xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 6942c64e8128e4ccd891b813d0240f574f80f59e)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
48 /// creating a new one.
49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
50                                        Instruction::CastOps Op,
51                                        BasicBlock::iterator IP) {
52   // This function must be called with the builder having a valid insertion
53   // point. It doesn't need to be the actual IP where the uses of the returned
54   // cast will be added, but it must dominate such IP.
55   // We use this precondition to produce a cast that will dominate all its
56   // uses. In particular, this is crucial for the case where the builder's
57   // insertion point *is* the point where we were asked to put the cast.
58   // Since we don't know the builder's insertion point is actually
59   // where the uses will be added (only that it dominates it), we are
60   // not allowed to move it.
61   BasicBlock::iterator BIP = Builder.GetInsertPoint();
62 
63   Value *Ret = nullptr;
64 
65   // Check to see if there is already a cast!
66   for (User *U : V->users()) {
67     if (U->getType() != Ty)
68       continue;
69     CastInst *CI = dyn_cast<CastInst>(U);
70     if (!CI || CI->getOpcode() != Op)
71       continue;
72 
73     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74     // the cast must also properly dominate the Builder's insertion point.
75     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76         (&*IP == CI || CI->comesBefore(&*IP))) {
77       Ret = CI;
78       break;
79     }
80   }
81 
82   // Create a new cast.
83   if (!Ret) {
84     SCEVInsertPointGuard Guard(Builder, this);
85     Builder.SetInsertPoint(&*IP);
86     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87   }
88 
89   // We assert at the end of the function since IP might point to an
90   // instruction with different dominance properties than a cast
91   // (an invoke for example) and not dominate BIP (but the cast does).
92   assert(!isa<Instruction>(Ret) ||
93          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
94 
95   return Ret;
96 }
97 
98 BasicBlock::iterator
99 SCEVExpander::findInsertPointAfter(Instruction *I,
100                                    Instruction *MustDominate) const {
101   BasicBlock::iterator IP = ++I->getIterator();
102   if (auto *II = dyn_cast<InvokeInst>(I))
103     IP = II->getNormalDest()->begin();
104 
105   while (isa<PHINode>(IP))
106     ++IP;
107 
108   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
109     ++IP;
110   } else if (isa<CatchSwitchInst>(IP)) {
111     IP = MustDominate->getParent()->getFirstInsertionPt();
112   } else {
113     assert(!IP->isEHPad() && "unexpected eh pad!");
114   }
115 
116   // Adjust insert point to be after instructions inserted by the expander, so
117   // we can re-use already inserted instructions. Avoid skipping past the
118   // original \p MustDominate, in case it is an inserted instruction.
119   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120     ++IP;
121 
122   return IP;
123 }
124 
125 BasicBlock::iterator
126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127   // Cast the argument at the beginning of the entry block, after
128   // any bitcasts of other arguments.
129   if (Argument *A = dyn_cast<Argument>(V)) {
130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131     while ((isa<BitCastInst>(IP) &&
132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134            isa<DbgInfoIntrinsic>(IP))
135       ++IP;
136     return IP;
137   }
138 
139   // Cast the instruction immediately after the instruction.
140   if (Instruction *I = dyn_cast<Instruction>(V))
141     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142 
143   // Otherwise, this must be some kind of a constant,
144   // so let's plop this cast into the function's entry block.
145   assert(isa<Constant>(V) &&
146          "Expected the cast argument to be a global/constant");
147   return Builder.GetInsertBlock()
148       ->getParent()
149       ->getEntryBlock()
150       .getFirstInsertionPt();
151 }
152 
153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
154 /// which must be possible with a noop cast, doing what we can to share
155 /// the casts.
156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
157   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
158   assert((Op == Instruction::BitCast ||
159           Op == Instruction::PtrToInt ||
160           Op == Instruction::IntToPtr) &&
161          "InsertNoopCastOfTo cannot perform non-noop casts!");
162   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
163          "InsertNoopCastOfTo cannot change sizes!");
164 
165   // inttoptr only works for integral pointers. For non-integral pointers, we
166   // can create a GEP on null with the integral value as index. Note that
167   // it is safe to use GEP of null instead of inttoptr here, because only
168   // expressions already based on a GEP of null should be converted to pointers
169   // during expansion.
170   if (Op == Instruction::IntToPtr) {
171     auto *PtrTy = cast<PointerType>(Ty);
172     if (DL.isNonIntegralPointerType(PtrTy)) {
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       return Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep");
177     }
178   }
179   // Short-circuit unnecessary bitcasts.
180   if (Op == Instruction::BitCast) {
181     if (V->getType() == Ty)
182       return V;
183     if (CastInst *CI = dyn_cast<CastInst>(V)) {
184       if (CI->getOperand(0)->getType() == Ty)
185         return CI->getOperand(0);
186     }
187   }
188   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
189   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
190       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
191     if (CastInst *CI = dyn_cast<CastInst>(V))
192       if ((CI->getOpcode() == Instruction::PtrToInt ||
193            CI->getOpcode() == Instruction::IntToPtr) &&
194           SE.getTypeSizeInBits(CI->getType()) ==
195           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
196         return CI->getOperand(0);
197     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
198       if ((CE->getOpcode() == Instruction::PtrToInt ||
199            CE->getOpcode() == Instruction::IntToPtr) &&
200           SE.getTypeSizeInBits(CE->getType()) ==
201           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
202         return CE->getOperand(0);
203   }
204 
205   // Fold a cast of a constant.
206   if (Constant *C = dyn_cast<Constant>(V))
207     return ConstantExpr::getCast(Op, C, Ty);
208 
209   // Try to reuse existing cast, or insert one.
210   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
211 }
212 
213 /// InsertBinop - Insert the specified binary operator, doing a small amount
214 /// of work to avoid inserting an obviously redundant operation, and hoisting
215 /// to an outer loop when the opportunity is there and it is safe.
216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
217                                  Value *LHS, Value *RHS,
218                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
219   // Fold a binop with constant operands.
220   if (Constant *CLHS = dyn_cast<Constant>(LHS))
221     if (Constant *CRHS = dyn_cast<Constant>(RHS))
222       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
223         return Res;
224 
225   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
226   unsigned ScanLimit = 6;
227   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
228   // Scanning starts from the last instruction before the insertion point.
229   BasicBlock::iterator IP = Builder.GetInsertPoint();
230   if (IP != BlockBegin) {
231     --IP;
232     for (; ScanLimit; --IP, --ScanLimit) {
233       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
234       // generated code.
235       if (isa<DbgInfoIntrinsic>(IP))
236         ScanLimit++;
237 
238       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
239         // Ensure that no-wrap flags match.
240         if (isa<OverflowingBinaryOperator>(I)) {
241           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
242             return true;
243           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
244             return true;
245         }
246         // Conservatively, do not use any instruction which has any of exact
247         // flags installed.
248         if (isa<PossiblyExactOperator>(I) && I->isExact())
249           return true;
250         return false;
251       };
252       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
253           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
254         return &*IP;
255       if (IP == BlockBegin) break;
256     }
257   }
258 
259   // Save the original insertion point so we can restore it when we're done.
260   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
261   SCEVInsertPointGuard Guard(Builder, this);
262 
263   if (IsSafeToHoist) {
264     // Move the insertion point out of as many loops as we can.
265     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
266       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
267       BasicBlock *Preheader = L->getLoopPreheader();
268       if (!Preheader) break;
269 
270       // Ok, move up a level.
271       Builder.SetInsertPoint(Preheader->getTerminator());
272     }
273   }
274 
275   // If we haven't found this binop, insert it.
276   // TODO: Use the Builder, which will make CreateBinOp below fold with
277   // InstSimplifyFolder.
278   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
279   BO->setDebugLoc(Loc);
280   if (Flags & SCEV::FlagNUW)
281     BO->setHasNoUnsignedWrap();
282   if (Flags & SCEV::FlagNSW)
283     BO->setHasNoSignedWrap();
284 
285   return BO;
286 }
287 
288 /// expandAddToGEP - Expand an addition expression with a pointer type into
289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
290 /// BasicAliasAnalysis and other passes analyze the result. See the rules
291 /// for getelementptr vs. inttoptr in
292 /// http://llvm.org/docs/LangRef.html#pointeraliasing
293 /// for details.
294 ///
295 /// Design note: The correctness of using getelementptr here depends on
296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
297 /// they may introduce pointer arithmetic which may not be safely converted
298 /// into getelementptr.
299 ///
300 /// Design note: It might seem desirable for this function to be more
301 /// loop-aware. If some of the indices are loop-invariant while others
302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
303 /// loop-invariant portions of the overall computation outside the loop.
304 /// However, there are a few reasons this is not done here. Hoisting simple
305 /// arithmetic is a low-level optimization that often isn't very
306 /// important until late in the optimization process. In fact, passes
307 /// like InstructionCombining will combine GEPs, even if it means
308 /// pushing loop-invariant computation down into loops, so even if the
309 /// GEPs were split here, the work would quickly be undone. The
310 /// LoopStrengthReduction pass, which is usually run quite late (and
311 /// after the last InstructionCombining pass), takes care of hoisting
312 /// loop-invariant portions of expressions, after considering what
313 /// can be folded using target addressing modes.
314 ///
315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) {
316   assert(!isa<Instruction>(V) ||
317          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
318 
319   Value *Idx = expandCodeForImpl(Offset, Ty);
320 
321   // Fold a GEP with constant operands.
322   if (Constant *CLHS = dyn_cast<Constant>(V))
323     if (Constant *CRHS = dyn_cast<Constant>(Idx))
324       return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS);
325 
326   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
327   unsigned ScanLimit = 6;
328   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
329   // Scanning starts from the last instruction before the insertion point.
330   BasicBlock::iterator IP = Builder.GetInsertPoint();
331   if (IP != BlockBegin) {
332     --IP;
333     for (; ScanLimit; --IP, --ScanLimit) {
334       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
335       // generated code.
