xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 2d0fc3e46ff386a05fa388874b8456bf61c4ce7a)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/LoopUtils.h"
32 
33 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
35 #else
36 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
37 #endif
38 
39 using namespace llvm;
40 
41 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
42     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
43     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
44              "controls the budget that is considered cheap (default = 4)"));
45 
46 using namespace PatternMatch;
47 
48 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
49 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
50 /// creating a new one.
51 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
52                                        Instruction::CastOps Op,
53                                        BasicBlock::iterator IP) {
54   // This function must be called with the builder having a valid insertion
55   // point. It doesn't need to be the actual IP where the uses of the returned
56   // cast will be added, but it must dominate such IP.
57   // We use this precondition to produce a cast that will dominate all its
58   // uses. In particular, this is crucial for the case where the builder's
59   // insertion point *is* the point where we were asked to put the cast.
60   // Since we don't know the builder's insertion point is actually
61   // where the uses will be added (only that it dominates it), we are
62   // not allowed to move it.
63   BasicBlock::iterator BIP = Builder.GetInsertPoint();
64 
65   Value *Ret = nullptr;
66 
67   // Check to see if there is already a cast!
68   for (User *U : V->users()) {
69     if (U->getType() != Ty)
70       continue;
71     CastInst *CI = dyn_cast<CastInst>(U);
72     if (!CI || CI->getOpcode() != Op)
73       continue;
74 
75     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
76     // the cast must also properly dominate the Builder's insertion point.
77     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
78         (&*IP == CI || CI->comesBefore(&*IP))) {
79       Ret = CI;
80       break;
81     }
82   }
83 
84   // Create a new cast.
85   if (!Ret) {
86     SCEVInsertPointGuard Guard(Builder, this);
87     Builder.SetInsertPoint(&*IP);
88     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
89   }
90 
91   // We assert at the end of the function since IP might point to an
92   // instruction with different dominance properties than a cast
93   // (an invoke for example) and not dominate BIP (but the cast does).
94   assert(!isa<Instruction>(Ret) ||
95          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
96 
97   return Ret;
98 }
99 
100 BasicBlock::iterator
101 SCEVExpander::findInsertPointAfter(Instruction *I,
102                                    Instruction *MustDominate) const {
103   BasicBlock::iterator IP = ++I->getIterator();
104   if (auto *II = dyn_cast<InvokeInst>(I))
105     IP = II->getNormalDest()->begin();
106 
107   while (isa<PHINode>(IP))
108     ++IP;
109 
110   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
111     ++IP;
112   } else if (isa<CatchSwitchInst>(IP)) {
113     IP = MustDominate->getParent()->getFirstInsertionPt();
114   } else {
115     assert(!IP->isEHPad() && "unexpected eh pad!");
116   }
117 
118   // Adjust insert point to be after instructions inserted by the expander, so
119   // we can re-use already inserted instructions. Avoid skipping past the
120   // original \p MustDominate, in case it is an inserted instruction.
121   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
122     ++IP;
123 
124   return IP;
125 }
126 
127 BasicBlock::iterator
128 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
129   // Cast the argument at the beginning of the entry block, after
130   // any bitcasts of other arguments.
131   if (Argument *A = dyn_cast<Argument>(V)) {
132     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
133     while ((isa<BitCastInst>(IP) &&
134             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
135             cast<BitCastInst>(IP)->getOperand(0) != A) ||
136            isa<DbgInfoIntrinsic>(IP))
137       ++IP;
138     return IP;
139   }
140 
141   // Cast the instruction immediately after the instruction.
142   if (Instruction *I = dyn_cast<Instruction>(V))
143     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
144 
145   // Otherwise, this must be some kind of a constant,
146   // so let's plop this cast into the function's entry block.
147   assert(isa<Constant>(V) &&
148          "Expected the cast argument to be a global/constant");
149   return Builder.GetInsertBlock()
150       ->getParent()
151       ->getEntryBlock()
152       .getFirstInsertionPt();
153 }
154 
155 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
156 /// which must be possible with a noop cast, doing what we can to share
157 /// the casts.
158 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
159   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
160   assert((Op == Instruction::BitCast ||
161           Op == Instruction::PtrToInt ||
162           Op == Instruction::IntToPtr) &&
163          "InsertNoopCastOfTo cannot perform non-noop casts!");
164   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
165          "InsertNoopCastOfTo cannot change sizes!");
166 
167   // inttoptr only works for integral pointers. For non-integral pointers, we
168   // can create a GEP on i8* null  with the integral value as index. Note that
169   // it is safe to use GEP of null instead of inttoptr here, because only
170   // expressions already based on a GEP of null should be converted to pointers
171   // during expansion.
172   if (Op == Instruction::IntToPtr) {
173     auto *PtrTy = cast<PointerType>(Ty);
174     if (DL.isNonIntegralPointerType(PtrTy)) {
175       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
176       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
177              "alloc size of i8 must by 1 byte for the GEP to be correct");
178       auto *GEP = Builder.CreateGEP(
179           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
180       return Builder.CreateBitCast(GEP, Ty);
181     }
182   }
183   // Short-circuit unnecessary bitcasts.
184   if (Op == Instruction::BitCast) {
185     if (V->getType() == Ty)
186       return V;
187     if (CastInst *CI = dyn_cast<CastInst>(V)) {
188       if (CI->getOperand(0)->getType() == Ty)
189         return CI->getOperand(0);
190     }
191   }
192   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
193   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
194       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
195     if (CastInst *CI = dyn_cast<CastInst>(V))
196       if ((CI->getOpcode() == Instruction::PtrToInt ||
197            CI->getOpcode() == Instruction::IntToPtr) &&
198           SE.getTypeSizeInBits(CI->getType()) ==
199           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
200         return CI->getOperand(0);
201     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
202       if ((CE->getOpcode() == Instruction::PtrToInt ||
203            CE->getOpcode() == Instruction::IntToPtr) &&
204           SE.getTypeSizeInBits(CE->getType()) ==
205           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
206         return CE->getOperand(0);
207   }
208 
209   // Fold a cast of a constant.
210   if (Constant *C = dyn_cast<Constant>(V))
211     return ConstantExpr::getCast(Op, C, Ty);
212 
213   // Try to reuse existing cast, or insert one.
214   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
215 }
216 
217 /// InsertBinop - Insert the specified binary operator, doing a small amount
218 /// of work to avoid inserting an obviously redundant operation, and hoisting
219 /// to an outer loop when the opportunity is there and it is safe.
220 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
221                                  Value *LHS, Value *RHS,
222                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
223   // Fold a binop with constant operands.
224   if (Constant *CLHS = dyn_cast<Constant>(LHS))
225     if (Constant *CRHS = dyn_cast<Constant>(RHS))
226       return ConstantExpr::get(Opcode, CLHS, CRHS);
227 
228   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
229   unsigned ScanLimit = 6;
230   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
231   // Scanning starts from the last instruction before the insertion point.
232   BasicBlock::iterator IP = Builder.GetInsertPoint();
233   if (IP != BlockBegin) {
234     --IP;
235     for (; ScanLimit; --IP, --ScanLimit) {
236       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
237       // generated code.
238       if (isa<DbgInfoIntrinsic>(IP))
239         ScanLimit++;
240 
241       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
242         // Ensure that no-wrap flags match.
243         if (isa<OverflowingBinaryOperator>(I)) {
244           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
245             return true;
246           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
247             return true;
248         }
249         // Conservatively, do not use any instruction which has any of exact
250         // flags installed.
251         if (isa<PossiblyExactOperator>(I) && I->isExact())
252           return true;
253         return false;
254       };
255       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
256           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
257         return &*IP;
258       if (IP == BlockBegin) break;
259     }
260   }
261 
262   // Save the original insertion point so we can restore it when we're done.
263   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
264   SCEVInsertPointGuard Guard(Builder, this);
265 
266   if (IsSafeToHoist) {
267     // Move the insertion point out of as many loops as we can.
268     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
269       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
270       BasicBlock *Preheader = L->getLoopPreheader();
271       if (!Preheader) break;
272 
273       // Ok, move up a level.
274       Builder.SetInsertPoint(Preheader->getTerminator());
275     }
276   }
277 
278   // If we haven't found this binop, insert it.
279   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
280   BO->setDebugLoc(Loc);
281   if (Flags & SCEV::FlagNUW)
282     BO->setHasNoUnsignedWrap();
283   if (Flags & SCEV::FlagNSW)
284     BO->setHasNoSignedWrap();
285 
286   return BO;
287 }
288 
289 /// FactorOutConstant - Test if S is divisible by Factor, using signed
290 /// division. If so, update S with Factor divided out and return true.
291 /// S need not be evenly divisible if a reasonable remainder can be
292 /// computed.
293 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
294                               const SCEV *Factor, ScalarEvolution &SE,
295                               const DataLayout &DL) {
296   // Everything is divisible by one.
297   if (Factor->isOne())
298     return true;
299 
300   // x/x == 1.
301   if (S == Factor) {
302     S = SE.getConstant(S->getType(), 1);
303     return true;
304   }
305 
306   // For a Constant, check for a multiple of the given factor.
307   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
308     // 0/x == 0.
309     if (C->isZero())
310       return true;
311     // Check for divisibility.
312     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
313       ConstantInt *CI =
314           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
315       // If the quotient is zero and the remainder is non-zero, reject
316       // the value at this scale. It will be considered for subsequent
317       // smaller scales.
318       if (!CI->isZero()) {
319         const SCEV *Div = SE.getConstant(CI);
320         S = Div;
321         Remainder = SE.getAddExpr(
322             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
323         return true;
324       }
325     }
326   }
327 
328   // In a Mul, check if there is a constant operand which is a multiple
329   // of the given factor.
330   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
331     // Size is known, check if there is a constant operand which is a multiple
332     // of the given factor. If so, we can factor it.
333     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
334       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
335         if (!C->getAPInt().srem(FC->getAPInt())) {
336           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
337           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
338           S = SE.getMulExpr(NewMulOps);
339           return true;
340         }
341   }
342 
343   // In an AddRec, check if both start and step are divisible.
344   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
345     const SCEV *Step = A->getStepRecurrence(SE);
346     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
347     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
348       return false;
349     if (!StepRem->isZero())
350       return false;
351     const SCEV *Start = A->getStart();
352     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
353       return false;
354     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
355                          A->getNoWrapFlags(SCEV::FlagNW));
356     return true;
357   }
358 
359   return false;
360 }
361 
362 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
363 /// is the number of SCEVAddRecExprs present, which are kept at the end of
364 /// the list.
365 ///
366 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
367                                 Type *Ty,
368                                 ScalarEvolution &SE) {
369   unsigned NumAddRecs = 0;
370   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
371     ++NumAddRecs;
372   // Group Ops into non-addrecs and addrecs.
373   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
374   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
375   // Let ScalarEvolution sort and simplify the non-addrecs list.
376   const SCEV *Sum = NoAddRecs.empty() ?
377                     SE.getConstant(Ty, 0) :
378                     SE.getAddExpr(NoAddRecs);
379   // If it returned an add, use the operands. Otherwise it simplified
380   // the sum into a single value, so just use that.
