1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 34 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 35 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 36 "controls the budget that is considered cheap (default = 4)")); 37 38 using namespace PatternMatch; 39 40 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 41 /// reusing an existing cast if a suitable one exists, moving an existing 42 /// cast if a suitable one exists but isn't in the right place, or 43 /// creating a new one. 44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 45 Instruction::CastOps Op, 46 BasicBlock::iterator IP) { 47 // This function must be called with the builder having a valid insertion 48 // point. It doesn't need to be the actual IP where the uses of the returned 49 // cast will be added, but it must dominate such IP. 50 // We use this precondition to produce a cast that will dominate all its 51 // uses. In particular, this is crucial for the case where the builder's 52 // insertion point *is* the point where we were asked to put the cast. 53 // Since we don't know the builder's insertion point is actually 54 // where the uses will be added (only that it dominates it), we are 55 // not allowed to move it. 56 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 57 58 Instruction *Ret = nullptr; 59 60 // Check to see if there is already a cast! 61 for (User *U : V->users()) 62 if (U->getType() == Ty) 63 if (CastInst *CI = dyn_cast<CastInst>(U)) 64 if (CI->getOpcode() == Op) { 65 // If the cast isn't where we want it, create a new cast at IP. 66 // Likewise, do not reuse a cast at BIP because it must dominate 67 // instructions that might be inserted before BIP. 68 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 69 // Create a new cast, and leave the old cast in place in case 70 // it is being used as an insert point. 71 Ret = CastInst::Create(Op, V, Ty, "", &*IP); 72 Ret->takeName(CI); 73 CI->replaceAllUsesWith(Ret); 74 break; 75 } 76 Ret = CI; 77 break; 78 } 79 80 // Create a new cast. 81 if (!Ret) 82 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP); 83 84 // We assert at the end of the function since IP might point to an 85 // instruction with different dominance properties than a cast 86 // (an invoke for example) and not dominate BIP (but the cast does). 87 assert(SE.DT.dominates(Ret, &*BIP)); 88 89 rememberInstruction(Ret); 90 return Ret; 91 } 92 93 static BasicBlock::iterator findInsertPointAfter(Instruction *I, 94 BasicBlock *MustDominate) { 95 BasicBlock::iterator IP = ++I->getIterator(); 96 if (auto *II = dyn_cast<InvokeInst>(I)) 97 IP = II->getNormalDest()->begin(); 98 99 while (isa<PHINode>(IP)) 100 ++IP; 101 102 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 103 ++IP; 104 } else if (isa<CatchSwitchInst>(IP)) { 105 IP = MustDominate->getFirstInsertionPt(); 106 } else { 107 assert(!IP->isEHPad() && "unexpected eh pad!"); 108 } 109 110 return IP; 111 } 112 113 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 114 /// which must be possible with a noop cast, doing what we can to share 115 /// the casts. 116 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 117 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 118 assert((Op == Instruction::BitCast || 119 Op == Instruction::PtrToInt || 120 Op == Instruction::IntToPtr) && 121 "InsertNoopCastOfTo cannot perform non-noop casts!"); 122 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 123 "InsertNoopCastOfTo cannot change sizes!"); 124 125 // Short-circuit unnecessary bitcasts. 126 if (Op == Instruction::BitCast) { 127 if (V->getType() == Ty) 128 return V; 129 if (CastInst *CI = dyn_cast<CastInst>(V)) { 130 if (CI->getOperand(0)->getType() == Ty) 131 return CI->getOperand(0); 132 } 133 } 134 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 135 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 136 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 137 if (CastInst *CI = dyn_cast<CastInst>(V)) 138 if ((CI->getOpcode() == Instruction::PtrToInt || 139 CI->getOpcode() == Instruction::IntToPtr) && 140 SE.getTypeSizeInBits(CI->getType()) == 141 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 142 return CI->getOperand(0); 143 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 144 if ((CE->getOpcode() == Instruction::PtrToInt || 145 CE->getOpcode() == Instruction::IntToPtr) && 146 SE.getTypeSizeInBits(CE->getType()) == 147 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 148 return CE->getOperand(0); 149 } 150 151 // Fold a cast of a constant. 152 if (Constant *C = dyn_cast<Constant>(V)) 153 return ConstantExpr::getCast(Op, C, Ty); 154 155 // Cast the argument at the beginning of the entry block, after 156 // any bitcasts of other arguments. 157 if (Argument *A = dyn_cast<Argument>(V)) { 158 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 159 while ((isa<BitCastInst>(IP) && 160 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 161 cast<BitCastInst>(IP)->getOperand(0) != A) || 162 isa<DbgInfoIntrinsic>(IP)) 163 ++IP; 164 return ReuseOrCreateCast(A, Ty, Op, IP); 165 } 166 167 // Cast the instruction immediately after the instruction. 168 Instruction *I = cast<Instruction>(V); 169 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock()); 170 return ReuseOrCreateCast(I, Ty, Op, IP); 171 } 172 173 /// InsertBinop - Insert the specified binary operator, doing a small amount 174 /// of work to avoid inserting an obviously redundant operation, and hoisting 175 /// to an outer loop when the opportunity is there and it is safe. 176 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 177 Value *LHS, Value *RHS, 178 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 179 // Fold a binop with constant operands. 180 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 181 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 182 return ConstantExpr::get(Opcode, CLHS, CRHS); 183 184 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 185 unsigned ScanLimit = 6; 186 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 187 // Scanning starts from the last instruction before the insertion point. 188 BasicBlock::iterator IP = Builder.GetInsertPoint(); 189 if (IP != BlockBegin) { 190 --IP; 191 for (; ScanLimit; --IP, --ScanLimit) { 192 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 193 // generated code. 194 if (isa<DbgInfoIntrinsic>(IP)) 195 ScanLimit++; 196 197 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 198 // Ensure that no-wrap flags match. 199 if (isa<OverflowingBinaryOperator>(I)) { 200 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 201 return true; 202 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 203 return true; 204 } 205 // Conservatively, do not use any instruction which has any of exact 206 // flags installed. 207 if (isa<PossiblyExactOperator>(I) && I->isExact()) 208 return true; 209 return false; 210 }; 211 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 212 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 213 return &*IP; 214 if (IP == BlockBegin) break; 215 } 216 } 217 218 // Save the original insertion point so we can restore it when we're done. 219 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 220 SCEVInsertPointGuard Guard(Builder, this); 221 222 if (IsSafeToHoist) { 223 // Move the insertion point out of as many loops as we can. 224 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 225 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 226 BasicBlock *Preheader = L->getLoopPreheader(); 227 if (!Preheader) break; 228 229 // Ok, move up a level. 230 Builder.SetInsertPoint(Preheader->getTerminator()); 231 } 232 } 233 234 // If we haven't found this binop, insert it. 235 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 236 BO->setDebugLoc(Loc); 237 if (Flags & SCEV::FlagNUW) 238 BO->setHasNoUnsignedWrap(); 239 if (Flags & SCEV::FlagNSW) 240 BO->setHasNoSignedWrap(); 241 rememberInstruction(BO); 242 243 return BO; 244 } 245 246 /// FactorOutConstant - Test if S is divisible by Factor, using signed 247 /// division. If so, update S with Factor divided out and return true. 248 /// S need not be evenly divisible if a reasonable remainder can be 249 /// computed. 250 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 251 const SCEV *Factor, ScalarEvolution &SE, 252 const DataLayout &DL) { 253 // Everything is divisible by one. 254 if (Factor->isOne()) 255 return true; 256 257 // x/x == 1. 258 if (S == Factor) { 259 S = SE.getConstant(S->getType(), 1); 260 return true; 261 } 262 263 // For a Constant, check for a multiple of the given factor. 264 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 265 // 0/x == 0. 266 if (C->isZero()) 267 return true; 268 // Check for divisibility. 269 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 270 ConstantInt *CI = 271 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 272 // If the quotient is zero and the remainder is non-zero, reject 273 // the value at this scale. It will be considered for subsequent 274 // smaller scales. 275 if (!CI->isZero()) { 276 const SCEV *Div = SE.getConstant(CI); 277 S = Div; 278 Remainder = SE.getAddExpr( 279 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 280 return true; 281 } 282 } 283 } 284 285 // In a Mul, check if there is a constant operand which is a multiple 286 // of the given factor. 287 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 288 // Size is known, check if there is a constant operand which is a multiple 289 // of the given factor. If so, we can factor it. 290 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 291 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 292 if (!C->getAPInt().srem(FC->getAPInt())) { 293 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 294 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 295 S = SE.getMulExpr(NewMulOps); 296 return true; 297 } 298 } 299 300 // In an AddRec, check if both start and step are divisible. 301 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 302 const SCEV *Step = A->getStepRecurrence(SE); 303 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 304 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 305 return false; 306 if (!StepRem->isZero()) 307 return false; 308 const SCEV *Start = A->getStart(); 309 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 310 return false; 311 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 312 A->getNoWrapFlags(SCEV::FlagNW)); 313 return true; 314 } 315 316 return false; 317 } 318 319 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 320 /// is the number of SCEVAddRecExprs present, which are kept at the end of 321 /// the list. 322 /// 323 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 324 Type *Ty, 325 ScalarEvolution &SE) { 326 unsigned NumAddRecs = 0; 327 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 328 ++NumAddRecs; 329 // Group Ops into non-addrecs and addrecs. 330 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 331 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 332 // Let ScalarEvolution sort and simplify the non-addrecs list. 333 const SCEV *Sum = NoAddRecs.empty() ? 334 SE.getConstant(Ty, 0) : 335 SE.getAddExpr(NoAddRecs); 336 // If it returned an add, use the operands. Otherwise it simplified 337 // the sum into a single value, so just use that. 338 Ops.clear(); 339 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 340 Ops.append(Add->op_begin(), Add->op_end()); 341 else if (!Sum->isZero()) 342 Ops.push_back(Sum); 343 // Then append the addrecs. 344 Ops.append(AddRecs.begin(), AddRecs.end()); 345 } 346 347 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 348 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 349 /// This helps expose more opportunities for folding parts of the expressions 350 /// into GEP indices. 351 /// 352 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 353 Type *Ty, 354 ScalarEvolution &SE) { 355 // Find the addrecs. 