336       if (isa<DbgInfoIntrinsic>(IP))
337         ScanLimit++;
338       if (IP->getOpcode() == Instruction::GetElementPtr &&
339           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
340           cast<GEPOperator>(&*IP)->getSourceElementType() ==
341               Type::getInt8Ty(Ty->getContext()))
342         return &*IP;
343       if (IP == BlockBegin) break;
344     }
345   }
346 
347   // Save the original insertion point so we can restore it when we're done.
348   SCEVInsertPointGuard Guard(Builder, this);
349 
350   // Move the insertion point out of as many loops as we can.
351   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
352     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
353     BasicBlock *Preheader = L->getLoopPreheader();
354     if (!Preheader) break;
355 
356     // Ok, move up a level.
357     Builder.SetInsertPoint(Preheader->getTerminator());
358   }
359 
360   // Emit a GEP.
361   return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep");
362 }
363 
364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
365 /// SCEV expansion. If they are nested, this is the most nested. If they are
366 /// neighboring, pick the later.
367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
368                                         DominatorTree &DT) {
369   if (!A) return B;
370   if (!B) return A;
371   if (A->contains(B)) return B;
372   if (B->contains(A)) return A;
373   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
374   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
375   return A; // Arbitrarily break the tie.
376 }
377 
378 /// getRelevantLoop - Get the most relevant loop associated with the given
379 /// expression, according to PickMostRelevantLoop.
380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
381   // Test whether we've already computed the most relevant loop for this SCEV.
382   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
383   if (!Pair.second)
384     return Pair.first->second;
385 
386   switch (S->getSCEVType()) {
387   case scConstant:
388   case scVScale:
389     return nullptr; // A constant has no relevant loops.
390   case scTruncate:
391   case scZeroExtend:
392   case scSignExtend:
393   case scPtrToInt:
394   case scAddExpr:
395   case scMulExpr:
396   case scUDivExpr:
397   case scAddRecExpr:
398   case scUMaxExpr:
399   case scSMaxExpr:
400   case scUMinExpr:
401   case scSMinExpr:
402   case scSequentialUMinExpr: {
403     const Loop *L = nullptr;
404     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
405       L = AR->getLoop();
406     for (const SCEV *Op : S->operands())
407       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
408     return RelevantLoops[S] = L;
409   }
410   case scUnknown: {
411     const SCEVUnknown *U = cast<SCEVUnknown>(S);
412     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
413       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
414     // A non-instruction has no relevant loops.
415     return nullptr;
416   }
417   case scCouldNotCompute:
418     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
419   }
420   llvm_unreachable("Unexpected SCEV type!");
421 }
422 
423 namespace {
424 
425 /// LoopCompare - Compare loops by PickMostRelevantLoop.
426 class LoopCompare {
427   DominatorTree &DT;
428 public:
429   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
430 
431   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
432                   std::pair<const Loop *, const SCEV *> RHS) const {
433     // Keep pointer operands sorted at the end.
434     if (LHS.second->getType()->isPointerTy() !=
435         RHS.second->getType()->isPointerTy())
436       return LHS.second->getType()->isPointerTy();
437 
438     // Compare loops with PickMostRelevantLoop.
439     if (LHS.first != RHS.first)
440       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
441 
442     // If one operand is a non-constant negative and the other is not,
443     // put the non-constant negative on the right so that a sub can
444     // be used instead of a negate and add.
445     if (LHS.second->isNonConstantNegative()) {
446       if (!RHS.second->isNonConstantNegative())
447         return false;
448     } else if (RHS.second->isNonConstantNegative())
449       return true;
450 
451     // Otherwise they are equivalent according to this comparison.
452     return false;
453   }
454 };
455 
456 }
457 
458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
459   Type *Ty = SE.getEffectiveSCEVType(S->getType());
460 
461   // Collect all the add operands in a loop, along with their associated loops.
462   // Iterate in reverse so that constants are emitted last, all else equal, and
463   // so that pointer operands are inserted first, which the code below relies on
464   // to form more involved GEPs.
465   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
466   for (const SCEV *Op : reverse(S->operands()))
467     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
468 
469   // Sort by loop. Use a stable sort so that constants follow non-constants and
470   // pointer operands precede non-pointer operands.
471   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
472 
473   // Emit instructions to add all the operands. Hoist as much as possible
474   // out of loops, and form meaningful getelementptrs where possible.
475   Value *Sum = nullptr;
476   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
477     const Loop *CurLoop = I->first;
478     const SCEV *Op = I->second;
479     if (!Sum) {
480       // This is the first operand. Just expand it.
481       Sum = expand(Op);
482       ++I;
483       continue;
484     }
485 
486     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
487     if (isa<PointerType>(Sum->getType())) {
488       // The running sum expression is a pointer. Try to form a getelementptr
489       // at this level with that as the base.
490       SmallVector<const SCEV *, 4> NewOps;
491       for (; I != E && I->first == CurLoop; ++I) {
492         // If the operand is SCEVUnknown and not instructions, peek through
493         // it, to enable more of it to be folded into the GEP.
494         const SCEV *X = I->second;
495         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
496           if (!isa<Instruction>(U->getValue()))
497             X = SE.getSCEV(U->getValue());
498         NewOps.push_back(X);
499       }
500       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum);
501     } else if (Op->isNonConstantNegative()) {
502       // Instead of doing a negate and add, just do a subtract.
503       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty);
504       Sum = InsertNoopCastOfTo(Sum, Ty);
505       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
506                         /*IsSafeToHoist*/ true);
507       ++I;
508     } else {
509       // A simple add.
510       Value *W = expandCodeForImpl(Op, Ty);
511       Sum = InsertNoopCastOfTo(Sum, Ty);
512       // Canonicalize a constant to the RHS.
513       if (isa<Constant>(Sum)) std::swap(Sum, W);
514       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
515                         /*IsSafeToHoist*/ true);
516       ++I;
517     }
518   }
519 
520   return Sum;
521 }
522 
523 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
524   Type *Ty = SE.getEffectiveSCEVType(S->getType());
525 
526   // Collect all the mul operands in a loop, along with their associated loops.
527   // Iterate in reverse so that constants are emitted last, all else equal.
528   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
529   for (const SCEV *Op : reverse(S->operands()))
530     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
531 
532   // Sort by loop. Use a stable sort so that constants follow non-constants.
533   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
534 
535   // Emit instructions to mul all the operands. Hoist as much as possible
536   // out of loops.
537   Value *Prod = nullptr;
538   auto I = OpsAndLoops.begin();
539 
540   // Expand the calculation of X pow N in the following manner:
541   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
542   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
543   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
544     auto E = I;
545     // Calculate how many times the same operand from the same loop is included
546     // into this power.
547     uint64_t Exponent = 0;
548     const uint64_t MaxExponent = UINT64_MAX >> 1;
549     // No one sane will ever try to calculate such huge exponents, but if we
550     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
551     // below when the power of 2 exceeds our Exponent, and we want it to be
552     // 1u << 31 at most to not deal with unsigned overflow.
553     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
554       ++Exponent;
555       ++E;
556     }
557     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
558 
559     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
560     // that are needed into the result.
561     Value *P = expandCodeForImpl(I->second, Ty);
562     Value *Result = nullptr;
563     if (Exponent & 1)
564       Result = P;
565     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
566       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
567                       /*IsSafeToHoist*/ true);
568       if (Exponent & BinExp)
569         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
570                                       SCEV::FlagAnyWrap,
571                                       /*IsSafeToHoist*/ true)
572                         : P;
573     }
574 
575     I = E;
576     assert(Result && "Nothing was expanded?");
577     return Result;
578   };
579 
580   while (I != OpsAndLoops.end()) {
581     if (!Prod) {
582       // This is the first operand. Just expand it.
583       Prod = ExpandOpBinPowN();
584     } else if (I->second->isAllOnesValue()) {
585       // Instead of doing a multiply by negative one, just do a negate.
586       Prod = InsertNoopCastOfTo(Prod, Ty);
587       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
588                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
589       ++I;
590     } else {
591       // A simple mul.
592       Value *W = ExpandOpBinPowN();
593       Prod = InsertNoopCastOfTo(Prod, Ty);
594       // Canonicalize a constant to the RHS.
595       if (isa<Constant>(Prod)) std::swap(Prod, W);
596       const APInt *RHS;
597       if (match(W, m_Power2(RHS))) {
598         // Canonicalize Prod*(1<<C) to Prod<<C.
599         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
600         auto NWFlags = S->getNoWrapFlags();
601         // clear nsw flag if shl will produce poison value.
602         if (RHS->logBase2() == RHS->getBitWidth() - 1)
603           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
604         Prod = InsertBinop(Instruction::Shl, Prod,
605                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
606                            /*IsSafeToHoist*/ true);
607       } else {
608         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
609                            /*IsSafeToHoist*/ true);
610       }
611     }
612   }
613 
614   return Prod;
615 }
616 
617 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
618   Type *Ty = SE.getEffectiveSCEVType(S->getType());
619 
620   Value *LHS = expandCodeForImpl(S->getLHS(), Ty);
621   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
622     const APInt &RHS = SC->getAPInt();
623     if (RHS.isPowerOf2())
624       return InsertBinop(Instruction::LShr, LHS,
625                          ConstantInt::get(Ty, RHS.logBase2()),
626                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
627   }
628 
629   Value *RHS = expandCodeForImpl(S->getRHS(), Ty);
630   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
631                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
632 }
633 
634 /// Determine if this is a well-behaved chain of instructions leading back to
635 /// the PHI. If so, it may be reused by expanded expressions.
636 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
637                                          const Loop *L) {
638   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
639       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
640     return false;
641   // If any of the operands don't dominate the insert position, bail.
