xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 3fda50d3915b2163a54a37b602be7783a89dd808)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 PoisonFlags::PoisonFlags(const Instruction *I) {
47   NUW = false;
48   NSW = false;
49   Exact = false;
50   Disjoint = false;
51   NNeg = false;
52   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
53     NUW = OBO->hasNoUnsignedWrap();
54     NSW = OBO->hasNoSignedWrap();
55   }
56   if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
57     Exact = PEO->isExact();
58   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
59     Disjoint = PDI->isDisjoint();
60   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
61     NNeg = PNI->hasNonNeg();
62 }
63 
64 void PoisonFlags::apply(Instruction *I) {
65   if (isa<OverflowingBinaryOperator>(I)) {
66     I->setHasNoUnsignedWrap(NUW);
67     I->setHasNoSignedWrap(NSW);
68   }
69   if (isa<PossiblyExactOperator>(I))
70     I->setIsExact(Exact);
71   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
72     PDI->setIsDisjoint(Disjoint);
73   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
74     PNI->setNonNeg(NNeg);
75 }
76 
77 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
78 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
79 /// creating a new one.
80 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
81                                        Instruction::CastOps Op,
82                                        BasicBlock::iterator IP) {
83   // This function must be called with the builder having a valid insertion
84   // point. It doesn't need to be the actual IP where the uses of the returned
85   // cast will be added, but it must dominate such IP.
86   // We use this precondition to produce a cast that will dominate all its
87   // uses. In particular, this is crucial for the case where the builder's
88   // insertion point *is* the point where we were asked to put the cast.
89   // Since we don't know the builder's insertion point is actually
90   // where the uses will be added (only that it dominates it), we are
91   // not allowed to move it.
92   BasicBlock::iterator BIP = Builder.GetInsertPoint();
93 
94   Value *Ret = nullptr;
95 
96   // Check to see if there is already a cast!
97   for (User *U : V->users()) {
98     if (U->getType() != Ty)
99       continue;
100     CastInst *CI = dyn_cast<CastInst>(U);
101     if (!CI || CI->getOpcode() != Op)
102       continue;
103 
104     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
105     // the cast must also properly dominate the Builder's insertion point.
106     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
107         (&*IP == CI || CI->comesBefore(&*IP))) {
108       Ret = CI;
109       break;
110     }
111   }
112 
113   // Create a new cast.
114   if (!Ret) {
115     SCEVInsertPointGuard Guard(Builder, this);
116     Builder.SetInsertPoint(&*IP);
117     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
118   }
119 
120   // We assert at the end of the function since IP might point to an
121   // instruction with different dominance properties than a cast
122   // (an invoke for example) and not dominate BIP (but the cast does).
123   assert(!isa<Instruction>(Ret) ||
124          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
125 
126   return Ret;
127 }
128 
129 BasicBlock::iterator
130 SCEVExpander::findInsertPointAfter(Instruction *I,
131                                    Instruction *MustDominate) const {
132   BasicBlock::iterator IP = ++I->getIterator();
133   if (auto *II = dyn_cast<InvokeInst>(I))
134     IP = II->getNormalDest()->begin();
135 
136   while (isa<PHINode>(IP))
137     ++IP;
138 
139   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
140     ++IP;
141   } else if (isa<CatchSwitchInst>(IP)) {
142     IP = MustDominate->getParent()->getFirstInsertionPt();
143   } else {
144     assert(!IP->isEHPad() && "unexpected eh pad!");
145   }
146 
147   // Adjust insert point to be after instructions inserted by the expander, so
148   // we can re-use already inserted instructions. Avoid skipping past the
149   // original \p MustDominate, in case it is an inserted instruction.
150   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
151     ++IP;
152 
153   return IP;
154 }
155 
156 BasicBlock::iterator
157 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
158   // Cast the argument at the beginning of the entry block, after
159   // any bitcasts of other arguments.
160   if (Argument *A = dyn_cast<Argument>(V)) {
161     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
162     while ((isa<BitCastInst>(IP) &&
163             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
164             cast<BitCastInst>(IP)->getOperand(0) != A) ||
165            isa<DbgInfoIntrinsic>(IP))
166       ++IP;
167     return IP;
168   }
169 
170   // Cast the instruction immediately after the instruction.
171   if (Instruction *I = dyn_cast<Instruction>(V))
172     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
173 
174   // Otherwise, this must be some kind of a constant,
175   // so let's plop this cast into the function's entry block.
176   assert(isa<Constant>(V) &&
177          "Expected the cast argument to be a global/constant");
178   return Builder.GetInsertBlock()
179       ->getParent()
180       ->getEntryBlock()
181       .getFirstInsertionPt();
182 }
183 
184 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
185 /// which must be possible with a noop cast, doing what we can to share
186 /// the casts.
187 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
188   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
189   assert((Op == Instruction::BitCast ||
190           Op == Instruction::PtrToInt ||
191           Op == Instruction::IntToPtr) &&
192          "InsertNoopCastOfTo cannot perform non-noop casts!");
193   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
194          "InsertNoopCastOfTo cannot change sizes!");
195 
196   // inttoptr only works for integral pointers. For non-integral pointers, we
197   // can create a GEP on null with the integral value as index. Note that
198   // it is safe to use GEP of null instead of inttoptr here, because only
199   // expressions already based on a GEP of null should be converted to pointers
200   // during expansion.
201   if (Op == Instruction::IntToPtr) {
202     auto *PtrTy = cast<PointerType>(Ty);
203     if (DL.isNonIntegralPointerType(PtrTy))
204       return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
205   }
206   // Short-circuit unnecessary bitcasts.
207   if (Op == Instruction::BitCast) {
208     if (V->getType() == Ty)
209       return V;
210     if (CastInst *CI = dyn_cast<CastInst>(V)) {
211       if (CI->getOperand(0)->getType() == Ty)
212         return CI->getOperand(0);
213     }
214   }
215   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
216   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
217       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
218     if (CastInst *CI = dyn_cast<CastInst>(V))
219       if ((CI->getOpcode() == Instruction::PtrToInt ||
220            CI->getOpcode() == Instruction::IntToPtr) &&
221           SE.getTypeSizeInBits(CI->getType()) ==
222           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
223         return CI->getOperand(0);
224     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
225       if ((CE->getOpcode() == Instruction::PtrToInt ||
226            CE->getOpcode() == Instruction::IntToPtr) &&
227           SE.getTypeSizeInBits(CE->getType()) ==
228           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
229         return CE->getOperand(0);
230   }
231 
232   // Fold a cast of a constant.
233   if (Constant *C = dyn_cast<Constant>(V))
234     return ConstantExpr::getCast(Op, C, Ty);
235 
236   // Try to reuse existing cast, or insert one.
237   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
238 }
239 
240 /// InsertBinop - Insert the specified binary operator, doing a small amount
241 /// of work to avoid inserting an obviously redundant operation, and hoisting
242 /// to an outer loop when the opportunity is there and it is safe.
243 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
244                                  Value *LHS, Value *RHS,
245                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
246   // Fold a binop with constant operands.
247   if (Constant *CLHS = dyn_cast<Constant>(LHS))
248     if (Constant *CRHS = dyn_cast<Constant>(RHS))
249       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
250         return Res;
251 
252   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
253   unsigned ScanLimit = 6;
254   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
255   // Scanning starts from the last instruction before the insertion point.
256   BasicBlock::iterator IP = Builder.GetInsertPoint();
257   if (IP != BlockBegin) {
258     --IP;
259     for (; ScanLimit; --IP, --ScanLimit) {
260       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
261       // generated code.
262       if (isa<DbgInfoIntrinsic>(IP))
263         ScanLimit++;
264 
265       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
266         // Ensure that no-wrap flags match.
267         if (isa<OverflowingBinaryOperator>(I)) {
268           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
269             return true;
270           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
271             return true;
272         }
273         // Conservatively, do not use any instruction which has any of exact
274         // flags installed.
275         if (isa<PossiblyExactOperator>(I) && I->isExact())
276           return true;
277         return false;
278       };
279       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
280           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
281         return &*IP;
282       if (IP == BlockBegin) break;
283     }
284   }
285 
286   // Save the original insertion point so we can restore it when we're done.
287   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
288   SCEVInsertPointGuard Guard(Builder, this);
289 
290   if (IsSafeToHoist) {
291     // Move the insertion point out of as many loops as we can.
292     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
293       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
294       BasicBlock *Preheader = L->getLoopPreheader();
295       if (!Preheader) break;
296 
297       // Ok, move up a level.
298       Builder.SetInsertPoint(Preheader->getTerminator());
299     }
300   }
301 
302   // If we haven't found this binop, insert it.
303   // TODO: Use the Builder, which will make CreateBinOp below fold with
304   // InstSimplifyFolder.
305   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
306   BO->setDebugLoc(Loc);
307   if (Flags & SCEV::FlagNUW)
308     BO->setHasNoUnsignedWrap();
309   if (Flags & SCEV::FlagNSW)
310     BO->setHasNoSignedWrap();
311 
312   return BO;
313 }
314 
315 /// expandAddToGEP - Expand an addition expression with a pointer type into
316 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
317 /// BasicAliasAnalysis and other passes analyze the result. See the rules
318 /// for getelementptr vs. inttoptr in
319 /// http://llvm.org/docs/LangRef.html#pointeraliasing
320 /// for details.
321 ///
322 /// Design note: The correctness of using getelementptr here depends on
323 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
324 /// they may introduce pointer arithmetic which may not be safely converted
325 /// into getelementptr.
326 ///
327 /// Design note: It might seem desirable for this function to be more
328 /// loop-aware. If some of the indices are loop-invariant while others
329 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
330 /// loop-invariant portions of the overall computation outside the loop.
