1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 return Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep"); 177 } 178 } 179 // Short-circuit unnecessary bitcasts. 180 if (Op == Instruction::BitCast) { 181 if (V->getType() == Ty) 182 return V; 183 if (CastInst *CI = dyn_cast<CastInst>(V)) { 184 if (CI->getOperand(0)->getType() == Ty) 185 return CI->getOperand(0); 186 } 187 } 188 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 189 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 190 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 191 if (CastInst *CI = dyn_cast<CastInst>(V)) 192 if ((CI->getOpcode() == Instruction::PtrToInt || 193 CI->getOpcode() == Instruction::IntToPtr) && 194 SE.getTypeSizeInBits(CI->getType()) == 195 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 196 return CI->getOperand(0); 197 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 198 if ((CE->getOpcode() == Instruction::PtrToInt || 199 CE->getOpcode() == Instruction::IntToPtr) && 200 SE.getTypeSizeInBits(CE->getType()) == 201 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 202 return CE->getOperand(0); 203 } 204 205 // Fold a cast of a constant. 206 if (Constant *C = dyn_cast<Constant>(V)) 207 return ConstantExpr::getCast(Op, C, Ty); 208 209 // Try to reuse existing cast, or insert one. 210 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 211 } 212 213 /// InsertBinop - Insert the specified binary operator, doing a small amount 214 /// of work to avoid inserting an obviously redundant operation, and hoisting 215 /// to an outer loop when the opportunity is there and it is safe. 216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 217 Value *LHS, Value *RHS, 218 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 219 // Fold a binop with constant operands. 220 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 221 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 222 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 223 return Res; 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 // TODO: Use the Builder, which will make CreateBinOp below fold with 277 // InstSimplifyFolder. 278 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// expandAddToGEP - Expand an addition expression with a pointer type into 289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 290 /// BasicAliasAnalysis and other passes analyze the result. See the rules 291 /// for getelementptr vs. inttoptr in 292 /// http://llvm.org/docs/LangRef.html#pointeraliasing 293 /// for details. 294 /// 295 /// Design note: The correctness of using getelementptr here depends on 296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 297 /// they may introduce pointer arithmetic which may not be safely converted 298 /// into getelementptr. 299 /// 300 /// Design note: It might seem desirable for this function to be more 301 /// loop-aware. If some of the indices are loop-invariant while others 302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 303 /// loop-invariant portions of the overall computation outside the loop. 304 /// However, there are a few reasons this is not done here. Hoisting simple 305 /// arithmetic is a low-level optimization that often isn't very 306 /// important until late in the optimization process. In fact, passes 307 /// like InstructionCombining will combine GEPs, even if it means 308 /// pushing loop-invariant computation down into loops, so even if the 309 /// GEPs were split here, the work would quickly be undone. The 310 /// LoopStrengthReduction pass, which is usually run quite late (and 311 /// after the last InstructionCombining pass), takes care of hoisting 312 /// loop-invariant portions of expressions, after considering what 313 /// can be folded using target addressing modes. 314 /// 315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) { 316 assert(!isa<Instruction>(V) || 317 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 318 319 Value *Idx = expandCodeForImpl(Offset, Ty); 320 321 // Fold a GEP with constant operands. 322 if (Constant *CLHS = dyn_cast<Constant>(V)) 323 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 324 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 325 326 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 327 unsigned ScanLimit = 6; 328 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 329 // Scanning starts from the last instruction before the insertion point. 330 BasicBlock::iterator IP = Builder.GetInsertPoint(); 331 if (IP != BlockBegin) { 332 --IP; 333 for (; ScanLimit; --IP, --ScanLimit) { 334 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 335 // generated code. 336 if (isa<DbgInfoIntrinsic>(IP)) 337 ScanLimit++; 338 if (IP->getOpcode() == Instruction::GetElementPtr && 339 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 340 cast<GEPOperator>(&*IP)->getSourceElementType() == 341 Type::getInt8Ty(Ty->getContext())) 342 return &*IP; 343 if (IP == BlockBegin) break; 344 } 345 } 346 347 // Save the original insertion point so we can restore it when we're done. 348 SCEVInsertPointGuard Guard(Builder, this); 349 350 // Move the insertion point out of as many loops as we can. 351 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 352 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 353 BasicBlock *Preheader = L->getLoopPreheader(); 354 if (!Preheader) break; 355 356 // Ok, move up a level. 357 Builder.SetInsertPoint(Preheader->getTerminator()); 358 } 359 360 // Emit a GEP. 361 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 362 } 363 364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 365 /// SCEV expansion. If they are nested, this is the most nested. If they are 366 /// neighboring, pick the later. 367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 368 DominatorTree &DT) { 369 if (!A) return B; 370 if (!B) return A; 371 if (A->contains(B)) return B; 372 if (B->contains(A)) return A; 373 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 374 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 375 return A; // Arbitrarily break the tie. 376 } 377 378 /// getRelevantLoop - Get the most relevant loop associated with the given 379 /// expression, according to PickMostRelevantLoop. 380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 381 // Test whether we've already computed the most relevant loop for this SCEV. 382 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 383 if (!Pair.second) 384 return Pair.first->second; 385 386 switch (S->getSCEVType()) { 387 case scConstant: 388 case scVScale: 389 return nullptr; // A constant has no relevant loops. 390 case scTruncate: 391 case scZeroExtend: 392 case scSignExtend: 393 case scPtrToInt: 394 case scAddExpr: 395 case scMulExpr: 396 case scUDivExpr: 397 case scAddRecExpr: 398 case scUMaxExpr: 399 case scSMaxExpr: 400 case scUMinExpr: 401 case scSMinExpr: 402 case scSequentialUMinExpr: { 403 const Loop *L = nullptr; 404 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 405 L = AR->getLoop(); 406 for (const SCEV *Op : S->operands()) 407 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 408 return RelevantLoops[S] = L; 409 } 410 case scUnknown: { 411 const SCEVUnknown *U = cast<SCEVUnknown>(S); 412 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 413 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 414 // A non-instruction has no relevant loops. 415 return nullptr; 416 } 417 case scCouldNotCompute: 418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 419 } 420 llvm_unreachable("Unexpected SCEV type!"); 421 } 422 423 namespace { 424 425 /// LoopCompare - Compare loops by PickMostRelevantLoop. 426 class LoopCompare { 427 DominatorTree &DT; 428 public: 429 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 430 431 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 432 std::pair<const Loop *, const SCEV *> RHS) const { 433 // Keep pointer operands sorted at the end. 434 if (LHS.second->getType()->isPointerTy() != 435 RHS.second->getType()->isPointerTy()) 436 return LHS.second->getType()->isPointerTy(); 437 438 // Compare loops with PickMostRelevantLoop. 439 if (LHS.first != RHS.first) 440 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 441 442 // If one operand is a non-constant negative and the other is not, 443 // put the non-constant negative on the right so that a sub can 444 // be used instead of a negate and add. 445 if (LHS.second->isNonConstantNegative()) { 446 if (!RHS.second->isNonConstantNegative()) 447 return false; 448 } else if (RHS.second->isNonConstantNegative()) 449 return true; 450 451 // Otherwise they are equivalent according to this comparison. 452 return false; 453 } 454 }; 455 456 } 457 458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 459 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 460 461 // Collect all the add operands in a loop, along with their associated loops. 462 // Iterate in reverse so that constants are emitted last, all else equal, and 463 // so that pointer operands are inserted first, which the code below relies on 464 // to form more involved GEPs. 465 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 466 for (const SCEV *Op : reverse(S->operands())) 467 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 468 469 // Sort by loop. Use a stable sort so that constants follow non-constants and 470 // pointer operands precede non-pointer operands. 471 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 472 473 // Emit instructions to add all the operands. Hoist as much as possible 474 // out of loops, and form meaningful getelementptrs where possible. 475 Value *Sum = nullptr; 476 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 477 const Loop *CurLoop = I->first; 478 const SCEV *Op = I->second; 479 if (!Sum) { 480 // This is the first operand. Just expand it. 481 Sum = expand(Op); 482 ++I; 483 continue; 484 } 485 486 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 487 if (isa<PointerType>(Sum->getType())) { 488 // The running sum expression is a pointer. Try to form a getelementptr 489 // at this level with that as the base. 490 SmallVector<const SCEV *, 4> NewOps; 491 for (; I != E && I->first == CurLoop; ++I) { 492 // If the operand is SCEVUnknown and not instructions, peek through 493 // it, to enable more of it to be folded into the GEP. 494 const SCEV *X = I->second; 495 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 496 if (!isa<Instruction>(U->getValue())) 497 X = SE.getSCEV(U->getValue()); 498 NewOps.push_back(X); 499 } 500 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum); 501 } else if (Op->isNonConstantNegative()) { 502 // Instead of doing a negate and add, just do a subtract. 