642   // Addrec operands are always loop-invariant, so this can only happen
643   // if there are instructions which haven't been hoisted.
644   if (L == IVIncInsertLoop) {
645     for (Use &Op : llvm::drop_begin(IncV->operands()))
646       if (Instruction *OInst = dyn_cast<Instruction>(Op))
647         if (!SE.DT.dominates(OInst, IVIncInsertPos))
648           return false;
649   }
650   // Advance to the next instruction.
651   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
652   if (!IncV)
653     return false;
654 
655   if (IncV->mayHaveSideEffects())
656     return false;
657 
658   if (IncV == PN)
659     return true;
660 
661   return isNormalAddRecExprPHI(PN, IncV, L);
662 }
663 
664 /// getIVIncOperand returns an induction variable increment's induction
665 /// variable operand.
666 ///
667 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
668 /// operands dominate InsertPos.
669 ///
670 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
671 /// simple patterns generated by getAddRecExprPHILiterally and
672 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
673 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
674                                            Instruction *InsertPos,
675                                            bool allowScale) {
676   if (IncV == InsertPos)
677     return nullptr;
678 
679   switch (IncV->getOpcode()) {
680   default:
681     return nullptr;
682   // Check for a simple Add/Sub or GEP of a loop invariant step.
683   case Instruction::Add:
684   case Instruction::Sub: {
685     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
686     if (!OInst || SE.DT.dominates(OInst, InsertPos))
687       return dyn_cast<Instruction>(IncV->getOperand(0));
688     return nullptr;
689   }
690   case Instruction::BitCast:
691     return dyn_cast<Instruction>(IncV->getOperand(0));
692   case Instruction::GetElementPtr:
693     for (Use &U : llvm::drop_begin(IncV->operands())) {
694       if (isa<Constant>(U))
695         continue;
696       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
697         if (!SE.DT.dominates(OInst, InsertPos))
698           return nullptr;
699       }
700       if (allowScale) {
701         // allow any kind of GEP as long as it can be hoisted.
702         continue;
703       }
704       // GEPs produced by SCEVExpander use i8 element type.
705       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
706         return nullptr;
707       break;
708     }
709     return dyn_cast<Instruction>(IncV->getOperand(0));
710   }
711 }
712 
713 /// If the insert point of the current builder or any of the builders on the
714 /// stack of saved builders has 'I' as its insert point, update it to point to
715 /// the instruction after 'I'.  This is intended to be used when the instruction
716 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
717 /// different block, the inconsistent insert point (with a mismatched
718 /// Instruction and Block) can lead to an instruction being inserted in a block
719 /// other than its parent.
720 void SCEVExpander::fixupInsertPoints(Instruction *I) {
721   BasicBlock::iterator It(*I);
722   BasicBlock::iterator NewInsertPt = std::next(It);
723   if (Builder.GetInsertPoint() == It)
724     Builder.SetInsertPoint(&*NewInsertPt);
725   for (auto *InsertPtGuard : InsertPointGuards)
726     if (InsertPtGuard->GetInsertPoint() == It)
727       InsertPtGuard->SetInsertPoint(NewInsertPt);
728 }
729 
730 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
731 /// it available to other uses in this loop. Recursively hoist any operands,
732 /// until we reach a value that dominates InsertPos.
733 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
734                               bool RecomputePoisonFlags) {
735   auto FixupPoisonFlags = [this](Instruction *I) {
736     // Drop flags that are potentially inferred from old context and infer flags
737     // in new context.
738     I->dropPoisonGeneratingFlags();
739     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
740       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
741         auto *BO = cast<BinaryOperator>(I);
742         BO->setHasNoUnsignedWrap(
743             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
744         BO->setHasNoSignedWrap(
745             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
746       }
747   };
748 
749   if (SE.DT.dominates(IncV, InsertPos)) {
750     if (RecomputePoisonFlags)
751       FixupPoisonFlags(IncV);
752     return true;
753   }
754 
755   // InsertPos must itself dominate IncV so that IncV's new position satisfies
756   // its existing users.
757   if (isa<PHINode>(InsertPos) ||
758       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
759     return false;
760 
761   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
762     return false;
763 
764   // Check that the chain of IV operands leading back to Phi can be hoisted.
765   SmallVector<Instruction*, 4> IVIncs;
766   for(;;) {
767     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
768     if (!Oper)
769       return false;
770     // IncV is safe to hoist.
771     IVIncs.push_back(IncV);
772     IncV = Oper;
773     if (SE.DT.dominates(IncV, InsertPos))
774       break;
775   }
776   for (Instruction *I : llvm::reverse(IVIncs)) {
777     fixupInsertPoints(I);
778     I->moveBefore(InsertPos);
779     if (RecomputePoisonFlags)
780       FixupPoisonFlags(I);
781   }
782   return true;
783 }
784 
785 /// Determine if this cyclic phi is in a form that would have been generated by
786 /// LSR. We don't care if the phi was actually expanded in this pass, as long
787 /// as it is in a low-cost form, for example, no implied multiplication. This
788 /// should match any patterns generated by getAddRecExprPHILiterally and
789 /// expandAddtoGEP.
790 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
791                                            const Loop *L) {
792   for(Instruction *IVOper = IncV;
793       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
794                                 /*allowScale=*/false));) {
795     if (IVOper == PN)
796       return true;
797   }
798   return false;
799 }
800 
801 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
802 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
803 /// need to materialize IV increments elsewhere to handle difficult situations.
804 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
805                                  Type *ExpandTy, Type *IntTy,
806                                  bool useSubtract) {
807   Value *IncV;
808   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
809   if (ExpandTy->isPointerTy()) {
810     IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN);
811   } else {
812     IncV = useSubtract ?
813       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
814       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
815   }
816   return IncV;
817 }
818 
819 /// Check whether we can cheaply express the requested SCEV in terms of
820 /// the available PHI SCEV by truncation and/or inversion of the step.
821 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
822                                     const SCEVAddRecExpr *Phi,
823                                     const SCEVAddRecExpr *Requested,
824                                     bool &InvertStep) {
825   // We can't transform to match a pointer PHI.
826   if (Phi->getType()->isPointerTy())
827     return false;
828 
829   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
830   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
831 
832   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
833     return false;
834 
835   // Try truncate it if necessary.
836   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
837   if (!Phi)
838     return false;
839 
840   // Check whether truncation will help.
841   if (Phi == Requested) {
842     InvertStep = false;
843     return true;
844   }
845 
846   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
847   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
848     InvertStep = true;
849     return true;
850   }
851 
852   return false;
853 }
854 
855 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
856   if (!isa<IntegerType>(AR->getType()))
857     return false;
858 
859   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
860   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
861   const SCEV *Step = AR->getStepRecurrence(SE);
862   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
863                                             SE.getSignExtendExpr(AR, WideTy));
864   const SCEV *ExtendAfterOp =
865     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
866   return ExtendAfterOp == OpAfterExtend;
867 }
868 
869 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
870   if (!isa<IntegerType>(AR->getType()))
871     return false;
872 
873   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
874   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
875   const SCEV *Step = AR->getStepRecurrence(SE);
876   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
877                                             SE.getZeroExtendExpr(AR, WideTy));
878   const SCEV *ExtendAfterOp =
879     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
880   return ExtendAfterOp == OpAfterExtend;
881 }
882 
883 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
884 /// the base addrec, which is the addrec without any non-loop-dominating
885 /// values, and return the PHI.
886 PHINode *
887 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
888                                         const Loop *L,
889                                         Type *ExpandTy,
890                                         Type *IntTy,
891                                         Type *&TruncTy,
892                                         bool &InvertStep) {
893   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
894 
895   // Reuse a previously-inserted PHI, if present.
896   BasicBlock *LatchBlock = L->getLoopLatch();
897   if (LatchBlock) {
898     PHINode *AddRecPhiMatch = nullptr;
899     Instruction *IncV = nullptr;
900     TruncTy = nullptr;
901     InvertStep = false;
902 
903     // Only try partially matching scevs that need truncation and/or
904     // step-inversion if we know this loop is outside the current loop.
905     bool TryNonMatchingSCEV =
906         IVIncInsertLoop &&
907         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
908 
909     for (PHINode &PN : L->getHeader()->phis()) {
910       if (!SE.isSCEVable(PN.getType()))
911         continue;
912 
913       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
914       // PHI has no meaning at all.
915       if (!PN.isComplete()) {
916         SCEV_DEBUG_WITH_TYPE(
917             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
918         continue;
919       }
920 
921       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
922       if (!PhiSCEV)
923         continue;
924 
925       bool IsMatchingSCEV = PhiSCEV == Normalized;
926       // We only handle truncation and inversion of phi recurrences for the
927       // expanded expression if the expanded expression's loop dominates the
928       // loop we insert to. Check now, so we can bail out early.
929       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
930           continue;
931 
932       // TODO: this possibly can be reworked to avoid this cast at all.
933       Instruction *TempIncV =
934           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
935       if (!TempIncV)
936         continue;
937 
938       // Check whether we can reuse this PHI node.
939       if (LSRMode) {
940         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
941           continue;
942       } else {
943         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
944           continue;
945       }
946 
947       // Stop if we have found an exact match SCEV.
948       if (IsMatchingSCEV) {
949         IncV = TempIncV;
950         TruncTy = nullptr;
951         InvertStep = false;
952         AddRecPhiMatch = &PN;
953         break;
954       }
955 
956       // Try whether the phi can be translated into the requested form
957       // (truncated and/or offset by a constant).
958       if ((!TruncTy || InvertStep) &&
959           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
960         // Record the phi node. But don't stop we might find an exact match
961         // later.
962         AddRecPhiMatch = &PN;
963         IncV = TempIncV;
964         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
965       }
966     }
967 
968     if (AddRecPhiMatch) {
969       // Ok, the add recurrence looks usable.
970       // Remember this PHI, even in post-inc mode.
