1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 using namespace llvm; 33 34 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 35 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 36 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 37 "controls the budget that is considered cheap (default = 4)")); 38 39 using namespace PatternMatch; 40 41 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 42 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 43 /// creating a new one. 44 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 45 Instruction::CastOps Op, 46 BasicBlock::iterator IP) { 47 // This function must be called with the builder having a valid insertion 48 // point. It doesn't need to be the actual IP where the uses of the returned 49 // cast will be added, but it must dominate such IP. 50 // We use this precondition to produce a cast that will dominate all its 51 // uses. In particular, this is crucial for the case where the builder's 52 // insertion point *is* the point where we were asked to put the cast. 53 // Since we don't know the builder's insertion point is actually 54 // where the uses will be added (only that it dominates it), we are 55 // not allowed to move it. 56 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 57 58 Value *Ret = nullptr; 59 60 // Check to see if there is already a cast! 61 for (User *U : V->users()) { 62 if (U->getType() != Ty) 63 continue; 64 CastInst *CI = dyn_cast<CastInst>(U); 65 if (!CI || CI->getOpcode() != Op) 66 continue; 67 68 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 69 // the cast must also properly dominate the Builder's insertion point. 70 if (IP->getParent() == CI->getParent() && &*BIP != CI && 71 (&*IP == CI || CI->comesBefore(&*IP))) { 72 Ret = CI; 73 break; 74 } 75 } 76 77 // Create a new cast. 78 if (!Ret) { 79 SCEVInsertPointGuard Guard(Builder, this); 80 Builder.SetInsertPoint(&*IP); 81 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 82 } 83 84 // We assert at the end of the function since IP might point to an 85 // instruction with different dominance properties than a cast 86 // (an invoke for example) and not dominate BIP (but the cast does). 87 assert(!isa<Instruction>(Ret) || 88 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 89 90 return Ret; 91 } 92 93 BasicBlock::iterator 94 SCEVExpander::findInsertPointAfter(Instruction *I, 95 Instruction *MustDominate) const { 96 BasicBlock::iterator IP = ++I->getIterator(); 97 if (auto *II = dyn_cast<InvokeInst>(I)) 98 IP = II->getNormalDest()->begin(); 99 100 while (isa<PHINode>(IP)) 101 ++IP; 102 103 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 104 ++IP; 105 } else if (isa<CatchSwitchInst>(IP)) { 106 IP = MustDominate->getParent()->getFirstInsertionPt(); 107 } else { 108 assert(!IP->isEHPad() && "unexpected eh pad!"); 109 } 110 111 // Adjust insert point to be after instructions inserted by the expander, so 112 // we can re-use already inserted instructions. Avoid skipping past the 113 // original \p MustDominate, in case it is an inserted instruction. 114 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 115 ++IP; 116 117 return IP; 118 } 119 120 BasicBlock::iterator 121 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 122 // Cast the argument at the beginning of the entry block, after 123 // any bitcasts of other arguments. 124 if (Argument *A = dyn_cast<Argument>(V)) { 125 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 126 while ((isa<BitCastInst>(IP) && 127 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 128 cast<BitCastInst>(IP)->getOperand(0) != A) || 129 isa<DbgInfoIntrinsic>(IP)) 130 ++IP; 131 return IP; 132 } 133 134 // Cast the instruction immediately after the instruction. 135 if (Instruction *I = dyn_cast<Instruction>(V)) 136 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 137 138 // Otherwise, this must be some kind of a constant, 139 // so let's plop this cast into the function's entry block. 140 assert(isa<Constant>(V) && 141 "Expected the cast argument to be a global/constant"); 142 return Builder.GetInsertBlock() 143 ->getParent() 144 ->getEntryBlock() 145 .getFirstInsertionPt(); 146 } 147 148 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 149 /// which must be possible with a noop cast, doing what we can to share 150 /// the casts. 151 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 152 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 153 assert((Op == Instruction::BitCast || 154 Op == Instruction::PtrToInt || 155 Op == Instruction::IntToPtr) && 156 "InsertNoopCastOfTo cannot perform non-noop casts!"); 157 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 158 "InsertNoopCastOfTo cannot change sizes!"); 159 160 // inttoptr only works for integral pointers. For non-integral pointers, we 161 // can create a GEP on i8* null with the integral value as index. Note that 162 // it is safe to use GEP of null instead of inttoptr here, because only 163 // expressions already based on a GEP of null should be converted to pointers 164 // during expansion. 165 if (Op == Instruction::IntToPtr) { 166 auto *PtrTy = cast<PointerType>(Ty); 167 if (DL.isNonIntegralPointerType(PtrTy)) { 168 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 169 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && 170 "alloc size of i8 must by 1 byte for the GEP to be correct"); 171 auto *GEP = Builder.CreateGEP( 172 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 173 return Builder.CreateBitCast(GEP, Ty); 174 } 175 } 176 // Short-circuit unnecessary bitcasts. 177 if (Op == Instruction::BitCast) { 178 if (V->getType() == Ty) 179 return V; 180 if (CastInst *CI = dyn_cast<CastInst>(V)) { 181 if (CI->getOperand(0)->getType() == Ty) 182 return CI->getOperand(0); 183 } 184 } 185 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 186 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 187 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 188 if (CastInst *CI = dyn_cast<CastInst>(V)) 189 if ((CI->getOpcode() == Instruction::PtrToInt || 190 CI->getOpcode() == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(CI->getType()) == 192 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 193 return CI->getOperand(0); 194 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 195 if ((CE->getOpcode() == Instruction::PtrToInt || 196 CE->getOpcode() == Instruction::IntToPtr) && 197 SE.getTypeSizeInBits(CE->getType()) == 198 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 199 return CE->getOperand(0); 200 } 201 202 // Fold a cast of a constant. 203 if (Constant *C = dyn_cast<Constant>(V)) 204 return ConstantExpr::getCast(Op, C, Ty); 205 206 // Try to reuse existing cast, or insert one. 207 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 208 } 209 210 /// InsertBinop - Insert the specified binary operator, doing a small amount 211 /// of work to avoid inserting an obviously redundant operation, and hoisting 212 /// to an outer loop when the opportunity is there and it is safe. 213 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 214 Value *LHS, Value *RHS, 215 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 216 // Fold a binop with constant operands. 217 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 218 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 219 return ConstantExpr::get(Opcode, CLHS, CRHS); 220 221 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 222 unsigned ScanLimit = 6; 223 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 224 // Scanning starts from the last instruction before the insertion point. 225 BasicBlock::iterator IP = Builder.GetInsertPoint(); 226 if (IP != BlockBegin) { 227 --IP; 228 for (; ScanLimit; --IP, --ScanLimit) { 229 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 230 // generated code. 231 if (isa<DbgInfoIntrinsic>(IP)) 232 ScanLimit++; 233 234 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 235 // Ensure that no-wrap flags match. 236 if (isa<OverflowingBinaryOperator>(I)) { 237 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 238 return true; 239 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 240 return true; 241 } 242 // Conservatively, do not use any instruction which has any of exact 243 // flags installed. 244 if (isa<PossiblyExactOperator>(I) && I->isExact()) 245 return true; 246 return false; 247 }; 248 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 249 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 250 return &*IP; 251 if (IP == BlockBegin) break; 252 } 253 } 254 255 // Save the original insertion point so we can restore it when we're done. 256 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 257 SCEVInsertPointGuard Guard(Builder, this); 258 259 if (IsSafeToHoist) { 260 // Move the insertion point out of as many loops as we can. 261 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 262 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 263 BasicBlock *Preheader = L->getLoopPreheader(); 264 if (!Preheader) break; 265 266 // Ok, move up a level. 