503 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty); 504 Sum = InsertNoopCastOfTo(Sum, Ty); 505 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 506 /*IsSafeToHoist*/ true); 507 ++I; 508 } else { 509 // A simple add. 510 Value *W = expandCodeForImpl(Op, Ty); 511 Sum = InsertNoopCastOfTo(Sum, Ty); 512 // Canonicalize a constant to the RHS. 513 if (isa<Constant>(Sum)) std::swap(Sum, W); 514 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 515 /*IsSafeToHoist*/ true); 516 ++I; 517 } 518 } 519 520 return Sum; 521 } 522 523 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 524 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 525 526 // Collect all the mul operands in a loop, along with their associated loops. 527 // Iterate in reverse so that constants are emitted last, all else equal. 528 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 529 for (const SCEV *Op : reverse(S->operands())) 530 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 531 532 // Sort by loop. Use a stable sort so that constants follow non-constants. 533 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 534 535 // Emit instructions to mul all the operands. Hoist as much as possible 536 // out of loops. 537 Value *Prod = nullptr; 538 auto I = OpsAndLoops.begin(); 539 540 // Expand the calculation of X pow N in the following manner: 541 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 542 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 543 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 544 auto E = I; 545 // Calculate how many times the same operand from the same loop is included 546 // into this power. 547 uint64_t Exponent = 0; 548 const uint64_t MaxExponent = UINT64_MAX >> 1; 549 // No one sane will ever try to calculate such huge exponents, but if we 550 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 551 // below when the power of 2 exceeds our Exponent, and we want it to be 552 // 1u << 31 at most to not deal with unsigned overflow. 553 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 554 ++Exponent; 555 ++E; 556 } 557 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 558 559 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 560 // that are needed into the result. 561 Value *P = expandCodeForImpl(I->second, Ty); 562 Value *Result = nullptr; 563 if (Exponent & 1) 564 Result = P; 565 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 566 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 567 /*IsSafeToHoist*/ true); 568 if (Exponent & BinExp) 569 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 570 SCEV::FlagAnyWrap, 571 /*IsSafeToHoist*/ true) 572 : P; 573 } 574 575 I = E; 576 assert(Result && "Nothing was expanded?"); 577 return Result; 578 }; 579 580 while (I != OpsAndLoops.end()) { 581 if (!Prod) { 582 // This is the first operand. Just expand it. 583 Prod = ExpandOpBinPowN(); 584 } else if (I->second->isAllOnesValue()) { 585 // Instead of doing a multiply by negative one, just do a negate. 586 Prod = InsertNoopCastOfTo(Prod, Ty); 587 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 588 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 589 ++I; 590 } else { 591 // A simple mul. 592 Value *W = ExpandOpBinPowN(); 593 Prod = InsertNoopCastOfTo(Prod, Ty); 594 // Canonicalize a constant to the RHS. 595 if (isa<Constant>(Prod)) std::swap(Prod, W); 596 const APInt *RHS; 597 if (match(W, m_Power2(RHS))) { 598 // Canonicalize Prod*(1<<C) to Prod<<C. 599 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 600 auto NWFlags = S->getNoWrapFlags(); 601 // clear nsw flag if shl will produce poison value. 602 if (RHS->logBase2() == RHS->getBitWidth() - 1) 603 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 604 Prod = InsertBinop(Instruction::Shl, Prod, 605 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 606 /*IsSafeToHoist*/ true); 607 } else { 608 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 609 /*IsSafeToHoist*/ true); 610 } 611 } 612 } 613 614 return Prod; 615 } 616 617 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 618 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 619 620 Value *LHS = expandCodeForImpl(S->getLHS(), Ty); 621 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 622 const APInt &RHS = SC->getAPInt(); 623 if (RHS.isPowerOf2()) 624 return InsertBinop(Instruction::LShr, LHS, 625 ConstantInt::get(Ty, RHS.logBase2()), 626 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 627 } 628 629 Value *RHS = expandCodeForImpl(S->getRHS(), Ty); 630 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 631 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 632 } 633 634 /// Determine if this is a well-behaved chain of instructions leading back to 635 /// the PHI. If so, it may be reused by expanded expressions. 636 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 637 const Loop *L) { 638 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 639 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 640 return false; 641 // If any of the operands don't dominate the insert position, bail. 642 // Addrec operands are always loop-invariant, so this can only happen 643 // if there are instructions which haven't been hoisted. 644 if (L == IVIncInsertLoop) { 645 for (Use &Op : llvm::drop_begin(IncV->operands())) 646 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 647 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 648 return false; 649 } 650 // Advance to the next instruction. 651 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 652 if (!IncV) 653 return false; 654 655 if (IncV->mayHaveSideEffects()) 656 return false; 657 658 if (IncV == PN) 659 return true; 660 661 return isNormalAddRecExprPHI(PN, IncV, L); 662 } 663 664 /// getIVIncOperand returns an induction variable increment's induction 665 /// variable operand. 666 /// 667 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 668 /// operands dominate InsertPos. 669 /// 670 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 671 /// simple patterns generated by getAddRecExprPHILiterally and 672 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 673 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 674 Instruction *InsertPos, 675 bool allowScale) { 676 if (IncV == InsertPos) 677 return nullptr; 678 679 switch (IncV->getOpcode()) { 680 default: 681 return nullptr; 682 // Check for a simple Add/Sub or GEP of a loop invariant step. 683 case Instruction::Add: 684 case Instruction::Sub: { 685 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 686 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 687 return dyn_cast<Instruction>(IncV->getOperand(0)); 688 return nullptr; 689 } 690 case Instruction::BitCast: 691 return dyn_cast<Instruction>(IncV->getOperand(0)); 692 case Instruction::GetElementPtr: 693 for (Use &U : llvm::drop_begin(IncV->operands())) { 694 if (isa<Constant>(U)) 695 continue; 696 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 697 if (!SE.DT.dominates(OInst, InsertPos)) 698 return nullptr; 699 } 700 if (allowScale) { 701 // allow any kind of GEP as long as it can be hoisted. 702 continue; 703 } 704 // GEPs produced by SCEVExpander use i8 element type. 705 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 706 return nullptr; 707 break; 708 } 709 return dyn_cast<Instruction>(IncV->getOperand(0)); 710 } 711 } 712 713 /// If the insert point of the current builder or any of the builders on the 714 /// stack of saved builders has 'I' as its insert point, update it to point to 715 /// the instruction after 'I'. This is intended to be used when the instruction 716 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 717 /// different block, the inconsistent insert point (with a mismatched 718 /// Instruction and Block) can lead to an instruction being inserted in a block 719 /// other than its parent. 720 void SCEVExpander::fixupInsertPoints(Instruction *I) { 721 BasicBlock::iterator It(*I); 722 BasicBlock::iterator NewInsertPt = std::next(It); 723 if (Builder.GetInsertPoint() == It) 724 Builder.SetInsertPoint(&*NewInsertPt); 725 for (auto *InsertPtGuard : InsertPointGuards) 726 if (InsertPtGuard->GetInsertPoint() == It) 727 InsertPtGuard->SetInsertPoint(NewInsertPt); 728 } 729 730 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 731 /// it available to other uses in this loop. Recursively hoist any operands, 732 /// until we reach a value that dominates InsertPos. 733 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 734 bool RecomputePoisonFlags) { 735 auto FixupPoisonFlags = [this](Instruction *I) { 736 // Drop flags that are potentially inferred from old context and infer flags 737 // in new context. 738 I->dropPoisonGeneratingFlags(); 739 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 740 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 741 auto *BO = cast<BinaryOperator>(I); 742 BO->setHasNoUnsignedWrap( 743 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 744 BO->setHasNoSignedWrap( 745 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 746 } 747 }; 748 749 if (SE.DT.dominates(IncV, InsertPos)) { 750 if (RecomputePoisonFlags) 751 FixupPoisonFlags(IncV); 752 return true; 753 } 754 755 // InsertPos must itself dominate IncV so that IncV's new position satisfies 756 // its existing users. 757 if (isa<PHINode>(InsertPos) || 758 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 759 return false; 760 761 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 762 return false; 763 764 // Check that the chain of IV operands leading back to Phi can be hoisted. 765 SmallVector<Instruction*, 4> IVIncs; 766 for(;;) { 767 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 768 if (!Oper) 769 return false; 770 // IncV is safe to hoist. 