xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 6d247f980d922055018137c0d1400fde83d9449f)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace llvm;
32 
33 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
34     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
35     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
36              "controls the budget that is considered cheap (default = 4)"));
37 
38 using namespace PatternMatch;
39 
40 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
41 /// reusing an existing cast if a suitable one exists, moving an existing
42 /// cast if a suitable one exists but isn't in the right place, or
43 /// creating a new one.
44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
45                                        Instruction::CastOps Op,
46                                        BasicBlock::iterator IP) {
47   // This function must be called with the builder having a valid insertion
48   // point. It doesn't need to be the actual IP where the uses of the returned
49   // cast will be added, but it must dominate such IP.
50   // We use this precondition to produce a cast that will dominate all its
51   // uses. In particular, this is crucial for the case where the builder's
52   // insertion point *is* the point where we were asked to put the cast.
53   // Since we don't know the builder's insertion point is actually
54   // where the uses will be added (only that it dominates it), we are
55   // not allowed to move it.
56   BasicBlock::iterator BIP = Builder.GetInsertPoint();
57 
58   Instruction *Ret = nullptr;
59 
60   // Check to see if there is already a cast!
61   for (User *U : V->users())
62     if (U->getType() == Ty)
63       if (CastInst *CI = dyn_cast<CastInst>(U))
64         if (CI->getOpcode() == Op) {
65           // If the cast isn't where we want it, create a new cast at IP.
66           // Likewise, do not reuse a cast at BIP because it must dominate
67           // instructions that might be inserted before BIP.
68           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
69             // Create a new cast, and leave the old cast in place in case
70             // it is being used as an insert point.
71             Ret = CastInst::Create(Op, V, Ty, "", &*IP);
72             Ret->takeName(CI);
73             CI->replaceAllUsesWith(Ret);
74             break;
75           }
76           Ret = CI;
77           break;
78         }
79 
80   // Create a new cast.
81   if (!Ret)
82     Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
83 
84   // We assert at the end of the function since IP might point to an
85   // instruction with different dominance properties than a cast
86   // (an invoke for example) and not dominate BIP (but the cast does).
87   assert(SE.DT.dominates(Ret, &*BIP));
88 
89   rememberInstruction(Ret);
90   return Ret;
91 }
92 
93 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
94                                                  BasicBlock *MustDominate) {
95   BasicBlock::iterator IP = ++I->getIterator();
96   if (auto *II = dyn_cast<InvokeInst>(I))
97     IP = II->getNormalDest()->begin();
98 
99   while (isa<PHINode>(IP))
100     ++IP;
101 
102   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
103     ++IP;
104   } else if (isa<CatchSwitchInst>(IP)) {
105     IP = MustDominate->getFirstInsertionPt();
106   } else {
107     assert(!IP->isEHPad() && "unexpected eh pad!");
108   }
109 
110   return IP;
111 }
112 
113 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
114 /// which must be possible with a noop cast, doing what we can to share
115 /// the casts.
116 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
117   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
118   assert((Op == Instruction::BitCast ||
119           Op == Instruction::PtrToInt ||
120           Op == Instruction::IntToPtr) &&
121          "InsertNoopCastOfTo cannot perform non-noop casts!");
122   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
123          "InsertNoopCastOfTo cannot change sizes!");
124 
125   // Short-circuit unnecessary bitcasts.
126   if (Op == Instruction::BitCast) {
127     if (V->getType() == Ty)
128       return V;
129     if (CastInst *CI = dyn_cast<CastInst>(V)) {
130       if (CI->getOperand(0)->getType() == Ty)
131         return CI->getOperand(0);
132     }
133   }
134   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
135   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
136       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
137     if (CastInst *CI = dyn_cast<CastInst>(V))
138       if ((CI->getOpcode() == Instruction::PtrToInt ||
139            CI->getOpcode() == Instruction::IntToPtr) &&
140           SE.getTypeSizeInBits(CI->getType()) ==
141           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
142         return CI->getOperand(0);
143     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
144       if ((CE->getOpcode() == Instruction::PtrToInt ||
145            CE->getOpcode() == Instruction::IntToPtr) &&
146           SE.getTypeSizeInBits(CE->getType()) ==
147           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
148         return CE->getOperand(0);
149   }
150 
151   // Fold a cast of a constant.
152   if (Constant *C = dyn_cast<Constant>(V))
153     return ConstantExpr::getCast(Op, C, Ty);
154 
155   // Cast the argument at the beginning of the entry block, after
156   // any bitcasts of other arguments.
157   if (Argument *A = dyn_cast<Argument>(V)) {
158     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
159     while ((isa<BitCastInst>(IP) &&
160             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
161             cast<BitCastInst>(IP)->getOperand(0) != A) ||
162            isa<DbgInfoIntrinsic>(IP))
163       ++IP;
164     return ReuseOrCreateCast(A, Ty, Op, IP);
165   }
166 
167   // Cast the instruction immediately after the instruction.
168   Instruction *I = cast<Instruction>(V);
169   BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
170   return ReuseOrCreateCast(I, Ty, Op, IP);
171 }
172 
173 /// InsertBinop - Insert the specified binary operator, doing a small amount
174 /// of work to avoid inserting an obviously redundant operation, and hoisting
175 /// to an outer loop when the opportunity is there and it is safe.
176 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
177                                  Value *LHS, Value *RHS,
178                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
179   // Fold a binop with constant operands.
180   if (Constant *CLHS = dyn_cast<Constant>(LHS))
181     if (Constant *CRHS = dyn_cast<Constant>(RHS))
182       return ConstantExpr::get(Opcode, CLHS, CRHS);
183 
184   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
185   unsigned ScanLimit = 6;
186   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
187   // Scanning starts from the last instruction before the insertion point.
188   BasicBlock::iterator IP = Builder.GetInsertPoint();
189   if (IP != BlockBegin) {
190     --IP;
191     for (; ScanLimit; --IP, --ScanLimit) {
192       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
193       // generated code.
194       if (isa<DbgInfoIntrinsic>(IP))
195         ScanLimit++;
196 
197       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
198         // Ensure that no-wrap flags match.
199         if (isa<OverflowingBinaryOperator>(I)) {
200           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
201             return true;
202           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
203             return true;
204         }
205         // Conservatively, do not use any instruction which has any of exact
206         // flags installed.
207         if (isa<PossiblyExactOperator>(I) && I->isExact())
208           return true;
209         return false;
210       };
211       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
212           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
213         return &*IP;
214       if (IP == BlockBegin) break;
215     }
216   }
217 
218   // Save the original insertion point so we can restore it when we're done.
219   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
220   SCEVInsertPointGuard Guard(Builder, this);
221 
222   if (IsSafeToHoist) {
223     // Move the insertion point out of as many loops as we can.
224     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
225       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
226       BasicBlock *Preheader = L->getLoopPreheader();
227       if (!Preheader) break;
228 
229       // Ok, move up a level.
230       Builder.SetInsertPoint(Preheader->getTerminator());
231     }
232   }
233 
234   // If we haven't found this binop, insert it.
235   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
236   BO->setDebugLoc(Loc);
237   if (Flags & SCEV::FlagNUW)
238     BO->setHasNoUnsignedWrap();
239   if (Flags & SCEV::FlagNSW)
240     BO->setHasNoSignedWrap();
241   rememberInstruction(BO);
242 
243   return BO;
244 }
245 
246 /// FactorOutConstant - Test if S is divisible by Factor, using signed
247 /// division. If so, update S with Factor divided out and return true.
248 /// S need not be evenly divisible if a reasonable remainder can be
249 /// computed.
250 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
251                               const SCEV *Factor, ScalarEvolution &SE,
252                               const DataLayout &DL) {
253   // Everything is divisible by one.
254   if (Factor->isOne())
255     return true;
256 
257   // x/x == 1.
258   if (S == Factor) {
259     S = SE.getConstant(S->getType(), 1);
260     return true;
261   }
262 
263   // For a Constant, check for a multiple of the given factor.
264   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
265     // 0/x == 0.
266     if (C->isZero())
267       return true;
268     // Check for divisibility.
269     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
270       ConstantInt *CI =
271           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
272       // If the quotient is zero and the remainder is non-zero, reject
273       // the value at this scale. It will be considered for subsequent
274       // smaller scales.
275       if (!CI->isZero()) {
276         const SCEV *Div = SE.getConstant(CI);
277         S = Div;
278         Remainder = SE.getAddExpr(
279             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
280         return true;
281       }
282     }
283   }
284 
285   // In a Mul, check if there is a constant operand which is a multiple
286   // of the given factor.
287   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
288     // Size is known, check if there is a constant operand which is a multiple
289     // of the given factor. If so, we can factor it.
290     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
291       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
292         if (!C->getAPInt().srem(FC->getAPInt())) {
293           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
294           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
295           S = SE.getMulExpr(NewMulOps);
296           return true;
297         }
298   }
299 
300   // In an AddRec, check if both start and step are divisible.
301   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
302     const SCEV *Step = A->getStepRecurrence(SE);
303     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
304     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
305       return false;
306     if (!StepRem->isZero())
307       return false;
308     const SCEV *Start = A->getStart();
309     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
310       return false;
311     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
312                          A->getNoWrapFlags(SCEV::FlagNW));
313     return true;
314   }
315 
316   return false;
317 }
318 
319 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
320 /// is the number of SCEVAddRecExprs present, which are kept at the end of
321 /// the list.
322 ///
323 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
324                                 Type *Ty,
325                                 ScalarEvolution &SE) {
326   unsigned NumAddRecs = 0;
327   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
328     ++NumAddRecs;
329   // Group Ops into non-addrecs and addrecs.
330   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
331   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
332   // Let ScalarEvolution sort and simplify the non-addrecs list.
333   const SCEV *Sum = NoAddRecs.empty() ?
334                     SE.getConstant(Ty, 0) :
335                     SE.getAddExpr(NoAddRecs);
336   // If it returned an add, use the operands. Otherwise it simplified
337   // the sum into a single value, so just use that.
338   Ops.clear();
339   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
340     Ops.append(Add->op_begin(), Add->op_end());
341   else if (!Sum->isZero())
342     Ops.push_back(Sum);
343   // Then append the addrecs.
344   Ops.append(AddRecs.begin(), AddRecs.end());
345 }
346 
347 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
348 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
349 /// This helps expose more opportunities for folding parts of the expressions
350 /// into GEP indices.
351 ///
352 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
353                          Type *Ty,
354                          ScalarEvolution &SE) {
355   // Find the addrecs.