267 Builder.SetInsertPoint(Preheader->getTerminator()); 268 } 269 } 270 271 // If we haven't found this binop, insert it. 272 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 273 BO->setDebugLoc(Loc); 274 if (Flags & SCEV::FlagNUW) 275 BO->setHasNoUnsignedWrap(); 276 if (Flags & SCEV::FlagNSW) 277 BO->setHasNoSignedWrap(); 278 279 return BO; 280 } 281 282 /// FactorOutConstant - Test if S is divisible by Factor, using signed 283 /// division. If so, update S with Factor divided out and return true. 284 /// S need not be evenly divisible if a reasonable remainder can be 285 /// computed. 286 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 287 const SCEV *Factor, ScalarEvolution &SE, 288 const DataLayout &DL) { 289 // Everything is divisible by one. 290 if (Factor->isOne()) 291 return true; 292 293 // x/x == 1. 294 if (S == Factor) { 295 S = SE.getConstant(S->getType(), 1); 296 return true; 297 } 298 299 // For a Constant, check for a multiple of the given factor. 300 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 301 // 0/x == 0. 302 if (C->isZero()) 303 return true; 304 // Check for divisibility. 305 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 306 ConstantInt *CI = 307 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 308 // If the quotient is zero and the remainder is non-zero, reject 309 // the value at this scale. It will be considered for subsequent 310 // smaller scales. 311 if (!CI->isZero()) { 312 const SCEV *Div = SE.getConstant(CI); 313 S = Div; 314 Remainder = SE.getAddExpr( 315 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 316 return true; 317 } 318 } 319 } 320 321 // In a Mul, check if there is a constant operand which is a multiple 322 // of the given factor. 323 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 324 // Size is known, check if there is a constant operand which is a multiple 325 // of the given factor. If so, we can factor it. 326 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 327 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 328 if (!C->getAPInt().srem(FC->getAPInt())) { 329 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 330 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 331 S = SE.getMulExpr(NewMulOps); 332 return true; 333 } 334 } 335 336 // In an AddRec, check if both start and step are divisible. 337 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 338 const SCEV *Step = A->getStepRecurrence(SE); 339 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 340 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 341 return false; 342 if (!StepRem->isZero()) 343 return false; 344 const SCEV *Start = A->getStart(); 345 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 346 return false; 347 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 348 A->getNoWrapFlags(SCEV::FlagNW)); 349 return true; 350 } 351 352 return false; 353 } 354 355 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 356 /// is the number of SCEVAddRecExprs present, which are kept at the end of 357 /// the list. 358 /// 359 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 360 Type *Ty, 361 ScalarEvolution &SE) { 362 unsigned NumAddRecs = 0; 363 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 364 ++NumAddRecs; 365 // Group Ops into non-addrecs and addrecs. 366 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 367 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 368 // Let ScalarEvolution sort and simplify the non-addrecs list. 369 const SCEV *Sum = NoAddRecs.empty() ? 370 SE.getConstant(Ty, 0) : 371 SE.getAddExpr(NoAddRecs); 372 // If it returned an add, use the operands. Otherwise it simplified 373 // the sum into a single value, so just use that. 374 Ops.clear(); 375 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 376 Ops.append(Add->op_begin(), Add->op_end()); 377 else if (!Sum->isZero()) 378 Ops.push_back(Sum); 379 // Then append the addrecs. 380 Ops.append(AddRecs.begin(), AddRecs.end()); 381 } 382 383 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 384 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 385 /// This helps expose more opportunities for folding parts of the expressions 386 /// into GEP indices. 387 /// 388 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 389 Type *Ty, 390 ScalarEvolution &SE) { 391 // Find the addrecs. 392 SmallVector<const SCEV *, 8> AddRecs; 393 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 394 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 395 const SCEV *Start = A->getStart(); 396 if (Start->isZero()) break; 397 const SCEV *Zero = SE.getConstant(Ty, 0); 398 AddRecs.push_back(SE.getAddRecExpr(Zero, 399 A->getStepRecurrence(SE), 400 A->getLoop(), 401 A->getNoWrapFlags(SCEV::FlagNW))); 402 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 403 Ops[i] = Zero; 404 Ops.append(Add->op_begin(), Add->op_end()); 405 e += Add->getNumOperands(); 406 } else { 407 Ops[i] = Start; 408 } 409 } 410 if (!AddRecs.empty()) { 411 // Add the addrecs onto the end of the list. 412 Ops.append(AddRecs.begin(), AddRecs.end()); 413 // Resort the operand list, moving any constants to the front. 414 SimplifyAddOperands(Ops, Ty, SE); 415 } 416 } 417 418 /// expandAddToGEP - Expand an addition expression with a pointer type into 419 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 420 /// BasicAliasAnalysis and other passes analyze the result. See the rules 421 /// for getelementptr vs. inttoptr in 422 /// http://llvm.org/docs/LangRef.html#pointeraliasing 423 /// for details. 424 /// 425 /// Design note: The correctness of using getelementptr here depends on 426 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 427 /// they may introduce pointer arithmetic which may not be safely converted 428 /// into getelementptr. 429 /// 430 /// Design note: It might seem desirable for this function to be more 431 /// loop-aware. If some of the indices are loop-invariant while others 432 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 433 /// loop-invariant portions of the overall computation outside the loop. 434 /// However, there are a few reasons this is not done here. Hoisting simple 435 /// arithmetic is a low-level optimization that often isn't very 436 /// important until late in the optimization process. In fact, passes 437 /// like InstructionCombining will combine GEPs, even if it means 438 /// pushing loop-invariant computation down into loops, so even if the 439 /// GEPs were split here, the work would quickly be undone. The 440 /// LoopStrengthReduction pass, which is usually run quite late (and 441 /// after the last InstructionCombining pass), takes care of hoisting 442 /// loop-invariant portions of expressions, after considering what 443 /// can be folded using target addressing modes. 444 /// 445 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 446 const SCEV *const *op_end, 447 PointerType *PTy, 448 Type *Ty, 449 Value *V) { 450 Type *OriginalElTy = PTy->getElementType(); 451 Type *ElTy = OriginalElTy; 452 SmallVector<Value *, 4> GepIndices; 453 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 454 bool AnyNonZeroIndices = false; 455 456 // Split AddRecs up into parts as either of the parts may be usable 457 // without the other. 458 SplitAddRecs(Ops, Ty, SE); 459 460 Type *IntIdxTy = DL.getIndexType(PTy); 461 462 // Descend down the pointer's type and attempt to convert the other 463 // operands into GEP indices, at each level. The first index in a GEP 464 // indexes into the array implied by the pointer operand; the rest of 465 // the indices index into the element or field type selected by the 466 // preceding index. 467 for (;;) { 468 // If the scale size is not 0, attempt to factor out a scale for 469 // array indexing. 470 SmallVector<const SCEV *, 8> ScaledOps; 471 if (ElTy->isSized()) { 472 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 473 if (!ElSize->isZero()) { 474 SmallVector<const SCEV *, 8> NewOps; 475 for (const SCEV *Op : Ops) { 476 const SCEV *Remainder = SE.getConstant(Ty, 0); 477 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 478 // Op now has ElSize factored out. 479 ScaledOps.push_back(Op); 480 if (!Remainder->isZero()) 481 NewOps.push_back(Remainder); 482 AnyNonZeroIndices = true; 483 } else { 484 // The operand was not divisible, so add it to the list of operands 485 // we'll scan next iteration. 486 NewOps.push_back(Op); 487 } 488 } 489 // If we made any changes, update Ops. 490 if (!ScaledOps.empty()) { 491 Ops = NewOps; 492 SimplifyAddOperands(Ops, Ty, SE); 493 } 494 } 495 } 496 497 // Record the scaled array index for this level of the type. If 498 // we didn't find any operands that could be factored, tentatively 499 // assume that element zero was selected (since the zero offset 500 // would obviously be folded away). 501 Value *Scaled = 502 ScaledOps.empty() 503 ? Constant::getNullValue(Ty) 504 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 505 GepIndices.push_back(Scaled); 506 507 // Collect struct field index operands. 508 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 509 bool FoundFieldNo = false; 510 // An empty struct has no fields. 511 if (STy->getNumElements() == 0) break; 512 // Field offsets are known. See if a constant offset falls within any of 513 // the struct fields. 