1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 47 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 48 /// creating a new one. 49 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 50 Instruction::CastOps Op, 51 BasicBlock::iterator IP) { 52 // This function must be called with the builder having a valid insertion 53 // point. It doesn't need to be the actual IP where the uses of the returned 54 // cast will be added, but it must dominate such IP. 55 // We use this precondition to produce a cast that will dominate all its 56 // uses. In particular, this is crucial for the case where the builder's 57 // insertion point *is* the point where we were asked to put the cast. 58 // Since we don't know the builder's insertion point is actually 59 // where the uses will be added (only that it dominates it), we are 60 // not allowed to move it. 61 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 62 63 Value *Ret = nullptr; 64 65 // Check to see if there is already a cast! 66 for (User *U : V->users()) { 67 if (U->getType() != Ty) 68 continue; 69 CastInst *CI = dyn_cast<CastInst>(U); 70 if (!CI || CI->getOpcode() != Op) 71 continue; 72 73 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 74 // the cast must also properly dominate the Builder's insertion point. 75 if (IP->getParent() == CI->getParent() && &*BIP != CI && 76 (&*IP == CI || CI->comesBefore(&*IP))) { 77 Ret = CI; 78 break; 79 } 80 } 81 82 // Create a new cast. 83 if (!Ret) { 84 SCEVInsertPointGuard Guard(Builder, this); 85 Builder.SetInsertPoint(&*IP); 86 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 87 } 88 89 // We assert at the end of the function since IP might point to an 90 // instruction with different dominance properties than a cast 91 // (an invoke for example) and not dominate BIP (but the cast does). 92 assert(!isa<Instruction>(Ret) || 93 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 94 95 return Ret; 96 } 97 98 BasicBlock::iterator 99 SCEVExpander::findInsertPointAfter(Instruction *I, 100 Instruction *MustDominate) const { 101 BasicBlock::iterator IP = ++I->getIterator(); 102 if (auto *II = dyn_cast<InvokeInst>(I)) 103 IP = II->getNormalDest()->begin(); 104 105 while (isa<PHINode>(IP)) 106 ++IP; 107 108 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 109 ++IP; 110 } else if (isa<CatchSwitchInst>(IP)) { 111 IP = MustDominate->getParent()->getFirstInsertionPt(); 112 } else { 113 assert(!IP->isEHPad() && "unexpected eh pad!"); 114 } 115 116 // Adjust insert point to be after instructions inserted by the expander, so 117 // we can re-use already inserted instructions. Avoid skipping past the 118 // original \p MustDominate, in case it is an inserted instruction. 119 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 120 ++IP; 121 122 return IP; 123 } 124 125 BasicBlock::iterator 126 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP)) 135 ++IP; 136 return IP; 137 } 138 139 // Cast the instruction immediately after the instruction. 140 if (Instruction *I = dyn_cast<Instruction>(V)) 141 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 142 143 // Otherwise, this must be some kind of a constant, 144 // so let's plop this cast into the function's entry block. 145 assert(isa<Constant>(V) && 146 "Expected the cast argument to be a global/constant"); 147 return Builder.GetInsertBlock() 148 ->getParent() 149 ->getEntryBlock() 150 .getFirstInsertionPt(); 151 } 152 153 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 154 /// which must be possible with a noop cast, doing what we can to share 155 /// the casts. 156 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 157 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 158 assert((Op == Instruction::BitCast || 159 Op == Instruction::PtrToInt || 160 Op == Instruction::IntToPtr) && 161 "InsertNoopCastOfTo cannot perform non-noop casts!"); 162 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 163 "InsertNoopCastOfTo cannot change sizes!"); 164 165 // inttoptr only works for integral pointers. For non-integral pointers, we 166 // can create a GEP on null with the integral value as index. Note that 167 // it is safe to use GEP of null instead of inttoptr here, because only 168 // expressions already based on a GEP of null should be converted to pointers 169 // during expansion. 170 if (Op == Instruction::IntToPtr) { 171 auto *PtrTy = cast<PointerType>(Ty); 172 if (DL.isNonIntegralPointerType(PtrTy)) { 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 return Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(PtrTy), V, "scevgep"); 177 } 178 } 179 // Short-circuit unnecessary bitcasts. 180 if (Op == Instruction::BitCast) { 181 if (V->getType() == Ty) 182 return V; 183 if (CastInst *CI = dyn_cast<CastInst>(V)) { 184 if (CI->getOperand(0)->getType() == Ty) 185 return CI->getOperand(0); 186 } 187 } 188 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 189 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 190 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 191 if (CastInst *CI = dyn_cast<CastInst>(V)) 192 if ((CI->getOpcode() == Instruction::PtrToInt || 193 CI->getOpcode() == Instruction::IntToPtr) && 194 SE.getTypeSizeInBits(CI->getType()) == 195 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 196 return CI->getOperand(0); 197 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 198 if ((CE->getOpcode() == Instruction::PtrToInt || 199 CE->getOpcode() == Instruction::IntToPtr) && 200 SE.getTypeSizeInBits(CE->getType()) == 201 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 202 return CE->getOperand(0); 203 } 204 205 // Fold a cast of a constant. 206 if (Constant *C = dyn_cast<Constant>(V)) 207 return ConstantExpr::getCast(Op, C, Ty); 208 209 // Try to reuse existing cast, or insert one. 210 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 211 } 212 213 /// InsertBinop - Insert the specified binary operator, doing a small amount 214 /// of work to avoid inserting an obviously redundant operation, and hoisting 215 /// to an outer loop when the opportunity is there and it is safe. 216 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 217 Value *LHS, Value *RHS, 218 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 219 // Fold a binop with constant operands. 220 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 221 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 222 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 223 return Res; 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 // TODO: Use the Builder, which will make CreateBinOp below fold with 277 // InstSimplifyFolder. 278 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// expandAddToGEP - Expand an addition expression with a pointer type into 289 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 290 /// BasicAliasAnalysis and other passes analyze the result. See the rules 291 /// for getelementptr vs. inttoptr in 292 /// http://llvm.org/docs/LangRef.html#pointeraliasing 293 /// for details. 294 /// 295 /// Design note: The correctness of using getelementptr here depends on 296 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 297 /// they may introduce pointer arithmetic which may not be safely converted 298 /// into getelementptr. 299 /// 300 /// Design note: It might seem desirable for this function to be more 301 /// loop-aware. If some of the indices are loop-invariant while others 302 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 303 /// loop-invariant portions of the overall computation outside the loop. 304 /// However, there are a few reasons this is not done here. Hoisting simple 305 /// arithmetic is a low-level optimization that often isn't very 306 /// important until late in the optimization process. In fact, passes 307 /// like InstructionCombining will combine GEPs, even if it means 308 /// pushing loop-invariant computation down into loops, so even if the 309 /// GEPs were split here, the work would quickly be undone. The 310 /// LoopStrengthReduction pass, which is usually run quite late (and 311 /// after the last InstructionCombining pass), takes care of hoisting 312 /// loop-invariant portions of expressions, after considering what 313 /// can be folded using target addressing modes. 314 /// 315 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Type *Ty, Value *V) { 316 assert(!isa<Instruction>(V) || 317 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 318 319 Value *Idx = expandCodeFor(Offset, Ty); 320 321 // Fold a GEP with constant operands. 322 if (Constant *CLHS = dyn_cast<Constant>(V)) 323 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 324 return Builder.CreateGEP(Builder.getInt8Ty(), CLHS, CRHS); 325 326 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 327 unsigned ScanLimit = 6; 328 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 329 // Scanning starts from the last instruction before the insertion point. 330 BasicBlock::iterator IP = Builder.GetInsertPoint(); 331 if (IP != BlockBegin) { 332 --IP; 333 for (; ScanLimit; --IP, --ScanLimit) { 334 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 335 // generated code. 336 if (isa<DbgInfoIntrinsic>(IP)) 337 ScanLimit++; 338 if (IP->getOpcode() == Instruction::GetElementPtr && 339 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 340 cast<GEPOperator>(&*IP)->getSourceElementType() == 341 Type::getInt8Ty(Ty->getContext())) 342 return &*IP; 343 if (IP == BlockBegin) break; 344 } 345 } 346 347 // Save the original insertion point so we can restore it when we're done. 348 SCEVInsertPointGuard Guard(Builder, this); 349 350 // Move the insertion point out of as many loops as we can. 351 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 352 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 353 BasicBlock *Preheader = L->getLoopPreheader(); 354 if (!Preheader) break; 355 356 // Ok, move up a level. 357 Builder.SetInsertPoint(Preheader->getTerminator()); 358 } 359 360 // Emit a GEP. 361 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "scevgep"); 362 } 363 364 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 365 /// SCEV expansion. If they are nested, this is the most nested. If they are 366 /// neighboring, pick the later. 367 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 368 DominatorTree &DT) { 369 if (!A) return B; 370 if (!B) return A; 371 if (A->contains(B)) return B; 372 if (B->contains(A)) return A; 373 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 374 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 375 return A; // Arbitrarily break the tie. 376 } 377 378 /// getRelevantLoop - Get the most relevant loop associated with the given 379 /// expression, according to PickMostRelevantLoop. 