356   SmallVector<const SCEV *, 8> AddRecs;
357   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
358     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
359       const SCEV *Start = A->getStart();
360       if (Start->isZero()) break;
361       const SCEV *Zero = SE.getConstant(Ty, 0);
362       AddRecs.push_back(SE.getAddRecExpr(Zero,
363                                          A->getStepRecurrence(SE),
364                                          A->getLoop(),
365                                          A->getNoWrapFlags(SCEV::FlagNW)));
366       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
367         Ops[i] = Zero;
368         Ops.append(Add->op_begin(), Add->op_end());
369         e += Add->getNumOperands();
370       } else {
371         Ops[i] = Start;
372       }
373     }
374   if (!AddRecs.empty()) {
375     // Add the addrecs onto the end of the list.
376     Ops.append(AddRecs.begin(), AddRecs.end());
377     // Resort the operand list, moving any constants to the front.
378     SimplifyAddOperands(Ops, Ty, SE);
379   }
380 }
381 
382 /// expandAddToGEP - Expand an addition expression with a pointer type into
383 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
384 /// BasicAliasAnalysis and other passes analyze the result. See the rules
385 /// for getelementptr vs. inttoptr in
386 /// http://llvm.org/docs/LangRef.html#pointeraliasing
387 /// for details.
388 ///
389 /// Design note: The correctness of using getelementptr here depends on
390 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
391 /// they may introduce pointer arithmetic which may not be safely converted
392 /// into getelementptr.
393 ///
394 /// Design note: It might seem desirable for this function to be more
395 /// loop-aware. If some of the indices are loop-invariant while others
396 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
397 /// loop-invariant portions of the overall computation outside the loop.
398 /// However, there are a few reasons this is not done here. Hoisting simple
399 /// arithmetic is a low-level optimization that often isn't very
400 /// important until late in the optimization process. In fact, passes
401 /// like InstructionCombining will combine GEPs, even if it means
402 /// pushing loop-invariant computation down into loops, so even if the
403 /// GEPs were split here, the work would quickly be undone. The
404 /// LoopStrengthReduction pass, which is usually run quite late (and
405 /// after the last InstructionCombining pass), takes care of hoisting
406 /// loop-invariant portions of expressions, after considering what
407 /// can be folded using target addressing modes.
408 ///
409 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
410                                     const SCEV *const *op_end,
411                                     PointerType *PTy,
412                                     Type *Ty,
413                                     Value *V) {
414   Type *OriginalElTy = PTy->getElementType();
415   Type *ElTy = OriginalElTy;
416   SmallVector<Value *, 4> GepIndices;
417   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
418   bool AnyNonZeroIndices = false;
419 
420   // Split AddRecs up into parts as either of the parts may be usable
421   // without the other.
422   SplitAddRecs(Ops, Ty, SE);
423 
424   Type *IntIdxTy = DL.getIndexType(PTy);
425 
426   // Descend down the pointer's type and attempt to convert the other
427   // operands into GEP indices, at each level. The first index in a GEP
428   // indexes into the array implied by the pointer operand; the rest of
429   // the indices index into the element or field type selected by the
430   // preceding index.
431   for (;;) {
432     // If the scale size is not 0, attempt to factor out a scale for
433     // array indexing.
434     SmallVector<const SCEV *, 8> ScaledOps;
435     if (ElTy->isSized()) {
436       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
437       if (!ElSize->isZero()) {
438         SmallVector<const SCEV *, 8> NewOps;
439         for (const SCEV *Op : Ops) {
440           const SCEV *Remainder = SE.getConstant(Ty, 0);
441           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
442             // Op now has ElSize factored out.
443             ScaledOps.push_back(Op);
444             if (!Remainder->isZero())
445               NewOps.push_back(Remainder);
446             AnyNonZeroIndices = true;
447           } else {
448             // The operand was not divisible, so add it to the list of operands
449             // we'll scan next iteration.
450             NewOps.push_back(Op);
451           }
452         }
453         // If we made any changes, update Ops.
454         if (!ScaledOps.empty()) {
455           Ops = NewOps;
456           SimplifyAddOperands(Ops, Ty, SE);
457         }
458       }
459     }
460 
461     // Record the scaled array index for this level of the type. If
462     // we didn't find any operands that could be factored, tentatively
463     // assume that element zero was selected (since the zero offset
464     // would obviously be folded away).
465     Value *Scaled = ScaledOps.empty() ?
466                     Constant::getNullValue(Ty) :
467                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
468     GepIndices.push_back(Scaled);
469 
470     // Collect struct field index operands.
471     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
472       bool FoundFieldNo = false;
473       // An empty struct has no fields.
474       if (STy->getNumElements() == 0) break;
475       // Field offsets are known. See if a constant offset falls within any of
476       // the struct fields.
477       if (Ops.empty())
478         break;
479       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
480         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
481           const StructLayout &SL = *DL.getStructLayout(STy);
482           uint64_t FullOffset = C->getValue()->getZExtValue();
483           if (FullOffset < SL.getSizeInBytes()) {
484             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
485             GepIndices.push_back(
486                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
487             ElTy = STy->getTypeAtIndex(ElIdx);
488             Ops[0] =
489                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
490             AnyNonZeroIndices = true;
491             FoundFieldNo = true;
492           }
493         }
494       // If no struct field offsets were found, tentatively assume that
495       // field zero was selected (since the zero offset would obviously
496       // be folded away).
497       if (!FoundFieldNo) {
498         ElTy = STy->getTypeAtIndex(0u);
499         GepIndices.push_back(
500           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
501       }
502     }
503 
504     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
505       ElTy = ATy->getElementType();
506     else
507       // FIXME: Handle VectorType.
508       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
509       // constant, therefore can not be factored out. The generated IR is less
510       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
511       break;
512   }
513 
514   // If none of the operands were convertible to proper GEP indices, cast
515   // the base to i8* and do an ugly getelementptr with that. It's still
516   // better than ptrtoint+arithmetic+inttoptr at least.
517   if (!AnyNonZeroIndices) {
518     // Cast the base to i8*.
519     V = InsertNoopCastOfTo(V,
520        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
521 
522     assert(!isa<Instruction>(V) ||
523            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
524 
525     // Expand the operands for a plain byte offset.
526     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
527 
528     // Fold a GEP with constant operands.
529     if (Constant *CLHS = dyn_cast<Constant>(V))
530       if (Constant *CRHS = dyn_cast<Constant>(Idx))
531         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
532                                               CLHS, CRHS);
533 
534     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
535     unsigned ScanLimit = 6;
536     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
537     // Scanning starts from the last instruction before the insertion point.
538     BasicBlock::iterator IP = Builder.GetInsertPoint();
539     if (IP != BlockBegin) {
540       --IP;
541       for (; ScanLimit; --IP, --ScanLimit) {
542         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
543         // generated code.
544         if (isa<DbgInfoIntrinsic>(IP))
545           ScanLimit++;
546         if (IP->getOpcode() == Instruction::GetElementPtr &&
547             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
548           return &*IP;
549         if (IP == BlockBegin) break;
550       }
551     }
552 
553     // Save the original insertion point so we can restore it when we're done.
554     SCEVInsertPointGuard Guard(Builder, this);
555 
556     // Move the insertion point out of as many loops as we can.
557     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
558       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
559       BasicBlock *Preheader = L->getLoopPreheader();
560       if (!Preheader) break;
561 
562       // Ok, move up a level.
563       Builder.SetInsertPoint(Preheader->getTerminator());
564     }
565 
566     // Emit a GEP.
567     Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
568     rememberInstruction(GEP);
569 
570     return GEP;
571   }
572 
573   {
574     SCEVInsertPointGuard Guard(Builder, this);
575 
576     // Move the insertion point out of as many loops as we can.
577     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
578       if (!L->isLoopInvariant(V)) break;
579 
580       bool AnyIndexNotLoopInvariant = any_of(
581           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
582 
583       if (AnyIndexNotLoopInvariant)
584         break;
585 
586       BasicBlock *Preheader = L->getLoopPreheader();
587       if (!Preheader) break;
588 
589       // Ok, move up a level.
590       Builder.SetInsertPoint(Preheader->getTerminator());
591     }
592 
593     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
594     // because ScalarEvolution may have changed the address arithmetic to
595     // compute a value which is beyond the end of the allocated object.
596     Value *Casted = V;
597     if (V->getType() != PTy)
598       Casted = InsertNoopCastOfTo(Casted, PTy);
599     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
600     Ops.push_back(SE.getUnknown(GEP));
601     rememberInstruction(GEP);
602   }
603 
604   return expand(SE.getAddExpr(Ops));
605 }
606 
607 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
608                                     Value *V) {
609   const SCEV *const Ops[1] = {Op};
610   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
611 }
612 
613 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
614 /// SCEV expansion. If they are nested, this is the most nested. If they are
615 /// neighboring, pick the later.
616 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
617                                         DominatorTree &DT) {
618   if (!A) return B;
619   if (!B) return A;
620   if (A->contains(B)) return B;
621   if (B->contains(A)) return A;
622   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
623   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
624   return A; // Arbitrarily break the tie.
625 }
626 
627 /// getRelevantLoop - Get the most relevant loop associated with the given
628 /// expression, according to PickMostRelevantLoop.
629 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
630   // Test whether we've already computed the most relevant loop for this SCEV.
631   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
632   if (!Pair.second)
633     return Pair.first->second;
634 
635   if (isa<SCEVConstant>(S))
636     // A constant has no relevant loops.
637     return nullptr;
638   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
639     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
640       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
641     // A non-instruction has no relevant loops.
642     return nullptr;
643   }
644   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
645     const Loop *L = nullptr;
646     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
647       L = AR->getLoop();
648     for (const SCEV *Op : N->operands())
649       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
650     return RelevantLoops[N] = L;
651   }
652   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
653     const Loop *Result = getRelevantLoop(C->getOperand());
654     return RelevantLoops[C] = Result;
655   }
656   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
657     const Loop *Result = PickMostRelevantLoop(
658         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
659     return RelevantLoops[D] = Result;
660   }
661   llvm_unreachable("Unexpected SCEV type!");
662 }
663 
664 namespace {
665 
666 /// LoopCompare - Compare loops by PickMostRelevantLoop.
667 class LoopCompare {
668   DominatorTree &DT;
669 public:
670   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
671 
672   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
673                   std::pair<const Loop *, const SCEV *> RHS) const {
674     // Keep pointer operands sorted at the end.