514 if (Ops.empty()) 515 break; 516 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 517 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 518 const StructLayout &SL = *DL.getStructLayout(STy); 519 uint64_t FullOffset = C->getValue()->getZExtValue(); 520 if (FullOffset < SL.getSizeInBytes()) { 521 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 522 GepIndices.push_back( 523 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 524 ElTy = STy->getTypeAtIndex(ElIdx); 525 Ops[0] = 526 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 527 AnyNonZeroIndices = true; 528 FoundFieldNo = true; 529 } 530 } 531 // If no struct field offsets were found, tentatively assume that 532 // field zero was selected (since the zero offset would obviously 533 // be folded away). 534 if (!FoundFieldNo) { 535 ElTy = STy->getTypeAtIndex(0u); 536 GepIndices.push_back( 537 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 538 } 539 } 540 541 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 542 ElTy = ATy->getElementType(); 543 else 544 // FIXME: Handle VectorType. 545 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 546 // constant, therefore can not be factored out. The generated IR is less 547 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 548 break; 549 } 550 551 // If none of the operands were convertible to proper GEP indices, cast 552 // the base to i8* and do an ugly getelementptr with that. It's still 553 // better than ptrtoint+arithmetic+inttoptr at least. 554 if (!AnyNonZeroIndices) { 555 // Cast the base to i8*. 556 V = InsertNoopCastOfTo(V, 557 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 558 559 assert(!isa<Instruction>(V) || 560 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 561 562 // Expand the operands for a plain byte offset. 563 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 564 565 // Fold a GEP with constant operands. 566 if (Constant *CLHS = dyn_cast<Constant>(V)) 567 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 568 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 569 CLHS, CRHS); 570 571 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 572 unsigned ScanLimit = 6; 573 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 574 // Scanning starts from the last instruction before the insertion point. 575 BasicBlock::iterator IP = Builder.GetInsertPoint(); 576 if (IP != BlockBegin) { 577 --IP; 578 for (; ScanLimit; --IP, --ScanLimit) { 579 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 580 // generated code. 581 if (isa<DbgInfoIntrinsic>(IP)) 582 ScanLimit++; 583 if (IP->getOpcode() == Instruction::GetElementPtr && 584 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 585 return &*IP; 586 if (IP == BlockBegin) break; 587 } 588 } 589 590 // Save the original insertion point so we can restore it when we're done. 591 SCEVInsertPointGuard Guard(Builder, this); 592 593 // Move the insertion point out of as many loops as we can. 594 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 595 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 596 BasicBlock *Preheader = L->getLoopPreheader(); 597 if (!Preheader) break; 598 599 // Ok, move up a level. 600 Builder.SetInsertPoint(Preheader->getTerminator()); 601 } 602 603 // Emit a GEP. 604 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 605 } 606 607 { 608 SCEVInsertPointGuard Guard(Builder, this); 609 610 // Move the insertion point out of as many loops as we can. 611 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 612 if (!L->isLoopInvariant(V)) break; 613 614 bool AnyIndexNotLoopInvariant = any_of( 615 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 616 617 if (AnyIndexNotLoopInvariant) 618 break; 619 620 BasicBlock *Preheader = L->getLoopPreheader(); 621 if (!Preheader) break; 622 623 // Ok, move up a level. 624 Builder.SetInsertPoint(Preheader->getTerminator()); 625 } 626 627 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 628 // because ScalarEvolution may have changed the address arithmetic to 629 // compute a value which is beyond the end of the allocated object. 630 Value *Casted = V; 631 if (V->getType() != PTy) 632 Casted = InsertNoopCastOfTo(Casted, PTy); 633 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep"); 634 Ops.push_back(SE.getUnknown(GEP)); 635 } 636 637 return expand(SE.getAddExpr(Ops)); 638 } 639 640 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 641 Value *V) { 642 const SCEV *const Ops[1] = {Op}; 643 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 644 } 645 646 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 647 /// SCEV expansion. If they are nested, this is the most nested. If they are 648 /// neighboring, pick the later. 649 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 650 DominatorTree &DT) { 651 if (!A) return B; 652 if (!B) return A; 653 if (A->contains(B)) return B; 654 if (B->contains(A)) return A; 655 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 656 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 657 return A; // Arbitrarily break the tie. 658 } 659 660 /// getRelevantLoop - Get the most relevant loop associated with the given 661 /// expression, according to PickMostRelevantLoop. 662 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 663 // Test whether we've already computed the most relevant loop for this SCEV. 664 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 665 if (!Pair.second) 666 return Pair.first->second; 667 668 if (isa<SCEVConstant>(S)) 669 // A constant has no relevant loops. 670 return nullptr; 671 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 672 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 673 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 674 // A non-instruction has no relevant loops. 675 return nullptr; 676 } 677 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 678 const Loop *L = nullptr; 679 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 680 L = AR->getLoop(); 681 for (const SCEV *Op : N->operands()) 682 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 683 return RelevantLoops[N] = L; 684 } 685 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 686 const Loop *Result = getRelevantLoop(C->getOperand()); 687 return RelevantLoops[C] = Result; 688 } 689 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 690 const Loop *Result = PickMostRelevantLoop( 691 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 692 return RelevantLoops[D] = Result; 693 } 694 llvm_unreachable("Unexpected SCEV type!"); 695 } 696 697 namespace { 698 699 /// LoopCompare - Compare loops by PickMostRelevantLoop. 700 class LoopCompare { 701 DominatorTree &DT; 702 public: 703 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 704 705 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 706 std::pair<const Loop *, const SCEV *> RHS) const { 707 // Keep pointer operands sorted at the end. 708 if (LHS.second->getType()->isPointerTy() != 709 RHS.second->getType()->isPointerTy()) 710 return LHS.second->getType()->isPointerTy(); 711 712 // Compare loops with PickMostRelevantLoop. 713 if (LHS.first != RHS.first) 714 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 715 716 // If one operand is a non-constant negative and the other is not, 717 // put the non-constant negative on the right so that a sub can 718 // be used instead of a negate and add. 719 if (LHS.second->isNonConstantNegative()) { 720 if (!RHS.second->isNonConstantNegative()) 721 return false; 722 } else if (RHS.second->isNonConstantNegative()) 723 return true; 724 725 // Otherwise they are equivalent according to this comparison. 726 return false; 727 } 728 }; 729 730 } 731 732 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 733 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 734 735 // Collect all the add operands in a loop, along with their associated loops. 736 // Iterate in reverse so that constants are emitted last, all else equal, and 737 // so that pointer operands are inserted first, which the code below relies on 738 // to form more involved GEPs. 739 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 740 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 741 E(S->op_begin()); I != E; ++I) 742 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 743 744 // Sort by loop. Use a stable sort so that constants follow non-constants and 745 // pointer operands precede non-pointer operands. 746 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 747 748 // Emit instructions to add all the operands. Hoist as much as possible 749 // out of loops, and form meaningful getelementptrs where possible. 750 Value *Sum = nullptr; 751 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 752 const Loop *CurLoop = I->first; 753 const SCEV *Op = I->second; 754 if (!Sum) { 755 // This is the first operand. Just expand it. 756 Sum = expand(Op); 757 ++I; 758 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 759 // The running sum expression is a pointer. Try to form a getelementptr 760 // at this level with that as the base. 761 SmallVector<const SCEV *, 4> NewOps; 762 for (; I != E && I->first == CurLoop; ++I) { 763 // If the operand is SCEVUnknown and not instructions, peek through 764 // it, to enable more of it to be folded into the GEP. 765 const SCEV *X = I->second; 766 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 767 if (!isa<Instruction>(U->getValue())) 768 X = SE.getSCEV(U->getValue()); 769 NewOps.push_back(X); 770 } 771 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 772 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 773 // The running sum is an integer, and there's a pointer at this level. 