381   Ops.clear();
382   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
383     Ops.append(Add->op_begin(), Add->op_end());
384   else if (!Sum->isZero())
385     Ops.push_back(Sum);
386   // Then append the addrecs.
387   Ops.append(AddRecs.begin(), AddRecs.end());
388 }
389 
390 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
391 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
392 /// This helps expose more opportunities for folding parts of the expressions
393 /// into GEP indices.
394 ///
395 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
396                          Type *Ty,
397                          ScalarEvolution &SE) {
398   // Find the addrecs.
399   SmallVector<const SCEV *, 8> AddRecs;
400   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
401     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
402       const SCEV *Start = A->getStart();
403       if (Start->isZero()) break;
404       const SCEV *Zero = SE.getConstant(Ty, 0);
405       AddRecs.push_back(SE.getAddRecExpr(Zero,
406                                          A->getStepRecurrence(SE),
407                                          A->getLoop(),
408                                          A->getNoWrapFlags(SCEV::FlagNW)));
409       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
410         Ops[i] = Zero;
411         Ops.append(Add->op_begin(), Add->op_end());
412         e += Add->getNumOperands();
413       } else {
414         Ops[i] = Start;
415       }
416     }
417   if (!AddRecs.empty()) {
418     // Add the addrecs onto the end of the list.
419     Ops.append(AddRecs.begin(), AddRecs.end());
420     // Resort the operand list, moving any constants to the front.
421     SimplifyAddOperands(Ops, Ty, SE);
422   }
423 }
424 
425 /// expandAddToGEP - Expand an addition expression with a pointer type into
426 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
427 /// BasicAliasAnalysis and other passes analyze the result. See the rules
428 /// for getelementptr vs. inttoptr in
429 /// http://llvm.org/docs/LangRef.html#pointeraliasing
430 /// for details.
431 ///
432 /// Design note: The correctness of using getelementptr here depends on
433 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
434 /// they may introduce pointer arithmetic which may not be safely converted
435 /// into getelementptr.
436 ///
437 /// Design note: It might seem desirable for this function to be more
438 /// loop-aware. If some of the indices are loop-invariant while others
439 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
440 /// loop-invariant portions of the overall computation outside the loop.
441 /// However, there are a few reasons this is not done here. Hoisting simple
442 /// arithmetic is a low-level optimization that often isn't very
443 /// important until late in the optimization process. In fact, passes
444 /// like InstructionCombining will combine GEPs, even if it means
445 /// pushing loop-invariant computation down into loops, so even if the
446 /// GEPs were split here, the work would quickly be undone. The
447 /// LoopStrengthReduction pass, which is usually run quite late (and
448 /// after the last InstructionCombining pass), takes care of hoisting
449 /// loop-invariant portions of expressions, after considering what
450 /// can be folded using target addressing modes.
451 ///
452 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
453                                     const SCEV *const *op_end,
454                                     PointerType *PTy,
455                                     Type *Ty,
456                                     Value *V) {
457   SmallVector<Value *, 4> GepIndices;
458   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
459   bool AnyNonZeroIndices = false;
460 
461   // Split AddRecs up into parts as either of the parts may be usable
462   // without the other.
463   SplitAddRecs(Ops, Ty, SE);
464 
465   Type *IntIdxTy = DL.getIndexType(PTy);
466 
467   // For opaque pointers, always generate i8 GEP.
468   if (!PTy->isOpaque()) {
469     // Descend down the pointer's type and attempt to convert the other
470     // operands into GEP indices, at each level. The first index in a GEP
471     // indexes into the array implied by the pointer operand; the rest of
472     // the indices index into the element or field type selected by the
473     // preceding index.
474     Type *ElTy = PTy->getNonOpaquePointerElementType();
475     for (;;) {
476       // If the scale size is not 0, attempt to factor out a scale for
477       // array indexing.
478       SmallVector<const SCEV *, 8> ScaledOps;
479       if (ElTy->isSized()) {
480         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
481         if (!ElSize->isZero()) {
482           SmallVector<const SCEV *, 8> NewOps;
483           for (const SCEV *Op : Ops) {
484             const SCEV *Remainder = SE.getConstant(Ty, 0);
485             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
486               // Op now has ElSize factored out.
487               ScaledOps.push_back(Op);
488               if (!Remainder->isZero())
489                 NewOps.push_back(Remainder);
490               AnyNonZeroIndices = true;
491             } else {
492               // The operand was not divisible, so add it to the list of
493               // operands we'll scan next iteration.
494               NewOps.push_back(Op);
495             }
496           }
497           // If we made any changes, update Ops.
498           if (!ScaledOps.empty()) {
499             Ops = NewOps;
500             SimplifyAddOperands(Ops, Ty, SE);
501           }
502         }
503       }
504 
505       // Record the scaled array index for this level of the type. If
506       // we didn't find any operands that could be factored, tentatively
507       // assume that element zero was selected (since the zero offset
508       // would obviously be folded away).
509       Value *Scaled =
510           ScaledOps.empty()
511               ? Constant::getNullValue(Ty)
512               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
513       GepIndices.push_back(Scaled);
514 
515       // Collect struct field index operands.
516       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
517         bool FoundFieldNo = false;
518         // An empty struct has no fields.
519         if (STy->getNumElements() == 0) break;
520         // Field offsets are known. See if a constant offset falls within any of
521         // the struct fields.
522         if (Ops.empty())
523           break;
524         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
525           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
526             const StructLayout &SL = *DL.getStructLayout(STy);
527             uint64_t FullOffset = C->getValue()->getZExtValue();
528             if (FullOffset < SL.getSizeInBytes()) {
529               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
530               GepIndices.push_back(
531                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
532               ElTy = STy->getTypeAtIndex(ElIdx);
533               Ops[0] =
534                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
535               AnyNonZeroIndices = true;
536               FoundFieldNo = true;
537             }
538           }
539         // If no struct field offsets were found, tentatively assume that
540         // field zero was selected (since the zero offset would obviously
541         // be folded away).
542         if (!FoundFieldNo) {
543           ElTy = STy->getTypeAtIndex(0u);
544           GepIndices.push_back(
545             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
546         }
547       }
548 
549       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
550         ElTy = ATy->getElementType();
551       else
552         // FIXME: Handle VectorType.
553         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
554         // constant, therefore can not be factored out. The generated IR is less
555         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
556         break;
557     }
558   }
559 
560   // If none of the operands were convertible to proper GEP indices, cast
561   // the base to i8* and do an ugly getelementptr with that. It's still
562   // better than ptrtoint+arithmetic+inttoptr at least.
563   if (!AnyNonZeroIndices) {
564     // Cast the base to i8*.
565     if (!PTy->isOpaque())
566       V = InsertNoopCastOfTo(V,
567          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
568 
569     assert(!isa<Instruction>(V) ||
570            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
571 
572     // Expand the operands for a plain byte offset.
573     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
574 
575     // Fold a GEP with constant operands.
576     if (Constant *CLHS = dyn_cast<Constant>(V))
577       if (Constant *CRHS = dyn_cast<Constant>(Idx))
578         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
579                                               CLHS, CRHS);
580 
581     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
582     unsigned ScanLimit = 6;
583     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
584     // Scanning starts from the last instruction before the insertion point.
585     BasicBlock::iterator IP = Builder.GetInsertPoint();
586     if (IP != BlockBegin) {
587       --IP;
588       for (; ScanLimit; --IP, --ScanLimit) {
589         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
590         // generated code.
591         if (isa<DbgInfoIntrinsic>(IP))
592           ScanLimit++;
593         if (IP->getOpcode() == Instruction::GetElementPtr &&
594             IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
595             cast<GEPOperator>(&*IP)->getSourceElementType() ==
596                 Type::getInt8Ty(Ty->getContext()))
597           return &*IP;
598         if (IP == BlockBegin) break;
599       }
600     }
601 
602     // Save the original insertion point so we can restore it when we're done.
603     SCEVInsertPointGuard Guard(Builder, this);
604 
605     // Move the insertion point out of as many loops as we can.
606     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
607       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
608       BasicBlock *Preheader = L->getLoopPreheader();
609       if (!Preheader) break;
610 
611       // Ok, move up a level.
612       Builder.SetInsertPoint(Preheader->getTerminator());
613     }
614 
615     // Emit a GEP.
616     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
617   }
618 
619   {
620     SCEVInsertPointGuard Guard(Builder, this);
621 
622     // Move the insertion point out of as many loops as we can.
623     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
624       if (!L->isLoopInvariant(V)) break;
625 
626       bool AnyIndexNotLoopInvariant = any_of(
627           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
628 
629       if (AnyIndexNotLoopInvariant)
630         break;
631 
632       BasicBlock *Preheader = L->getLoopPreheader();
633       if (!Preheader) break;
634 
635       // Ok, move up a level.
636       Builder.SetInsertPoint(Preheader->getTerminator());
637     }
638 
639     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
640     // because ScalarEvolution may have changed the address arithmetic to
641     // compute a value which is beyond the end of the allocated object.
642     Value *Casted = V;
643     if (V->getType() != PTy)
644       Casted = InsertNoopCastOfTo(Casted, PTy);
645     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
646                                    Casted, GepIndices, "scevgep");
647     Ops.push_back(SE.getUnknown(GEP));
648   }
649 
650   return expand(SE.getAddExpr(Ops));
651 }
652 
653 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
654                                     Value *V) {
655   const SCEV *const Ops[1] = {Op};
656   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
657 }
658 
659 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
660 /// SCEV expansion. If they are nested, this is the most nested. If they are
661 /// neighboring, pick the later.
662 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
663                                         DominatorTree &DT) {
664   if (!A) return B;
665   if (!B) return A;
666   if (A->contains(B)) return B;
667   if (B->contains(A)) return A;
668   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
669   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
670   return A; // Arbitrarily break the tie.
671 }
672 
673 /// getRelevantLoop - Get the most relevant loop associated with the given
674 /// expression, according to PickMostRelevantLoop.
675 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
676   // Test whether we've already computed the most relevant loop for this SCEV.
677   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
678   if (!Pair.second)
679     return Pair.first->second;
680 
681   if (isa<SCEVConstant>(S))
682     // A constant has no relevant loops.
683     return nullptr;
684   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
685     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
686       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
687     // A non-instruction has no relevant loops.
688     return nullptr;
689   }
690   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
691     const Loop *L = nullptr;
692     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
693       L = AR->getLoop();
694     for (const SCEV *Op : N->operands())
695       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
696     return RelevantLoops[N] = L;
697   }
698   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
699     const Loop *Result = getRelevantLoop(C->getOperand());
700     return RelevantLoops[C] = Result;
701   }
702   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
703     const Loop *Result = PickMostRelevantLoop(
704         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
705     return RelevantLoops[D] = Result;
706   }
707   llvm_unreachable("Unexpected SCEV type!");
708 }
709 
710 namespace {
711 
712 /// LoopCompare - Compare loops by PickMostRelevantLoop.
713 class LoopCompare {
714   DominatorTree &DT;
715 public:
716   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
717 
718   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
719                   std::pair<const Loop *, const SCEV *> RHS) const {
720     // Keep pointer operands sorted at the end.
721     if (LHS.second->getType()->isPointerTy() !=
722         RHS.second->getType()->isPointerTy())
723       return LHS.second->getType()->isPointerTy();
724 
725     // Compare loops with PickMostRelevantLoop.