675     if (LHS.second->getType()->isPointerTy() !=
676         RHS.second->getType()->isPointerTy())
677       return LHS.second->getType()->isPointerTy();
678 
679     // Compare loops with PickMostRelevantLoop.
680     if (LHS.first != RHS.first)
681       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
682 
683     // If one operand is a non-constant negative and the other is not,
684     // put the non-constant negative on the right so that a sub can
685     // be used instead of a negate and add.
686     if (LHS.second->isNonConstantNegative()) {
687       if (!RHS.second->isNonConstantNegative())
688         return false;
689     } else if (RHS.second->isNonConstantNegative())
690       return true;
691 
692     // Otherwise they are equivalent according to this comparison.
693     return false;
694   }
695 };
696 
697 }
698 
699 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
700   Type *Ty = SE.getEffectiveSCEVType(S->getType());
701 
702   // Collect all the add operands in a loop, along with their associated loops.
703   // Iterate in reverse so that constants are emitted last, all else equal, and
704   // so that pointer operands are inserted first, which the code below relies on
705   // to form more involved GEPs.
706   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
707   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
708        E(S->op_begin()); I != E; ++I)
709     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
710 
711   // Sort by loop. Use a stable sort so that constants follow non-constants and
712   // pointer operands precede non-pointer operands.
713   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
714 
715   // Emit instructions to add all the operands. Hoist as much as possible
716   // out of loops, and form meaningful getelementptrs where possible.
717   Value *Sum = nullptr;
718   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
719     const Loop *CurLoop = I->first;
720     const SCEV *Op = I->second;
721     if (!Sum) {
722       // This is the first operand. Just expand it.
723       Sum = expand(Op);
724       ++I;
725     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
726       // The running sum expression is a pointer. Try to form a getelementptr
727       // at this level with that as the base.
728       SmallVector<const SCEV *, 4> NewOps;
729       for (; I != E && I->first == CurLoop; ++I) {
730         // If the operand is SCEVUnknown and not instructions, peek through
731         // it, to enable more of it to be folded into the GEP.
732         const SCEV *X = I->second;
733         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
734           if (!isa<Instruction>(U->getValue()))
735             X = SE.getSCEV(U->getValue());
736         NewOps.push_back(X);
737       }
738       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
739     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
740       // The running sum is an integer, and there's a pointer at this level.
741       // Try to form a getelementptr. If the running sum is instructions,
742       // use a SCEVUnknown to avoid re-analyzing them.
743       SmallVector<const SCEV *, 4> NewOps;
744       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
745                                                SE.getSCEV(Sum));
746       for (++I; I != E && I->first == CurLoop; ++I)
747         NewOps.push_back(I->second);
748       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
749     } else if (Op->isNonConstantNegative()) {
750       // Instead of doing a negate and add, just do a subtract.
751       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
752       Sum = InsertNoopCastOfTo(Sum, Ty);
753       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
754                         /*IsSafeToHoist*/ true);
755       ++I;
756     } else {
757       // A simple add.
758       Value *W = expandCodeFor(Op, Ty);
759       Sum = InsertNoopCastOfTo(Sum, Ty);
760       // Canonicalize a constant to the RHS.
761       if (isa<Constant>(Sum)) std::swap(Sum, W);
762       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
763                         /*IsSafeToHoist*/ true);
764       ++I;
765     }
766   }
767 
768   return Sum;
769 }
770 
771 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
772   Type *Ty = SE.getEffectiveSCEVType(S->getType());
773 
774   // Collect all the mul operands in a loop, along with their associated loops.
775   // Iterate in reverse so that constants are emitted last, all else equal.
776   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
777   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
778        E(S->op_begin()); I != E; ++I)
779     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
780 
781   // Sort by loop. Use a stable sort so that constants follow non-constants.
782   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
783 
784   // Emit instructions to mul all the operands. Hoist as much as possible
785   // out of loops.
786   Value *Prod = nullptr;
787   auto I = OpsAndLoops.begin();
788 
789   // Expand the calculation of X pow N in the following manner:
790   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
791   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
792   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
793     auto E = I;
794     // Calculate how many times the same operand from the same loop is included
795     // into this power.
796     uint64_t Exponent = 0;
797     const uint64_t MaxExponent = UINT64_MAX >> 1;
798     // No one sane will ever try to calculate such huge exponents, but if we
799     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
800     // below when the power of 2 exceeds our Exponent, and we want it to be
801     // 1u << 31 at most to not deal with unsigned overflow.
802     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
803       ++Exponent;
804       ++E;
805     }
806     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
807 
808     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
809     // that are needed into the result.
810     Value *P = expandCodeFor(I->second, Ty);
811     Value *Result = nullptr;
812     if (Exponent & 1)
813       Result = P;
814     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
815       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
816                       /*IsSafeToHoist*/ true);
817       if (Exponent & BinExp)
818         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
819                                       SCEV::FlagAnyWrap,
820                                       /*IsSafeToHoist*/ true)
821                         : P;
822     }
823 
824     I = E;
825     assert(Result && "Nothing was expanded?");
826     return Result;
827   };
828 
829   while (I != OpsAndLoops.end()) {
830     if (!Prod) {
831       // This is the first operand. Just expand it.
832       Prod = ExpandOpBinPowN();
833     } else if (I->second->isAllOnesValue()) {
834       // Instead of doing a multiply by negative one, just do a negate.
835       Prod = InsertNoopCastOfTo(Prod, Ty);
836       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
837                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
838       ++I;
839     } else {
840       // A simple mul.
841       Value *W = ExpandOpBinPowN();
842       Prod = InsertNoopCastOfTo(Prod, Ty);
843       // Canonicalize a constant to the RHS.
844       if (isa<Constant>(Prod)) std::swap(Prod, W);
845       const APInt *RHS;
846       if (match(W, m_Power2(RHS))) {
847         // Canonicalize Prod*(1<<C) to Prod<<C.
848         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
849         auto NWFlags = S->getNoWrapFlags();
850         // clear nsw flag if shl will produce poison value.
851         if (RHS->logBase2() == RHS->getBitWidth() - 1)
852           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
853         Prod = InsertBinop(Instruction::Shl, Prod,
854                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
855                            /*IsSafeToHoist*/ true);
856       } else {
857         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
858                            /*IsSafeToHoist*/ true);
859       }
860     }
861   }
862 
863   return Prod;
864 }
865 
866 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
867   Type *Ty = SE.getEffectiveSCEVType(S->getType());
868 
869   Value *LHS = expandCodeFor(S->getLHS(), Ty);
870   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
871     const APInt &RHS = SC->getAPInt();
872     if (RHS.isPowerOf2())
873       return InsertBinop(Instruction::LShr, LHS,
874                          ConstantInt::get(Ty, RHS.logBase2()),
875                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
876   }
877 
878   Value *RHS = expandCodeFor(S->getRHS(), Ty);
879   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
880                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
881 }
882 
883 /// Move parts of Base into Rest to leave Base with the minimal
884 /// expression that provides a pointer operand suitable for a
885 /// GEP expansion.
886 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
887                               ScalarEvolution &SE) {
888   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
889     Base = A->getStart();
890     Rest = SE.getAddExpr(Rest,
891                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
892                                           A->getStepRecurrence(SE),
893                                           A->getLoop(),
894                                           A->getNoWrapFlags(SCEV::FlagNW)));
895   }
896   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
897     Base = A->getOperand(A->getNumOperands()-1);
898     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
899     NewAddOps.back() = Rest;
900     Rest = SE.getAddExpr(NewAddOps);
901     ExposePointerBase(Base, Rest, SE);
902   }
903 }
904 
905 /// Determine if this is a well-behaved chain of instructions leading back to
906 /// the PHI. If so, it may be reused by expanded expressions.
907 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
908                                          const Loop *L) {
909   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
910       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
911     return false;
912   // If any of the operands don't dominate the insert position, bail.
913   // Addrec operands are always loop-invariant, so this can only happen
914   // if there are instructions which haven't been hoisted.
915   if (L == IVIncInsertLoop) {
916     for (User::op_iterator OI = IncV->op_begin()+1,
917            OE = IncV->op_end(); OI != OE; ++OI)
918       if (Instruction *OInst = dyn_cast<Instruction>(OI))
919         if (!SE.DT.dominates(OInst, IVIncInsertPos))
920           return false;
921   }
922   // Advance to the next instruction.
923   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
924   if (!IncV)
925     return false;
926 
927   if (IncV->mayHaveSideEffects())
928     return false;
929 
930   if (IncV == PN)
931     return true;
932 
933   return isNormalAddRecExprPHI(PN, IncV, L);
934 }
935 
936 /// getIVIncOperand returns an induction variable increment's induction
937 /// variable operand.
938 ///
939 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
940 /// operands dominate InsertPos.
941 ///
942 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
943 /// simple patterns generated by getAddRecExprPHILiterally and
944 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
945 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
946                                            Instruction *InsertPos,
947                                            bool allowScale) {
948   if (IncV == InsertPos)
949     return nullptr;
950 
951   switch (IncV->getOpcode()) {
952   default:
953     return nullptr;
954   // Check for a simple Add/Sub or GEP of a loop invariant step.
955   case Instruction::Add:
956   case Instruction::Sub: {
957     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
958     if (!OInst || SE.DT.dominates(OInst, InsertPos))
959       return dyn_cast<Instruction>(IncV->getOperand(0));
960     return nullptr;
961   }
962   case Instruction::BitCast:
963     return dyn_cast<Instruction>(IncV->getOperand(0));
964   case Instruction::GetElementPtr:
965     for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
966       if (isa<Constant>(*I))
967         continue;
968       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
969         if (!SE.DT.dominates(OInst, InsertPos))
970           return nullptr;
971       }
972       if (allowScale) {
973         // allow any kind of GEP as long as it can be hoisted.
974         continue;
975       }
976       // This must be a pointer addition of constants (pretty), which is already
977       // handled, or some number of address-size elements (ugly). Ugly geps
978       // have 2 operands. i1* is used by the expander to represent an
979       // address-size element.
980       if (IncV->getNumOperands() != 2)
981         return nullptr;
982       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
983       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
984           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
985         return nullptr;
986       break;
987     }
988     return dyn_cast<Instruction>(IncV->getOperand(0));
989   }
990 }
991 
992 /// If the insert point of the current builder or any of the builders on the
993 /// stack of saved builders has 'I' as its insert point, update it to point to
994 /// the instruction after 'I'.  This is intended to be used when the instruction
995 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
996 /// different block, the inconsistent insert point (with a mismatched
997 /// Instruction and Block) can lead to an instruction being inserted in a block
998 /// other than its parent.