771 IVIncs.push_back(IncV); 772 IncV = Oper; 773 if (SE.DT.dominates(IncV, InsertPos)) 774 break; 775 } 776 for (Instruction *I : llvm::reverse(IVIncs)) { 777 fixupInsertPoints(I); 778 I->moveBefore(InsertPos); 779 if (RecomputePoisonFlags) 780 FixupPoisonFlags(I); 781 } 782 return true; 783 } 784 785 /// Determine if this cyclic phi is in a form that would have been generated by 786 /// LSR. We don't care if the phi was actually expanded in this pass, as long 787 /// as it is in a low-cost form, for example, no implied multiplication. This 788 /// should match any patterns generated by getAddRecExprPHILiterally and 789 /// expandAddtoGEP. 790 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 791 const Loop *L) { 792 for(Instruction *IVOper = IncV; 793 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 794 /*allowScale=*/false));) { 795 if (IVOper == PN) 796 return true; 797 } 798 return false; 799 } 800 801 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 802 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 803 /// need to materialize IV increments elsewhere to handle difficult situations. 804 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 805 Type *ExpandTy, Type *IntTy, 806 bool useSubtract) { 807 Value *IncV; 808 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 809 if (ExpandTy->isPointerTy()) { 810 IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN); 811 } else { 812 IncV = useSubtract ? 813 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 814 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 815 } 816 return IncV; 817 } 818 819 /// Check whether we can cheaply express the requested SCEV in terms of 820 /// the available PHI SCEV by truncation and/or inversion of the step. 821 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 822 const SCEVAddRecExpr *Phi, 823 const SCEVAddRecExpr *Requested, 824 bool &InvertStep) { 825 // We can't transform to match a pointer PHI. 826 if (Phi->getType()->isPointerTy()) 827 return false; 828 829 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 830 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 831 832 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 833 return false; 834 835 // Try truncate it if necessary. 836 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 837 if (!Phi) 838 return false; 839 840 // Check whether truncation will help. 841 if (Phi == Requested) { 842 InvertStep = false; 843 return true; 844 } 845 846 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 847 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 848 InvertStep = true; 849 return true; 850 } 851 852 return false; 853 } 854 855 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 856 if (!isa<IntegerType>(AR->getType())) 857 return false; 858 859 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 860 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 861 const SCEV *Step = AR->getStepRecurrence(SE); 862 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 863 SE.getSignExtendExpr(AR, WideTy)); 864 const SCEV *ExtendAfterOp = 865 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 866 return ExtendAfterOp == OpAfterExtend; 867 } 868 869 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 870 if (!isa<IntegerType>(AR->getType())) 871 return false; 872 873 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 874 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 875 const SCEV *Step = AR->getStepRecurrence(SE); 876 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 877 SE.getZeroExtendExpr(AR, WideTy)); 878 const SCEV *ExtendAfterOp = 879 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 880 return ExtendAfterOp == OpAfterExtend; 881 } 882 883 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 884 /// the base addrec, which is the addrec without any non-loop-dominating 885 /// values, and return the PHI. 886 PHINode * 887 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 888 const Loop *L, 889 Type *ExpandTy, 890 Type *IntTy, 891 Type *&TruncTy, 892 bool &InvertStep) { 893 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 894 895 // Reuse a previously-inserted PHI, if present. 896 BasicBlock *LatchBlock = L->getLoopLatch(); 897 if (LatchBlock) { 898 PHINode *AddRecPhiMatch = nullptr; 899 Instruction *IncV = nullptr; 900 TruncTy = nullptr; 901 InvertStep = false; 902 903 // Only try partially matching scevs that need truncation and/or 904 // step-inversion if we know this loop is outside the current loop. 905 bool TryNonMatchingSCEV = 906 IVIncInsertLoop && 907 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 908 909 for (PHINode &PN : L->getHeader()->phis()) { 910 if (!SE.isSCEVable(PN.getType())) 911 continue; 912 913 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 914 // PHI has no meaning at all. 915 if (!PN.isComplete()) { 916 SCEV_DEBUG_WITH_TYPE( 917 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 918 continue; 919 } 920 921 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 922 if (!PhiSCEV) 923 continue; 924 925 bool IsMatchingSCEV = PhiSCEV == Normalized; 926 // We only handle truncation and inversion of phi recurrences for the 927 // expanded expression if the expanded expression's loop dominates the 928 // loop we insert to. Check now, so we can bail out early. 929 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 930 continue; 931 932 // TODO: this possibly can be reworked to avoid this cast at all. 933 Instruction *TempIncV = 934 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 935 if (!TempIncV) 936 continue; 937 938 // Check whether we can reuse this PHI node. 939 if (LSRMode) { 940 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 941 continue; 942 } else { 943 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 944 continue; 945 } 946 947 // Stop if we have found an exact match SCEV. 948 if (IsMatchingSCEV) { 949 IncV = TempIncV; 950 TruncTy = nullptr; 951 InvertStep = false; 952 AddRecPhiMatch = &PN; 953 break; 954 } 955 956 // Try whether the phi can be translated into the requested form 957 // (truncated and/or offset by a constant). 958 if ((!TruncTy || InvertStep) && 959 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 960 // Record the phi node. But don't stop we might find an exact match 961 // later. 962 AddRecPhiMatch = &PN; 963 IncV = TempIncV; 964 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 965 } 966 } 967 968 if (AddRecPhiMatch) { 969 // Ok, the add recurrence looks usable. 970 // Remember this PHI, even in post-inc mode. 971 InsertedValues.insert(AddRecPhiMatch); 972 // Remember the increment. 973 rememberInstruction(IncV); 974 // Those values were not actually inserted but re-used. 975 ReusedValues.insert(AddRecPhiMatch); 976 ReusedValues.insert(IncV); 977 return AddRecPhiMatch; 978 } 979 } 980 981 // Save the original insertion point so we can restore it when we're done. 982 SCEVInsertPointGuard Guard(Builder, this); 983 984 // Another AddRec may need to be recursively expanded below. For example, if 985 // this AddRec is quadratic, the StepV may itself be an AddRec in this 986 // loop. Remove this loop from the PostIncLoops set before expanding such 987 // AddRecs. Otherwise, we cannot find a valid position for the step 988 // (i.e. StepV can never dominate its loop header). Ideally, we could do 989 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 990 // so it's not worth implementing SmallPtrSet::swap. 991 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 992 PostIncLoops.clear(); 993 994 // Expand code for the start value into the loop preheader. 995 assert(L->getLoopPreheader() && 996 "Can't expand add recurrences without a loop preheader!"); 997 Value *StartV = 998 expandCodeForImpl(Normalized->getStart(), ExpandTy, 999 L->getLoopPreheader()->getTerminator()); 1000 1001 // StartV must have been be inserted into L's preheader to dominate the new 1002 // phi. 1003 assert(!isa<Instruction>(StartV) || 1004 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1005 L->getHeader())); 1006 1007 // Expand code for the step value. Do this before creating the PHI so that PHI 1008 // reuse code doesn't see an incomplete PHI. 1009 const SCEV *Step = Normalized->getStepRecurrence(SE); 1010 // If the stride is negative, insert a sub instead of an add for the increment 1011 // (unless it's a constant, because subtracts of constants are canonicalized 1012 // to adds). 1013 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1014 if (useSubtract) 1015 Step = SE.getNegativeSCEV(Step); 1016 // Expand the step somewhere that dominates the loop header. 1017 Value *StepV = expandCodeForImpl( 1018 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1019 1020 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1021 // we actually do emit an addition. It does not apply if we emit a 1022 // subtraction. 1023 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1024 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1025 1026 // Create the PHI. 1027 BasicBlock *Header = L->getHeader(); 1028 Builder.SetInsertPoint(Header, Header->begin()); 1029 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1030 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1031 Twine(IVName) + ".iv"); 1032 1033 // Create the step instructions and populate the PHI. 1034 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1035 BasicBlock *Pred = *HPI; 1036 1037 // Add a start value. 1038 if (!L->contains(Pred)) { 1039 PN->addIncoming(StartV, Pred); 1040 continue; 1041 } 1042 1043 // Create a step value and add it to the PHI. 1044 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1045 // instructions at IVIncInsertPos. 1046 Instruction *InsertPos = L == IVIncInsertLoop ? 1047 IVIncInsertPos : Pred->getTerminator(); 1048 Builder.SetInsertPoint(InsertPos); 1049 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1050 1051 if (isa<OverflowingBinaryOperator>(IncV)) { 1052 if (IncrementIsNUW) 1053 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1054 if (IncrementIsNSW) 1055 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1056 } 1057 PN->addIncoming(IncV, Pred); 1058 } 1059 1060 // After expanding subexpressions, restore the PostIncLoops set so the caller 1061 // can ensure that IVIncrement dominates the current uses. 1062 PostIncLoops = SavedPostIncLoops; 1063 1064 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1065 // effective when we are able to use an IV inserted here, so record it. 1066 InsertedValues.insert(PN); 1067 InsertedIVs.push_back(PN); 1068 return PN; 1069 } 1070 1071 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1072 Type *STy = S->getType(); 1073 Type *IntTy = SE.getEffectiveSCEVType(STy); 1074 const Loop *L = S->getLoop(); 1075 1076 // Determine a normalized form of this expression, which is the expression 1077 // before any post-inc adjustment is made. 1078 const SCEVAddRecExpr *Normalized = S; 1079 if (PostIncLoops.count(L)) { 1080 PostIncLoopSet Loops; 1081 Loops.insert(L); 1082 Normalized = cast<SCEVAddRecExpr>( 1083 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1084 } 1085 1086 // Strip off any non-loop-dominating component from the addrec start. 