331 /// However, there are a few reasons this is not done here. Hoisting simple
332 /// arithmetic is a low-level optimization that often isn't very
333 /// important until late in the optimization process. In fact, passes
334 /// like InstructionCombining will combine GEPs, even if it means
335 /// pushing loop-invariant computation down into loops, so even if the
336 /// GEPs were split here, the work would quickly be undone. The
337 /// LoopStrengthReduction pass, which is usually run quite late (and
338 /// after the last InstructionCombining pass), takes care of hoisting
339 /// loop-invariant portions of expressions, after considering what
340 /// can be folded using target addressing modes.
341 ///
342 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
343   assert(!isa<Instruction>(V) ||
344          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
345 
346   Value *Idx = expand(Offset);
347 
348   // Fold a GEP with constant operands.
349   if (Constant *CLHS = dyn_cast<Constant>(V))
350     if (Constant *CRHS = dyn_cast<Constant>(Idx))
351       return Builder.CreatePtrAdd(CLHS, CRHS);
352 
353   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
354   unsigned ScanLimit = 6;
355   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
356   // Scanning starts from the last instruction before the insertion point.
357   BasicBlock::iterator IP = Builder.GetInsertPoint();
358   if (IP != BlockBegin) {
359     --IP;
360     for (; ScanLimit; --IP, --ScanLimit) {
361       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
362       // generated code.
363       if (isa<DbgInfoIntrinsic>(IP))
364         ScanLimit++;
365       if (IP->getOpcode() == Instruction::GetElementPtr &&
366           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
367           cast<GEPOperator>(&*IP)->getSourceElementType() ==
368               Builder.getInt8Ty())
369         return &*IP;
370       if (IP == BlockBegin) break;
371     }
372   }
373 
374   // Save the original insertion point so we can restore it when we're done.
375   SCEVInsertPointGuard Guard(Builder, this);
376 
377   // Move the insertion point out of as many loops as we can.
378   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
379     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
380     BasicBlock *Preheader = L->getLoopPreheader();
381     if (!Preheader) break;
382 
383     // Ok, move up a level.
384     Builder.SetInsertPoint(Preheader->getTerminator());
385   }
386 
387   // Emit a GEP.
388   return Builder.CreatePtrAdd(V, Idx, "scevgep");
389 }
390 
391 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
392 /// SCEV expansion. If they are nested, this is the most nested. If they are
393 /// neighboring, pick the later.
394 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
395                                         DominatorTree &DT) {
396   if (!A) return B;
397   if (!B) return A;
398   if (A->contains(B)) return B;
399   if (B->contains(A)) return A;
400   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
401   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
402   return A; // Arbitrarily break the tie.
403 }
404 
405 /// getRelevantLoop - Get the most relevant loop associated with the given
406 /// expression, according to PickMostRelevantLoop.
407 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
408   // Test whether we've already computed the most relevant loop for this SCEV.
409   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
410   if (!Pair.second)
411     return Pair.first->second;
412 
413   switch (S->getSCEVType()) {
414   case scConstant:
415   case scVScale:
416     return nullptr; // A constant has no relevant loops.
417   case scTruncate:
418   case scZeroExtend:
419   case scSignExtend:
420   case scPtrToInt:
421   case scAddExpr:
422   case scMulExpr:
423   case scUDivExpr:
424   case scAddRecExpr:
425   case scUMaxExpr:
426   case scSMaxExpr:
427   case scUMinExpr:
428   case scSMinExpr:
429   case scSequentialUMinExpr: {
430     const Loop *L = nullptr;
431     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
432       L = AR->getLoop();
433     for (const SCEV *Op : S->operands())
434       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
435     return RelevantLoops[S] = L;
436   }
437   case scUnknown: {
438     const SCEVUnknown *U = cast<SCEVUnknown>(S);
439     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
440       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
441     // A non-instruction has no relevant loops.
442     return nullptr;
443   }
444   case scCouldNotCompute:
445     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
446   }
447   llvm_unreachable("Unexpected SCEV type!");
448 }
449 
450 namespace {
451 
452 /// LoopCompare - Compare loops by PickMostRelevantLoop.
453 class LoopCompare {
454   DominatorTree &DT;
455 public:
456   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
457 
458   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
459                   std::pair<const Loop *, const SCEV *> RHS) const {
460     // Keep pointer operands sorted at the end.
461     if (LHS.second->getType()->isPointerTy() !=
462         RHS.second->getType()->isPointerTy())
463       return LHS.second->getType()->isPointerTy();
464 
465     // Compare loops with PickMostRelevantLoop.
466     if (LHS.first != RHS.first)
467       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
468 
469     // If one operand is a non-constant negative and the other is not,
470     // put the non-constant negative on the right so that a sub can
471     // be used instead of a negate and add.
472     if (LHS.second->isNonConstantNegative()) {
473       if (!RHS.second->isNonConstantNegative())
474         return false;
475     } else if (RHS.second->isNonConstantNegative())
476       return true;
477 
478     // Otherwise they are equivalent according to this comparison.
479     return false;
480   }
481 };
482 
483 }
484 
485 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
486   // Collect all the add operands in a loop, along with their associated loops.
487   // Iterate in reverse so that constants are emitted last, all else equal, and
488   // so that pointer operands are inserted first, which the code below relies on
489   // to form more involved GEPs.
490   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
491   for (const SCEV *Op : reverse(S->operands()))
492     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
493 
494   // Sort by loop. Use a stable sort so that constants follow non-constants and
495   // pointer operands precede non-pointer operands.
496   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
497 
498   // Emit instructions to add all the operands. Hoist as much as possible
499   // out of loops, and form meaningful getelementptrs where possible.
500   Value *Sum = nullptr;
501   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
502     const Loop *CurLoop = I->first;
503     const SCEV *Op = I->second;
504     if (!Sum) {
505       // This is the first operand. Just expand it.
506       Sum = expand(Op);
507       ++I;
508       continue;
509     }
510 
511     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
512     if (isa<PointerType>(Sum->getType())) {
513       // The running sum expression is a pointer. Try to form a getelementptr
514       // at this level with that as the base.
515       SmallVector<const SCEV *, 4> NewOps;
516       for (; I != E && I->first == CurLoop; ++I) {
517         // If the operand is SCEVUnknown and not instructions, peek through
518         // it, to enable more of it to be folded into the GEP.
519         const SCEV *X = I->second;
520         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
521           if (!isa<Instruction>(U->getValue()))
522             X = SE.getSCEV(U->getValue());
523         NewOps.push_back(X);
524       }
525       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
526     } else if (Op->isNonConstantNegative()) {
527       // Instead of doing a negate and add, just do a subtract.
528       Value *W = expand(SE.getNegativeSCEV(Op));
529       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
530                         /*IsSafeToHoist*/ true);
531       ++I;
532     } else {
533       // A simple add.
534       Value *W = expand(Op);
535       // Canonicalize a constant to the RHS.
536       if (isa<Constant>(Sum))
537         std::swap(Sum, W);
538       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
539                         /*IsSafeToHoist*/ true);
540       ++I;
541     }
542   }
543 
544   return Sum;
545 }
546 
547 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
548   Type *Ty = S->getType();
549 
550   // Collect all the mul operands in a loop, along with their associated loops.
551   // Iterate in reverse so that constants are emitted last, all else equal.
552   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
553   for (const SCEV *Op : reverse(S->operands()))
554     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
555 
556   // Sort by loop. Use a stable sort so that constants follow non-constants.
557   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
558 
559   // Emit instructions to mul all the operands. Hoist as much as possible
560   // out of loops.
561   Value *Prod = nullptr;
562   auto I = OpsAndLoops.begin();
563 
564   // Expand the calculation of X pow N in the following manner:
565   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
566   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
567   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
568     auto E = I;
569     // Calculate how many times the same operand from the same loop is included
570     // into this power.
571     uint64_t Exponent = 0;
572     const uint64_t MaxExponent = UINT64_MAX >> 1;
573     // No one sane will ever try to calculate such huge exponents, but if we
574     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
575     // below when the power of 2 exceeds our Exponent, and we want it to be
576     // 1u << 31 at most to not deal with unsigned overflow.
577     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
578       ++Exponent;
579       ++E;
580     }
581     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
582 
583     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
584     // that are needed into the result.
585     Value *P = expand(I->second);
586     Value *Result = nullptr;
587     if (Exponent & 1)
588       Result = P;
589     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
590       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
591                       /*IsSafeToHoist*/ true);
592       if (Exponent & BinExp)
593         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
594                                       SCEV::FlagAnyWrap,
595                                       /*IsSafeToHoist*/ true)
596                         : P;
597     }
598 
599     I = E;
600     assert(Result && "Nothing was expanded?");
601     return Result;
602   };
603 
604   while (I != OpsAndLoops.end()) {
605     if (!Prod) {
606       // This is the first operand. Just expand it.
607       Prod = ExpandOpBinPowN();
608     } else if (I->second->isAllOnesValue()) {
609       // Instead of doing a multiply by negative one, just do a negate.
610       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
611                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
612       ++I;
613     } else {
614       // A simple mul.
615       Value *W = ExpandOpBinPowN();
616       // Canonicalize a constant to the RHS.
617       if (isa<Constant>(Prod)) std::swap(Prod, W);
618       const APInt *RHS;
619       if (match(W, m_Power2(RHS))) {
620         // Canonicalize Prod*(1<<C) to Prod<<C.
621         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
622         auto NWFlags = S->getNoWrapFlags();
623         // clear nsw flag if shl will produce poison value.