726     if (LHS.first != RHS.first)
727       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
728 
729     // If one operand is a non-constant negative and the other is not,
730     // put the non-constant negative on the right so that a sub can
731     // be used instead of a negate and add.
732     if (LHS.second->isNonConstantNegative()) {
733       if (!RHS.second->isNonConstantNegative())
734         return false;
735     } else if (RHS.second->isNonConstantNegative())
736       return true;
737 
738     // Otherwise they are equivalent according to this comparison.
739     return false;
740   }
741 };
742 
743 }
744 
745 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
746   Type *Ty = SE.getEffectiveSCEVType(S->getType());
747 
748   // Collect all the add operands in a loop, along with their associated loops.
749   // Iterate in reverse so that constants are emitted last, all else equal, and
750   // so that pointer operands are inserted first, which the code below relies on
751   // to form more involved GEPs.
752   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
753   for (const SCEV *Op : reverse(S->operands()))
754     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
755 
756   // Sort by loop. Use a stable sort so that constants follow non-constants and
757   // pointer operands precede non-pointer operands.
758   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
759 
760   // Emit instructions to add all the operands. Hoist as much as possible
761   // out of loops, and form meaningful getelementptrs where possible.
762   Value *Sum = nullptr;
763   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
764     const Loop *CurLoop = I->first;
765     const SCEV *Op = I->second;
766     if (!Sum) {
767       // This is the first operand. Just expand it.
768       Sum = expand(Op);
769       ++I;
770       continue;
771     }
772 
773     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
774     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
775       // The running sum expression is a pointer. Try to form a getelementptr
776       // at this level with that as the base.
777       SmallVector<const SCEV *, 4> NewOps;
778       for (; I != E && I->first == CurLoop; ++I) {
779         // If the operand is SCEVUnknown and not instructions, peek through
780         // it, to enable more of it to be folded into the GEP.
781         const SCEV *X = I->second;
782         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
783           if (!isa<Instruction>(U->getValue()))
784             X = SE.getSCEV(U->getValue());
785         NewOps.push_back(X);
786       }
787       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
788     } else if (Op->isNonConstantNegative()) {
789       // Instead of doing a negate and add, just do a subtract.
790       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
791       Sum = InsertNoopCastOfTo(Sum, Ty);
792       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
793                         /*IsSafeToHoist*/ true);
794       ++I;
795     } else {
796       // A simple add.
797       Value *W = expandCodeForImpl(Op, Ty, false);
798       Sum = InsertNoopCastOfTo(Sum, Ty);
799       // Canonicalize a constant to the RHS.
800       if (isa<Constant>(Sum)) std::swap(Sum, W);
801       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
802                         /*IsSafeToHoist*/ true);
803       ++I;
804     }
805   }
806 
807   return Sum;
808 }
809 
810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
811   Type *Ty = SE.getEffectiveSCEVType(S->getType());
812 
813   // Collect all the mul operands in a loop, along with their associated loops.
814   // Iterate in reverse so that constants are emitted last, all else equal.
815   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
816   for (const SCEV *Op : reverse(S->operands()))
817     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
818 
819   // Sort by loop. Use a stable sort so that constants follow non-constants.
820   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
821 
822   // Emit instructions to mul all the operands. Hoist as much as possible
823   // out of loops.
824   Value *Prod = nullptr;
825   auto I = OpsAndLoops.begin();
826 
827   // Expand the calculation of X pow N in the following manner:
828   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
829   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
830   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
831     auto E = I;
832     // Calculate how many times the same operand from the same loop is included
833     // into this power.
834     uint64_t Exponent = 0;
835     const uint64_t MaxExponent = UINT64_MAX >> 1;
836     // No one sane will ever try to calculate such huge exponents, but if we
837     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
838     // below when the power of 2 exceeds our Exponent, and we want it to be
839     // 1u << 31 at most to not deal with unsigned overflow.
840     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
841       ++Exponent;
842       ++E;
843     }
844     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
845 
846     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
847     // that are needed into the result.
848     Value *P = expandCodeForImpl(I->second, Ty, false);
849     Value *Result = nullptr;
850     if (Exponent & 1)
851       Result = P;
852     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
853       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
854                       /*IsSafeToHoist*/ true);
855       if (Exponent & BinExp)
856         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
857                                       SCEV::FlagAnyWrap,
858                                       /*IsSafeToHoist*/ true)
859                         : P;
860     }
861 
862     I = E;
863     assert(Result && "Nothing was expanded?");
864     return Result;
865   };
866 
867   while (I != OpsAndLoops.end()) {
868     if (!Prod) {
869       // This is the first operand. Just expand it.
870       Prod = ExpandOpBinPowN();
871     } else if (I->second->isAllOnesValue()) {
872       // Instead of doing a multiply by negative one, just do a negate.
873       Prod = InsertNoopCastOfTo(Prod, Ty);
874       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
875                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
876       ++I;
877     } else {
878       // A simple mul.
879       Value *W = ExpandOpBinPowN();
880       Prod = InsertNoopCastOfTo(Prod, Ty);
881       // Canonicalize a constant to the RHS.
882       if (isa<Constant>(Prod)) std::swap(Prod, W);
883       const APInt *RHS;
884       if (match(W, m_Power2(RHS))) {
885         // Canonicalize Prod*(1<<C) to Prod<<C.
886         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
887         auto NWFlags = S->getNoWrapFlags();
888         // clear nsw flag if shl will produce poison value.
889         if (RHS->logBase2() == RHS->getBitWidth() - 1)
890           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
891         Prod = InsertBinop(Instruction::Shl, Prod,
892                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
893                            /*IsSafeToHoist*/ true);
894       } else {
895         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
896                            /*IsSafeToHoist*/ true);
897       }
898     }
899   }
900 
901   return Prod;
902 }
903 
904 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
905   Type *Ty = SE.getEffectiveSCEVType(S->getType());
906 
907   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
908   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
909     const APInt &RHS = SC->getAPInt();
910     if (RHS.isPowerOf2())
911       return InsertBinop(Instruction::LShr, LHS,
912                          ConstantInt::get(Ty, RHS.logBase2()),
913                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
914   }
915 
916   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
917   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
918                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
919 }
920 
921 /// Determine if this is a well-behaved chain of instructions leading back to
922 /// the PHI. If so, it may be reused by expanded expressions.
923 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
924                                          const Loop *L) {
925   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
926       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
927     return false;
928   // If any of the operands don't dominate the insert position, bail.
929   // Addrec operands are always loop-invariant, so this can only happen
930   // if there are instructions which haven't been hoisted.
931   if (L == IVIncInsertLoop) {
932     for (Use &Op : llvm::drop_begin(IncV->operands()))
933       if (Instruction *OInst = dyn_cast<Instruction>(Op))
934         if (!SE.DT.dominates(OInst, IVIncInsertPos))
935           return false;
936   }
937   // Advance to the next instruction.
938   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
939   if (!IncV)
940     return false;
941 
942   if (IncV->mayHaveSideEffects())
943     return false;
944 
945   if (IncV == PN)
946     return true;
947 
948   return isNormalAddRecExprPHI(PN, IncV, L);
949 }
950 
951 /// getIVIncOperand returns an induction variable increment's induction
952 /// variable operand.
953 ///
954 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
955 /// operands dominate InsertPos.
956 ///
957 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
958 /// simple patterns generated by getAddRecExprPHILiterally and
959 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
960 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
961                                            Instruction *InsertPos,
962                                            bool allowScale) {
963   if (IncV == InsertPos)
964     return nullptr;
965 
966   switch (IncV->getOpcode()) {
967   default:
968     return nullptr;
969   // Check for a simple Add/Sub or GEP of a loop invariant step.
970   case Instruction::Add:
971   case Instruction::Sub: {
972     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
973     if (!OInst || SE.DT.dominates(OInst, InsertPos))
974       return dyn_cast<Instruction>(IncV->getOperand(0));
975     return nullptr;
976   }
977   case Instruction::BitCast:
978     return dyn_cast<Instruction>(IncV->getOperand(0));
979   case Instruction::GetElementPtr:
980     for (Use &U : llvm::drop_begin(IncV->operands())) {
981       if (isa<Constant>(U))
982         continue;
983       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
984         if (!SE.DT.dominates(OInst, InsertPos))
985           return nullptr;
986       }
987       if (allowScale) {
988         // allow any kind of GEP as long as it can be hoisted.
989         continue;
990       }
991       // This must be a pointer addition of constants (pretty), which is already
992       // handled, or some number of address-size elements (ugly). Ugly geps
993       // have 2 operands. i1* is used by the expander to represent an
994       // address-size element.
995       if (IncV->getNumOperands() != 2)
996         return nullptr;
997       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
998       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
999           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1000         return nullptr;
1001       break;
1002     }
1003     return dyn_cast<Instruction>(IncV->getOperand(0));
1004   }
1005 }
1006 
1007 /// If the insert point of the current builder or any of the builders on the
1008 /// stack of saved builders has 'I' as its insert point, update it to point to
1009 /// the instruction after 'I'.  This is intended to be used when the instruction
1010 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1011 /// different block, the inconsistent insert point (with a mismatched
1012 /// Instruction and Block) can lead to an instruction being inserted in a block
1013 /// other than its parent.
1014 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1015   BasicBlock::iterator It(*I);
1016   BasicBlock::iterator NewInsertPt = std::next(It);
1017   if (Builder.GetInsertPoint() == It)
1018     Builder.SetInsertPoint(&*NewInsertPt);
1019   for (auto *InsertPtGuard : InsertPointGuards)
1020     if (InsertPtGuard->GetInsertPoint() == It)
1021       InsertPtGuard->SetInsertPoint(NewInsertPt);
1022 }
1023 
1024 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1025 /// it available to other uses in this loop. Recursively hoist any operands,
1026 /// until we reach a value that dominates InsertPos.
1027 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1028   if (SE.DT.dominates(IncV, InsertPos))
1029       return true;
1030 
1031   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1032   // its existing users.
1033   if (isa<PHINode>(InsertPos) ||
1034       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1035     return false;
1036 
1037   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1038     return false;
1039 
1040   // Check that the chain of IV operands leading back to Phi can be hoisted.
1041   SmallVector<Instruction*, 4> IVIncs;
1042   for(;;) {
1043     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1044     if (!Oper)
1045       return false;
1046     // IncV is safe to hoist.
1047     IVIncs.push_back(IncV);
1048     IncV = Oper;
1049     if (SE.DT.dominates(IncV, InsertPos))
1050       break;
1051   }
1052   for (Instruction *I : llvm::reverse(IVIncs)) {
1053     fixupInsertPoints(I);
1054     I->moveBefore(InsertPos);
1055   }
1056   return true;
1057 }
1058 
1059 /// Determine if this cyclic phi is in a form that would have been generated by
1060 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1061 /// as it is in a low-cost form, for example, no implied multiplication. This
1062 /// should match any patterns generated by getAddRecExprPHILiterally and
1063 /// expandAddtoGEP.