1087 const SCEV *Start = Normalized->getStart(); 1088 const SCEV *PostLoopOffset = nullptr; 1089 if (!SE.properlyDominates(Start, L->getHeader())) { 1090 PostLoopOffset = Start; 1091 Start = SE.getConstant(Normalized->getType(), 0); 1092 Normalized = cast<SCEVAddRecExpr>( 1093 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1094 Normalized->getLoop(), 1095 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1096 } 1097 1098 // Strip off any non-loop-dominating component from the addrec step. 1099 const SCEV *Step = Normalized->getStepRecurrence(SE); 1100 const SCEV *PostLoopScale = nullptr; 1101 if (!SE.dominates(Step, L->getHeader())) { 1102 PostLoopScale = Step; 1103 Step = SE.getConstant(Normalized->getType(), 1); 1104 if (!Start->isZero()) { 1105 // The normalization below assumes that Start is constant zero, so if 1106 // it isn't re-associate Start to PostLoopOffset. 1107 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1108 PostLoopOffset = Start; 1109 Start = SE.getConstant(Normalized->getType(), 0); 1110 } 1111 Normalized = 1112 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1113 Start, Step, Normalized->getLoop(), 1114 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1115 } 1116 1117 // Expand the core addrec. If we need post-loop scaling, force it to 1118 // expand to an integer type to avoid the need for additional casting. 1119 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1120 // We can't use a pointer type for the addrec if the pointer type is 1121 // non-integral. 1122 Type *AddRecPHIExpandTy = 1123 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1124 1125 // In some cases, we decide to reuse an existing phi node but need to truncate 1126 // it and/or invert the step. 1127 Type *TruncTy = nullptr; 1128 bool InvertStep = false; 1129 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1130 IntTy, TruncTy, InvertStep); 1131 1132 // Accommodate post-inc mode, if necessary. 1133 Value *Result; 1134 if (!PostIncLoops.count(L)) 1135 Result = PN; 1136 else { 1137 // In PostInc mode, use the post-incremented value. 1138 BasicBlock *LatchBlock = L->getLoopLatch(); 1139 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1140 Result = PN->getIncomingValueForBlock(LatchBlock); 1141 1142 // We might be introducing a new use of the post-inc IV that is not poison 1143 // safe, in which case we should drop poison generating flags. Only keep 1144 // those flags for which SCEV has proven that they always hold. 1145 if (isa<OverflowingBinaryOperator>(Result)) { 1146 auto *I = cast<Instruction>(Result); 1147 if (!S->hasNoUnsignedWrap()) 1148 I->setHasNoUnsignedWrap(false); 1149 if (!S->hasNoSignedWrap()) 1150 I->setHasNoSignedWrap(false); 1151 } 1152 1153 // For an expansion to use the postinc form, the client must call 1154 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1155 // or dominated by IVIncInsertPos. 1156 if (isa<Instruction>(Result) && 1157 !SE.DT.dominates(cast<Instruction>(Result), 1158 &*Builder.GetInsertPoint())) { 1159 // The induction variable's postinc expansion does not dominate this use. 1160 // IVUsers tries to prevent this case, so it is rare. However, it can 1161 // happen when an IVUser outside the loop is not dominated by the latch 1162 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1163 // all cases. Consider a phi outside whose operand is replaced during 1164 // expansion with the value of the postinc user. Without fundamentally 1165 // changing the way postinc users are tracked, the only remedy is 1166 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1167 // but hopefully expandCodeFor handles that. 1168 bool useSubtract = 1169 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1170 if (useSubtract) 1171 Step = SE.getNegativeSCEV(Step); 1172 Value *StepV; 1173 { 1174 // Expand the step somewhere that dominates the loop header. 1175 SCEVInsertPointGuard Guard(Builder, this); 1176 StepV = expandCodeForImpl( 1177 Step, IntTy, &*L->getHeader()->getFirstInsertionPt()); 1178 } 1179 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1180 } 1181 } 1182 1183 // We have decided to reuse an induction variable of a dominating loop. Apply 1184 // truncation and/or inversion of the step. 1185 if (TruncTy) { 1186 Type *ResTy = Result->getType(); 1187 // Normalize the result type. 1188 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1189 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1190 // Truncate the result. 1191 if (TruncTy != Result->getType()) 1192 Result = Builder.CreateTrunc(Result, TruncTy); 1193 1194 // Invert the result. 1195 if (InvertStep) 1196 Result = Builder.CreateSub( 1197 expandCodeForImpl(Normalized->getStart(), TruncTy), Result); 1198 } 1199 1200 // Re-apply any non-loop-dominating scale. 1201 if (PostLoopScale) { 1202 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1203 Result = InsertNoopCastOfTo(Result, IntTy); 1204 Result = Builder.CreateMul(Result, 1205 expandCodeForImpl(PostLoopScale, IntTy)); 1206 } 1207 1208 // Re-apply any non-loop-dominating offset. 1209 if (PostLoopOffset) { 1210 if (isa<PointerType>(ExpandTy)) { 1211 if (Result->getType()->isIntegerTy()) { 1212 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy); 1213 Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base); 1214 } else { 1215 Result = expandAddToGEP(PostLoopOffset, IntTy, Result); 1216 } 1217 } else { 1218 Result = InsertNoopCastOfTo(Result, IntTy); 1219 Result = Builder.CreateAdd( 1220 Result, expandCodeForImpl(PostLoopOffset, IntTy)); 1221 } 1222 } 1223 1224 return Result; 1225 } 1226 1227 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1228 // In canonical mode we compute the addrec as an expression of a canonical IV 1229 // using evaluateAtIteration and expand the resulting SCEV expression. This 1230 // way we avoid introducing new IVs to carry on the computation of the addrec 1231 // throughout the loop. 1232 // 1233 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1234 // type wider than the addrec itself. Emitting a canonical IV of the 1235 // proper type might produce non-legal types, for example expanding an i64 1236 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1237 // back to non-canonical mode for nested addrecs. 1238 if (!CanonicalMode || (S->getNumOperands() > 2)) 1239 return expandAddRecExprLiterally(S); 1240 1241 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1242 const Loop *L = S->getLoop(); 1243 1244 // First check for an existing canonical IV in a suitable type. 1245 PHINode *CanonicalIV = nullptr; 1246 if (PHINode *PN = L->getCanonicalInductionVariable()) 1247 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1248 CanonicalIV = PN; 1249 1250 // Rewrite an AddRec in terms of the canonical induction variable, if 1251 // its type is more narrow. 1252 if (CanonicalIV && 1253 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1254 !S->getType()->isPointerTy()) { 1255 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1256 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1257 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1258 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1259 S->getNoWrapFlags(SCEV::FlagNW))); 1260 BasicBlock::iterator NewInsertPt = 1261 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1262 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1263 &*NewInsertPt); 1264 return V; 1265 } 1266 1267 // {X,+,F} --> X + {0,+,F} 1268 if (!S->getStart()->isZero()) { 1269 if (isa<PointerType>(S->getType())) { 1270 Value *StartV = expand(SE.getPointerBase(S)); 1271 return expandAddToGEP(SE.removePointerBase(S), Ty, StartV); 1272 } 1273 1274 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1275 NewOps[0] = SE.getConstant(Ty, 0); 1276 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1277 S->getNoWrapFlags(SCEV::FlagNW)); 1278 1279 // Just do a normal add. Pre-expand the operands to suppress folding. 1280 // 1281 // The LHS and RHS values are factored out of the expand call to make the 1282 // output independent of the argument evaluation order. 1283 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1284 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1285 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1286 } 1287 1288 // If we don't yet have a canonical IV, create one. 1289 if (!CanonicalIV) { 1290 // Create and insert the PHI node for the induction variable in the 1291 // specified loop. 1292 BasicBlock *Header = L->getHeader(); 1293 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1294 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1295 CanonicalIV->insertBefore(Header->begin()); 1296 rememberInstruction(CanonicalIV); 1297 1298 SmallSet<BasicBlock *, 4> PredSeen; 1299 Constant *One = ConstantInt::get(Ty, 1); 1300 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1301 BasicBlock *HP = *HPI; 1302 if (!PredSeen.insert(HP).second) { 1303 // There must be an incoming value for each predecessor, even the 1304 // duplicates! 