999 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1000   BasicBlock::iterator It(*I);
1001   BasicBlock::iterator NewInsertPt = std::next(It);
1002   if (Builder.GetInsertPoint() == It)
1003     Builder.SetInsertPoint(&*NewInsertPt);
1004   for (auto *InsertPtGuard : InsertPointGuards)
1005     if (InsertPtGuard->GetInsertPoint() == It)
1006       InsertPtGuard->SetInsertPoint(NewInsertPt);
1007 }
1008 
1009 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1010 /// it available to other uses in this loop. Recursively hoist any operands,
1011 /// until we reach a value that dominates InsertPos.
1012 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1013   if (SE.DT.dominates(IncV, InsertPos))
1014       return true;
1015 
1016   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1017   // its existing users.
1018   if (isa<PHINode>(InsertPos) ||
1019       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1020     return false;
1021 
1022   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1023     return false;
1024 
1025   // Check that the chain of IV operands leading back to Phi can be hoisted.
1026   SmallVector<Instruction*, 4> IVIncs;
1027   for(;;) {
1028     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1029     if (!Oper)
1030       return false;
1031     // IncV is safe to hoist.
1032     IVIncs.push_back(IncV);
1033     IncV = Oper;
1034     if (SE.DT.dominates(IncV, InsertPos))
1035       break;
1036   }
1037   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1038     fixupInsertPoints(*I);
1039     (*I)->moveBefore(InsertPos);
1040   }
1041   return true;
1042 }
1043 
1044 /// Determine if this cyclic phi is in a form that would have been generated by
1045 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1046 /// as it is in a low-cost form, for example, no implied multiplication. This
1047 /// should match any patterns generated by getAddRecExprPHILiterally and
1048 /// expandAddtoGEP.
1049 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1050                                            const Loop *L) {
1051   for(Instruction *IVOper = IncV;
1052       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1053                                 /*allowScale=*/false));) {
1054     if (IVOper == PN)
1055       return true;
1056   }
1057   return false;
1058 }
1059 
1060 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1061 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1062 /// need to materialize IV increments elsewhere to handle difficult situations.
1063 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1064                                  Type *ExpandTy, Type *IntTy,
1065                                  bool useSubtract) {
1066   Value *IncV;
1067   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1068   if (ExpandTy->isPointerTy()) {
1069     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1070     // If the step isn't constant, don't use an implicitly scaled GEP, because
1071     // that would require a multiply inside the loop.
1072     if (!isa<ConstantInt>(StepV))
1073       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1074                                   GEPPtrTy->getAddressSpace());
1075     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1076     if (IncV->getType() != PN->getType()) {
1077       IncV = Builder.CreateBitCast(IncV, PN->getType());
1078       rememberInstruction(IncV);
1079     }
1080   } else {
1081     IncV = useSubtract ?
1082       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1083       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1084     rememberInstruction(IncV);
1085   }
1086   return IncV;
1087 }
1088 
1089 /// Hoist the addrec instruction chain rooted in the loop phi above the
1090 /// position. This routine assumes that this is possible (has been checked).
1091 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1092                                   Instruction *Pos, PHINode *LoopPhi) {
1093   do {
1094     if (DT->dominates(InstToHoist, Pos))
1095       break;
1096     // Make sure the increment is where we want it. But don't move it
1097     // down past a potential existing post-inc user.
1098     fixupInsertPoints(InstToHoist);
1099     InstToHoist->moveBefore(Pos);
1100     Pos = InstToHoist;
1101     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1102   } while (InstToHoist != LoopPhi);
1103 }
1104 
1105 /// Check whether we can cheaply express the requested SCEV in terms of
1106 /// the available PHI SCEV by truncation and/or inversion of the step.
1107 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1108                                     const SCEVAddRecExpr *Phi,
1109                                     const SCEVAddRecExpr *Requested,
1110                                     bool &InvertStep) {
1111   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1112   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1113 
1114   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1115     return false;
1116 
1117   // Try truncate it if necessary.
1118   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1119   if (!Phi)
1120     return false;
1121 
1122   // Check whether truncation will help.
1123   if (Phi == Requested) {
1124     InvertStep = false;
1125     return true;
1126   }
1127 
1128   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1129   if (SE.getAddExpr(Requested->getStart(),
1130                     SE.getNegativeSCEV(Requested)) == Phi) {
1131     InvertStep = true;
1132     return true;
1133   }
1134 
1135   return false;
1136 }
1137 
1138 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1139   if (!isa<IntegerType>(AR->getType()))
1140     return false;
1141 
1142   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1143   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1144   const SCEV *Step = AR->getStepRecurrence(SE);
1145   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1146                                             SE.getSignExtendExpr(AR, WideTy));
1147   const SCEV *ExtendAfterOp =
1148     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1149   return ExtendAfterOp == OpAfterExtend;
1150 }
1151 
1152 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1153   if (!isa<IntegerType>(AR->getType()))
1154     return false;
1155 
1156   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1157   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1158   const SCEV *Step = AR->getStepRecurrence(SE);
1159   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1160                                             SE.getZeroExtendExpr(AR, WideTy));
1161   const SCEV *ExtendAfterOp =
1162     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1163   return ExtendAfterOp == OpAfterExtend;
1164 }
1165 
1166 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1167 /// the base addrec, which is the addrec without any non-loop-dominating
1168 /// values, and return the PHI.
1169 PHINode *
1170 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1171                                         const Loop *L,
1172                                         Type *ExpandTy,
1173                                         Type *IntTy,
1174                                         Type *&TruncTy,
1175                                         bool &InvertStep) {
1176   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1177 
1178   // Reuse a previously-inserted PHI, if present.
1179   BasicBlock *LatchBlock = L->getLoopLatch();
1180   if (LatchBlock) {
1181     PHINode *AddRecPhiMatch = nullptr;
1182     Instruction *IncV = nullptr;
1183     TruncTy = nullptr;
1184     InvertStep = false;
1185 
1186     // Only try partially matching scevs that need truncation and/or
1187     // step-inversion if we know this loop is outside the current loop.
1188     bool TryNonMatchingSCEV =
1189         IVIncInsertLoop &&
1190         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1191 
1192     for (PHINode &PN : L->getHeader()->phis()) {
1193       if (!SE.isSCEVable(PN.getType()))
1194         continue;
1195 
1196       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1197       if (!PhiSCEV)
1198         continue;
1199 
1200       bool IsMatchingSCEV = PhiSCEV == Normalized;
1201       // We only handle truncation and inversion of phi recurrences for the
1202       // expanded expression if the expanded expression's loop dominates the
1203       // loop we insert to. Check now, so we can bail out early.
1204       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1205           continue;
1206 
1207       // TODO: this possibly can be reworked to avoid this cast at all.
1208       Instruction *TempIncV =
1209           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1210       if (!TempIncV)
1211         continue;
1212 
1213       // Check whether we can reuse this PHI node.
1214       if (LSRMode) {
1215         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1216           continue;
1217         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1218           continue;
1219       } else {
1220         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1221           continue;
1222       }
1223 
1224       // Stop if we have found an exact match SCEV.
1225       if (IsMatchingSCEV) {
1226         IncV = TempIncV;
1227         TruncTy = nullptr;
1228         InvertStep = false;
1229         AddRecPhiMatch = &PN;
1230         break;
1231       }
1232 
1233       // Try whether the phi can be translated into the requested form
1234       // (truncated and/or offset by a constant).
1235       if ((!TruncTy || InvertStep) &&
1236           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1237         // Record the phi node. But don't stop we might find an exact match
1238         // later.
1239         AddRecPhiMatch = &PN;
1240         IncV = TempIncV;
1241         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1242       }
1243     }
1244 
1245     if (AddRecPhiMatch) {
1246       // Potentially, move the increment. We have made sure in
1247       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1248       if (L == IVIncInsertLoop)
1249         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1250 
1251       // Ok, the add recurrence looks usable.
1252       // Remember this PHI, even in post-inc mode.
1253       InsertedValues.insert(AddRecPhiMatch);
1254       // Remember the increment.
1255       rememberInstruction(IncV);
1256       return AddRecPhiMatch;
1257     }
1258   }
1259 
1260   // Save the original insertion point so we can restore it when we're done.
1261   SCEVInsertPointGuard Guard(Builder, this);
1262 
1263   // Another AddRec may need to be recursively expanded below. For example, if
1264   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1265   // loop. Remove this loop from the PostIncLoops set before expanding such
1266   // AddRecs. Otherwise, we cannot find a valid position for the step
1267   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1268   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1269   // so it's not worth implementing SmallPtrSet::swap.
1270   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1271   PostIncLoops.clear();
1272 
1273   // Expand code for the start value into the loop preheader.
1274   assert(L->getLoopPreheader() &&
1275          "Can't expand add recurrences without a loop preheader!");
1276   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1277                                 L->getLoopPreheader()->getTerminator());
1278 
1279   // StartV must have been be inserted into L's preheader to dominate the new
1280   // phi.
1281   assert(!isa<Instruction>(StartV) ||
1282          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1283                                  L->getHeader()));
1284 
1285   // Expand code for the step value. Do this before creating the PHI so that PHI
1286   // reuse code doesn't see an incomplete PHI.
1287   const SCEV *Step = Normalized->getStepRecurrence(SE);
1288   // If the stride is negative, insert a sub instead of an add for the increment
1289   // (unless it's a constant, because subtracts of constants are canonicalized
1290   // to adds).
1291   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1292   if (useSubtract)
1293     Step = SE.getNegativeSCEV(Step);
1294   // Expand the step somewhere that dominates the loop header.
1295   Value *StepV = expandCodeFor(Step, IntTy,
1296                                &*L->getHeader()->getFirstInsertionPt());
1297 
1298   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1299   // we actually do emit an addition.  It does not apply if we emit a
1300   // subtraction.
1301   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1302   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1303 
1304   // Create the PHI.
1305   BasicBlock *Header = L->getHeader();
1306   Builder.SetInsertPoint(Header, Header->begin());
1307   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1308   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1309                                   Twine(IVName) + ".iv");
1310   rememberInstruction(PN);
1311 
1312   // Create the step instructions and populate the PHI.
1313   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1314     BasicBlock *Pred = *HPI;
1315 
1316     // Add a start value.
