->getType() != Phi->getType()) { 2187 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2188 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2189 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2190 } 2191 Phi->replaceAllUsesWith(NewIV); 2192 DeadInsts.emplace_back(Phi); 2193 } 2194 return NumElim; 2195 } 2196 2197 Optional<ScalarEvolution::ValueOffsetPair> 2198 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2199 Loop *L) { 2200 using namespace llvm::PatternMatch; 2201 2202 SmallVector<BasicBlock *, 4> ExitingBlocks; 2203 L->getExitingBlocks(ExitingBlocks); 2204 2205 // Look for suitable value in simple conditions at the loop exits. 2206 for (BasicBlock *BB : ExitingBlocks) { 2207 ICmpInst::Predicate Pred; 2208 Instruction *LHS, *RHS; 2209 2210 if (!match(BB->getTerminator(), 2211 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2212 m_BasicBlock(), m_BasicBlock()))) 2213 continue; 2214 2215 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2216 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2217 2218 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2219 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2220 } 2221 2222 // Use expand's logic which is used for reusing a previous Value in 2223 // ExprValueMap. 2224 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2225 if (VO.first) 2226 return VO; 2227 2228 // There is potential to make this significantly smarter, but this simple 2229 // heuristic already gets some interesting cases. 2230 2231 // Can not find suitable value. 2232 return None; 2233 } 2234 2235 template<typename T> static InstructionCost costAndCollectOperands( 2236 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2237 TargetTransformInfo::TargetCostKind CostKind, 2238 SmallVectorImpl<SCEVOperand> &Worklist) { 2239 2240 const T *S = cast<T>(WorkItem.S); 2241 InstructionCost Cost = 0; 2242 // Object to help map SCEV operands to expanded IR instructions. 2243 struct OperationIndices { 2244 OperationIndices(unsigned Opc, size_t min, size_t max) : 2245 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2246 unsigned Opcode; 2247 size_t MinIdx; 2248 size_t MaxIdx; 2249 }; 2250 2251 // Collect the operations of all the instructions that will be needed to 2252 // expand the SCEVExpr. This is so that when we come to cost the operands, 2253 // we know what the generated user(s) will be. 2254 SmallVector<OperationIndices, 2> Operations; 2255 2256 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2257 Operations.emplace_back(Opcode, 0, 0); 2258 return TTI.getCastInstrCost(Opcode, S->getType(), 2259 S->getOperand(0)->getType(), 2260 TTI::CastContextHint::None, CostKind); 2261 }; 2262 2263 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2264 unsigned MinIdx = 0, 2265 unsigned MaxIdx = 1) -> InstructionCost { 2266 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2267 return NumRequired * 2268 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2269 }; 2270 2271 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2272 unsigned MaxIdx) -> InstructionCost { 2273 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2274 Type *OpType = S->getOperand(0)->getType(); 2275 return NumRequired * TTI.getCmpSelInstrCost( 2276 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2277 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2278 }; 2279 2280 switch (S->getSCEVType()) { 2281 case scCouldNotCompute: 2282 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2283 case scUnknown: 2284 case scConstant: 2285 return 0; 2286 case scPtrToInt: 2287 Cost = CastCost(Instruction::PtrToInt); 2288 break; 2289 case scTruncate: 2290 Cost = CastCost(Instruction::Trunc); 2291 break; 2292 case scZeroExtend: 2293 Cost = CastCost(Instruction::ZExt); 2294 break; 2295 case scSignExtend: 2296 Cost = CastCost(Instruction::SExt); 2297 break; 2298 case scUDivExpr: { 2299 unsigned Opcode = Instruction::UDiv; 2300 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2301 if (SC->getAPInt().isPowerOf2()) 2302 Opcode = Instruction::LShr; 2303 Cost = ArithCost(Opcode, 1); 2304 break; 2305 } 2306 case scAddExpr: 2307 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2308 break; 2309 case scMulExpr: 2310 // TODO: this is a very pessimistic cost modelling for Mul, 2311 // because of Bin Pow algorithm actually used by the expander, 2312 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2313 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2314 break; 2315 case scSMaxExpr: 2316 case scUMaxExpr: 2317 case scSMinExpr: 2318 case scUMinExpr: { 2319 // FIXME: should this ask the cost for Intrinsic's? 2320 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2321 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2322 break; 2323 } 2324 case scAddRecExpr: { 2325 // In this polynominal, we may have some zero operands, and we shouldn't 2326 // really charge for those. So how many non-zero coeffients are there? 2327 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2328 return !Op->isZero(); 2329 }); 2330 2331 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2332 assert(!