1305 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1306 continue; 1307 } 1308 1309 if (L->contains(HP)) { 1310 // Insert a unit add instruction right before the terminator 1311 // corresponding to the back-edge. 1312 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1313 "indvar.next", 1314 HP->getTerminator()); 1315 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1316 rememberInstruction(Add); 1317 CanonicalIV->addIncoming(Add, HP); 1318 } else { 1319 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1320 } 1321 } 1322 } 1323 1324 // {0,+,1} --> Insert a canonical induction variable into the loop! 1325 if (S->isAffine() && S->getOperand(1)->isOne()) { 1326 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1327 "IVs with types different from the canonical IV should " 1328 "already have been handled!"); 1329 return CanonicalIV; 1330 } 1331 1332 // {0,+,F} --> {0,+,1} * F 1333 1334 // If this is a simple linear addrec, emit it now as a special case. 1335 if (S->isAffine()) // {0,+,F} --> i*F 1336 return 1337 expand(SE.getTruncateOrNoop( 1338 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1339 SE.getNoopOrAnyExtend(S->getOperand(1), 1340 CanonicalIV->getType())), 1341 Ty)); 1342 1343 // If this is a chain of recurrences, turn it into a closed form, using the 1344 // folders, then expandCodeFor the closed form. This allows the folders to 1345 // simplify the expression without having to build a bunch of special code 1346 // into this folder. 1347 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1348 1349 // Promote S up to the canonical IV type, if the cast is foldable. 1350 const SCEV *NewS = S; 1351 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1352 if (isa<SCEVAddRecExpr>(Ext)) 1353 NewS = Ext; 1354 1355 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1356 1357 // Truncate the result down to the original type, if needed. 1358 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1359 return expand(T); 1360 } 1361 1362 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1363 Value *V = 1364 expandCodeForImpl(S->getOperand(), S->getOperand()->getType()); 1365 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1366 GetOptimalInsertionPointForCastOf(V)); 1367 } 1368 1369 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1370 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1371 Value *V = expandCodeForImpl( 1372 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1373 ); 1374 return Builder.CreateTrunc(V, Ty); 1375 } 1376 1377 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1378 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1379 Value *V = expandCodeForImpl( 1380 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1381 ); 1382 return Builder.CreateZExt(V, Ty); 1383 } 1384 1385 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1386 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1387 Value *V = expandCodeForImpl( 1388 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()) 1389 ); 1390 return Builder.CreateSExt(V, Ty); 1391 } 1392 1393 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1394 Intrinsic::ID IntrinID, Twine Name, 1395 bool IsSequential) { 1396 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1397 Type *Ty = LHS->getType(); 1398 if (IsSequential) 1399 LHS = Builder.CreateFreeze(LHS); 1400 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1401 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty); 1402 if (IsSequential && i != 0) 1403 RHS = Builder.CreateFreeze(RHS); 1404 Value *Sel; 1405 if (Ty->isIntegerTy()) 1406 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1407 /*FMFSource=*/nullptr, Name); 1408 else { 1409 Value *ICmp = 1410 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1411 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1412 } 1413 LHS = Sel; 1414 } 1415 return LHS; 1416 } 1417 1418 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1419 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1420 } 1421 1422 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1423 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1424 } 1425 1426 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1427 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1428 } 1429 1430 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1431 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1432 } 1433 1434 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1435 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1436 } 1437 1438 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1439 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1440 } 1441 1442 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1443 Instruction *IP) { 1444 setInsertPoint(IP); 1445 Value *V = expandCodeForImpl(SH, Ty); 1446 return V; 1447 } 1448 1449 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty) { 1450 // Expand the code for this SCEV. 1451 Value *V = expand(SH); 1452 1453 if (Ty) { 1454 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1455 "non-trivial casts should be done with the SCEVs directly!"); 1456 V = InsertNoopCastOfTo(V, Ty); 1457 } 1458 return V; 1459 } 1460 1461 static bool 1462 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I, 1463 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1464 // If the instruction cannot be poison, it's always safe to reuse. 1465 if (programUndefinedIfPoison(I)) 1466 return true; 1467 1468 // Otherwise, it is possible that I is more poisonous that S. Collect the 1469 // poison-contributors of S, and then check whether I has any additional 1470 // poison-contributors. Poison that is contributed through poison-generating 1471 // flags is handled by dropping those flags instead. 1472 SmallPtrSet<const Value *, 8> PoisonVals; 1473 SE.getPoisonGeneratingValues(PoisonVals, S); 1474 1475 SmallVector<Value *> Worklist; 1476 SmallPtrSet<Value *, 8> Visited; 1477 Worklist.push_back(I); 1478 while (!Worklist.empty()) { 1479 Value *V = Worklist.pop_back_val(); 1480 if (!Visited.insert(V).second) 1481 continue; 1482 1483 // Avoid walking large instruction graphs. 1484 if (Visited.size() > 16) 1485 return false; 1486 1487 // Either the value can't be poison, or the S would also be poison if it 1488 // is. 1489 if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V)) 1490 continue; 1491 1492 auto *I = dyn_cast<Instruction>(V); 1493 if (!I) 1494 return false; 1495 1496 // FIXME: Ignore vscale, even though it technically could be poison. Do this 1497 // because SCEV currently assumes it can't be poison. Remove this special 1498 // case once we proper model when vscale can be poison. 1499 if (auto *II = dyn_cast<IntrinsicInst>(I); 1500 II && II->getIntrinsicID() == Intrinsic::vscale) 1501 continue; 1502 1503 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 1504 return false; 1505 1506 // If the instruction can't create poison, we can recurse to its operands. 1507 if (I->hasPoisonGeneratingFlagsOrMetadata()) 1508 DropPoisonGeneratingInsts.push_back(I); 1509 1510 for (Value *Op : I->operands()) 1511 Worklist.push_back(Op); 1512 } 1513 return true; 1514 } 1515 1516 Value *SCEVExpander::FindValueInExprValueMap( 1517 const SCEV *S, const Instruction *InsertPt, 1518 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1519 // If the expansion is not in CanonicalMode, and the SCEV contains any 1520 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1521 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1522 return nullptr; 1523 1524 // If S is a constant, it may be worse to reuse an existing Value. 1525 if (isa<SCEVConstant>(S)) 1526 return nullptr; 1527 1528 for (Value *V : SE.getSCEVValues(S)) { 1529 Instruction *EntInst = dyn_cast<Instruction>(V); 1530 if (!EntInst) 1531 continue; 1532 1533 // Choose a Value from the set which dominates the InsertPt. 1534 // InsertPt should be inside the Value's parent loop so as not to break 1535 // the LCSSA form. 1536 assert(EntInst->getFunction() == InsertPt->getFunction()); 1537 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1538 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1539 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1540 continue; 1541 1542 // Make sure reusing the instruction is poison-safe. 1543 if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts)) 1544 return V; 1545 DropPoisonGeneratingInsts.clear(); 1546 } 1547 return nullptr; 1548 } 1549 1550 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1551 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1552 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1553 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1554 // the expansion will try to reuse Value from ExprValueMap, and only when it 1555 // fails, expand the SCEV literally. 1556 Value *SCEVExpander::expand(const SCEV *S) { 1557 // Compute an insertion point for this SCEV object. Hoist the instructions 1558 // as far out in the loop nest as possible. 1559 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1560 1561 // We can move insertion point only if there is no div or rem operations 1562 // otherwise we are risky to move it over the check for zero denominator. 1563 auto SafeToHoist = [](const SCEV *S) { 1564 return !SCEVExprContains(S, [](const SCEV *S) { 1565 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1566 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1567 // Division by non-zero constants can be hoisted. 1568 return SC->getValue()->isZero(); 1569 // All other divisions should not be moved as they may be 1570 // divisions by zero and should be kept within the 1571 // conditions of the surrounding loops that guard their 1572 // execution (see PR35406). 1573 return true; 1574 } 1575 return false; 1576 }); 1577 }; 1578 if (SafeToHoist(S)) { 1579 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1580 L = L->getParentLoop()) { 1581 if (SE.isLoopInvariant(S, L)) { 1582 if (!L) break; 1583 if (BasicBlock *Preheader = L->getLoopPreheader()) 1584 InsertPt = Preheader->getTerminator(); 1585 else 1586 // LSR sets the insertion point for AddRec start/step values to the 1587 // block start to simplify value reuse, even though it's an invalid 1588 // position. SCEVExpander must correct for this in all cases. 1589 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1590 } else { 1591 // If the SCEV is computable at this level, insert it into the header 1592 // after the PHIs (and after any other instructions that we've inserted 1593 // there) so that it is guaranteed to dominate any user inside the loop. 1594 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1595 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1596 1597 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1598 (isInsertedInstruction(InsertPt) || 1599 isa<DbgInfoIntrinsic>(InsertPt))) { 1600 InsertPt = &*std::next(InsertPt->getIterator()); 1601 } 1602 break; 1603 } 1604 } 1605 } 1606 1607 // Check to see if we already expanded this here. 1608 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1609 if (I != InsertedExpressions.end()) 1610 return I->second; 1611 1612 SCEVInsertPointGuard Guard(Builder, this); 1613 Builder.SetInsertPoint(InsertPt); 1614 1615 // Expand the expression into instructions. 