xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 32e15ae6e9cc8d8ef1f0969f2a0df993764f897b)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/LoopUtils.h"
30 
31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33 #else
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35 #endif
36 
37 using namespace llvm;
38 
39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
40     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
41     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
42              "controls the budget that is considered cheap (default = 4)"));
43 
44 using namespace PatternMatch;
45 
46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
48 /// creating a new one.
49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
50                                        Instruction::CastOps Op,
51                                        BasicBlock::iterator IP) {
52   // This function must be called with the builder having a valid insertion
53   // point. It doesn't need to be the actual IP where the uses of the returned
54   // cast will be added, but it must dominate such IP.
55   // We use this precondition to produce a cast that will dominate all its
56   // uses. In particular, this is crucial for the case where the builder's
57   // insertion point *is* the point where we were asked to put the cast.
58   // Since we don't know the builder's insertion point is actually
59   // where the uses will be added (only that it dominates it), we are
60   // not allowed to move it.
61   BasicBlock::iterator BIP = Builder.GetInsertPoint();
62 
63   Value *Ret = nullptr;
64 
65   // Check to see if there is already a cast!
66   for (User *U : V->users()) {
67     if (U->getType() != Ty)
68       continue;
69     CastInst *CI = dyn_cast<CastInst>(U);
70     if (!CI || CI->getOpcode() != Op)
71       continue;
72 
73     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
74     // the cast must also properly dominate the Builder's insertion point.
75     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
76         (&*IP == CI || CI->comesBefore(&*IP))) {
77       Ret = CI;
78       break;
79     }
80   }
81 
82   // Create a new cast.
83   if (!Ret) {
84     SCEVInsertPointGuard Guard(Builder, this);
85     Builder.SetInsertPoint(&*IP);
86     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
87   }
88 
89   // We assert at the end of the function since IP might point to an
90   // instruction with different dominance properties than a cast
91   // (an invoke for example) and not dominate BIP (but the cast does).
92   assert(!isa<Instruction>(Ret) ||
93          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
94 
95   return Ret;
96 }
97 
98 BasicBlock::iterator
99 SCEVExpander::findInsertPointAfter(Instruction *I,
100                                    Instruction *MustDominate) const {
101   BasicBlock::iterator IP = ++I->getIterator();
102   if (auto *II = dyn_cast<InvokeInst>(I))
103     IP = II->getNormalDest()->begin();
104 
105   while (isa<PHINode>(IP))
106     ++IP;
107 
108   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
109     ++IP;
110   } else if (isa<CatchSwitchInst>(IP)) {
111     IP = MustDominate->getParent()->getFirstInsertionPt();
112   } else {
113     assert(!IP->isEHPad() && "unexpected eh pad!");
114   }
115 
116   // Adjust insert point to be after instructions inserted by the expander, so
117   // we can re-use already inserted instructions. Avoid skipping past the
118   // original \p MustDominate, in case it is an inserted instruction.
119   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
120     ++IP;
121 
122   return IP;
123 }
124 
125 BasicBlock::iterator
126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
127   // Cast the argument at the beginning of the entry block, after
128   // any bitcasts of other arguments.
129   if (Argument *A = dyn_cast<Argument>(V)) {
130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131     while ((isa<BitCastInst>(IP) &&
132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
134            isa<DbgInfoIntrinsic>(IP))
135       ++IP;
136     return IP;
137   }
138 
139   // Cast the instruction immediately after the instruction.
140   if (Instruction *I = dyn_cast<Instruction>(V))
141     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
142 
143   // Otherwise, this must be some kind of a constant,
144   // so let's plop this cast into the function's entry block.
145   assert(isa<Constant>(V) &&
146          "Expected the cast argument to be a global/constant");
147   return Builder.GetInsertBlock()
148       ->getParent()
149       ->getEntryBlock()
150       .getFirstInsertionPt();
151 }
152 
153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
154 /// which must be possible with a noop cast, doing what we can to share
155 /// the casts.
156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
157   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
158   assert((Op == Instruction::BitCast ||
159           Op == Instruction::PtrToInt ||
160           Op == Instruction::IntToPtr) &&
161          "InsertNoopCastOfTo cannot perform non-noop casts!");
162   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
163          "InsertNoopCastOfTo cannot change sizes!");
164 
165   // inttoptr only works for integral pointers. For non-integral pointers, we
166   // can create a GEP on null with the integral value as index. Note that
167   // it is safe to use GEP of null instead of inttoptr here, because only
168   // expressions already based on a GEP of null should be converted to pointers
169   // during expansion.
170   if (Op == Instruction::IntToPtr) {
171     auto *PtrTy = cast<PointerType>(Ty);
172     if (DL.isNonIntegralPointerType(PtrTy)) {
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       return Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep");
177     }
178   }
179   // Short-circuit unnecessary bitcasts.
180   if (Op == Instruction::BitCast) {
181     if (V->getType() == Ty)
182       return V;
183     if (CastInst *CI = dyn_cast<CastInst>(V)) {
184       if (CI->getOperand(0)->getType() == Ty)
185         return CI->getOperand(0);
186     }
187   }
188   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
189   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
190       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
191     if (CastInst *CI = dyn_cast<CastInst>(V))
192       if ((CI->getOpcode() == Instruction::PtrToInt ||
193            CI->getOpcode() == Instruction::IntToPtr) &&
194           SE.getTypeSizeInBits(CI->getType()) ==
195           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
196         return CI->getOperand(0);
197     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
198       if ((CE->getOpcode() == Instruction::PtrToInt ||
199            CE->getOpcode() == Instruction::IntToPtr) &&
200           SE.getTypeSizeInBits(CE->getType()) ==
201           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
202         return CE->getOperand(0);
203   }
204 
205   // Fold a cast of a constant.
206   if (Constant *C = dyn_cast<Constant>(V))
207     return ConstantExpr::getCast(Op, C, Ty);
208 
209   // Try to reuse existing cast, or insert one.
210   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
211 }
212 
213 /// InsertBinop - Insert the specified binary operator, doing a small amount
214 /// of work to avoid inserting an obviously redundant operation, and hoisting
215 /// to an outer loop when the opportunity is there and it is safe.
216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
217                                  Value *LHS, Value *RHS,
218                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
219   // Fold a binop with constant operands.
220   if (Constant *CLHS = dyn_cast<Constant>(LHS))
221     if (Constant *CRHS = dyn_cast<Constant>(RHS))
222       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
223         return Res;
224 
225   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
226   unsigned ScanLimit = 6;
227   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
228   // Scanning starts from the last instruction before the insertion point.
229   BasicBlock::iterator IP = Builder.GetInsertPoint();
230   if (IP != BlockBegin) {
231     --IP;
232     for (; ScanLimit; --IP, --ScanLimit) {
233       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
234       // generated code.
235       if (isa<DbgInfoIntrinsic>(IP))
236         ScanLimit++;
237 
238       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
239         // Ensure that no-wrap flags match.
240         if (isa<OverflowingBinaryOperator>(I)) {
241           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
242             return true;
243           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
244             return true;
245         }
246         // Conservatively, do not use any instruction which has any of exact
247         // flags installed.
248         if (isa<PossiblyExactOperator>(I) && I->isExact())
249           return true;
250         return false;
251       };
252       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
253           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
254         return &*IP;
255       if (IP == BlockBegin) break;
256     }
257   }
258 
259   // Save the original insertion point so we can restore it when we're done.
260   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
261   SCEVInsertPointGuard Guard(Builder, this);
262 
263   if (IsSafeToHoist) {
264     // Move the insertion point out of as many loops as we can.
265     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
266       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
267       BasicBlock *Preheader = L->getLoopPreheader();
268       if (!Preheader) break;
269 
270       // Ok, move up a level.
271       Builder.SetInsertPoint(Preheader->getTerminator());
272     }
273   }
274 
275   // If we haven't found this binop, insert it.
276   // TODO: Use the Builder, which will make CreateBinOp below fold with
277   // InstSimplifyFolder.
278   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
279   BO->setDebugLoc(Loc);
280   if (Flags & SCEV::FlagNUW)
281     BO->setHasNoUnsignedWrap();
282   if (Flags & SCEV::FlagNSW)
283     BO->setHasNoSignedWrap();
284 
285   return BO;
286 }
287 
288 /// expandAddToGEP - Expand an addition expression with a pointer type into
289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
290 /// BasicAliasAnalysis and other passes analyze the result. See the rules
291 /// for getelementptr vs. inttoptr in
292 /// http://llvm.org/docs/LangRef.html#pointeraliasing
293 /// for details.
294 ///
295 /// Design note: The correctness of using getelementptr here depends on
296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
297 /// they may introduce pointer arithmetic which may not be safely converted
298 /// into getelementptr.
299 ///
300 /// Design note: It might seem desirable for this function to be more
301 /// loop-aware. If some of the indices are loop-invariant while others
302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
303 /// loop-invariant portions of the overall computation outside the loop.
304 /// However, there are a few reasons this is not done here. Hoisting simple
305 /// arithmetic is a low-level optimization that often isn't very
306 /// important until late in the optimization process. In fact, passes
307 /// like InstructionCombining will combine GEPs, even if it means
308 /// pushing loop-invariant computation down into loops, so even if the
309 /// GEPs were split here, the work would quickly be undone. The
310 /// LoopStrengthReduction pass, which is usually run quite late (and
311 /// after the last InstructionCombining pass), takes care of hoisting
312 /// loop-invariant portions of expressions, after considering what
313 /// can be folded using target addressing modes.
314 ///
315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) {
316   assert(!isa<Instruction>(V) ||
317          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
318 
319   Value *Idx = expandCodeFor(Offset, Ty);
320 
321   // Fold a GEP with constant operands.
322   if (Constant *CLHS = dyn_cast<Constant>(V))
323     if (Constant *CRHS = dyn_cast<Constant>(Idx))
324       return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS);
325 
326   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
327   unsigned ScanLimit = 6;
328   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
329   // Scanning starts from the last instruction before the insertion point.