(*std::prev(S->operands().end()))->isZero() && 2333 "Last operand should not be zero"); 2334 2335 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2336 int NumNonZeroDegreeNonOneTerms = 2337 llvm::count_if(S->operands(), [](const SCEV *Op) { 2338 auto *SConst = dyn_cast<SCEVConstant>(Op); 2339 return !SConst || SConst->getAPInt().ugt(1); 2340 }); 2341 2342 // Much like with normal add expr, the polynominal will require 2343 // one less addition than the number of it's terms. 2344 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2345 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2346 // Here, *each* one of those will require a multiplication. 2347 InstructionCost MulCost = 2348 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2349 Cost = AddCost + MulCost; 2350 2351 // What is the degree of this polynominal? 2352 int PolyDegree = S->getNumOperands() - 1; 2353 assert(PolyDegree >= 1 && "Should be at least affine."); 2354 2355 // The final term will be: 2356 // Op_{PolyDegree} * x ^ {PolyDegree} 2357 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2358 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2359 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2360 // FIXME: this is conservatively correct, but might be overly pessimistic. 2361 Cost += MulCost * (PolyDegree - 1); 2362 break; 2363 } 2364 } 2365 2366 for (auto &CostOp : Operations) { 2367 for (auto SCEVOp : enumerate(S->operands())) { 2368 // Clamp the index to account for multiple IR operations being chained. 2369 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2370 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2371 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2372 } 2373 } 2374 return Cost; 2375 } 2376 2377 bool SCEVExpander::isHighCostExpansionHelper( 2378 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2379 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2380 SmallPtrSetImpl<const SCEV *> &Processed, 2381 SmallVectorImpl<SCEVOperand> &Worklist) { 2382 if (Cost > Budget) 2383 return true; // Already run out of budget, give up. 2384 2385 const SCEV *S = WorkItem.S; 2386 // Was the cost of expansion of this expression already accounted for? 2387 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2388 return false; // We have already accounted for this expression. 2389 2390 // If we can find an existing value for this scev available at the point "At" 2391 // then consider the expression cheap. 2392 if (getRelatedExistingExpansion(S, &At, L)) 2393 return false; // Consider the expression to be free. 2394 2395 TargetTransformInfo::TargetCostKind CostKind = 2396 L->getHeader()->getParent()->hasMinSize() 2397 ? TargetTransformInfo::TCK_CodeSize 2398 : TargetTransformInfo::TCK_RecipThroughput; 2399 2400 switch (S->getSCEVType()) { 2401 case scCouldNotCompute: 2402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2403 case scUnknown: 2404 // Assume to be zero-cost. 2405 return false; 2406 case scConstant: { 2407 // Only evalulate the costs of constants when optimizing for size. 2408 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2409 return 0; 2410 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2411 Type *Ty = S->getType(); 2412 Cost += TTI.getIntImmCostInst( 2413 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2414 return Cost > Budget; 2415 } 2416 case scTruncate: 2417 case scPtrToInt: 2418 case scZeroExtend: 2419 case scSignExtend: { 2420 Cost += 2421 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2422 return false; // Will answer upon next entry into this function. 2423 } 2424 case scUDivExpr: { 2425 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2426 // HowManyLessThans produced to compute a precise expression, rather than a 2427 // UDiv from the user's code. If we can't find a UDiv in the code with some 2428 // simple searching, we need to account for it's cost. 2429 2430 // At the beginning of this function we already tried to find existing 2431 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2432 // pattern involving division. This is just a simple search heuristic. 2433 if (getRelatedExistingExpansion( 2434 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2435 return false; // Consider it to be free. 2436 2437 Cost += 2438 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2439 return false; // Will answer upon next entry into this function. 2440 } 2441 case scAddExpr: 2442 case scMulExpr: 2443 case scUMaxExpr: 2444 case scSMaxExpr: 2445 case scUMinExpr: 2446 case scSMinExpr: { 2447 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2448 "Nary expr should have more than 1 operand."); 2449 // The simple nary expr will require one less op (or pair of ops) 2450 // than the number of it's terms. 