1616 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1617 Value *V = FindValueInExprValueMap(S, InsertPt, DropPoisonGeneratingInsts); 1618 if (!V) { 1619 V = visit(S); 1620 V = fixupLCSSAFormFor(V); 1621 } else { 1622 for (Instruction *I : DropPoisonGeneratingInsts) 1623 I->dropPoisonGeneratingFlagsAndMetadata(); 1624 } 1625 // Remember the expanded value for this SCEV at this location. 1626 // 1627 // This is independent of PostIncLoops. The mapped value simply materializes 1628 // the expression at this insertion point. If the mapped value happened to be 1629 // a postinc expansion, it could be reused by a non-postinc user, but only if 1630 // its insertion point was already at the head of the loop. 1631 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1632 return V; 1633 } 1634 1635 void SCEVExpander::rememberInstruction(Value *I) { 1636 auto DoInsert = [this](Value *V) { 1637 if (!PostIncLoops.empty()) 1638 InsertedPostIncValues.insert(V); 1639 else 1640 InsertedValues.insert(V); 1641 }; 1642 DoInsert(I); 1643 } 1644 1645 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1646 /// replace them with their most canonical representative. Return the number of 1647 /// phis eliminated. 1648 /// 1649 /// This does not depend on any SCEVExpander state but should be used in 1650 /// the same context that SCEVExpander is used. 1651 unsigned 1652 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1653 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1654 const TargetTransformInfo *TTI) { 1655 // Find integer phis in order of increasing width. 1656 SmallVector<PHINode*, 8> Phis; 1657 for (PHINode &PN : L->getHeader()->phis()) 1658 Phis.push_back(&PN); 1659 1660 if (TTI) 1661 // Use stable_sort to preserve order of equivalent PHIs, so the order 1662 // of the sorted Phis is the same from run to run on the same loop. 1663 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1664 // Put pointers at the back and make sure pointer < pointer = false. 1665 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1666 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1667 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1668 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1669 }); 1670 1671 unsigned NumElim = 0; 1672 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1673 // Process phis from wide to narrow. Map wide phis to their truncation 1674 // so narrow phis can reuse them. 1675 for (PHINode *Phi : Phis) { 1676 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1677 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1678 return V; 1679 if (!SE.isSCEVable(PN->getType())) 1680 return nullptr; 1681 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1682 if (!Const) 1683 return nullptr; 1684 return Const->getValue(); 1685 }; 1686 1687 // Fold constant phis. They may be congruent to other constant phis and 1688 // would confuse the logic below that expects proper IVs. 1689 if (Value *V = SimplifyPHINode(Phi)) { 1690 if (V->getType() != Phi->getType()) 1691 continue; 1692 SE.forgetValue(Phi); 1693 Phi->replaceAllUsesWith(V); 1694 DeadInsts.emplace_back(Phi); 1695 ++NumElim; 1696 SCEV_DEBUG_WITH_TYPE(DebugType, 1697 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1698 << '\n'); 1699 continue; 1700 } 1701 1702 if (!SE.isSCEVable(Phi->getType())) 1703 continue; 1704 1705 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1706 if (!OrigPhiRef) { 1707 OrigPhiRef = Phi; 1708 if (Phi->getType()->isIntegerTy() && TTI && 1709 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1710 // Make sure we only rewrite using simple induction variables; 1711 // otherwise, we can make the trip count of a loop unanalyzable 1712 // to SCEV. 1713 const SCEV *PhiExpr = SE.getSCEV(Phi); 1714 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1715 // This phi can be freely truncated to the narrowest phi type. Map the 1716 // truncated expression to it so it will be reused for narrow types. 1717 const SCEV *TruncExpr = 1718 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1719 ExprToIVMap[TruncExpr] = Phi; 1720 } 1721 } 1722 continue; 1723 } 1724 1725 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1726 // sense. 1727 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1728 continue; 1729 1730 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1731 Instruction *OrigInc = dyn_cast<Instruction>( 1732 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1733 Instruction *IsomorphicInc = 1734 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1735 1736 if (OrigInc && IsomorphicInc) { 1737 // If this phi has the same width but is more canonical, replace the 1738 // original with it. As part of the "more canonical" determination, 1739 // respect a prior decision to use an IV chain. 1740 if (OrigPhiRef->getType() == Phi->getType() && 1741 !(ChainedPhis.count(Phi) || 1742 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1743 (ChainedPhis.count(Phi) || 1744 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1745 std::swap(OrigPhiRef, Phi); 1746 std::swap(OrigInc, IsomorphicInc); 1747 } 1748 // Replacing the congruent phi is sufficient because acyclic 1749 // redundancy elimination, CSE/GVN, should handle the 1750 // rest. However, once SCEV proves that a phi is congruent, 1751 // it's often the head of an IV user cycle that is isomorphic 1752 // with the original phi. It's worth eagerly cleaning up the 1753 // common case of a single IV increment so that DeleteDeadPHIs 1754 // can remove cycles that had postinc uses. 1755 // Because we may potentially introduce a new use of OrigIV that didn't 1756 // exist before at this point, its poison flags need readjustment. 1757 const SCEV *TruncExpr = 1758 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1759 if (OrigInc != IsomorphicInc && 1760 TruncExpr == SE.getSCEV(IsomorphicInc) && 1761 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1762 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1763 SCEV_DEBUG_WITH_TYPE( 1764 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1765 << *IsomorphicInc << '\n'); 1766 Value *NewInc = OrigInc; 1767 if (OrigInc->getType() != IsomorphicInc->getType()) { 1768 Instruction *IP = nullptr; 1769 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1770 IP = &*PN->getParent()->getFirstInsertionPt(); 1771 else 1772 IP = OrigInc->getNextNode(); 1773 1774 IRBuilder<> Builder(IP); 1775 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1776 NewInc = Builder.CreateTruncOrBitCast( 1777 OrigInc, IsomorphicInc->getType(), IVName); 1778 } 1779 IsomorphicInc->replaceAllUsesWith(NewInc); 1780 DeadInsts.emplace_back(IsomorphicInc); 1781 } 1782 } 1783 } 1784 SCEV_DEBUG_WITH_TYPE(DebugType, 1785 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1786 << '\n'); 1787 SCEV_DEBUG_WITH_TYPE( 1788 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1789 ++NumElim; 1790 Value *NewIV = OrigPhiRef; 1791 if (OrigPhiRef->getType() != Phi->getType()) { 1792 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 1793 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1794 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1795 } 1796 Phi->replaceAllUsesWith(NewIV); 1797 DeadInsts.emplace_back(Phi); 1798 } 1799 return NumElim; 1800 } 1801 1802 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1803 const Instruction *At, 1804 Loop *L) { 1805 using namespace llvm::PatternMatch; 1806 1807 SmallVector<BasicBlock *, 4> ExitingBlocks; 1808 L->getExitingBlocks(ExitingBlocks); 1809 1810 // Look for suitable value in simple conditions at the loop exits. 1811 for (BasicBlock *BB : ExitingBlocks) { 1812 ICmpInst::Predicate Pred; 1813 Instruction *LHS, *RHS; 1814 1815 if (!match(BB->getTerminator(), 1816 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1817 m_BasicBlock(), m_BasicBlock()))) 1818 continue; 1819 1820 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1821 return true; 1822 1823 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1824 return true; 1825 } 1826 1827 // Use expand's logic which is used for reusing a previous Value in 1828 // ExprValueMap. Note that we don't currently model the cost of 1829 // needing to drop poison generating flags on the instruction if we 1830 // want to reuse it. We effectively assume that has zero cost. 1831 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1832 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1833 } 1834 1835 template<typename T> static InstructionCost costAndCollectOperands( 1836 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1837 TargetTransformInfo::TargetCostKind CostKind, 1838 SmallVectorImpl<SCEVOperand> &Worklist) { 1839 1840 const T *S = cast<T>(WorkItem.S); 1841 InstructionCost Cost = 0; 1842 // Object to help map SCEV operands to expanded IR instructions. 