330   BasicBlock::iterator IP = Builder.GetInsertPoint();
331   if (IP != BlockBegin) {
332     --IP;
333     for (; ScanLimit; --IP, --ScanLimit) {
334       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
335       // generated code.
336       if (isa<DbgInfoIntrinsic>(IP))
337         ScanLimit++;
338       if (IP->getOpcode() == Instruction::GetElementPtr &&
339           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
340           cast<GEPOperator>(&*IP)->getSourceElementType() ==
341               Type::getInt8Ty(Ty->getContext()))
342         return &*IP;
343       if (IP == BlockBegin) break;
344     }
345   }
346 
347   // Save the original insertion point so we can restore it when we're done.
348   SCEVInsertPointGuard Guard(Builder, this);
349 
350   // Move the insertion point out of as many loops as we can.
351   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
352     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
353     BasicBlock *Preheader = L->getLoopPreheader();
354     if (!Preheader) break;
355 
356     // Ok, move up a level.
357     Builder.SetInsertPoint(Preheader->getTerminator());
358   }
359 
360   // Emit a GEP.
361   return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep");
362 }
363 
364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
365 /// SCEV expansion. If they are nested, this is the most nested. If they are
366 /// neighboring, pick the later.
367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
368                                         DominatorTree &DT) {
369   if (!A) return B;
370   if (!B) return A;
371   if (A->contains(B)) return B;
372   if (B->contains(A)) return A;
373   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
374   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
375   return A; // Arbitrarily break the tie.
376 }
377 
378 /// getRelevantLoop - Get the most relevant loop associated with the given
379 /// expression, according to PickMostRelevantLoop.
380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
381   // Test whether we've already computed the most relevant loop for this SCEV.
382   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
383   if (!Pair.second)
384     return Pair.first->second;
385 
386   switch (S->getSCEVType()) {
387   case scConstant:
388   case scVScale:
389     return nullptr; // A constant has no relevant loops.
390   case scTruncate:
391   case scZeroExtend:
392   case scSignExtend:
393   case scPtrToInt:
394   case scAddExpr:
395   case scMulExpr:
396   case scUDivExpr:
397   case scAddRecExpr:
398   case scUMaxExpr:
399   case scSMaxExpr:
400   case scUMinExpr:
401   case scSMinExpr:
402   case scSequentialUMinExpr: {
403     const Loop *L = nullptr;
404     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
405       L = AR->getLoop();
406     for (const SCEV *Op : S->operands())
407       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
408     return RelevantLoops[S] = L;
409   }
410   case scUnknown: {
411     const SCEVUnknown *U = cast<SCEVUnknown>(S);
412     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
413       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
414     // A non-instruction has no relevant loops.
415     return nullptr;
416   }
417   case scCouldNotCompute:
418     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
419   }
420   llvm_unreachable("Unexpected SCEV type!");
421 }
422 
423 namespace {
424 
425 /// LoopCompare - Compare loops by PickMostRelevantLoop.
426 class LoopCompare {
427   DominatorTree &DT;
428 public:
429   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
430 
431   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
432                   std::pair<const Loop *, const SCEV *> RHS) const {
433     // Keep pointer operands sorted at the end.
434     if (LHS.second->getType()->isPointerTy() !=
435         RHS.second->getType()->isPointerTy())
436       return LHS.second->getType()->isPointerTy();
437 
438     // Compare loops with PickMostRelevantLoop.
439     if (LHS.first != RHS.first)
440       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
441 
442     // If one operand is a non-constant negative and the other is not,
443     // put the non-constant negative on the right so that a sub can
444     // be used instead of a negate and add.
445     if (LHS.second->isNonConstantNegative()) {
446       if (!RHS.second->isNonConstantNegative())
447         return false;
448     } else if (RHS.second->isNonConstantNegative())
449       return true;
450 
451     // Otherwise they are equivalent according to this comparison.
452     return false;
453   }
454 };
455 
456 }
457 
458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
459   Type *Ty = SE.getEffectiveSCEVType(S->getType());
460 
461   // Collect all the add operands in a loop, along with their associated loops.
462   // Iterate in reverse so that constants are emitted last, all else equal, and
463   // so that pointer operands are inserted first, which the code below relies on
464   // to form more involved GEPs.
465   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
466   for (const SCEV *Op : reverse(S->operands()))
467     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
468 
469   // Sort by loop. Use a stable sort so that constants follow non-constants and
470   // pointer operands precede non-pointer operands.
471   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
472 
473   // Emit instructions to add all the operands. Hoist as much as possible
474   // out of loops, and form meaningful getelementptrs where possible.
475   Value *Sum = nullptr;
476   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
477     const Loop *CurLoop = I->first;
478     const SCEV *Op = I->second;
479     if (!Sum) {
480       // This is the first operand. Just expand it.
481       Sum = expand(Op);
482       ++I;
483       continue;
484     }
485 
486     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
487     if (isa<PointerType>(Sum->getType())) {
488       // The running sum expression is a pointer. Try to form a getelementptr
489       // at this level with that as the base.
490       SmallVector<const SCEV *, 4> NewOps;
491       for (; I != E && I->first == CurLoop; ++I) {
492         // If the operand is SCEVUnknown and not instructions, peek through
493         // it, to enable more of it to be folded into the GEP.
494         const SCEV *X = I->second;
495         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
496           if (!isa<Instruction>(U->getValue()))
497             X = SE.getSCEV(U->getValue());
498         NewOps.push_back(X);
499       }
500       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum);
501     } else if (Op->isNonConstantNegative()) {
502       // Instead of doing a negate and add, just do a subtract.
503       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
504       Sum = InsertNoopCastOfTo(Sum, Ty);
505       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
506                         /*IsSafeToHoist*/ true);
507       ++I;
508     } else {
509       // A simple add.
510       Value *W = expandCodeFor(Op, Ty);
511       Sum = InsertNoopCastOfTo(Sum, Ty);
512       // Canonicalize a constant to the RHS.
513       if (isa<Constant>(Sum))
514         std::swap(Sum, W);
515       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
516                         /*IsSafeToHoist*/ true);
517       ++I;
518     }
519   }
520 
521   return Sum;
522 }
523 
524 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
525   Type *Ty = SE.getEffectiveSCEVType(S->getType());
526 
527   // Collect all the mul operands in a loop, along with their associated loops.
528   // Iterate in reverse so that constants are emitted last, all else equal.
529   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
530   for (const SCEV *Op : reverse(S->operands()))
531     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
532 
533   // Sort by loop. Use a stable sort so that constants follow non-constants.
534   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
535 
536   // Emit instructions to mul all the operands. Hoist as much as possible
537   // out of loops.
538   Value *Prod = nullptr;
539   auto I = OpsAndLoops.begin();
540 
541   // Expand the calculation of X pow N in the following manner:
542   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
543   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
544   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
545     auto E = I;
546     // Calculate how many times the same operand from the same loop is included
547     // into this power.
548     uint64_t Exponent = 0;
549     const uint64_t MaxExponent = UINT64_MAX >> 1;
550     // No one sane will ever try to calculate such huge exponents, but if we
551     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
552     // below when the power of 2 exceeds our Exponent, and we want it to be
553     // 1u << 31 at most to not deal with unsigned overflow.
554     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
555       ++Exponent;
556       ++E;
557     }
558     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
559 
560     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
561     // that are needed into the result.
562     Value *P = expandCodeFor(I->second, Ty);
563     Value *Result = nullptr;
564     if (Exponent & 1)
565       Result = P;
566     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
567       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
568                       /*IsSafeToHoist*/ true);
569       if (Exponent & BinExp)
570         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
571                                       SCEV::FlagAnyWrap,
572                                       /*IsSafeToHoist*/ true)
573                         : P;
574     }
575 
576     I = E;
577     assert(Result && "Nothing was expanded?");
578     return Result;
579   };
580 
581   while (I != OpsAndLoops.end()) {
582     if (!Prod) {
583       // This is the first operand. Just expand it.
584       Prod = ExpandOpBinPowN();
585     } else if (I->second->isAllOnesValue()) {
586       // Instead of doing a multiply by negative one, just do a negate.
587       Prod = InsertNoopCastOfTo(Prod, Ty);
588       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
589                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
590       ++I;
591     } else {
592       // A simple mul.
593       Value *W = ExpandOpBinPowN();
594       Prod = InsertNoopCastOfTo(Prod, Ty);
595       // Canonicalize a constant to the RHS.
596       if (isa<Constant>(Prod)) std::swap(Prod, W);
597       const APInt *RHS;
598       if (match(W, m_Power2(RHS))) {
599         // Canonicalize Prod*(1<<C) to Prod<<C.
600         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
601         auto NWFlags = S->getNoWrapFlags();
602         // clear nsw flag if shl will produce poison value.
603         if (RHS->logBase2() == RHS->getBitWidth() - 1)
604           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
605         Prod = InsertBinop(Instruction::Shl, Prod,
606                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
607                            /*IsSafeToHoist*/ true);
608       } else {
609         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
610                            /*IsSafeToHoist*/ true);
611       }
612     }
613   }
614 
615   return Prod;
616 }
617 
618 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
619   Type *Ty = SE.getEffectiveSCEVType(S->getType());
620 
621   Value *LHS = expandCodeFor(S->getLHS(), Ty);
622   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
623     const APInt &RHS = SC->getAPInt();
624     if (RHS.isPowerOf2())
625       return InsertBinop(Instruction::LShr, LHS,
626                          ConstantInt::get(Ty, RHS.logBase2()),
627                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
628   }
629 
630   Value *RHS = expandCodeFor(S->getRHS(), Ty);
631   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
632                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
633 }
634 
635 /// Determine if this is a well-behaved chain of instructions leading back to
636 /// the PHI. If so, it may be reused by expanded expressions.