774 // Try to form a getelementptr. If the running sum is instructions, 775 // use a SCEVUnknown to avoid re-analyzing them. 776 SmallVector<const SCEV *, 4> NewOps; 777 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 778 SE.getSCEV(Sum)); 779 for (++I; I != E && I->first == CurLoop; ++I) 780 NewOps.push_back(I->second); 781 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 782 } else if (Op->isNonConstantNegative()) { 783 // Instead of doing a negate and add, just do a subtract. 784 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 785 Sum = InsertNoopCastOfTo(Sum, Ty); 786 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 787 /*IsSafeToHoist*/ true); 788 ++I; 789 } else { 790 // A simple add. 791 Value *W = expandCodeForImpl(Op, Ty, false); 792 Sum = InsertNoopCastOfTo(Sum, Ty); 793 // Canonicalize a constant to the RHS. 794 if (isa<Constant>(Sum)) std::swap(Sum, W); 795 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 796 /*IsSafeToHoist*/ true); 797 ++I; 798 } 799 } 800 801 return Sum; 802 } 803 804 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 805 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 806 807 // Collect all the mul operands in a loop, along with their associated loops. 808 // Iterate in reverse so that constants are emitted last, all else equal. 809 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 810 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 811 E(S->op_begin()); I != E; ++I) 812 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 813 814 // Sort by loop. Use a stable sort so that constants follow non-constants. 815 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 816 817 // Emit instructions to mul all the operands. Hoist as much as possible 818 // out of loops. 819 Value *Prod = nullptr; 820 auto I = OpsAndLoops.begin(); 821 822 // Expand the calculation of X pow N in the following manner: 823 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 824 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 825 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 826 auto E = I; 827 // Calculate how many times the same operand from the same loop is included 828 // into this power. 829 uint64_t Exponent = 0; 830 const uint64_t MaxExponent = UINT64_MAX >> 1; 831 // No one sane will ever try to calculate such huge exponents, but if we 832 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 833 // below when the power of 2 exceeds our Exponent, and we want it to be 834 // 1u << 31 at most to not deal with unsigned overflow. 835 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 836 ++Exponent; 837 ++E; 838 } 839 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 840 841 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 842 // that are needed into the result. 843 Value *P = expandCodeForImpl(I->second, Ty, false); 844 Value *Result = nullptr; 845 if (Exponent & 1) 846 Result = P; 847 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 848 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 849 /*IsSafeToHoist*/ true); 850 if (Exponent & BinExp) 851 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 852 SCEV::FlagAnyWrap, 853 /*IsSafeToHoist*/ true) 854 : P; 855 } 856 857 I = E; 858 assert(Result && "Nothing was expanded?"); 859 return Result; 860 }; 861 862 while (I != OpsAndLoops.end()) { 863 if (!Prod) { 864 // This is the first operand. Just expand it. 865 Prod = ExpandOpBinPowN(); 866 } else if (I->second->isAllOnesValue()) { 867 // Instead of doing a multiply by negative one, just do a negate. 868 Prod = InsertNoopCastOfTo(Prod, Ty); 869 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 870 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 871 ++I; 872 } else { 873 // A simple mul. 874 Value *W = ExpandOpBinPowN(); 875 Prod = InsertNoopCastOfTo(Prod, Ty); 876 // Canonicalize a constant to the RHS. 877 if (isa<Constant>(Prod)) std::swap(Prod, W); 878 const APInt *RHS; 879 if (match(W, m_Power2(RHS))) { 880 // Canonicalize Prod*(1<<C) to Prod<<C. 881 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 882 auto NWFlags = S->getNoWrapFlags(); 883 // clear nsw flag if shl will produce poison value. 884 if (RHS->logBase2() == RHS->getBitWidth() - 1) 885 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 886 Prod = InsertBinop(Instruction::Shl, Prod, 887 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 888 /*IsSafeToHoist*/ true); 889 } else { 890 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 891 /*IsSafeToHoist*/ true); 892 } 893 } 894 } 895 896 return Prod; 897 } 898 899 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 900 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 901 902 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 903 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 904 const APInt &RHS = SC->getAPInt(); 905 if (RHS.isPowerOf2()) 906 return InsertBinop(Instruction::LShr, LHS, 907 ConstantInt::get(Ty, RHS.logBase2()), 908 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 909 } 910 911 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 912 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 913 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 914 } 915 916 /// Move parts of Base into Rest to leave Base with the minimal 917 /// expression that provides a pointer operand suitable for a 918 /// GEP expansion. 919 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 920 ScalarEvolution &SE) { 921 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 922 Base = A->getStart(); 923 Rest = SE.getAddExpr(Rest, 924 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 925 A->getStepRecurrence(SE), 926 A->getLoop(), 927 A->getNoWrapFlags(SCEV::FlagNW))); 928 } 929 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 930 Base = A->getOperand(A->getNumOperands()-1); 931 SmallVector<const SCEV *, 8> NewAddOps(A->operands()); 932 NewAddOps.back() = Rest; 933 Rest = SE.getAddExpr(NewAddOps); 934 ExposePointerBase(Base, Rest, SE); 935 } 936 } 937 938 /// Determine if this is a well-behaved chain of instructions leading back to 939 /// the PHI. If so, it may be reused by expanded expressions. 940 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 941 const Loop *L) { 942 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 943 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 944 return false; 945 // If any of the operands don't dominate the insert position, bail. 946 // Addrec operands are always loop-invariant, so this can only happen 947 // if there are instructions which haven't been hoisted. 948 if (L == IVIncInsertLoop) { 949 for (Use &Op : llvm::drop_begin(IncV->operands())) 950 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 951 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 952 return false; 953 } 954 // Advance to the next instruction. 955 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 956 if (!IncV) 957 return false; 958 959 if (IncV->mayHaveSideEffects()) 960 return false; 961 962 if (IncV == PN) 963 return true; 964 965 return isNormalAddRecExprPHI(PN, IncV, L); 966 } 967 968 /// getIVIncOperand returns an induction variable increment's induction 969 /// variable operand. 970 /// 971 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 972 /// operands dominate InsertPos. 973 /// 974 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 975 /// simple patterns generated by getAddRecExprPHILiterally and 976 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 977 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 978 Instruction *InsertPos, 979 bool allowScale) { 980 if (IncV == InsertPos) 981 return nullptr; 982 983 switch (IncV->getOpcode()) { 984 default: 985 return nullptr; 986 // Check for a simple Add/Sub or GEP of a loop invariant step. 987 case Instruction::Add: 988 case Instruction::Sub: { 989 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 990 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 991 return dyn_cast<Instruction>(IncV->getOperand(0)); 992 return nullptr; 993 } 994 case Instruction::BitCast: 995 return dyn_cast<Instruction>(IncV->getOperand(0)); 996 case Instruction::GetElementPtr: 997 for (Use &U : llvm::drop_begin(IncV->operands())) { 998 if (isa<Constant>(U)) 999 continue; 1000 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 1001 if (!SE.DT.dominates(OInst, InsertPos)) 1002 return nullptr; 1003 } 1004 if (allowScale) { 1005 // allow any kind of GEP as long as it can be hoisted. 1006 continue; 1007 } 1008 // This must be a pointer addition of constants (pretty), which is already 1009 // handled, or some number of address-size elements (ugly). Ugly geps 1010 // have 2 operands. i1* is used by the expander to represent an 1011 // address-size element. 