1843 struct OperationIndices { 1844 OperationIndices(unsigned Opc, size_t min, size_t max) : 1845 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1846 unsigned Opcode; 1847 size_t MinIdx; 1848 size_t MaxIdx; 1849 }; 1850 1851 // Collect the operations of all the instructions that will be needed to 1852 // expand the SCEVExpr. This is so that when we come to cost the operands, 1853 // we know what the generated user(s) will be. 1854 SmallVector<OperationIndices, 2> Operations; 1855 1856 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1857 Operations.emplace_back(Opcode, 0, 0); 1858 return TTI.getCastInstrCost(Opcode, S->getType(), 1859 S->getOperand(0)->getType(), 1860 TTI::CastContextHint::None, CostKind); 1861 }; 1862 1863 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1864 unsigned MinIdx = 0, 1865 unsigned MaxIdx = 1) -> InstructionCost { 1866 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1867 return NumRequired * 1868 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1869 }; 1870 1871 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1872 unsigned MaxIdx) -> InstructionCost { 1873 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1874 Type *OpType = S->getType(); 1875 return NumRequired * TTI.getCmpSelInstrCost( 1876 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1877 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1878 }; 1879 1880 switch (S->getSCEVType()) { 1881 case scCouldNotCompute: 1882 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1883 case scUnknown: 1884 case scConstant: 1885 case scVScale: 1886 return 0; 1887 case scPtrToInt: 1888 Cost = CastCost(Instruction::PtrToInt); 1889 break; 1890 case scTruncate: 1891 Cost = CastCost(Instruction::Trunc); 1892 break; 1893 case scZeroExtend: 1894 Cost = CastCost(Instruction::ZExt); 1895 break; 1896 case scSignExtend: 1897 Cost = CastCost(Instruction::SExt); 1898 break; 1899 case scUDivExpr: { 1900 unsigned Opcode = Instruction::UDiv; 1901 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1902 if (SC->getAPInt().isPowerOf2()) 1903 Opcode = Instruction::LShr; 1904 Cost = ArithCost(Opcode, 1); 1905 break; 1906 } 1907 case scAddExpr: 1908 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1909 break; 1910 case scMulExpr: 1911 // TODO: this is a very pessimistic cost modelling for Mul, 1912 // because of Bin Pow algorithm actually used by the expander, 1913 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1914 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1915 break; 1916 case scSMaxExpr: 1917 case scUMaxExpr: 1918 case scSMinExpr: 1919 case scUMinExpr: 1920 case scSequentialUMinExpr: { 1921 // FIXME: should this ask the cost for Intrinsic's? 1922 // The reduction tree. 1923 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1924 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1925 switch (S->getSCEVType()) { 1926 case scSequentialUMinExpr: { 1927 // The safety net against poison. 1928 // FIXME: this is broken. 1929 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1930 Cost += ArithCost(Instruction::Or, 1931 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1932 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1933 break; 1934 } 1935 default: 1936 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1937 "Unhandled SCEV expression type?"); 1938 break; 1939 } 1940 break; 1941 } 1942 case scAddRecExpr: { 1943 // In this polynominal, we may have some zero operands, and we shouldn't 1944 // really charge for those. So how many non-zero coefficients are there? 1945 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1946 return !Op->isZero(); 1947 }); 1948 1949 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1950 assert(!(*std::prev(S->operands().end()))->isZero() && 1951 "Last operand should not be zero"); 1952 1953 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1954 int NumNonZeroDegreeNonOneTerms = 1955 llvm::count_if(S->operands(), [](const SCEV *Op) { 1956 auto *SConst = dyn_cast<SCEVConstant>(Op); 1957 return !SConst || SConst->getAPInt().ugt(1); 1958 }); 1959 1960 // Much like with normal add expr, the polynominal will require 1961 // one less addition than the number of it's terms. 1962 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1963 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1964 // Here, *each* one of those will require a multiplication. 1965 InstructionCost MulCost = 1966 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1967 Cost = AddCost + MulCost; 1968 1969 // What is the degree of this polynominal? 1970 int PolyDegree = S->getNumOperands() - 1; 1971 assert(PolyDegree >= 1 && "Should be at least affine."); 1972 1973 // The final term will be: 1974 // Op_{PolyDegree} * x ^ {PolyDegree} 1975 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1976 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1977 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1978 // FIXME: this is conservatively correct, but might be overly pessimistic. 1979 Cost += MulCost * (PolyDegree - 1); 1980 break; 1981 } 1982 } 1983 1984 for (auto &CostOp : Operations) { 1985 for (auto SCEVOp : enumerate(S->operands())) { 1986 // Clamp the index to account for multiple IR operations being chained. 1987 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1988 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1989 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1990 } 1991 } 1992 return Cost; 1993 } 1994 1995 bool SCEVExpander::isHighCostExpansionHelper( 1996 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1997 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1998 SmallPtrSetImpl<const SCEV *> &Processed, 1999 SmallVectorImpl<SCEVOperand> &Worklist) { 2000 if (Cost > Budget) 2001 return true; // Already run out of budget, give up. 2002 2003 const SCEV *S = WorkItem.S; 2004 // Was the cost of expansion of this expression already accounted for? 2005 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2006 return false; // We have already accounted for this expression. 2007 2008 // If we can find an existing value for this scev available at the point "At" 2009 // then consider the expression cheap. 2010 if (hasRelatedExistingExpansion(S, &At, L)) 2011 return false; // Consider the expression to be free. 2012 2013 TargetTransformInfo::TargetCostKind CostKind = 2014 L->getHeader()->getParent()->hasMinSize() 2015 ? TargetTransformInfo::TCK_CodeSize 2016 : TargetTransformInfo::TCK_RecipThroughput; 2017 2018 switch (S->getSCEVType()) { 2019 case scCouldNotCompute: 2020 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2021 case scUnknown: 2022 case scVScale: 2023 // Assume to be zero-cost. 2024 return false; 2025 case scConstant: { 2026 // Only evalulate the costs of constants when optimizing for size. 2027 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2028 return false; 2029 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2030 Type *Ty = S->getType(); 2031 Cost += TTI.getIntImmCostInst( 2032 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2033 return Cost > Budget; 2034 } 2035 case scTruncate: 2036 case scPtrToInt: 2037 case scZeroExtend: 2038 case scSignExtend: { 2039 Cost += 2040 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2041 return false; // Will answer upon next entry into this function. 2042 } 2043 case scUDivExpr: { 2044 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2045 // HowManyLessThans produced to compute a precise expression, rather than a 2046 // UDiv from the user's code. If we can't find a UDiv in the code with some 2047 // simple searching, we need to account for it's cost. 2048 2049 // At the beginning of this function we already tried to find existing 2050 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2051 // pattern involving division. This is just a simple search heuristic. 2052 if (hasRelatedExistingExpansion( 2053 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2054 return false; // Consider it to be free. 2055 2056 Cost += 2057 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2058 return false; // Will answer upon next entry into this function. 2059 } 2060 case scAddExpr: 2061 case scMulExpr: 2062 case scUMaxExpr: 2063 case scSMaxExpr: 2064 case scUMinExpr: 2065 case scSMinExpr: 2066 case scSequentialUMinExpr: { 2067 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2068 "Nary expr should have more than 1 operand."); 2069 // The simple nary expr will require one less op (or pair of ops) 2070 // than the number of it's terms. 2071 Cost += 2072 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2073 return Cost > Budget; 2074 } 2075 case scAddRecExpr: { 2076 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2077 "Polynomial should be at least linear"); 2078 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2079 WorkItem, TTI, CostKind, Worklist); 2080 return Cost > Budget; 2081 } 2082 } 2083 llvm_unreachable("Unknown SCEV kind!"); 2084 } 2085 2086 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2087 Instruction *IP) { 2088 assert(IP); 2089 switch (Pred->getKind()) { 2090 case SCEVPredicate::P_Union: 2091 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2092 case SCEVPredicate::P_Compare: 2093 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2094 case SCEVPredicate::P_Wrap: { 2095 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2096 return expandWrapPredicate(AddRecPred, IP); 2097 } 2098 } 2099 llvm_unreachable("Unknown SCEV predicate type"); 2100 } 2101 2102 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2103 Instruction *IP) { 2104 Value *Expr0 = 2105 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2106 Value *Expr1 = 2107 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2108 2109 Builder.SetInsertPoint(IP); 2110 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2111 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2112 return I; 2113 } 2114 2115 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2116 Instruction *Loc, bool Signed) { 2117 assert(AR->isAffine() && "Cannot generate RT check for " 2118 "non-affine expression"); 2119 2120 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2121 SmallVector<const SCEVPredicate *, 4> Pred; 2122 const SCEV *ExitCount = 2123 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2124 2125 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2126 2127 const SCEV *Step = AR->getStepRecurrence(SE); 2128 const SCEV *Start = AR->getStart(); 2129 2130 Type *ARTy = AR->getType(); 2131 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2132 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2133 2134 // The expression {Start,+,Step} has nusw/nssw if 2135 // Step < 0, Start - |Step| * Backedge <= Start 2136 // Step >= 0, Start + |Step| * Backedge > Start 2137 // and |Step| * Backedge doesn't unsigned overflow. 2138 2139 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2140 Builder.SetInsertPoint(Loc); 2141 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc); 2142 2143 IntegerType *Ty = 2144 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2145 2146 Value *StepValue = expandCodeForImpl(Step, Ty, Loc); 2147 Value *NegStepValue = 2148 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc); 2149 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc); 2150 2151 ConstantInt *Zero = 2152 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2153 2154 Builder.SetInsertPoint(Loc); 2155 // Compute |Step| 2156 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2157 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2158 2159 // Compute |Step| * Backedge 2160 // Compute: 2161 // 1. Start + |Step| * Backedge < Start 2162 // 2. Start - |Step| * Backedge > Start 2163 // 2164 // And select either 1. or 2. depending on whether step is positive or 2165 // negative. If Step is known to be positive or negative, only create 2166 // either 1. or 2. 