2451 Cost += 2452 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2453 return Cost > Budget; 2454 } 2455 case scAddRecExpr: { 2456 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2457 "Polynomial should be at least linear"); 2458 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2459 WorkItem, TTI, CostKind, Worklist); 2460 return Cost > Budget; 2461 } 2462 } 2463 llvm_unreachable("Unknown SCEV kind!"); 2464 } 2465 2466 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2467 Instruction *IP) { 2468 assert(IP); 2469 switch (Pred->getKind()) { 2470 case SCEVPredicate::P_Union: 2471 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2472 case SCEVPredicate::P_Equal: 2473 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2474 case SCEVPredicate::P_Wrap: { 2475 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2476 return expandWrapPredicate(AddRecPred, IP); 2477 } 2478 } 2479 llvm_unreachable("Unknown SCEV predicate type"); 2480 } 2481 2482 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2483 Instruction *IP) { 2484 Value *Expr0 = 2485 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2486 Value *Expr1 = 2487 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2488 2489 Builder.SetInsertPoint(IP); 2490 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2491 return I; 2492 } 2493 2494 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2495 Instruction *Loc, bool Signed) { 2496 assert(AR->isAffine() && "Cannot generate RT check for " 2497 "non-affine expression"); 2498 2499 SCEVUnionPredicate Pred; 2500 const SCEV *ExitCount = 2501 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2502 2503 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2504 2505 const SCEV *Step = AR->getStepRecurrence(SE); 2506 const SCEV *Start = AR->getStart(); 2507 2508 Type *ARTy = AR->getType(); 2509 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2510 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2511 2512 // The expression {Start,+,Step} has nusw/nssw if 2513 // Step < 0, Start - |Step| * Backedge <= Start 2514 // Step >= 0, Start + |Step| * Backedge > Start 2515 // and |Step| * Backedge doesn't unsigned overflow. 2516 2517 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2518 Builder.SetInsertPoint(Loc); 2519 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2520 2521 IntegerType *Ty = 2522 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2523 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2524 2525 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2526 Value *NegStepValue = 2527 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2528 Value *StartValue = expandCodeForImpl( 2529 isa<PointerType>(ARExpandTy) ? Start 2530 : SE.getPtrToIntExpr(Start, ARExpandTy), 2531 ARExpandTy, Loc, false); 2532 2533 ConstantInt *Zero = 2534 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2535 2536 Builder.SetInsertPoint(Loc); 2537 // Compute |Step| 2538 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2539 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2540 2541 // Get the backedge taken count and truncate or extended to the AR type. 2542 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2543 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2544 Intrinsic::umul_with_overflow, Ty); 2545 2546 // Compute |Step| * Backedge 2547 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2548 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2549 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2550 2551 // Compute: 2552 // Start + |Step| * Backedge < Start 2553 // Start - |Step| * Backedge > Start 2554 Value *Add = nullptr, *Sub = nullptr; 2555 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2556 const SCEV *MulS = SE.getSCEV(MulV); 2557 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2558 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2559 ARPtrTy); 2560 Sub = Builder.CreateBitCast( 2561 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2562 } else { 2563 Add = Builder.CreateAdd(StartValue, MulV); 2564 Sub = Builder.CreateSub(StartValue, MulV); 2565 } 2566 2567 Value *EndCompareGT = Builder.CreateICmp( 2568 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2569 2570 Value *EndCompareLT = Builder.CreateICmp( 2571 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2572 2573 // Select the answer based on the sign of Step. 2574 Value *EndCheck = 2575 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2576 2577 // If the backedge taken count type is larger than the AR type, 2578 // check that we don't drop any bits by truncating it. If we are 2579 // dropping bits, then we have overflow (unless the step is zero). 2580 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2581 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2582 auto *BackedgeCheck = 2583 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2584 ConstantInt::get(Loc->getContext(), MaxVal)); 2585 BackedgeCheck = Builder.CreateAnd( 2586 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2587 2588 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2589 } 2590 2591 return Builder.CreateOr(EndCheck, OfMul); 2592 } 2593 2594 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2595 Instruction *IP) { 2596 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2597 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2598 2599 // Add a check for NUSW 2600 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2601 NUSWCheck = generateOverflowCheck(A, IP, false); 2602 2603 // Add a check for NSSW 2604 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2605 NSSWCheck = generateOverflowCheck(A, IP, true); 2606 2607 if (NUSWCheck && NSSWCheck) 2608 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2609 2610 if (NUSWCheck) 2611 return NUSWCheck; 2612 2613 if (NSSWCheck) 2614 return NSSWCheck; 2615 2616 return ConstantInt::getFalse(IP->getContext()); 2617 } 2618 2619 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2620 Instruction *IP) { 2621 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2622 Value *Check = ConstantInt::getNullValue(BoolType); 