380 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 381 // Test whether we've already computed the most relevant loop for this SCEV. 382 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 383 if (!Pair.second) 384 return Pair.first->second; 385 386 switch (S->getSCEVType()) { 387 case scConstant: 388 case scVScale: 389 return nullptr; // A constant has no relevant loops. 390 case scTruncate: 391 case scZeroExtend: 392 case scSignExtend: 393 case scPtrToInt: 394 case scAddExpr: 395 case scMulExpr: 396 case scUDivExpr: 397 case scAddRecExpr: 398 case scUMaxExpr: 399 case scSMaxExpr: 400 case scUMinExpr: 401 case scSMinExpr: 402 case scSequentialUMinExpr: { 403 const Loop *L = nullptr; 404 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 405 L = AR->getLoop(); 406 for (const SCEV *Op : S->operands()) 407 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 408 return RelevantLoops[S] = L; 409 } 410 case scUnknown: { 411 const SCEVUnknown *U = cast<SCEVUnknown>(S); 412 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 413 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 414 // A non-instruction has no relevant loops. 415 return nullptr; 416 } 417 case scCouldNotCompute: 418 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 419 } 420 llvm_unreachable("Unexpected SCEV type!"); 421 } 422 423 namespace { 424 425 /// LoopCompare - Compare loops by PickMostRelevantLoop. 426 class LoopCompare { 427 DominatorTree &DT; 428 public: 429 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 430 431 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 432 std::pair<const Loop *, const SCEV *> RHS) const { 433 // Keep pointer operands sorted at the end. 434 if (LHS.second->getType()->isPointerTy() != 435 RHS.second->getType()->isPointerTy()) 436 return LHS.second->getType()->isPointerTy(); 437 438 // Compare loops with PickMostRelevantLoop. 439 if (LHS.first != RHS.first) 440 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 441 442 // If one operand is a non-constant negative and the other is not, 443 // put the non-constant negative on the right so that a sub can 444 // be used instead of a negate and add. 445 if (LHS.second->isNonConstantNegative()) { 446 if (!RHS.second->isNonConstantNegative()) 447 return false; 448 } else if (RHS.second->isNonConstantNegative()) 449 return true; 450 451 // Otherwise they are equivalent according to this comparison. 452 return false; 453 } 454 }; 455 456 } 457 458 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 459 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 460 461 // Collect all the add operands in a loop, along with their associated loops. 462 // Iterate in reverse so that constants are emitted last, all else equal, and 463 // so that pointer operands are inserted first, which the code below relies on 464 // to form more involved GEPs. 465 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 466 for (const SCEV *Op : reverse(S->operands())) 467 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 468 469 // Sort by loop. Use a stable sort so that constants follow non-constants and 470 // pointer operands precede non-pointer operands. 471 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 472 473 // Emit instructions to add all the operands. Hoist as much as possible 474 // out of loops, and form meaningful getelementptrs where possible. 475 Value *Sum = nullptr; 476 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 477 const Loop *CurLoop = I->first; 478 const SCEV *Op = I->second; 479 if (!Sum) { 480 // This is the first operand. Just expand it. 481 Sum = expand(Op); 482 ++I; 483 continue; 484 } 485 486 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 487 if (isa<PointerType>(Sum->getType())) { 488 // The running sum expression is a pointer. Try to form a getelementptr 489 // at this level with that as the base. 490 SmallVector<const SCEV *, 4> NewOps; 491 for (; I != E && I->first == CurLoop; ++I) { 492 // If the operand is SCEVUnknown and not instructions, peek through 493 // it, to enable more of it to be folded into the GEP. 494 const SCEV *X = I->second; 495 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 496 if (!isa<Instruction>(U->getValue())) 497 X = SE.getSCEV(U->getValue()); 498 NewOps.push_back(X); 499 } 500 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Ty, Sum); 501 } else if (Op->isNonConstantNegative()) { 502 // Instead of doing a negate and add, just do a subtract. 503 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 504 Sum = InsertNoopCastOfTo(Sum, Ty); 505 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 506 /*IsSafeToHoist*/ true); 507 ++I; 508 } else { 509 // A simple add. 510 Value *W = expandCodeFor(Op, Ty); 511 Sum = InsertNoopCastOfTo(Sum, Ty); 512 // Canonicalize a constant to the RHS. 513 if (isa<Constant>(Sum)) 514 std::swap(Sum, W); 515 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 516 /*IsSafeToHoist*/ true); 517 ++I; 518 } 519 } 520 521 return Sum; 522 } 523 524 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 525 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 526 527 // Collect all the mul operands in a loop, along with their associated loops. 528 // Iterate in reverse so that constants are emitted last, all else equal. 529 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 530 for (const SCEV *Op : reverse(S->operands())) 531 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 532 533 // Sort by loop. Use a stable sort so that constants follow non-constants. 534 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 535 536 // Emit instructions to mul all the operands. Hoist as much as possible 537 // out of loops. 538 Value *Prod = nullptr; 539 auto I = OpsAndLoops.begin(); 540 541 // Expand the calculation of X pow N in the following manner: 542 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 543 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 544 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 545 auto E = I; 546 // Calculate how many times the same operand from the same loop is included 547 // into this power. 548 uint64_t Exponent = 0; 549 const uint64_t MaxExponent = UINT64_MAX >> 1; 550 // No one sane will ever try to calculate such huge exponents, but if we 551 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 552 // below when the power of 2 exceeds our Exponent, and we want it to be 553 // 1u << 31 at most to not deal with unsigned overflow. 554 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 555 ++Exponent; 556 ++E; 557 } 558 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 559 560 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 561 // that are needed into the result. 562 Value *P = expandCodeFor(I->second, Ty); 563 Value *Result = nullptr; 564 if (Exponent & 1) 565 Result = P; 566 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 567 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 568 /*IsSafeToHoist*/ true); 569 if (Exponent & BinExp) 570 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 571 SCEV::FlagAnyWrap, 572 /*IsSafeToHoist*/ true) 573 : P; 574 } 575 576 I = E; 577 assert(Result && "Nothing was expanded?"); 578 return Result; 579 }; 580 581 while (I != OpsAndLoops.end()) { 582 if (!Prod) { 583 // This is the first operand. Just expand it. 584 Prod = ExpandOpBinPowN(); 585 } else if (I->second->isAllOnesValue()) { 586 // Instead of doing a multiply by negative one, just do a negate. 587 Prod = InsertNoopCastOfTo(Prod, Ty); 588 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 589 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 590 ++I; 591 } else { 592 // A simple mul. 593 Value *W = ExpandOpBinPowN(); 594 Prod = InsertNoopCastOfTo(Prod, Ty); 595 // Canonicalize a constant to the RHS. 596 if (isa<Constant>(Prod)) std::swap(Prod, W); 597 const APInt *RHS; 598 if (match(W, m_Power2(RHS))) { 599 // Canonicalize Prod*(1<<C) to Prod<<C. 600 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 601 auto NWFlags = S->getNoWrapFlags(); 602 // clear nsw flag if shl will produce poison value. 603 if (RHS->logBase2() == RHS->getBitWidth() - 1) 604 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 605 Prod = InsertBinop(Instruction::Shl, Prod, 606 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 607 /*IsSafeToHoist*/ true); 608 } else { 609 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 610 /*IsSafeToHoist*/ true); 611 } 612 } 613 } 614 615 return Prod; 616 } 617 618 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 619 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 620 621 Value *LHS = expandCodeFor(S->getLHS(), Ty); 622 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 623 const APInt &RHS = SC->getAPInt(); 624 if (RHS.isPowerOf2()) 625 return InsertBinop(Instruction::LShr, LHS, 626 ConstantInt::get(Ty, RHS.logBase2()), 627 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 628 } 629 630 Value *RHS = expandCodeFor(S->getRHS(), Ty); 631 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 632 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 633 } 634 635 /// Determine if this is a well-behaved chain of instructions leading back to 636 /// the PHI. If so, it may be reused by expanded expressions. 637 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 638 const Loop *L) { 639 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 640 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 641 return false; 642 // If any of the operands don't dominate the insert position, bail. 643 // Addrec operands are always loop-invariant, so this can only happen 644 // if there are instructions which haven't been hoisted. 645 if (L == IVIncInsertLoop) { 646 for (Use &Op : llvm::drop_begin(IncV->operands())) 647 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 648 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 649 return false; 650 } 651 // Advance to the next instruction. 652 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 653 if (!IncV) 654 return false; 655 656 if (IncV->mayHaveSideEffects()) 657 return false; 658 659 if (IncV == PN) 660 return true; 661 662 return isNormalAddRecExprPHI(PN, IncV, L); 663 } 664 665 /// getIVIncOperand returns an induction variable increment's induction 666 /// variable operand. 667 /// 668 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 669 /// operands dominate InsertPos. 670 /// 671 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 672 /// simple patterns generated by getAddRecExprPHILiterally and 673 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 674 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 675 Instruction *InsertPos, 676 bool allowScale) { 677 if (IncV == InsertPos) 678 return nullptr; 679 680 switch (IncV->getOpcode()) { 681 default: 682 return nullptr; 683 // Check for a simple Add/Sub or GEP of a loop invariant step. 684 case Instruction::Add: 685 case Instruction::Sub: { 686 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 687 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 688 return dyn_cast<Instruction>(IncV->getOperand(0)); 689 return nullptr; 690 } 691 case Instruction::BitCast: 692 return dyn_cast<Instruction>(IncV->getOperand(0)); 693 case Instruction::GetElementPtr: 694 for (Use &U : llvm::drop_begin(IncV->operands())) { 695 if (isa<Constant>(U)) 696 continue; 697 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 698 if (!SE.DT.dominates(OInst, InsertPos)) 699 return nullptr; 700 } 701 if (allowScale) { 702 // allow any kind of GEP as long as it can be hoisted. 