1012 if (IncV->getNumOperands() != 2) 1013 return nullptr; 1014 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1015 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1016 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1017 return nullptr; 1018 break; 1019 } 1020 return dyn_cast<Instruction>(IncV->getOperand(0)); 1021 } 1022 } 1023 1024 /// If the insert point of the current builder or any of the builders on the 1025 /// stack of saved builders has 'I' as its insert point, update it to point to 1026 /// the instruction after 'I'. This is intended to be used when the instruction 1027 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1028 /// different block, the inconsistent insert point (with a mismatched 1029 /// Instruction and Block) can lead to an instruction being inserted in a block 1030 /// other than its parent. 1031 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1032 BasicBlock::iterator It(*I); 1033 BasicBlock::iterator NewInsertPt = std::next(It); 1034 if (Builder.GetInsertPoint() == It) 1035 Builder.SetInsertPoint(&*NewInsertPt); 1036 for (auto *InsertPtGuard : InsertPointGuards) 1037 if (InsertPtGuard->GetInsertPoint() == It) 1038 InsertPtGuard->SetInsertPoint(NewInsertPt); 1039 } 1040 1041 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1042 /// it available to other uses in this loop. Recursively hoist any operands, 1043 /// until we reach a value that dominates InsertPos. 1044 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1045 if (SE.DT.dominates(IncV, InsertPos)) 1046 return true; 1047 1048 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1049 // its existing users. 1050 if (isa<PHINode>(InsertPos) || 1051 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1052 return false; 1053 1054 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1055 return false; 1056 1057 // Check that the chain of IV operands leading back to Phi can be hoisted. 1058 SmallVector<Instruction*, 4> IVIncs; 1059 for(;;) { 1060 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1061 if (!Oper) 1062 return false; 1063 // IncV is safe to hoist. 1064 IVIncs.push_back(IncV); 1065 IncV = Oper; 1066 if (SE.DT.dominates(IncV, InsertPos)) 1067 break; 1068 } 1069 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1070 fixupInsertPoints(*I); 1071 (*I)->moveBefore(InsertPos); 1072 } 1073 return true; 1074 } 1075 1076 /// Determine if this cyclic phi is in a form that would have been generated by 1077 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1078 /// as it is in a low-cost form, for example, no implied multiplication. This 1079 /// should match any patterns generated by getAddRecExprPHILiterally and 1080 /// expandAddtoGEP. 1081 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1082 const Loop *L) { 1083 for(Instruction *IVOper = IncV; 1084 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1085 /*allowScale=*/false));) { 1086 if (IVOper == PN) 1087 return true; 1088 } 1089 return false; 1090 } 1091 1092 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1093 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1094 /// need to materialize IV increments elsewhere to handle difficult situations. 1095 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1096 Type *ExpandTy, Type *IntTy, 1097 bool useSubtract) { 1098 Value *IncV; 1099 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1100 if (ExpandTy->isPointerTy()) { 1101 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1102 // If the step isn't constant, don't use an implicitly scaled GEP, because 1103 // that would require a multiply inside the loop. 1104 if (!isa<ConstantInt>(StepV)) 1105 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1106 GEPPtrTy->getAddressSpace()); 1107 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1108 if (IncV->getType() != PN->getType()) 1109 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1110 } else { 1111 IncV = useSubtract ? 1112 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1113 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1114 } 1115 return IncV; 1116 } 1117 1118 /// Hoist the addrec instruction chain rooted in the loop phi above the 1119 /// position. This routine assumes that this is possible (has been checked). 1120 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, 1121 Instruction *Pos, PHINode *LoopPhi) { 1122 do { 1123 if (DT->dominates(InstToHoist, Pos)) 1124 break; 1125 // Make sure the increment is where we want it. But don't move it 1126 // down past a potential existing post-inc user. 1127 fixupInsertPoints(InstToHoist); 1128 InstToHoist->moveBefore(Pos); 1129 Pos = InstToHoist; 1130 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0)); 1131 } while (InstToHoist != LoopPhi); 1132 } 1133 1134 /// Check whether we can cheaply express the requested SCEV in terms of 1135 /// the available PHI SCEV by truncation and/or inversion of the step. 1136 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1137 const SCEVAddRecExpr *Phi, 1138 const SCEVAddRecExpr *Requested, 1139 bool &InvertStep) { 1140 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1141 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1142 1143 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1144 return false; 1145 1146 // Try truncate it if necessary. 1147 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1148 if (!Phi) 1149 return false; 1150 1151 // Check whether truncation will help. 1152 if (Phi == Requested) { 1153 InvertStep = false; 1154 return true; 1155 } 1156 1157 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1158 if (SE.getAddExpr(Requested->getStart(), 1159 SE.getNegativeSCEV(Requested)) == Phi) { 1160 InvertStep = true; 1161 return true; 1162 } 1163 1164 return false; 1165 } 1166 1167 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1168 if (!isa<IntegerType>(AR->getType())) 1169 return false; 1170 1171 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1172 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1173 const SCEV *Step = AR->getStepRecurrence(SE); 1174 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1175 SE.getSignExtendExpr(AR, WideTy)); 1176 const SCEV *ExtendAfterOp = 1177 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1178 return ExtendAfterOp == OpAfterExtend; 1179 } 1180 1181 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1182 if (!isa<IntegerType>(AR->getType())) 1183 return false; 1184 1185 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1186 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1187 const SCEV *Step = AR->getStepRecurrence(SE); 1188 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1189 SE.getZeroExtendExpr(AR, WideTy)); 1190 const SCEV *ExtendAfterOp = 1191 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1192 return ExtendAfterOp == OpAfterExtend; 1193 } 1194 1195 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1196 /// the base addrec, which is the addrec without any non-loop-dominating 1197 /// values, and return the PHI. 1198 PHINode * 1199 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1200 const Loop *L, 1201 Type *ExpandTy, 1202 Type *IntTy, 1203 Type *&TruncTy, 1204 bool &InvertStep) { 1205 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1206 1207 // Reuse a previously-inserted PHI, if present. 1208 BasicBlock *LatchBlock = L->getLoopLatch(); 1209 if (LatchBlock) { 1210 PHINode *AddRecPhiMatch = nullptr; 1211 Instruction *IncV = nullptr; 1212 TruncTy = nullptr; 1213 InvertStep = false; 1214 1215 // Only try partially matching scevs that need truncation and/or 1216 // step-inversion if we know this loop is outside the current loop. 1217 bool TryNonMatchingSCEV = 1218 IVIncInsertLoop && 1219 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1220 1221 for (PHINode &PN : L->getHeader()->phis()) { 1222 if (!SE.isSCEVable(PN.getType())) 1223 continue; 1224 1225 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1226 // PHI has no meaning at all. 1227 if (!PN.isComplete()) { 1228 DEBUG_WITH_TYPE( 1229 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1230 continue; 1231 } 1232 1233 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1234 if (!PhiSCEV) 1235 continue; 1236 1237 bool IsMatchingSCEV = PhiSCEV == Normalized; 1238 // We only handle truncation and inversion of phi recurrences for the 1239 // expanded expression if the expanded expression's loop dominates the 1240 // loop we insert to. Check now, so we can bail out early. 1241 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1242 continue; 1243 1244 // TODO: this possibly can be reworked to avoid this cast at all. 1245 Instruction *TempIncV = 1246 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1247 if (!TempIncV) 1248 continue; 1249 1250 // Check whether we can reuse this PHI node. 1251 if (LSRMode) { 1252 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1253 continue; 1254 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos)) 1255 continue; 1256 } else { 1257 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1258 continue; 1259 } 1260 1261 // Stop if we have found an exact match SCEV. 1262 if (IsMatchingSCEV) { 1263 IncV = TempIncV; 1264 TruncTy = nullptr; 1265 InvertStep = false; 1266 AddRecPhiMatch = &PN; 1267 break; 1268 } 1269 1270 // Try whether the phi can be translated into the requested form 1271 // (truncated and/or offset by a constant). 1272 if ((!TruncTy || InvertStep) && 1273 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1274 // Record the phi node. But don't stop we might find an exact match 1275 // later. 