1317     if (!L->contains(Pred)) {
1318       PN->addIncoming(StartV, Pred);
1319       continue;
1320     }
1321 
1322     // Create a step value and add it to the PHI.
1323     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1324     // instructions at IVIncInsertPos.
1325     Instruction *InsertPos = L == IVIncInsertLoop ?
1326       IVIncInsertPos : Pred->getTerminator();
1327     Builder.SetInsertPoint(InsertPos);
1328     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1329 
1330     if (isa<OverflowingBinaryOperator>(IncV)) {
1331       if (IncrementIsNUW)
1332         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1333       if (IncrementIsNSW)
1334         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1335     }
1336     PN->addIncoming(IncV, Pred);
1337   }
1338 
1339   // After expanding subexpressions, restore the PostIncLoops set so the caller
1340   // can ensure that IVIncrement dominates the current uses.
1341   PostIncLoops = SavedPostIncLoops;
1342 
1343   // Remember this PHI, even in post-inc mode.
1344   InsertedValues.insert(PN);
1345 
1346   return PN;
1347 }
1348 
1349 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1350   Type *STy = S->getType();
1351   Type *IntTy = SE.getEffectiveSCEVType(STy);
1352   const Loop *L = S->getLoop();
1353 
1354   // Determine a normalized form of this expression, which is the expression
1355   // before any post-inc adjustment is made.
1356   const SCEVAddRecExpr *Normalized = S;
1357   if (PostIncLoops.count(L)) {
1358     PostIncLoopSet Loops;
1359     Loops.insert(L);
1360     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1361   }
1362 
1363   // Strip off any non-loop-dominating component from the addrec start.
1364   const SCEV *Start = Normalized->getStart();
1365   const SCEV *PostLoopOffset = nullptr;
1366   if (!SE.properlyDominates(Start, L->getHeader())) {
1367     PostLoopOffset = Start;
1368     Start = SE.getConstant(Normalized->getType(), 0);
1369     Normalized = cast<SCEVAddRecExpr>(
1370       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1371                        Normalized->getLoop(),
1372                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1373   }
1374 
1375   // Strip off any non-loop-dominating component from the addrec step.
1376   const SCEV *Step = Normalized->getStepRecurrence(SE);
1377   const SCEV *PostLoopScale = nullptr;
1378   if (!SE.dominates(Step, L->getHeader())) {
1379     PostLoopScale = Step;
1380     Step = SE.getConstant(Normalized->getType(), 1);
1381     if (!Start->isZero()) {
1382         // The normalization below assumes that Start is constant zero, so if
1383         // it isn't re-associate Start to PostLoopOffset.
1384         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1385         PostLoopOffset = Start;
1386         Start = SE.getConstant(Normalized->getType(), 0);
1387     }
1388     Normalized =
1389       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1390                              Start, Step, Normalized->getLoop(),
1391                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1392   }
1393 
1394   // Expand the core addrec. If we need post-loop scaling, force it to
1395   // expand to an integer type to avoid the need for additional casting.
1396   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1397   // We can't use a pointer type for the addrec if the pointer type is
1398   // non-integral.
1399   Type *AddRecPHIExpandTy =
1400       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1401 
1402   // In some cases, we decide to reuse an existing phi node but need to truncate
1403   // it and/or invert the step.
1404   Type *TruncTy = nullptr;
1405   bool InvertStep = false;
1406   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1407                                           IntTy, TruncTy, InvertStep);
1408 
1409   // Accommodate post-inc mode, if necessary.
1410   Value *Result;
1411   if (!PostIncLoops.count(L))
1412     Result = PN;
1413   else {
1414     // In PostInc mode, use the post-incremented value.
1415     BasicBlock *LatchBlock = L->getLoopLatch();
1416     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1417     Result = PN->getIncomingValueForBlock(LatchBlock);
1418 
1419     // For an expansion to use the postinc form, the client must call
1420     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1421     // or dominated by IVIncInsertPos.
1422     if (isa<Instruction>(Result) &&
1423         !SE.DT.dominates(cast<Instruction>(Result),
1424                          &*Builder.GetInsertPoint())) {
1425       // The induction variable's postinc expansion does not dominate this use.
1426       // IVUsers tries to prevent this case, so it is rare. However, it can
1427       // happen when an IVUser outside the loop is not dominated by the latch
1428       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1429       // all cases. Consider a phi outside whose operand is replaced during
1430       // expansion with the value of the postinc user. Without fundamentally
1431       // changing the way postinc users are tracked, the only remedy is
1432       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1433       // but hopefully expandCodeFor handles that.
1434       bool useSubtract =
1435         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1436       if (useSubtract)
1437         Step = SE.getNegativeSCEV(Step);
1438       Value *StepV;
1439       {
1440         // Expand the step somewhere that dominates the loop header.
1441         SCEVInsertPointGuard Guard(Builder, this);
1442         StepV = expandCodeFor(Step, IntTy,
1443                               &*L->getHeader()->getFirstInsertionPt());
1444       }
1445       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1446     }
1447   }
1448 
1449   // We have decided to reuse an induction variable of a dominating loop. Apply
1450   // truncation and/or inversion of the step.
1451   if (TruncTy) {
1452     Type *ResTy = Result->getType();
1453     // Normalize the result type.
1454     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1455       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1456     // Truncate the result.
1457     if (TruncTy != Result->getType()) {
1458       Result = Builder.CreateTrunc(Result, TruncTy);
1459       rememberInstruction(Result);
1460     }
1461     // Invert the result.
1462     if (InvertStep) {
1463       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1464                                  Result);
1465       rememberInstruction(Result);
1466     }
1467   }
1468 
1469   // Re-apply any non-loop-dominating scale.
1470   if (PostLoopScale) {
1471     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1472     Result = InsertNoopCastOfTo(Result, IntTy);
1473     Result = Builder.CreateMul(Result,
1474                                expandCodeFor(PostLoopScale, IntTy));
1475     rememberInstruction(Result);
1476   }
1477 
1478   // Re-apply any non-loop-dominating offset.
1479   if (PostLoopOffset) {
1480     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1481       if (Result->getType()->isIntegerTy()) {
1482         Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1483         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1484       } else {
1485         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1486       }
1487     } else {
1488       Result = InsertNoopCastOfTo(Result, IntTy);
1489       Result = Builder.CreateAdd(Result,
1490                                  expandCodeFor(PostLoopOffset, IntTy));
1491       rememberInstruction(Result);
1492     }
1493   }
1494 
1495   return Result;
1496 }
1497 
1498 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1499   // In canonical mode we compute the addrec as an expression of a canonical IV
1500   // using evaluateAtIteration and expand the resulting SCEV expression. This
1501   // way we avoid introducing new IVs to carry on the comutation of the addrec
1502   // throughout the loop.
1503   //
1504   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1505   // type wider than the addrec itself. Emitting a canonical IV of the
1506   // proper type might produce non-legal types, for example expanding an i64
1507   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1508   // back to non-canonical mode for nested addrecs.
1509   if (!CanonicalMode || (S->getNumOperands() > 2))
1510     return expandAddRecExprLiterally(S);
1511 
1512   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1513   const Loop *L = S->getLoop();
1514 
1515   // First check for an existing canonical IV in a suitable type.
1516   PHINode *CanonicalIV = nullptr;
1517   if (PHINode *PN = L->getCanonicalInductionVariable())
1518     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1519       CanonicalIV = PN;
1520 
1521   // Rewrite an AddRec in terms of the canonical induction variable, if
1522   // its type is more narrow.
1523   if (CanonicalIV &&
1524       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1525       SE.getTypeSizeInBits(Ty)) {
1526     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1527     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1528       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1529     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1530                                        S->getNoWrapFlags(SCEV::FlagNW)));
1531     BasicBlock::iterator NewInsertPt =
1532         findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1533     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1534                       &*NewInsertPt);
1535     return V;
1536   }
1537 
1538   // {X,+,F} --> X + {0,+,F}
1539   if (!S->getStart()->isZero()) {
1540     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1541     NewOps[0] = SE.getConstant(Ty, 0);
1542     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1543                                         S->getNoWrapFlags(SCEV::FlagNW));
1544 
1545     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1546     // comments on expandAddToGEP for details.
1547     const SCEV *Base = S->getStart();
1548     // Dig into the expression to find the pointer base for a GEP.
1549     const SCEV *ExposedRest = Rest;
1550     ExposePointerBase(Base, ExposedRest, SE);
1551     // If we found a pointer, expand the AddRec with a GEP.
1552     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1553       // Make sure the Base isn't something exotic, such as a multiplied
1554       // or divided pointer value. In those cases, the result type isn't
1555       // actually a pointer type.
1556       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1557         Value *StartV = expand(Base);
1558         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1559         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1560       }
1561     }
1562 
1563     // Just do a normal add. Pre-expand the operands to suppress folding.
1564     //
1565     // The LHS and RHS values are factored out of the expand call to make the
1566     // output independent of the argument evaluation order.
1567     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1568     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1569     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1570   }
1571 
1572   // If we don't yet have a canonical IV, create one.
1573   if (!CanonicalIV) {
1574     // Create and insert the PHI node for the induction variable in the
1575     // specified loop.
1576     BasicBlock *Header = L->getHeader();
1577     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1578     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1579                                   &Header->front());
1580     rememberInstruction(CanonicalIV);
1581 
1582     SmallSet<BasicBlock *, 4> PredSeen;
1583     Constant *One = ConstantInt::get(Ty, 1);
1584     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1585       BasicBlock *HP = *HPI;
1586       if (!PredSeen.insert(HP).second) {
1587         // There must be an incoming value for each predecessor, even the
1588         // duplicates!
1589         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1590         continue;
1591       }
1592 
1593       if (L->contains(HP)) {
1594         // Insert a unit add instruction right before the terminator
1595         // corresponding to the back-edge.
1596         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1597                                                      "indvar.next",
1598                                                      HP->getTerminator());
1599         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1600         rememberInstruction(Add);
1601         CanonicalIV->addIncoming(Add, HP);
1602       } else {
1603         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1604       }
1605     }
1606   }
1607 
1608   // {0,+,1} --> Insert a canonical induction variable into the loop!
1609   if (S->isAffine() && S->getOperand(1)->isOne()) {
1610     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1611            "IVs with types different from the canonical IV should "
1612            "already have been handled!");
1613     return CanonicalIV;
1614   }
1615 
1616   // {0,+,F} --> {0,+,1} * F
1617 
1618   // If this is a simple linear addrec, emit it now as a special case.