637 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
638                                          const Loop *L) {
639   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
640       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
641     return false;
642   // If any of the operands don't dominate the insert position, bail.
643   // Addrec operands are always loop-invariant, so this can only happen
644   // if there are instructions which haven't been hoisted.
645   if (L == IVIncInsertLoop) {
646     for (Use &Op : llvm::drop_begin(IncV->operands()))
647       if (Instruction *OInst = dyn_cast<Instruction>(Op))
648         if (!SE.DT.dominates(OInst, IVIncInsertPos))
649           return false;
650   }
651   // Advance to the next instruction.
652   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
653   if (!IncV)
654     return false;
655 
656   if (IncV->mayHaveSideEffects())
657     return false;
658 
659   if (IncV == PN)
660     return true;
661 
662   return isNormalAddRecExprPHI(PN, IncV, L);
663 }
664 
665 /// getIVIncOperand returns an induction variable increment's induction
666 /// variable operand.
667 ///
668 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
669 /// operands dominate InsertPos.
670 ///
671 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
672 /// simple patterns generated by getAddRecExprPHILiterally and
673 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
674 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
675                                            Instruction *InsertPos,
676                                            bool allowScale) {
677   if (IncV == InsertPos)
678     return nullptr;
679 
680   switch (IncV->getOpcode()) {
681   default:
682     return nullptr;
683   // Check for a simple Add/Sub or GEP of a loop invariant step.
684   case Instruction::Add:
685   case Instruction::Sub: {
686     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
687     if (!OInst || SE.DT.dominates(OInst, InsertPos))
688       return dyn_cast<Instruction>(IncV->getOperand(0));
689     return nullptr;
690   }
691   case Instruction::BitCast:
692     return dyn_cast<Instruction>(IncV->getOperand(0));
693   case Instruction::GetElementPtr:
694     for (Use &U : llvm::drop_begin(IncV->operands())) {
695       if (isa<Constant>(U))
696         continue;
697       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
698         if (!SE.DT.dominates(OInst, InsertPos))
699           return nullptr;
700       }
701       if (allowScale) {
702         // allow any kind of GEP as long as it can be hoisted.
703         continue;
704       }
705       // GEPs produced by SCEVExpander use i8 element type.
706       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
707         return nullptr;
708       break;
709     }
710     return dyn_cast<Instruction>(IncV->getOperand(0));
711   }
712 }
713 
714 /// If the insert point of the current builder or any of the builders on the
715 /// stack of saved builders has 'I' as its insert point, update it to point to
716 /// the instruction after 'I'.  This is intended to be used when the instruction
717 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
718 /// different block, the inconsistent insert point (with a mismatched
719 /// Instruction and Block) can lead to an instruction being inserted in a block
720 /// other than its parent.
721 void SCEVExpander::fixupInsertPoints(Instruction *I) {
722   BasicBlock::iterator It(*I);
723   BasicBlock::iterator NewInsertPt = std::next(It);
724   if (Builder.GetInsertPoint() == It)
725     Builder.SetInsertPoint(&*NewInsertPt);
726   for (auto *InsertPtGuard : InsertPointGuards)
727     if (InsertPtGuard->GetInsertPoint() == It)
728       InsertPtGuard->SetInsertPoint(NewInsertPt);
729 }
730 
731 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
732 /// it available to other uses in this loop. Recursively hoist any operands,
733 /// until we reach a value that dominates InsertPos.
734 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
735                               bool RecomputePoisonFlags) {
736   auto FixupPoisonFlags = [this](Instruction *I) {
737     // Drop flags that are potentially inferred from old context and infer flags
738     // in new context.
739     I->dropPoisonGeneratingFlags();
740     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
741       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
742         auto *BO = cast<BinaryOperator>(I);
743         BO->setHasNoUnsignedWrap(
744             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
745         BO->setHasNoSignedWrap(
746             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
747       }
748   };
749 
750   if (SE.DT.dominates(IncV, InsertPos)) {
751     if (RecomputePoisonFlags)
752       FixupPoisonFlags(IncV);
753     return true;
754   }
755 
756   // InsertPos must itself dominate IncV so that IncV's new position satisfies
757   // its existing users.
758   if (isa<PHINode>(InsertPos) ||
759       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
760     return false;
761 
762   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
763     return false;
764 
765   // Check that the chain of IV operands leading back to Phi can be hoisted.
766   SmallVector<Instruction*, 4> IVIncs;
767   for(;;) {
768     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
769     if (!Oper)
770       return false;
771     // IncV is safe to hoist.
772     IVIncs.push_back(IncV);
773     IncV = Oper;
774     if (SE.DT.dominates(IncV, InsertPos))
775       break;
776   }
777   for (Instruction *I : llvm::reverse(IVIncs)) {
778     fixupInsertPoints(I);
779     I->moveBefore(InsertPos);
780     if (RecomputePoisonFlags)
781       FixupPoisonFlags(I);
782   }
783   return true;
784 }
785 
786 /// Determine if this cyclic phi is in a form that would have been generated by
787 /// LSR. We don't care if the phi was actually expanded in this pass, as long
788 /// as it is in a low-cost form, for example, no implied multiplication. This
789 /// should match any patterns generated by getAddRecExprPHILiterally and
790 /// expandAddtoGEP.
791 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
792                                            const Loop *L) {
793   for(Instruction *IVOper = IncV;
794       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
795                                 /*allowScale=*/false));) {
796     if (IVOper == PN)
797       return true;
798   }
799   return false;
800 }
801 
802 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
803 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
804 /// need to materialize IV increments elsewhere to handle difficult situations.
805 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
806                                  Type *ExpandTy, Type *IntTy,
807                                  bool useSubtract) {
808   Value *IncV;
809   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
810   if (ExpandTy->isPointerTy()) {
811     IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN);
812   } else {
813     IncV = useSubtract ?
814       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
815       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
816   }
817   return IncV;
818 }
819 
820 /// Check whether we can cheaply express the requested SCEV in terms of
821 /// the available PHI SCEV by truncation and/or inversion of the step.
822 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
823                                     const SCEVAddRecExpr *Phi,
824                                     const SCEVAddRecExpr *Requested,
825                                     bool &InvertStep) {
826   // We can't transform to match a pointer PHI.
827   if (Phi->getType()->isPointerTy())
828     return false;
829 
830   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
831   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
832 
833   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
834     return false;
835 
836   // Try truncate it if necessary.
837   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
838   if (!Phi)
839     return false;
840 
841   // Check whether truncation will help.
842   if (Phi == Requested) {
843     InvertStep = false;
844     return true;
845   }
846 
847   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
848   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
849     InvertStep = true;
850     return true;
851   }
852 
853   return false;
854 }
855 
856 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
857   if (!isa<IntegerType>(AR->getType()))
858     return false;
859 
860   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
861   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
862   const SCEV *Step = AR->getStepRecurrence(SE);
863   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
864                                             SE.getSignExtendExpr(AR, WideTy));
865   const SCEV *ExtendAfterOp =
866     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
867   return ExtendAfterOp == OpAfterExtend;
868 }
869 
870 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
871   if (!isa<IntegerType>(AR->getType()))
872     return false;
873 
874   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
875   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
876   const SCEV *Step = AR->getStepRecurrence(SE);
877   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
878                                             SE.getZeroExtendExpr(AR, WideTy));
879   const SCEV *ExtendAfterOp =
880     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
881   return ExtendAfterOp == OpAfterExtend;
882 }
883 
884 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
885 /// the base addrec, which is the addrec without any non-loop-dominating
886 /// values, and return the PHI.
887 PHINode *
888 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
889                                         const Loop *L,
890                                         Type *ExpandTy,
891                                         Type *IntTy,
892                                         Type *&TruncTy,
893                                         bool &InvertStep) {
894   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
895 
896   // Reuse a previously-inserted PHI, if present.
897   BasicBlock *LatchBlock = L->getLoopLatch();
898   if (LatchBlock) {
899     PHINode *AddRecPhiMatch = nullptr;
900     Instruction *IncV = nullptr;
901     TruncTy = nullptr;
902     InvertStep = false;
903 
904     // Only try partially matching scevs that need truncation and/or
905     // step-inversion if we know this loop is outside the current loop.
906     bool TryNonMatchingSCEV =
907         IVIncInsertLoop &&
908         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
909 
910     for (PHINode &PN : L->getHeader()->phis()) {
911       if (!SE.isSCEVable(PN.getType()))
912         continue;
913 
914       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
915       // PHI has no meaning at all.
916       if (!PN.isComplete()) {
917         SCEV_DEBUG_WITH_TYPE(
918             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
919         continue;
920       }
921 
922       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
923       if (!PhiSCEV)
924         continue;
925 
926       bool IsMatchingSCEV = PhiSCEV == Normalized;
927       // We only handle truncation and inversion of phi recurrences for the
928       // expanded expression if the expanded expression's loop dominates the
929       // loop we insert to. Check now, so we can bail out early.
930       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
931           continue;
932 
933       // TODO: this possibly can be reworked to avoid this cast at all.
934       Instruction *TempIncV =
935           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
936       if (!TempIncV)
937         continue;
938 
939       // Check whether we can reuse this PHI node.
940       if (LSRMode) {
941         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
942           continue;
943       } else {
944         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
945           continue;
946       }
947 
948       // Stop if we have found an exact match SCEV.
949       if (IsMatchingSCEV) {
950         IncV = TempIncV;
951         TruncTy = nullptr;
952         InvertStep = false;
953         AddRecPhiMatch = &PN;
954         break;
955       }
956 
957       // Try whether the phi can be translated into the requested form
958       // (truncated and/or offset by a constant).
959       if ((!TruncTy || InvertStep) &&
960           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
961         // Record the phi node. But don't stop we might find an exact match
962         // later.