2623 2624 // Loop over all checks in this set. 2625 for (auto Pred : Union->getPredicates()) { 2626 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2627 Builder.SetInsertPoint(IP); 2628 Check = Builder.CreateOr(Check, NextCheck); 2629 } 2630 2631 return Check; 2632 } 2633 2634 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2635 assert(PreserveLCSSA); 2636 SmallVector<Instruction *, 1> ToUpdate; 2637 2638 auto *OpV = User->getOperand(OpIdx); 2639 auto *OpI = dyn_cast<Instruction>(OpV); 2640 if (!OpI) 2641 return OpV; 2642 2643 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2644 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2645 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2646 return OpV; 2647 2648 ToUpdate.push_back(OpI); 2649 SmallVector<PHINode *, 16> PHIsToRemove; 2650 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2651 for (PHINode *PN : PHIsToRemove) { 2652 if (!PN->use_empty()) 2653 continue; 2654 InsertedValues.erase(PN); 2655 InsertedPostIncValues.erase(PN); 2656 PN->eraseFromParent(); 2657 } 2658 2659 return User->getOperand(OpIdx); 2660 } 2661 2662 namespace { 2663 // Search for a SCEV subexpression that is not safe to expand. Any expression 2664 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2665 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2666 // instruction, but the important thing is that we prove the denominator is 2667 // nonzero before expansion. 2668 // 2669 // IVUsers already checks that IV-derived expressions are safe. So this check is 2670 // only needed when the expression includes some subexpression that is not IV 2671 // derived. 2672 // 2673 // Currently, we only allow division by a nonzero constant here. If this is 2674 // inadequate, we could easily allow division by SCEVUnknown by using 2675 // ValueTracking to check isKnownNonZero(). 2676 // 2677 // We cannot generally expand recurrences unless the step dominates the loop 2678 // header. The expander handles the special case of affine recurrences by 2679 // scaling the recurrence outside the loop, but this technique isn't generally 2680 // applicable. Expanding a nested recurrence outside a loop requires computing 2681 // binomial coefficients. This could be done, but the recurrence has to be in a 2682 // perfectly reduced form, which can't be guaranteed. 2683 struct SCEVFindUnsafe { 2684 ScalarEvolution &SE; 2685 bool IsUnsafe; 2686 2687 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2688 2689 bool follow(const SCEV *S) { 2690 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2691 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2692 if (!SC || SC->getValue()->isZero()) { 2693 IsUnsafe = true; 2694 return false; 2695 } 2696 } 2697 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2698 const SCEV *Step = AR->getStepRecurrence(SE); 2699 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2700 IsUnsafe = true; 2701 return false; 2702 } 2703 } 2704 return true; 2705 } 2706 bool isDone() const { return IsUnsafe; } 2707 }; 2708 } 2709 2710 namespace llvm { 2711 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2712 SCEVFindUnsafe Search(SE); 2713 visitAll(S, Search); 2714 return !Search.IsUnsafe; 2715 } 2716 2717 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2718 ScalarEvolution &SE) { 2719 if (!isSafeToExpand(S, SE)) 2720 return false; 2721 // We have to prove that the expanded site of S dominates InsertionPoint. 2722 // This is easy when not in the same block, but hard when S is an instruction 2723 // to be expanded somewhere inside the same block as our insertion point. 2724 // What we really need here is something analogous to an OrderedBasicBlock, 2725 // but for the moment, we paper over the problem by handling two common and 2726 // cheap to check cases. 2727 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2728 return true; 2729 if (SE.dominates(S, InsertionPoint->getParent())) { 2730 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2731 return true; 2732 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2733 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2734 return true; 2735 } 2736 return false; 2737 } 2738 2739 void SCEVExpanderCleaner::cleanup() { 2740 // Result is used, nothing to remove. 2741 if (ResultUsed) 2742 return; 2743 2744 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2745 #ifndef NDEBUG 2746 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2747 InsertedInstructions.end()); 2748 (void)InsertedSet; 2749 #endif 2750 // Remove sets with value handles. 2751 Expander.clear(); 2752 2753 // Sort so that earlier instructions do not dominate later instructions. 2754 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2755 return DT.dominates(B, A); 2756 }); 2757 // Remove all inserted instructions. 2758 for (Instruction *I : InsertedInstructions) { 2759 2760 #ifndef NDEBUG 2761 assert(all_of(I->users(), 2762 [&InsertedSet](Value *U) { 2763 return InsertedSet.contains(cast<Instruction>(U)); 2764 }) && 2765 "removed instruction should only be used by instructions inserted " 2766 "during expansion"); 2767 #endif 2768 assert(!I->getType()->isVoidTy() && 2769 "inserted instruction should have non-void types"); 2770 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2771 I->eraseFromParent(); 2772 } 2773 } 2774 } 2775