1064 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1065                                            const Loop *L) {
1066   for(Instruction *IVOper = IncV;
1067       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1068                                 /*allowScale=*/false));) {
1069     if (IVOper == PN)
1070       return true;
1071   }
1072   return false;
1073 }
1074 
1075 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1076 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1077 /// need to materialize IV increments elsewhere to handle difficult situations.
1078 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1079                                  Type *ExpandTy, Type *IntTy,
1080                                  bool useSubtract) {
1081   Value *IncV;
1082   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1083   if (ExpandTy->isPointerTy()) {
1084     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1085     // If the step isn't constant, don't use an implicitly scaled GEP, because
1086     // that would require a multiply inside the loop.
1087     if (!isa<ConstantInt>(StepV))
1088       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1089                                   GEPPtrTy->getAddressSpace());
1090     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1091     if (IncV->getType() != PN->getType())
1092       IncV = Builder.CreateBitCast(IncV, PN->getType());
1093   } else {
1094     IncV = useSubtract ?
1095       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1096       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1097   }
1098   return IncV;
1099 }
1100 
1101 /// Check whether we can cheaply express the requested SCEV in terms of
1102 /// the available PHI SCEV by truncation and/or inversion of the step.
1103 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1104                                     const SCEVAddRecExpr *Phi,
1105                                     const SCEVAddRecExpr *Requested,
1106                                     bool &InvertStep) {
1107   // We can't transform to match a pointer PHI.
1108   if (Phi->getType()->isPointerTy())
1109     return false;
1110 
1111   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1112   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1113 
1114   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1115     return false;
1116 
1117   // Try truncate it if necessary.
1118   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1119   if (!Phi)
1120     return false;
1121 
1122   // Check whether truncation will help.
1123   if (Phi == Requested) {
1124     InvertStep = false;
1125     return true;
1126   }
1127 
1128   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1129   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1130     InvertStep = true;
1131     return true;
1132   }
1133 
1134   return false;
1135 }
1136 
1137 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1138   if (!isa<IntegerType>(AR->getType()))
1139     return false;
1140 
1141   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1142   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1143   const SCEV *Step = AR->getStepRecurrence(SE);
1144   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1145                                             SE.getSignExtendExpr(AR, WideTy));
1146   const SCEV *ExtendAfterOp =
1147     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1148   return ExtendAfterOp == OpAfterExtend;
1149 }
1150 
1151 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1152   if (!isa<IntegerType>(AR->getType()))
1153     return false;
1154 
1155   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1156   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1157   const SCEV *Step = AR->getStepRecurrence(SE);
1158   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1159                                             SE.getZeroExtendExpr(AR, WideTy));
1160   const SCEV *ExtendAfterOp =
1161     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1162   return ExtendAfterOp == OpAfterExtend;
1163 }
1164 
1165 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1166 /// the base addrec, which is the addrec without any non-loop-dominating
1167 /// values, and return the PHI.
1168 PHINode *
1169 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1170                                         const Loop *L,
1171                                         Type *ExpandTy,
1172                                         Type *IntTy,
1173                                         Type *&TruncTy,
1174                                         bool &InvertStep) {
1175   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1176 
1177   // Reuse a previously-inserted PHI, if present.
1178   BasicBlock *LatchBlock = L->getLoopLatch();
1179   if (LatchBlock) {
1180     PHINode *AddRecPhiMatch = nullptr;
1181     Instruction *IncV = nullptr;
1182     TruncTy = nullptr;
1183     InvertStep = false;
1184 
1185     // Only try partially matching scevs that need truncation and/or
1186     // step-inversion if we know this loop is outside the current loop.
1187     bool TryNonMatchingSCEV =
1188         IVIncInsertLoop &&
1189         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1190 
1191     for (PHINode &PN : L->getHeader()->phis()) {
1192       if (!SE.isSCEVable(PN.getType()))
1193         continue;
1194 
1195       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1196       // PHI has no meaning at all.
1197       if (!PN.isComplete()) {
1198         SCEV_DEBUG_WITH_TYPE(
1199             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1200         continue;
1201       }
1202 
1203       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1204       if (!PhiSCEV)
1205         continue;
1206 
1207       bool IsMatchingSCEV = PhiSCEV == Normalized;
1208       // We only handle truncation and inversion of phi recurrences for the
1209       // expanded expression if the expanded expression's loop dominates the
1210       // loop we insert to. Check now, so we can bail out early.
1211       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1212           continue;
1213 
1214       // TODO: this possibly can be reworked to avoid this cast at all.
1215       Instruction *TempIncV =
1216           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1217       if (!TempIncV)
1218         continue;
1219 
1220       // Check whether we can reuse this PHI node.
1221       if (LSRMode) {
1222         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1223           continue;
1224       } else {
1225         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1226           continue;
1227       }
1228 
1229       // Stop if we have found an exact match SCEV.
1230       if (IsMatchingSCEV) {
1231         IncV = TempIncV;
1232         TruncTy = nullptr;
1233         InvertStep = false;
1234         AddRecPhiMatch = &PN;
1235         break;
1236       }
1237 
1238       // Try whether the phi can be translated into the requested form
1239       // (truncated and/or offset by a constant).
1240       if ((!TruncTy || InvertStep) &&
1241           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1242         // Record the phi node. But don't stop we might find an exact match
1243         // later.
1244         AddRecPhiMatch = &PN;
1245         IncV = TempIncV;
1246         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1247       }
1248     }
1249 
1250     if (AddRecPhiMatch) {
1251       // Ok, the add recurrence looks usable.
1252       // Remember this PHI, even in post-inc mode.
1253       InsertedValues.insert(AddRecPhiMatch);
1254       // Remember the increment.
1255       rememberInstruction(IncV);
1256       // Those values were not actually inserted but re-used.
1257       ReusedValues.insert(AddRecPhiMatch);
1258       ReusedValues.insert(IncV);
1259       return AddRecPhiMatch;
1260     }
1261   }
1262 
1263   // Save the original insertion point so we can restore it when we're done.
1264   SCEVInsertPointGuard Guard(Builder, this);
1265 
1266   // Another AddRec may need to be recursively expanded below. For example, if
1267   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1268   // loop. Remove this loop from the PostIncLoops set before expanding such
1269   // AddRecs. Otherwise, we cannot find a valid position for the step
1270   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1271   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1272   // so it's not worth implementing SmallPtrSet::swap.
1273   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1274   PostIncLoops.clear();
1275 
1276   // Expand code for the start value into the loop preheader.
1277   assert(L->getLoopPreheader() &&
1278          "Can't expand add recurrences without a loop preheader!");
1279   Value *StartV =
1280       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1281                         L->getLoopPreheader()->getTerminator(), false);
1282 
1283   // StartV must have been be inserted into L's preheader to dominate the new
1284   // phi.
1285   assert(!isa<Instruction>(StartV) ||
1286          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1287                                  L->getHeader()));
1288 
1289   // Expand code for the step value. Do this before creating the PHI so that PHI
1290   // reuse code doesn't see an incomplete PHI.
1291   const SCEV *Step = Normalized->getStepRecurrence(SE);
1292   // If the stride is negative, insert a sub instead of an add for the increment
1293   // (unless it's a constant, because subtracts of constants are canonicalized
1294   // to adds).
1295   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1296   if (useSubtract)
1297     Step = SE.getNegativeSCEV(Step);
1298   // Expand the step somewhere that dominates the loop header.
1299   Value *StepV = expandCodeForImpl(
1300       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1301 
1302   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1303   // we actually do emit an addition.  It does not apply if we emit a
1304   // subtraction.
1305   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1306   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1307 
1308   // Create the PHI.
1309   BasicBlock *Header = L->getHeader();
1310   Builder.SetInsertPoint(Header, Header->begin());
1311   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1312   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1313                                   Twine(IVName) + ".iv");
1314 
1315   // Create the step instructions and populate the PHI.
1316   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1317     BasicBlock *Pred = *HPI;
1318 
1319     // Add a start value.
1320     if (!L->contains(Pred)) {
1321       PN->addIncoming(StartV, Pred);
1322       continue;
1323     }
1324 
1325     // Create a step value and add it to the PHI.
1326     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1327     // instructions at IVIncInsertPos.
1328     Instruction *InsertPos = L == IVIncInsertLoop ?
1329       IVIncInsertPos : Pred->getTerminator();
1330     Builder.SetInsertPoint(InsertPos);
1331     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1332 
1333     if (isa<OverflowingBinaryOperator>(IncV)) {
1334       if (IncrementIsNUW)
1335         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1336       if (IncrementIsNSW)
1337         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1338     }
1339     PN->addIncoming(IncV, Pred);
1340   }
1341 
1342   // After expanding subexpressions, restore the PostIncLoops set so the caller
1343   // can ensure that IVIncrement dominates the current uses.
1344   PostIncLoops = SavedPostIncLoops;
1345 
1346   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1347   // effective when we are able to use an IV inserted here, so record it.
1348   InsertedValues.insert(PN);
1349   InsertedIVs.push_back(PN);
1350   return PN;
1351 }
1352 
1353 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1354   Type *STy = S->getType();
1355   Type *IntTy = SE.getEffectiveSCEVType(STy);
1356   const Loop *L = S->getLoop();
1357 
1358   // Determine a normalized form of this expression, which is the expression
1359   // before any post-inc adjustment is made.
1360   const SCEVAddRecExpr *Normalized = S;
1361   if (PostIncLoops.count(L)) {
1362     PostIncLoopSet Loops;
1363     Loops.insert(L);
1364     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1365   }
1366 
1367   // Strip off any non-loop-dominating component from the addrec start.
1368   const SCEV *Start = Normalized->getStart();
1369   const SCEV *PostLoopOffset = nullptr;
1370   if (!SE.properlyDominates(Start, L->getHeader())) {
1371     PostLoopOffset = Start;
1372     Start = SE.getConstant(Normalized->getType(), 0);
1373     Normalized = cast<SCEVAddRecExpr>(
1374       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1375                        Normalized->getLoop(),
1376                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1377   }
1378 
1379   // Strip off any non-loop-dominating component from the addrec step.
1380   const SCEV *Step = Normalized->getStepRecurrence(SE);
1381   const SCEV *PostLoopScale = nullptr;
1382   if (!SE.dominates(Step, L->getHeader())) {
1383     PostLoopScale = Step;
1384     Step = SE.getConstant(Normalized->getType(), 1);
1385     if (!Start->isZero()) {
1386         // The normalization below assumes that Start is constant zero, so if
1387         // it isn't re-associate Start to PostLoopOffset.
1388         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1389         PostLoopOffset = Start;
1390         Start = SE.getConstant(Normalized->getType(), 0);
1391     }
1392     Normalized =
1393       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1394                              Start, Step, Normalized->getLoop(),
1395                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1396   }
1397 
1398   // Expand the core addrec. If we need post-loop scaling, force it to
1399   // expand to an integer type to avoid the need for additional casting.
1400   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1401   // We can't use a pointer type for the addrec if the pointer type is
1402   // non-integral.
1403   Type *AddRecPHIExpandTy =
1404       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1405 
1406   // In some cases, we decide to reuse an existing phi node but need to truncate
1407   // it and/or invert the step.
1408   Type *TruncTy = nullptr;
1409   bool InvertStep = false;
1410   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1411                                           IntTy, TruncTy, InvertStep);
1412 
1413   // Accommodate post-inc mode, if necessary.