963         AddRecPhiMatch = &PN;
964         IncV = TempIncV;
965         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
966       }
967     }
968 
969     if (AddRecPhiMatch) {
970       // Ok, the add recurrence looks usable.
971       // Remember this PHI, even in post-inc mode.
972       InsertedValues.insert(AddRecPhiMatch);
973       // Remember the increment.
974       rememberInstruction(IncV);
975       // Those values were not actually inserted but re-used.
976       ReusedValues.insert(AddRecPhiMatch);
977       ReusedValues.insert(IncV);
978       return AddRecPhiMatch;
979     }
980   }
981 
982   // Save the original insertion point so we can restore it when we're done.
983   SCEVInsertPointGuard Guard(Builder, this);
984 
985   // Another AddRec may need to be recursively expanded below. For example, if
986   // this AddRec is quadratic, the StepV may itself be an AddRec in this
987   // loop. Remove this loop from the PostIncLoops set before expanding such
988   // AddRecs. Otherwise, we cannot find a valid position for the step
989   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
990   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
991   // so it's not worth implementing SmallPtrSet::swap.
992   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
993   PostIncLoops.clear();
994 
995   // Expand code for the start value into the loop preheader.
996   assert(L->getLoopPreheader() &&
997          "Can't expand add recurrences without a loop preheader!");
998   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
999                                 L->getLoopPreheader()->getTerminator());
1000 
1001   // StartV must have been be inserted into L's preheader to dominate the new
1002   // phi.
1003   assert(!isa<Instruction>(StartV) ||
1004          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1005                                  L->getHeader()));
1006 
1007   // Expand code for the step value. Do this before creating the PHI so that PHI
1008   // reuse code doesn't see an incomplete PHI.
1009   const SCEV *Step = Normalized->getStepRecurrence(SE);
1010   // If the stride is negative, insert a sub instead of an add for the increment
1011   // (unless it's a constant, because subtracts of constants are canonicalized
1012   // to adds).
1013   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1014   if (useSubtract)
1015     Step = SE.getNegativeSCEV(Step);
1016   // Expand the step somewhere that dominates the loop header.
1017   Value *StepV =
1018       expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt());
1019 
1020   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1021   // we actually do emit an addition.  It does not apply if we emit a
1022   // subtraction.
1023   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1024   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1025 
1026   // Create the PHI.
1027   BasicBlock *Header = L->getHeader();
1028   Builder.SetInsertPoint(Header, Header->begin());
1029   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1030   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1031                                   Twine(IVName) + ".iv");
1032 
1033   // Create the step instructions and populate the PHI.
1034   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1035     BasicBlock *Pred = *HPI;
1036 
1037     // Add a start value.
1038     if (!L->contains(Pred)) {
1039       PN->addIncoming(StartV, Pred);
1040       continue;
1041     }
1042 
1043     // Create a step value and add it to the PHI.
1044     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1045     // instructions at IVIncInsertPos.
1046     Instruction *InsertPos = L == IVIncInsertLoop ?
1047       IVIncInsertPos : Pred->getTerminator();
1048     Builder.SetInsertPoint(InsertPos);
1049     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1050 
1051     if (isa<OverflowingBinaryOperator>(IncV)) {
1052       if (IncrementIsNUW)
1053         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1054       if (IncrementIsNSW)
1055         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1056     }
1057     PN->addIncoming(IncV, Pred);
1058   }
1059 
1060   // After expanding subexpressions, restore the PostIncLoops set so the caller
1061   // can ensure that IVIncrement dominates the current uses.
1062   PostIncLoops = SavedPostIncLoops;
1063 
1064   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1065   // effective when we are able to use an IV inserted here, so record it.
1066   InsertedValues.insert(PN);
1067   InsertedIVs.push_back(PN);
1068   return PN;
1069 }
1070 
1071 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1072   Type *STy = S->getType();
1073   Type *IntTy = SE.getEffectiveSCEVType(STy);
1074   const Loop *L = S->getLoop();
1075 
1076   // Determine a normalized form of this expression, which is the expression
1077   // before any post-inc adjustment is made.
1078   const SCEVAddRecExpr *Normalized = S;
1079   if (PostIncLoops.count(L)) {
1080     PostIncLoopSet Loops;
1081     Loops.insert(L);
1082     Normalized = cast<SCEVAddRecExpr>(
1083         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
1084   }
1085 
1086   // Strip off any non-loop-dominating component from the addrec start.
1087   const SCEV *Start = Normalized->getStart();
1088   const SCEV *PostLoopOffset = nullptr;
1089   if (!SE.properlyDominates(Start, L->getHeader())) {
1090     PostLoopOffset = Start;
1091     Start = SE.getConstant(Normalized->getType(), 0);
1092     Normalized = cast<SCEVAddRecExpr>(
1093       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1094                        Normalized->getLoop(),
1095                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1096   }
1097 
1098   // Strip off any non-loop-dominating component from the addrec step.
1099   const SCEV *Step = Normalized->getStepRecurrence(SE);
1100   const SCEV *PostLoopScale = nullptr;
1101   if (!SE.dominates(Step, L->getHeader())) {
1102     PostLoopScale = Step;
1103     Step = SE.getConstant(Normalized->getType(), 1);
1104     if (!Start->isZero()) {
1105         // The normalization below assumes that Start is constant zero, so if
1106         // it isn't re-associate Start to PostLoopOffset.
1107         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1108         PostLoopOffset = Start;
1109         Start = SE.getConstant(Normalized->getType(), 0);
1110     }
1111     Normalized =
1112       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1113                              Start, Step, Normalized->getLoop(),
1114                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1115   }
1116 
1117   // Expand the core addrec. If we need post-loop scaling, force it to
1118   // expand to an integer type to avoid the need for additional casting.
1119   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1120   // We can't use a pointer type for the addrec if the pointer type is
1121   // non-integral.
1122   Type *AddRecPHIExpandTy =
1123       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1124 
1125   // In some cases, we decide to reuse an existing phi node but need to truncate
1126   // it and/or invert the step.
1127   Type *TruncTy = nullptr;
1128   bool InvertStep = false;
1129   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1130                                           IntTy, TruncTy, InvertStep);
1131 
1132   // Accommodate post-inc mode, if necessary.
1133   Value *Result;
1134   if (!PostIncLoops.count(L))
1135     Result = PN;
1136   else {
1137     // In PostInc mode, use the post-incremented value.
1138     BasicBlock *LatchBlock = L->getLoopLatch();
1139     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1140     Result = PN->getIncomingValueForBlock(LatchBlock);
1141 
1142     // We might be introducing a new use of the post-inc IV that is not poison
1143     // safe, in which case we should drop poison generating flags. Only keep
1144     // those flags for which SCEV has proven that they always hold.
1145     if (isa<OverflowingBinaryOperator>(Result)) {
1146       auto *I = cast<Instruction>(Result);
1147       if (!S->hasNoUnsignedWrap())
1148         I->setHasNoUnsignedWrap(false);
1149       if (!S->hasNoSignedWrap())
1150         I->setHasNoSignedWrap(false);
1151     }
1152 
1153     // For an expansion to use the postinc form, the client must call
1154     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1155     // or dominated by IVIncInsertPos.
1156     if (isa<Instruction>(Result) &&
1157         !SE.DT.dominates(cast<Instruction>(Result),
1158                          &*Builder.GetInsertPoint())) {
1159       // The induction variable's postinc expansion does not dominate this use.
1160       // IVUsers tries to prevent this case, so it is rare. However, it can
1161       // happen when an IVUser outside the loop is not dominated by the latch
1162       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1163       // all cases. Consider a phi outside whose operand is replaced during
1164       // expansion with the value of the postinc user. Without fundamentally
1165       // changing the way postinc users are tracked, the only remedy is
1166       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1167       // but hopefully expandCodeFor handles that.
1168       bool useSubtract =
1169         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1170       if (useSubtract)
1171         Step = SE.getNegativeSCEV(Step);
1172       Value *StepV;
1173       {
1174         // Expand the step somewhere that dominates the loop header.
1175         SCEVInsertPointGuard Guard(Builder, this);
1176         StepV =
1177             expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt());
1178       }
1179       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1180     }
1181   }
1182 
1183   // We have decided to reuse an induction variable of a dominating loop. Apply
1184   // truncation and/or inversion of the step.
1185   if (TruncTy) {
1186     Type *ResTy = Result->getType();
1187     // Normalize the result type.
1188     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1189       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1190     // Truncate the result.
1191     if (TruncTy != Result->getType())
1192       Result = Builder.CreateTrunc(Result, TruncTy);
1193 
1194     // Invert the result.
1195     if (InvertStep)
1196       Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1197                                  Result);
1198   }
1199 
1200   // Re-apply any non-loop-dominating scale.
1201   if (PostLoopScale) {
1202     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1203     Result = InsertNoopCastOfTo(Result, IntTy);
1204     Result = Builder.CreateMul(Result, expandCodeFor(PostLoopScale, IntTy));
1205   }
1206 
1207   // Re-apply any non-loop-dominating offset.
1208   if (PostLoopOffset) {
1209     if (isa<PointerType>(ExpandTy)) {
1210       if (Result->getType()->isIntegerTy()) {
1211         Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1212         Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base);
1213       } else {
1214         Result = expandAddToGEP(PostLoopOffset, IntTy, Result);
1215       }
1216     } else {
1217       Result = InsertNoopCastOfTo(Result, IntTy);
1218       Result = Builder.CreateAdd(Result, expandCodeFor(PostLoopOffset, IntTy));
1219     }
1220   }
1221 
1222   return Result;
1223 }
1224 
1225 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1226   // In canonical mode we compute the addrec as an expression of a canonical IV
1227   // using evaluateAtIteration and expand the resulting SCEV expression. This
1228   // way we avoid introducing new IVs to carry on the computation of the addrec
1229   // throughout the loop.