971       InsertedValues.insert(AddRecPhiMatch);
972       // Remember the increment.
973       rememberInstruction(IncV);
974       // Those values were not actually inserted but re-used.
975       ReusedValues.insert(AddRecPhiMatch);
976       ReusedValues.insert(IncV);
977       return AddRecPhiMatch;
978     }
979   }
980 
981   // Save the original insertion point so we can restore it when we're done.
982   SCEVInsertPointGuard Guard(Builder, this);
983 
984   // Another AddRec may need to be recursively expanded below. For example, if
985   // this AddRec is quadratic, the StepV may itself be an AddRec in this
986   // loop. Remove this loop from the PostIncLoops set before expanding such
987   // AddRecs. Otherwise, we cannot find a valid position for the step
988   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
989   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
990   // so it's not worth implementing SmallPtrSet::swap.
991   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
992   PostIncLoops.clear();
993 
994   // Expand code for the start value into the loop preheader.
995   assert(L->getLoopPreheader() &&
996          "Can't expand add recurrences without a loop preheader!");
997   Value *StartV =
998       expandCodeForImpl(Normalized->getStart(), ExpandTy,
999                         L->getLoopPreheader()->getTerminator());
1000 
1001   // StartV must have been be inserted into L's preheader to dominate the new
1002   // phi.
1003   assert(!isa<Instruction>(StartV) ||
1004          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1005                                  L->getHeader()));
1006 
1007   // Expand code for the step value. Do this before creating the PHI so that PHI
1008   // reuse code doesn't see an incomplete PHI.
1009   const SCEV *Step = Normalized->getStepRecurrence(SE);
1010   // If the stride is negative, insert a sub instead of an add for the increment
1011   // (unless it's a constant, because subtracts of constants are canonicalized
1012   // to adds).
1013   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1014   if (useSubtract)
1015     Step = SE.getNegativeSCEV(Step);
1016   // Expand the step somewhere that dominates the loop header.
1017   Value *StepV = expandCodeForImpl(
1018       Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1019 
1020   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1021   // we actually do emit an addition.  It does not apply if we emit a
1022   // subtraction.
1023   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1024   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1025 
1026   // Create the PHI.
1027   BasicBlock *Header = L->getHeader();
1028   Builder.SetInsertPoint(Header, Header->begin());
1029   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1030   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1031                                   Twine(IVName) + ".iv");
1032 
1033   // Create the step instructions and populate the PHI.
1034   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1035     BasicBlock *Pred = *HPI;
1036 
1037     // Add a start value.
1038     if (!L->contains(Pred)) {
1039       PN->addIncoming(StartV, Pred);
1040       continue;
1041     }
1042 
1043     // Create a step value and add it to the PHI.
1044     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1045     // instructions at IVIncInsertPos.
1046     Instruction *InsertPos = L == IVIncInsertLoop ?
1047       IVIncInsertPos : Pred->getTerminator();
1048     Builder.SetInsertPoint(InsertPos);
1049     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1050 
1051     if (isa<OverflowingBinaryOperator>(IncV)) {
1052       if (IncrementIsNUW)
1053         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1054       if (IncrementIsNSW)
1055         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1056     }
1057     PN->addIncoming(IncV, Pred);
1058   }
1059 
1060   // After expanding subexpressions, restore the PostIncLoops set so the caller
1061   // can ensure that IVIncrement dominates the current uses.
1062   PostIncLoops = SavedPostIncLoops;
1063 
1064   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1065   // effective when we are able to use an IV inserted here, so record it.
1066   InsertedValues.insert(PN);
1067   InsertedIVs.push_back(PN);
1068   return PN;
1069 }
1070 
1071 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1072   Type *STy = S->getType();
1073   Type *IntTy = SE.getEffectiveSCEVType(STy);
1074   const Loop *L = S->getLoop();
1075 
1076   // Determine a normalized form of this expression, which is the expression
1077   // before any post-inc adjustment is made.
1078   const SCEVAddRecExpr *Normalized = S;
1079   if (PostIncLoops.count(L)) {
1080     PostIncLoopSet Loops;
1081     Loops.insert(L);
1082     Normalized = cast<SCEVAddRecExpr>(
1083         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1084   }
1085 
1086   // Strip off any non-loop-dominating component from the addrec start.
1087   const SCEV *Start = Normalized->getStart();
1088   const SCEV *PostLoopOffset = nullptr;
1089   if (!SE.properlyDominates(Start, L->getHeader())) {
1090     PostLoopOffset = Start;
1091     Start = SE.getConstant(Normalized->getType(), 0);
1092     Normalized = cast<SCEVAddRecExpr>(
1093       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1094                        Normalized->getLoop(),
1095                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1096   }
1097 
1098   // Strip off any non-loop-dominating component from the addrec step.
1099   const SCEV *Step = Normalized->getStepRecurrence(SE);
1100   const SCEV *PostLoopScale = nullptr;
1101   if (!SE.dominates(Step, L->getHeader())) {
1102     PostLoopScale = Step;
1103     Step = SE.getConstant(Normalized->getType(), 1);
1104     if (!Start->isZero()) {
1105         // The normalization below assumes that Start is constant zero, so if
1106         // it isn't re-associate Start to PostLoopOffset.
1107         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1108         PostLoopOffset = Start;
1109         Start = SE.getConstant(Normalized->getType(), 0);
1110     }
1111     Normalized =
1112       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1113                              Start, Step, Normalized->getLoop(),
1114                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1115   }
1116 
1117   // Expand the core addrec. If we need post-loop scaling, force it to
1118   // expand to an integer type to avoid the need for additional casting.
1119   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1120   // We can't use a pointer type for the addrec if the pointer type is
1121   // non-integral.
1122   Type *AddRecPHIExpandTy =
1123       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1124 
1125   // In some cases, we decide to reuse an existing phi node but need to truncate
1126   // it and/or invert the step.
1127   Type *TruncTy = nullptr;
1128   bool InvertStep = false;
1129   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1130                                           IntTy, TruncTy, InvertStep);
1131 
1132   // Accommodate post-inc mode, if necessary.
1133   Value *Result;
1134   if (!PostIncLoops.count(L))
1135     Result = PN;
1136   else {
1137     // In PostInc mode, use the post-incremented value.
1138     BasicBlock *LatchBlock = L->getLoopLatch();
1139     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1140     Result = PN->getIncomingValueForBlock(LatchBlock);
1141 
1142     // We might be introducing a new use of the post-inc IV that is not poison
1143     // safe, in which case we should drop poison generating flags. Only keep
1144     // those flags for which SCEV has proven that they always hold.
1145     if (isa<OverflowingBinaryOperator>(Result)) {
1146       auto *I = cast<Instruction>(Result);
1147       if (!S->hasNoUnsignedWrap())
1148         I->setHasNoUnsignedWrap(false);
1149       if (!S->hasNoSignedWrap())
1150         I->setHasNoSignedWrap(false);
1151     }
1152 
1153     // For an expansion to use the postinc form, the client must call
1154     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1155     // or dominated by IVIncInsertPos.
1156     if (isa<Instruction>(Result) &&
1157         !SE.DT.dominates(cast<Instruction>(Result),
1158                          &*Builder.GetInsertPoint())) {
1159       // The induction variable's postinc expansion does not dominate this use.
1160       // IVUsers tries to prevent this case, so it is rare. However, it can
1161       // happen when an IVUser outside the loop is not dominated by the latch
1162       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1163       // all cases. Consider a phi outside whose operand is replaced during
1164       // expansion with the value of the postinc user. Without fundamentally
1165       // changing the way postinc users are tracked, the only remedy is
1166       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1167       // but hopefully expandCodeFor handles that.
1168       bool useSubtract =
1169         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1170       if (useSubtract)
1171         Step = SE.getNegativeSCEV(Step);
1172       Value *StepV;
1173       {
1174         // Expand the step somewhere that dominates the loop header.
1175         SCEVInsertPointGuard Guard(Builder, this);
1176         StepV = expandCodeForImpl(
1177             Step, IntTy, &*L->getHeader()->getFirstInsertionPt());
1178       }
1179       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1180     }
1181   }
1182 
1183   // We have decided to reuse an induction variable of a dominating loop. Apply
1184   // truncation and/or inversion of the step.
1185   if (TruncTy) {
1186     Type *ResTy = Result->getType();
1187     // Normalize the result type.
1188     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1189       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1190     // Truncate the result.
1191     if (TruncTy != Result->getType())
1192       Result = Builder.CreateTrunc(Result, TruncTy);
1193 
1194     // Invert the result.
1195     if (InvertStep)
1196       Result = Builder.CreateSub(
1197           expandCodeForImpl(Normalized->getStart(), TruncTy), Result);
1198   }
1199 
1200   // Re-apply any non-loop-dominating scale.
1201   if (PostLoopScale) {
1202     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1203     Result = InsertNoopCastOfTo(Result, IntTy);
1204     Result = Builder.CreateMul(Result,
1205                                expandCodeForImpl(PostLoopScale, IntTy));
1206   }
1207 
1208   // Re-apply any non-loop-dominating offset.
1209   if (PostLoopOffset) {
1210     if (isa<PointerType>(ExpandTy)) {
1211       if (Result->getType()->isIntegerTy()) {
1212         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy);
1213         Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base);
1214       } else {
1215         Result = expandAddToGEP(PostLoopOffset, IntTy, Result);
1216       }
1217     } else {
1218       Result = InsertNoopCastOfTo(Result, IntTy);
1219       Result = Builder.CreateAdd(
1220           Result, expandCodeForImpl(PostLoopOffset, IntTy));
1221     }
1222   }
1223 
1224   return Result;
1225 }
1226 
1227 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1228   // In canonical mode we compute the addrec as an expression of a canonical IV
1229   // using evaluateAtIteration and expand the resulting SCEV expression. This
1230   // way we avoid introducing new IVs to carry on the computation of the addrec
1231   // throughout the loop.