624         if (RHS->logBase2() == RHS->getBitWidth() - 1)
625           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
626         Prod = InsertBinop(Instruction::Shl, Prod,
627                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
628                            /*IsSafeToHoist*/ true);
629       } else {
630         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
631                            /*IsSafeToHoist*/ true);
632       }
633     }
634   }
635 
636   return Prod;
637 }
638 
639 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
640   Value *LHS = expand(S->getLHS());
641   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
642     const APInt &RHS = SC->getAPInt();
643     if (RHS.isPowerOf2())
644       return InsertBinop(Instruction::LShr, LHS,
645                          ConstantInt::get(SC->getType(), RHS.logBase2()),
646                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
647   }
648 
649   Value *RHS = expand(S->getRHS());
650   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
651                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
652 }
653 
654 /// Determine if this is a well-behaved chain of instructions leading back to
655 /// the PHI. If so, it may be reused by expanded expressions.
656 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
657                                          const Loop *L) {
658   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
659       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
660     return false;
661   // If any of the operands don't dominate the insert position, bail.
662   // Addrec operands are always loop-invariant, so this can only happen
663   // if there are instructions which haven't been hoisted.
664   if (L == IVIncInsertLoop) {
665     for (Use &Op : llvm::drop_begin(IncV->operands()))
666       if (Instruction *OInst = dyn_cast<Instruction>(Op))
667         if (!SE.DT.dominates(OInst, IVIncInsertPos))
668           return false;
669   }
670   // Advance to the next instruction.
671   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
672   if (!IncV)
673     return false;
674 
675   if (IncV->mayHaveSideEffects())
676     return false;
677 
678   if (IncV == PN)
679     return true;
680 
681   return isNormalAddRecExprPHI(PN, IncV, L);
682 }
683 
684 /// getIVIncOperand returns an induction variable increment's induction
685 /// variable operand.
686 ///
687 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
688 /// operands dominate InsertPos.
689 ///
690 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
691 /// simple patterns generated by getAddRecExprPHILiterally and
692 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
693 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
694                                            Instruction *InsertPos,
695                                            bool allowScale) {
696   if (IncV == InsertPos)
697     return nullptr;
698 
699   switch (IncV->getOpcode()) {
700   default:
701     return nullptr;
702   // Check for a simple Add/Sub or GEP of a loop invariant step.
703   case Instruction::Add:
704   case Instruction::Sub: {
705     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
706     if (!OInst || SE.DT.dominates(OInst, InsertPos))
707       return dyn_cast<Instruction>(IncV->getOperand(0));
708     return nullptr;
709   }
710   case Instruction::BitCast:
711     return dyn_cast<Instruction>(IncV->getOperand(0));
712   case Instruction::GetElementPtr:
713     for (Use &U : llvm::drop_begin(IncV->operands())) {
714       if (isa<Constant>(U))
715         continue;
716       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
717         if (!SE.DT.dominates(OInst, InsertPos))
718           return nullptr;
719       }
720       if (allowScale) {
721         // allow any kind of GEP as long as it can be hoisted.
722         continue;
723       }
724       // GEPs produced by SCEVExpander use i8 element type.
725       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
726         return nullptr;
727       break;
728     }
729     return dyn_cast<Instruction>(IncV->getOperand(0));
730   }
731 }
732 
733 /// If the insert point of the current builder or any of the builders on the
734 /// stack of saved builders has 'I' as its insert point, update it to point to
735 /// the instruction after 'I'.  This is intended to be used when the instruction
736 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
737 /// different block, the inconsistent insert point (with a mismatched
738 /// Instruction and Block) can lead to an instruction being inserted in a block
739 /// other than its parent.
740 void SCEVExpander::fixupInsertPoints(Instruction *I) {
741   BasicBlock::iterator It(*I);
742   BasicBlock::iterator NewInsertPt = std::next(It);
743   if (Builder.GetInsertPoint() == It)
744     Builder.SetInsertPoint(&*NewInsertPt);
745   for (auto *InsertPtGuard : InsertPointGuards)
746     if (InsertPtGuard->GetInsertPoint() == It)
747       InsertPtGuard->SetInsertPoint(NewInsertPt);
748 }
749 
750 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
751 /// it available to other uses in this loop. Recursively hoist any operands,
752 /// until we reach a value that dominates InsertPos.
753 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
754                               bool RecomputePoisonFlags) {
755   auto FixupPoisonFlags = [this](Instruction *I) {
756     // Drop flags that are potentially inferred from old context and infer flags
757     // in new context.
758     rememberFlags(I);
759     I->dropPoisonGeneratingFlags();
760     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
761       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
762         auto *BO = cast<BinaryOperator>(I);
763         BO->setHasNoUnsignedWrap(
764             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
765         BO->setHasNoSignedWrap(
766             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
767       }
768   };
769 
770   if (SE.DT.dominates(IncV, InsertPos)) {
771     if (RecomputePoisonFlags)
772       FixupPoisonFlags(IncV);
773     return true;
774   }
775 
776   // InsertPos must itself dominate IncV so that IncV's new position satisfies
777   // its existing users.
778   if (isa<PHINode>(InsertPos) ||
779       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
780     return false;
781 
782   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
783     return false;
784 
785   // Check that the chain of IV operands leading back to Phi can be hoisted.
786   SmallVector<Instruction*, 4> IVIncs;
787   for(;;) {
788     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
789     if (!Oper)
790       return false;
791     // IncV is safe to hoist.
792     IVIncs.push_back(IncV);
793     IncV = Oper;
794     if (SE.DT.dominates(IncV, InsertPos))
795       break;
796   }
797   for (Instruction *I : llvm::reverse(IVIncs)) {
798     fixupInsertPoints(I);
799     I->moveBefore(InsertPos);
800     if (RecomputePoisonFlags)
801       FixupPoisonFlags(I);
802   }
803   return true;
804 }
805 
806 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi,
807                                                   PHINode *WidePhi,
808                                                   Instruction *OrigInc,
809                                                   Instruction *WideInc) {
810   return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) &&
811          match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) &&
812          OrigInc->getOpcode() == WideInc->getOpcode();
813 }
814 
815 /// Determine if this cyclic phi is in a form that would have been generated by
816 /// LSR. We don't care if the phi was actually expanded in this pass, as long
817 /// as it is in a low-cost form, for example, no implied multiplication. This
818 /// should match any patterns generated by getAddRecExprPHILiterally and
819 /// expandAddtoGEP.
820 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
821                                            const Loop *L) {
822   for(Instruction *IVOper = IncV;
823       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
824                                 /*allowScale=*/false));) {
825     if (IVOper == PN)
826       return true;
827   }
828   return false;
829 }
830 
831 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
832 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
833 /// need to materialize IV increments elsewhere to handle difficult situations.
834 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
835                                  bool useSubtract) {
836   Value *IncV;
837   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
838   if (PN->getType()->isPointerTy()) {
839     // TODO: Change name to IVName.iv.next.
840     IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep");
841   } else {
842     IncV = useSubtract ?
843       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
844       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
845   }
846   return IncV;
847 }
848 
849 /// Check whether we can cheaply express the requested SCEV in terms of
850 /// the available PHI SCEV by truncation and/or inversion of the step.
851 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
852                                     const SCEVAddRecExpr *Phi,
853                                     const SCEVAddRecExpr *Requested,
854                                     bool &InvertStep) {
855   // We can't transform to match a pointer PHI.
856   Type *PhiTy = Phi->getType();
857   Type *RequestedTy = Requested->getType();
858   if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
859     return false;
860 
861   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
862     return false;
863 
864   // Try truncate it if necessary.
865   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
866   if (!Phi)
867     return false;
868 
869   // Check whether truncation will help.
870   if (Phi == Requested) {
871     InvertStep = false;
872     return true;
873   }
874 
875   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
876   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
877     InvertStep = true;
878     return true;
879   }
880 
881   return false;
882 }
883 
884 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
885   if (!isa<IntegerType>(AR->getType()))
886     return false;
887 
888   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
889   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
890   const SCEV *Step = AR->getStepRecurrence(SE);
891   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
892                                             SE.getSignExtendExpr(AR, WideTy));
893   const SCEV *ExtendAfterOp =
894     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
895   return ExtendAfterOp == OpAfterExtend;
896 }
897 
898 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
899   if (!isa<IntegerType>(AR->getType()))
900     return false;
901 
902   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
903   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
904   const SCEV *Step = AR->getStepRecurrence(SE);
905   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
906                                             SE.getZeroExtendExpr(AR, WideTy));
907   const SCEV *ExtendAfterOp =
908     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
909   return ExtendAfterOp == OpAfterExtend;
910 }
911 
912 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
913 /// the base addrec, which is the addrec without any non-loop-dominating
914 /// values, and return the PHI.
915 PHINode *
916 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
917                                         const Loop *L, Type *&TruncTy,
918                                         bool &InvertStep) {
919   assert((!IVIncInsertLoop || IVIncInsertPos) &&
920          "Uninitialized insert position");
921 
922   // Reuse a previously-inserted PHI, if present.
923   BasicBlock *LatchBlock = L->getLoopLatch();
924   if (LatchBlock) {
925     PHINode *AddRecPhiMatch = nullptr;
926     Instruction *IncV = nullptr;
927     TruncTy = nullptr;
928     InvertStep = false;
929 
930     // Only try partially matching scevs that need truncation and/or
931     // step-inversion if we know this loop is outside the current loop.
932     bool TryNonMatchingSCEV =
933         IVIncInsertLoop &&
934         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
935 
936     for (PHINode &PN : L->getHeader()->phis()) {
937       if (!SE.isSCEVable(PN.getType()))
938         continue;
939 
940       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
941       // PHI has no meaning at all.