703 continue; 704 } 705 // GEPs produced by SCEVExpander use i8 element type. 706 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 707 return nullptr; 708 break; 709 } 710 return dyn_cast<Instruction>(IncV->getOperand(0)); 711 } 712 } 713 714 /// If the insert point of the current builder or any of the builders on the 715 /// stack of saved builders has 'I' as its insert point, update it to point to 716 /// the instruction after 'I'. This is intended to be used when the instruction 717 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 718 /// different block, the inconsistent insert point (with a mismatched 719 /// Instruction and Block) can lead to an instruction being inserted in a block 720 /// other than its parent. 721 void SCEVExpander::fixupInsertPoints(Instruction *I) { 722 BasicBlock::iterator It(*I); 723 BasicBlock::iterator NewInsertPt = std::next(It); 724 if (Builder.GetInsertPoint() == It) 725 Builder.SetInsertPoint(&*NewInsertPt); 726 for (auto *InsertPtGuard : InsertPointGuards) 727 if (InsertPtGuard->GetInsertPoint() == It) 728 InsertPtGuard->SetInsertPoint(NewInsertPt); 729 } 730 731 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 732 /// it available to other uses in this loop. Recursively hoist any operands, 733 /// until we reach a value that dominates InsertPos. 734 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 735 bool RecomputePoisonFlags) { 736 auto FixupPoisonFlags = [this](Instruction *I) { 737 // Drop flags that are potentially inferred from old context and infer flags 738 // in new context. 739 I->dropPoisonGeneratingFlags(); 740 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 741 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 742 auto *BO = cast<BinaryOperator>(I); 743 BO->setHasNoUnsignedWrap( 744 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 745 BO->setHasNoSignedWrap( 746 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 747 } 748 }; 749 750 if (SE.DT.dominates(IncV, InsertPos)) { 751 if (RecomputePoisonFlags) 752 FixupPoisonFlags(IncV); 753 return true; 754 } 755 756 // InsertPos must itself dominate IncV so that IncV's new position satisfies 757 // its existing users. 758 if (isa<PHINode>(InsertPos) || 759 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 760 return false; 761 762 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 763 return false; 764 765 // Check that the chain of IV operands leading back to Phi can be hoisted. 766 SmallVector<Instruction*, 4> IVIncs; 767 for(;;) { 768 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 769 if (!Oper) 770 return false; 771 // IncV is safe to hoist. 772 IVIncs.push_back(IncV); 773 IncV = Oper; 774 if (SE.DT.dominates(IncV, InsertPos)) 775 break; 776 } 777 for (Instruction *I : llvm::reverse(IVIncs)) { 778 fixupInsertPoints(I); 779 I->moveBefore(InsertPos); 780 if (RecomputePoisonFlags) 781 FixupPoisonFlags(I); 782 } 783 return true; 784 } 785 786 /// Determine if this cyclic phi is in a form that would have been generated by 787 /// LSR. We don't care if the phi was actually expanded in this pass, as long 788 /// as it is in a low-cost form, for example, no implied multiplication. This 789 /// should match any patterns generated by getAddRecExprPHILiterally and 790 /// expandAddtoGEP. 791 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 792 const Loop *L) { 793 for(Instruction *IVOper = IncV; 794 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 795 /*allowScale=*/false));) { 796 if (IVOper == PN) 797 return true; 798 } 799 return false; 800 } 801 802 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 803 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 804 /// need to materialize IV increments elsewhere to handle difficult situations. 805 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 806 Type *ExpandTy, Type *IntTy, 807 bool useSubtract) { 808 Value *IncV; 809 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 810 if (ExpandTy->isPointerTy()) { 811 IncV = expandAddToGEP(SE.getSCEV(StepV), IntTy, PN); 812 } else { 813 IncV = useSubtract ? 814 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 815 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 816 } 817 return IncV; 818 } 819 820 /// Check whether we can cheaply express the requested SCEV in terms of 821 /// the available PHI SCEV by truncation and/or inversion of the step. 822 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 823 const SCEVAddRecExpr *Phi, 824 const SCEVAddRecExpr *Requested, 825 bool &InvertStep) { 826 // We can't transform to match a pointer PHI. 827 if (Phi->getType()->isPointerTy()) 828 return false; 829 830 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 831 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 832 833 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 834 return false; 835 836 // Try truncate it if necessary. 837 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 838 if (!Phi) 839 return false; 840 841 // Check whether truncation will help. 842 if (Phi == Requested) { 843 InvertStep = false; 844 return true; 845 } 846 847 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 848 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 849 InvertStep = true; 850 return true; 851 } 852 853 return false; 854 } 855 856 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 857 if (!isa<IntegerType>(AR->getType())) 858 return false; 859 860 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 861 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 862 const SCEV *Step = AR->getStepRecurrence(SE); 863 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 864 SE.getSignExtendExpr(AR, WideTy)); 865 const SCEV *ExtendAfterOp = 866 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 867 return ExtendAfterOp == OpAfterExtend; 868 } 869 870 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 871 if (!isa<IntegerType>(AR->getType())) 872 return false; 873 874 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 875 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 876 const SCEV *Step = AR->getStepRecurrence(SE); 877 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 878 SE.getZeroExtendExpr(AR, WideTy)); 879 const SCEV *ExtendAfterOp = 880 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 881 return ExtendAfterOp == OpAfterExtend; 882 } 883 884 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 885 /// the base addrec, which is the addrec without any non-loop-dominating 886 /// values, and return the PHI. 887 PHINode * 888 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 889 const Loop *L, 890 Type *ExpandTy, 891 Type *IntTy, 892 Type *&TruncTy, 893 bool &InvertStep) { 894 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 895 896 // Reuse a previously-inserted PHI, if present. 897 BasicBlock *LatchBlock = L->getLoopLatch(); 898 if (LatchBlock) { 899 PHINode *AddRecPhiMatch = nullptr; 900 Instruction *IncV = nullptr; 901 TruncTy = nullptr; 902 InvertStep = false; 903 904 // Only try partially matching scevs that need truncation and/or 905 // step-inversion if we know this loop is outside the current loop. 906 bool TryNonMatchingSCEV = 907 IVIncInsertLoop && 908 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 909 910 for (PHINode &PN : L->getHeader()->phis()) { 911 if (!SE.isSCEVable(PN.getType())) 912 continue; 913 914 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 915 // PHI has no meaning at all. 916 if (!PN.isComplete()) { 917 SCEV_DEBUG_WITH_TYPE( 918 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 919 continue; 920 } 921 922 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 923 if (!PhiSCEV) 924 continue; 925 926 bool IsMatchingSCEV = PhiSCEV == Normalized; 927 // We only handle truncation and inversion of phi recurrences for the 928 // expanded expression if the expanded expression's loop dominates the 929 // loop we insert to. Check now, so we can bail out early. 930 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 931 continue; 932 933 // TODO: this possibly can be reworked to avoid this cast at all. 934 Instruction *TempIncV = 935 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 936 if (!TempIncV) 937 continue; 938 939 // Check whether we can reuse this PHI node. 940 if (LSRMode) { 941 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 942 continue; 943 } else { 944 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 945 continue; 946 } 947 948 // Stop if we have found an exact match SCEV. 949 if (IsMatchingSCEV) { 950 IncV = TempIncV; 951 TruncTy = nullptr; 952 InvertStep = false; 953 AddRecPhiMatch = &PN; 954 break; 955 } 956 957 // Try whether the phi can be translated into the requested form 958 // (truncated and/or offset by a constant). 959 if ((!TruncTy || InvertStep) && 960 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 961 // Record the phi node. But don't stop we might find an exact match 962 // later. 963 AddRecPhiMatch = &PN; 964 IncV = TempIncV; 965 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 966 } 967 } 968 969 if (AddRecPhiMatch) { 970 // Ok, the add recurrence looks usable. 971 // Remember this PHI, even in post-inc mode. 972 InsertedValues.insert(AddRecPhiMatch); 973 // Remember the increment. 974 rememberInstruction(IncV); 975 // Those values were not actually inserted but re-used. 976 ReusedValues.insert(AddRecPhiMatch); 977 ReusedValues.insert(IncV); 978 return AddRecPhiMatch; 979 } 980 } 981 982 // Save the original insertion point so we can restore it when we're done. 983 SCEVInsertPointGuard Guard(Builder, this); 984 985 // Another AddRec may need to be recursively expanded below. For example, if 986 // this AddRec is quadratic, the StepV may itself be an AddRec in this 987 // loop. Remove this loop from the PostIncLoops set before expanding such 988 // AddRecs. Otherwise, we cannot find a valid position for the step 989 // (i.e. StepV can never dominate its loop header). Ideally, we could do 990 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 991 // so it's not worth implementing SmallPtrSet::swap. 992 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 993 PostIncLoops.clear(); 994 995 // Expand code for the start value into the loop preheader. 