1276 AddRecPhiMatch = &PN; 1277 IncV = TempIncV; 1278 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1279 } 1280 } 1281 1282 if (AddRecPhiMatch) { 1283 // Potentially, move the increment. We have made sure in 1284 // isExpandedAddRecExprPHI or hoistIVInc that this is possible. 1285 if (L == IVIncInsertLoop) 1286 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch); 1287 1288 // Ok, the add recurrence looks usable. 1289 // Remember this PHI, even in post-inc mode. 1290 InsertedValues.insert(AddRecPhiMatch); 1291 // Remember the increment. 1292 rememberInstruction(IncV); 1293 // Those values were not actually inserted but re-used. 1294 ReusedValues.insert(AddRecPhiMatch); 1295 ReusedValues.insert(IncV); 1296 return AddRecPhiMatch; 1297 } 1298 } 1299 1300 // Save the original insertion point so we can restore it when we're done. 1301 SCEVInsertPointGuard Guard(Builder, this); 1302 1303 // Another AddRec may need to be recursively expanded below. For example, if 1304 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1305 // loop. Remove this loop from the PostIncLoops set before expanding such 1306 // AddRecs. Otherwise, we cannot find a valid position for the step 1307 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1308 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1309 // so it's not worth implementing SmallPtrSet::swap. 1310 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1311 PostIncLoops.clear(); 1312 1313 // Expand code for the start value into the loop preheader. 1314 assert(L->getLoopPreheader() && 1315 "Can't expand add recurrences without a loop preheader!"); 1316 Value *StartV = 1317 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1318 L->getLoopPreheader()->getTerminator(), false); 1319 1320 // StartV must have been be inserted into L's preheader to dominate the new 1321 // phi. 1322 assert(!isa<Instruction>(StartV) || 1323 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1324 L->getHeader())); 1325 1326 // Expand code for the step value. Do this before creating the PHI so that PHI 1327 // reuse code doesn't see an incomplete PHI. 1328 const SCEV *Step = Normalized->getStepRecurrence(SE); 1329 // If the stride is negative, insert a sub instead of an add for the increment 1330 // (unless it's a constant, because subtracts of constants are canonicalized 1331 // to adds). 1332 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1333 if (useSubtract) 1334 Step = SE.getNegativeSCEV(Step); 1335 // Expand the step somewhere that dominates the loop header. 1336 Value *StepV = expandCodeForImpl( 1337 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1338 1339 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1340 // we actually do emit an addition. It does not apply if we emit a 1341 // subtraction. 1342 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1343 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1344 1345 // Create the PHI. 1346 BasicBlock *Header = L->getHeader(); 1347 Builder.SetInsertPoint(Header, Header->begin()); 1348 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1349 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1350 Twine(IVName) + ".iv"); 1351 1352 // Create the step instructions and populate the PHI. 1353 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1354 BasicBlock *Pred = *HPI; 1355 1356 // Add a start value. 1357 if (!L->contains(Pred)) { 1358 PN->addIncoming(StartV, Pred); 1359 continue; 1360 } 1361 1362 // Create a step value and add it to the PHI. 1363 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1364 // instructions at IVIncInsertPos. 1365 Instruction *InsertPos = L == IVIncInsertLoop ? 1366 IVIncInsertPos : Pred->getTerminator(); 1367 Builder.SetInsertPoint(InsertPos); 1368 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1369 1370 if (isa<OverflowingBinaryOperator>(IncV)) { 1371 if (IncrementIsNUW) 1372 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1373 if (IncrementIsNSW) 1374 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1375 } 1376 PN->addIncoming(IncV, Pred); 1377 } 1378 1379 // After expanding subexpressions, restore the PostIncLoops set so the caller 1380 // can ensure that IVIncrement dominates the current uses. 1381 PostIncLoops = SavedPostIncLoops; 1382 1383 // Remember this PHI, even in post-inc mode. 1384 InsertedValues.insert(PN); 1385 1386 return PN; 1387 } 1388 1389 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1390 Type *STy = S->getType(); 1391 Type *IntTy = SE.getEffectiveSCEVType(STy); 1392 const Loop *L = S->getLoop(); 1393 1394 // Determine a normalized form of this expression, which is the expression 1395 // before any post-inc adjustment is made. 1396 const SCEVAddRecExpr *Normalized = S; 1397 if (PostIncLoops.count(L)) { 1398 PostIncLoopSet Loops; 1399 Loops.insert(L); 1400 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1401 } 1402 1403 // Strip off any non-loop-dominating component from the addrec start. 1404 const SCEV *Start = Normalized->getStart(); 1405 const SCEV *PostLoopOffset = nullptr; 1406 if (!SE.properlyDominates(Start, L->getHeader())) { 1407 PostLoopOffset = Start; 1408 Start = SE.getConstant(Normalized->getType(), 0); 1409 Normalized = cast<SCEVAddRecExpr>( 1410 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1411 Normalized->getLoop(), 1412 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1413 } 1414 1415 // Strip off any non-loop-dominating component from the addrec step. 1416 const SCEV *Step = Normalized->getStepRecurrence(SE); 1417 const SCEV *PostLoopScale = nullptr; 1418 if (!SE.dominates(Step, L->getHeader())) { 1419 PostLoopScale = Step; 1420 Step = SE.getConstant(Normalized->getType(), 1); 1421 if (!Start->isZero()) { 1422 // The normalization below assumes that Start is constant zero, so if 1423 // it isn't re-associate Start to PostLoopOffset. 1424 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1425 PostLoopOffset = Start; 1426 Start = SE.getConstant(Normalized->getType(), 0); 1427 } 1428 Normalized = 1429 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1430 Start, Step, Normalized->getLoop(), 1431 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1432 } 1433 1434 // Expand the core addrec. If we need post-loop scaling, force it to 1435 // expand to an integer type to avoid the need for additional casting. 1436 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1437 // We can't use a pointer type for the addrec if the pointer type is 1438 // non-integral. 1439 Type *AddRecPHIExpandTy = 1440 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1441 1442 // In some cases, we decide to reuse an existing phi node but need to truncate 1443 // it and/or invert the step. 1444 Type *TruncTy = nullptr; 1445 bool InvertStep = false; 1446 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1447 IntTy, TruncTy, InvertStep); 1448 1449 // Accommodate post-inc mode, if necessary. 1450 Value *Result; 1451 if (!PostIncLoops.count(L)) 1452 Result = PN; 1453 else { 1454 // In PostInc mode, use the post-incremented value. 1455 BasicBlock *LatchBlock = L->getLoopLatch(); 1456 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1457 Result = PN->getIncomingValueForBlock(LatchBlock); 1458 1459 // We might be introducing a new use of the post-inc IV that is not poison 1460 // safe, in which case we should drop poison generating flags. Only keep 1461 // those flags for which SCEV has proven that they always hold. 1462 if (isa<OverflowingBinaryOperator>(Result)) { 1463 auto *I = cast<Instruction>(Result); 1464 if (!S->hasNoUnsignedWrap()) 1465 I->setHasNoUnsignedWrap(false); 1466 if (!S->hasNoSignedWrap()) 1467 I->setHasNoSignedWrap(false); 1468 } 1469 1470 // For an expansion to use the postinc form, the client must call 1471 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1472 // or dominated by IVIncInsertPos. 1473 if (isa<Instruction>(Result) && 1474 !SE.DT.dominates(cast<Instruction>(Result), 1475 &*Builder.GetInsertPoint())) { 1476 // The induction variable's postinc expansion does not dominate this use. 1477 // IVUsers tries to prevent this case, so it is rare. However, it can 1478 // happen when an IVUser outside the loop is not dominated by the latch 1479 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1480 // all cases. Consider a phi outside whose operand is replaced during 1481 // expansion with the value of the postinc user. Without fundamentally 1482 // changing the way postinc users are tracked, the only remedy is 1483 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1484 // but hopefully expandCodeFor handles that. 1485 bool useSubtract = 1486 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1487 if (useSubtract) 1488 Step = SE.getNegativeSCEV(Step); 1489 Value *StepV; 1490 { 1491 // Expand the step somewhere that dominates the loop header. 1492 SCEVInsertPointGuard Guard(Builder, this); 1493 StepV = expandCodeForImpl( 1494 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1495 } 1496 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1497 } 1498 } 1499 1500 // We have decided to reuse an induction variable of a dominating loop. Apply 1501 // truncation and/or inversion of the step. 1502 if (TruncTy) { 1503 Type *ResTy = Result->getType(); 1504 // Normalize the result type. 1505 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1506 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1507 // Truncate the result. 