1619   if (S->isAffine())    // {0,+,F} --> i*F
1620     return
1621       expand(SE.getTruncateOrNoop(
1622         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1623                       SE.getNoopOrAnyExtend(S->getOperand(1),
1624                                             CanonicalIV->getType())),
1625         Ty));
1626 
1627   // If this is a chain of recurrences, turn it into a closed form, using the
1628   // folders, then expandCodeFor the closed form.  This allows the folders to
1629   // simplify the expression without having to build a bunch of special code
1630   // into this folder.
1631   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1632 
1633   // Promote S up to the canonical IV type, if the cast is foldable.
1634   const SCEV *NewS = S;
1635   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1636   if (isa<SCEVAddRecExpr>(Ext))
1637     NewS = Ext;
1638 
1639   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1640   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1641 
1642   // Truncate the result down to the original type, if needed.
1643   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1644   return expand(T);
1645 }
1646 
1647 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1648   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1649   Value *V = expandCodeFor(S->getOperand(),
1650                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1651   Value *I = Builder.CreateTrunc(V, Ty);
1652   rememberInstruction(I);
1653   return I;
1654 }
1655 
1656 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1657   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1658   Value *V = expandCodeFor(S->getOperand(),
1659                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1660   Value *I = Builder.CreateZExt(V, Ty);
1661   rememberInstruction(I);
1662   return I;
1663 }
1664 
1665 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1666   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1667   Value *V = expandCodeFor(S->getOperand(),
1668                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1669   Value *I = Builder.CreateSExt(V, Ty);
1670   rememberInstruction(I);
1671   return I;
1672 }
1673 
1674 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1675   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1676   Type *Ty = LHS->getType();
1677   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1678     // In the case of mixed integer and pointer types, do the
1679     // rest of the comparisons as integer.
1680     Type *OpTy = S->getOperand(i)->getType();
1681     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1682       Ty = SE.getEffectiveSCEVType(Ty);
1683       LHS = InsertNoopCastOfTo(LHS, Ty);
1684     }
1685     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1686     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1687     rememberInstruction(ICmp);
1688     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1689     rememberInstruction(Sel);
1690     LHS = Sel;
1691   }
1692   // In the case of mixed integer and pointer types, cast the
1693   // final result back to the pointer type.
1694   if (LHS->getType() != S->getType())
1695     LHS = InsertNoopCastOfTo(LHS, S->getType());
1696   return LHS;
1697 }
1698 
1699 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1700   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1701   Type *Ty = LHS->getType();
1702   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1703     // In the case of mixed integer and pointer types, do the
1704     // rest of the comparisons as integer.
1705     Type *OpTy = S->getOperand(i)->getType();
1706     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1707       Ty = SE.getEffectiveSCEVType(Ty);
1708       LHS = InsertNoopCastOfTo(LHS, Ty);
1709     }
1710     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1711     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1712     rememberInstruction(ICmp);
1713     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1714     rememberInstruction(Sel);
1715     LHS = Sel;
1716   }
1717   // In the case of mixed integer and pointer types, cast the
1718   // final result back to the pointer type.
1719   if (LHS->getType() != S->getType())
1720     LHS = InsertNoopCastOfTo(LHS, S->getType());
1721   return LHS;
1722 }
1723 
1724 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1725   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1726   Type *Ty = LHS->getType();
1727   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1728     // In the case of mixed integer and pointer types, do the
1729     // rest of the comparisons as integer.
1730     Type *OpTy = S->getOperand(i)->getType();
1731     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1732       Ty = SE.getEffectiveSCEVType(Ty);
1733       LHS = InsertNoopCastOfTo(LHS, Ty);
1734     }
1735     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1736     Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1737     rememberInstruction(ICmp);
1738     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1739     rememberInstruction(Sel);
1740     LHS = Sel;
1741   }
1742   // In the case of mixed integer and pointer types, cast the
1743   // final result back to the pointer type.
1744   if (LHS->getType() != S->getType())
1745     LHS = InsertNoopCastOfTo(LHS, S->getType());
1746   return LHS;
1747 }
1748 
1749 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1750   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1751   Type *Ty = LHS->getType();
1752   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1753     // In the case of mixed integer and pointer types, do the
1754     // rest of the comparisons as integer.
1755     Type *OpTy = S->getOperand(i)->getType();
1756     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1757       Ty = SE.getEffectiveSCEVType(Ty);
1758       LHS = InsertNoopCastOfTo(LHS, Ty);
1759     }
1760     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1761     Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1762     rememberInstruction(ICmp);
1763     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1764     rememberInstruction(Sel);
1765     LHS = Sel;
1766   }
1767   // In the case of mixed integer and pointer types, cast the
1768   // final result back to the pointer type.
1769   if (LHS->getType() != S->getType())
1770     LHS = InsertNoopCastOfTo(LHS, S->getType());
1771   return LHS;
1772 }
1773 
1774 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1775                                    Instruction *IP) {
1776   setInsertPoint(IP);
1777   return expandCodeFor(SH, Ty);
1778 }
1779 
1780 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1781   // Expand the code for this SCEV.
1782   Value *V = expand(SH);
1783   if (Ty) {
1784     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1785            "non-trivial casts should be done with the SCEVs directly!");
1786     V = InsertNoopCastOfTo(V, Ty);
1787   }
1788   return V;
1789 }
1790 
1791 ScalarEvolution::ValueOffsetPair
1792 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1793                                       const Instruction *InsertPt) {
1794   SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1795   // If the expansion is not in CanonicalMode, and the SCEV contains any
1796   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1797   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1798     // If S is scConstant, it may be worse to reuse an existing Value.
1799     if (S->getSCEVType() != scConstant && Set) {
1800       // Choose a Value from the set which dominates the insertPt.
1801       // insertPt should be inside the Value's parent loop so as not to break
1802       // the LCSSA form.
1803       for (auto const &VOPair : *Set) {
1804         Value *V = VOPair.first;
1805         ConstantInt *Offset = VOPair.second;
1806         Instruction *EntInst = nullptr;
1807         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1808             S->getType() == V->getType() &&
1809             EntInst->getFunction() == InsertPt->getFunction() &&
1810             SE.DT.dominates(EntInst, InsertPt) &&
1811             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1812              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1813           return {V, Offset};
1814       }
1815     }
1816   }
1817   return {nullptr, nullptr};
1818 }
1819 
1820 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1821 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1822 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1823 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1824 // the expansion will try to reuse Value from ExprValueMap, and only when it
1825 // fails, expand the SCEV literally.
1826 Value *SCEVExpander::expand(const SCEV *S) {
1827   // Compute an insertion point for this SCEV object. Hoist the instructions
1828   // as far out in the loop nest as possible.
1829   Instruction *InsertPt = &*Builder.GetInsertPoint();
1830 
1831   // We can move insertion point only if there is no div or rem operations
1832   // otherwise we are risky to move it over the check for zero denominator.
1833   auto SafeToHoist = [](const SCEV *S) {
1834     return !SCEVExprContains(S, [](const SCEV *S) {
1835               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1836                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1837                   // Division by non-zero constants can be hoisted.
1838                   return SC->getValue()->isZero();
1839                 // All other divisions should not be moved as they may be
1840                 // divisions by zero and should be kept within the
1841                 // conditions of the surrounding loops that guard their
1842                 // execution (see PR35406).
1843                 return true;
1844               }
1845               return false;
1846             });
1847   };
1848   if (SafeToHoist(S)) {
1849     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1850          L = L->getParentLoop()) {
1851       if (SE.isLoopInvariant(S, L)) {
1852         if (!L) break;
1853         if (BasicBlock *Preheader = L->getLoopPreheader())
1854           InsertPt = Preheader->getTerminator();
1855         else
1856           // LSR sets the insertion point for AddRec start/step values to the
1857           // block start to simplify value reuse, even though it's an invalid
1858           // position. SCEVExpander must correct for this in all cases.
1859           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1860       } else {
1861         // If the SCEV is computable at this level, insert it into the header
1862         // after the PHIs (and after any other instructions that we've inserted
1863         // there) so that it is guaranteed to dominate any user inside the loop.
1864         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1865           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1866         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1867                (isInsertedInstruction(InsertPt) ||
1868                 isa<DbgInfoIntrinsic>(InsertPt)))
1869           InsertPt = &*std::next(InsertPt->getIterator());
1870         break;
1871       }
1872     }
1873   }
1874 
1875   // Check to see if we already expanded this here.
1876   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1877   if (I != InsertedExpressions.end())
1878     return I->second;
1879 
1880   SCEVInsertPointGuard Guard(Builder, this);
1881   Builder.SetInsertPoint(InsertPt);
1882 
1883   // Expand the expression into instructions.
1884   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1885   Value *V = VO.first;
1886 
1887   if (!V)
1888     V = visit(S);
1889   else if (VO.second) {
1890     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1891       Type *Ety = Vty->getPointerElementType();
1892       int64_t Offset = VO.second->getSExtValue();
1893       int64_t ESize = SE.getTypeSizeInBits(Ety);
1894       if ((Offset * 8) % ESize == 0) {
1895         ConstantInt *Idx =
1896             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1897         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1898       } else {
1899         ConstantInt *Idx =
1900             ConstantInt::getSigned(VO.second->getType(), -Offset);
1901         unsigned AS = Vty->getAddressSpace();
1902         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1903         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1904                               "uglygep");
1905         V = Builder.CreateBitCast(V, Vty);
1906       }
1907     } else {
1908       V = Builder.CreateSub(V, VO.second);
1909     }
1910   }
1911   // Remember the expanded value for this SCEV at this location.
1912   //
1913   // This is independent of PostIncLoops. The mapped value simply materializes
1914   // the expression at this insertion point. If the mapped value happened to be
1915   // a postinc expansion, it could be reused by a non-postinc user, but only if
1916   // its insertion point was already at the head of the loop.
1917   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1918   return V;
1919 }
1920 
1921 void SCEVExpander::rememberInstruction(Value *I) {
1922   if (!PostIncLoops.empty())
1923     InsertedPostIncValues.insert(I);
1924   else
1925     InsertedValues.insert(I);
1926 }
1927 
1928 /// getOrInsertCanonicalInductionVariable - This method returns the
1929 /// canonical induction variable of the specified type for the specified
1930 /// loop (inserting one if there is none).  A canonical induction variable
1931 /// starts at zero and steps by one on each iteration.
1932 PHINode *
1933 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1934                                                     Type *Ty) {
1935   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1936 
1937   // Build a SCEV for {0,+,1}<L>.