356 SmallVector<const SCEV *, 8> AddRecs; 357 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 358 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 359 const SCEV *Start = A->getStart(); 360 if (Start->isZero()) break; 361 const SCEV *Zero = SE.getConstant(Ty, 0); 362 AddRecs.push_back(SE.getAddRecExpr(Zero, 363 A->getStepRecurrence(SE), 364 A->getLoop(), 365 A->getNoWrapFlags(SCEV::FlagNW))); 366 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 367 Ops[i] = Zero; 368 Ops.append(Add->op_begin(), Add->op_end()); 369 e += Add->getNumOperands(); 370 } else { 371 Ops[i] = Start; 372 } 373 } 374 if (!AddRecs.empty()) { 375 // Add the addrecs onto the end of the list. 376 Ops.append(AddRecs.begin(), AddRecs.end()); 377 // Resort the operand list, moving any constants to the front. 378 SimplifyAddOperands(Ops, Ty, SE); 379 } 380 } 381 382 /// expandAddToGEP - Expand an addition expression with a pointer type into 383 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 384 /// BasicAliasAnalysis and other passes analyze the result. See the rules 385 /// for getelementptr vs. inttoptr in 386 /// http://llvm.org/docs/LangRef.html#pointeraliasing 387 /// for details. 388 /// 389 /// Design note: The correctness of using getelementptr here depends on 390 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 391 /// they may introduce pointer arithmetic which may not be safely converted 392 /// into getelementptr. 393 /// 394 /// Design note: It might seem desirable for this function to be more 395 /// loop-aware. If some of the indices are loop-invariant while others 396 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 397 /// loop-invariant portions of the overall computation outside the loop. 398 /// However, there are a few reasons this is not done here. Hoisting simple 399 /// arithmetic is a low-level optimization that often isn't very 400 /// important until late in the optimization process. In fact, passes 401 /// like InstructionCombining will combine GEPs, even if it means 402 /// pushing loop-invariant computation down into loops, so even if the 403 /// GEPs were split here, the work would quickly be undone. The 404 /// LoopStrengthReduction pass, which is usually run quite late (and 405 /// after the last InstructionCombining pass), takes care of hoisting 406 /// loop-invariant portions of expressions, after considering what 407 /// can be folded using target addressing modes. 408 /// 409 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 410 const SCEV *const *op_end, 411 PointerType *PTy, 412 Type *Ty, 413 Value *V) { 414 Type *OriginalElTy = PTy->getElementType(); 415 Type *ElTy = OriginalElTy; 416 SmallVector<Value *, 4> GepIndices; 417 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 418 bool AnyNonZeroIndices = false; 419 420 // Split AddRecs up into parts as either of the parts may be usable 421 // without the other. 422 SplitAddRecs(Ops, Ty, SE); 423 424 Type *IntIdxTy = DL.getIndexType(PTy); 425 426 // Descend down the pointer's type and attempt to convert the other 427 // operands into GEP indices, at each level. The first index in a GEP 428 // indexes into the array implied by the pointer operand; the rest of 429 // the indices index into the element or field type selected by the 430 // preceding index. 431 for (;;) { 432 // If the scale size is not 0, attempt to factor out a scale for 433 // array indexing. 434 SmallVector<const SCEV *, 8> ScaledOps; 435 if (ElTy->isSized()) { 436 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 437 if (!ElSize->isZero()) { 438 SmallVector<const SCEV *, 8> NewOps; 439 for (const SCEV *Op : Ops) { 440 const SCEV *Remainder = SE.getConstant(Ty, 0); 441 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 442 // Op now has ElSize factored out. 443 ScaledOps.push_back(Op); 444 if (!Remainder->isZero()) 445 NewOps.push_back(Remainder); 446 AnyNonZeroIndices = true; 447 } else { 448 // The operand was not divisible, so add it to the list of operands 449 // we'll scan next iteration. 450 NewOps.push_back(Op); 451 } 452 } 453 // If we made any changes, update Ops. 454 if (!ScaledOps.empty()) { 455 Ops = NewOps; 456 SimplifyAddOperands(Ops, Ty, SE); 457 } 458 } 459 } 460 461 // Record the scaled array index for this level of the type. If 462 // we didn't find any operands that could be factored, tentatively 463 // assume that element zero was selected (since the zero offset 464 // would obviously be folded away). 465 Value *Scaled = ScaledOps.empty() ? 466 Constant::getNullValue(Ty) : 467 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 468 GepIndices.push_back(Scaled); 469 470 // Collect struct field index operands. 471 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 472 bool FoundFieldNo = false; 473 // An empty struct has no fields. 474 if (STy->getNumElements() == 0) break; 475 // Field offsets are known. See if a constant offset falls within any of 476 // the struct fields. 477 if (Ops.empty()) 478 break; 479 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 480 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 481 const StructLayout &SL = *DL.getStructLayout(STy); 482 uint64_t FullOffset = C->getValue()->getZExtValue(); 483 if (FullOffset < SL.getSizeInBytes()) { 484 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 485 GepIndices.push_back( 486 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 487 ElTy = STy->getTypeAtIndex(ElIdx); 488 Ops[0] = 489 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 490 AnyNonZeroIndices = true; 491 FoundFieldNo = true; 492 } 493 } 494 // If no struct field offsets were found, tentatively assume that 495 // field zero was selected (since the zero offset would obviously 496 // be folded away). 497 if (!FoundFieldNo) { 498 ElTy = STy->getTypeAtIndex(0u); 499 GepIndices.push_back( 500 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 501 } 502 } 503 504 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 505 ElTy = ATy->getElementType(); 506 else 507 // FIXME: Handle VectorType. 508 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 509 // constant, therefore can not be factored out. The generated IR is less 510 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 511 break; 512 } 513 514 // If none of the operands were convertible to proper GEP indices, cast 515 // the base to i8* and do an ugly getelementptr with that. It's still 516 // better than ptrtoint+arithmetic+inttoptr at least. 517 if (!AnyNonZeroIndices) { 518 // Cast the base to i8*. 519 V = InsertNoopCastOfTo(V, 520 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 521 522 assert(!isa<Instruction>(V) || 523 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 524 525 // Expand the operands for a plain byte offset. 526 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 527 528 // Fold a GEP with constant operands. 529 if (Constant *CLHS = dyn_cast<Constant>(V)) 530 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 531 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 532 CLHS, CRHS); 533 534 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 535 unsigned ScanLimit = 6; 536 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 537 // Scanning starts from the last instruction before the insertion point. 538 BasicBlock::iterator IP = Builder.GetInsertPoint(); 539 if (IP != BlockBegin) { 540 --IP; 541 for (; ScanLimit; --IP, --ScanLimit) { 542 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 543 // generated code. 544 if (isa<DbgInfoIntrinsic>(IP)) 545 ScanLimit++; 546 if (IP->getOpcode() == Instruction::GetElementPtr && 547 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 548 return &*IP; 549 if (IP == BlockBegin) break; 550 } 551 } 552 553 // Save the original insertion point so we can restore it when we're done. 554 SCEVInsertPointGuard Guard(Builder, this); 555 556 // Move the insertion point out of as many loops as we can. 557 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 558 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 559 BasicBlock *Preheader = L->getLoopPreheader(); 560 if (!Preheader) break; 561 562 // Ok, move up a level. 563 Builder.SetInsertPoint(Preheader->getTerminator()); 564 } 565 566 // Emit a GEP. 567 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 568 rememberInstruction(GEP); 569 570 return GEP; 571 } 572 573 { 574 SCEVInsertPointGuard Guard(Builder, this); 575 576 // Move the insertion point out of as many loops as we can. 577 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 578 if (!L->isLoopInvariant(V)) break; 579 580 bool AnyIndexNotLoopInvariant = any_of( 581 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 582 583 if (AnyIndexNotLoopInvariant) 584 break; 585 586 BasicBlock *Preheader = L->getLoopPreheader(); 587 if (!Preheader) break; 588 589 // Ok, move up a level. 590 Builder.SetInsertPoint(Preheader->getTerminator()); 591 } 592 593 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 594 // because ScalarEvolution may have changed the address arithmetic to 595 // compute a value which is beyond the end of the allocated object. 596 Value *Casted = V; 597 if (V->getType() != PTy) 598 Casted = InsertNoopCastOfTo(Casted, PTy); 599 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 600 Ops.push_back(SE.getUnknown(GEP)); 601 rememberInstruction(GEP); 602 } 603 604 return expand(SE.getAddExpr(Ops)); 605 } 606 607 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 608 Value *V) { 609 const SCEV *const Ops[1] = {Op}; 610 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 611 } 612 613 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 614 /// SCEV expansion. If they are nested, this is the most nested. If they are 615 /// neighboring, pick the later. 616 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 617 DominatorTree &DT) { 618 if (!A) return B; 619 if (!B) return A; 620 if (A->contains(B)) return B; 621 if (B->contains(A)) return A; 622 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 623 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 624 return A; // Arbitrarily break the tie. 625 } 626 627 /// getRelevantLoop - Get the most relevant loop associated with the given 628 /// expression, according to PickMostRelevantLoop. 629 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 630 // Test whether we've already computed the most relevant loop for this SCEV. 631 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 632 if (!Pair.second) 633 return Pair.first->second; 634 635 if (isa<SCEVConstant>(S)) 636 // A constant has no relevant loops. 637 return nullptr; 638 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 639 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 640 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 641 // A non-instruction has no relevant loops. 642 return nullptr; 643 } 644 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 645 const Loop *L = nullptr; 646 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 647 L = AR->getLoop(); 648 for (const SCEV *Op : N->operands()) 649 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 650 return RelevantLoops[N] = L; 651 } 652 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 653 const Loop *Result = getRelevantLoop(C->getOperand()); 654 return RelevantLoops[C] = Result; 655 } 656 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 657 const Loop *Result = PickMostRelevantLoop( 658 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 659 return RelevantLoops[D] = Result; 660 } 661 llvm_unreachable("Unexpected SCEV type!"); 662 } 663 664 namespace { 665 666 /// LoopCompare - Compare loops by PickMostRelevantLoop. 667 class LoopCompare { 668 DominatorTree &DT; 669 public: 670 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 671 672 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 673 std::pair<const Loop *, const SCEV *> RHS) const { 674 // Keep pointer operands sorted at the end. 675 if (LHS.second->getType()->isPointerTy() != 676 RHS.second->getType()->isPointerTy()) 677 return LHS.second->getType()->isPointerTy(); 678 679 // Compare loops with PickMostRelevantLoop. 