1508 if (TruncTy != Result->getType()) 1509 Result = Builder.CreateTrunc(Result, TruncTy); 1510 1511 // Invert the result. 1512 if (InvertStep) 1513 Result = Builder.CreateSub( 1514 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1515 } 1516 1517 // Re-apply any non-loop-dominating scale. 1518 if (PostLoopScale) { 1519 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1520 Result = InsertNoopCastOfTo(Result, IntTy); 1521 Result = Builder.CreateMul(Result, 1522 expandCodeForImpl(PostLoopScale, IntTy, false)); 1523 } 1524 1525 // Re-apply any non-loop-dominating offset. 1526 if (PostLoopOffset) { 1527 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1528 if (Result->getType()->isIntegerTy()) { 1529 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1530 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1531 } else { 1532 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1533 } 1534 } else { 1535 Result = InsertNoopCastOfTo(Result, IntTy); 1536 Result = Builder.CreateAdd( 1537 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1538 } 1539 } 1540 1541 return Result; 1542 } 1543 1544 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1545 // In canonical mode we compute the addrec as an expression of a canonical IV 1546 // using evaluateAtIteration and expand the resulting SCEV expression. This 1547 // way we avoid introducing new IVs to carry on the comutation of the addrec 1548 // throughout the loop. 1549 // 1550 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1551 // type wider than the addrec itself. Emitting a canonical IV of the 1552 // proper type might produce non-legal types, for example expanding an i64 1553 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1554 // back to non-canonical mode for nested addrecs. 1555 if (!CanonicalMode || (S->getNumOperands() > 2)) 1556 return expandAddRecExprLiterally(S); 1557 1558 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1559 const Loop *L = S->getLoop(); 1560 1561 // First check for an existing canonical IV in a suitable type. 1562 PHINode *CanonicalIV = nullptr; 1563 if (PHINode *PN = L->getCanonicalInductionVariable()) 1564 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1565 CanonicalIV = PN; 1566 1567 // Rewrite an AddRec in terms of the canonical induction variable, if 1568 // its type is more narrow. 1569 if (CanonicalIV && 1570 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1571 SE.getTypeSizeInBits(Ty)) { 1572 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1573 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1574 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1575 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1576 S->getNoWrapFlags(SCEV::FlagNW))); 1577 BasicBlock::iterator NewInsertPt = 1578 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1579 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1580 &*NewInsertPt, false); 1581 return V; 1582 } 1583 1584 // {X,+,F} --> X + {0,+,F} 1585 if (!S->getStart()->isZero()) { 1586 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1587 NewOps[0] = SE.getConstant(Ty, 0); 1588 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1589 S->getNoWrapFlags(SCEV::FlagNW)); 1590 1591 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1592 // comments on expandAddToGEP for details. 1593 const SCEV *Base = S->getStart(); 1594 // Dig into the expression to find the pointer base for a GEP. 1595 const SCEV *ExposedRest = Rest; 1596 ExposePointerBase(Base, ExposedRest, SE); 1597 // If we found a pointer, expand the AddRec with a GEP. 1598 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1599 // Make sure the Base isn't something exotic, such as a multiplied 1600 // or divided pointer value. In those cases, the result type isn't 1601 // actually a pointer type. 1602 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1603 Value *StartV = expand(Base); 1604 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1605 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1606 } 1607 } 1608 1609 // Just do a normal add. Pre-expand the operands to suppress folding. 1610 // 1611 // The LHS and RHS values are factored out of the expand call to make the 1612 // output independent of the argument evaluation order. 1613 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1614 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1615 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1616 } 1617 1618 // If we don't yet have a canonical IV, create one. 1619 if (!CanonicalIV) { 1620 // Create and insert the PHI node for the induction variable in the 1621 // specified loop. 1622 BasicBlock *Header = L->getHeader(); 1623 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1624 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1625 &Header->front()); 1626 rememberInstruction(CanonicalIV); 1627 1628 SmallSet<BasicBlock *, 4> PredSeen; 1629 Constant *One = ConstantInt::get(Ty, 1); 1630 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1631 BasicBlock *HP = *HPI; 1632 if (!PredSeen.insert(HP).second) { 1633 // There must be an incoming value for each predecessor, even the 1634 // duplicates! 1635 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1636 continue; 1637 } 1638 1639 if (L->contains(HP)) { 1640 // Insert a unit add instruction right before the terminator 1641 // corresponding to the back-edge. 1642 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1643 "indvar.next", 1644 HP->getTerminator()); 1645 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1646 rememberInstruction(Add); 1647 CanonicalIV->addIncoming(Add, HP); 1648 } else { 1649 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1650 } 1651 } 1652 } 1653 1654 // {0,+,1} --> Insert a canonical induction variable into the loop! 1655 if (S->isAffine() && S->getOperand(1)->isOne()) { 1656 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1657 "IVs with types different from the canonical IV should " 1658 "already have been handled!"); 1659 return CanonicalIV; 1660 } 1661 1662 // {0,+,F} --> {0,+,1} * F 1663 1664 // If this is a simple linear addrec, emit it now as a special case. 1665 if (S->isAffine()) // {0,+,F} --> i*F 1666 return 1667 expand(SE.getTruncateOrNoop( 1668 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1669 SE.getNoopOrAnyExtend(S->getOperand(1), 1670 CanonicalIV->getType())), 1671 Ty)); 1672 1673 // If this is a chain of recurrences, turn it into a closed form, using the 1674 // folders, then expandCodeFor the closed form. This allows the folders to 1675 // simplify the expression without having to build a bunch of special code 1676 // into this folder. 1677 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1678 1679 // Promote S up to the canonical IV type, if the cast is foldable. 1680 const SCEV *NewS = S; 1681 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1682 if (isa<SCEVAddRecExpr>(Ext)) 1683 NewS = Ext; 1684 1685 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1686 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1687 1688 // Truncate the result down to the original type, if needed. 1689 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1690 return expand(T); 1691 } 1692 1693 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1694 Value *V = 1695 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1696 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1697 GetOptimalInsertionPointForCastOf(V)); 1698 } 1699 1700 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1701 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1702 Value *V = expandCodeForImpl( 1703 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1704 false); 1705 return Builder.CreateTrunc(V, Ty); 1706 } 1707 1708 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1709 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1710 Value *V = expandCodeForImpl( 1711 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1712 false); 1713 return Builder.CreateZExt(V, Ty); 1714 } 1715 1716 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1717 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1718 Value *V = expandCodeForImpl( 1719 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1720 false); 1721 return Builder.CreateSExt(V, Ty); 1722 } 1723 1724 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1725 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1726 Type *Ty = LHS->getType(); 1727 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1728 // In the case of mixed integer and pointer types, do the 1729 // rest of the comparisons as integer. 1730 Type *OpTy = S->getOperand(i)->getType(); 1731 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1732 Ty = SE.getEffectiveSCEVType(Ty); 1733 LHS = InsertNoopCastOfTo(LHS, Ty); 1734 } 1735 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1736 Value *Sel; 1737 if (Ty->isIntegerTy()) 1738 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS}, 1739 /*FMFSource=*/nullptr, "smax"); 1740 else { 1741 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1742 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1743 } 1744 LHS = Sel; 1745 } 1746 // In the case of mixed integer and pointer types, cast the 1747 // final result back to the pointer type. 1748 if (LHS->getType() != S->getType()) 1749 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1750 return LHS; 1751 } 1752 1753 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1754 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1755 Type *Ty = LHS->getType(); 1756 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1757 // In the case of mixed integer and pointer types, do the 1758 // rest of the comparisons as integer. 