996 assert(L->getLoopPreheader() && 997 "Can't expand add recurrences without a loop preheader!"); 998 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 999 L->getLoopPreheader()->getTerminator()); 1000 1001 // StartV must have been be inserted into L's preheader to dominate the new 1002 // phi. 1003 assert(!isa<Instruction>(StartV) || 1004 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1005 L->getHeader())); 1006 1007 // Expand code for the step value. Do this before creating the PHI so that PHI 1008 // reuse code doesn't see an incomplete PHI. 1009 const SCEV *Step = Normalized->getStepRecurrence(SE); 1010 // If the stride is negative, insert a sub instead of an add for the increment 1011 // (unless it's a constant, because subtracts of constants are canonicalized 1012 // to adds). 1013 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1014 if (useSubtract) 1015 Step = SE.getNegativeSCEV(Step); 1016 // Expand the step somewhere that dominates the loop header. 1017 Value *StepV = 1018 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1019 1020 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1021 // we actually do emit an addition. It does not apply if we emit a 1022 // subtraction. 1023 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1024 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1025 1026 // Create the PHI. 1027 BasicBlock *Header = L->getHeader(); 1028 Builder.SetInsertPoint(Header, Header->begin()); 1029 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1030 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1031 Twine(IVName) + ".iv"); 1032 1033 // Create the step instructions and populate the PHI. 1034 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1035 BasicBlock *Pred = *HPI; 1036 1037 // Add a start value. 1038 if (!L->contains(Pred)) { 1039 PN->addIncoming(StartV, Pred); 1040 continue; 1041 } 1042 1043 // Create a step value and add it to the PHI. 1044 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1045 // instructions at IVIncInsertPos. 1046 Instruction *InsertPos = L == IVIncInsertLoop ? 1047 IVIncInsertPos : Pred->getTerminator(); 1048 Builder.SetInsertPoint(InsertPos); 1049 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1050 1051 if (isa<OverflowingBinaryOperator>(IncV)) { 1052 if (IncrementIsNUW) 1053 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1054 if (IncrementIsNSW) 1055 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1056 } 1057 PN->addIncoming(IncV, Pred); 1058 } 1059 1060 // After expanding subexpressions, restore the PostIncLoops set so the caller 1061 // can ensure that IVIncrement dominates the current uses. 1062 PostIncLoops = SavedPostIncLoops; 1063 1064 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1065 // effective when we are able to use an IV inserted here, so record it. 1066 InsertedValues.insert(PN); 1067 InsertedIVs.push_back(PN); 1068 return PN; 1069 } 1070 1071 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1072 Type *STy = S->getType(); 1073 Type *IntTy = SE.getEffectiveSCEVType(STy); 1074 const Loop *L = S->getLoop(); 1075 1076 // Determine a normalized form of this expression, which is the expression 1077 // before any post-inc adjustment is made. 1078 const SCEVAddRecExpr *Normalized = S; 1079 if (PostIncLoops.count(L)) { 1080 PostIncLoopSet Loops; 1081 Loops.insert(L); 1082 Normalized = cast<SCEVAddRecExpr>( 1083 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1084 } 1085 1086 // Strip off any non-loop-dominating component from the addrec start. 1087 const SCEV *Start = Normalized->getStart(); 1088 const SCEV *PostLoopOffset = nullptr; 1089 if (!SE.properlyDominates(Start, L->getHeader())) { 1090 PostLoopOffset = Start; 1091 Start = SE.getConstant(Normalized->getType(), 0); 1092 Normalized = cast<SCEVAddRecExpr>( 1093 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1094 Normalized->getLoop(), 1095 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1096 } 1097 1098 // Strip off any non-loop-dominating component from the addrec step. 1099 const SCEV *Step = Normalized->getStepRecurrence(SE); 1100 const SCEV *PostLoopScale = nullptr; 1101 if (!SE.dominates(Step, L->getHeader())) { 1102 PostLoopScale = Step; 1103 Step = SE.getConstant(Normalized->getType(), 1); 1104 if (!Start->isZero()) { 1105 // The normalization below assumes that Start is constant zero, so if 1106 // it isn't re-associate Start to PostLoopOffset. 1107 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1108 PostLoopOffset = Start; 1109 Start = SE.getConstant(Normalized->getType(), 0); 1110 } 1111 Normalized = 1112 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1113 Start, Step, Normalized->getLoop(), 1114 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1115 } 1116 1117 // Expand the core addrec. If we need post-loop scaling, force it to 1118 // expand to an integer type to avoid the need for additional casting. 1119 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1120 // We can't use a pointer type for the addrec if the pointer type is 1121 // non-integral. 1122 Type *AddRecPHIExpandTy = 1123 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1124 1125 // In some cases, we decide to reuse an existing phi node but need to truncate 1126 // it and/or invert the step. 1127 Type *TruncTy = nullptr; 1128 bool InvertStep = false; 1129 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1130 IntTy, TruncTy, InvertStep); 1131 1132 // Accommodate post-inc mode, if necessary. 1133 Value *Result; 1134 if (!PostIncLoops.count(L)) 1135 Result = PN; 1136 else { 1137 // In PostInc mode, use the post-incremented value. 1138 BasicBlock *LatchBlock = L->getLoopLatch(); 1139 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1140 Result = PN->getIncomingValueForBlock(LatchBlock); 1141 1142 // We might be introducing a new use of the post-inc IV that is not poison 1143 // safe, in which case we should drop poison generating flags. Only keep 1144 // those flags for which SCEV has proven that they always hold. 1145 if (isa<OverflowingBinaryOperator>(Result)) { 1146 auto *I = cast<Instruction>(Result); 1147 if (!S->hasNoUnsignedWrap()) 1148 I->setHasNoUnsignedWrap(false); 1149 if (!S->hasNoSignedWrap()) 1150 I->setHasNoSignedWrap(false); 1151 } 1152 1153 // For an expansion to use the postinc form, the client must call 1154 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1155 // or dominated by IVIncInsertPos. 1156 if (isa<Instruction>(Result) && 1157 !SE.DT.dominates(cast<Instruction>(Result), 1158 &*Builder.GetInsertPoint())) { 1159 // The induction variable's postinc expansion does not dominate this use. 1160 // IVUsers tries to prevent this case, so it is rare. However, it can 1161 // happen when an IVUser outside the loop is not dominated by the latch 1162 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1163 // all cases. Consider a phi outside whose operand is replaced during 1164 // expansion with the value of the postinc user. Without fundamentally 1165 // changing the way postinc users are tracked, the only remedy is 1166 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1167 // but hopefully expandCodeFor handles that. 1168 bool useSubtract = 1169 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1170 if (useSubtract) 1171 Step = SE.getNegativeSCEV(Step); 1172 Value *StepV; 1173 { 1174 // Expand the step somewhere that dominates the loop header. 1175 SCEVInsertPointGuard Guard(Builder, this); 1176 StepV = 1177 expandCodeFor(Step, IntTy, L->getHeader()->getFirstInsertionPt()); 1178 } 1179 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1180 } 1181 } 1182 1183 // We have decided to reuse an induction variable of a dominating loop. Apply 1184 // truncation and/or inversion of the step. 1185 if (TruncTy) { 1186 Type *ResTy = Result->getType(); 1187 // Normalize the result type. 1188 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1189 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1190 // Truncate the result. 1191 if (TruncTy != Result->getType()) 1192 Result = Builder.CreateTrunc(Result, TruncTy); 1193 1194 // Invert the result. 1195 if (InvertStep) 1196 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy), 1197 Result); 1198 } 1199 1200 // Re-apply any non-loop-dominating scale. 1201 if (PostLoopScale) { 1202 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1203 Result = InsertNoopCastOfTo(Result, IntTy); 1204 Result = Builder.CreateMul(Result, expandCodeFor(PostLoopScale, IntTy)); 1205 } 1206 1207 // Re-apply any non-loop-dominating offset. 1208 if (PostLoopOffset) { 1209 if (isa<PointerType>(ExpandTy)) { 1210 if (Result->getType()->isIntegerTy()) { 1211 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy); 1212 Result = expandAddToGEP(SE.getUnknown(Result), IntTy, Base); 1213 } else { 1214 Result = expandAddToGEP(PostLoopOffset, IntTy, Result); 1215 } 1216 } else { 1217 Result = InsertNoopCastOfTo(Result, IntTy); 1218 Result = Builder.CreateAdd(Result, expandCodeFor(PostLoopOffset, IntTy)); 1219 } 1220 } 1221 1222 return Result; 1223 } 1224 1225 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1226 // In canonical mode we compute the addrec as an expression of a canonical IV 1227 // using evaluateAtIteration and expand the resulting SCEV expression. This 1228 // way we avoid introducing new IVs to carry on the computation of the addrec 1229 // throughout the loop. 1230 // 1231 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1232 // type wider than the addrec itself. Emitting a canonical IV of the 1233 // proper type might produce non-legal types, for example expanding an i64 1234 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1235 // back to non-canonical mode for nested addrecs. 1236 if (!CanonicalMode || (S->getNumOperands() > 2)) 1237 return expandAddRecExprLiterally(S); 1238 1239 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1240 const Loop *L = S->getLoop(); 1241 1242 // First check for an existing canonical IV in a suitable type. 1243 PHINode *CanonicalIV = nullptr; 1244 if (PHINode *PN = L->getCanonicalInductionVariable()) 1245 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1246 CanonicalIV = PN; 1247 1248 // Rewrite an AddRec in terms of the canonical induction variable, if 1249 // its type is more narrow. 1250 if (CanonicalIV && 1251 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1252 !S->getType()->isPointerTy()) { 1253 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1254 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1255 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1256 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1257 S->getNoWrapFlags(SCEV::FlagNW))); 1258 BasicBlock::iterator NewInsertPt = 1259 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1260 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1261 NewInsertPt); 1262 return V; 1263 } 1264 1265 // {X,+,F} --> X + {0,+,F} 1266 if (!S->getStart()->isZero()) { 1267 if (isa<PointerType>(S->getType())) { 1268 Value *StartV = expand(SE.getPointerBase(S)); 1269 return expandAddToGEP(SE.removePointerBase(S), Ty, StartV); 1270 } 1271 1272 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1273 NewOps[0] = SE.getConstant(Ty, 0); 1274 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1275 S->getNoWrapFlags(SCEV::FlagNW)); 1276 1277 // Just do a normal add. Pre-expand the operands to suppress folding. 