680 if (LHS.first != RHS.first) 681 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 682 683 // If one operand is a non-constant negative and the other is not, 684 // put the non-constant negative on the right so that a sub can 685 // be used instead of a negate and add. 686 if (LHS.second->isNonConstantNegative()) { 687 if (!RHS.second->isNonConstantNegative()) 688 return false; 689 } else if (RHS.second->isNonConstantNegative()) 690 return true; 691 692 // Otherwise they are equivalent according to this comparison. 693 return false; 694 } 695 }; 696 697 } 698 699 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 700 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 701 702 // Collect all the add operands in a loop, along with their associated loops. 703 // Iterate in reverse so that constants are emitted last, all else equal, and 704 // so that pointer operands are inserted first, which the code below relies on 705 // to form more involved GEPs. 706 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 707 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 708 E(S->op_begin()); I != E; ++I) 709 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 710 711 // Sort by loop. Use a stable sort so that constants follow non-constants and 712 // pointer operands precede non-pointer operands. 713 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 714 715 // Emit instructions to add all the operands. Hoist as much as possible 716 // out of loops, and form meaningful getelementptrs where possible. 717 Value *Sum = nullptr; 718 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 719 const Loop *CurLoop = I->first; 720 const SCEV *Op = I->second; 721 if (!Sum) { 722 // This is the first operand. Just expand it. 723 Sum = expand(Op); 724 ++I; 725 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 726 // The running sum expression is a pointer. Try to form a getelementptr 727 // at this level with that as the base. 728 SmallVector<const SCEV *, 4> NewOps; 729 for (; I != E && I->first == CurLoop; ++I) { 730 // If the operand is SCEVUnknown and not instructions, peek through 731 // it, to enable more of it to be folded into the GEP. 732 const SCEV *X = I->second; 733 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 734 if (!isa<Instruction>(U->getValue())) 735 X = SE.getSCEV(U->getValue()); 736 NewOps.push_back(X); 737 } 738 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 739 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 740 // The running sum is an integer, and there's a pointer at this level. 741 // Try to form a getelementptr. If the running sum is instructions, 742 // use a SCEVUnknown to avoid re-analyzing them. 743 SmallVector<const SCEV *, 4> NewOps; 744 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 745 SE.getSCEV(Sum)); 746 for (++I; I != E && I->first == CurLoop; ++I) 747 NewOps.push_back(I->second); 748 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 749 } else if (Op->isNonConstantNegative()) { 750 // Instead of doing a negate and add, just do a subtract. 751 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 752 Sum = InsertNoopCastOfTo(Sum, Ty); 753 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 754 /*IsSafeToHoist*/ true); 755 ++I; 756 } else { 757 // A simple add. 758 Value *W = expandCodeFor(Op, Ty); 759 Sum = InsertNoopCastOfTo(Sum, Ty); 760 // Canonicalize a constant to the RHS. 761 if (isa<Constant>(Sum)) std::swap(Sum, W); 762 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 763 /*IsSafeToHoist*/ true); 764 ++I; 765 } 766 } 767 768 return Sum; 769 } 770 771 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 772 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 773 774 // Collect all the mul operands in a loop, along with their associated loops. 775 // Iterate in reverse so that constants are emitted last, all else equal. 776 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 777 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 778 E(S->op_begin()); I != E; ++I) 779 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 780 781 // Sort by loop. Use a stable sort so that constants follow non-constants. 782 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 783 784 // Emit instructions to mul all the operands. Hoist as much as possible 785 // out of loops. 786 Value *Prod = nullptr; 787 auto I = OpsAndLoops.begin(); 788 789 // Expand the calculation of X pow N in the following manner: 790 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 791 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 792 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 793 auto E = I; 794 // Calculate how many times the same operand from the same loop is included 795 // into this power. 796 uint64_t Exponent = 0; 797 const uint64_t MaxExponent = UINT64_MAX >> 1; 798 // No one sane will ever try to calculate such huge exponents, but if we 799 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 800 // below when the power of 2 exceeds our Exponent, and we want it to be 801 // 1u << 31 at most to not deal with unsigned overflow. 802 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 803 ++Exponent; 804 ++E; 805 } 806 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 807 808 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 809 // that are needed into the result. 810 Value *P = expandCodeFor(I->second, Ty); 811 Value *Result = nullptr; 812 if (Exponent & 1) 813 Result = P; 814 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 815 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 816 /*IsSafeToHoist*/ true); 817 if (Exponent & BinExp) 818 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 819 SCEV::FlagAnyWrap, 820 /*IsSafeToHoist*/ true) 821 : P; 822 } 823 824 I = E; 825 assert(Result && "Nothing was expanded?"); 826 return Result; 827 }; 828 829 while (I != OpsAndLoops.end()) { 830 if (!Prod) { 831 // This is the first operand. Just expand it. 832 Prod = ExpandOpBinPowN(); 833 } else if (I->second->isAllOnesValue()) { 834 // Instead of doing a multiply by negative one, just do a negate. 835 Prod = InsertNoopCastOfTo(Prod, Ty); 836 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 837 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 838 ++I; 839 } else { 840 // A simple mul. 841 Value *W = ExpandOpBinPowN(); 842 Prod = InsertNoopCastOfTo(Prod, Ty); 843 // Canonicalize a constant to the RHS. 844 if (isa<Constant>(Prod)) std::swap(Prod, W); 845 const APInt *RHS; 846 if (match(W, m_Power2(RHS))) { 847 // Canonicalize Prod*(1<<C) to Prod<<C. 848 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 849 auto NWFlags = S->getNoWrapFlags(); 850 // clear nsw flag if shl will produce poison value. 851 if (RHS->logBase2() == RHS->getBitWidth() - 1) 852 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 853 Prod = InsertBinop(Instruction::Shl, Prod, 854 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 855 /*IsSafeToHoist*/ true); 856 } else { 857 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 858 /*IsSafeToHoist*/ true); 859 } 860 } 861 } 862 863 return Prod; 864 } 865 866 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 867 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 868 869 Value *LHS = expandCodeFor(S->getLHS(), Ty); 870 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 871 const APInt &RHS = SC->getAPInt(); 872 if (RHS.isPowerOf2()) 873 return InsertBinop(Instruction::LShr, LHS, 874 ConstantInt::get(Ty, RHS.logBase2()), 875 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 876 } 877 878 Value *RHS = expandCodeFor(S->getRHS(), Ty); 879 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 880 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 881 } 882 883 /// Move parts of Base into Rest to leave Base with the minimal 884 /// expression that provides a pointer operand suitable for a 885 /// GEP expansion. 886 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 887 ScalarEvolution &SE) { 888 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 889 Base = A->getStart(); 890 Rest = SE.getAddExpr(Rest, 891 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 892 A->getStepRecurrence(SE), 893 A->getLoop(), 894 A->getNoWrapFlags(SCEV::FlagNW))); 895 } 896 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 897 Base = A->getOperand(A->getNumOperands()-1); 898 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 899 NewAddOps.back() = Rest; 900 Rest = SE.getAddExpr(NewAddOps); 901 ExposePointerBase(Base, Rest, SE); 902 } 903 } 904 905 /// Determine if this is a well-behaved chain of instructions leading back to 906 /// the PHI. If so, it may be reused by expanded expressions. 907 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 908 const Loop *L) { 909 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 910 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 911 return false; 912 // If any of the operands don't dominate the insert position, bail. 913 // Addrec operands are always loop-invariant, so this can only happen 914 // if there are instructions which haven't been hoisted. 915 if (L == IVIncInsertLoop) { 916 for (User::op_iterator OI = IncV->op_begin()+1, 917 OE = IncV->op_end(); OI != OE; ++OI) 918 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 919 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 920 return false; 921 } 922 // Advance to the next instruction. 923 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 924 if (!IncV) 925 return false; 926 927 if (IncV->mayHaveSideEffects()) 928 return false; 929 930 if (IncV == PN) 931 return true; 932 933 return isNormalAddRecExprPHI(PN, IncV, L); 934 } 935 936 /// getIVIncOperand returns an induction variable increment's induction 937 /// variable operand. 938 /// 939 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 940 /// operands dominate InsertPos. 941 /// 942 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 943 /// simple patterns generated by getAddRecExprPHILiterally and 944 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 945 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 946 Instruction *InsertPos, 947 bool allowScale) { 948 if (IncV == InsertPos) 949 return nullptr; 950 951 switch (IncV->getOpcode()) { 952 default: 953 return nullptr; 954 // Check for a simple Add/Sub or GEP of a loop invariant step. 955 case Instruction::Add: 956 case Instruction::Sub: { 957 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 958 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 959 return dyn_cast<Instruction>(IncV->getOperand(0)); 960 return nullptr; 961 } 962 case Instruction::BitCast: 963 return dyn_cast<Instruction>(IncV->getOperand(0)); 964 case Instruction::GetElementPtr: 965 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) { 966 if (isa<Constant>(*I)) 967 continue; 968 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 969 if (!SE.DT.dominates(OInst, InsertPos)) 970 return nullptr; 971 } 972 if (allowScale) { 973 // allow any kind of GEP as long as it can be hoisted. 974 continue; 975 } 976 // This must be a pointer addition of constants (pretty), which is already 977 // handled, or some number of address-size elements (ugly). Ugly geps 978 // have 2 operands. i1* is used by the expander to represent an 979 // address-size element. 980 if (IncV->getNumOperands() != 2) 981 return nullptr; 982 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 983 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 984 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 985 return nullptr; 986 break; 987 } 988 return dyn_cast<Instruction>(IncV->getOperand(0)); 989 } 990 } 991 992 /// If the insert point of the current builder or any of the builders on the 993 /// stack of saved builders has 'I' as its insert point, update it to point to 994 /// the instruction after 'I'. This is intended to be used when the instruction 995 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 996 /// different block, the inconsistent insert point (with a mismatched 997 /// Instruction and Block) can lead to an instruction being inserted in a block 998 /// other than its parent. 