1938   // Conservatively use FlagAnyWrap for now.
1939   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1940                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1941 
1942   // Emit code for it.
1943   SCEVInsertPointGuard Guard(Builder, this);
1944   PHINode *V =
1945       cast<PHINode>(expandCodeFor(H, nullptr,
1946                                   &*L->getHeader()->getFirstInsertionPt()));
1947 
1948   return V;
1949 }
1950 
1951 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1952 /// replace them with their most canonical representative. Return the number of
1953 /// phis eliminated.
1954 ///
1955 /// This does not depend on any SCEVExpander state but should be used in
1956 /// the same context that SCEVExpander is used.
1957 unsigned
1958 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1959                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1960                                   const TargetTransformInfo *TTI) {
1961   // Find integer phis in order of increasing width.
1962   SmallVector<PHINode*, 8> Phis;
1963   for (PHINode &PN : L->getHeader()->phis())
1964     Phis.push_back(&PN);
1965 
1966   if (TTI)
1967     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1968       // Put pointers at the back and make sure pointer < pointer = false.
1969       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1970         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1971       return RHS->getType()->getPrimitiveSizeInBits() <
1972              LHS->getType()->getPrimitiveSizeInBits();
1973     });
1974 
1975   unsigned NumElim = 0;
1976   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1977   // Process phis from wide to narrow. Map wide phis to their truncation
1978   // so narrow phis can reuse them.
1979   for (PHINode *Phi : Phis) {
1980     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1981       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1982         return V;
1983       if (!SE.isSCEVable(PN->getType()))
1984         return nullptr;
1985       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1986       if (!Const)
1987         return nullptr;
1988       return Const->getValue();
1989     };
1990 
1991     // Fold constant phis. They may be congruent to other constant phis and
1992     // would confuse the logic below that expects proper IVs.
1993     if (Value *V = SimplifyPHINode(Phi)) {
1994       if (V->getType() != Phi->getType())
1995         continue;
1996       Phi->replaceAllUsesWith(V);
1997       DeadInsts.emplace_back(Phi);
1998       ++NumElim;
1999       DEBUG_WITH_TYPE(DebugType, dbgs()
2000                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
2001       continue;
2002     }
2003 
2004     if (!SE.isSCEVable(Phi->getType()))
2005       continue;
2006 
2007     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2008     if (!OrigPhiRef) {
2009       OrigPhiRef = Phi;
2010       if (Phi->getType()->isIntegerTy() && TTI &&
2011           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2012         // This phi can be freely truncated to the narrowest phi type. Map the
2013         // truncated expression to it so it will be reused for narrow types.
2014         const SCEV *TruncExpr =
2015           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2016         ExprToIVMap[TruncExpr] = Phi;
2017       }
2018       continue;
2019     }
2020 
2021     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2022     // sense.
2023     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2024       continue;
2025 
2026     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2027       Instruction *OrigInc = dyn_cast<Instruction>(
2028           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2029       Instruction *IsomorphicInc =
2030           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2031 
2032       if (OrigInc && IsomorphicInc) {
2033         // If this phi has the same width but is more canonical, replace the
2034         // original with it. As part of the "more canonical" determination,
2035         // respect a prior decision to use an IV chain.
2036         if (OrigPhiRef->getType() == Phi->getType() &&
2037             !(ChainedPhis.count(Phi) ||
2038               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2039             (ChainedPhis.count(Phi) ||
2040              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2041           std::swap(OrigPhiRef, Phi);
2042           std::swap(OrigInc, IsomorphicInc);
2043         }
2044         // Replacing the congruent phi is sufficient because acyclic
2045         // redundancy elimination, CSE/GVN, should handle the
2046         // rest. However, once SCEV proves that a phi is congruent,
2047         // it's often the head of an IV user cycle that is isomorphic
2048         // with the original phi. It's worth eagerly cleaning up the
2049         // common case of a single IV increment so that DeleteDeadPHIs
2050         // can remove cycles that had postinc uses.
2051         const SCEV *TruncExpr =
2052             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2053         if (OrigInc != IsomorphicInc &&
2054             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2055             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2056             hoistIVInc(OrigInc, IsomorphicInc)) {
2057           DEBUG_WITH_TYPE(DebugType,
2058                           dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2059                                  << *IsomorphicInc << '\n');
2060           Value *NewInc = OrigInc;
2061           if (OrigInc->getType() != IsomorphicInc->getType()) {
2062             Instruction *IP = nullptr;
2063             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2064               IP = &*PN->getParent()->getFirstInsertionPt();
2065             else
2066               IP = OrigInc->getNextNode();
2067 
2068             IRBuilder<> Builder(IP);
2069             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2070             NewInc = Builder.CreateTruncOrBitCast(
2071                 OrigInc, IsomorphicInc->getType(), IVName);
2072           }
2073           IsomorphicInc->replaceAllUsesWith(NewInc);
2074           DeadInsts.emplace_back(IsomorphicInc);
2075         }
2076       }
2077     }
2078     DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2079                                       << *Phi << '\n');
2080     ++NumElim;
2081     Value *NewIV = OrigPhiRef;
2082     if (OrigPhiRef->getType() != Phi->getType()) {
2083       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2084       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2085       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2086     }
2087     Phi->replaceAllUsesWith(NewIV);
2088     DeadInsts.emplace_back(Phi);
2089   }
2090   return NumElim;
2091 }
2092 
2093 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2094                                                const Instruction *At, Loop *L) {
2095   Optional<ScalarEvolution::ValueOffsetPair> VO =
2096       getRelatedExistingExpansion(S, At, L);
2097   if (VO && VO.getValue().second == nullptr)
2098     return VO.getValue().first;
2099   return nullptr;
2100 }
2101 
2102 Optional<ScalarEvolution::ValueOffsetPair>
2103 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2104                                           Loop *L) {
2105   using namespace llvm::PatternMatch;
2106 
2107   SmallVector<BasicBlock *, 4> ExitingBlocks;
2108   L->getExitingBlocks(ExitingBlocks);
2109 
2110   // Look for suitable value in simple conditions at the loop exits.
2111   for (BasicBlock *BB : ExitingBlocks) {
2112     ICmpInst::Predicate Pred;
2113     Instruction *LHS, *RHS;
2114 
2115     if (!match(BB->getTerminator(),
2116                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2117                     m_BasicBlock(), m_BasicBlock())))
2118       continue;
2119 
2120     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2121       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2122 
2123     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2124       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2125   }
2126 
2127   // Use expand's logic which is used for reusing a previous Value in
2128   // ExprValueMap.
2129   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2130   if (VO.first)
2131     return VO;
2132 
2133   // There is potential to make this significantly smarter, but this simple
2134   // heuristic already gets some interesting cases.
2135 
2136   // Can not find suitable value.
2137   return None;
2138 }
2139 
2140 bool SCEVExpander::isHighCostExpansionHelper(
2141     const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining,
2142     const TargetTransformInfo &TTI, SmallPtrSetImpl<const SCEV *> &Processed,
2143     SmallVectorImpl<const SCEV *> &Worklist) {
2144   if (BudgetRemaining < 0)
2145     return true; // Already run out of budget, give up.
2146 
2147   // Was the cost of expansion of this expression already accounted for?
2148   if (!Processed.insert(S).second)
2149     return false; // We have already accounted for this expression.
2150 
2151   // If we can find an existing value for this scev available at the point "At"
2152   // then consider the expression cheap.
2153   if (getRelatedExistingExpansion(S, &At, L))
2154     return false; // Consider the expression to be free.
2155 
2156   switch (S->getSCEVType()) {
2157   case scUnknown:
2158   case scConstant:
2159     return false; // Assume to be zero-cost.
2160   }
2161 
2162   TargetTransformInfo::TargetCostKind CostKind =
2163     TargetTransformInfo::TCK_RecipThroughput;
2164 
2165   if (auto *CastExpr = dyn_cast<SCEVCastExpr>(S)) {
2166     unsigned Opcode;
2167     switch (S->getSCEVType()) {
2168     case scTruncate:
2169       Opcode = Instruction::Trunc;
2170       break;
2171     case scZeroExtend:
2172       Opcode = Instruction::ZExt;
2173       break;
2174     case scSignExtend:
2175       Opcode = Instruction::SExt;
2176       break;
2177     default:
2178       llvm_unreachable("There are no other cast types.");
2179     }
2180     const SCEV *Op = CastExpr->getOperand();
2181     BudgetRemaining -= TTI.getCastInstrCost(Opcode, /*Dst=*/S->getType(),
2182                                             /*Src=*/Op->getType(), CostKind);
2183     Worklist.emplace_back(Op);
2184     return false; // Will answer upon next entry into this function.
2185   }
2186 
2187   if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2188     // If the divisor is a power of two count this as a logical right-shift.
2189     if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) {
2190       if (SC->getAPInt().isPowerOf2()) {
2191         BudgetRemaining -=
2192             TTI.getArithmeticInstrCost(Instruction::LShr, S->getType(),
2193                                        CostKind);
2194         // Note that we don't count the cost of RHS, because it is a constant,
2195         // and we consider those to be free. But if that changes, we would need
2196         // to log2() it first before calling isHighCostExpansionHelper().
2197         Worklist.emplace_back(UDivExpr->getLHS());
2198         return false; // Will answer upon next entry into this function.
2199       }
2200     }
2201 
2202     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2203     // HowManyLessThans produced to compute a precise expression, rather than a
2204     // UDiv from the user's code. If we can't find a UDiv in the code with some
2205     // simple searching, we need to account for it's cost.
2206 
2207     // At the beginning of this function we already tried to find existing
2208     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2209     // pattern involving division. This is just a simple search heuristic.
2210     if (getRelatedExistingExpansion(
2211             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2212       return false; // Consider it to be free.
2213 
2214     // Need to count the cost of this UDiv.
2215     BudgetRemaining -=
2216         TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(),
2217                                    CostKind);
2218     Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()});
2219     return false; // Will answer upon next entry into this function.
2220   }
2221 
2222   if (const auto *NAry = dyn_cast<SCEVAddRecExpr>(S)) {
2223     Type *OpType = NAry->getType();
2224 
2225     assert(NAry->getNumOperands() >= 2 &&
2226            "Polynomial should be at least linear");
2227 
2228     int AddCost =
2229       TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind);
2230     int MulCost =
2231       TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind);
2232 
2233     // In this polynominal, we may have some zero operands, and we shouldn't
2234     // really charge for those. So how many non-zero coeffients are there?