1278 // 1279 // The LHS and RHS values are factored out of the expand call to make the 1280 // output independent of the argument evaluation order. 1281 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1282 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1283 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1284 } 1285 1286 // If we don't yet have a canonical IV, create one. 1287 if (!CanonicalIV) { 1288 // Create and insert the PHI node for the induction variable in the 1289 // specified loop. 1290 BasicBlock *Header = L->getHeader(); 1291 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1292 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1293 CanonicalIV->insertBefore(Header->begin()); 1294 rememberInstruction(CanonicalIV); 1295 1296 SmallSet<BasicBlock *, 4> PredSeen; 1297 Constant *One = ConstantInt::get(Ty, 1); 1298 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1299 BasicBlock *HP = *HPI; 1300 if (!PredSeen.insert(HP).second) { 1301 // There must be an incoming value for each predecessor, even the 1302 // duplicates! 1303 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1304 continue; 1305 } 1306 1307 if (L->contains(HP)) { 1308 // Insert a unit add instruction right before the terminator 1309 // corresponding to the back-edge. 1310 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1311 "indvar.next", 1312 HP->getTerminator()); 1313 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1314 rememberInstruction(Add); 1315 CanonicalIV->addIncoming(Add, HP); 1316 } else { 1317 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1318 } 1319 } 1320 } 1321 1322 // {0,+,1} --> Insert a canonical induction variable into the loop! 1323 if (S->isAffine() && S->getOperand(1)->isOne()) { 1324 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1325 "IVs with types different from the canonical IV should " 1326 "already have been handled!"); 1327 return CanonicalIV; 1328 } 1329 1330 // {0,+,F} --> {0,+,1} * F 1331 1332 // If this is a simple linear addrec, emit it now as a special case. 1333 if (S->isAffine()) // {0,+,F} --> i*F 1334 return 1335 expand(SE.getTruncateOrNoop( 1336 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1337 SE.getNoopOrAnyExtend(S->getOperand(1), 1338 CanonicalIV->getType())), 1339 Ty)); 1340 1341 // If this is a chain of recurrences, turn it into a closed form, using the 1342 // folders, then expandCodeFor the closed form. This allows the folders to 1343 // simplify the expression without having to build a bunch of special code 1344 // into this folder. 1345 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1346 1347 // Promote S up to the canonical IV type, if the cast is foldable. 1348 const SCEV *NewS = S; 1349 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1350 if (isa<SCEVAddRecExpr>(Ext)) 1351 NewS = Ext; 1352 1353 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1354 1355 // Truncate the result down to the original type, if needed. 1356 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1357 return expand(T); 1358 } 1359 1360 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1361 Value *V = expandCodeFor(S->getOperand(), S->getOperand()->getType()); 1362 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1363 GetOptimalInsertionPointForCastOf(V)); 1364 } 1365 1366 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1367 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1368 Value *V = expandCodeFor(S->getOperand(), 1369 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1370 return Builder.CreateTrunc(V, Ty); 1371 } 1372 1373 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1374 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1375 Value *V = expandCodeFor(S->getOperand(), 1376 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1377 return Builder.CreateZExt(V, Ty); 1378 } 1379 1380 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1381 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1382 Value *V = expandCodeFor(S->getOperand(), 1383 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1384 return Builder.CreateSExt(V, Ty); 1385 } 1386 1387 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1388 Intrinsic::ID IntrinID, Twine Name, 1389 bool IsSequential) { 1390 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1391 Type *Ty = LHS->getType(); 1392 if (IsSequential) 1393 LHS = Builder.CreateFreeze(LHS); 1394 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1395 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1396 if (IsSequential && i != 0) 1397 RHS = Builder.CreateFreeze(RHS); 1398 Value *Sel; 1399 if (Ty->isIntegerTy()) 1400 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1401 /*FMFSource=*/nullptr, Name); 1402 else { 1403 Value *ICmp = 1404 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1405 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1406 } 1407 LHS = Sel; 1408 } 1409 return LHS; 1410 } 1411 1412 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1413 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1414 } 1415 1416 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1417 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1418 } 1419 1420 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1421 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1422 } 1423 1424 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1425 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1426 } 1427 1428 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1429 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1430 } 1431 1432 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1433 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1434 } 1435 1436 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1437 BasicBlock::iterator IP) { 1438 setInsertPoint(IP); 1439 Value *V = expandCodeFor(SH, Ty); 1440 return V; 1441 } 1442 1443 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1444 // Expand the code for this SCEV. 1445 Value *V = expand(SH); 1446 1447 if (Ty) { 1448 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1449 "non-trivial casts should be done with the SCEVs directly!"); 1450 V = InsertNoopCastOfTo(V, Ty); 1451 } 1452 return V; 1453 } 1454 1455 static bool 1456 canReuseInstruction(ScalarEvolution &SE, const SCEV *S, Instruction *I, 1457 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1458 // If the instruction cannot be poison, it's always safe to reuse. 1459 if (programUndefinedIfPoison(I)) 1460 return true; 1461 1462 // Otherwise, it is possible that I is more poisonous that S. Collect the 1463 // poison-contributors of S, and then check whether I has any additional 1464 // poison-contributors. Poison that is contributed through poison-generating 1465 // flags is handled by dropping those flags instead. 1466 SmallPtrSet<const Value *, 8> PoisonVals; 1467 SE.getPoisonGeneratingValues(PoisonVals, S); 1468 1469 SmallVector<Value *> Worklist; 1470 SmallPtrSet<Value *, 8> Visited; 1471 Worklist.push_back(I); 1472 while (!Worklist.empty()) { 1473 Value *V = Worklist.pop_back_val(); 1474 if (!Visited.insert(V).second) 1475 continue; 1476 1477 // Avoid walking large instruction graphs. 1478 if (Visited.size() > 16) 1479 return false; 1480 1481 // Either the value can't be poison, or the S would also be poison if it 1482 // is. 1483 if (PoisonVals.contains(V) || isGuaranteedNotToBePoison(V)) 1484 continue; 1485 1486 auto *I = dyn_cast<Instruction>(V); 1487 if (!I) 1488 return false; 1489 1490 // FIXME: Ignore vscale, even though it technically could be poison. Do this 1491 // because SCEV currently assumes it can't be poison. Remove this special 1492 // case once we proper model when vscale can be poison. 1493 if (auto *II = dyn_cast<IntrinsicInst>(I); 1494 II && II->getIntrinsicID() == Intrinsic::vscale) 1495 continue; 1496 1497 if (canCreatePoison(cast<Operator>(I), /*ConsiderFlagsAndMetadata*/ false)) 1498 return false; 1499 1500 // If the instruction can't create poison, we can recurse to its operands. 1501 if (I->hasPoisonGeneratingFlagsOrMetadata()) 1502 DropPoisonGeneratingInsts.push_back(I); 1503 1504 for (Value *Op : I->operands()) 1505 Worklist.push_back(Op); 1506 } 1507 return true; 1508 } 1509 1510 Value *SCEVExpander::FindValueInExprValueMap( 1511 const SCEV *S, const Instruction *InsertPt, 1512 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1513 // If the expansion is not in CanonicalMode, and the SCEV contains any 1514 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1515 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1516 return nullptr; 1517 1518 // If S is a constant, it may be worse to reuse an existing Value. 1519 if (isa<SCEVConstant>(S)) 1520 return nullptr; 1521 1522 for (Value *V : SE.getSCEVValues(S)) { 1523 Instruction *EntInst = dyn_cast<Instruction>(V); 1524 if (!EntInst) 1525 continue; 1526 1527 // Choose a Value from the set which dominates the InsertPt. 1528 // InsertPt should be inside the Value's parent loop so as not to break 1529 // the LCSSA form. 1530 assert(EntInst->getFunction() == InsertPt->getFunction()); 1531 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1532 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1533 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1534 continue; 1535 1536 // Make sure reusing the instruction is poison-safe. 1537 if (canReuseInstruction(SE, S, EntInst, DropPoisonGeneratingInsts)) 1538 return V; 1539 DropPoisonGeneratingInsts.clear(); 1540 } 1541 return nullptr; 1542 } 1543 1544 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1545 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1546 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1547 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1548 // the expansion will try to reuse Value from ExprValueMap, and only when it 1549 // fails, expand the SCEV literally. 1550 Value *SCEVExpander::expand(const SCEV *S) { 1551 // Compute an insertion point for this SCEV object. Hoist the instructions 1552 // as far out in the loop nest as possible. 1553 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1554 1555 // We can move insertion point only if there is no div or rem operations 1556 // otherwise we are risky to move it over the check for zero denominator. 1557 auto SafeToHoist = [](const SCEV *S) { 1558 return !SCEVExprContains(S, [](const SCEV *S) { 1559 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1560 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1561 // Division by non-zero constants can be hoisted. 