1230   //
1231   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1232   // type wider than the addrec itself. Emitting a canonical IV of the
1233   // proper type might produce non-legal types, for example expanding an i64
1234   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1235   // back to non-canonical mode for nested addrecs.
1236   if (!CanonicalMode || (S->getNumOperands() > 2))
1237     return expandAddRecExprLiterally(S);
1238 
1239   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1240   const Loop *L = S->getLoop();
1241 
1242   // First check for an existing canonical IV in a suitable type.
1243   PHINode *CanonicalIV = nullptr;
1244   if (PHINode *PN = L->getCanonicalInductionVariable())
1245     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1246       CanonicalIV = PN;
1247 
1248   // Rewrite an AddRec in terms of the canonical induction variable, if
1249   // its type is more narrow.
1250   if (CanonicalIV &&
1251       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1252       !S->getType()->isPointerTy()) {
1253     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1254     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1255       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
1256     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1257                                        S->getNoWrapFlags(SCEV::FlagNW)));
1258     BasicBlock::iterator NewInsertPt =
1259         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1260     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1261                       NewInsertPt);
1262     return V;
1263   }
1264 
1265   // {X,+,F} --> X + {0,+,F}
1266   if (!S->getStart()->isZero()) {
1267     if (isa<PointerType>(S->getType())) {
1268       Value *StartV = expand(SE.getPointerBase(S));
1269       return expandAddToGEP(SE.removePointerBase(S), Ty, StartV);
1270     }
1271 
1272     SmallVector<const SCEV *, 4> NewOps(S->operands());
1273     NewOps[0] = SE.getConstant(Ty, 0);
1274     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1275                                         S->getNoWrapFlags(SCEV::FlagNW));
1276 
1277     // Just do a normal add. Pre-expand the operands to suppress folding.
1278     //
1279     // The LHS and RHS values are factored out of the expand call to make the
1280     // output independent of the argument evaluation order.
1281     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1282     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1283     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1284   }
1285 
1286   // If we don't yet have a canonical IV, create one.
1287   if (!CanonicalIV) {
1288     // Create and insert the PHI node for the induction variable in the
1289     // specified loop.
1290     BasicBlock *Header = L->getHeader();
1291     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1292     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
1293     CanonicalIV->insertBefore(Header->begin());
1294     rememberInstruction(CanonicalIV);
1295 
1296     SmallSet<BasicBlock *, 4> PredSeen;
1297     Constant *One = ConstantInt::get(Ty, 1);
1298     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1299       BasicBlock *HP = *HPI;
1300       if (!PredSeen.insert(HP).second) {
1301         // There must be an incoming value for each predecessor, even the
1302         // duplicates!
1303         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1304         continue;
1305       }
1306 
1307       if (L->contains(HP)) {
1308         // Insert a unit add instruction right before the terminator
1309         // corresponding to the back-edge.
1310         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1311                                                      "indvar.next",
1312                                                      HP->getTerminator());
1313         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1314         rememberInstruction(Add);
1315         CanonicalIV->addIncoming(Add, HP);
1316       } else {
1317         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1318       }
1319     }
1320   }
1321 
1322   // {0,+,1} --> Insert a canonical induction variable into the loop!
1323   if (S->isAffine() && S->getOperand(1)->isOne()) {
1324     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1325            "IVs with types different from the canonical IV should "
1326            "already have been handled!");
1327     return CanonicalIV;
1328   }
1329 
1330   // {0,+,F} --> {0,+,1} * F
1331 
1332   // If this is a simple linear addrec, emit it now as a special case.
1333   if (S->isAffine())    // {0,+,F} --> i*F
1334     return
1335       expand(SE.getTruncateOrNoop(
1336         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1337                       SE.getNoopOrAnyExtend(S->getOperand(1),
1338                                             CanonicalIV->getType())),
1339         Ty));
1340 
1341   // If this is a chain of recurrences, turn it into a closed form, using the
1342   // folders, then expandCodeFor the closed form.  This allows the folders to
1343   // simplify the expression without having to build a bunch of special code
1344   // into this folder.
1345   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1346 
1347   // Promote S up to the canonical IV type, if the cast is foldable.
1348   const SCEV *NewS = S;
1349   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1350   if (isa<SCEVAddRecExpr>(Ext))
1351     NewS = Ext;
1352 
1353   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1354 
1355   // Truncate the result down to the original type, if needed.
1356   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1357   return expand(T);
1358 }
1359 
1360 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1361   Value *V = expandCodeFor(S->getOperand(), S->getOperand()->getType());
1362   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1363                            GetOptimalInsertionPointForCastOf(V));
1364 }
1365 
1366 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1367   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1368   Value *V = expandCodeFor(S->getOperand(),
1369                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1370   return Builder.CreateTrunc(V, Ty);
1371 }
1372 
1373 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1374   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1375   Value *V = expandCodeFor(S->getOperand(),
1376                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1377   return Builder.CreateZExt(V, Ty);
1378 }
1379 
1380 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1381   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1382   Value *V = expandCodeFor(S->getOperand(),
1383                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1384   return Builder.CreateSExt(V, Ty);
1385 }
1386 
1387 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1388                                       Intrinsic::ID IntrinID, Twine Name,
1389                                       bool IsSequential) {
1390   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1391   Type *Ty = LHS->getType();
1392   if (IsSequential)
1393     LHS = Builder.CreateFreeze(LHS);
1394   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1395     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1396     if (IsSequential && i != 0)
1397       RHS = Builder.CreateFreeze(RHS);
1398     Value *Sel;
1399     if (Ty->isIntegerTy())
1400       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1401                                     /*FMFSource=*/nullptr, Name);
1402     else {
1403       Value *ICmp =
1404           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1405       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1406     }
1407     LHS = Sel;
1408   }
1409   return LHS;
1410 }
1411 
1412 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1413   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1414 }
1415 
1416 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1417   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1418 }
1419 
1420 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1421   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1422 }
1423 
1424 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1425   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1426 }
1427 
1428 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1429   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1430 }
1431 
1432 Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
1433   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
1434 }
1435 
1436 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1437                                    BasicBlock::iterator IP) {
1438   setInsertPoint(IP);
1439   Value *V = expandCodeFor(SH, Ty);
1440   return V;
1441 }
1442 
1443 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1444   // Expand the code for this SCEV.
1445   Value *V = expand(SH);
1446 
1447   if (Ty) {
1448     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1449            "non-trivial casts should be done with the SCEVs directly!");
1450     V = InsertNoopCastOfTo(V, Ty);
1451   }
1452   return V;
1453 }
1454 
1455 static bool
1456 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I,
1457                     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1458   // If the instruction cannot be poison, it's always safe to reuse.
1459   if (programUndefinedIfPoison(I))
1460     return true;
1461 
1462   // Otherwise, it is possible that I is more poisonous that S. Collect the
1463   // poison-contributors of S, and then check whether I has any additional
1464   // poison-contributors. Poison that is contributed through poison-generating
1465   // flags is handled by dropping those flags instead.
1466   SmallPtrSet<const Value *, 8> PoisonVals;
1467   SE.getPoisonGeneratingValues(PoisonVals, S);
1468 
1469   SmallVector<Value *> Worklist;
1470   SmallPtrSet<Value *, 8> Visited;
1471   Worklist.push_back(I);
1472   while (!Worklist.empty()) {
1473     Value *V = Worklist.pop_back_val();
1474     if (!Visited.insert(V).second)
1475       continue;
1476 
1477     // Avoid walking large instruction graphs.
1478     if (Visited.size() > 16)
1479       return false;
1480 
1481     // Either the value can't be poison, or the S would also be poison if it
1482     // is.
1483     if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V))
1484       continue;
1485 
1486     auto *I = dyn_cast<Instruction>(V);
1487     if (!I)
1488       return false;
1489 
1490     // FIXME: Ignore vscale, even though it technically could be poison. Do this
1491     // because SCEV currently assumes it can't be poison. Remove this special
1492     // case once we proper model when vscale can be poison.
1493     if (auto *II = dyn_cast<IntrinsicInst>(I);
1494         II && II->getIntrinsicID() == Intrinsic::vscale)
1495       continue;
1496 
1497     if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false))
1498       return false;
1499 
1500     // If the instruction can't create poison, we can recurse to its operands.
1501     if (I->hasPoisonGeneratingFlagsOrMetadata())
1502       DropPoisonGeneratingInsts.push_back(I);
1503 
1504     for (Value *Op : I->operands())
1505       Worklist.push_back(Op);
1506   }
1507   return true;
1508 }
1509 
1510 Value *SCEVExpander::FindValueInExprValueMap(
1511     const SCEV *S, const Instruction *InsertPt,
1512     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
1513   // If the expansion is not in CanonicalMode, and the SCEV contains any
1514   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1515   if (!CanonicalMode && SE.containsAddRecurrence(S))
1516     return nullptr;
1517 
1518   // If S is a constant, it may be worse to reuse an existing Value.
1519   if (isa<SCEVConstant>(S))
1520     return nullptr;
1521 
1522   for (Value *V : SE.getSCEVValues(S)) {
1523     Instruction *EntInst = dyn_cast<Instruction>(V);
1524     if (!EntInst)
1525       continue;
1526 
1527     // Choose a Value from the set which dominates the InsertPt.
1528     // InsertPt should be inside the Value's parent loop so as not to break
1529     // the LCSSA form.
1530     assert(EntInst->getFunction() == InsertPt->getFunction());
1531     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
1532         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1533           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1534       continue;
1535 
1536     // Make sure reusing the instruction is poison-safe.
1537     if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts))
1538       return V;
1539     DropPoisonGeneratingInsts.clear();
1540   }
1541   return nullptr;
1542 }
1543 
1544 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1545 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1546 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1547 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1548 // the expansion will try to reuse Value from ExprValueMap, and only when it
1549 // fails, expand the SCEV literally.