2167 auto ComputeEndCheck = [&]() -> Value * { 2168 // Checking <u 0 is always false. 2169 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2170 return ConstantInt::getFalse(Loc->getContext()); 2171 2172 // Get the backedge taken count and truncate or extended to the AR type. 2173 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2174 2175 Value *MulV, *OfMul; 2176 if (Step->isOne()) { 2177 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2178 // needed, there is never an overflow, so to avoid artificially inflating 2179 // the cost of the check, directly emit the optimized IR. 2180 MulV = TruncTripCount; 2181 OfMul = ConstantInt::getFalse(MulV->getContext()); 2182 } else { 2183 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2184 Intrinsic::umul_with_overflow, Ty); 2185 CallInst *Mul = 2186 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2187 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2188 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2189 } 2190 2191 Value *Add = nullptr, *Sub = nullptr; 2192 bool NeedPosCheck = !SE.isKnownNegative(Step); 2193 bool NeedNegCheck = !SE.isKnownPositive(Step); 2194 2195 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2196 StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy); 2197 Value *NegMulV = Builder.CreateNeg(MulV); 2198 if (NeedPosCheck) 2199 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2200 if (NeedNegCheck) 2201 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2202 } else { 2203 if (NeedPosCheck) 2204 Add = Builder.CreateAdd(StartValue, MulV); 2205 if (NeedNegCheck) 2206 Sub = Builder.CreateSub(StartValue, MulV); 2207 } 2208 2209 Value *EndCompareLT = nullptr; 2210 Value *EndCompareGT = nullptr; 2211 Value *EndCheck = nullptr; 2212 if (NeedPosCheck) 2213 EndCheck = EndCompareLT = Builder.CreateICmp( 2214 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2215 if (NeedNegCheck) 2216 EndCheck = EndCompareGT = Builder.CreateICmp( 2217 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2218 if (NeedPosCheck && NeedNegCheck) { 2219 // Select the answer based on the sign of Step. 2220 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2221 } 2222 return Builder.CreateOr(EndCheck, OfMul); 2223 }; 2224 Value *EndCheck = ComputeEndCheck(); 2225 2226 // If the backedge taken count type is larger than the AR type, 2227 // check that we don't drop any bits by truncating it. If we are 2228 // dropping bits, then we have overflow (unless the step is zero). 2229 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2230 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2231 auto *BackedgeCheck = 2232 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2233 ConstantInt::get(Loc->getContext(), MaxVal)); 2234 BackedgeCheck = Builder.CreateAnd( 2235 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2236 2237 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2238 } 2239 2240 return EndCheck; 2241 } 2242 2243 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2244 Instruction *IP) { 2245 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2246 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2247 2248 // Add a check for NUSW 2249 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2250 NUSWCheck = generateOverflowCheck(A, IP, false); 2251 2252 // Add a check for NSSW 2253 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2254 NSSWCheck = generateOverflowCheck(A, IP, true); 2255 2256 if (NUSWCheck && NSSWCheck) 2257 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2258 2259 if (NUSWCheck) 2260 return NUSWCheck; 2261 2262 if (NSSWCheck) 2263 return NSSWCheck; 2264 2265 return ConstantInt::getFalse(IP->getContext()); 2266 } 2267 2268 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2269 Instruction *IP) { 2270 // Loop over all checks in this set. 2271 SmallVector<Value *> Checks; 2272 for (const auto *Pred : Union->getPredicates()) { 2273 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2274 Builder.SetInsertPoint(IP); 2275 } 2276 2277 if (Checks.empty()) 2278 return ConstantInt::getFalse(IP->getContext()); 2279 return Builder.CreateOr(Checks); 2280 } 2281 2282 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2283 auto *DefI = dyn_cast<Instruction>(V); 2284 if (!PreserveLCSSA || !DefI) 2285 return V; 2286 2287 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2288 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2289 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2290 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2291 return V; 2292 2293 // Create a temporary instruction to at the current insertion point, so we 2294 // can hand it off to the helper to create LCSSA PHIs if required for the 2295 // new use. 2296 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2297 // would accept a insertion point and return an LCSSA phi for that 2298 // insertion point, so there is no need to insert & remove the temporary 2299 // instruction. 2300 Type *ToTy; 2301 if (DefI->getType()->isIntegerTy()) 2302 ToTy = PointerType::get(DefI->getContext(), 0); 2303 else 2304 ToTy = Type::getInt32Ty(DefI->getContext()); 2305 Instruction *User = 2306 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2307 auto RemoveUserOnExit = 2308 make_scope_exit([User]() { User->eraseFromParent(); }); 2309 2310 SmallVector<Instruction *, 1> ToUpdate; 2311 ToUpdate.push_back(DefI); 2312 SmallVector<PHINode *, 16> PHIsToRemove; 2313 SmallVector<PHINode *, 16> InsertedPHIs; 2314 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2315 &InsertedPHIs); 2316 for (PHINode *PN : InsertedPHIs) 2317 rememberInstruction(PN); 2318 for (PHINode *PN : PHIsToRemove) { 2319 if (!PN->use_empty()) 2320 continue; 2321 InsertedValues.erase(PN); 2322 InsertedPostIncValues.erase(PN); 2323 PN->eraseFromParent(); 2324 } 2325 2326 return User->getOperand(0); 2327 } 2328 2329 namespace { 2330 // Search for a SCEV subexpression that is not safe to expand. Any expression 2331 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2332 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2333 // instruction, but the important thing is that we prove the denominator is 2334 // nonzero before expansion. 2335 // 2336 // IVUsers already checks that IV-derived expressions are safe. So this check is 2337 // only needed when the expression includes some subexpression that is not IV 2338 // derived. 2339 // 2340 // Currently, we only allow division by a value provably non-zero here. 2341 // 2342 // We cannot generally expand recurrences unless the step dominates the loop 2343 // header. The expander handles the special case of affine recurrences by 2344 // scaling the recurrence outside the loop, but this technique isn't generally 2345 // applicable. Expanding a nested recurrence outside a loop requires computing 2346 // binomial coefficients. This could be done, but the recurrence has to be in a 2347 // perfectly reduced form, which can't be guaranteed. 2348 struct SCEVFindUnsafe { 2349 ScalarEvolution &SE; 2350 bool CanonicalMode; 2351 bool IsUnsafe = false; 2352 2353 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2354 : SE(SE), CanonicalMode(CanonicalMode) {} 2355 2356 bool follow(const SCEV *S) { 2357 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2358 if (!SE.isKnownNonZero(D->getRHS())) { 2359 IsUnsafe = true; 2360 return false; 2361 } 2362 } 2363 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2364 const SCEV *Step = AR->getStepRecurrence(SE); 2365 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2366 IsUnsafe = true; 2367 return false; 2368 } 2369 2370 // For non-affine addrecs or in non-canonical mode we need a preheader 2371 // to insert into. 2372 if (!AR->getLoop()->getLoopPreheader() && 2373 (!CanonicalMode || !AR->isAffine())) { 2374 IsUnsafe = true; 2375 return false; 2376 } 2377 } 2378 return true; 2379 } 2380 bool isDone() const { return IsUnsafe; } 2381 }; 2382 } // namespace 2383 2384 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2385 SCEVFindUnsafe Search(SE, CanonicalMode); 2386 visitAll(S, Search); 2387 return !Search.IsUnsafe; 2388 } 2389 2390 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2391 const Instruction *InsertionPoint) const { 2392 if (!isSafeToExpand(S)) 2393 return false; 2394 // We have to prove that the expanded site of S dominates InsertionPoint. 2395 // This is easy when not in the same block, but hard when S is an instruction 2396 // to be expanded somewhere inside the same block as our insertion point. 2397 // What we really need here is something analogous to an OrderedBasicBlock, 2398 // but for the moment, we paper over the problem by handling two common and 2399 // cheap to check cases. 2400 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2401 return true; 2402 if (SE.dominates(S, InsertionPoint->getParent())) { 2403 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2404 return true; 2405 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2406 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2407 return true; 2408 } 2409 return false; 2410 } 2411 2412 void SCEVExpanderCleaner::cleanup() { 2413 // Result is used, nothing to remove. 2414 if (ResultUsed) 2415 return; 2416 2417 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2418 #ifndef NDEBUG 2419 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2420 InsertedInstructions.end()); 2421 (void)InsertedSet; 2422 #endif 2423 // Remove sets with value handles. 2424 Expander.clear(); 2425 2426 // Remove all inserted instructions. 2427 for (Instruction *I : reverse(InsertedInstructions)) { 2428 #ifndef NDEBUG 2429 assert(all_of(I->users(), 2430 [&InsertedSet](Value *U) { 2431 return InsertedSet.contains(cast<Instruction>(U)); 2432 }) && 2433 "removed instruction should only be used by instructions inserted " 2434 "during expansion"); 2435 #endif 2436 assert(!I->getType()->isVoidTy() && 2437 "inserted instruction should have non-void types"); 2438 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2439 I->eraseFromParent(); 2440 } 2441 } 2442