999 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1000 BasicBlock::iterator It(*I); 1001 BasicBlock::iterator NewInsertPt = std::next(It); 1002 if (Builder.GetInsertPoint() == It) 1003 Builder.SetInsertPoint(&*NewInsertPt); 1004 for (auto *InsertPtGuard : InsertPointGuards) 1005 if (InsertPtGuard->GetInsertPoint() == It) 1006 InsertPtGuard->SetInsertPoint(NewInsertPt); 1007 } 1008 1009 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1010 /// it available to other uses in this loop. Recursively hoist any operands, 1011 /// until we reach a value that dominates InsertPos. 1012 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1013 if (SE.DT.dominates(IncV, InsertPos)) 1014 return true; 1015 1016 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1017 // its existing users. 1018 if (isa<PHINode>(InsertPos) || 1019 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1020 return false; 1021 1022 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1023 return false; 1024 1025 // Check that the chain of IV operands leading back to Phi can be hoisted. 1026 SmallVector<Instruction*, 4> IVIncs; 1027 for(;;) { 1028 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1029 if (!Oper) 1030 return false; 1031 // IncV is safe to hoist. 1032 IVIncs.push_back(IncV); 1033 IncV = Oper; 1034 if (SE.DT.dominates(IncV, InsertPos)) 1035 break; 1036 } 1037 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1038 fixupInsertPoints(*I); 1039 (*I)->moveBefore(InsertPos); 1040 } 1041 return true; 1042 } 1043 1044 /// Determine if this cyclic phi is in a form that would have been generated by 1045 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1046 /// as it is in a low-cost form, for example, no implied multiplication. This 1047 /// should match any patterns generated by getAddRecExprPHILiterally and 1048 /// expandAddtoGEP. 1049 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1050 const Loop *L) { 1051 for(Instruction *IVOper = IncV; 1052 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1053 /*allowScale=*/false));) { 1054 if (IVOper == PN) 1055 return true; 1056 } 1057 return false; 1058 } 1059 1060 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1061 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1062 /// need to materialize IV increments elsewhere to handle difficult situations. 1063 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1064 Type *ExpandTy, Type *IntTy, 1065 bool useSubtract) { 1066 Value *IncV; 1067 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1068 if (ExpandTy->isPointerTy()) { 1069 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1070 // If the step isn't constant, don't use an implicitly scaled GEP, because 1071 // that would require a multiply inside the loop. 1072 if (!isa<ConstantInt>(StepV)) 1073 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1074 GEPPtrTy->getAddressSpace()); 1075 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1076 if (IncV->getType() != PN->getType()) { 1077 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1078 rememberInstruction(IncV); 1079 } 1080 } else { 1081 IncV = useSubtract ? 1082 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1083 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1084 rememberInstruction(IncV); 1085 } 1086 return IncV; 1087 } 1088 1089 /// Hoist the addrec instruction chain rooted in the loop phi above the 1090 /// position. This routine assumes that this is possible (has been checked). 1091 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1092 Instruction *Pos, PHINode *LoopPhi) { 1093 do { 1094 if (DT->dominates(InstToHoist, Pos)) 1095 break; 1096 // Make sure the increment is where we want it. But don't move it 1097 // down past a potential existing post-inc user. 1098 fixupInsertPoints(InstToHoist); 1099 InstToHoist->moveBefore(Pos); 1100 Pos = InstToHoist; 1101 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1102 } while (InstToHoist != LoopPhi); 1103 } 1104 1105 /// Check whether we can cheaply express the requested SCEV in terms of 1106 /// the available PHI SCEV by truncation and/or inversion of the step. 1107 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1108 const SCEVAddRecExpr *Phi, 1109 const SCEVAddRecExpr *Requested, 1110 bool &InvertStep) { 1111 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1112 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1113 1114 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1115 return false; 1116 1117 // Try truncate it if necessary. 1118 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1119 if (!Phi) 1120 return false; 1121 1122 // Check whether truncation will help. 1123 if (Phi == Requested) { 1124 InvertStep = false; 1125 return true; 1126 } 1127 1128 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1129 if (SE.getAddExpr(Requested->getStart(), 1130 SE.getNegativeSCEV(Requested)) == Phi) { 1131 InvertStep = true; 1132 return true; 1133 } 1134 1135 return false; 1136 } 1137 1138 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1139 if (!isa<IntegerType>(AR->getType())) 1140 return false; 1141 1142 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1143 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1144 const SCEV *Step = AR->getStepRecurrence(SE); 1145 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1146 SE.getSignExtendExpr(AR, WideTy)); 1147 const SCEV *ExtendAfterOp = 1148 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1149 return ExtendAfterOp == OpAfterExtend; 1150 } 1151 1152 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1153 if (!isa<IntegerType>(AR->getType())) 1154 return false; 1155 1156 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1157 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1158 const SCEV *Step = AR->getStepRecurrence(SE); 1159 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1160 SE.getZeroExtendExpr(AR, WideTy)); 1161 const SCEV *ExtendAfterOp = 1162 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1163 return ExtendAfterOp == OpAfterExtend; 1164 } 1165 1166 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1167 /// the base addrec, which is the addrec without any non-loop-dominating 1168 /// values, and return the PHI. 1169 PHINode * 1170 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1171 const Loop *L, 1172 Type *ExpandTy, 1173 Type *IntTy, 1174 Type *&TruncTy, 1175 bool &InvertStep) { 1176 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1177 1178 // Reuse a previously-inserted PHI, if present. 1179 BasicBlock *LatchBlock = L->getLoopLatch(); 1180 if (LatchBlock) { 1181 PHINode *AddRecPhiMatch = nullptr; 1182 Instruction *IncV = nullptr; 1183 TruncTy = nullptr; 1184 InvertStep = false; 1185 1186 // Only try partially matching scevs that need truncation and/or 1187 // step-inversion if we know this loop is outside the current loop. 1188 bool TryNonMatchingSCEV = 1189 IVIncInsertLoop && 1190 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1191 1192 for (PHINode &PN : L->getHeader()->phis()) { 1193 if (!SE.isSCEVable(PN.getType())) 1194 continue; 1195 1196 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1197 if (!PhiSCEV) 1198 continue; 1199 1200 bool IsMatchingSCEV = PhiSCEV == Normalized; 1201 // We only handle truncation and inversion of phi recurrences for the 1202 // expanded expression if the expanded expression's loop dominates the 1203 // loop we insert to. Check now, so we can bail out early. 1204 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1205 continue; 1206 1207 // TODO: this possibly can be reworked to avoid this cast at all. 1208 Instruction *TempIncV = 1209 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1210 if (!TempIncV) 1211 continue; 1212 1213 // Check whether we can reuse this PHI node. 1214 if (LSRMode) { 1215 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1216 continue; 1217 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1218 continue; 1219 } else { 1220 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1221 continue; 1222 } 1223 1224 // Stop if we have found an exact match SCEV. 1225 if (IsMatchingSCEV) { 1226 IncV = TempIncV; 1227 TruncTy = nullptr; 1228 InvertStep = false; 1229 AddRecPhiMatch = &PN; 1230 break; 1231 } 1232 1233 // Try whether the phi can be translated into the requested form 1234 // (truncated and/or offset by a constant). 1235 if ((!TruncTy || InvertStep) && 1236 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1237 // Record the phi node. But don't stop we might find an exact match 1238 // later. 1239 AddRecPhiMatch = &PN; 1240 IncV = TempIncV; 1241 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1242 } 1243 } 1244 1245 if (AddRecPhiMatch) { 1246 // Potentially, move the increment. We have made sure in 1247 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1248 if (L == IVIncInsertLoop) 1249 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1250 1251 // Ok, the add recurrence looks usable. 1252 // Remember this PHI, even in post-inc mode. 1253 InsertedValues.insert(AddRecPhiMatch); 1254 // Remember the increment. 1255 rememberInstruction(IncV); 1256 return AddRecPhiMatch; 1257 } 1258 } 1259 1260 // Save the original insertion point so we can restore it when we're done. 1261 SCEVInsertPointGuard Guard(Builder, this); 1262 1263 // Another AddRec may need to be recursively expanded below. For example, if 1264 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1265 // loop. Remove this loop from the PostIncLoops set before expanding such 1266 // AddRecs. Otherwise, we cannot find a valid position for the step 1267 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1268 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1269 // so it's not worth implementing SmallPtrSet::swap. 1270 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1271 PostIncLoops.clear(); 1272 1273 // Expand code for the start value into the loop preheader. 1274 assert(L->getLoopPreheader() && 1275 "Can't expand add recurrences without a loop preheader!"); 1276 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 1277 L->getLoopPreheader()->getTerminator()); 1278 1279 // StartV must have been be inserted into L's preheader to dominate the new 1280 // phi. 1281 assert(!isa<Instruction>(StartV) || 1282 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1283 L->getHeader())); 1284 1285 // Expand code for the step value. Do this before creating the PHI so that PHI 1286 // reuse code doesn't see an incomplete PHI. 1287 const SCEV *Step = Normalized->getStepRecurrence(SE); 1288 // If the stride is negative, insert a sub instead of an add for the increment 1289 // (unless it's a constant, because subtracts of constants are canonicalized 1290 // to adds). 1291 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1292 if (useSubtract) 1293 Step = SE.getNegativeSCEV(Step); 1294 // Expand the step somewhere that dominates the loop header. 1295 Value *StepV = expandCodeFor(Step, IntTy, 1296 &*L->getHeader()->getFirstInsertionPt()); 1297 1298 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1299 // we actually do emit an addition. It does not apply if we emit a 1300 // subtraction. 1301 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1302 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1303 1304 // Create the PHI. 1305 BasicBlock *Header = L->getHeader(); 1306 Builder.SetInsertPoint(Header, Header->begin()); 1307 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1308 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1309 Twine(IVName) + ".iv"); 1310 rememberInstruction(PN); 1311 1312 // Create the step instructions and populate the PHI. 1313 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1314 BasicBlock *Pred = *HPI; 1315 1316 // Add a start value. 