1550 Value *SCEVExpander::expand(const SCEV *S) {
1551   // Compute an insertion point for this SCEV object. Hoist the instructions
1552   // as far out in the loop nest as possible.
1553   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
1554 
1555   // We can move insertion point only if there is no div or rem operations
1556   // otherwise we are risky to move it over the check for zero denominator.
1557   auto SafeToHoist = [](const SCEV *S) {
1558     return !SCEVExprContains(S, [](const SCEV *S) {
1559               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1560                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1561                   // Division by non-zero constants can be hoisted.
1562                   return SC->getValue()->isZero();
1563                 // All other divisions should not be moved as they may be
1564                 // divisions by zero and should be kept within the
1565                 // conditions of the surrounding loops that guard their
1566                 // execution (see PR35406).
1567                 return true;
1568               }
1569               return false;
1570             });
1571   };
1572   if (SafeToHoist(S)) {
1573     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1574          L = L->getParentLoop()) {
1575       if (SE.isLoopInvariant(S, L)) {
1576         if (!L) break;
1577         if (BasicBlock *Preheader = L->getLoopPreheader()) {
1578           InsertPt = Preheader->getTerminator()->getIterator();
1579         } else {
1580           // LSR sets the insertion point for AddRec start/step values to the
1581           // block start to simplify value reuse, even though it's an invalid
1582           // position. SCEVExpander must correct for this in all cases.
1583           InsertPt = L->getHeader()->getFirstInsertionPt();
1584         }
1585       } else {
1586         // If the SCEV is computable at this level, insert it into the header
1587         // after the PHIs (and after any other instructions that we've inserted
1588         // there) so that it is guaranteed to dominate any user inside the loop.
1589         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1590           InsertPt = L->getHeader()->getFirstInsertionPt();
1591 
1592         while (InsertPt != Builder.GetInsertPoint() &&
1593                (isInsertedInstruction(&*InsertPt) ||
1594                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
1595           InsertPt = std::next(InsertPt);
1596         }
1597         break;
1598       }
1599     }
1600   }
1601 
1602   // Check to see if we already expanded this here.
1603   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
1604   if (I != InsertedExpressions.end())
1605     return I->second;
1606 
1607   SCEVInsertPointGuard Guard(Builder, this);
1608   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1609 
1610   // Expand the expression into instructions.
1611   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1612   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1613   if (!V) {
1614     V = visit(S);
1615     V = fixupLCSSAFormFor(V);
1616   } else {
1617     for (Instruction *I : DropPoisonGeneratingInsts)
1618       I->dropPoisonGeneratingFlagsAndMetadata();
1619   }
1620   // Remember the expanded value for this SCEV at this location.
1621   //
1622   // This is independent of PostIncLoops. The mapped value simply materializes
1623   // the expression at this insertion point. If the mapped value happened to be
1624   // a postinc expansion, it could be reused by a non-postinc user, but only if
1625   // its insertion point was already at the head of the loop.
1626   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
1627   return V;
1628 }
1629 
1630 void SCEVExpander::rememberInstruction(Value *I) {
1631   auto DoInsert = [this](Value *V) {
1632     if (!PostIncLoops.empty())
1633       InsertedPostIncValues.insert(V);
1634     else
1635       InsertedValues.insert(V);
1636   };
1637   DoInsert(I);
1638 }
1639 
1640 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1641 /// replace them with their most canonical representative. Return the number of
1642 /// phis eliminated.
1643 ///
1644 /// This does not depend on any SCEVExpander state but should be used in
1645 /// the same context that SCEVExpander is used.
1646 unsigned
1647 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1648                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1649                                   const TargetTransformInfo *TTI) {
1650   // Find integer phis in order of increasing width.
1651   SmallVector<PHINode*, 8> Phis;
1652   for (PHINode &PN : L->getHeader()->phis())
1653     Phis.push_back(&PN);
1654 
1655   if (TTI)
1656     // Use stable_sort to preserve order of equivalent PHIs, so the order
1657     // of the sorted Phis is the same from run to run on the same loop.
1658     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1659       // Put pointers at the back and make sure pointer < pointer = false.
1660       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1661         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1662       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1663              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
1664     });
1665 
1666   unsigned NumElim = 0;
1667   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1668   // Process phis from wide to narrow. Map wide phis to their truncation
1669   // so narrow phis can reuse them.
1670   for (PHINode *Phi : Phis) {
1671     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1672       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1673         return V;
1674       if (!SE.isSCEVable(PN->getType()))
1675         return nullptr;
1676       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1677       if (!Const)
1678         return nullptr;
1679       return Const->getValue();
1680     };
1681 
1682     // Fold constant phis. They may be congruent to other constant phis and
1683     // would confuse the logic below that expects proper IVs.
1684     if (Value *V = SimplifyPHINode(Phi)) {
1685       if (V->getType() != Phi->getType())
1686         continue;
1687       SE.forgetValue(Phi);
1688       Phi->replaceAllUsesWith(V);
1689       DeadInsts.emplace_back(Phi);
1690       ++NumElim;
1691       SCEV_DEBUG_WITH_TYPE(DebugType,
1692                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1693                                   << '\n');
1694       continue;
1695     }
1696 
1697     if (!SE.isSCEVable(Phi->getType()))
1698       continue;
1699 
1700     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1701     if (!OrigPhiRef) {
1702       OrigPhiRef = Phi;
1703       if (Phi->getType()->isIntegerTy() && TTI &&
1704           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1705         // Make sure we only rewrite using simple induction variables;
1706         // otherwise, we can make the trip count of a loop unanalyzable
1707         // to SCEV.
1708         const SCEV *PhiExpr = SE.getSCEV(Phi);
1709         if (isa<SCEVAddRecExpr>(PhiExpr)) {
1710           // This phi can be freely truncated to the narrowest phi type. Map the
1711           // truncated expression to it so it will be reused for narrow types.
1712           const SCEV *TruncExpr =
1713               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
1714           ExprToIVMap[TruncExpr] = Phi;
1715         }
1716       }
1717       continue;
1718     }
1719 
1720     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1721     // sense.
1722     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1723       continue;
1724 
1725     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1726       Instruction *OrigInc = dyn_cast<Instruction>(
1727           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1728       Instruction *IsomorphicInc =
1729           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1730 
1731       if (OrigInc && IsomorphicInc) {
1732         // If this phi has the same width but is more canonical, replace the
1733         // original with it. As part of the "more canonical" determination,
1734         // respect a prior decision to use an IV chain.
1735         if (OrigPhiRef->getType() == Phi->getType() &&
1736             !(ChainedPhis.count(Phi) ||
1737               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1738             (ChainedPhis.count(Phi) ||
1739              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1740           std::swap(OrigPhiRef, Phi);
1741           std::swap(OrigInc, IsomorphicInc);
1742         }
1743         // Replacing the congruent phi is sufficient because acyclic
1744         // redundancy elimination, CSE/GVN, should handle the
1745         // rest. However, once SCEV proves that a phi is congruent,
1746         // it's often the head of an IV user cycle that is isomorphic
1747         // with the original phi. It's worth eagerly cleaning up the
1748         // common case of a single IV increment so that DeleteDeadPHIs
1749         // can remove cycles that had postinc uses.
1750         // Because we may potentially introduce a new use of OrigIV that didn't
1751         // exist before at this point, its poison flags need readjustment.
1752         const SCEV *TruncExpr =
1753             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1754         if (OrigInc != IsomorphicInc &&
1755             TruncExpr == SE.getSCEV(IsomorphicInc) &&
1756             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
1757             hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) {
1758           SCEV_DEBUG_WITH_TYPE(
1759               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1760                                 << *IsomorphicInc << '\n');
1761           Value *NewInc = OrigInc;
1762           if (OrigInc->getType() != IsomorphicInc->getType()) {
1763             BasicBlock::iterator IP;
1764             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1765               IP = PN->getParent()->getFirstInsertionPt();
1766             else
1767               IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1768 
1769             IRBuilder<> Builder(IP->getParent(), IP);
1770             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1771             NewInc = Builder.CreateTruncOrBitCast(
1772                 OrigInc, IsomorphicInc->getType(), IVName);
1773           }
1774           IsomorphicInc->replaceAllUsesWith(NewInc);
1775           DeadInsts.emplace_back(IsomorphicInc);
1776         }
1777       }
1778     }
1779     SCEV_DEBUG_WITH_TYPE(DebugType,
1780                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1781                                 << '\n');
1782     SCEV_DEBUG_WITH_TYPE(
1783         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
1784     ++NumElim;
1785     Value *NewIV = OrigPhiRef;
1786     if (OrigPhiRef->getType() != Phi->getType()) {
1787       IRBuilder<> Builder(L->getHeader(),
1788                           L->getHeader()->getFirstInsertionPt());
1789       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1790       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1791     }
1792     Phi->replaceAllUsesWith(NewIV);
1793     DeadInsts.emplace_back(Phi);
1794   }
1795   return NumElim;
1796 }
1797 
1798 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
1799                                                const Instruction *At,
1800                                                Loop *L) {
1801   using namespace llvm::PatternMatch;
1802 
1803   SmallVector<BasicBlock *, 4> ExitingBlocks;
1804   L->getExitingBlocks(ExitingBlocks);
1805 
1806   // Look for suitable value in simple conditions at the loop exits.
1807   for (BasicBlock *BB : ExitingBlocks) {
1808     ICmpInst::Predicate Pred;
1809     Instruction *LHS, *RHS;
1810 
1811     if (!match(BB->getTerminator(),
1812                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
1813                     m_BasicBlock(), m_BasicBlock())))
1814       continue;
1815 
1816     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
1817       return true;
1818 
1819     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
1820       return true;
1821   }
1822 
1823   // Use expand's logic which is used for reusing a previous Value in
1824   // ExprValueMap.  Note that we don't currently model the cost of
1825   // needing to drop poison generating flags on the instruction if we
1826   // want to reuse it.  We effectively assume that has zero cost.