942       if (!PN.isComplete()) {
943         SCEV_DEBUG_WITH_TYPE(
944             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
945         continue;
946       }
947 
948       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
949       if (!PhiSCEV)
950         continue;
951 
952       bool IsMatchingSCEV = PhiSCEV == Normalized;
953       // We only handle truncation and inversion of phi recurrences for the
954       // expanded expression if the expanded expression's loop dominates the
955       // loop we insert to. Check now, so we can bail out early.
956       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
957           continue;
958 
959       // TODO: this possibly can be reworked to avoid this cast at all.
960       Instruction *TempIncV =
961           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
962       if (!TempIncV)
963         continue;
964 
965       // Check whether we can reuse this PHI node.
966       if (LSRMode) {
967         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
968           continue;
969       } else {
970         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
971           continue;
972       }
973 
974       // Stop if we have found an exact match SCEV.
975       if (IsMatchingSCEV) {
976         IncV = TempIncV;
977         TruncTy = nullptr;
978         InvertStep = false;
979         AddRecPhiMatch = &PN;
980         break;
981       }
982 
983       // Try whether the phi can be translated into the requested form
984       // (truncated and/or offset by a constant).
985       if ((!TruncTy || InvertStep) &&
986           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
987         // Record the phi node. But don't stop we might find an exact match
988         // later.
989         AddRecPhiMatch = &PN;
990         IncV = TempIncV;
991         TruncTy = Normalized->getType();
992       }
993     }
994 
995     if (AddRecPhiMatch) {
996       // Ok, the add recurrence looks usable.
997       // Remember this PHI, even in post-inc mode.
998       InsertedValues.insert(AddRecPhiMatch);
999       // Remember the increment.
1000       rememberInstruction(IncV);
1001       // Those values were not actually inserted but re-used.
1002       ReusedValues.insert(AddRecPhiMatch);
1003       ReusedValues.insert(IncV);
1004       return AddRecPhiMatch;
1005     }
1006   }
1007 
1008   // Save the original insertion point so we can restore it when we're done.
1009   SCEVInsertPointGuard Guard(Builder, this);
1010 
1011   // Another AddRec may need to be recursively expanded below. For example, if
1012   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1013   // loop. Remove this loop from the PostIncLoops set before expanding such
1014   // AddRecs. Otherwise, we cannot find a valid position for the step
1015   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1016   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1017   // so it's not worth implementing SmallPtrSet::swap.
1018   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1019   PostIncLoops.clear();
1020 
1021   // Expand code for the start value into the loop preheader.
1022   assert(L->getLoopPreheader() &&
1023          "Can't expand add recurrences without a loop preheader!");
1024   Value *StartV =
1025       expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
1026 
1027   // StartV must have been be inserted into L's preheader to dominate the new
1028   // phi.
1029   assert(!isa<Instruction>(StartV) ||
1030          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1031                                  L->getHeader()));
1032 
1033   // Expand code for the step value. Do this before creating the PHI so that PHI
1034   // reuse code doesn't see an incomplete PHI.
1035   const SCEV *Step = Normalized->getStepRecurrence(SE);
1036   Type *ExpandTy = Normalized->getType();
1037   // If the stride is negative, insert a sub instead of an add for the increment
1038   // (unless it's a constant, because subtracts of constants are canonicalized
1039   // to adds).
1040   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1041   if (useSubtract)
1042     Step = SE.getNegativeSCEV(Step);
1043   // Expand the step somewhere that dominates the loop header.
1044   Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1045 
1046   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1047   // we actually do emit an addition.  It does not apply if we emit a
1048   // subtraction.
1049   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1050   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1051 
1052   // Create the PHI.
1053   BasicBlock *Header = L->getHeader();
1054   Builder.SetInsertPoint(Header, Header->begin());
1055   PHINode *PN =
1056       Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv");
1057 
1058   // Create the step instructions and populate the PHI.
1059   for (BasicBlock *Pred : predecessors(Header)) {
1060     // Add a start value.
1061     if (!L->contains(Pred)) {
1062       PN->addIncoming(StartV, Pred);
1063       continue;
1064     }
1065 
1066     // Create a step value and add it to the PHI.
1067     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1068     // instructions at IVIncInsertPos.
1069     Instruction *InsertPos = L == IVIncInsertLoop ?
1070       IVIncInsertPos : Pred->getTerminator();
1071     Builder.SetInsertPoint(InsertPos);
1072     Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
1073 
1074     if (isa<OverflowingBinaryOperator>(IncV)) {
1075       if (IncrementIsNUW)
1076         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1077       if (IncrementIsNSW)
1078         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1079     }
1080     PN->addIncoming(IncV, Pred);
1081   }
1082 
1083   // After expanding subexpressions, restore the PostIncLoops set so the caller
1084   // can ensure that IVIncrement dominates the current uses.
1085   PostIncLoops = SavedPostIncLoops;
1086 
1087   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1088   // effective when we are able to use an IV inserted here, so record it.
1089   InsertedValues.insert(PN);
1090   InsertedIVs.push_back(PN);
1091   return PN;
1092 }
1093 
1094 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1095   const Loop *L = S->getLoop();
1096 
1097   // Determine a normalized form of this expression, which is the expression
1098   // before any post-inc adjustment is made.
1099   const SCEVAddRecExpr *Normalized = S;
1100   if (PostIncLoops.count(L)) {
1101     PostIncLoopSet Loops;
1102     Loops.insert(L);
1103     Normalized = cast<SCEVAddRecExpr>(
1104         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1105   }
1106 
1107   [[maybe_unused]] const SCEV *Start = Normalized->getStart();
1108   const SCEV *Step = Normalized->getStepRecurrence(SE);
1109   assert(SE.properlyDominates(Start, L->getHeader()) &&
1110          "Start does not properly dominate loop header");
1111   assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
1112 
1113   // In some cases, we decide to reuse an existing phi node but need to truncate
1114   // it and/or invert the step.
1115   Type *TruncTy = nullptr;
1116   bool InvertStep = false;
1117   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
1118 
1119   // Accommodate post-inc mode, if necessary.
1120   Value *Result;
1121   if (!PostIncLoops.count(L))
1122     Result = PN;
1123   else {
1124     // In PostInc mode, use the post-incremented value.
1125     BasicBlock *LatchBlock = L->getLoopLatch();
1126     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1127     Result = PN->getIncomingValueForBlock(LatchBlock);
1128 
1129     // We might be introducing a new use of the post-inc IV that is not poison
1130     // safe, in which case we should drop poison generating flags. Only keep
1131     // those flags for which SCEV has proven that they always hold.
1132     if (isa<OverflowingBinaryOperator>(Result)) {
1133       auto *I = cast<Instruction>(Result);
1134       if (!S->hasNoUnsignedWrap())
1135         I->setHasNoUnsignedWrap(false);
1136       if (!S->hasNoSignedWrap())
1137         I->setHasNoSignedWrap(false);
1138     }
1139 
1140     // For an expansion to use the postinc form, the client must call
1141     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1142     // or dominated by IVIncInsertPos.
1143     if (isa<Instruction>(Result) &&
1144         !SE.DT.dominates(cast<Instruction>(Result),
1145                          &*Builder.GetInsertPoint())) {
1146       // The induction variable's postinc expansion does not dominate this use.
1147       // IVUsers tries to prevent this case, so it is rare. However, it can
1148       // happen when an IVUser outside the loop is not dominated by the latch
1149       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1150       // all cases. Consider a phi outside whose operand is replaced during
1151       // expansion with the value of the postinc user. Without fundamentally
1152       // changing the way postinc users are tracked, the only remedy is
1153       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1154       // but hopefully expandCodeFor handles that.
1155       bool useSubtract =
1156           !S->getType()->isPointerTy() && Step->isNonConstantNegative();
1157       if (useSubtract)
1158         Step = SE.getNegativeSCEV(Step);
1159       Value *StepV;
1160       {
1161         // Expand the step somewhere that dominates the loop header.
1162         SCEVInsertPointGuard Guard(Builder, this);
1163         StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
1164       }
1165       Result = expandIVInc(PN, StepV, L, useSubtract);
1166     }
1167   }
1168 
1169   // We have decided to reuse an induction variable of a dominating loop. Apply
1170   // truncation and/or inversion of the step.
1171   if (TruncTy) {
1172     // Truncate the result.
1173     if (TruncTy != Result->getType())
1174       Result = Builder.CreateTrunc(Result, TruncTy);
1175 
1176     // Invert the result.
1177     if (InvertStep)
1178       Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
1179   }
1180 
1181   return Result;
1182 }
1183 
1184 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1185   // In canonical mode we compute the addrec as an expression of a canonical IV
1186   // using evaluateAtIteration and expand the resulting SCEV expression. This
1187   // way we avoid introducing new IVs to carry on the computation of the addrec
1188   // throughout the loop.
1189   //
1190   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1191   // type wider than the addrec itself. Emitting a canonical IV of the
1192   // proper type might produce non-legal types, for example expanding an i64
1193   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1194   // back to non-canonical mode for nested addrecs.
1195   if (!CanonicalMode || (S->getNumOperands() > 2))
1196     return expandAddRecExprLiterally(S);
1197 
1198   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1199   const Loop *L = S->getLoop();
1200 
1201   // First check for an existing canonical IV in a suitable type.
1202   PHINode *CanonicalIV = nullptr;
1203   if (PHINode *PN = L->getCanonicalInductionVariable())
1204     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1205       CanonicalIV = PN;
1206 
1207   // Rewrite an AddRec in terms of the canonical induction variable, if
1208   // its type is more narrow.