1317 if (!L->contains(Pred)) { 1318 PN->addIncoming(StartV, Pred); 1319 continue; 1320 } 1321 1322 // Create a step value and add it to the PHI. 1323 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1324 // instructions at IVIncInsertPos. 1325 Instruction *InsertPos = L == IVIncInsertLoop ? 1326 IVIncInsertPos : Pred->getTerminator(); 1327 Builder.SetInsertPoint(InsertPos); 1328 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1329 1330 if (isa<OverflowingBinaryOperator>(IncV)) { 1331 if (IncrementIsNUW) 1332 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1333 if (IncrementIsNSW) 1334 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1335 } 1336 PN->addIncoming(IncV, Pred); 1337 } 1338 1339 // After expanding subexpressions, restore the PostIncLoops set so the caller 1340 // can ensure that IVIncrement dominates the current uses. 1341 PostIncLoops = SavedPostIncLoops; 1342 1343 // Remember this PHI, even in post-inc mode. 1344 InsertedValues.insert(PN); 1345 1346 return PN; 1347 } 1348 1349 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1350 Type *STy = S->getType(); 1351 Type *IntTy = SE.getEffectiveSCEVType(STy); 1352 const Loop *L = S->getLoop(); 1353 1354 // Determine a normalized form of this expression, which is the expression 1355 // before any post-inc adjustment is made. 1356 const SCEVAddRecExpr *Normalized = S; 1357 if (PostIncLoops.count(L)) { 1358 PostIncLoopSet Loops; 1359 Loops.insert(L); 1360 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1361 } 1362 1363 // Strip off any non-loop-dominating component from the addrec start. 1364 const SCEV *Start = Normalized->getStart(); 1365 const SCEV *PostLoopOffset = nullptr; 1366 if (!SE.properlyDominates(Start, L->getHeader())) { 1367 PostLoopOffset = Start; 1368 Start = SE.getConstant(Normalized->getType(), 0); 1369 Normalized = cast<SCEVAddRecExpr>( 1370 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1371 Normalized->getLoop(), 1372 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1373 } 1374 1375 // Strip off any non-loop-dominating component from the addrec step. 1376 const SCEV *Step = Normalized->getStepRecurrence(SE); 1377 const SCEV *PostLoopScale = nullptr; 1378 if (!SE.dominates(Step, L->getHeader())) { 1379 PostLoopScale = Step; 1380 Step = SE.getConstant(Normalized->getType(), 1); 1381 if (!Start->isZero()) { 1382 // The normalization below assumes that Start is constant zero, so if 1383 // it isn't re-associate Start to PostLoopOffset. 1384 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1385 PostLoopOffset = Start; 1386 Start = SE.getConstant(Normalized->getType(), 0); 1387 } 1388 Normalized = 1389 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1390 Start, Step, Normalized->getLoop(), 1391 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1392 } 1393 1394 // Expand the core addrec. If we need post-loop scaling, force it to 1395 // expand to an integer type to avoid the need for additional casting. 1396 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1397 // We can't use a pointer type for the addrec if the pointer type is 1398 // non-integral. 1399 Type *AddRecPHIExpandTy = 1400 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1401 1402 // In some cases, we decide to reuse an existing phi node but need to truncate 1403 // it and/or invert the step. 1404 Type *TruncTy = nullptr; 1405 bool InvertStep = false; 1406 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1407 IntTy, TruncTy, InvertStep); 1408 1409 // Accommodate post-inc mode, if necessary. 1410 Value *Result; 1411 if (!PostIncLoops.count(L)) 1412 Result = PN; 1413 else { 1414 // In PostInc mode, use the post-incremented value. 1415 BasicBlock *LatchBlock = L->getLoopLatch(); 1416 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1417 Result = PN->getIncomingValueForBlock(LatchBlock); 1418 1419 // For an expansion to use the postinc form, the client must call 1420 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1421 // or dominated by IVIncInsertPos. 1422 if (isa<Instruction>(Result) && 1423 !SE.DT.dominates(cast<Instruction>(Result), 1424 &*Builder.GetInsertPoint())) { 1425 // The induction variable's postinc expansion does not dominate this use. 1426 // IVUsers tries to prevent this case, so it is rare. However, it can 1427 // happen when an IVUser outside the loop is not dominated by the latch 1428 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1429 // all cases. Consider a phi outside whose operand is replaced during 1430 // expansion with the value of the postinc user. Without fundamentally 1431 // changing the way postinc users are tracked, the only remedy is 1432 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1433 // but hopefully expandCodeFor handles that. 1434 bool useSubtract = 1435 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1436 if (useSubtract) 1437 Step = SE.getNegativeSCEV(Step); 1438 Value *StepV; 1439 { 1440 // Expand the step somewhere that dominates the loop header. 1441 SCEVInsertPointGuard Guard(Builder, this); 1442 StepV = expandCodeFor(Step, IntTy, 1443 &*L->getHeader()->getFirstInsertionPt()); 1444 } 1445 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1446 } 1447 } 1448 1449 // We have decided to reuse an induction variable of a dominating loop. Apply 1450 // truncation and/or inversion of the step. 1451 if (TruncTy) { 1452 Type *ResTy = Result->getType(); 1453 // Normalize the result type. 1454 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1455 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1456 // Truncate the result. 1457 if (TruncTy != Result->getType()) { 1458 Result = Builder.CreateTrunc(Result, TruncTy); 1459 rememberInstruction(Result); 1460 } 1461 // Invert the result. 1462 if (InvertStep) { 1463 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1464 Result); 1465 rememberInstruction(Result); 1466 } 1467 } 1468 1469 // Re-apply any non-loop-dominating scale. 1470 if (PostLoopScale) { 1471 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1472 Result = InsertNoopCastOfTo(Result, IntTy); 1473 Result = Builder.CreateMul(Result, 1474 expandCodeFor(PostLoopScale, IntTy)); 1475 rememberInstruction(Result); 1476 } 1477 1478 // Re-apply any non-loop-dominating offset. 1479 if (PostLoopOffset) { 1480 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1481 if (Result->getType()->isIntegerTy()) { 1482 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); 1483 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1484 } else { 1485 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1486 } 1487 } else { 1488 Result = InsertNoopCastOfTo(Result, IntTy); 1489 Result = Builder.CreateAdd(Result, 1490 expandCodeFor(PostLoopOffset, IntTy)); 1491 rememberInstruction(Result); 1492 } 1493 } 1494 1495 return Result; 1496 } 1497 1498 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1499 // In canonical mode we compute the addrec as an expression of a canonical IV 1500 // using evaluateAtIteration and expand the resulting SCEV expression. This 1501 // way we avoid introducing new IVs to carry on the comutation of the addrec 1502 // throughout the loop. 1503 // 1504 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1505 // type wider than the addrec itself. Emitting a canonical IV of the 1506 // proper type might produce non-legal types, for example expanding an i64 1507 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1508 // back to non-canonical mode for nested addrecs. 1509 if (!CanonicalMode || (S->getNumOperands() > 2)) 1510 return expandAddRecExprLiterally(S); 1511 1512 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1513 const Loop *L = S->getLoop(); 1514 1515 // First check for an existing canonical IV in a suitable type. 1516 PHINode *CanonicalIV = nullptr; 1517 if (PHINode *PN = L->getCanonicalInductionVariable()) 1518 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1519 CanonicalIV = PN; 1520 1521 // Rewrite an AddRec in terms of the canonical induction variable, if 1522 // its type is more narrow. 1523 if (CanonicalIV && 1524 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1525 SE.getTypeSizeInBits(Ty)) { 1526 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1527 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1528 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1529 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1530 S->getNoWrapFlags(SCEV::FlagNW))); 1531 BasicBlock::iterator NewInsertPt = 1532 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock()); 1533 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1534 &*NewInsertPt); 1535 return V; 1536 } 1537 1538 // {X,+,F} --> X + {0,+,F} 1539 if (!S->getStart()->isZero()) { 1540 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1541 NewOps[0] = SE.getConstant(Ty, 0); 1542 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1543 S->getNoWrapFlags(SCEV::FlagNW)); 1544 1545 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1546 // comments on expandAddToGEP for details. 1547 const SCEV *Base = S->getStart(); 1548 // Dig into the expression to find the pointer base for a GEP. 1549 const SCEV *ExposedRest = Rest; 1550 ExposePointerBase(Base, ExposedRest, SE); 1551 // If we found a pointer, expand the AddRec with a GEP. 1552 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1553 // Make sure the Base isn't something exotic, such as a multiplied 1554 // or divided pointer value. In those cases, the result type isn't 1555 // actually a pointer type. 1556 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1557 Value *StartV = expand(Base); 1558 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1559 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1560 } 1561 } 1562 1563 // Just do a normal add. Pre-expand the operands to suppress folding. 1564 // 1565 // The LHS and RHS values are factored out of the expand call to make the 1566 // output independent of the argument evaluation order. 1567 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1568 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1569 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1570 } 1571 1572 // If we don't yet have a canonical IV, create one. 1573 if (!CanonicalIV) { 1574 // Create and insert the PHI node for the induction variable in the 1575 // specified loop. 1576 BasicBlock *Header = L->getHeader(); 1577 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1578 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1579 &Header->front()); 1580 rememberInstruction(CanonicalIV); 1581 1582 SmallSet<BasicBlock *, 4> PredSeen; 1583 Constant *One = ConstantInt::get(Ty, 1); 1584 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1585 BasicBlock *HP = *HPI; 1586 if (!PredSeen.insert(HP).second) { 1587 // There must be an incoming value for each predecessor, even the 1588 // duplicates! 1589 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1590 continue; 1591 } 1592 1593 if (L->contains(HP)) { 1594 // Insert a unit add instruction right before the terminator 1595 // corresponding to the back-edge. 1596 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1597 "indvar.next", 1598 HP->getTerminator()); 1599 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1600 rememberInstruction(Add); 1601 CanonicalIV->addIncoming(Add, HP); 1602 } else { 1603 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1604 } 1605 } 1606 } 1607 1608 // {0,+,1} --> Insert a canonical induction variable into the loop! 1609 if (S->isAffine() && S->getOperand(1)->isOne()) { 1610 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1611 "IVs with types different from the canonical IV should " 1612 "already have been handled!"); 1613 return CanonicalIV; 1614 } 1615 1616 // {0,+,F} --> {0,+,1} * F 1617 1618 // If this is a simple linear addrec, emit it now as a special case. 1619 if (S->isAffine()) // {0,+,F} --> i*F 1620 return 1621 expand(SE.getTruncateOrNoop( 1622 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1623 SE.getNoopOrAnyExtend(S->getOperand(1), 1624 CanonicalIV->getType())), 1625 Ty)); 1626 1627 // If this is a chain of recurrences, turn it into a closed form, using the 1628 // folders, then expandCodeFor the closed form. This allows the folders to 1629 // simplify the expression without having to build a bunch of special code 1630 // into this folder. 