1827   SmallVector<Instruction *> DropPoisonGeneratingInsts;
1828   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
1829 }
1830 
1831 template<typename T> static InstructionCost costAndCollectOperands(
1832   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1833   TargetTransformInfo::TargetCostKind CostKind,
1834   SmallVectorImpl<SCEVOperand> &Worklist) {
1835 
1836   const T *S = cast<T>(WorkItem.S);
1837   InstructionCost Cost = 0;
1838   // Object to help map SCEV operands to expanded IR instructions.
1839   struct OperationIndices {
1840     OperationIndices(unsigned Opc, size_t min, size_t max) :
1841       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1842     unsigned Opcode;
1843     size_t MinIdx;
1844     size_t MaxIdx;
1845   };
1846 
1847   // Collect the operations of all the instructions that will be needed to
1848   // expand the SCEVExpr. This is so that when we come to cost the operands,
1849   // we know what the generated user(s) will be.
1850   SmallVector<OperationIndices, 2> Operations;
1851 
1852   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1853     Operations.emplace_back(Opcode, 0, 0);
1854     return TTI.getCastInstrCost(Opcode, S->getType(),
1855                                 S->getOperand(0)->getType(),
1856                                 TTI::CastContextHint::None, CostKind);
1857   };
1858 
1859   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1860                        unsigned MinIdx = 0,
1861                        unsigned MaxIdx = 1) -> InstructionCost {
1862     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1863     return NumRequired *
1864       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1865   };
1866 
1867   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1868                         unsigned MaxIdx) -> InstructionCost {
1869     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1870     Type *OpType = S->getType();
1871     return NumRequired * TTI.getCmpSelInstrCost(
1872                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1873                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1874   };
1875 
1876   switch (S->getSCEVType()) {
1877   case scCouldNotCompute:
1878     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1879   case scUnknown:
1880   case scConstant:
1881   case scVScale:
1882     return 0;
1883   case scPtrToInt:
1884     Cost = CastCost(Instruction::PtrToInt);
1885     break;
1886   case scTruncate:
1887     Cost = CastCost(Instruction::Trunc);
1888     break;
1889   case scZeroExtend:
1890     Cost = CastCost(Instruction::ZExt);
1891     break;
1892   case scSignExtend:
1893     Cost = CastCost(Instruction::SExt);
1894     break;
1895   case scUDivExpr: {
1896     unsigned Opcode = Instruction::UDiv;
1897     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1898       if (SC->getAPInt().isPowerOf2())
1899         Opcode = Instruction::LShr;
1900     Cost = ArithCost(Opcode, 1);
1901     break;
1902   }
1903   case scAddExpr:
1904     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1905     break;
1906   case scMulExpr:
1907     // TODO: this is a very pessimistic cost modelling for Mul,
1908     // because of Bin Pow algorithm actually used by the expander,
1909     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1910     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1911     break;
1912   case scSMaxExpr:
1913   case scUMaxExpr:
1914   case scSMinExpr:
1915   case scUMinExpr:
1916   case scSequentialUMinExpr: {
1917     // FIXME: should this ask the cost for Intrinsic's?
1918     // The reduction tree.
1919     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1920     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
1921     switch (S->getSCEVType()) {
1922     case scSequentialUMinExpr: {
1923       // The safety net against poison.
1924       // FIXME: this is broken.
1925       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
1926       Cost += ArithCost(Instruction::Or,
1927                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
1928       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
1929       break;
1930     }
1931     default:
1932       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
1933              "Unhandled SCEV expression type?");
1934       break;
1935     }
1936     break;
1937   }
1938   case scAddRecExpr: {
1939     // In this polynominal, we may have some zero operands, and we shouldn't
1940     // really charge for those. So how many non-zero coefficients are there?
1941     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1942                                     return !Op->isZero();
1943                                   });
1944 
1945     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1946     assert(!(*std::prev(S->operands().end()))->isZero() &&
1947            "Last operand should not be zero");
1948 
1949     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1950     int NumNonZeroDegreeNonOneTerms =
1951       llvm::count_if(S->operands(), [](const SCEV *Op) {
1952                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1953                       return !SConst || SConst->getAPInt().ugt(1);
1954                     });
1955 
1956     // Much like with normal add expr, the polynominal will require
1957     // one less addition than the number of it's terms.
1958     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1959                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1960     // Here, *each* one of those will require a multiplication.
1961     InstructionCost MulCost =
1962         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1963     Cost = AddCost + MulCost;
1964 
1965     // What is the degree of this polynominal?
1966     int PolyDegree = S->getNumOperands() - 1;
1967     assert(PolyDegree >= 1 && "Should be at least affine.");
1968 
1969     // The final term will be:
1970     //   Op_{PolyDegree} * x ^ {PolyDegree}
1971     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1972     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1973     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1974     // FIXME: this is conservatively correct, but might be overly pessimistic.
1975     Cost += MulCost * (PolyDegree - 1);
1976     break;
1977   }
1978   }
1979 
1980   for (auto &CostOp : Operations) {
1981     for (auto SCEVOp : enumerate(S->operands())) {
1982       // Clamp the index to account for multiple IR operations being chained.
1983       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1984       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1985       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1986     }
1987   }
1988   return Cost;
1989 }
1990 
1991 bool SCEVExpander::isHighCostExpansionHelper(
1992     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1993     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1994     SmallPtrSetImpl<const SCEV *> &Processed,
1995     SmallVectorImpl<SCEVOperand> &Worklist) {
1996   if (Cost > Budget)
1997     return true; // Already run out of budget, give up.
1998 
1999   const SCEV *S = WorkItem.S;
2000   // Was the cost of expansion of this expression already accounted for?
2001   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2002     return false; // We have already accounted for this expression.
2003 
2004   // If we can find an existing value for this scev available at the point "At"
2005   // then consider the expression cheap.
2006   if (hasRelatedExistingExpansion(S, &At, L))
2007     return false; // Consider the expression to be free.
2008 
2009   TargetTransformInfo::TargetCostKind CostKind =
2010       L->getHeader()->getParent()->hasMinSize()
2011           ? TargetTransformInfo::TCK_CodeSize
2012           : TargetTransformInfo::TCK_RecipThroughput;
2013 
2014   switch (S->getSCEVType()) {
2015   case scCouldNotCompute:
2016     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2017   case scUnknown:
2018   case scVScale:
2019     // Assume to be zero-cost.
2020     return false;
2021   case scConstant: {
2022     // Only evalulate the costs of constants when optimizing for size.
2023     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2024       return false;
2025     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2026     Type *Ty = S->getType();
2027     Cost += TTI.getIntImmCostInst(
2028         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2029     return Cost > Budget;
2030   }
2031   case scTruncate:
2032   case scPtrToInt:
2033   case scZeroExtend:
2034   case scSignExtend: {
2035     Cost +=
2036         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2037     return false; // Will answer upon next entry into this function.
2038   }
2039   case scUDivExpr: {
2040     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2041     // HowManyLessThans produced to compute a precise expression, rather than a
2042     // UDiv from the user's code. If we can't find a UDiv in the code with some
2043     // simple searching, we need to account for it's cost.
2044 
2045     // At the beginning of this function we already tried to find existing
2046     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2047     // pattern involving division. This is just a simple search heuristic.
2048     if (hasRelatedExistingExpansion(
2049             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2050       return false; // Consider it to be free.
2051 
2052     Cost +=
2053         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2054     return false; // Will answer upon next entry into this function.
2055   }
2056   case scAddExpr:
2057   case scMulExpr:
2058   case scUMaxExpr:
2059   case scSMaxExpr:
2060   case scUMinExpr:
2061   case scSMinExpr:
2062   case scSequentialUMinExpr: {
2063     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2064            "Nary expr should have more than 1 operand.");
2065     // The simple nary expr will require one less op (or pair of ops)
2066     // than the number of it's terms.
2067     Cost +=
2068         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2069     return Cost > Budget;
2070   }
2071   case scAddRecExpr: {
2072     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2073            "Polynomial should be at least linear");
2074     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2075         WorkItem, TTI, CostKind, Worklist);
2076     return Cost > Budget;
2077   }
2078   }
2079   llvm_unreachable("Unknown SCEV kind!");
2080 }
2081 
2082 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2083                                             Instruction *IP) {
2084   assert(IP);
2085   switch (Pred->getKind()) {
2086   case SCEVPredicate::P_Union:
2087     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2088   case SCEVPredicate::P_Compare:
2089     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2090   case SCEVPredicate::P_Wrap: {
2091     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2092     return expandWrapPredicate(AddRecPred, IP);
2093   }
2094   }
2095   llvm_unreachable("Unknown SCEV predicate type");
2096 }
2097 
2098 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2099                                             Instruction *IP) {
2100   Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2101   Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2102 
2103   Builder.SetInsertPoint(IP);
2104   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2105   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2106   return I;
2107 }
2108 
2109 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2110                                            Instruction *Loc, bool Signed) {
2111   assert(AR->isAffine() && "Cannot generate RT check for "
2112                            "non-affine expression");
2113 
2114   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2115   SmallVector<const SCEVPredicate *, 4> Pred;
2116   const SCEV *ExitCount =
2117       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2118 
2119   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2120 
2121   const SCEV *Step = AR->getStepRecurrence(SE);
2122   const SCEV *Start = AR->getStart();
2123 
2124   Type *ARTy = AR->getType();
2125   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2126   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2127 
2128   // The expression {Start,+,Step} has nusw/nssw if
2129   //   Step < 0, Start - |Step| * Backedge <= Start
2130   //   Step >= 0, Start + |Step| * Backedge > Start
2131   // and |Step| * Backedge doesn't unsigned overflow.