1414   Value *Result;
1415   if (!PostIncLoops.count(L))
1416     Result = PN;
1417   else {
1418     // In PostInc mode, use the post-incremented value.
1419     BasicBlock *LatchBlock = L->getLoopLatch();
1420     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1421     Result = PN->getIncomingValueForBlock(LatchBlock);
1422 
1423     // We might be introducing a new use of the post-inc IV that is not poison
1424     // safe, in which case we should drop poison generating flags. Only keep
1425     // those flags for which SCEV has proven that they always hold.
1426     if (isa<OverflowingBinaryOperator>(Result)) {
1427       auto *I = cast<Instruction>(Result);
1428       if (!S->hasNoUnsignedWrap())
1429         I->setHasNoUnsignedWrap(false);
1430       if (!S->hasNoSignedWrap())
1431         I->setHasNoSignedWrap(false);
1432     }
1433 
1434     // For an expansion to use the postinc form, the client must call
1435     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1436     // or dominated by IVIncInsertPos.
1437     if (isa<Instruction>(Result) &&
1438         !SE.DT.dominates(cast<Instruction>(Result),
1439                          &*Builder.GetInsertPoint())) {
1440       // The induction variable's postinc expansion does not dominate this use.
1441       // IVUsers tries to prevent this case, so it is rare. However, it can
1442       // happen when an IVUser outside the loop is not dominated by the latch
1443       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1444       // all cases. Consider a phi outside whose operand is replaced during
1445       // expansion with the value of the postinc user. Without fundamentally
1446       // changing the way postinc users are tracked, the only remedy is
1447       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1448       // but hopefully expandCodeFor handles that.
1449       bool useSubtract =
1450         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1451       if (useSubtract)
1452         Step = SE.getNegativeSCEV(Step);
1453       Value *StepV;
1454       {
1455         // Expand the step somewhere that dominates the loop header.
1456         SCEVInsertPointGuard Guard(Builder, this);
1457         StepV = expandCodeForImpl(
1458             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1459       }
1460       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1461     }
1462   }
1463 
1464   // We have decided to reuse an induction variable of a dominating loop. Apply
1465   // truncation and/or inversion of the step.
1466   if (TruncTy) {
1467     Type *ResTy = Result->getType();
1468     // Normalize the result type.
1469     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1470       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1471     // Truncate the result.
1472     if (TruncTy != Result->getType())
1473       Result = Builder.CreateTrunc(Result, TruncTy);
1474 
1475     // Invert the result.
1476     if (InvertStep)
1477       Result = Builder.CreateSub(
1478           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1479   }
1480 
1481   // Re-apply any non-loop-dominating scale.
1482   if (PostLoopScale) {
1483     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1484     Result = InsertNoopCastOfTo(Result, IntTy);
1485     Result = Builder.CreateMul(Result,
1486                                expandCodeForImpl(PostLoopScale, IntTy, false));
1487   }
1488 
1489   // Re-apply any non-loop-dominating offset.
1490   if (PostLoopOffset) {
1491     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1492       if (Result->getType()->isIntegerTy()) {
1493         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1494         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1495       } else {
1496         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1497       }
1498     } else {
1499       Result = InsertNoopCastOfTo(Result, IntTy);
1500       Result = Builder.CreateAdd(
1501           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1502     }
1503   }
1504 
1505   return Result;
1506 }
1507 
1508 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1509   // In canonical mode we compute the addrec as an expression of a canonical IV
1510   // using evaluateAtIteration and expand the resulting SCEV expression. This
1511   // way we avoid introducing new IVs to carry on the comutation of the addrec
1512   // throughout the loop.
1513   //
1514   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1515   // type wider than the addrec itself. Emitting a canonical IV of the
1516   // proper type might produce non-legal types, for example expanding an i64
1517   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1518   // back to non-canonical mode for nested addrecs.
1519   if (!CanonicalMode || (S->getNumOperands() > 2))
1520     return expandAddRecExprLiterally(S);
1521 
1522   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1523   const Loop *L = S->getLoop();
1524 
1525   // First check for an existing canonical IV in a suitable type.
1526   PHINode *CanonicalIV = nullptr;
1527   if (PHINode *PN = L->getCanonicalInductionVariable())
1528     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1529       CanonicalIV = PN;
1530 
1531   // Rewrite an AddRec in terms of the canonical induction variable, if
1532   // its type is more narrow.
1533   if (CanonicalIV &&
1534       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1535       !S->getType()->isPointerTy()) {
1536     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1537     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1538       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1539     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1540                                        S->getNoWrapFlags(SCEV::FlagNW)));
1541     BasicBlock::iterator NewInsertPt =
1542         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1543     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1544                           &*NewInsertPt, false);
1545     return V;
1546   }
1547 
1548   // {X,+,F} --> X + {0,+,F}
1549   if (!S->getStart()->isZero()) {
1550     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1551       Value *StartV = expand(SE.getPointerBase(S));
1552       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1553       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1554     }
1555 
1556     SmallVector<const SCEV *, 4> NewOps(S->operands());
1557     NewOps[0] = SE.getConstant(Ty, 0);
1558     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1559                                         S->getNoWrapFlags(SCEV::FlagNW));
1560 
1561     // Just do a normal add. Pre-expand the operands to suppress folding.
1562     //
1563     // The LHS and RHS values are factored out of the expand call to make the
1564     // output independent of the argument evaluation order.
1565     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1566     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1567     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1568   }
1569 
1570   // If we don't yet have a canonical IV, create one.
1571   if (!CanonicalIV) {
1572     // Create and insert the PHI node for the induction variable in the
1573     // specified loop.
1574     BasicBlock *Header = L->getHeader();
1575     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1576     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1577                                   &Header->front());
1578     rememberInstruction(CanonicalIV);
1579 
1580     SmallSet<BasicBlock *, 4> PredSeen;
1581     Constant *One = ConstantInt::get(Ty, 1);
1582     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1583       BasicBlock *HP = *HPI;
1584       if (!PredSeen.insert(HP).second) {
1585         // There must be an incoming value for each predecessor, even the
1586         // duplicates!
1587         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1588         continue;
1589       }
1590 
1591       if (L->contains(HP)) {
1592         // Insert a unit add instruction right before the terminator
1593         // corresponding to the back-edge.
1594         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1595                                                      "indvar.next",
1596                                                      HP->getTerminator());
1597         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1598         rememberInstruction(Add);
1599         CanonicalIV->addIncoming(Add, HP);
1600       } else {
1601         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1602       }
1603     }
1604   }
1605 
1606   // {0,+,1} --> Insert a canonical induction variable into the loop!
1607   if (S->isAffine() && S->getOperand(1)->isOne()) {
1608     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1609            "IVs with types different from the canonical IV should "
1610            "already have been handled!");
1611     return CanonicalIV;
1612   }
1613 
1614   // {0,+,F} --> {0,+,1} * F
1615 
1616   // If this is a simple linear addrec, emit it now as a special case.
1617   if (S->isAffine())    // {0,+,F} --> i*F
1618     return
1619       expand(SE.getTruncateOrNoop(
1620         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1621                       SE.getNoopOrAnyExtend(S->getOperand(1),
1622                                             CanonicalIV->getType())),
1623         Ty));
1624 
1625   // If this is a chain of recurrences, turn it into a closed form, using the
1626   // folders, then expandCodeFor the closed form.  This allows the folders to
1627   // simplify the expression without having to build a bunch of special code
1628   // into this folder.
1629   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1630 
1631   // Promote S up to the canonical IV type, if the cast is foldable.
1632   const SCEV *NewS = S;
1633   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1634   if (isa<SCEVAddRecExpr>(Ext))
1635     NewS = Ext;
1636 
1637   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1638   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1639 
1640   // Truncate the result down to the original type, if needed.
1641   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1642   return expand(T);
1643 }
1644 
1645 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1646   Value *V =
1647       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1648   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1649                            GetOptimalInsertionPointForCastOf(V));
1650 }
1651 
1652 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1653   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1654   Value *V = expandCodeForImpl(
1655       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1656       false);
1657   return Builder.CreateTrunc(V, Ty);
1658 }
1659 
1660 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1661   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1662   Value *V = expandCodeForImpl(
1663       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1664       false);
1665   return Builder.CreateZExt(V, Ty);
1666 }
1667 
1668 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1669   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1670   Value *V = expandCodeForImpl(
1671       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1672       false);
1673   return Builder.CreateSExt(V, Ty);
1674 }
1675 
1676 Value *SCEVExpander::expandSMaxExpr(const SCEVNAryExpr *S) {
1677   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1678   Type *Ty = LHS->getType();
1679   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1680     // In the case of mixed integer and pointer types, do the
1681     // rest of the comparisons as integer.
1682     Type *OpTy = S->getOperand(i)->getType();
1683     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1684       Ty = SE.getEffectiveSCEVType(Ty);
1685       LHS = InsertNoopCastOfTo(LHS, Ty);
1686     }
1687     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1688     Value *Sel;
1689     if (Ty->isIntegerTy())
1690       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1691                                     /*FMFSource=*/nullptr, "smax");
1692     else {
1693       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1694       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1695     }
1696     LHS = Sel;
1697   }
1698   // In the case of mixed integer and pointer types, cast the
1699   // final result back to the pointer type.
1700   if (LHS->getType() != S->getType())
1701     LHS = InsertNoopCastOfTo(LHS, S->getType());
1702   return LHS;
1703 }
1704 
1705 Value *SCEVExpander::expandUMaxExpr(const SCEVNAryExpr *S) {
1706   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1707   Type *Ty = LHS->getType();
1708   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1709     // In the case of mixed integer and pointer types, do the
1710     // rest of the comparisons as integer.
1711     Type *OpTy = S->getOperand(i)->getType();
1712     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1713       Ty = SE.getEffectiveSCEVType(Ty);
1714       LHS = InsertNoopCastOfTo(LHS, Ty);
1715     }
1716     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1717     Value *Sel;
1718     if (Ty->isIntegerTy())
1719       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1720                                     /*FMFSource=*/nullptr, "umax");
1721     else {
1722       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1723       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1724     }
1725     LHS = Sel;
1726   }
1727   // In the case of mixed integer and pointer types, cast the
1728   // final result back to the pointer type.
1729   if (LHS->getType() != S->getType())
1730     LHS = InsertNoopCastOfTo(LHS, S->getType());
1731   return LHS;
1732 }
1733 
1734 Value *SCEVExpander::expandSMinExpr(const SCEVNAryExpr *S) {
1735   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1736   Type *Ty = LHS->getType();
1737   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1738     // In the case of mixed integer and pointer types, do the
1739     // rest of the comparisons as integer.
1740     Type *OpTy = S->getOperand(i)->getType();
1741     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1742       Ty = SE.getEffectiveSCEVType(Ty);
1743       LHS = InsertNoopCastOfTo(LHS, Ty);
1744     }
1745     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1746     Value *Sel;
1747     if (Ty->isIntegerTy())
1748       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1749                                     /*FMFSource=*/nullptr, "smin");
1750     else {
1751       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1752       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1753     }
1754     LHS = Sel;
1755   }
1756   // In the case of mixed integer and pointer types, cast the
1757   // final result back to the pointer type.