1631 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1632 1633 // Promote S up to the canonical IV type, if the cast is foldable. 1634 const SCEV *NewS = S; 1635 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1636 if (isa<SCEVAddRecExpr>(Ext)) 1637 NewS = Ext; 1638 1639 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1640 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1641 1642 // Truncate the result down to the original type, if needed. 1643 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1644 return expand(T); 1645 } 1646 1647 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1648 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1649 Value *V = expandCodeFor(S->getOperand(), 1650 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1651 Value *I = Builder.CreateTrunc(V, Ty); 1652 rememberInstruction(I); 1653 return I; 1654 } 1655 1656 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1657 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1658 Value *V = expandCodeFor(S->getOperand(), 1659 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1660 Value *I = Builder.CreateZExt(V, Ty); 1661 rememberInstruction(I); 1662 return I; 1663 } 1664 1665 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1666 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1667 Value *V = expandCodeFor(S->getOperand(), 1668 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1669 Value *I = Builder.CreateSExt(V, Ty); 1670 rememberInstruction(I); 1671 return I; 1672 } 1673 1674 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1675 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1676 Type *Ty = LHS->getType(); 1677 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1678 // In the case of mixed integer and pointer types, do the 1679 // rest of the comparisons as integer. 1680 Type *OpTy = S->getOperand(i)->getType(); 1681 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1682 Ty = SE.getEffectiveSCEVType(Ty); 1683 LHS = InsertNoopCastOfTo(LHS, Ty); 1684 } 1685 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1686 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1687 rememberInstruction(ICmp); 1688 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1689 rememberInstruction(Sel); 1690 LHS = Sel; 1691 } 1692 // In the case of mixed integer and pointer types, cast the 1693 // final result back to the pointer type. 1694 if (LHS->getType() != S->getType()) 1695 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1696 return LHS; 1697 } 1698 1699 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1700 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1701 Type *Ty = LHS->getType(); 1702 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1703 // In the case of mixed integer and pointer types, do the 1704 // rest of the comparisons as integer. 1705 Type *OpTy = S->getOperand(i)->getType(); 1706 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1707 Ty = SE.getEffectiveSCEVType(Ty); 1708 LHS = InsertNoopCastOfTo(LHS, Ty); 1709 } 1710 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1711 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1712 rememberInstruction(ICmp); 1713 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1714 rememberInstruction(Sel); 1715 LHS = Sel; 1716 } 1717 // In the case of mixed integer and pointer types, cast the 1718 // final result back to the pointer type. 1719 if (LHS->getType() != S->getType()) 1720 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1721 return LHS; 1722 } 1723 1724 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1725 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1726 Type *Ty = LHS->getType(); 1727 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1728 // In the case of mixed integer and pointer types, do the 1729 // rest of the comparisons as integer. 1730 Type *OpTy = S->getOperand(i)->getType(); 1731 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1732 Ty = SE.getEffectiveSCEVType(Ty); 1733 LHS = InsertNoopCastOfTo(LHS, Ty); 1734 } 1735 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1736 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1737 rememberInstruction(ICmp); 1738 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1739 rememberInstruction(Sel); 1740 LHS = Sel; 1741 } 1742 // In the case of mixed integer and pointer types, cast the 1743 // final result back to the pointer type. 1744 if (LHS->getType() != S->getType()) 1745 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1746 return LHS; 1747 } 1748 1749 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1750 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1751 Type *Ty = LHS->getType(); 1752 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1753 // In the case of mixed integer and pointer types, do the 1754 // rest of the comparisons as integer. 1755 Type *OpTy = S->getOperand(i)->getType(); 1756 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1757 Ty = SE.getEffectiveSCEVType(Ty); 1758 LHS = InsertNoopCastOfTo(LHS, Ty); 1759 } 1760 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1761 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1762 rememberInstruction(ICmp); 1763 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1764 rememberInstruction(Sel); 1765 LHS = Sel; 1766 } 1767 // In the case of mixed integer and pointer types, cast the 1768 // final result back to the pointer type. 1769 if (LHS->getType() != S->getType()) 1770 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1771 return LHS; 1772 } 1773 1774 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1775 Instruction *IP) { 1776 setInsertPoint(IP); 1777 return expandCodeFor(SH, Ty); 1778 } 1779 1780 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1781 // Expand the code for this SCEV. 1782 Value *V = expand(SH); 1783 if (Ty) { 1784 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1785 "non-trivial casts should be done with the SCEVs directly!"); 1786 V = InsertNoopCastOfTo(V, Ty); 1787 } 1788 return V; 1789 } 1790 1791 ScalarEvolution::ValueOffsetPair 1792 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1793 const Instruction *InsertPt) { 1794 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S); 1795 // If the expansion is not in CanonicalMode, and the SCEV contains any 1796 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1797 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1798 // If S is scConstant, it may be worse to reuse an existing Value. 1799 if (S->getSCEVType() != scConstant && Set) { 1800 // Choose a Value from the set which dominates the insertPt. 1801 // insertPt should be inside the Value's parent loop so as not to break 1802 // the LCSSA form. 1803 for (auto const &VOPair : *Set) { 1804 Value *V = VOPair.first; 1805 ConstantInt *Offset = VOPair.second; 1806 Instruction *EntInst = nullptr; 1807 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1808 S->getType() == V->getType() && 1809 EntInst->getFunction() == InsertPt->getFunction() && 1810 SE.DT.dominates(EntInst, InsertPt) && 1811 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1812 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1813 return {V, Offset}; 1814 } 1815 } 1816 } 1817 return {nullptr, nullptr}; 1818 } 1819 1820 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1821 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1822 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1823 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1824 // the expansion will try to reuse Value from ExprValueMap, and only when it 1825 // fails, expand the SCEV literally. 1826 Value *SCEVExpander::expand(const SCEV *S) { 1827 // Compute an insertion point for this SCEV object. Hoist the instructions 1828 // as far out in the loop nest as possible. 1829 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1830 1831 // We can move insertion point only if there is no div or rem operations 1832 // otherwise we are risky to move it over the check for zero denominator. 1833 auto SafeToHoist = [](const SCEV *S) { 1834 return !SCEVExprContains(S, [](const SCEV *S) { 1835 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1836 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1837 // Division by non-zero constants can be hoisted. 1838 return SC->getValue()->isZero(); 1839 // All other divisions should not be moved as they may be 1840 // divisions by zero and should be kept within the 1841 // conditions of the surrounding loops that guard their 1842 // execution (see PR35406). 1843 return true; 1844 } 1845 return false; 1846 }); 1847 }; 1848 if (SafeToHoist(S)) { 1849 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1850 L = L->getParentLoop()) { 1851 if (SE.isLoopInvariant(S, L)) { 1852 if (!L) break; 1853 if (BasicBlock *Preheader = L->getLoopPreheader()) 1854 InsertPt = Preheader->getTerminator(); 1855 else 1856 // LSR sets the insertion point for AddRec start/step values to the 1857 // block start to simplify value reuse, even though it's an invalid 1858 // position. SCEVExpander must correct for this in all cases. 1859 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1860 } else { 1861 // If the SCEV is computable at this level, insert it into the header 1862 // after the PHIs (and after any other instructions that we've inserted 1863 // there) so that it is guaranteed to dominate any user inside the loop. 1864 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1865 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1866 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1867 (isInsertedInstruction(InsertPt) || 1868 isa<DbgInfoIntrinsic>(InsertPt))) 1869 InsertPt = &*std::next(InsertPt->getIterator()); 1870 break; 1871 } 1872 } 1873 } 1874 1875 // Check to see if we already expanded this here. 1876 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1877 if (I != InsertedExpressions.end()) 1878 return I->second; 1879 1880 SCEVInsertPointGuard Guard(Builder, this); 1881 Builder.SetInsertPoint(InsertPt); 1882 1883 // Expand the expression into instructions. 1884 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1885 Value *V = VO.first; 1886 1887 if (!V) 1888 V = visit(S); 1889 else if (VO.second) { 1890 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1891 Type *Ety = Vty->getPointerElementType(); 1892 int64_t Offset = VO.second->getSExtValue(); 1893 int64_t ESize = SE.getTypeSizeInBits(Ety); 1894 if ((Offset * 8) % ESize == 0) { 1895 ConstantInt *Idx = 1896 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1897 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1898 } else { 1899 ConstantInt *Idx = 1900 ConstantInt::getSigned(VO.second->getType(), -Offset); 1901 unsigned AS = Vty->getAddressSpace(); 1902 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1903 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1904 "uglygep"); 1905 V = Builder.CreateBitCast(V, Vty); 1906 } 1907 } else { 1908 V = Builder.CreateSub(V, VO.second); 1909 } 1910 } 1911 // Remember the expanded value for this SCEV at this location. 1912 // 1913 // This is independent of PostIncLoops. The mapped value simply materializes 1914 // the expression at this insertion point. If the mapped value happened to be 1915 // a postinc expansion, it could be reused by a non-postinc user, but only if 1916 // its insertion point was already at the head of the loop. 1917 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1918 return V; 1919 } 1920 1921 void SCEVExpander::rememberInstruction(Value *I) { 1922 if (!PostIncLoops.empty()) 1923 InsertedPostIncValues.insert(I); 1924 else 1925 InsertedValues.insert(I); 1926 } 1927 1928 /// getOrInsertCanonicalInductionVariable - This method returns the 1929 /// canonical induction variable of the specified type for the specified 1930 /// loop (inserting one if there is none). A canonical induction variable 1931 /// starts at zero and steps by one on each iteration. 