1209   if (CanonicalIV &&
1210       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1211       !S->getType()->isPointerTy()) {
1212     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1213     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1214       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1215     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1216                                        S->getNoWrapFlags(SCEV::FlagNW)));
1217     BasicBlock::iterator NewInsertPt =
1218         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1219     V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
1220     return V;
1221   }
1222 
1223   // {X,+,F} --> X + {0,+,F}
1224   if (!S->getStart()->isZero()) {
1225     if (isa<PointerType>(S->getType())) {
1226       Value *StartV = expand(SE.getPointerBase(S));
1227       return expandAddToGEP(SE.removePointerBase(S), StartV);
1228     }
1229 
1230     SmallVector<const SCEV *, 4> NewOps(S->operands());
1231     NewOps[0] = SE.getConstant(Ty, 0);
1232     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1233                                         S->getNoWrapFlags(SCEV::FlagNW));
1234 
1235     // Just do a normal add. Pre-expand the operands to suppress folding.
1236     //
1237     // The LHS and RHS values are factored out of the expand call to make the
1238     // output independent of the argument evaluation order.
1239     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1240     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1241     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1242   }
1243 
1244   // If we don't yet have a canonical IV, create one.
1245   if (!CanonicalIV) {
1246     // Create and insert the PHI node for the induction variable in the
1247     // specified loop.
1248     BasicBlock *Header = L->getHeader();
1249     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1250     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1251     CanonicalIV->insertBefore(Header->begin());
1252     rememberInstruction(CanonicalIV);
1253 
1254     SmallSet<BasicBlock *, 4> PredSeen;
1255     Constant *One = ConstantInt::get(Ty, 1);
1256     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1257       BasicBlock *HP = *HPI;
1258       if (!PredSeen.insert(HP).second) {
1259         // There must be an incoming value for each predecessor, even the
1260         // duplicates!
1261         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1262         continue;
1263       }
1264 
1265       if (L->contains(HP)) {
1266         // Insert a unit add instruction right before the terminator
1267         // corresponding to the back-edge.
1268         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1269                                                      "indvar.next",
1270                                                      HP->getTerminator()->getIterator());
1271         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1272         rememberInstruction(Add);
1273         CanonicalIV->addIncoming(Add, HP);
1274       } else {
1275         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1276       }
1277     }
1278   }
1279 
1280   // {0,+,1} --> Insert a canonical induction variable into the loop!
1281   if (S->isAffine() && S->getOperand(1)->isOne()) {
1282     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1283            "IVs with types different from the canonical IV should "
1284            "already have been handled!");
1285     return CanonicalIV;
1286   }
1287 
1288   // {0,+,F} --> {0,+,1} * F
1289 
1290   // If this is a simple linear addrec, emit it now as a special case.
1291   if (S->isAffine())    // {0,+,F} --> i*F
1292     return
1293       expand(SE.getTruncateOrNoop(
1294         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1295                       SE.getNoopOrAnyExtend(S->getOperand(1),
1296                                             CanonicalIV->getType())),
1297         Ty));
1298 
1299   // If this is a chain of recurrences, turn it into a closed form, using the
1300   // folders, then expandCodeFor the closed form.  This allows the folders to
1301   // simplify the expression without having to build a bunch of special code
1302   // into this folder.
1303   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1304 
1305   // Promote S up to the canonical IV type, if the cast is foldable.
1306   const SCEV *NewS = S;
1307   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1308   if (isa<SCEVAddRecExpr>(Ext))
1309     NewS = Ext;
1310 
1311   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1312 
1313   // Truncate the result down to the original type, if needed.
1314   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1315   return expand(T);
1316 }
1317 
1318 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1319   Value *V = expand(S->getOperand());
1320   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1321                            GetOptimalInsertionPointForCastOf(V));
1322 }
1323 
1324 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1325   Value *V = expand(S->getOperand());
1326   return Builder.CreateTrunc(V, S->getType());
1327 }
1328 
1329 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1330   Value *V = expand(S->getOperand());
1331   return Builder.CreateZExt(V, S->getType(), "",
1332                             SE.isKnownNonNegative(S->getOperand()));
1333 }
1334 
1335 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1336   Value *V = expand(S->getOperand());
1337   return Builder.CreateSExt(V, S->getType());
1338 }
1339 
1340 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1341                                       Intrinsic::ID IntrinID, Twine Name,
1342                                       bool IsSequential) {
1343   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1344   Type *Ty = LHS->getType();
1345   if (IsSequential)
1346     LHS = Builder.CreateFreeze(LHS);
1347   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1348     Value *RHS = expand(S->getOperand(i));
1349     if (IsSequential && i != 0)
1350       RHS = Builder.CreateFreeze(RHS);
1351     Value *Sel;
1352     if (Ty->isIntegerTy())
1353       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1354                                     /*FMFSource=*/nullptr, Name);
1355     else {
1356       Value *ICmp =
1357           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1358       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1359     }
1360     LHS = Sel;
1361   }
1362   return LHS;
1363 }
1364 
1365 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1366   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1367 }
1368 
1369 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1370   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1371 }
1372 
1373 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1374   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1375 }
1376 
1377 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1378   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1379 }
1380 
1381 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1382   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1383 }
1384 
1385 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1386   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1387 }
1388 
1389 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1390                                    BasicBlock::iterator IP) {
1391   setInsertPoint(IP);
1392   Value *V = expandCodeFor(SH, Ty);
1393   return V;
1394 }
1395 
1396 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1397   // Expand the code for this SCEV.
1398   Value *V = expand(SH);
1399 
1400   if (Ty) {
1401     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1402            "non-trivial casts should be done with the SCEVs directly!");
1403     V = InsertNoopCastOfTo(V, Ty);
1404   }
1405   return V;
1406 }
1407 
1408 Value *SCEVExpander::FindValueInExprValueMap(
1409     const SCEV *S, const Instruction *InsertPt,
1410     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1411   // If the expansion is not in CanonicalMode, and the SCEV contains any
1412   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1413   if (!CanonicalMode && SE.containsAddRecurrence(S))
1414     return nullptr;
1415 
1416   // If S is a constant, it may be worse to reuse an existing Value.
1417   if (isa<SCEVConstant>(S))
1418     return nullptr;
1419 
1420   for (Value *V : SE.getSCEVValues(S)) {
1421     Instruction *EntInst = dyn_cast<Instruction>(V);
1422     if (!EntInst)
1423       continue;
1424 
1425     // Choose a Value from the set which dominates the InsertPt.
1426     // InsertPt should be inside the Value's parent loop so as not to break
1427     // the LCSSA form.
1428     assert(EntInst->getFunction() == InsertPt->getFunction());
1429     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1430         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1431           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1432       continue;
1433 
1434     // Make sure reusing the instruction is poison-safe.
1435     if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
1436       return V;
1437     DropPoisonGeneratingInsts.clear();
1438   }
1439   return nullptr;
1440 }
1441 
1442 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1443 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1444 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1445 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1446 // the expansion will try to reuse Value from ExprValueMap, and only when it
1447 // fails, expand the SCEV literally.
1448 Value *SCEVExpander::expand(const SCEV *S) {
1449   // Compute an insertion point for this SCEV object. Hoist the instructions
1450   // as far out in the loop nest as possible.
1451   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1452 
1453   // We can move insertion point only if there is no div or rem operations
1454   // otherwise we are risky to move it over the check for zero denominator.
1455   auto SafeToHoist = [](const SCEV *S) {
1456     return !SCEVExprContains(S, [](const SCEV *S) {
1457               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1458                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1459                   // Division by non-zero constants can be hoisted.
1460                   return SC->getValue()->isZero();
1461                 // All other divisions should not be moved as they may be
1462                 // divisions by zero and should be kept within the
1463                 // conditions of the surrounding loops that guard their
1464                 // execution (see PR35406).
1465                 return true;
1466               }
1467               return false;
1468             });
1469   };
1470   if (SafeToHoist(S)) {
1471     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1472          L = L->getParentLoop()) {
1473       if (SE.isLoopInvariant(S, L)) {
1474         if (!L) break;
1475         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1476           InsertPt = Preheader->getTerminator()->getIterator();
1477         } else {
1478           // LSR sets the insertion point for AddRec start/step values to the
1479           // block start to simplify value reuse, even though it's an invalid
1480           // position. SCEVExpander must correct for this in all cases.
1481           InsertPt = L->getHeader()->getFirstInsertionPt();
1482         }
1483       } else {
1484         // If the SCEV is computable at this level, insert it into the header
1485         // after the PHIs (and after any other instructions that we've inserted
1486         // there) so that it is guaranteed to dominate any user inside the loop.
1487         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1488           InsertPt = L->getHeader()->getFirstInsertionPt();
1489 
1490         while (InsertPt != Builder.GetInsertPoint() &&
1491                (isInsertedInstruction(&*InsertPt) ||
1492                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1493           InsertPt = std::next(InsertPt);
1494         }
1495         break;
1496       }
1497     }
1498   }
1499 
1500   // Check to see if we already expanded this here.
1501   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1502   if (I != InsertedExpressions.end())
1503     return I->second;
1504 
1505   SCEVInsertPointGuard Guard(Builder, this);
1506   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1507 
1508   // Expand the expression into instructions.
1509   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1510   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1511   if (!V) {
1512     V = visit(S);
1513     V = fixupLCSSAFormFor(V);
1514   } else {
1515     for (Instruction *I : DropPoisonGeneratingInsts) {
1516       rememberFlags(I);
1517       I->dropPoisonGeneratingFlagsAndMetadata();
1518       // See if we can re-infer from first principles any of the flags we just
1519       // dropped.