1758   if (LHS->getType() != S->getType())
1759     LHS = InsertNoopCastOfTo(LHS, S->getType());
1760   return LHS;
1761 }
1762 
1763 Value *SCEVExpander::expandUMinExpr(const SCEVNAryExpr *S) {
1764   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1765   Type *Ty = LHS->getType();
1766   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1767     // In the case of mixed integer and pointer types, do the
1768     // rest of the comparisons as integer.
1769     Type *OpTy = S->getOperand(i)->getType();
1770     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1771       Ty = SE.getEffectiveSCEVType(Ty);
1772       LHS = InsertNoopCastOfTo(LHS, Ty);
1773     }
1774     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1775     Value *Sel;
1776     if (Ty->isIntegerTy())
1777       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1778                                     /*FMFSource=*/nullptr, "umin");
1779     else {
1780       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1781       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1782     }
1783     LHS = Sel;
1784   }
1785   // In the case of mixed integer and pointer types, cast the
1786   // final result back to the pointer type.
1787   if (LHS->getType() != S->getType())
1788     LHS = InsertNoopCastOfTo(LHS, S->getType());
1789   return LHS;
1790 }
1791 
1792 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1793   return expandSMaxExpr(S);
1794 }
1795 
1796 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1797   return expandUMaxExpr(S);
1798 }
1799 
1800 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1801   return expandSMinExpr(S);
1802 }
1803 
1804 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1805   return expandUMinExpr(S);
1806 }
1807 
1808 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1809   SmallVector<Value *> Ops;
1810   for (const SCEV *Op : S->operands())
1811     Ops.emplace_back(expand(Op));
1812 
1813   Value *SaturationPoint =
1814       MinMaxIntrinsic::getSaturationPoint(Intrinsic::umin, S->getType());
1815 
1816   SmallVector<Value *> OpIsZero;
1817   for (Value *Op : ArrayRef<Value *>(Ops).drop_back())
1818     OpIsZero.emplace_back(Builder.CreateICmpEQ(Op, SaturationPoint));
1819 
1820   Value *AnyOpIsZero = Builder.CreateLogicalOr(OpIsZero);
1821 
1822   Value *NaiveUMin = expandUMinExpr(S);
1823   return Builder.CreateSelect(AnyOpIsZero, SaturationPoint, NaiveUMin);
1824 }
1825 
1826 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1827                                        Instruction *IP, bool Root) {
1828   setInsertPoint(IP);
1829   Value *V = expandCodeForImpl(SH, Ty, Root);
1830   return V;
1831 }
1832 
1833 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1834   // Expand the code for this SCEV.
1835   Value *V = expand(SH);
1836 
1837   if (PreserveLCSSA) {
1838     if (auto *Inst = dyn_cast<Instruction>(V)) {
1839       // Create a temporary instruction to at the current insertion point, so we
1840       // can hand it off to the helper to create LCSSA PHIs if required for the
1841       // new use.
1842       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1843       // would accept a insertion point and return an LCSSA phi for that
1844       // insertion point, so there is no need to insert & remove the temporary
1845       // instruction.
1846       Instruction *Tmp;
1847       if (Inst->getType()->isIntegerTy())
1848         Tmp = cast<Instruction>(Builder.CreateIntToPtr(
1849             Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user"));
1850       else {
1851         assert(Inst->getType()->isPointerTy());
1852         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1853             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1854       }
1855       V = fixupLCSSAFormFor(Tmp, 0);
1856 
1857       // Clean up temporary instruction.
1858       InsertedValues.erase(Tmp);
1859       InsertedPostIncValues.erase(Tmp);
1860       Tmp->eraseFromParent();
1861     }
1862   }
1863 
1864   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1865   if (Ty) {
1866     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1867            "non-trivial casts should be done with the SCEVs directly!");
1868     V = InsertNoopCastOfTo(V, Ty);
1869   }
1870   return V;
1871 }
1872 
1873 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1874                                              const Instruction *InsertPt) {
1875   ArrayRef<Value *> Set = SE.getSCEVValues(S);
1876   // If the expansion is not in CanonicalMode, and the SCEV contains any
1877   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1878   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1879     // If S is scConstant, it may be worse to reuse an existing Value.
1880     if (S->getSCEVType() != scConstant) {
1881       // Choose a Value from the set which dominates the InsertPt.
1882       // InsertPt should be inside the Value's parent loop so as not to break
1883       // the LCSSA form.
1884       for (Value *V : Set) {
1885         Instruction *EntInst = dyn_cast<Instruction>(V);
1886         if (!EntInst)
1887           continue;
1888 
1889         assert(EntInst->getFunction() == InsertPt->getFunction());
1890         if (S->getType() == V->getType() &&
1891             SE.DT.dominates(EntInst, InsertPt) &&
1892             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1893              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1894           return V;
1895       }
1896     }
1897   }
1898   return nullptr;
1899 }
1900 
1901 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1902 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1903 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1904 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1905 // the expansion will try to reuse Value from ExprValueMap, and only when it
1906 // fails, expand the SCEV literally.
1907 Value *SCEVExpander::expand(const SCEV *S) {
1908   // Compute an insertion point for this SCEV object. Hoist the instructions
1909   // as far out in the loop nest as possible.
1910   Instruction *InsertPt = &*Builder.GetInsertPoint();
1911 
1912   // We can move insertion point only if there is no div or rem operations
1913   // otherwise we are risky to move it over the check for zero denominator.
1914   auto SafeToHoist = [](const SCEV *S) {
1915     return !SCEVExprContains(S, [](const SCEV *S) {
1916               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1917                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1918                   // Division by non-zero constants can be hoisted.
1919                   return SC->getValue()->isZero();
1920                 // All other divisions should not be moved as they may be
1921                 // divisions by zero and should be kept within the
1922                 // conditions of the surrounding loops that guard their
1923                 // execution (see PR35406).
1924                 return true;
1925               }
1926               return false;
1927             });
1928   };
1929   if (SafeToHoist(S)) {
1930     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1931          L = L->getParentLoop()) {
1932       if (SE.isLoopInvariant(S, L)) {
1933         if (!L) break;
1934         if (BasicBlock *Preheader = L->getLoopPreheader())
1935           InsertPt = Preheader->getTerminator();
1936         else
1937           // LSR sets the insertion point for AddRec start/step values to the
1938           // block start to simplify value reuse, even though it's an invalid
1939           // position. SCEVExpander must correct for this in all cases.
1940           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1941       } else {
1942         // If the SCEV is computable at this level, insert it into the header
1943         // after the PHIs (and after any other instructions that we've inserted
1944         // there) so that it is guaranteed to dominate any user inside the loop.
1945         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1946           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1947 
1948         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1949                (isInsertedInstruction(InsertPt) ||
1950                 isa<DbgInfoIntrinsic>(InsertPt))) {
1951           InsertPt = &*std::next(InsertPt->getIterator());
1952         }
1953         break;
1954       }
1955     }
1956   }
1957 
1958   // Check to see if we already expanded this here.
1959   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1960   if (I != InsertedExpressions.end())
1961     return I->second;
1962 
1963   SCEVInsertPointGuard Guard(Builder, this);
1964   Builder.SetInsertPoint(InsertPt);
1965 
1966   // Expand the expression into instructions.
1967   Value *V = FindValueInExprValueMap(S, InsertPt);
1968   if (!V)
1969     V = visit(S);
1970   else {
1971     // If we're reusing an existing instruction, we are effectively CSEing two
1972     // copies of the instruction (with potentially different flags).  As such,
1973     // we need to drop any poison generating flags unless we can prove that
1974     // said flags must be valid for all new users.
1975     if (auto *I = dyn_cast<Instruction>(V))
1976       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1977         I->dropPoisonGeneratingFlags();
1978   }
1979   // Remember the expanded value for this SCEV at this location.
1980   //
1981   // This is independent of PostIncLoops. The mapped value simply materializes
1982   // the expression at this insertion point. If the mapped value happened to be
1983   // a postinc expansion, it could be reused by a non-postinc user, but only if
1984   // its insertion point was already at the head of the loop.
1985   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1986   return V;
1987 }
1988 
1989 void SCEVExpander::rememberInstruction(Value *I) {
1990   auto DoInsert = [this](Value *V) {
1991     if (!PostIncLoops.empty())
1992       InsertedPostIncValues.insert(V);
1993     else
1994       InsertedValues.insert(V);
1995   };
1996   DoInsert(I);
1997 
1998   if (!PreserveLCSSA)
1999     return;
2000 
2001   if (auto *Inst = dyn_cast<Instruction>(I)) {
2002     // A new instruction has been added, which might introduce new uses outside
2003     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2004     // if required.
2005     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2006          OpIdx++)
2007       fixupLCSSAFormFor(Inst, OpIdx);
2008   }
2009 }
2010 
2011 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2012 /// replace them with their most canonical representative. Return the number of
2013 /// phis eliminated.
2014 ///
2015 /// This does not depend on any SCEVExpander state but should be used in
2016 /// the same context that SCEVExpander is used.
2017 unsigned
2018 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2019                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2020                                   const TargetTransformInfo *TTI) {
2021   // Find integer phis in order of increasing width.
2022   SmallVector<PHINode*, 8> Phis;
2023   for (PHINode &PN : L->getHeader()->phis())
2024     Phis.push_back(&PN);
2025 
2026   if (TTI)
2027     // Use stable_sort to preserve order of equivalent PHIs, so the order
2028     // of the sorted Phis is the same from run to run on the same loop.
2029     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
2030       // Put pointers at the back and make sure pointer < pointer = false.
2031       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2032         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2033       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2034              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2035     });
2036 
2037   unsigned NumElim = 0;
2038   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2039   // Process phis from wide to narrow. Map wide phis to their truncation
2040   // so narrow phis can reuse them.
2041   for (PHINode *Phi : Phis) {
2042     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2043       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2044         return V;
2045       if (!SE.isSCEVable(PN->getType()))
2046         return nullptr;
2047       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2048       if (!Const)
2049         return nullptr;
2050       return Const->getValue();
2051     };
2052 
2053     // Fold constant phis. They may be congruent to other constant phis and
2054     // would confuse the logic below that expects proper IVs.
2055     if (Value *V = SimplifyPHINode(Phi)) {
2056       if (V->getType() != Phi->getType())
2057         continue;
2058       Phi->replaceAllUsesWith(V);
2059       DeadInsts.emplace_back(Phi);
2060       ++NumElim;
2061       SCEV_DEBUG_WITH_TYPE(DebugType,
2062                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2063                                   << '\n');
2064       continue;
2065     }
2066 
2067     if (!SE.isSCEVable(Phi->getType()))
2068       continue;
2069 
2070     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2071     if (!OrigPhiRef) {
2072       OrigPhiRef = Phi;
2073       if (Phi->getType()->isIntegerTy() && TTI &&
2074           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2075         // This phi can be freely truncated to the narrowest phi type. Map the
2076         // truncated expression to it so it will be reused for narrow types.
2077         const SCEV *TruncExpr =
2078           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2079         ExprToIVMap[TruncExpr] = Phi;
2080       }
2081       continue;
2082     }
2083 
2084     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2085     // sense.