1932 PHINode * 1933 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1934 Type *Ty) { 1935 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1936 1937 // Build a SCEV for {0,+,1}<L>. 1938 // Conservatively use FlagAnyWrap for now. 1939 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1940 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1941 1942 // Emit code for it. 1943 SCEVInsertPointGuard Guard(Builder, this); 1944 PHINode *V = 1945 cast<PHINode>(expandCodeFor(H, nullptr, 1946 &*L->getHeader()->getFirstInsertionPt())); 1947 1948 return V; 1949 } 1950 1951 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1952 /// replace them with their most canonical representative. Return the number of 1953 /// phis eliminated. 1954 /// 1955 /// This does not depend on any SCEVExpander state but should be used in 1956 /// the same context that SCEVExpander is used. 1957 unsigned 1958 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1959 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1960 const TargetTransformInfo *TTI) { 1961 // Find integer phis in order of increasing width. 1962 SmallVector<PHINode*, 8> Phis; 1963 for (PHINode &PN : L->getHeader()->phis()) 1964 Phis.push_back(&PN); 1965 1966 if (TTI) 1967 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 1968 // Put pointers at the back and make sure pointer < pointer = false. 1969 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1970 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1971 return RHS->getType()->getPrimitiveSizeInBits() < 1972 LHS->getType()->getPrimitiveSizeInBits(); 1973 }); 1974 1975 unsigned NumElim = 0; 1976 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1977 // Process phis from wide to narrow. Map wide phis to their truncation 1978 // so narrow phis can reuse them. 1979 for (PHINode *Phi : Phis) { 1980 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1981 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1982 return V; 1983 if (!SE.isSCEVable(PN->getType())) 1984 return nullptr; 1985 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1986 if (!Const) 1987 return nullptr; 1988 return Const->getValue(); 1989 }; 1990 1991 // Fold constant phis. They may be congruent to other constant phis and 1992 // would confuse the logic below that expects proper IVs. 1993 if (Value *V = SimplifyPHINode(Phi)) { 1994 if (V->getType() != Phi->getType()) 1995 continue; 1996 Phi->replaceAllUsesWith(V); 1997 DeadInsts.emplace_back(Phi); 1998 ++NumElim; 1999 DEBUG_WITH_TYPE(DebugType, dbgs() 2000 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 2001 continue; 2002 } 2003 2004 if (!SE.isSCEVable(Phi->getType())) 2005 continue; 2006 2007 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2008 if (!OrigPhiRef) { 2009 OrigPhiRef = Phi; 2010 if (Phi->getType()->isIntegerTy() && TTI && 2011 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2012 // This phi can be freely truncated to the narrowest phi type. Map the 2013 // truncated expression to it so it will be reused for narrow types. 2014 const SCEV *TruncExpr = 2015 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2016 ExprToIVMap[TruncExpr] = Phi; 2017 } 2018 continue; 2019 } 2020 2021 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2022 // sense. 2023 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2024 continue; 2025 2026 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2027 Instruction *OrigInc = dyn_cast<Instruction>( 2028 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2029 Instruction *IsomorphicInc = 2030 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2031 2032 if (OrigInc && IsomorphicInc) { 2033 // If this phi has the same width but is more canonical, replace the 2034 // original with it. As part of the "more canonical" determination, 2035 // respect a prior decision to use an IV chain. 2036 if (OrigPhiRef->getType() == Phi->getType() && 2037 !(ChainedPhis.count(Phi) || 2038 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2039 (ChainedPhis.count(Phi) || 2040 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2041 std::swap(OrigPhiRef, Phi); 2042 std::swap(OrigInc, IsomorphicInc); 2043 } 2044 // Replacing the congruent phi is sufficient because acyclic 2045 // redundancy elimination, CSE/GVN, should handle the 2046 // rest. However, once SCEV proves that a phi is congruent, 2047 // it's often the head of an IV user cycle that is isomorphic 2048 // with the original phi. It's worth eagerly cleaning up the 2049 // common case of a single IV increment so that DeleteDeadPHIs 2050 // can remove cycles that had postinc uses. 2051 const SCEV *TruncExpr = 2052 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2053 if (OrigInc != IsomorphicInc && 2054 TruncExpr == SE.getSCEV(IsomorphicInc) && 2055 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2056 hoistIVInc(OrigInc, IsomorphicInc)) { 2057 DEBUG_WITH_TYPE(DebugType, 2058 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2059 << *IsomorphicInc << '\n'); 2060 Value *NewInc = OrigInc; 2061 if (OrigInc->getType() != IsomorphicInc->getType()) { 2062 Instruction *IP = nullptr; 2063 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2064 IP = &*PN->getParent()->getFirstInsertionPt(); 2065 else 2066 IP = OrigInc->getNextNode(); 2067 2068 IRBuilder<> Builder(IP); 2069 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2070 NewInc = Builder.CreateTruncOrBitCast( 2071 OrigInc, IsomorphicInc->getType(), IVName); 2072 } 2073 IsomorphicInc->replaceAllUsesWith(NewInc); 2074 DeadInsts.emplace_back(IsomorphicInc); 2075 } 2076 } 2077 } 2078 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 2079 << *Phi << '\n'); 2080 ++NumElim; 2081 Value *NewIV = OrigPhiRef; 2082 if (OrigPhiRef->getType() != Phi->getType()) { 2083 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2084 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2085 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2086 } 2087 Phi->replaceAllUsesWith(NewIV); 2088 DeadInsts.emplace_back(Phi); 2089 } 2090 return NumElim; 2091 } 2092 2093 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S, 2094 const Instruction *At, Loop *L) { 2095 Optional<ScalarEvolution::ValueOffsetPair> VO = 2096 getRelatedExistingExpansion(S, At, L); 2097 if (VO && VO.getValue().second == nullptr) 2098 return VO.getValue().first; 2099 return nullptr; 2100 } 2101 2102 Optional<ScalarEvolution::ValueOffsetPair> 2103 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2104 Loop *L) { 2105 using namespace llvm::PatternMatch; 2106 2107 SmallVector<BasicBlock *, 4> ExitingBlocks; 2108 L->getExitingBlocks(ExitingBlocks); 2109 2110 // Look for suitable value in simple conditions at the loop exits. 2111 for (BasicBlock *BB : ExitingBlocks) { 2112 ICmpInst::Predicate Pred; 2113 Instruction *LHS, *RHS; 2114 2115 if (!match(BB->getTerminator(), 2116 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2117 m_BasicBlock(), m_BasicBlock()))) 2118 continue; 2119 2120 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2121 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2122 2123 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2124 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2125 } 2126 2127 // Use expand's logic which is used for reusing a previous Value in 2128 // ExprValueMap. 2129 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2130 if (VO.first) 2131 return VO; 2132 2133 // There is potential to make this significantly smarter, but this simple 2134 // heuristic already gets some interesting cases. 2135 2136 // Can not find suitable value. 2137 return None; 2138 } 2139 2140 bool SCEVExpander::isHighCostExpansionHelper( 2141 const SCEV *S, Loop *L, const Instruction &At, int &BudgetRemaining, 2142 const TargetTransformInfo &TTI, SmallPtrSetImpl<const SCEV *> &Processed, 2143 SmallVectorImpl<const SCEV *> &Worklist) { 2144 if (BudgetRemaining < 0) 2145 return true; // Already run out of budget, give up. 2146 2147 // Was the cost of expansion of this expression already accounted for? 2148 if (!Processed.insert(S).second) 2149 return false; // We have already accounted for this expression. 2150 2151 // If we can find an existing value for this scev available at the point "At" 2152 // then consider the expression cheap. 2153 if (getRelatedExistingExpansion(S, &At, L)) 2154 return false; // Consider the expression to be free. 2155 2156 switch (S->getSCEVType()) { 2157 case scUnknown: 2158 case scConstant: 2159 return false; // Assume to be zero-cost. 2160 } 2161 2162 TargetTransformInfo::TargetCostKind CostKind = 2163 TargetTransformInfo::TCK_RecipThroughput; 2164 2165 if (auto *CastExpr = dyn_cast<SCEVCastExpr>(S)) { 2166 unsigned Opcode; 2167 switch (S->getSCEVType()) { 2168 case scTruncate: 2169 Opcode = Instruction::Trunc; 2170 break; 2171 case scZeroExtend: 2172 Opcode = Instruction::ZExt; 2173 break; 2174 case scSignExtend: 2175 Opcode = Instruction::SExt; 2176 break; 2177 default: 2178 llvm_unreachable("There are no other cast types."); 2179 } 2180 const SCEV *Op = CastExpr->getOperand(); 2181 BudgetRemaining -= TTI.getCastInstrCost(Opcode, /*Dst=*/S->getType(), 2182 /*Src=*/Op->getType(), CostKind); 2183 Worklist.emplace_back(Op); 2184 return false; // Will answer upon next entry into this function. 2185 } 2186 2187 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) { 2188 // If the divisor is a power of two count this as a logical right-shift. 2189 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS())) { 2190 if (SC->getAPInt().isPowerOf2()) { 2191 BudgetRemaining -= 2192 TTI.getArithmeticInstrCost(Instruction::LShr, S->getType(), 2193 CostKind); 2194 // Note that we don't count the cost of RHS, because it is a constant, 2195 // and we consider those to be free. But if that changes, we would need 2196 // to log2() it first before calling isHighCostExpansionHelper(). 2197 Worklist.emplace_back(UDivExpr->getLHS()); 2198 return false; // Will answer upon next entry into this function. 2199 } 2200 } 2201 2202 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2203 // HowManyLessThans produced to compute a precise expression, rather than a 2204 // UDiv from the user's code. If we can't find a UDiv in the code with some 2205 // simple searching, we need to account for it's cost. 2206 2207 // At the beginning of this function we already tried to find existing 2208 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2209 // pattern involving division. This is just a simple search heuristic. 2210 if (getRelatedExistingExpansion( 2211 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2212 return false; // Consider it to be free. 2213 2214 // Need to count the cost of this UDiv. 2215 BudgetRemaining -= 2216 TTI.getArithmeticInstrCost(Instruction::UDiv, S->getType(), 2217 CostKind); 2218 Worklist.insert(Worklist.end(), {UDivExpr->getLHS(), UDivExpr->getRHS()}); 2219 return false; // Will answer upon next entry into this function. 2220 } 2221 2222 if (const auto *NAry = dyn_cast<SCEVAddRecExpr>(S)) { 2223 Type *OpType = NAry->getType(); 2224 2225 assert(NAry->getNumOperands() >= 2 && 2226 "Polynomial should be at least linear"); 2227 2228 int AddCost = 2229 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2230 int MulCost = 2231 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2232 2233 // In this polynominal, we may have some zero operands, and we shouldn't 2234 // really charge for those. So how many non-zero coeffients are there? 2235 int NumTerms = llvm::count_if(NAry->operands(), 2236 [](const SCEV *S) { return !S->isZero(); }); 2237 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2238 assert(!(*std::prev(NAry->operands().end()))->isZero() && 2239 "Last operand should not be zero"); 2240 2241 // Much like with normal add expr, the polynominal will require 2242 // one less addition than the number of it's terms. 