2132 
2133   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2134   Builder.SetInsertPoint(Loc);
2135   Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2136 
2137   IntegerType *Ty =
2138       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2139 
2140   Value *StepValue = expandCodeFor(Step, Ty, Loc);
2141   Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2142   Value *StartValue = expandCodeFor(Start, ARTy, Loc);
2143 
2144   ConstantInt *Zero =
2145       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2146 
2147   Builder.SetInsertPoint(Loc);
2148   // Compute |Step|
2149   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2150   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2151 
2152   // Compute |Step| * Backedge
2153   // Compute:
2154   //   1. Start + |Step| * Backedge < Start
2155   //   2. Start - |Step| * Backedge > Start
2156   //
2157   // And select either 1. or 2. depending on whether step is positive or
2158   // negative. If Step is known to be positive or negative, only create
2159   // either 1. or 2.
2160   auto ComputeEndCheck = [&]() -> Value * {
2161     // Checking <u 0 is always false.
2162     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2163       return ConstantInt::getFalse(Loc->getContext());
2164 
2165     // Get the backedge taken count and truncate or extended to the AR type.
2166     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2167 
2168     Value *MulV, *OfMul;
2169     if (Step->isOne()) {
2170       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2171       // needed, there is never an overflow, so to avoid artificially inflating
2172       // the cost of the check, directly emit the optimized IR.
2173       MulV = TruncTripCount;
2174       OfMul = ConstantInt::getFalse(MulV->getContext());
2175     } else {
2176       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2177                                              Intrinsic::umul_with_overflow, Ty);
2178       CallInst *Mul =
2179           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2180       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2181       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2182     }
2183 
2184     Value *Add = nullptr, *Sub = nullptr;
2185     bool NeedPosCheck = !SE.isKnownNegative(Step);
2186     bool NeedNegCheck = !SE.isKnownPositive(Step);
2187 
2188     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2189       StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy);
2190       Value *NegMulV = Builder.CreateNeg(MulV);
2191       if (NeedPosCheck)
2192         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2193       if (NeedNegCheck)
2194         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2195     } else {
2196       if (NeedPosCheck)
2197         Add = Builder.CreateAdd(StartValue, MulV);
2198       if (NeedNegCheck)
2199         Sub = Builder.CreateSub(StartValue, MulV);
2200     }
2201 
2202     Value *EndCompareLT = nullptr;
2203     Value *EndCompareGT = nullptr;
2204     Value *EndCheck = nullptr;
2205     if (NeedPosCheck)
2206       EndCheck = EndCompareLT = Builder.CreateICmp(
2207           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2208     if (NeedNegCheck)
2209       EndCheck = EndCompareGT = Builder.CreateICmp(
2210           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2211     if (NeedPosCheck && NeedNegCheck) {
2212       // Select the answer based on the sign of Step.
2213       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2214     }
2215     return Builder.CreateOr(EndCheck, OfMul);
2216   };
2217   Value *EndCheck = ComputeEndCheck();
2218 
2219   // If the backedge taken count type is larger than the AR type,
2220   // check that we don't drop any bits by truncating it. If we are
2221   // dropping bits, then we have overflow (unless the step is zero).
2222   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2223     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2224     auto *BackedgeCheck =
2225         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2226                            ConstantInt::get(Loc->getContext(), MaxVal));
2227     BackedgeCheck = Builder.CreateAnd(
2228         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2229 
2230     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2231   }
2232 
2233   return EndCheck;
2234 }
2235 
2236 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2237                                          Instruction *IP) {
2238   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2239   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2240 
2241   // Add a check for NUSW
2242   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2243     NUSWCheck = generateOverflowCheck(A, IP, false);
2244 
2245   // Add a check for NSSW
2246   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2247     NSSWCheck = generateOverflowCheck(A, IP, true);
2248 
2249   if (NUSWCheck && NSSWCheck)
2250     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2251 
2252   if (NUSWCheck)
2253     return NUSWCheck;
2254 
2255   if (NSSWCheck)
2256     return NSSWCheck;
2257 
2258   return ConstantInt::getFalse(IP->getContext());
2259 }
2260 
2261 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2262                                           Instruction *IP) {
2263   // Loop over all checks in this set.
2264   SmallVector<Value *> Checks;
2265   for (const auto *Pred : Union->getPredicates()) {
2266     Checks.push_back(expandCodeForPredicate(Pred, IP));
2267     Builder.SetInsertPoint(IP);
2268   }
2269 
2270   if (Checks.empty())
2271     return ConstantInt::getFalse(IP->getContext());
2272   return Builder.CreateOr(Checks);
2273 }
2274 
2275 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2276   auto *DefI = dyn_cast<Instruction>(V);
2277   if (!PreserveLCSSA || !DefI)
2278     return V;
2279 
2280   Instruction *InsertPt = &*Builder.GetInsertPoint();
2281   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2282   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2283   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2284     return V;
2285 
2286   // Create a temporary instruction to at the current insertion point, so we
2287   // can hand it off to the helper to create LCSSA PHIs if required for the
2288   // new use.
2289   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2290   // would accept a insertion point and return an LCSSA phi for that
2291   // insertion point, so there is no need to insert & remove the temporary
2292   // instruction.
2293   Type *ToTy;
2294   if (DefI->getType()->isIntegerTy())
2295     ToTy = PointerType::get(DefI->getContext(), 0);
2296   else
2297     ToTy = Type::getInt32Ty(DefI->getContext());
2298   Instruction *User =
2299       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2300   auto RemoveUserOnExit =
2301       make_scope_exit([User]() { User->eraseFromParent(); });
2302 
2303   SmallVector<Instruction *, 1> ToUpdate;
2304   ToUpdate.push_back(DefI);
2305   SmallVector<PHINode *, 16> PHIsToRemove;
2306   SmallVector<PHINode *, 16> InsertedPHIs;
2307   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
2308                            &InsertedPHIs);
2309   for (PHINode *PN : InsertedPHIs)
2310     rememberInstruction(PN);
2311   for (PHINode *PN : PHIsToRemove) {
2312     if (!PN->use_empty())
2313       continue;
2314     InsertedValues.erase(PN);
2315     InsertedPostIncValues.erase(PN);
2316     PN->eraseFromParent();
2317   }
2318 
2319   return User->getOperand(0);
2320 }
2321 
2322 namespace {
2323 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2324 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2325 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2326 // instruction, but the important thing is that we prove the denominator is
2327 // nonzero before expansion.
2328 //
2329 // IVUsers already checks that IV-derived expressions are safe. So this check is
2330 // only needed when the expression includes some subexpression that is not IV
2331 // derived.
2332 //
2333 // Currently, we only allow division by a value provably non-zero here.
2334 //
2335 // We cannot generally expand recurrences unless the step dominates the loop
2336 // header. The expander handles the special case of affine recurrences by
2337 // scaling the recurrence outside the loop, but this technique isn't generally
2338 // applicable. Expanding a nested recurrence outside a loop requires computing
2339 // binomial coefficients. This could be done, but the recurrence has to be in a
2340 // perfectly reduced form, which can't be guaranteed.
2341 struct SCEVFindUnsafe {
2342   ScalarEvolution &SE;
2343   bool CanonicalMode;
2344   bool IsUnsafe = false;
2345 
2346   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2347       : SE(SE), CanonicalMode(CanonicalMode) {}
2348 
2349   bool follow(const SCEV *S) {
2350     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2351       if (!SE.isKnownNonZero(D->getRHS())) {
2352         IsUnsafe = true;
2353         return false;
2354       }
2355     }
2356     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2357       const SCEV *Step = AR->getStepRecurrence(SE);
2358       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2359         IsUnsafe = true;
2360         return false;
2361       }
2362 
2363       // For non-affine addrecs or in non-canonical mode we need a preheader
2364       // to insert into.
2365       if (!AR->getLoop()->getLoopPreheader() &&
2366           (!CanonicalMode || !AR->isAffine())) {
2367         IsUnsafe = true;
2368         return false;
2369       }
2370     }
2371     return true;
2372   }
2373   bool isDone() const { return IsUnsafe; }
2374 };
2375 } // namespace
2376 
2377 bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2378   SCEVFindUnsafe Search(SE, CanonicalMode);
2379   visitAll(S, Search);
2380   return !Search.IsUnsafe;
2381 }
2382 
2383 bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2384                                     const Instruction *InsertionPoint) const {
2385   if (!isSafeToExpand(S))
2386     return false;
2387   // We have to prove that the expanded site of S dominates InsertionPoint.
2388   // This is easy when not in the same block, but hard when S is an instruction
2389   // to be expanded somewhere inside the same block as our insertion point.
2390   // What we really need here is something analogous to an OrderedBasicBlock,
2391   // but for the moment, we paper over the problem by handling two common and
2392   // cheap to check cases.
2393   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2394     return true;
2395   if (SE.dominates(S, InsertionPoint->getParent())) {
2396     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2397       return true;
2398     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2399       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2400         return true;
2401   }
2402   return false;
2403 }
2404 
2405 void SCEVExpanderCleaner::cleanup() {
2406   // Result is used, nothing to remove.
2407   if (ResultUsed)
2408     return;
2409 
2410   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2411 #ifndef NDEBUG
2412   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2413                                             InsertedInstructions.end());
2414   (void)InsertedSet;
2415 #endif
2416   // Remove sets with value handles.
2417   Expander.clear();
2418 
2419   // Remove all inserted instructions.
2420   for (Instruction *I : reverse(InsertedInstructions)) {
2421 #ifndef NDEBUG
2422     assert(all_of(I->users(),
2423                   [&InsertedSet](Value *U) {
2424                     return InsertedSet.contains(cast<Instruction>(U));
2425                   }) &&
2426            "removed instruction should only be used by instructions inserted "
2427            "during expansion");
2428 #endif
2429     assert(!I->getType()->isVoidTy() &&
2430            "inserted instruction should have non-void types");
2431     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2432     I->eraseFromParent();
2433   }
2434 }
2435