1520       if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
1521         if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
1522           auto *BO = cast<BinaryOperator>(I);
1523           BO->setHasNoUnsignedWrap(
1524             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
1525           BO->setHasNoSignedWrap(
1526             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
1527         }
1528       if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
1529         auto *Src = NNI->getOperand(0);
1530         if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
1531                                     Constant::getNullValue(Src->getType()), I,
1532                                     DL).value_or(false))
1533           NNI->setNonNeg(true);
1534       }
1535     }
1536   }
1537   // Remember the expanded value for this SCEV at this location.
1538   //
1539   // This is independent of PostIncLoops. The mapped value simply materializes
1540   // the expression at this insertion point. If the mapped value happened to be
1541   // a postinc expansion, it could be reused by a non-postinc user, but only if
1542   // its insertion point was already at the head of the loop.
1543   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1544   return V;
1545 }
1546 
1547 void SCEVExpander::rememberInstruction(Value *I) {
1548   auto DoInsert = [this](Value *V) {
1549     if (!PostIncLoops.empty())
1550       InsertedPostIncValues.insert(V);
1551     else
1552       InsertedValues.insert(V);
1553   };
1554   DoInsert(I);
1555 }
1556 
1557 void SCEVExpander::rememberFlags(Instruction *I) {
1558   // If we already have flags for the instruction, keep the existing ones.
1559   OrigFlags.try_emplace(I, PoisonFlags(I));
1560 }
1561 
1562 void SCEVExpander::replaceCongruentIVInc(
1563     PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT,
1564     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1565   BasicBlock *LatchBlock = L->getLoopLatch();
1566   if (!LatchBlock)
1567     return;
1568 
1569   Instruction *OrigInc =
1570       dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1571   Instruction *IsomorphicInc =
1572       dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1573   if (!OrigInc || !IsomorphicInc)
1574     return;
1575 
1576   // If this phi has the same width but is more canonical, replace the
1577   // original with it. As part of the "more canonical" determination,
1578   // respect a prior decision to use an IV chain.
1579   if (OrigPhi->getType() == Phi->getType() &&
1580       !(ChainedPhis.count(Phi) ||
1581         isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) &&
1582       (ChainedPhis.count(Phi) ||
1583        isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1584     std::swap(OrigPhi, Phi);
1585     std::swap(OrigInc, IsomorphicInc);
1586   }
1587 
1588   // Replacing the congruent phi is sufficient because acyclic
1589   // redundancy elimination, CSE/GVN, should handle the
1590   // rest. However, once SCEV proves that a phi is congruent,
1591   // it's often the head of an IV user cycle that is isomorphic
1592   // with the original phi. It's worth eagerly cleaning up the
1593   // common case of a single IV increment so that DeleteDeadPHIs
1594   // can remove cycles that had postinc uses.
1595   // Because we may potentially introduce a new use of OrigIV that didn't
1596   // exist before at this point, its poison flags need readjustment.
1597   const SCEV *TruncExpr =
1598       SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1599   if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) ||
1600       !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc))
1601     return;
1602 
1603   bool BothHaveNUW = false;
1604   bool BothHaveNSW = false;
1605   auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc);
1606   auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc);
1607   if (OBOIncV && OBOIsomorphic) {
1608     BothHaveNUW =
1609         OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap();
1610     BothHaveNSW =
1611         OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap();
1612   }
1613 
1614   if (!hoistIVInc(OrigInc, IsomorphicInc,
1615                   /*RecomputePoisonFlags*/ true))
1616     return;
1617 
1618   // We are replacing with a wider increment. If both OrigInc and IsomorphicInc
1619   // are NUW/NSW, then we can preserve them on the wider increment; the narrower
1620   // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't
1621   // make IsomorphicInc's uses more poisonous.
1622   assert(OrigInc->getType()->getScalarSizeInBits() >=
1623              IsomorphicInc->getType()->getScalarSizeInBits() &&
1624          "Should only replace an increment with a wider one.");
1625   if (BothHaveNUW || BothHaveNSW) {
1626     OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW);
1627     OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW);
1628   }
1629 
1630   SCEV_DEBUG_WITH_TYPE(DebugType,
1631                        dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1632                               << *IsomorphicInc << '\n');
1633   Value *NewInc = OrigInc;
1634   if (OrigInc->getType() != IsomorphicInc->getType()) {
1635     BasicBlock::iterator IP;
1636     if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1637       IP = PN->getParent()->getFirstInsertionPt();
1638     else
1639       IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1640 
1641     IRBuilder<> Builder(IP->getParent(), IP);
1642     Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1643     NewInc =
1644         Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1645   }
1646   IsomorphicInc->replaceAllUsesWith(NewInc);
1647   DeadInsts.emplace_back(IsomorphicInc);
1648 }
1649 
1650 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1651 /// replace them with their most canonical representative. Return the number of
1652 /// phis eliminated.
1653 ///
1654 /// This does not depend on any SCEVExpander state but should be used in
1655 /// the same context that SCEVExpander is used.
1656 unsigned
1657 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1658                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1659                                   const TargetTransformInfo *TTI) {
1660   // Find integer phis in order of increasing width.
1661   SmallVector<PHINode*, 8> Phis;
1662   for (PHINode &PN : L->getHeader()->phis())
1663     Phis.push_back(&PN);
1664 
1665   if (TTI)
1666     // Use stable_sort to preserve order of equivalent PHIs, so the order
1667     // of the sorted Phis is the same from run to run on the same loop.
1668     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1669       // Put pointers at the back and make sure pointer < pointer = false.
1670       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1671         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1672       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1673              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1674     });
1675 
1676   unsigned NumElim = 0;
1677   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1678   // Process phis from wide to narrow. Map wide phis to their truncation
1679   // so narrow phis can reuse them.
1680   for (PHINode *Phi : Phis) {
1681     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1682       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1683         return V;
1684       if (!SE.isSCEVable(PN->getType()))
1685         return nullptr;
1686       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1687       if (!Const)
1688         return nullptr;
1689       return Const->getValue();
1690     };
1691 
1692     // Fold constant phis. They may be congruent to other constant phis and
1693     // would confuse the logic below that expects proper IVs.
1694     if (Value *V = SimplifyPHINode(Phi)) {
1695       if (V->getType() != Phi->getType())
1696         continue;
1697       SE.forgetValue(Phi);
1698       Phi->replaceAllUsesWith(V);
1699       DeadInsts.emplace_back(Phi);
1700       ++NumElim;
1701       SCEV_DEBUG_WITH_TYPE(DebugType,
1702                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1703                                   << '\n');
1704       continue;
1705     }
1706 
1707     if (!SE.isSCEVable(Phi->getType()))
1708       continue;
1709 
1710     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1711     if (!OrigPhiRef) {
1712       OrigPhiRef = Phi;
1713       if (Phi->getType()->isIntegerTy() && TTI &&
1714           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1715         // Make sure we only rewrite using simple induction variables;
1716         // otherwise, we can make the trip count of a loop unanalyzable
1717         // to SCEV.
1718         const SCEV *PhiExpr = SE.getSCEV(Phi);
1719         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1720           // This phi can be freely truncated to the narrowest phi type. Map the
1721           // truncated expression to it so it will be reused for narrow types.
1722           const SCEV *TruncExpr =
1723               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1724           ExprToIVMap[TruncExpr] = Phi;
1725         }
1726       }
1727       continue;
1728     }
1729 
1730     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1731     // sense.
1732     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1733       continue;
1734 
1735     replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts);
1736     SCEV_DEBUG_WITH_TYPE(DebugType,
1737                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1738                                 << '\n');
1739     SCEV_DEBUG_WITH_TYPE(
1740         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1741     ++NumElim;
1742     Value *NewIV = OrigPhiRef;
1743     if (OrigPhiRef->getType() != Phi->getType()) {
1744       IRBuilder<> Builder(L->getHeader(),
1745                           L->getHeader()->getFirstInsertionPt());
1746       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1747       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1748     }
1749     Phi->replaceAllUsesWith(NewIV);
1750     DeadInsts.emplace_back(Phi);
1751   }
1752   return NumElim;
1753 }
1754 
1755 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1756                                                const Instruction *At,
1757                                                Loop *L) {
1758   using namespace llvm::PatternMatch;
1759 
1760   SmallVector<BasicBlock *, 4> ExitingBlocks;
1761   L->getExitingBlocks(ExitingBlocks);
1762 
1763   // Look for suitable value in simple conditions at the loop exits.
1764   for (BasicBlock *BB : ExitingBlocks) {
1765     ICmpInst::Predicate Pred;
1766     Instruction *LHS, *RHS;
1767 
1768     if (!match(BB->getTerminator(),
1769                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1770                     m_BasicBlock(), m_BasicBlock())))
1771       continue;
1772 
1773     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1774       return true;
1775 
1776     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1777       return true;
1778   }
1779 
1780   // Use expand's logic which is used for reusing a previous Value in
1781   // ExprValueMap.  Note that we don't currently model the cost of
1782   // needing to drop poison generating flags on the instruction if we
1783   // want to reuse it.  We effectively assume that has zero cost.
1784   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1785   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1786 }
1787 
1788 template<typename T> static InstructionCost costAndCollectOperands(
1789   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1790   TargetTransformInfo::TargetCostKind CostKind,
1791   SmallVectorImpl<SCEVOperand> &Worklist) {
1792 
1793   const T *S = cast<T>(WorkItem.S);
1794   InstructionCost Cost = 0;
1795   // Object to help map SCEV operands to expanded IR instructions.