2086     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2087       continue;
2088 
2089     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2090       Instruction *OrigInc = dyn_cast<Instruction>(
2091           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2092       Instruction *IsomorphicInc =
2093           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2094 
2095       if (OrigInc && IsomorphicInc) {
2096         // If this phi has the same width but is more canonical, replace the
2097         // original with it. As part of the "more canonical" determination,
2098         // respect a prior decision to use an IV chain.
2099         if (OrigPhiRef->getType() == Phi->getType() &&
2100             !(ChainedPhis.count(Phi) ||
2101               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2102             (ChainedPhis.count(Phi) ||
2103              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2104           std::swap(OrigPhiRef, Phi);
2105           std::swap(OrigInc, IsomorphicInc);
2106         }
2107         // Replacing the congruent phi is sufficient because acyclic
2108         // redundancy elimination, CSE/GVN, should handle the
2109         // rest. However, once SCEV proves that a phi is congruent,
2110         // it's often the head of an IV user cycle that is isomorphic
2111         // with the original phi. It's worth eagerly cleaning up the
2112         // common case of a single IV increment so that DeleteDeadPHIs
2113         // can remove cycles that had postinc uses.
2114         const SCEV *TruncExpr =
2115             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2116         if (OrigInc != IsomorphicInc &&
2117             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2118             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2119             hoistIVInc(OrigInc, IsomorphicInc)) {
2120           SCEV_DEBUG_WITH_TYPE(
2121               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2122                                 << *IsomorphicInc << '\n');
2123           Value *NewInc = OrigInc;
2124           if (OrigInc->getType() != IsomorphicInc->getType()) {
2125             Instruction *IP = nullptr;
2126             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2127               IP = &*PN->getParent()->getFirstInsertionPt();
2128             else
2129               IP = OrigInc->getNextNode();
2130 
2131             IRBuilder<> Builder(IP);
2132             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2133             NewInc = Builder.CreateTruncOrBitCast(
2134                 OrigInc, IsomorphicInc->getType(), IVName);
2135           }
2136           IsomorphicInc->replaceAllUsesWith(NewInc);
2137           DeadInsts.emplace_back(IsomorphicInc);
2138         }
2139       }
2140     }
2141     SCEV_DEBUG_WITH_TYPE(DebugType,
2142                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2143                                 << '\n');
2144     SCEV_DEBUG_WITH_TYPE(
2145         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2146     ++NumElim;
2147     Value *NewIV = OrigPhiRef;
2148     if (OrigPhiRef->getType() != Phi->getType()) {
2149       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2150       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2151       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2152     }
2153     Phi->replaceAllUsesWith(NewIV);
2154     DeadInsts.emplace_back(Phi);
2155   }
2156   return NumElim;
2157 }
2158 
2159 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
2160                                                  const Instruction *At,
2161                                                  Loop *L) {
2162   using namespace llvm::PatternMatch;
2163 
2164   SmallVector<BasicBlock *, 4> ExitingBlocks;
2165   L->getExitingBlocks(ExitingBlocks);
2166 
2167   // Look for suitable value in simple conditions at the loop exits.
2168   for (BasicBlock *BB : ExitingBlocks) {
2169     ICmpInst::Predicate Pred;
2170     Instruction *LHS, *RHS;
2171 
2172     if (!match(BB->getTerminator(),
2173                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2174                     m_BasicBlock(), m_BasicBlock())))
2175       continue;
2176 
2177     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2178       return LHS;
2179 
2180     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2181       return RHS;
2182   }
2183 
2184   // Use expand's logic which is used for reusing a previous Value in
2185   // ExprValueMap.  Note that we don't currently model the cost of
2186   // needing to drop poison generating flags on the instruction if we
2187   // want to reuse it.  We effectively assume that has zero cost.
2188   return FindValueInExprValueMap(S, At);
2189 }
2190 
2191 template<typename T> static InstructionCost costAndCollectOperands(
2192   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2193   TargetTransformInfo::TargetCostKind CostKind,
2194   SmallVectorImpl<SCEVOperand> &Worklist) {
2195 
2196   const T *S = cast<T>(WorkItem.S);
2197   InstructionCost Cost = 0;
2198   // Object to help map SCEV operands to expanded IR instructions.
2199   struct OperationIndices {
2200     OperationIndices(unsigned Opc, size_t min, size_t max) :
2201       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2202     unsigned Opcode;
2203     size_t MinIdx;
2204     size_t MaxIdx;
2205   };
2206 
2207   // Collect the operations of all the instructions that will be needed to
2208   // expand the SCEVExpr. This is so that when we come to cost the operands,
2209   // we know what the generated user(s) will be.
2210   SmallVector<OperationIndices, 2> Operations;
2211 
2212   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2213     Operations.emplace_back(Opcode, 0, 0);
2214     return TTI.getCastInstrCost(Opcode, S->getType(),
2215                                 S->getOperand(0)->getType(),
2216                                 TTI::CastContextHint::None, CostKind);
2217   };
2218 
2219   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2220                        unsigned MinIdx = 0,
2221                        unsigned MaxIdx = 1) -> InstructionCost {
2222     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2223     return NumRequired *
2224       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2225   };
2226 
2227   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2228                         unsigned MaxIdx) -> InstructionCost {
2229     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2230     Type *OpType = S->getOperand(0)->getType();
2231     return NumRequired * TTI.getCmpSelInstrCost(
2232                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2233                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2234   };
2235 
2236   switch (S->getSCEVType()) {
2237   case scCouldNotCompute:
2238     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2239   case scUnknown:
2240   case scConstant:
2241     return 0;
2242   case scPtrToInt:
2243     Cost = CastCost(Instruction::PtrToInt);
2244     break;
2245   case scTruncate:
2246     Cost = CastCost(Instruction::Trunc);
2247     break;
2248   case scZeroExtend:
2249     Cost = CastCost(Instruction::ZExt);
2250     break;
2251   case scSignExtend:
2252     Cost = CastCost(Instruction::SExt);
2253     break;
2254   case scUDivExpr: {
2255     unsigned Opcode = Instruction::UDiv;
2256     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2257       if (SC->getAPInt().isPowerOf2())
2258         Opcode = Instruction::LShr;
2259     Cost = ArithCost(Opcode, 1);
2260     break;
2261   }
2262   case scAddExpr:
2263     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2264     break;
2265   case scMulExpr:
2266     // TODO: this is a very pessimistic cost modelling for Mul,
2267     // because of Bin Pow algorithm actually used by the expander,
2268     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2269     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2270     break;
2271   case scSMaxExpr:
2272   case scUMaxExpr:
2273   case scSMinExpr:
2274   case scUMinExpr:
2275   case scSequentialUMinExpr: {
2276     // FIXME: should this ask the cost for Intrinsic's?
2277     // The reduction tree.
2278     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2279     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2280     switch (S->getSCEVType()) {
2281     case scSequentialUMinExpr: {
2282       // The safety net against poison.
2283       // FIXME: this is broken.
2284       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2285       Cost += ArithCost(Instruction::Or,
2286                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2287       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2288       break;
2289     }
2290     default:
2291       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2292              "Unhandled SCEV expression type?");
2293       break;
2294     }
2295     break;
2296   }
2297   case scAddRecExpr: {
2298     // In this polynominal, we may have some zero operands, and we shouldn't
2299     // really charge for those. So how many non-zero coeffients are there?
2300     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2301                                     return !Op->isZero();
2302                                   });
2303 
2304     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2305     assert(!(*std::prev(S->operands().end()))->isZero() &&
2306            "Last operand should not be zero");
2307 
2308     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2309     int NumNonZeroDegreeNonOneTerms =
2310       llvm::count_if(S->operands(), [](const SCEV *Op) {
2311                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2312                       return !SConst || SConst->getAPInt().ugt(1);
2313                     });
2314 
2315     // Much like with normal add expr, the polynominal will require
2316     // one less addition than the number of it's terms.
2317     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2318                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2319     // Here, *each* one of those will require a multiplication.
2320     InstructionCost MulCost =
2321         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2322     Cost = AddCost + MulCost;
2323 
2324     // What is the degree of this polynominal?
2325     int PolyDegree = S->getNumOperands() - 1;
2326     assert(PolyDegree >= 1 && "Should be at least affine.");
2327 
2328     // The final term will be:
2329     //   Op_{PolyDegree} * x ^ {PolyDegree}
2330     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2331     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2332     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2333     // FIXME: this is conservatively correct, but might be overly pessimistic.
2334     Cost += MulCost * (PolyDegree - 1);
2335     break;
2336   }
2337   }
2338 
2339   for (auto &CostOp : Operations) {
2340     for (auto SCEVOp : enumerate(S->operands())) {
2341       // Clamp the index to account for multiple IR operations being chained.
2342       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2343       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2344       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2345     }
2346   }
2347   return Cost;
2348 }
2349 
2350 bool SCEVExpander::isHighCostExpansionHelper(
2351     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2352     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2353     SmallPtrSetImpl<const SCEV *> &Processed,
2354     SmallVectorImpl<SCEVOperand> &Worklist) {
2355   if (Cost > Budget)
2356     return true; // Already run out of budget, give up.
2357 
2358   const SCEV *S = WorkItem.S;
2359   // Was the cost of expansion of this expression already accounted for?
2360   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2361     return false; // We have already accounted for this expression.
2362 
2363   // If we can find an existing value for this scev available at the point "At"
2364   // then consider the expression cheap.
2365   if (getRelatedExistingExpansion(S, &At, L))
2366     return false; // Consider the expression to be free.
2367 
2368   TargetTransformInfo::TargetCostKind CostKind =
2369       L->getHeader()->getParent()->hasMinSize()
2370           ? TargetTransformInfo::TCK_CodeSize
2371           : TargetTransformInfo::TCK_RecipThroughput;
2372 
2373   switch (S->getSCEVType()) {
2374   case scCouldNotCompute:
2375     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2376   case scUnknown:
2377     // Assume to be zero-cost.
2378     return false;
2379   case scConstant: {
2380     // Only evalulate the costs of constants when optimizing for size.
2381     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2382       return false;
2383     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2384     Type *Ty = S->getType();
2385     Cost += TTI.getIntImmCostInst(
2386         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2387     return Cost > Budget;
2388   }
2389   case scTruncate:
2390   case scPtrToInt:
2391   case scZeroExtend:
2392   case scSignExtend: {
2393     Cost +=
2394         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2395     return false; // Will answer upon next entry into this function.
2396   }
2397   case scUDivExpr: {
2398     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2399     // HowManyLessThans produced to compute a precise expression, rather than a
2400     // UDiv from the user's code. If we can't find a UDiv in the code with some
2401     // simple searching, we need to account for it's cost.
2402 
2403     // At the beginning of this function we already tried to find existing
2404     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2405     // pattern involving division. This is just a simple search heuristic.
2406     if (getRelatedExistingExpansion(
2407             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2408       return false; // Consider it to be free.
2409 
2410     Cost +=
2411         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2412     return false; // Will answer upon next entry into this function.
2413   }
2414   case scAddExpr:
2415   case scMulExpr:
2416   case scUMaxExpr:
2417   case scSMaxExpr:
2418   case scUMinExpr:
2419   case scSMinExpr:
2420   case scSequentialUMinExpr: {
2421     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2422            "Nary expr should have more than 1 operand.");
2423     // The simple nary expr will require one less op (or pair of ops)
2424     // than the number of it's terms.