1232   //
1233   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1234   // type wider than the addrec itself. Emitting a canonical IV of the
1235   // proper type might produce non-legal types, for example expanding an i64
1236   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1237   // back to non-canonical mode for nested addrecs.
1238   if (!CanonicalMode || (S->getNumOperands() > 2))
1239     return expandAddRecExprLiterally(S);
1240 
1241   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1242   const Loop *L = S->getLoop();
1243 
1244   // First check for an existing canonical IV in a suitable type.
1245   PHINode *CanonicalIV = nullptr;
1246   if (PHINode *PN = L->getCanonicalInductionVariable())
1247     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1248       CanonicalIV = PN;
1249 
1250   // Rewrite an AddRec in terms of the canonical induction variable, if
1251   // its type is more narrow.
1252   if (CanonicalIV &&
1253       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1254       !S->getType()->isPointerTy()) {
1255     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1256     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1257       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1258     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1259                                        S->getNoWrapFlags(SCEV::FlagNW)));
1260     BasicBlock::iterator NewInsertPt =
1261         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1262     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1263                           &*NewInsertPt);
1264     return V;
1265   }
1266 
1267   // {X,+,F} --> X + {0,+,F}
1268   if (!S->getStart()->isZero()) {
1269     if (isa<PointerType>(S->getType())) {
1270       Value *StartV = expand(SE.getPointerBase(S));
1271       return expandAddToGEP(SE.removePointerBase(S), Ty, StartV);
1272     }
1273 
1274     SmallVector<const SCEV *, 4> NewOps(S->operands());
1275     NewOps[0] = SE.getConstant(Ty, 0);
1276     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1277                                         S->getNoWrapFlags(SCEV::FlagNW));
1278 
1279     // Just do a normal add. Pre-expand the operands to suppress folding.
1280     //
1281     // The LHS and RHS values are factored out of the expand call to make the
1282     // output independent of the argument evaluation order.
1283     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1284     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1285     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1286   }
1287 
1288   // If we don't yet have a canonical IV, create one.
1289   if (!CanonicalIV) {
1290     // Create and insert the PHI node for the induction variable in the
1291     // specified loop.
1292     BasicBlock *Header = L->getHeader();
1293     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1294     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1295     CanonicalIV->insertBefore(Header->begin());
1296     rememberInstruction(CanonicalIV);
1297 
1298     SmallSet<BasicBlock *, 4> PredSeen;
1299     Constant *One = ConstantInt::get(Ty, 1);
1300     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1301       BasicBlock *HP = *HPI;
1302       if (!PredSeen.insert(HP).second) {
1303         // There must be an incoming value for each predecessor, even the
1304         // duplicates!
1305         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1306         continue;
1307       }
1308 
1309       if (L->contains(HP)) {
1310         // Insert a unit add instruction right before the terminator
1311         // corresponding to the back-edge.
1312         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1313                                                      "indvar.next",
1314                                                      HP->getTerminator());
1315         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1316         rememberInstruction(Add);
1317         CanonicalIV->addIncoming(Add, HP);
1318       } else {
1319         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1320       }
1321     }
1322   }
1323 
1324   // {0,+,1} --> Insert a canonical induction variable into the loop!
1325   if (S->isAffine() && S->getOperand(1)->isOne()) {
1326     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1327            "IVs with types different from the canonical IV should "
1328            "already have been handled!");
1329     return CanonicalIV;
1330   }
1331 
1332   // {0,+,F} --> {0,+,1} * F
1333 
1334   // If this is a simple linear addrec, emit it now as a special case.
1335   if (S->isAffine())    // {0,+,F} --> i*F
1336     return
1337       expand(SE.getTruncateOrNoop(
1338         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1339                       SE.getNoopOrAnyExtend(S->getOperand(1),
1340                                             CanonicalIV->getType())),
1341         Ty));
1342 
1343   // If this is a chain of recurrences, turn it into a closed form, using the
1344   // folders, then expandCodeFor the closed form.  This allows the folders to
1345   // simplify the expression without having to build a bunch of special code
1346   // into this folder.
1347   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1348 
1349   // Promote S up to the canonical IV type, if the cast is foldable.
1350   const SCEV *NewS = S;
1351   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1352   if (isa<SCEVAddRecExpr>(Ext))
1353     NewS = Ext;
1354 
1355   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1356 
1357   // Truncate the result down to the original type, if needed.
1358   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1359   return expand(T);
1360 }
1361 
1362 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1363   Value *V =
1364       expandCodeForImpl(S->getOperand(), S->getOperand()->getType());
1365   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1366                            GetOptimalInsertionPointForCastOf(V));
1367 }
1368 
1369 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1370   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1371   Value *V = expandCodeForImpl(
1372       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1373       );
1374   return Builder.CreateTrunc(V, Ty);
1375 }
1376 
1377 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1378   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1379   Value *V = expandCodeForImpl(
1380       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1381       );
1382   return Builder.CreateZExt(V, Ty);
1383 }
1384 
1385 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1386   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1387   Value *V = expandCodeForImpl(
1388       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType())
1389       );
1390   return Builder.CreateSExt(V, Ty);
1391 }
1392 
1393 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1394                                       Intrinsic::ID IntrinID, Twine Name,
1395                                       bool IsSequential) {
1396   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1397   Type *Ty = LHS->getType();
1398   if (IsSequential)
1399     LHS = Builder.CreateFreeze(LHS);
1400   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1401     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty);
1402     if (IsSequential && i != 0)
1403       RHS = Builder.CreateFreeze(RHS);
1404     Value *Sel;
1405     if (Ty->isIntegerTy())
1406       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1407                                     /*FMFSource=*/nullptr, Name);
1408     else {
1409       Value *ICmp =
1410           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1411       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1412     }
1413     LHS = Sel;
1414   }
1415   return LHS;
1416 }
1417 
1418 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1419   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1420 }
1421 
1422 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1423   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1424 }
1425 
1426 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1427   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1428 }
1429 
1430 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1431   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1432 }
1433 
1434 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1435   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1436 }
1437 
1438 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1439   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1440 }
1441 
1442 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1443                                        Instruction *IP) {
1444   setInsertPoint(IP);
1445   Value *V = expandCodeForImpl(SH, Ty);
1446   return V;
1447 }
1448 
1449 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) {
1450   // Expand the code for this SCEV.
1451   Value *V = expand(SH);
1452 
1453   if (Ty) {
1454     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1455            "non-trivial casts should be done with the SCEVs directly!");
1456     V = InsertNoopCastOfTo(V, Ty);
1457   }
1458   return V;
1459 }
1460 
1461 static bool
1462 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I,
1463                     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1464   // If the instruction cannot be poison, it's always safe to reuse.
1465   if (programUndefinedIfPoison(I))
1466     return true;
1467 
1468   // Otherwise, it is possible that I is more poisonous that S. Collect the
1469   // poison-contributors of S, and then check whether I has any additional
1470   // poison-contributors. Poison that is contributed through poison-generating
1471   // flags is handled by dropping those flags instead.
1472   SmallPtrSet<const Value *, 8> PoisonVals;
1473   SE.getPoisonGeneratingValues(PoisonVals, S);
1474 
1475   SmallVector<Value *> Worklist;
1476   SmallPtrSet<Value *, 8> Visited;
1477   Worklist.push_back(I);
1478   while (!Worklist.empty()) {
1479     Value *V = Worklist.pop_back_val();
1480     if (!Visited.insert(V).second)
1481       continue;
1482 
1483     // Avoid walking large instruction graphs.
1484     if (Visited.size() > 16)
1485       return false;
1486 
1487     // Either the value can't be poison, or the S would also be poison if it
1488     // is.
1489     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
1490       continue;
1491 
1492     auto *I = dyn_cast<Instruction>(V);
1493     if (!I)
1494       return false;
1495 
1496     // FIXME: Ignore vscale, even though it technically could be poison. Do this
1497     // because SCEV currently assumes it can't be poison. Remove this special
1498     // case once we proper model when vscale can be poison.
1499     if (auto *II = dyn_cast<IntrinsicInst>(I);
1500         II && II->getIntrinsicID() == Intrinsic::vscale)
1501       continue;
1502 
1503     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
1504       return false;
1505 
1506     // If the instruction can't create poison, we can recurse to its operands.
1507     if (I->hasPoisonGeneratingFlagsOrMetadata())
1508       DropPoisonGeneratingInsts.push_back(I);
1509 
1510     for (Value *Op : I->operands())
1511       Worklist.push_back(Op);
1512   }
1513   return true;
1514 }
1515 
1516 Value *SCEVExpander::FindValueInExprValueMap(
1517     const SCEV *S, const Instruction *InsertPt,
1518     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1519   // If the expansion is not in CanonicalMode, and the SCEV contains any
1520   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1521   if (!CanonicalMode && SE.containsAddRecurrence(S))
1522     return nullptr;
1523 
1524   // If S is a constant, it may be worse to reuse an existing Value.
1525   if (isa<SCEVConstant>(S))
1526     return nullptr;
1527 
1528   for (Value *V : SE.getSCEVValues(S)) {
1529     Instruction *EntInst = dyn_cast<Instruction>(V);
1530     if (!EntInst)
1531       continue;
1532 
1533     // Choose a Value from the set which dominates the InsertPt.
1534     // InsertPt should be inside the Value's parent loop so as not to break
1535     // the LCSSA form.
1536     assert(EntInst->getFunction() == InsertPt->getFunction());
1537     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1538         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1539           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1540       continue;
1541 
1542     // Make sure reusing the instruction is poison-safe.
1543     if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts))
1544       return V;
1545     DropPoisonGeneratingInsts.clear();
1546   }
1547   return nullptr;
1548 }
1549 
1550 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1551 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1552 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1553 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1554 // the expansion will try to reuse Value from ExprValueMap, and only when it
1555 // fails, expand the SCEV literally.