1562 return SC->getValue()->isZero(); 1563 // All other divisions should not be moved as they may be 1564 // divisions by zero and should be kept within the 1565 // conditions of the surrounding loops that guard their 1566 // execution (see PR35406). 1567 return true; 1568 } 1569 return false; 1570 }); 1571 }; 1572 if (SafeToHoist(S)) { 1573 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1574 L = L->getParentLoop()) { 1575 if (SE.isLoopInvariant(S, L)) { 1576 if (!L) break; 1577 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1578 InsertPt = Preheader->getTerminator()->getIterator(); 1579 } else { 1580 // LSR sets the insertion point for AddRec start/step values to the 1581 // block start to simplify value reuse, even though it's an invalid 1582 // position. SCEVExpander must correct for this in all cases. 1583 InsertPt = L->getHeader()->getFirstInsertionPt(); 1584 } 1585 } else { 1586 // If the SCEV is computable at this level, insert it into the header 1587 // after the PHIs (and after any other instructions that we've inserted 1588 // there) so that it is guaranteed to dominate any user inside the loop. 1589 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1590 InsertPt = L->getHeader()->getFirstInsertionPt(); 1591 1592 while (InsertPt != Builder.GetInsertPoint() && 1593 (isInsertedInstruction(&*InsertPt) || 1594 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1595 InsertPt = std::next(InsertPt); 1596 } 1597 break; 1598 } 1599 } 1600 } 1601 1602 // Check to see if we already expanded this here. 1603 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1604 if (I != InsertedExpressions.end()) 1605 return I->second; 1606 1607 SCEVInsertPointGuard Guard(Builder, this); 1608 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1609 1610 // Expand the expression into instructions. 1611 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1612 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1613 if (!V) { 1614 V = visit(S); 1615 V = fixupLCSSAFormFor(V); 1616 } else { 1617 for (Instruction *I : DropPoisonGeneratingInsts) 1618 I->dropPoisonGeneratingFlagsAndMetadata(); 1619 } 1620 // Remember the expanded value for this SCEV at this location. 1621 // 1622 // This is independent of PostIncLoops. The mapped value simply materializes 1623 // the expression at this insertion point. If the mapped value happened to be 1624 // a postinc expansion, it could be reused by a non-postinc user, but only if 1625 // its insertion point was already at the head of the loop. 1626 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1627 return V; 1628 } 1629 1630 void SCEVExpander::rememberInstruction(Value *I) { 1631 auto DoInsert = [this](Value *V) { 1632 if (!PostIncLoops.empty()) 1633 InsertedPostIncValues.insert(V); 1634 else 1635 InsertedValues.insert(V); 1636 }; 1637 DoInsert(I); 1638 } 1639 1640 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1641 /// replace them with their most canonical representative. Return the number of 1642 /// phis eliminated. 1643 /// 1644 /// This does not depend on any SCEVExpander state but should be used in 1645 /// the same context that SCEVExpander is used. 1646 unsigned 1647 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1648 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1649 const TargetTransformInfo *TTI) { 1650 // Find integer phis in order of increasing width. 1651 SmallVector<PHINode*, 8> Phis; 1652 for (PHINode &PN : L->getHeader()->phis()) 1653 Phis.push_back(&PN); 1654 1655 if (TTI) 1656 // Use stable_sort to preserve order of equivalent PHIs, so the order 1657 // of the sorted Phis is the same from run to run on the same loop. 1658 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1659 // Put pointers at the back and make sure pointer < pointer = false. 1660 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1661 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1662 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1663 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1664 }); 1665 1666 unsigned NumElim = 0; 1667 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1668 // Process phis from wide to narrow. Map wide phis to their truncation 1669 // so narrow phis can reuse them. 1670 for (PHINode *Phi : Phis) { 1671 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1672 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1673 return V; 1674 if (!SE.isSCEVable(PN->getType())) 1675 return nullptr; 1676 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1677 if (!Const) 1678 return nullptr; 1679 return Const->getValue(); 1680 }; 1681 1682 // Fold constant phis. They may be congruent to other constant phis and 1683 // would confuse the logic below that expects proper IVs. 1684 if (Value *V = SimplifyPHINode(Phi)) { 1685 if (V->getType() != Phi->getType()) 1686 continue; 1687 SE.forgetValue(Phi); 1688 Phi->replaceAllUsesWith(V); 1689 DeadInsts.emplace_back(Phi); 1690 ++NumElim; 1691 SCEV_DEBUG_WITH_TYPE(DebugType, 1692 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1693 << '\n'); 1694 continue; 1695 } 1696 1697 if (!SE.isSCEVable(Phi->getType())) 1698 continue; 1699 1700 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1701 if (!OrigPhiRef) { 1702 OrigPhiRef = Phi; 1703 if (Phi->getType()->isIntegerTy() && TTI && 1704 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1705 // Make sure we only rewrite using simple induction variables; 1706 // otherwise, we can make the trip count of a loop unanalyzable 1707 // to SCEV. 1708 const SCEV *PhiExpr = SE.getSCEV(Phi); 1709 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1710 // This phi can be freely truncated to the narrowest phi type. Map the 1711 // truncated expression to it so it will be reused for narrow types. 1712 const SCEV *TruncExpr = 1713 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1714 ExprToIVMap[TruncExpr] = Phi; 1715 } 1716 } 1717 continue; 1718 } 1719 1720 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1721 // sense. 1722 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1723 continue; 1724 1725 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1726 Instruction *OrigInc = dyn_cast<Instruction>( 1727 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1728 Instruction *IsomorphicInc = 1729 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1730 1731 if (OrigInc && IsomorphicInc) { 1732 // If this phi has the same width but is more canonical, replace the 1733 // original with it. As part of the "more canonical" determination, 1734 // respect a prior decision to use an IV chain. 1735 if (OrigPhiRef->getType() == Phi->getType() && 1736 !(ChainedPhis.count(Phi) || 1737 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1738 (ChainedPhis.count(Phi) || 1739 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1740 std::swap(OrigPhiRef, Phi); 1741 std::swap(OrigInc, IsomorphicInc); 1742 } 1743 // Replacing the congruent phi is sufficient because acyclic 1744 // redundancy elimination, CSE/GVN, should handle the 1745 // rest. However, once SCEV proves that a phi is congruent, 1746 // it's often the head of an IV user cycle that is isomorphic 1747 // with the original phi. It's worth eagerly cleaning up the 1748 // common case of a single IV increment so that DeleteDeadPHIs 1749 // can remove cycles that had postinc uses. 1750 // Because we may potentially introduce a new use of OrigIV that didn't 1751 // exist before at this point, its poison flags need readjustment. 1752 const SCEV *TruncExpr = 1753 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1754 if (OrigInc != IsomorphicInc && 1755 TruncExpr == SE.getSCEV(IsomorphicInc) && 1756 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 1757 hoistIVInc(OrigInc, IsomorphicInc, /*RecomputePoisonFlags*/ true)) { 1758 SCEV_DEBUG_WITH_TYPE( 1759 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1760 << *IsomorphicInc << '\n'); 1761 Value *NewInc = OrigInc; 1762 if (OrigInc->getType() != IsomorphicInc->getType()) { 1763 BasicBlock::iterator IP; 1764 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1765 IP = PN->getParent()->getFirstInsertionPt(); 1766 else 1767 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1768 1769 IRBuilder<> Builder(IP->getParent(), IP); 1770 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1771 NewInc = Builder.CreateTruncOrBitCast( 1772 OrigInc, IsomorphicInc->getType(), IVName); 1773 } 1774 IsomorphicInc->replaceAllUsesWith(NewInc); 1775 DeadInsts.emplace_back(IsomorphicInc); 1776 } 1777 } 1778 } 1779 SCEV_DEBUG_WITH_TYPE(DebugType, 1780 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1781 << '\n'); 1782 SCEV_DEBUG_WITH_TYPE( 1783 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1784 ++NumElim; 1785 Value *NewIV = OrigPhiRef; 1786 if (OrigPhiRef->getType() != Phi->getType()) { 1787 IRBuilder<> Builder(L->getHeader(), 1788 L->getHeader()->getFirstInsertionPt()); 1789 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1790 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1791 } 1792 Phi->replaceAllUsesWith(NewIV); 1793 DeadInsts.emplace_back(Phi); 1794 } 1795 return NumElim; 1796 } 1797 1798 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1799 const Instruction *At, 1800 Loop *L) { 1801 using namespace llvm::PatternMatch; 1802 1803 SmallVector<BasicBlock *, 4> ExitingBlocks; 1804 L->getExitingBlocks(ExitingBlocks); 1805 1806 // Look for suitable value in simple conditions at the loop exits. 1807 for (BasicBlock *BB : ExitingBlocks) { 1808 ICmpInst::Predicate Pred; 1809 Instruction *LHS, *RHS; 1810 1811 if (!match(BB->getTerminator(), 1812 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1813 m_BasicBlock(), m_BasicBlock()))) 1814 continue; 1815 1816 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1817 return true; 1818 1819 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1820 return true; 1821 } 1822 1823 // Use expand's logic which is used for reusing a previous Value in 1824 // ExprValueMap. Note that we don't currently model the cost of 1825 // needing to drop poison generating flags on the instruction if we 1826 // want to reuse it. We effectively assume that has zero cost. 1827 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1828 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1829 } 1830 1831 template<typename T> static InstructionCost costAndCollectOperands( 1832 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1833 TargetTransformInfo::TargetCostKind CostKind, 1834 SmallVectorImpl<SCEVOperand> &Worklist) { 1835 1836 const T *S = cast<T>(WorkItem.S); 1837 InstructionCost Cost = 0; 1838 // Object to help map SCEV operands to expanded IR instructions. 