1796   struct OperationIndices {
1797     OperationIndices(unsigned Opc, size_t min, size_t max) :
1798       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1799     unsigned Opcode;
1800     size_t MinIdx;
1801     size_t MaxIdx;
1802   };
1803 
1804   // Collect the operations of all the instructions that will be needed to
1805   // expand the SCEVExpr. This is so that when we come to cost the operands,
1806   // we know what the generated user(s) will be.
1807   SmallVector<OperationIndices, 2> Operations;
1808 
1809   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1810     Operations.emplace_back(Opcode, 0, 0);
1811     return TTI.getCastInstrCost(Opcode, S->getType(),
1812                                 S->getOperand(0)->getType(),
1813                                 TTI::CastContextHint::None, CostKind);
1814   };
1815 
1816   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1817                        unsigned MinIdx = 0,
1818                        unsigned MaxIdx = 1) -> InstructionCost {
1819     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1820     return NumRequired *
1821       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1822   };
1823 
1824   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1825                         unsigned MaxIdx) -> InstructionCost {
1826     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1827     Type *OpType = S->getType();
1828     return NumRequired * TTI.getCmpSelInstrCost(
1829                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1830                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1831   };
1832 
1833   switch (S->getSCEVType()) {
1834   case scCouldNotCompute:
1835     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1836   case scUnknown:
1837   case scConstant:
1838   case scVScale:
1839     return 0;
1840   case scPtrToInt:
1841     Cost = CastCost(Instruction::PtrToInt);
1842     break;
1843   case scTruncate:
1844     Cost = CastCost(Instruction::Trunc);
1845     break;
1846   case scZeroExtend:
1847     Cost = CastCost(Instruction::ZExt);
1848     break;
1849   case scSignExtend:
1850     Cost = CastCost(Instruction::SExt);
1851     break;
1852   case scUDivExpr: {
1853     unsigned Opcode = Instruction::UDiv;
1854     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1855       if (SC->getAPInt().isPowerOf2())
1856         Opcode = Instruction::LShr;
1857     Cost = ArithCost(Opcode, 1);
1858     break;
1859   }
1860   case scAddExpr:
1861     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1862     break;
1863   case scMulExpr:
1864     // TODO: this is a very pessimistic cost modelling for Mul,
1865     // because of Bin Pow algorithm actually used by the expander,
1866     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1867     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1868     break;
1869   case scSMaxExpr:
1870   case scUMaxExpr:
1871   case scSMinExpr:
1872   case scUMinExpr:
1873   case scSequentialUMinExpr: {
1874     // FIXME: should this ask the cost for Intrinsic's?
1875     // The reduction tree.
1876     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1877     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1878     switch (S->getSCEVType()) {
1879     case scSequentialUMinExpr: {
1880       // The safety net against poison.
1881       // FIXME: this is broken.
1882       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1883       Cost += ArithCost(Instruction::Or,
1884                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1885       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1886       break;
1887     }
1888     default:
1889       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1890              "Unhandled SCEV expression type?");
1891       break;
1892     }
1893     break;
1894   }
1895   case scAddRecExpr: {
1896     // In this polynominal, we may have some zero operands, and we shouldn't
1897     // really charge for those. So how many non-zero coefficients are there?
1898     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1899                                     return !Op->isZero();
1900                                   });
1901 
1902     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1903     assert(!(*std::prev(S->operands().end()))->isZero() &&
1904            "Last operand should not be zero");
1905 
1906     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1907     int NumNonZeroDegreeNonOneTerms =
1908       llvm::count_if(S->operands(), [](const SCEV *Op) {
1909                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1910                       return !SConst || SConst->getAPInt().ugt(1);
1911                     });
1912 
1913     // Much like with normal add expr, the polynominal will require
1914     // one less addition than the number of it's terms.
1915     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1916                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1917     // Here, *each* one of those will require a multiplication.
1918     InstructionCost MulCost =
1919         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1920     Cost = AddCost + MulCost;
1921 
1922     // What is the degree of this polynominal?
1923     int PolyDegree = S->getNumOperands() - 1;
1924     assert(PolyDegree >= 1 && "Should be at least affine.");
1925 
1926     // The final term will be:
1927     //   Op_{PolyDegree} * x ^ {PolyDegree}
1928     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1929     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1930     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1931     // FIXME: this is conservatively correct, but might be overly pessimistic.
1932     Cost += MulCost * (PolyDegree - 1);
1933     break;
1934   }
1935   }
1936 
1937   for (auto &CostOp : Operations) {
1938     for (auto SCEVOp : enumerate(S->operands())) {
1939       // Clamp the index to account for multiple IR operations being chained.
1940       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1941       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1942       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1943     }
1944   }
1945   return Cost;
1946 }
1947 
1948 bool SCEVExpander::isHighCostExpansionHelper(
1949     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1950     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1951     SmallPtrSetImpl<const SCEV *> &Processed,
1952     SmallVectorImpl<SCEVOperand> &Worklist) {
1953   if (Cost > Budget)
1954     return true; // Already run out of budget, give up.
1955 
1956   const SCEV *S = WorkItem.S;
1957   // Was the cost of expansion of this expression already accounted for?
1958   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
1959     return false; // We have already accounted for this expression.
1960 
1961   // If we can find an existing value for this scev available at the point "At"
1962   // then consider the expression cheap.
1963   if (hasRelatedExistingExpansion(S, &At, L))
1964     return false; // Consider the expression to be free.
1965 
1966   TargetTransformInfo::TargetCostKind CostKind =
1967       L->getHeader()->getParent()->hasMinSize()
1968           ? TargetTransformInfo::TCK_CodeSize
1969           : TargetTransformInfo::TCK_RecipThroughput;
1970 
1971   switch (S->getSCEVType()) {
1972   case scCouldNotCompute:
1973     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1974   case scUnknown:
1975   case scVScale:
1976     // Assume to be zero-cost.
1977     return false;
1978   case scConstant: {
1979     // Only evalulate the costs of constants when optimizing for size.
1980     if (CostKind != TargetTransformInfo::TCK_CodeSize)
1981       return false;
1982     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
1983     Type *Ty = S->getType();
1984     Cost += TTI.getIntImmCostInst(
1985         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
1986     return Cost > Budget;
1987   }
1988   case scTruncate:
1989   case scPtrToInt:
1990   case scZeroExtend:
1991   case scSignExtend: {
1992     Cost +=
1993         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
1994     return false; // Will answer upon next entry into this function.
1995   }
1996   case scUDivExpr: {
1997     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
1998     // HowManyLessThans produced to compute a precise expression, rather than a
1999     // UDiv from the user's code. If we can't find a UDiv in the code with some
2000     // simple searching, we need to account for it's cost.
2001 
2002     // At the beginning of this function we already tried to find existing
2003     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2004     // pattern involving division. This is just a simple search heuristic.
2005     if (hasRelatedExistingExpansion(
2006             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2007       return false; // Consider it to be free.
2008 
2009     Cost +=
2010         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2011     return false; // Will answer upon next entry into this function.
2012   }
2013   case scAddExpr:
2014   case scMulExpr:
2015   case scUMaxExpr:
2016   case scSMaxExpr:
2017   case scUMinExpr:
2018   case scSMinExpr:
2019   case scSequentialUMinExpr: {
2020     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2021            "Nary expr should have more than 1 operand.");
2022     // The simple nary expr will require one less op (or pair of ops)
2023     // than the number of it's terms.
2024     Cost +=
2025         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2026     return Cost > Budget;
2027   }
2028   case scAddRecExpr: {
2029     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2030            "Polynomial should be at least linear");
2031     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2032         WorkItem, TTI, CostKind, Worklist);
2033     return Cost > Budget;
2034   }
2035   }
2036   llvm_unreachable("Unknown SCEV kind!");
2037 }
2038 
2039 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2040                                             Instruction *IP) {
2041   assert(IP);
2042   switch (Pred->getKind()) {
2043   case SCEVPredicate::P_Union:
2044     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2045   case SCEVPredicate::P_Compare:
2046     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2047   case SCEVPredicate::P_Wrap: {
2048     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2049     return expandWrapPredicate(AddRecPred, IP);
2050   }
2051   }
2052   llvm_unreachable("Unknown SCEV predicate type");
2053 }
2054 
2055 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2056                                             Instruction *IP) {
2057   Value *Expr0 = expand(Pred->getLHS(), IP);
2058   Value *Expr1 = expand(Pred->getRHS(), IP);
2059 
2060   Builder.SetInsertPoint(IP);
2061   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2062   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2063   return I;
2064 }
2065 
2066 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2067                                            Instruction *Loc, bool Signed) {
2068   assert(AR->isAffine() && "Cannot generate RT check for "
2069                            "non-affine expression");
2070 
2071   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2072   SmallVector<const SCEVPredicate *, 4> Pred;
2073   const SCEV *ExitCount =
2074       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2075 
2076   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2077 
2078   const SCEV *Step = AR->getStepRecurrence(SE);
2079   const SCEV *Start = AR->getStart();
2080 
2081   Type *ARTy = AR->getType();
2082   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2083   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2084 
2085   // The expression {Start,+,Step} has nusw/nssw if
2086   //   Step < 0, Start - |Step| * Backedge <= Start
2087   //   Step >= 0, Start + |Step| * Backedge > Start
2088   // and |Step| * Backedge doesn't unsigned overflow.