2243 BudgetRemaining -= AddCost * (NumTerms - 1); 2244 if (BudgetRemaining < 0) 2245 return true; 2246 2247 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2248 int NumNonZeroDegreeNonOneTerms = 2249 llvm::count_if(make_range(std::next(NAry->op_begin()), NAry->op_end()), 2250 [](const SCEV *S) { 2251 auto *SConst = dyn_cast<SCEVConstant>(S); 2252 return !SConst || SConst->getAPInt().ugt(1); 2253 }); 2254 // Here, *each* one of those will require a multiplication. 2255 BudgetRemaining -= MulCost * NumNonZeroDegreeNonOneTerms; 2256 if (BudgetRemaining < 0) 2257 return true; 2258 2259 // What is the degree of this polynominal? 2260 int PolyDegree = NAry->getNumOperands() - 1; 2261 assert(PolyDegree >= 1 && "Should be at least affine."); 2262 2263 // The final term will be: 2264 // Op_{PolyDegree} * x ^ {PolyDegree} 2265 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2266 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2267 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2268 // FIXME: this is conservatively correct, but might be overly pessimistic. 2269 BudgetRemaining -= MulCost * (PolyDegree - 1); 2270 if (BudgetRemaining < 0) 2271 return true; 2272 2273 // And finally, the operands themselves should fit within the budget. 2274 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2275 NAry->operands().end()); 2276 return false; // So far so good, though ops may be too costly? 2277 } 2278 2279 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) { 2280 Type *OpType = NAry->getType(); 2281 2282 int PairCost; 2283 switch (S->getSCEVType()) { 2284 case scAddExpr: 2285 PairCost = 2286 TTI.getArithmeticInstrCost(Instruction::Add, OpType, CostKind); 2287 break; 2288 case scMulExpr: 2289 // TODO: this is a very pessimistic cost modelling for Mul, 2290 // because of Bin Pow algorithm actually used by the expander, 2291 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2292 PairCost = 2293 TTI.getArithmeticInstrCost(Instruction::Mul, OpType, CostKind); 2294 break; 2295 case scSMaxExpr: 2296 case scUMaxExpr: 2297 case scSMinExpr: 2298 case scUMinExpr: 2299 PairCost = TTI.getCmpSelInstrCost(Instruction::ICmp, OpType, 2300 CmpInst::makeCmpResultType(OpType), 2301 CostKind) + 2302 TTI.getCmpSelInstrCost(Instruction::Select, OpType, 2303 CmpInst::makeCmpResultType(OpType), 2304 CostKind); 2305 break; 2306 default: 2307 llvm_unreachable("There are no other variants here."); 2308 } 2309 2310 assert(NAry->getNumOperands() > 1 && 2311 "Nary expr should have more than 1 operand."); 2312 // The simple nary expr will require one less op (or pair of ops) 2313 // than the number of it's terms. 2314 BudgetRemaining -= PairCost * (NAry->getNumOperands() - 1); 2315 if (BudgetRemaining < 0) 2316 return true; 2317 2318 // And finally, the operands themselves should fit within the budget. 2319 Worklist.insert(Worklist.end(), NAry->operands().begin(), 2320 NAry->operands().end()); 2321 return false; // So far so good, though ops may be too costly? 2322 } 2323 2324 llvm_unreachable("No other scev expressions possible."); 2325 } 2326 2327 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2328 Instruction *IP) { 2329 assert(IP); 2330 switch (Pred->getKind()) { 2331 case SCEVPredicate::P_Union: 2332 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2333 case SCEVPredicate::P_Equal: 2334 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2335 case SCEVPredicate::P_Wrap: { 2336 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2337 return expandWrapPredicate(AddRecPred, IP); 2338 } 2339 } 2340 llvm_unreachable("Unknown SCEV predicate type"); 2341 } 2342 2343 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2344 Instruction *IP) { 2345 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2346 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2347 2348 Builder.SetInsertPoint(IP); 2349 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2350 return I; 2351 } 2352 2353 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2354 Instruction *Loc, bool Signed) { 2355 assert(AR->isAffine() && "Cannot generate RT check for " 2356 "non-affine expression"); 2357 2358 SCEVUnionPredicate Pred; 2359 const SCEV *ExitCount = 2360 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2361 2362 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count"); 2363 2364 const SCEV *Step = AR->getStepRecurrence(SE); 2365 const SCEV *Start = AR->getStart(); 2366 2367 Type *ARTy = AR->getType(); 2368 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2369 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2370 2371 // The expression {Start,+,Step} has nusw/nssw if 2372 // Step < 0, Start - |Step| * Backedge <= Start 2373 // Step >= 0, Start + |Step| * Backedge > Start 2374 // and |Step| * Backedge doesn't unsigned overflow. 2375 2376 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2377 Builder.SetInsertPoint(Loc); 2378 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2379 2380 IntegerType *Ty = 2381 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2382 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2383 2384 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2385 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2386 Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc); 2387 2388 ConstantInt *Zero = 2389 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2390 2391 Builder.SetInsertPoint(Loc); 2392 // Compute |Step| 2393 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2394 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2395 2396 // Get the backedge taken count and truncate or extended to the AR type. 2397 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2398 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2399 Intrinsic::umul_with_overflow, Ty); 2400 2401 // Compute |Step| * Backedge 2402 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2403 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2404 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2405 2406 // Compute: 2407 // Start + |Step| * Backedge < Start 2408 // Start - |Step| * Backedge > Start 2409 Value *Add = nullptr, *Sub = nullptr; 2410 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2411 const SCEV *MulS = SE.getSCEV(MulV); 2412 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2413 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2414 ARPtrTy); 2415 Sub = Builder.CreateBitCast( 2416 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2417 } else { 2418 Add = Builder.CreateAdd(StartValue, MulV); 2419 Sub = Builder.CreateSub(StartValue, MulV); 2420 } 2421 2422 Value *EndCompareGT = Builder.CreateICmp( 2423 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2424 2425 Value *EndCompareLT = Builder.CreateICmp( 2426 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2427 2428 // Select the answer based on the sign of Step. 2429 Value *EndCheck = 2430 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2431 2432 // If the backedge taken count type is larger than the AR type, 2433 // check that we don't drop any bits by truncating it. If we are 2434 // dropping bits, then we have overflow (unless the step is zero). 2435 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2436 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2437 auto *BackedgeCheck = 2438 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2439 ConstantInt::get(Loc->getContext(), MaxVal)); 2440 BackedgeCheck = Builder.CreateAnd( 2441 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2442 2443 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2444 } 2445 2446 EndCheck = Builder.CreateOr(EndCheck, OfMul); 2447 return EndCheck; 2448 } 2449 2450 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2451 Instruction *IP) { 2452 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2453 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2454 2455 // Add a check for NUSW 2456 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2457 NUSWCheck = generateOverflowCheck(A, IP, false); 2458 2459 // Add a check for NSSW 2460 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2461 NSSWCheck = generateOverflowCheck(A, IP, true); 2462 2463 if (NUSWCheck && NSSWCheck) 2464 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2465 2466 if (NUSWCheck) 2467 return NUSWCheck; 2468 2469 if (NSSWCheck) 2470 return NSSWCheck; 2471 2472 return ConstantInt::getFalse(IP->getContext()); 2473 } 2474 2475 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2476 Instruction *IP) { 2477 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2478 Value *Check = ConstantInt::getNullValue(BoolType); 2479 2480 // Loop over all checks in this set. 2481 for (auto Pred : Union->getPredicates()) { 2482 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2483 Builder.SetInsertPoint(IP); 2484 Check = Builder.CreateOr(Check, NextCheck); 2485 } 2486 2487 return Check; 2488 } 2489 2490 namespace { 2491 // Search for a SCEV subexpression that is not safe to expand. Any expression 2492 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2493 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2494 // instruction, but the important thing is that we prove the denominator is 2495 // nonzero before expansion. 2496 // 2497 // IVUsers already checks that IV-derived expressions are safe. So this check is 2498 // only needed when the expression includes some subexpression that is not IV 2499 // derived. 2500 // 2501 // Currently, we only allow division by a nonzero constant here. If this is 2502 // inadequate, we could easily allow division by SCEVUnknown by using 2503 // ValueTracking to check isKnownNonZero(). 2504 // 2505 // We cannot generally expand recurrences unless the step dominates the loop 2506 // header. The expander handles the special case of affine recurrences by 2507 // scaling the recurrence outside the loop, but this technique isn't generally 2508 // applicable. Expanding a nested recurrence outside a loop requires computing 2509 // binomial coefficients. This could be done, but the recurrence has to be in a 2510 // perfectly reduced form, which can't be guaranteed. 2511 struct SCEVFindUnsafe { 2512 ScalarEvolution &SE; 2513 bool IsUnsafe; 2514 2515 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2516 2517 bool follow(const SCEV *S) { 2518 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2519 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2520 if (!SC || SC->getValue()->isZero()) { 2521 IsUnsafe = true; 2522 return false; 2523 } 2524 } 2525 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2526 const SCEV *Step = AR->getStepRecurrence(SE); 2527 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2528 IsUnsafe = true; 2529 return false; 2530 } 2531 } 2532 return true; 2533 } 2534 bool isDone() const { return IsUnsafe; } 2535 }; 2536 } 2537 2538 namespace llvm { 2539 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2540 SCEVFindUnsafe Search(SE); 2541 visitAll(S, Search); 2542 return !Search.IsUnsafe; 2543 } 2544 2545 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2546 ScalarEvolution &SE) { 2547 if (!isSafeToExpand(S, SE)) 2548 return false; 2549 // We have to prove that the expanded site of S dominates InsertionPoint. 2550 // This is easy when not in the same block, but hard when S is an instruction 2551 // to be expanded somewhere inside the same block as our insertion point. 2552 // What we really need here is something analogous to an OrderedBasicBlock, 2553 // but for the moment, we paper over the problem by handling two common and 2554 // cheap to check cases. 2555 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2556 return true; 2557 if (SE.dominates(S, InsertionPoint->getParent())) { 2558 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2559 return true; 2560 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2561 for (const Value *V : InsertionPoint->operand_values()) 2562 if (V == U->getValue()) 2563 return true; 2564 } 2565 return false; 2566 } 2567 } 2568