1839 struct OperationIndices { 1840 OperationIndices(unsigned Opc, size_t min, size_t max) : 1841 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1842 unsigned Opcode; 1843 size_t MinIdx; 1844 size_t MaxIdx; 1845 }; 1846 1847 // Collect the operations of all the instructions that will be needed to 1848 // expand the SCEVExpr. This is so that when we come to cost the operands, 1849 // we know what the generated user(s) will be. 1850 SmallVector<OperationIndices, 2> Operations; 1851 1852 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1853 Operations.emplace_back(Opcode, 0, 0); 1854 return TTI.getCastInstrCost(Opcode, S->getType(), 1855 S->getOperand(0)->getType(), 1856 TTI::CastContextHint::None, CostKind); 1857 }; 1858 1859 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1860 unsigned MinIdx = 0, 1861 unsigned MaxIdx = 1) -> InstructionCost { 1862 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1863 return NumRequired * 1864 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1865 }; 1866 1867 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1868 unsigned MaxIdx) -> InstructionCost { 1869 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1870 Type *OpType = S->getType(); 1871 return NumRequired * TTI.getCmpSelInstrCost( 1872 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1873 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1874 }; 1875 1876 switch (S->getSCEVType()) { 1877 case scCouldNotCompute: 1878 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1879 case scUnknown: 1880 case scConstant: 1881 case scVScale: 1882 return 0; 1883 case scPtrToInt: 1884 Cost = CastCost(Instruction::PtrToInt); 1885 break; 1886 case scTruncate: 1887 Cost = CastCost(Instruction::Trunc); 1888 break; 1889 case scZeroExtend: 1890 Cost = CastCost(Instruction::ZExt); 1891 break; 1892 case scSignExtend: 1893 Cost = CastCost(Instruction::SExt); 1894 break; 1895 case scUDivExpr: { 1896 unsigned Opcode = Instruction::UDiv; 1897 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1898 if (SC->getAPInt().isPowerOf2()) 1899 Opcode = Instruction::LShr; 1900 Cost = ArithCost(Opcode, 1); 1901 break; 1902 } 1903 case scAddExpr: 1904 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1905 break; 1906 case scMulExpr: 1907 // TODO: this is a very pessimistic cost modelling for Mul, 1908 // because of Bin Pow algorithm actually used by the expander, 1909 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1910 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1911 break; 1912 case scSMaxExpr: 1913 case scUMaxExpr: 1914 case scSMinExpr: 1915 case scUMinExpr: 1916 case scSequentialUMinExpr: { 1917 // FIXME: should this ask the cost for Intrinsic's? 1918 // The reduction tree. 1919 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1920 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1921 switch (S->getSCEVType()) { 1922 case scSequentialUMinExpr: { 1923 // The safety net against poison. 1924 // FIXME: this is broken. 1925 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1926 Cost += ArithCost(Instruction::Or, 1927 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1928 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1929 break; 1930 } 1931 default: 1932 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1933 "Unhandled SCEV expression type?"); 1934 break; 1935 } 1936 break; 1937 } 1938 case scAddRecExpr: { 1939 // In this polynominal, we may have some zero operands, and we shouldn't 1940 // really charge for those. So how many non-zero coefficients are there? 1941 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1942 return !Op->isZero(); 1943 }); 1944 1945 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1946 assert(!(*std::prev(S->operands().end()))->isZero() && 1947 "Last operand should not be zero"); 1948 1949 // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1950 int NumNonZeroDegreeNonOneTerms = 1951 llvm::count_if(S->operands(), [](const SCEV *Op) { 1952 auto *SConst = dyn_cast<SCEVConstant>(Op); 1953 return !SConst || SConst->getAPInt().ugt(1); 1954 }); 1955 1956 // Much like with normal add expr, the polynominal will require 1957 // one less addition than the number of it's terms. 1958 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1959 /*MinIdx*/ 1, /*MaxIdx*/ 1); 1960 // Here, *each* one of those will require a multiplication. 1961 InstructionCost MulCost = 1962 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1963 Cost = AddCost + MulCost; 1964 1965 // What is the degree of this polynominal? 1966 int PolyDegree = S->getNumOperands() - 1; 1967 assert(PolyDegree >= 1 && "Should be at least affine."); 1968 1969 // The final term will be: 1970 // Op_{PolyDegree} * x ^ {PolyDegree} 1971 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1972 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1973 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1974 // FIXME: this is conservatively correct, but might be overly pessimistic. 1975 Cost += MulCost * (PolyDegree - 1); 1976 break; 1977 } 1978 } 1979 1980 for (auto &CostOp : Operations) { 1981 for (auto SCEVOp : enumerate(S->operands())) { 1982 // Clamp the index to account for multiple IR operations being chained. 1983 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1984 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1985 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1986 } 1987 } 1988 return Cost; 1989 } 1990 1991 bool SCEVExpander::isHighCostExpansionHelper( 1992 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1993 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1994 SmallPtrSetImpl<const SCEV *> &Processed, 1995 SmallVectorImpl<SCEVOperand> &Worklist) { 1996 if (Cost > Budget) 1997 return true; // Already run out of budget, give up. 1998 1999 const SCEV *S = WorkItem.S; 2000 // Was the cost of expansion of this expression already accounted for? 2001 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2002 return false; // We have already accounted for this expression. 2003 2004 // If we can find an existing value for this scev available at the point "At" 2005 // then consider the expression cheap. 2006 if (hasRelatedExistingExpansion(S, &At, L)) 2007 return false; // Consider the expression to be free. 2008 2009 TargetTransformInfo::TargetCostKind CostKind = 2010 L->getHeader()->getParent()->hasMinSize() 2011 ? TargetTransformInfo::TCK_CodeSize 2012 : TargetTransformInfo::TCK_RecipThroughput; 2013 2014 switch (S->getSCEVType()) { 2015 case scCouldNotCompute: 2016 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2017 case scUnknown: 2018 case scVScale: 2019 // Assume to be zero-cost. 2020 return false; 2021 case scConstant: { 2022 // Only evalulate the costs of constants when optimizing for size. 2023 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2024 return false; 2025 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2026 Type *Ty = S->getType(); 2027 Cost += TTI.getIntImmCostInst( 2028 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2029 return Cost > Budget; 2030 } 2031 case scTruncate: 2032 case scPtrToInt: 2033 case scZeroExtend: 2034 case scSignExtend: { 2035 Cost += 2036 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2037 return false; // Will answer upon next entry into this function. 2038 } 2039 case scUDivExpr: { 2040 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2041 // HowManyLessThans produced to compute a precise expression, rather than a 2042 // UDiv from the user's code. If we can't find a UDiv in the code with some 2043 // simple searching, we need to account for it's cost. 2044 2045 // At the beginning of this function we already tried to find existing 2046 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2047 // pattern involving division. This is just a simple search heuristic. 2048 if (hasRelatedExistingExpansion( 2049 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2050 return false; // Consider it to be free. 2051 2052 Cost += 2053 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2054 return false; // Will answer upon next entry into this function. 2055 } 2056 case scAddExpr: 2057 case scMulExpr: 2058 case scUMaxExpr: 2059 case scSMaxExpr: 2060 case scUMinExpr: 2061 case scSMinExpr: 2062 case scSequentialUMinExpr: { 2063 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2064 "Nary expr should have more than 1 operand."); 2065 // The simple nary expr will require one less op (or pair of ops) 2066 // than the number of it's terms. 2067 Cost += 2068 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2069 return Cost > Budget; 2070 } 2071 case scAddRecExpr: { 2072 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2073 "Polynomial should be at least linear"); 2074 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2075 WorkItem, TTI, CostKind, Worklist); 2076 return Cost > Budget; 2077 } 2078 } 2079 llvm_unreachable("Unknown SCEV kind!"); 2080 } 2081 2082 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2083 Instruction *IP) { 2084 assert(IP); 2085 switch (Pred->getKind()) { 2086 case SCEVPredicate::P_Union: 2087 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2088 case SCEVPredicate::P_Compare: 2089 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2090 case SCEVPredicate::P_Wrap: { 2091 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2092 return expandWrapPredicate(AddRecPred, IP); 2093 } 2094 } 2095 llvm_unreachable("Unknown SCEV predicate type"); 2096 } 2097 2098 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2099 Instruction *IP) { 2100 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP); 2101 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP); 2102 2103 Builder.SetInsertPoint(IP); 2104 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2105 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2106 return I; 2107 } 2108 2109 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2110 Instruction *Loc, bool Signed) { 2111 assert(AR->isAffine() && "Cannot generate RT check for " 2112 "non-affine expression"); 2113 2114 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2115 SmallVector<const SCEVPredicate *, 4> Pred; 2116 const SCEV *ExitCount = 2117 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2118 2119 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2120 2121 const SCEV *Step = AR->getStepRecurrence(SE); 2122 const SCEV *Start = AR->getStart(); 2123 2124 Type *ARTy = AR->getType(); 2125 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2126 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2127 2128 // The expression {Start,+,Step} has nusw/nssw if 2129 // Step < 0, Start - |Step| * Backedge <= Start 2130 // Step >= 0, Start + |Step| * Backedge > Start 2131 // and |Step| * Backedge doesn't unsigned overflow. 