2089 
2090   Builder.SetInsertPoint(Loc);
2091   Value *TripCountVal = expand(ExitCount, Loc);
2092 
2093   IntegerType *Ty =
2094       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2095 
2096   Value *StepValue = expand(Step, Loc);
2097   Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
2098   Value *StartValue = expand(Start, Loc);
2099 
2100   ConstantInt *Zero =
2101       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2102 
2103   Builder.SetInsertPoint(Loc);
2104   // Compute |Step|
2105   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2106   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2107 
2108   // Compute |Step| * Backedge
2109   // Compute:
2110   //   1. Start + |Step| * Backedge < Start
2111   //   2. Start - |Step| * Backedge > Start
2112   //
2113   // And select either 1. or 2. depending on whether step is positive or
2114   // negative. If Step is known to be positive or negative, only create
2115   // either 1. or 2.
2116   auto ComputeEndCheck = [&]() -> Value * {
2117     // Checking <u 0 is always false.
2118     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2119       return ConstantInt::getFalse(Loc->getContext());
2120 
2121     // Get the backedge taken count and truncate or extended to the AR type.
2122     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2123 
2124     Value *MulV, *OfMul;
2125     if (Step->isOne()) {
2126       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2127       // needed, there is never an overflow, so to avoid artificially inflating
2128       // the cost of the check, directly emit the optimized IR.
2129       MulV = TruncTripCount;
2130       OfMul = ConstantInt::getFalse(MulV->getContext());
2131     } else {
2132       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2133                                              Intrinsic::umul_with_overflow, Ty);
2134       CallInst *Mul =
2135           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2136       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2137       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2138     }
2139 
2140     Value *Add = nullptr, *Sub = nullptr;
2141     bool NeedPosCheck = !SE.isKnownNegative(Step);
2142     bool NeedNegCheck = !SE.isKnownPositive(Step);
2143 
2144     if (isa<PointerType>(ARTy)) {
2145       Value *NegMulV = Builder.CreateNeg(MulV);
2146       if (NeedPosCheck)
2147         Add = Builder.CreatePtrAdd(StartValue, MulV);
2148       if (NeedNegCheck)
2149         Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
2150     } else {
2151       if (NeedPosCheck)
2152         Add = Builder.CreateAdd(StartValue, MulV);
2153       if (NeedNegCheck)
2154         Sub = Builder.CreateSub(StartValue, MulV);
2155     }
2156 
2157     Value *EndCompareLT = nullptr;
2158     Value *EndCompareGT = nullptr;
2159     Value *EndCheck = nullptr;
2160     if (NeedPosCheck)
2161       EndCheck = EndCompareLT = Builder.CreateICmp(
2162           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2163     if (NeedNegCheck)
2164       EndCheck = EndCompareGT = Builder.CreateICmp(
2165           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2166     if (NeedPosCheck && NeedNegCheck) {
2167       // Select the answer based on the sign of Step.
2168       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2169     }
2170     return Builder.CreateOr(EndCheck, OfMul);
2171   };
2172   Value *EndCheck = ComputeEndCheck();
2173 
2174   // If the backedge taken count type is larger than the AR type,
2175   // check that we don't drop any bits by truncating it. If we are
2176   // dropping bits, then we have overflow (unless the step is zero).
2177   if (SrcBits > DstBits) {
2178     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2179     auto *BackedgeCheck =
2180         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2181                            ConstantInt::get(Loc->getContext(), MaxVal));
2182     BackedgeCheck = Builder.CreateAnd(
2183         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2184 
2185     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2186   }
2187 
2188   return EndCheck;
2189 }
2190 
2191 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2192                                          Instruction *IP) {
2193   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2194   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2195 
2196   // Add a check for NUSW
2197   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2198     NUSWCheck = generateOverflowCheck(A, IP, false);
2199 
2200   // Add a check for NSSW
2201   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2202     NSSWCheck = generateOverflowCheck(A, IP, true);
2203 
2204   if (NUSWCheck && NSSWCheck)
2205     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2206 
2207   if (NUSWCheck)
2208     return NUSWCheck;
2209 
2210   if (NSSWCheck)
2211     return NSSWCheck;
2212 
2213   return ConstantInt::getFalse(IP->getContext());
2214 }
2215 
2216 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2217                                           Instruction *IP) {
2218   // Loop over all checks in this set.
2219   SmallVector<Value *> Checks;
2220   for (const auto *Pred : Union->getPredicates()) {
2221     Checks.push_back(expandCodeForPredicate(Pred, IP));
2222     Builder.SetInsertPoint(IP);
2223   }
2224 
2225   if (Checks.empty())
2226     return ConstantInt::getFalse(IP->getContext());
2227   return Builder.CreateOr(Checks);
2228 }
2229 
2230 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2231   auto *DefI = dyn_cast<Instruction>(V);
2232   if (!PreserveLCSSA || !DefI)
2233     return V;
2234 
2235   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
2236   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2237   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2238   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2239     return V;
2240 
2241   // Create a temporary instruction to at the current insertion point, so we
2242   // can hand it off to the helper to create LCSSA PHIs if required for the
2243   // new use.
2244   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2245   // would accept a insertion point and return an LCSSA phi for that
2246   // insertion point, so there is no need to insert & remove the temporary
2247   // instruction.
2248   Type *ToTy;
2249   if (DefI->getType()->isIntegerTy())
2250     ToTy = PointerType::get(DefI->getContext(), 0);
2251   else
2252     ToTy = Type::getInt32Ty(DefI->getContext());
2253   Instruction *User =
2254       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2255   auto RemoveUserOnExit =
2256       make_scope_exit([User]() { User->eraseFromParent(); });
2257 
2258   SmallVector<Instruction *, 1> ToUpdate;
2259   ToUpdate.push_back(DefI);
2260   SmallVector<PHINode *, 16> PHIsToRemove;
2261   SmallVector<PHINode *, 16> InsertedPHIs;
2262   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2263                            &InsertedPHIs);
2264   for (PHINode *PN : InsertedPHIs)
2265     rememberInstruction(PN);
2266   for (PHINode *PN : PHIsToRemove) {
2267     if (!PN->use_empty())
2268       continue;
2269     InsertedValues.erase(PN);
2270     InsertedPostIncValues.erase(PN);
2271     PN->eraseFromParent();
2272   }
2273 
2274   return User->getOperand(0);
2275 }
2276 
2277 namespace {
2278 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2279 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2280 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2281 // instruction, but the important thing is that we prove the denominator is
2282 // nonzero before expansion.
2283 //
2284 // IVUsers already checks that IV-derived expressions are safe. So this check is
2285 // only needed when the expression includes some subexpression that is not IV
2286 // derived.
2287 //
2288 // Currently, we only allow division by a value provably non-zero here.
2289 //
2290 // We cannot generally expand recurrences unless the step dominates the loop
2291 // header. The expander handles the special case of affine recurrences by
2292 // scaling the recurrence outside the loop, but this technique isn't generally
2293 // applicable. Expanding a nested recurrence outside a loop requires computing
2294 // binomial coefficients. This could be done, but the recurrence has to be in a
2295 // perfectly reduced form, which can't be guaranteed.
2296 struct SCEVFindUnsafe {
2297   ScalarEvolution &SE;
2298   bool CanonicalMode;
2299   bool IsUnsafe = false;
2300 
2301   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2302       : SE(SE), CanonicalMode(CanonicalMode) {}
2303 
2304   bool follow(const SCEV *S) {
2305     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2306       if (!SE.isKnownNonZero(D->getRHS())) {
2307         IsUnsafe = true;
2308         return false;
2309       }
2310     }
2311     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2312       // For non-affine addrecs or in non-canonical mode we need a preheader
2313       // to insert into.
2314       if (!AR->getLoop()->getLoopPreheader() &&
2315           (!CanonicalMode || !AR->isAffine())) {
2316         IsUnsafe = true;
2317         return false;
2318       }
2319     }
2320     return true;
2321   }
2322   bool isDone() const { return IsUnsafe; }
2323 };
2324 } // namespace
2325 
2326 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2327   SCEVFindUnsafe Search(SE, CanonicalMode);
2328   visitAll(S, Search);
2329   return !Search.IsUnsafe;
2330 }
2331 
2332 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2333                                     const Instruction *InsertionPoint) const {
2334   if (!isSafeToExpand(S))
2335     return false;
2336   // We have to prove that the expanded site of S dominates InsertionPoint.
2337   // This is easy when not in the same block, but hard when S is an instruction
2338   // to be expanded somewhere inside the same block as our insertion point.
2339   // What we really need here is something analogous to an OrderedBasicBlock,
2340   // but for the moment, we paper over the problem by handling two common and
2341   // cheap to check cases.
2342   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2343     return true;
2344   if (SE.dominates(S, InsertionPoint->getParent())) {
2345     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2346       return true;
2347     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2348       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2349         return true;
2350   }
2351   return false;
2352 }
2353 
2354 void SCEVExpanderCleaner::cleanup() {
2355   // Result is used, nothing to remove.
2356   if (ResultUsed)
2357     return;
2358 
2359   // Restore original poison flags.
2360   for (auto [I, Flags] : Expander.OrigFlags)
2361     Flags.apply(I);
2362 
2363   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2364 #ifndef NDEBUG
2365   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2366                                             InsertedInstructions.end());
2367   (void)InsertedSet;
2368 #endif
2369   // Remove sets with value handles.
2370   Expander.clear();
2371 
2372   // Remove all inserted instructions.
2373   for (Instruction *I : reverse(InsertedInstructions)) {
2374 #ifndef NDEBUG
2375     assert(all_of(I->users(),
2376                   [&InsertedSet](Value *U) {
2377                     return InsertedSet.contains(cast<Instruction>(U));
2378                   }) &&
2379            "removed instruction should only be used by instructions inserted "
2380            "during expansion");
2381 #endif
2382     assert(!I->getType()->isVoidTy() &&
2383            "inserted instruction should have non-void types");
2384     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2385     I->eraseFromParent();
2386   }
2387 }
2388