2425     Cost +=
2426         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2427     return Cost > Budget;
2428   }
2429   case scAddRecExpr: {
2430     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2431            "Polynomial should be at least linear");
2432     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2433         WorkItem, TTI, CostKind, Worklist);
2434     return Cost > Budget;
2435   }
2436   }
2437   llvm_unreachable("Unknown SCEV kind!");
2438 }
2439 
2440 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2441                                             Instruction *IP) {
2442   assert(IP);
2443   switch (Pred->getKind()) {
2444   case SCEVPredicate::P_Union:
2445     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2446   case SCEVPredicate::P_Compare:
2447     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2448   case SCEVPredicate::P_Wrap: {
2449     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2450     return expandWrapPredicate(AddRecPred, IP);
2451   }
2452   }
2453   llvm_unreachable("Unknown SCEV predicate type");
2454 }
2455 
2456 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2457                                             Instruction *IP) {
2458   Value *Expr0 =
2459       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2460   Value *Expr1 =
2461       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2462 
2463   Builder.SetInsertPoint(IP);
2464   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2465   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2466   return I;
2467 }
2468 
2469 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2470                                            Instruction *Loc, bool Signed) {
2471   assert(AR->isAffine() && "Cannot generate RT check for "
2472                            "non-affine expression");
2473 
2474   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2475   SmallVector<const SCEVPredicate *, 4> Pred;
2476   const SCEV *ExitCount =
2477       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2478 
2479   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2480 
2481   const SCEV *Step = AR->getStepRecurrence(SE);
2482   const SCEV *Start = AR->getStart();
2483 
2484   Type *ARTy = AR->getType();
2485   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2486   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2487 
2488   // The expression {Start,+,Step} has nusw/nssw if
2489   //   Step < 0, Start - |Step| * Backedge <= Start
2490   //   Step >= 0, Start + |Step| * Backedge > Start
2491   // and |Step| * Backedge doesn't unsigned overflow.
2492 
2493   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2494   Builder.SetInsertPoint(Loc);
2495   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2496 
2497   IntegerType *Ty =
2498       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2499 
2500   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2501   Value *NegStepValue =
2502       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2503   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
2504 
2505   ConstantInt *Zero =
2506       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2507 
2508   Builder.SetInsertPoint(Loc);
2509   // Compute |Step|
2510   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2511   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2512 
2513   // Compute |Step| * Backedge
2514   // Compute:
2515   //   1. Start + |Step| * Backedge < Start
2516   //   2. Start - |Step| * Backedge > Start
2517   //
2518   // And select either 1. or 2. depending on whether step is positive or
2519   // negative. If Step is known to be positive or negative, only create
2520   // either 1. or 2.
2521   auto ComputeEndCheck = [&]() -> Value * {
2522     // Checking <u 0 is always false.
2523     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2524       return ConstantInt::getFalse(Loc->getContext());
2525 
2526     // Get the backedge taken count and truncate or extended to the AR type.
2527     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2528 
2529     Value *MulV, *OfMul;
2530     if (Step->isOne()) {
2531       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2532       // needed, there is never an overflow, so to avoid artificially inflating
2533       // the cost of the check, directly emit the optimized IR.
2534       MulV = TruncTripCount;
2535       OfMul = ConstantInt::getFalse(MulV->getContext());
2536     } else {
2537       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2538                                              Intrinsic::umul_with_overflow, Ty);
2539       CallInst *Mul =
2540           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2541       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2542       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2543     }
2544 
2545     Value *Add = nullptr, *Sub = nullptr;
2546     bool NeedPosCheck = !SE.isKnownNegative(Step);
2547     bool NeedNegCheck = !SE.isKnownPositive(Step);
2548 
2549     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2550       StartValue = InsertNoopCastOfTo(
2551           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2552       Value *NegMulV = Builder.CreateNeg(MulV);
2553       if (NeedPosCheck)
2554         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2555       if (NeedNegCheck)
2556         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2557     } else {
2558       if (NeedPosCheck)
2559         Add = Builder.CreateAdd(StartValue, MulV);
2560       if (NeedNegCheck)
2561         Sub = Builder.CreateSub(StartValue, MulV);
2562     }
2563 
2564     Value *EndCompareLT = nullptr;
2565     Value *EndCompareGT = nullptr;
2566     Value *EndCheck = nullptr;
2567     if (NeedPosCheck)
2568       EndCheck = EndCompareLT = Builder.CreateICmp(
2569           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2570     if (NeedNegCheck)
2571       EndCheck = EndCompareGT = Builder.CreateICmp(
2572           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2573     if (NeedPosCheck && NeedNegCheck) {
2574       // Select the answer based on the sign of Step.
2575       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2576     }
2577     return Builder.CreateOr(EndCheck, OfMul);
2578   };
2579   Value *EndCheck = ComputeEndCheck();
2580 
2581   // If the backedge taken count type is larger than the AR type,
2582   // check that we don't drop any bits by truncating it. If we are
2583   // dropping bits, then we have overflow (unless the step is zero).
2584   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2585     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2586     auto *BackedgeCheck =
2587         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2588                            ConstantInt::get(Loc->getContext(), MaxVal));
2589     BackedgeCheck = Builder.CreateAnd(
2590         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2591 
2592     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2593   }
2594 
2595   return EndCheck;
2596 }
2597 
2598 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2599                                          Instruction *IP) {
2600   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2601   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2602 
2603   // Add a check for NUSW
2604   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2605     NUSWCheck = generateOverflowCheck(A, IP, false);
2606 
2607   // Add a check for NSSW
2608   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2609     NSSWCheck = generateOverflowCheck(A, IP, true);
2610 
2611   if (NUSWCheck && NSSWCheck)
2612     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2613 
2614   if (NUSWCheck)
2615     return NUSWCheck;
2616 
2617   if (NSSWCheck)
2618     return NSSWCheck;
2619 
2620   return ConstantInt::getFalse(IP->getContext());
2621 }
2622 
2623 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2624                                           Instruction *IP) {
2625   // Loop over all checks in this set.
2626   SmallVector<Value *> Checks;
2627   for (auto Pred : Union->getPredicates()) {
2628     Checks.push_back(expandCodeForPredicate(Pred, IP));
2629     Builder.SetInsertPoint(IP);
2630   }
2631 
2632   if (Checks.empty())
2633     return ConstantInt::getFalse(IP->getContext());
2634   return Builder.CreateOr(Checks);
2635 }
2636 
2637 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2638   assert(PreserveLCSSA);
2639   SmallVector<Instruction *, 1> ToUpdate;
2640 
2641   auto *OpV = User->getOperand(OpIdx);
2642   auto *OpI = dyn_cast<Instruction>(OpV);
2643   if (!OpI)
2644     return OpV;
2645 
2646   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2647   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2648   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2649     return OpV;
2650 
2651   ToUpdate.push_back(OpI);
2652   SmallVector<PHINode *, 16> PHIsToRemove;
2653   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2654   for (PHINode *PN : PHIsToRemove) {
2655     if (!PN->use_empty())
2656       continue;
2657     InsertedValues.erase(PN);
2658     InsertedPostIncValues.erase(PN);
2659     PN->eraseFromParent();
2660   }
2661 
2662   return User->getOperand(OpIdx);
2663 }
2664 
2665 namespace {
2666 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2667 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2668 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2669 // instruction, but the important thing is that we prove the denominator is
2670 // nonzero before expansion.
2671 //
2672 // IVUsers already checks that IV-derived expressions are safe. So this check is
2673 // only needed when the expression includes some subexpression that is not IV
2674 // derived.
2675 //
2676 // Currently, we only allow division by a nonzero constant here. If this is
2677 // inadequate, we could easily allow division by SCEVUnknown by using
2678 // ValueTracking to check isKnownNonZero().
2679 //
2680 // We cannot generally expand recurrences unless the step dominates the loop
2681 // header. The expander handles the special case of affine recurrences by
2682 // scaling the recurrence outside the loop, but this technique isn't generally
2683 // applicable. Expanding a nested recurrence outside a loop requires computing
2684 // binomial coefficients. This could be done, but the recurrence has to be in a
2685 // perfectly reduced form, which can't be guaranteed.
2686 struct SCEVFindUnsafe {
2687   ScalarEvolution &SE;
2688   bool CanonicalMode;
2689   bool IsUnsafe = false;
2690 
2691   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2692       : SE(SE), CanonicalMode(CanonicalMode) {}
2693 
2694   bool follow(const SCEV *S) {
2695     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2696       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2697       if (!SC || SC->getValue()->isZero()) {
2698         IsUnsafe = true;
2699         return false;
2700       }
2701     }
2702     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2703       const SCEV *Step = AR->getStepRecurrence(SE);
2704       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2705         IsUnsafe = true;
2706         return false;
2707       }
2708 
2709       // For non-affine addrecs or in non-canonical mode we need a preheader
2710       // to insert into.
2711       if (!AR->getLoop()->getLoopPreheader() &&
2712           (!CanonicalMode || !AR->isAffine())) {
2713         IsUnsafe = true;
2714         return false;
2715       }
2716     }
2717     return true;
2718   }
2719   bool isDone() const { return IsUnsafe; }
2720 };
2721 }
2722 
2723 namespace llvm {
2724 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2725   SCEVFindUnsafe Search(SE, CanonicalMode);
2726   visitAll(S, Search);
2727   return !Search.IsUnsafe;
2728 }
2729 
2730 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2731                       ScalarEvolution &SE) {
2732   if (!isSafeToExpand(S, SE))
2733     return false;
2734   // We have to prove that the expanded site of S dominates InsertionPoint.
2735   // This is easy when not in the same block, but hard when S is an instruction
2736   // to be expanded somewhere inside the same block as our insertion point.
2737   // What we really need here is something analogous to an OrderedBasicBlock,
2738   // but for the moment, we paper over the problem by handling two common and
2739   // cheap to check cases.
2740   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2741     return true;
2742   if (SE.dominates(S, InsertionPoint->getParent())) {
2743     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2744       return true;
2745     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2746       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2747         return true;
2748   }
2749   return false;
2750 }
2751 
2752 void SCEVExpanderCleaner::cleanup() {
2753   // Result is used, nothing to remove.
2754   if (ResultUsed)
2755     return;
2756 
2757   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2758 #ifndef NDEBUG
2759   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2760                                             InsertedInstructions.end());
2761   (void)InsertedSet;
2762 #endif
2763   // Remove sets with value handles.
2764   Expander.clear();
2765 
2766   // Remove all inserted instructions.
2767   for (Instruction *I : reverse(InsertedInstructions)) {
2768 #ifndef NDEBUG
2769     assert(all_of(I->users(),
2770                   [&InsertedSet](Value *U) {
2771                     return InsertedSet.contains(cast<Instruction>(U));
2772                   }) &&
2773            "removed instruction should only be used by instructions inserted "
2774            "during expansion");
2775 #endif
2776     assert(!I->getType()->isVoidTy() &&
2777            "inserted instruction should have non-void types");
2778     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2779     I->eraseFromParent();
2780   }
2781 }
2782 }
2783