1556 Value *SCEVExpander::expand(const SCEV *S) {
1557   // Compute an insertion point for this SCEV object. Hoist the instructions
1558   // as far out in the loop nest as possible.
1559   Instruction *InsertPt = &*Builder.GetInsertPoint();
1560 
1561   // We can move insertion point only if there is no div or rem operations
1562   // otherwise we are risky to move it over the check for zero denominator.
1563   auto SafeToHoist = [](const SCEV *S) {
1564     return !SCEVExprContains(S, [](const SCEV *S) {
1565               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1566                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1567                   // Division by non-zero constants can be hoisted.
1568                   return SC->getValue()->isZero();
1569                 // All other divisions should not be moved as they may be
1570                 // divisions by zero and should be kept within the
1571                 // conditions of the surrounding loops that guard their
1572                 // execution (see PR35406).
1573                 return true;
1574               }
1575               return false;
1576             });
1577   };
1578   if (SafeToHoist(S)) {
1579     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1580          L = L->getParentLoop()) {
1581       if (SE.isLoopInvariant(S, L)) {
1582         if (!L) break;
1583         if (BasicBlock *Preheader = L->getLoopPreheader())
1584           InsertPt = Preheader->getTerminator();
1585         else
1586           // LSR sets the insertion point for AddRec start/step values to the
1587           // block start to simplify value reuse, even though it's an invalid
1588           // position. SCEVExpander must correct for this in all cases.
1589           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1590       } else {
1591         // If the SCEV is computable at this level, insert it into the header
1592         // after the PHIs (and after any other instructions that we've inserted
1593         // there) so that it is guaranteed to dominate any user inside the loop.
1594         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1595           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1596 
1597         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1598                (isInsertedInstruction(InsertPt) ||
1599                 isa<DbgInfoIntrinsic>(InsertPt))) {
1600           InsertPt = &*std::next(InsertPt->getIterator());
1601         }
1602         break;
1603       }
1604     }
1605   }
1606 
1607   // Check to see if we already expanded this here.
1608   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1609   if (I != InsertedExpressions.end())
1610     return I->second;
1611 
1612   SCEVInsertPointGuard Guard(Builder, this);
1613   Builder.SetInsertPoint(InsertPt);
1614 
1615   // Expand the expression into instructions.
1616   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1617   Value *V = FindValueInExprValueMap(S, InsertPt, DropPoisonGeneratingInsts);
1618   if (!V) {
1619     V = visit(S);
1620     V = fixupLCSSAFormFor(V);
1621   } else {
1622     for (Instruction *I : DropPoisonGeneratingInsts)
1623       I->dropPoisonGeneratingFlagsAndMetadata();
1624   }
1625   // Remember the expanded value for this SCEV at this location.
1626   //
1627   // This is independent of PostIncLoops. The mapped value simply materializes
1628   // the expression at this insertion point. If the mapped value happened to be
1629   // a postinc expansion, it could be reused by a non-postinc user, but only if
1630   // its insertion point was already at the head of the loop.
1631   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1632   return V;
1633 }
1634 
1635 void SCEVExpander::rememberInstruction(Value *I) {
1636   auto DoInsert = [this](Value *V) {
1637     if (!PostIncLoops.empty())
1638       InsertedPostIncValues.insert(V);
1639     else
1640       InsertedValues.insert(V);
1641   };
1642   DoInsert(I);
1643 }
1644 
1645 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1646 /// replace them with their most canonical representative. Return the number of
1647 /// phis eliminated.
1648 ///
1649 /// This does not depend on any SCEVExpander state but should be used in
1650 /// the same context that SCEVExpander is used.
1651 unsigned
1652 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1653                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1654                                   const TargetTransformInfo *TTI) {
1655   // Find integer phis in order of increasing width.
1656   SmallVector<PHINode*, 8> Phis;
1657   for (PHINode &PN : L->getHeader()->phis())
1658     Phis.push_back(&PN);
1659 
1660   if (TTI)
1661     // Use stable_sort to preserve order of equivalent PHIs, so the order
1662     // of the sorted Phis is the same from run to run on the same loop.
1663     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1664       // Put pointers at the back and make sure pointer < pointer = false.
1665       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1666         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1667       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1668              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1669     });
1670 
1671   unsigned NumElim = 0;
1672   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1673   // Process phis from wide to narrow. Map wide phis to their truncation
1674   // so narrow phis can reuse them.
1675   for (PHINode *Phi : Phis) {
1676     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1677       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1678         return V;
1679       if (!SE.isSCEVable(PN->getType()))
1680         return nullptr;
1681       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1682       if (!Const)
1683         return nullptr;
1684       return Const->getValue();
1685     };
1686 
1687     // Fold constant phis. They may be congruent to other constant phis and
1688     // would confuse the logic below that expects proper IVs.
1689     if (Value *V = SimplifyPHINode(Phi)) {
1690       if (V->getType() != Phi->getType())
1691         continue;
1692       SE.forgetValue(Phi);
1693       Phi->replaceAllUsesWith(V);
1694       DeadInsts.emplace_back(Phi);
1695       ++NumElim;
1696       SCEV_DEBUG_WITH_TYPE(DebugType,
1697                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1698                                   << '\n');
1699       continue;
1700     }
1701 
1702     if (!SE.isSCEVable(Phi->getType()))
1703       continue;
1704 
1705     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1706     if (!OrigPhiRef) {
1707       OrigPhiRef = Phi;
1708       if (Phi->getType()->isIntegerTy() && TTI &&
1709           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1710         // Make sure we only rewrite using simple induction variables;
1711         // otherwise, we can make the trip count of a loop unanalyzable
1712         // to SCEV.
1713         const SCEV *PhiExpr = SE.getSCEV(Phi);
1714         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1715           // This phi can be freely truncated to the narrowest phi type. Map the
1716           // truncated expression to it so it will be reused for narrow types.
1717           const SCEV *TruncExpr =
1718               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1719           ExprToIVMap[TruncExpr] = Phi;
1720         }
1721       }
1722       continue;
1723     }
1724 
1725     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1726     // sense.
1727     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1728       continue;
1729 
1730     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1731       Instruction *OrigInc = dyn_cast<Instruction>(
1732           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1733       Instruction *IsomorphicInc =
1734           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1735 
1736       if (OrigInc && IsomorphicInc) {
1737         // If this phi has the same width but is more canonical, replace the
1738         // original with it. As part of the "more canonical" determination,
1739         // respect a prior decision to use an IV chain.
1740         if (OrigPhiRef->getType() == Phi->getType() &&
1741             !(ChainedPhis.count(Phi) ||
1742               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1743             (ChainedPhis.count(Phi) ||
1744              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1745           std::swap(OrigPhiRef, Phi);
1746           std::swap(OrigInc, IsomorphicInc);
1747         }
1748         // Replacing the congruent phi is sufficient because acyclic
1749         // redundancy elimination, CSE/GVN, should handle the
1750         // rest. However, once SCEV proves that a phi is congruent,
1751         // it's often the head of an IV user cycle that is isomorphic
1752         // with the original phi. It's worth eagerly cleaning up the
1753         // common case of a single IV increment so that DeleteDeadPHIs
1754         // can remove cycles that had postinc uses.
1755         // Because we may potentially introduce a new use of OrigIV that didn't
1756         // exist before at this point, its poison flags need readjustment.
1757         const SCEV *TruncExpr =
1758             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1759         if (OrigInc != IsomorphicInc &&
1760             TruncExpr == SE.getSCEV(IsomorphicInc) &&
1761             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1762             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
1763           SCEV_DEBUG_WITH_TYPE(
1764               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1765                                 << *IsomorphicInc << '\n');
1766           Value *NewInc = OrigInc;
1767           if (OrigInc->getType() != IsomorphicInc->getType()) {
1768             Instruction *IP = nullptr;
1769             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1770               IP = &*PN->getParent()->getFirstInsertionPt();
1771             else
1772               IP = OrigInc->getNextNode();
1773 
1774             IRBuilder<> Builder(IP);
1775             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1776             NewInc = Builder.CreateTruncOrBitCast(
1777                 OrigInc, IsomorphicInc->getType(), IVName);
1778           }
1779           IsomorphicInc->replaceAllUsesWith(NewInc);
1780           DeadInsts.emplace_back(IsomorphicInc);
1781         }
1782       }
1783     }
1784     SCEV_DEBUG_WITH_TYPE(DebugType,
1785                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1786                                 << '\n');
1787     SCEV_DEBUG_WITH_TYPE(
1788         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1789     ++NumElim;
1790     Value *NewIV = OrigPhiRef;
1791     if (OrigPhiRef->getType() != Phi->getType()) {
1792       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
1793       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1794       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1795     }
1796     Phi->replaceAllUsesWith(NewIV);
1797     DeadInsts.emplace_back(Phi);
1798   }
1799   return NumElim;
1800 }
1801 
1802 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1803                                                const Instruction *At,
1804                                                Loop *L) {
1805   using namespace llvm::PatternMatch;
1806 
1807   SmallVector<BasicBlock *, 4> ExitingBlocks;
1808   L->getExitingBlocks(ExitingBlocks);
1809 
1810   // Look for suitable value in simple conditions at the loop exits.
1811   for (BasicBlock *BB : ExitingBlocks) {
1812     ICmpInst::Predicate Pred;
1813     Instruction *LHS, *RHS;
1814 
1815     if (!match(BB->getTerminator(),
1816                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1817                     m_BasicBlock(), m_BasicBlock())))
1818       continue;
1819 
1820     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1821       return true;
1822 
1823     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1824       return true;
1825   }
1826 
1827   // Use expand's logic which is used for reusing a previous Value in
1828   // ExprValueMap.  Note that we don't currently model the cost of
1829   // needing to drop poison generating flags on the instruction if we
1830   // want to reuse it.  We effectively assume that has zero cost.