2235     int NumTerms = llvm::count_if(NAry->operands(),
2236                                   [](const SCEV *S) { return !S->isZero(); });
2237     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2238     assert(!(*std::prev(NAry->operands().end()))->isZero() &&
2239            "Last operand should not be zero");
2240 
2241     // Much like with normal add expr, the polynominal will require
2242     // one less addition than the number of it's terms.
2243     BudgetRemaining -= AddCost * (NumTerms - 1);
2244     if (BudgetRemaining < 0)
2245       return true;
2246 
2247     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2248     int NumNonZeroDegreeNonOneTerms =
2249         llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()),
2250                        [](const SCEV *S) {
2251                          auto *SConst = dyn_cast<SCEVConstant>(S);
2252                          return !SConst || SConst->getAPInt().ugt(1);
2253                        });
2254     // Here, *each* one of those will require a multiplication.
2255     BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms;
2256     if (BudgetRemaining < 0)
2257       return true;
2258 
2259     // What is the degree of this polynominal?
2260     int PolyDegree = NAry->getNumOperands() - 1;
2261     assert(PolyDegree >= 1 && "Should be at least affine.");
2262 
2263     // The final term will be:
2264     //   Op_{PolyDegree} * x ^ {PolyDegree}
2265     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2266     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2267     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2268     // FIXME: this is conservatively correct, but might be overly pessimistic.
2269     BudgetRemaining -= MulCost * (PolyDegree - 1);
2270     if (BudgetRemaining < 0)
2271       return true;
2272 
2273     // And finally, the operands themselves should fit within the budget.
2274     Worklist.insert(Worklist.end(), NAry->operands().begin(),
2275                     NAry->operands().end());
2276     return false; // So far so good, though ops may be too costly?
2277   }
2278 
2279   if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2280     Type *OpType = NAry->getType();
2281 
2282     int PairCost;
2283     switch (S->getSCEVType()) {
2284     case scAddExpr:
2285       PairCost =
2286         TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind);
2287       break;
2288     case scMulExpr:
2289       // TODO: this is a very pessimistic cost modelling for Mul,
2290       // because of Bin Pow algorithm actually used by the expander,
2291       // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2292       PairCost =
2293         TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind);
2294       break;
2295     case scSMaxExpr:
2296     case scUMaxExpr:
2297     case scSMinExpr:
2298     case scUMinExpr:
2299       PairCost = TTI.getCmpSelInstrCost(Instruction::ICmp, OpType,
2300                                         CmpInst::makeCmpResultType(OpType),
2301                                         CostKind) +
2302                  TTI.getCmpSelInstrCost(Instruction::Select, OpType,
2303                                         CmpInst::makeCmpResultType(OpType),
2304                                         CostKind);
2305       break;
2306     default:
2307       llvm_unreachable("There are no other variants here.");
2308     }
2309 
2310     assert(NAry->getNumOperands() > 1 &&
2311            "Nary expr should have more than 1 operand.");
2312     // The simple nary expr will require one less op (or pair of ops)
2313     // than the number of it's terms.
2314     BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1);
2315     if (BudgetRemaining < 0)
2316       return true;
2317 
2318     // And finally, the operands themselves should fit within the budget.
2319     Worklist.insert(Worklist.end(), NAry->operands().begin(),
2320                     NAry->operands().end());
2321     return false; // So far so good, though ops may be too costly?
2322   }
2323 
2324   llvm_unreachable("No other scev expressions possible.");
2325 }
2326 
2327 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2328                                             Instruction *IP) {
2329   assert(IP);
2330   switch (Pred->getKind()) {
2331   case SCEVPredicate::P_Union:
2332     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2333   case SCEVPredicate::P_Equal:
2334     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2335   case SCEVPredicate::P_Wrap: {
2336     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2337     return expandWrapPredicate(AddRecPred, IP);
2338   }
2339   }
2340   llvm_unreachable("Unknown SCEV predicate type");
2341 }
2342 
2343 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2344                                           Instruction *IP) {
2345   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2346   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2347 
2348   Builder.SetInsertPoint(IP);
2349   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2350   return I;
2351 }
2352 
2353 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2354                                            Instruction *Loc, bool Signed) {
2355   assert(AR->isAffine() && "Cannot generate RT check for "
2356                            "non-affine expression");
2357 
2358   SCEVUnionPredicate Pred;
2359   const SCEV *ExitCount =
2360       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2361 
2362   assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2363 
2364   const SCEV *Step = AR->getStepRecurrence(SE);
2365   const SCEV *Start = AR->getStart();
2366 
2367   Type *ARTy = AR->getType();
2368   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2369   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2370 
2371   // The expression {Start,+,Step} has nusw/nssw if
2372   //   Step < 0, Start - |Step| * Backedge <= Start
2373   //   Step >= 0, Start + |Step| * Backedge > Start
2374   // and |Step| * Backedge doesn't unsigned overflow.
2375 
2376   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2377   Builder.SetInsertPoint(Loc);
2378   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2379 
2380   IntegerType *Ty =
2381       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2382   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2383 
2384   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2385   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2386   Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2387 
2388   ConstantInt *Zero =
2389       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2390 
2391   Builder.SetInsertPoint(Loc);
2392   // Compute |Step|
2393   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2394   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2395 
2396   // Get the backedge taken count and truncate or extended to the AR type.
2397   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2398   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2399                                          Intrinsic::umul_with_overflow, Ty);
2400 
2401   // Compute |Step| * Backedge
2402   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2403   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2404   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2405 
2406   // Compute:
2407   //   Start + |Step| * Backedge < Start
2408   //   Start - |Step| * Backedge > Start
2409   Value *Add = nullptr, *Sub = nullptr;
2410   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2411     const SCEV *MulS = SE.getSCEV(MulV);
2412     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2413     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2414                                 ARPtrTy);
2415     Sub = Builder.CreateBitCast(
2416         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2417   } else {
2418     Add = Builder.CreateAdd(StartValue, MulV);
2419     Sub = Builder.CreateSub(StartValue, MulV);
2420   }
2421 
2422   Value *EndCompareGT = Builder.CreateICmp(
2423       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2424 
2425   Value *EndCompareLT = Builder.CreateICmp(
2426       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2427 
2428   // Select the answer based on the sign of Step.
2429   Value *EndCheck =
2430       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2431 
2432   // If the backedge taken count type is larger than the AR type,
2433   // check that we don't drop any bits by truncating it. If we are
2434   // dropping bits, then we have overflow (unless the step is zero).
2435   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2436     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2437     auto *BackedgeCheck =
2438         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2439                            ConstantInt::get(Loc->getContext(), MaxVal));
2440     BackedgeCheck = Builder.CreateAnd(
2441         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2442 
2443     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2444   }
2445 
2446   EndCheck = Builder.CreateOr(EndCheck, OfMul);
2447   return EndCheck;
2448 }
2449 
2450 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2451                                          Instruction *IP) {
2452   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2453   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2454 
2455   // Add a check for NUSW
2456   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2457     NUSWCheck = generateOverflowCheck(A, IP, false);
2458 
2459   // Add a check for NSSW
2460   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2461     NSSWCheck = generateOverflowCheck(A, IP, true);
2462 
2463   if (NUSWCheck && NSSWCheck)
2464     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2465 
2466   if (NUSWCheck)
2467     return NUSWCheck;
2468 
2469   if (NSSWCheck)
2470     return NSSWCheck;
2471 
2472   return ConstantInt::getFalse(IP->getContext());
2473 }
2474 
2475 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2476                                           Instruction *IP) {
2477   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2478   Value *Check = ConstantInt::getNullValue(BoolType);
2479 
2480   // Loop over all checks in this set.
2481   for (auto Pred : Union->getPredicates()) {
2482     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2483     Builder.SetInsertPoint(IP);
2484     Check = Builder.CreateOr(Check, NextCheck);
2485   }
2486 
2487   return Check;
2488 }
2489 
2490 namespace {
2491 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2492 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2493 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2494 // instruction, but the important thing is that we prove the denominator is
2495 // nonzero before expansion.
2496 //
2497 // IVUsers already checks that IV-derived expressions are safe. So this check is
2498 // only needed when the expression includes some subexpression that is not IV
2499 // derived.
2500 //
2501 // Currently, we only allow division by a nonzero constant here. If this is
2502 // inadequate, we could easily allow division by SCEVUnknown by using
2503 // ValueTracking to check isKnownNonZero().
2504 //
2505 // We cannot generally expand recurrences unless the step dominates the loop
2506 // header. The expander handles the special case of affine recurrences by
2507 // scaling the recurrence outside the loop, but this technique isn't generally
2508 // applicable. Expanding a nested recurrence outside a loop requires computing
2509 // binomial coefficients. This could be done, but the recurrence has to be in a
2510 // perfectly reduced form, which can't be guaranteed.
2511 struct SCEVFindUnsafe {
2512   ScalarEvolution &SE;
2513   bool IsUnsafe;
2514 
2515   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2516 
2517   bool follow(const SCEV *S) {
2518     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2519       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2520       if (!SC || SC->getValue()->isZero()) {
2521         IsUnsafe = true;
2522         return false;
2523       }
2524     }
2525     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2526       const SCEV *Step = AR->getStepRecurrence(SE);
2527       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2528         IsUnsafe = true;
2529         return false;
2530       }
2531     }
2532     return true;
2533   }
2534   bool isDone() const { return IsUnsafe; }
2535 };
2536 }
2537 
2538 namespace llvm {
2539 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2540   SCEVFindUnsafe Search(SE);
2541   visitAll(S, Search);
2542   return !Search.IsUnsafe;
2543 }
2544 
2545 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2546                       ScalarEvolution &SE) {
2547   if (!isSafeToExpand(S, SE))
2548     return false;
2549   // We have to prove that the expanded site of S dominates InsertionPoint.
2550   // This is easy when not in the same block, but hard when S is an instruction
2551   // to be expanded somewhere inside the same block as our insertion point.
2552   // What we really need here is something analogous to an OrderedBasicBlock,
2553   // but for the moment, we paper over the problem by handling two common and
2554   // cheap to check cases.
2555   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2556     return true;
2557   if (SE.dominates(S, InsertionPoint->getParent())) {
2558     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2559       return true;
2560     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2561       for (const Value *V : InsertionPoint->operand_values())
2562         if (V == U->getValue())
2563           return true;
2564   }
2565   return false;
2566 }
2567 }
2568