2132 2133 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2134 Builder.SetInsertPoint(Loc); 2135 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc); 2136 2137 IntegerType *Ty = 2138 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2139 2140 Value *StepValue = expandCodeFor(Step, Ty, Loc); 2141 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc); 2142 Value *StartValue = expandCodeFor(Start, ARTy, Loc); 2143 2144 ConstantInt *Zero = 2145 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2146 2147 Builder.SetInsertPoint(Loc); 2148 // Compute |Step| 2149 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2150 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2151 2152 // Compute |Step| * Backedge 2153 // Compute: 2154 // 1. Start + |Step| * Backedge < Start 2155 // 2. Start - |Step| * Backedge > Start 2156 // 2157 // And select either 1. or 2. depending on whether step is positive or 2158 // negative. If Step is known to be positive or negative, only create 2159 // either 1. or 2. 2160 auto ComputeEndCheck = [&]() -> Value * { 2161 // Checking <u 0 is always false. 2162 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2163 return ConstantInt::getFalse(Loc->getContext()); 2164 2165 // Get the backedge taken count and truncate or extended to the AR type. 2166 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2167 2168 Value *MulV, *OfMul; 2169 if (Step->isOne()) { 2170 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2171 // needed, there is never an overflow, so to avoid artificially inflating 2172 // the cost of the check, directly emit the optimized IR. 2173 MulV = TruncTripCount; 2174 OfMul = ConstantInt::getFalse(MulV->getContext()); 2175 } else { 2176 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2177 Intrinsic::umul_with_overflow, Ty); 2178 CallInst *Mul = 2179 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2180 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2181 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2182 } 2183 2184 Value *Add = nullptr, *Sub = nullptr; 2185 bool NeedPosCheck = !SE.isKnownNegative(Step); 2186 bool NeedNegCheck = !SE.isKnownPositive(Step); 2187 2188 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2189 StartValue = InsertNoopCastOfTo(StartValue, ARPtrTy); 2190 Value *NegMulV = Builder.CreateNeg(MulV); 2191 if (NeedPosCheck) 2192 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2193 if (NeedNegCheck) 2194 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2195 } else { 2196 if (NeedPosCheck) 2197 Add = Builder.CreateAdd(StartValue, MulV); 2198 if (NeedNegCheck) 2199 Sub = Builder.CreateSub(StartValue, MulV); 2200 } 2201 2202 Value *EndCompareLT = nullptr; 2203 Value *EndCompareGT = nullptr; 2204 Value *EndCheck = nullptr; 2205 if (NeedPosCheck) 2206 EndCheck = EndCompareLT = Builder.CreateICmp( 2207 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2208 if (NeedNegCheck) 2209 EndCheck = EndCompareGT = Builder.CreateICmp( 2210 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2211 if (NeedPosCheck && NeedNegCheck) { 2212 // Select the answer based on the sign of Step. 2213 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2214 } 2215 return Builder.CreateOr(EndCheck, OfMul); 2216 }; 2217 Value *EndCheck = ComputeEndCheck(); 2218 2219 // If the backedge taken count type is larger than the AR type, 2220 // check that we don't drop any bits by truncating it. If we are 2221 // dropping bits, then we have overflow (unless the step is zero). 2222 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2223 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2224 auto *BackedgeCheck = 2225 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2226 ConstantInt::get(Loc->getContext(), MaxVal)); 2227 BackedgeCheck = Builder.CreateAnd( 2228 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2229 2230 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2231 } 2232 2233 return EndCheck; 2234 } 2235 2236 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2237 Instruction *IP) { 2238 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2239 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2240 2241 // Add a check for NUSW 2242 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2243 NUSWCheck = generateOverflowCheck(A, IP, false); 2244 2245 // Add a check for NSSW 2246 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2247 NSSWCheck = generateOverflowCheck(A, IP, true); 2248 2249 if (NUSWCheck && NSSWCheck) 2250 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2251 2252 if (NUSWCheck) 2253 return NUSWCheck; 2254 2255 if (NSSWCheck) 2256 return NSSWCheck; 2257 2258 return ConstantInt::getFalse(IP->getContext()); 2259 } 2260 2261 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2262 Instruction *IP) { 2263 // Loop over all checks in this set. 2264 SmallVector<Value *> Checks; 2265 for (const auto *Pred : Union->getPredicates()) { 2266 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2267 Builder.SetInsertPoint(IP); 2268 } 2269 2270 if (Checks.empty()) 2271 return ConstantInt::getFalse(IP->getContext()); 2272 return Builder.CreateOr(Checks); 2273 } 2274 2275 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2276 auto *DefI = dyn_cast<Instruction>(V); 2277 if (!PreserveLCSSA || !DefI) 2278 return V; 2279 2280 Instruction *InsertPt = &*Builder.GetInsertPoint(); 2281 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2282 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2283 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2284 return V; 2285 2286 // Create a temporary instruction to at the current insertion point, so we 2287 // can hand it off to the helper to create LCSSA PHIs if required for the 2288 // new use. 2289 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2290 // would accept a insertion point and return an LCSSA phi for that 2291 // insertion point, so there is no need to insert & remove the temporary 2292 // instruction. 2293 Type *ToTy; 2294 if (DefI->getType()->isIntegerTy()) 2295 ToTy = PointerType::get(DefI->getContext(), 0); 2296 else 2297 ToTy = Type::getInt32Ty(DefI->getContext()); 2298 Instruction *User = 2299 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2300 auto RemoveUserOnExit = 2301 make_scope_exit([User]() { User->eraseFromParent(); }); 2302 2303 SmallVector<Instruction *, 1> ToUpdate; 2304 ToUpdate.push_back(DefI); 2305 SmallVector<PHINode *, 16> PHIsToRemove; 2306 SmallVector<PHINode *, 16> InsertedPHIs; 2307 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2308 &InsertedPHIs); 2309 for (PHINode *PN : InsertedPHIs) 2310 rememberInstruction(PN); 2311 for (PHINode *PN : PHIsToRemove) { 2312 if (!PN->use_empty()) 2313 continue; 2314 InsertedValues.erase(PN); 2315 InsertedPostIncValues.erase(PN); 2316 PN->eraseFromParent(); 2317 } 2318 2319 return User->getOperand(0); 2320 } 2321 2322 namespace { 2323 // Search for a SCEV subexpression that is not safe to expand. Any expression 2324 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2325 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2326 // instruction, but the important thing is that we prove the denominator is 2327 // nonzero before expansion. 2328 // 2329 // IVUsers already checks that IV-derived expressions are safe. So this check is 2330 // only needed when the expression includes some subexpression that is not IV 2331 // derived. 2332 // 2333 // Currently, we only allow division by a value provably non-zero here. 2334 // 2335 // We cannot generally expand recurrences unless the step dominates the loop 2336 // header. The expander handles the special case of affine recurrences by 2337 // scaling the recurrence outside the loop, but this technique isn't generally 2338 // applicable. Expanding a nested recurrence outside a loop requires computing 2339 // binomial coefficients. This could be done, but the recurrence has to be in a 2340 // perfectly reduced form, which can't be guaranteed. 2341 struct SCEVFindUnsafe { 2342 ScalarEvolution &SE; 2343 bool CanonicalMode; 2344 bool IsUnsafe = false; 2345 2346 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2347 : SE(SE), CanonicalMode(CanonicalMode) {} 2348 2349 bool follow(const SCEV *S) { 2350 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2351 if (!SE.isKnownNonZero(D->getRHS())) { 2352 IsUnsafe = true; 2353 return false; 2354 } 2355 } 2356 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2357 const SCEV *Step = AR->getStepRecurrence(SE); 2358 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2359 IsUnsafe = true; 2360 return false; 2361 } 2362 2363 // For non-affine addrecs or in non-canonical mode we need a preheader 2364 // to insert into. 2365 if (!AR->getLoop()->getLoopPreheader() && 2366 (!CanonicalMode || !AR->isAffine())) { 2367 IsUnsafe = true; 2368 return false; 2369 } 2370 } 2371 return true; 2372 } 2373 bool isDone() const { return IsUnsafe; } 2374 }; 2375 } // namespace 2376 2377 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2378 SCEVFindUnsafe Search(SE, CanonicalMode); 2379 visitAll(S, Search); 2380 return !Search.IsUnsafe; 2381 } 2382 2383 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2384 const Instruction *InsertionPoint) const { 2385 if (!isSafeToExpand(S)) 2386 return false; 2387 // We have to prove that the expanded site of S dominates InsertionPoint. 2388 // This is easy when not in the same block, but hard when S is an instruction 2389 // to be expanded somewhere inside the same block as our insertion point. 2390 // What we really need here is something analogous to an OrderedBasicBlock, 2391 // but for the moment, we paper over the problem by handling two common and 2392 // cheap to check cases. 2393 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2394 return true; 2395 if (SE.dominates(S, InsertionPoint->getParent())) { 2396 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2397 return true; 2398 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2399 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2400 return true; 2401 } 2402 return false; 2403 } 2404 2405 void SCEVExpanderCleaner::cleanup() { 2406 // Result is used, nothing to remove. 2407 if (ResultUsed) 2408 return; 2409 2410 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2411 #ifndef NDEBUG 2412 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2413 InsertedInstructions.end()); 2414 (void)InsertedSet; 2415 #endif 2416 // Remove sets with value handles. 2417 Expander.clear(); 2418 2419 // Remove all inserted instructions. 2420 for (Instruction *I : reverse(InsertedInstructions)) { 2421 #ifndef NDEBUG 2422 assert(all_of(I->users(), 2423 [&InsertedSet](Value *U) { 2424 return InsertedSet.contains(cast<Instruction>(U)); 2425 }) && 2426 "removed instruction should only be used by instructions inserted " 2427 "during expansion"); 2428 #endif 2429 assert(!I->getType()->isVoidTy() && 2430 "inserted instruction should have non-void types"); 2431 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2432 I->eraseFromParent(); 2433 } 2434 } 2435