1831   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1832   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1833 }
1834 
1835 template<typename T> static InstructionCost costAndCollectOperands(
1836   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1837   TargetTransformInfo::TargetCostKind CostKind,
1838   SmallVectorImpl<SCEVOperand> &Worklist) {
1839 
1840   const T *S = cast<T>(WorkItem.S);
1841   InstructionCost Cost = 0;
1842   // Object to help map SCEV operands to expanded IR instructions.
1843   struct OperationIndices {
1844     OperationIndices(unsigned Opc, size_t min, size_t max) :
1845       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1846     unsigned Opcode;
1847     size_t MinIdx;
1848     size_t MaxIdx;
1849   };
1850 
1851   // Collect the operations of all the instructions that will be needed to
1852   // expand the SCEVExpr. This is so that when we come to cost the operands,
1853   // we know what the generated user(s) will be.
1854   SmallVector<OperationIndices, 2> Operations;
1855 
1856   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1857     Operations.emplace_back(Opcode, 0, 0);
1858     return TTI.getCastInstrCost(Opcode, S->getType(),
1859                                 S->getOperand(0)->getType(),
1860                                 TTI::CastContextHint::None, CostKind);
1861   };
1862 
1863   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1864                        unsigned MinIdx = 0,
1865                        unsigned MaxIdx = 1) -> InstructionCost {
1866     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1867     return NumRequired *
1868       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1869   };
1870 
1871   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1872                         unsigned MaxIdx) -> InstructionCost {
1873     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1874     Type *OpType = S->getType();
1875     return NumRequired * TTI.getCmpSelInstrCost(
1876                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1877                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1878   };
1879 
1880   switch (S->getSCEVType()) {
1881   case scCouldNotCompute:
1882     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1883   case scUnknown:
1884   case scConstant:
1885   case scVScale:
1886     return 0;
1887   case scPtrToInt:
1888     Cost = CastCost(Instruction::PtrToInt);
1889     break;
1890   case scTruncate:
1891     Cost = CastCost(Instruction::Trunc);
1892     break;
1893   case scZeroExtend:
1894     Cost = CastCost(Instruction::ZExt);
1895     break;
1896   case scSignExtend:
1897     Cost = CastCost(Instruction::SExt);
1898     break;
1899   case scUDivExpr: {
1900     unsigned Opcode = Instruction::UDiv;
1901     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1902       if (SC->getAPInt().isPowerOf2())
1903         Opcode = Instruction::LShr;
1904     Cost = ArithCost(Opcode, 1);
1905     break;
1906   }
1907   case scAddExpr:
1908     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1909     break;
1910   case scMulExpr:
1911     // TODO: this is a very pessimistic cost modelling for Mul,
1912     // because of Bin Pow algorithm actually used by the expander,
1913     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1914     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1915     break;
1916   case scSMaxExpr:
1917   case scUMaxExpr:
1918   case scSMinExpr:
1919   case scUMinExpr:
1920   case scSequentialUMinExpr: {
1921     // FIXME: should this ask the cost for Intrinsic's?
1922     // The reduction tree.
1923     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1924     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1925     switch (S->getSCEVType()) {
1926     case scSequentialUMinExpr: {
1927       // The safety net against poison.
1928       // FIXME: this is broken.
1929       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1930       Cost += ArithCost(Instruction::Or,
1931                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1932       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1933       break;
1934     }
1935     default:
1936       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1937              "Unhandled SCEV expression type?");
1938       break;
1939     }
1940     break;
1941   }
1942   case scAddRecExpr: {
1943     // In this polynominal, we may have some zero operands, and we shouldn't
1944     // really charge for those. So how many non-zero coefficients are there?
1945     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1946                                     return !Op->isZero();
1947                                   });
1948 
1949     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1950     assert(!(*std::prev(S->operands().end()))->isZero() &&
1951            "Last operand should not be zero");
1952 
1953     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1954     int NumNonZeroDegreeNonOneTerms =
1955       llvm::count_if(S->operands(), [](const SCEV *Op) {
1956                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1957                       return !SConst || SConst->getAPInt().ugt(1);
1958                     });
1959 
1960     // Much like with normal add expr, the polynominal will require
1961     // one less addition than the number of it's terms.
1962     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1963                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1964     // Here, *each* one of those will require a multiplication.
1965     InstructionCost MulCost =
1966         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1967     Cost = AddCost + MulCost;
1968 
1969     // What is the degree of this polynominal?
1970     int PolyDegree = S->getNumOperands() - 1;
1971     assert(PolyDegree >= 1 && "Should be at least affine.");
1972 
1973     // The final term will be:
1974     //   Op_{PolyDegree} * x ^ {PolyDegree}
1975     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1976     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1977     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1978     // FIXME: this is conservatively correct, but might be overly pessimistic.
1979     Cost += MulCost * (PolyDegree - 1);
1980     break;
1981   }
1982   }
1983 
1984   for (auto &CostOp : Operations) {
1985     for (auto SCEVOp : enumerate(S->operands())) {
1986       // Clamp the index to account for multiple IR operations being chained.
1987       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1988       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1989       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1990     }
1991   }
1992   return Cost;
1993 }
1994 
1995 bool SCEVExpander::isHighCostExpansionHelper(
1996     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1997     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1998     SmallPtrSetImpl<const SCEV *> &Processed,
1999     SmallVectorImpl<SCEVOperand> &Worklist) {
2000   if (Cost > Budget)
2001     return true; // Already run out of budget, give up.
2002 
2003   const SCEV *S = WorkItem.S;
2004   // Was the cost of expansion of this expression already accounted for?
2005   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2006     return false; // We have already accounted for this expression.
2007 
2008   // If we can find an existing value for this scev available at the point "At"
2009   // then consider the expression cheap.
2010   if (hasRelatedExistingExpansion(S, &At, L))
2011     return false; // Consider the expression to be free.
2012 
2013   TargetTransformInfo::TargetCostKind CostKind =
2014       L->getHeader()->getParent()->hasMinSize()
2015           ? TargetTransformInfo::TCK_CodeSize
2016           : TargetTransformInfo::TCK_RecipThroughput;
2017 
2018   switch (S->getSCEVType()) {
2019   case scCouldNotCompute:
2020     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2021   case scUnknown:
2022   case scVScale:
2023     // Assume to be zero-cost.
2024     return false;
2025   case scConstant: {
2026     // Only evalulate the costs of constants when optimizing for size.
2027     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2028       return false;
2029     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2030     Type *Ty = S->getType();
2031     Cost += TTI.getIntImmCostInst(
2032         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2033     return Cost > Budget;
2034   }
2035   case scTruncate:
2036   case scPtrToInt:
2037   case scZeroExtend:
2038   case scSignExtend: {
2039     Cost +=
2040         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2041     return false; // Will answer upon next entry into this function.
2042   }
2043   case scUDivExpr: {
2044     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2045     // HowManyLessThans produced to compute a precise expression, rather than a
2046     // UDiv from the user's code. If we can't find a UDiv in the code with some
2047     // simple searching, we need to account for it's cost.
2048 
2049     // At the beginning of this function we already tried to find existing
2050     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2051     // pattern involving division. This is just a simple search heuristic.
2052     if (hasRelatedExistingExpansion(
2053             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2054       return false; // Consider it to be free.
2055 
2056     Cost +=
2057         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2058     return false; // Will answer upon next entry into this function.
2059   }
2060   case scAddExpr:
2061   case scMulExpr:
2062   case scUMaxExpr:
2063   case scSMaxExpr:
2064   case scUMinExpr:
2065   case scSMinExpr:
2066   case scSequentialUMinExpr: {
2067     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2068            "Nary expr should have more than 1 operand.");
2069     // The simple nary expr will require one less op (or pair of ops)
2070     // than the number of it's terms.
2071     Cost +=
2072         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2073     return Cost > Budget;
2074   }
2075   case scAddRecExpr: {
2076     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2077            "Polynomial should be at least linear");
2078     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2079         WorkItem, TTI, CostKind, Worklist);
2080     return Cost > Budget;
2081   }
2082   }
2083   llvm_unreachable("Unknown SCEV kind!");
2084 }
2085 
2086 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2087                                             Instruction *IP) {
2088   assert(IP);
2089   switch (Pred->getKind()) {
2090   case SCEVPredicate::P_Union:
2091     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2092   case SCEVPredicate::P_Compare:
2093     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2094   case SCEVPredicate::P_Wrap: {
2095     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2096     return expandWrapPredicate(AddRecPred, IP);
2097   }
2098   }
2099   llvm_unreachable("Unknown SCEV predicate type");
2100 }
2101 
2102 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2103                                             Instruction *IP) {
2104   Value *Expr0 =
2105       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2106   Value *Expr1 =
2107       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2108 
2109   Builder.SetInsertPoint(IP);
2110   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2111   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2112   return I;
2113 }
2114 
2115 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2116                                            Instruction *Loc, bool Signed) {
2117   assert(AR->isAffine() && "Cannot generate RT check for "
2118                            "non-affine expression");
2119 
2120   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2121   SmallVector<const SCEVPredicate *, 4> Pred;
2122   const SCEV *ExitCount =
2123       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2124 
2125   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2126 
2127   const SCEV *Step = AR->getStepRecurrence(SE);
2128   const SCEV *Start = AR->getStart();
2129 
2130   Type *ARTy = AR->getType();
2131   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2132   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2133 
2134   // The expression {Start,+,Step} has nusw/nssw if
2135   //   Step < 0, Start - |Step| * Backedge <= Start
2136   //   Step >= 0, Start + |Step| * Backedge > Start
2137   // and |Step| * Backedge doesn't unsigned overflow.
2138 
2139   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2140   Builder.SetInsertPoint(Loc);
2141   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc);
2142 
2143   IntegerType *Ty =
2144       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2145 
2146   Value *StepValue = expandCodeForImpl(Step, Ty, Loc);
2147   Value *NegStepValue =
2148       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc);
2149   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc);
2150 
2151   ConstantInt *Zero =
2152       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2153 
2154   Builder.SetInsertPoint(Loc);
2155   // Compute |Step|
2156   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2157   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2158 
2159   // Compute |Step| * Backedge
2160   // Compute:
2161   //   1. Start + |Step| * Backedge < Start
2162   //   2. Start - |Step| * Backedge > Start
2163   //
2164   // And select either 1. or 2. depending on whether step is positive or
2165   // negative. If Step is known to be positive or negative, only create
2166   // either 1. or 2.
2167   auto ComputeEndCheck = [&]() -> Value * {
2168     // Checking <u 0 is always false.
2169     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2170       return ConstantInt::getFalse(Loc->getContext());
2171 
2172     // Get the backedge taken count and truncate or extended to the AR type.
2173     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2174 
2175     Value *MulV, *OfMul;
2176     if (Step->isOne()) {
2177       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2178       // needed, there is never an overflow, so to avoid artificially inflating
2179       // the cost of the check, directly emit the optimized IR.
2180       MulV = TruncTripCount;
2181       OfMul = ConstantInt::getFalse(MulV->getContext());
2182     } else {
2183       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2184                                              Intrinsic::umul_with_overflow, Ty);
2185       CallInst *Mul =
2186           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2187       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2188       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2189     }
2190 
2191     Value *Add = nullptr, *Sub = nullptr;
2192     bool NeedPosCheck = !SE.isKnownNegative(Step);
2193     bool NeedNegCheck = !SE.isKnownPositive(Step);
2194 
2195     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2196       StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy);
2197       Value *NegMulV = Builder.CreateNeg(MulV);
2198       if (NeedPosCheck)
2199         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2200       if (NeedNegCheck)
2201         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2202     } else {
2203       if (NeedPosCheck)
2204         Add = Builder.CreateAdd(StartValue, MulV);
2205       if (NeedNegCheck)
2206         Sub = Builder.CreateSub(StartValue, MulV);
2207     }
2208 
2209     Value *EndCompareLT = nullptr;
2210     Value *EndCompareGT = nullptr;
2211     Value *EndCheck = nullptr;
2212     if (NeedPosCheck)
2213       EndCheck = EndCompareLT = Builder.CreateICmp(
2214           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2215     if (NeedNegCheck)
2216       EndCheck = EndCompareGT = Builder.CreateICmp(
2217           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2218     if (NeedPosCheck && NeedNegCheck) {
2219       // Select the answer based on the sign of Step.
2220       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2221     }
2222     return Builder.CreateOr(EndCheck, OfMul);
2223   };
2224   Value *EndCheck = ComputeEndCheck();
2225 
2226   // If the backedge taken count type is larger than the AR type,
2227   // check that we don't drop any bits by truncating it. If we are
2228   // dropping bits, then we have overflow (unless the step is zero).
2229   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2230     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2231     auto *BackedgeCheck =
2232         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2233                            ConstantInt::get(Loc->getContext(), MaxVal));
2234     BackedgeCheck = Builder.CreateAnd(
2235         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2236 
2237     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2238   }
2239 
2240   return EndCheck;
2241 }
2242 
2243 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2244                                          Instruction *IP) {
2245   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2246   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2247 
2248   // Add a check for NUSW
2249   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2250     NUSWCheck = generateOverflowCheck(A, IP, false);
2251 
2252   // Add a check for NSSW
2253   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2254     NSSWCheck = generateOverflowCheck(A, IP, true);
2255 
2256   if (NUSWCheck && NSSWCheck)
2257     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2258 
2259   if (NUSWCheck)
2260     return NUSWCheck;
2261 
2262   if (NSSWCheck)
2263     return NSSWCheck;
2264 
2265   return ConstantInt::getFalse(IP->getContext());
2266 }
2267 
2268 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2269                                           Instruction *IP) {
2270   // Loop over all checks in this set.
2271   SmallVector<Value *> Checks;
2272   for (const auto *Pred : Union->getPredicates()) {
2273     Checks.push_back(expandCodeForPredicate(Pred, IP));
2274     Builder.SetInsertPoint(IP);
2275   }
2276 
2277   if (Checks.empty())
2278     return ConstantInt::getFalse(IP->getContext());
2279   return Builder.CreateOr(Checks);
2280 }
2281 
2282 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2283   auto *DefI = dyn_cast<Instruction>(V);
2284   if (!PreserveLCSSA || !DefI)
2285     return V;
2286 
2287   Instruction *InsertPt = &*Builder.GetInsertPoint();
2288   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2289   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2290   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2291     return V;
2292 
2293   // Create a temporary instruction to at the current insertion point, so we
2294   // can hand it off to the helper to create LCSSA PHIs if required for the
2295   // new use.
2296   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2297   // would accept a insertion point and return an LCSSA phi for that
2298   // insertion point, so there is no need to insert & remove the temporary
2299   // instruction.
2300   Type *ToTy;
2301   if (DefI->getType()->isIntegerTy())
2302     ToTy = PointerType::get(DefI->getContext(), 0);
2303   else
2304     ToTy = Type::getInt32Ty(DefI->getContext());
2305   Instruction *User =
2306       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2307   auto RemoveUserOnExit =
2308       make_scope_exit([User]() { User->eraseFromParent(); });
2309 
2310   SmallVector<Instruction *, 1> ToUpdate;
2311   ToUpdate.push_back(DefI);
2312   SmallVector<PHINode *, 16> PHIsToRemove;
2313   SmallVector<PHINode *, 16> InsertedPHIs;
2314   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2315                            &InsertedPHIs);
2316   for (PHINode *PN : InsertedPHIs)
2317     rememberInstruction(PN);
2318   for (PHINode *PN : PHIsToRemove) {
2319     if (!PN->use_empty())
2320       continue;
2321     InsertedValues.erase(PN);
2322     InsertedPostIncValues.erase(PN);
2323     PN->eraseFromParent();
2324   }
2325 
2326   return User->getOperand(0);
2327 }
2328 
2329 namespace {
2330 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2331 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2332 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2333 // instruction, but the important thing is that we prove the denominator is
2334 // nonzero before expansion.
2335 //
2336 // IVUsers already checks that IV-derived expressions are safe. So this check is
2337 // only needed when the expression includes some subexpression that is not IV
2338 // derived.
2339 //
2340 // Currently, we only allow division by a value provably non-zero here.
2341 //
2342 // We cannot generally expand recurrences unless the step dominates the loop
2343 // header. The expander handles the special case of affine recurrences by
2344 // scaling the recurrence outside the loop, but this technique isn't generally
2345 // applicable. Expanding a nested recurrence outside a loop requires computing
2346 // binomial coefficients. This could be done, but the recurrence has to be in a
2347 // perfectly reduced form, which can't be guaranteed.
2348 struct SCEVFindUnsafe {
2349   ScalarEvolution &SE;
2350   bool CanonicalMode;
2351   bool IsUnsafe = false;
2352 
2353   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2354       : SE(SE), CanonicalMode(CanonicalMode) {}
2355 
2356   bool follow(const SCEV *S) {
2357     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2358       if (!SE.isKnownNonZero(D->getRHS())) {
2359         IsUnsafe = true;
2360         return false;
2361       }
2362     }
2363     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2364       const SCEV *Step = AR->getStepRecurrence(SE);
2365       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2366         IsUnsafe = true;
2367         return false;
2368       }
2369 
2370       // For non-affine addrecs or in non-canonical mode we need a preheader
2371       // to insert into.
2372       if (!AR->getLoop()->getLoopPreheader() &&
2373           (!CanonicalMode || !AR->isAffine())) {
2374         IsUnsafe = true;
2375         return false;
2376       }
2377     }
2378     return true;
2379   }
2380   bool isDone() const { return IsUnsafe; }
2381 };
2382 } // namespace
2383 
2384 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2385   SCEVFindUnsafe Search(SE, CanonicalMode);
2386   visitAll(S, Search);
2387   return !Search.IsUnsafe;
2388 }
2389 
2390 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2391                                     const Instruction *InsertionPoint) const {
2392   if (!isSafeToExpand(S))
2393     return false;
2394   // We have to prove that the expanded site of S dominates InsertionPoint.
2395   // This is easy when not in the same block, but hard when S is an instruction
2396   // to be expanded somewhere inside the same block as our insertion point.
2397   // What we really need here is something analogous to an OrderedBasicBlock,
2398   // but for the moment, we paper over the problem by handling two common and
2399   // cheap to check cases.
2400   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2401     return true;
2402   if (SE.dominates(S, InsertionPoint->getParent())) {
2403     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2404       return true;
2405     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2406       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2407         return true;
2408   }
2409   return false;
2410 }
2411 
2412 void SCEVExpanderCleaner::cleanup() {
2413   // Result is used, nothing to remove.
2414   if (ResultUsed)
2415     return;
2416 
2417   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2418 #ifndef NDEBUG
2419   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2420                                             InsertedInstructions.end());
2421   (void)InsertedSet;
2422 #endif
2423   // Remove sets with value handles.
2424   Expander.clear();
2425 
2426   // Remove all inserted instructions.
2427   for (Instruction *I : reverse(InsertedInstructions)) {
2428 #ifndef NDEBUG
2429     assert(all_of(I->users(),
2430                   [&InsertedSet](Value *U) {
2431                     return InsertedSet.contains(cast<Instruction>(U));
2432                   }) &&
2433            "removed instruction should only be used by instructions inserted "
2434            "during expansion");
2435 #endif
2436     assert(!I->getType()->isVoidTy() &&
2437            "inserted instruction should have non-void types");
2438     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2439     I->eraseFromParent();
2440   }
2441 }
2442