1759 Type *OpTy = S->getOperand(i)->getType(); 1760 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1761 Ty = SE.getEffectiveSCEVType(Ty); 1762 LHS = InsertNoopCastOfTo(LHS, Ty); 1763 } 1764 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1765 Value *Sel; 1766 if (Ty->isIntegerTy()) 1767 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS}, 1768 /*FMFSource=*/nullptr, "umax"); 1769 else { 1770 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1771 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1772 } 1773 LHS = Sel; 1774 } 1775 // In the case of mixed integer and pointer types, cast the 1776 // final result back to the pointer type. 1777 if (LHS->getType() != S->getType()) 1778 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1779 return LHS; 1780 } 1781 1782 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1783 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1784 Type *Ty = LHS->getType(); 1785 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1786 // In the case of mixed integer and pointer types, do the 1787 // rest of the comparisons as integer. 1788 Type *OpTy = S->getOperand(i)->getType(); 1789 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1790 Ty = SE.getEffectiveSCEVType(Ty); 1791 LHS = InsertNoopCastOfTo(LHS, Ty); 1792 } 1793 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1794 Value *Sel; 1795 if (Ty->isIntegerTy()) 1796 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS}, 1797 /*FMFSource=*/nullptr, "smin"); 1798 else { 1799 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1800 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1801 } 1802 LHS = Sel; 1803 } 1804 // In the case of mixed integer and pointer types, cast the 1805 // final result back to the pointer type. 1806 if (LHS->getType() != S->getType()) 1807 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1808 return LHS; 1809 } 1810 1811 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1812 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1813 Type *Ty = LHS->getType(); 1814 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1815 // In the case of mixed integer and pointer types, do the 1816 // rest of the comparisons as integer. 1817 Type *OpTy = S->getOperand(i)->getType(); 1818 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1819 Ty = SE.getEffectiveSCEVType(Ty); 1820 LHS = InsertNoopCastOfTo(LHS, Ty); 1821 } 1822 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1823 Value *Sel; 1824 if (Ty->isIntegerTy()) 1825 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS}, 1826 /*FMFSource=*/nullptr, "umin"); 1827 else { 1828 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1829 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1830 } 1831 LHS = Sel; 1832 } 1833 // In the case of mixed integer and pointer types, cast the 1834 // final result back to the pointer type. 1835 if (LHS->getType() != S->getType()) 1836 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1837 return LHS; 1838 } 1839 1840 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1841 Instruction *IP, bool Root) { 1842 setInsertPoint(IP); 1843 Value *V = expandCodeForImpl(SH, Ty, Root); 1844 return V; 1845 } 1846 1847 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1848 // Expand the code for this SCEV. 1849 Value *V = expand(SH); 1850 1851 if (PreserveLCSSA) { 1852 if (auto *Inst = dyn_cast<Instruction>(V)) { 1853 // Create a temporary instruction to at the current insertion point, so we 1854 // can hand it off to the helper to create LCSSA PHIs if required for the 1855 // new use. 1856 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1857 // would accept a insertion point and return an LCSSA phi for that 1858 // insertion point, so there is no need to insert & remove the temporary 1859 // instruction. 1860 Instruction *Tmp; 1861 if (Inst->getType()->isIntegerTy()) 1862 Tmp = 1863 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1864 else { 1865 assert(Inst->getType()->isPointerTy()); 1866 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1867 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1868 } 1869 V = fixupLCSSAFormFor(Tmp, 0); 1870 1871 // Clean up temporary instruction. 1872 InsertedValues.erase(Tmp); 1873 InsertedPostIncValues.erase(Tmp); 1874 Tmp->eraseFromParent(); 1875 } 1876 } 1877 1878 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1879 if (Ty) { 1880 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1881 "non-trivial casts should be done with the SCEVs directly!"); 1882 V = InsertNoopCastOfTo(V, Ty); 1883 } 1884 return V; 1885 } 1886 1887 ScalarEvolution::ValueOffsetPair 1888 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1889 const Instruction *InsertPt) { 1890 auto *Set = SE.getSCEVValues(S); 1891 // If the expansion is not in CanonicalMode, and the SCEV contains any 1892 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1893 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1894 // If S is scConstant, it may be worse to reuse an existing Value. 1895 if (S->getSCEVType() != scConstant && Set) { 1896 // Choose a Value from the set which dominates the insertPt. 1897 // insertPt should be inside the Value's parent loop so as not to break 1898 // the LCSSA form. 1899 for (auto const &VOPair : *Set) { 1900 Value *V = VOPair.first; 1901 ConstantInt *Offset = VOPair.second; 1902 Instruction *EntInst = nullptr; 1903 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1904 S->getType() == V->getType() && 1905 EntInst->getFunction() == InsertPt->getFunction() && 1906 SE.DT.dominates(EntInst, InsertPt) && 1907 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1908 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1909 return {V, Offset}; 1910 } 1911 } 1912 } 1913 return {nullptr, nullptr}; 1914 } 1915 1916 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1917 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1918 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1919 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1920 // the expansion will try to reuse Value from ExprValueMap, and only when it 1921 // fails, expand the SCEV literally. 1922 Value *SCEVExpander::expand(const SCEV *S) { 1923 // Compute an insertion point for this SCEV object. Hoist the instructions 1924 // as far out in the loop nest as possible. 1925 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1926 1927 // We can move insertion point only if there is no div or rem operations 1928 // otherwise we are risky to move it over the check for zero denominator. 1929 auto SafeToHoist = [](const SCEV *S) { 1930 return !SCEVExprContains(S, [](const SCEV *S) { 1931 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1932 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1933 // Division by non-zero constants can be hoisted. 1934 return SC->getValue()->isZero(); 1935 // All other divisions should not be moved as they may be 1936 // divisions by zero and should be kept within the 1937 // conditions of the surrounding loops that guard their 1938 // execution (see PR35406). 1939 return true; 1940 } 1941 return false; 1942 }); 1943 }; 1944 if (SafeToHoist(S)) { 1945 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1946 L = L->getParentLoop()) { 1947 if (SE.isLoopInvariant(S, L)) { 1948 if (!L) break; 1949 if (BasicBlock *Preheader = L->getLoopPreheader()) 1950 InsertPt = Preheader->getTerminator(); 1951 else 1952 // LSR sets the insertion point for AddRec start/step values to the 1953 // block start to simplify value reuse, even though it's an invalid 1954 // position. SCEVExpander must correct for this in all cases. 1955 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1956 } else { 1957 // If the SCEV is computable at this level, insert it into the header 1958 // after the PHIs (and after any other instructions that we've inserted 1959 // there) so that it is guaranteed to dominate any user inside the loop. 1960 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1961 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1962 1963 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1964 (isInsertedInstruction(InsertPt) || 1965 isa<DbgInfoIntrinsic>(InsertPt))) { 1966 InsertPt = &*std::next(InsertPt->getIterator()); 1967 } 1968 break; 1969 } 1970 } 1971 } 1972 1973 // Check to see if we already expanded this here. 1974 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1975 if (I != InsertedExpressions.end()) 1976 return I->second; 1977 1978 SCEVInsertPointGuard Guard(Builder, this); 1979 Builder.SetInsertPoint(InsertPt); 1980 1981 // Expand the expression into instructions. 1982 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1983 Value *V = VO.first; 1984 1985 if (!V) 1986 V = visit(S); 1987 else if (VO.second) { 1988 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1989 Type *Ety = Vty->getPointerElementType(); 1990 int64_t Offset = VO.second->getSExtValue(); 1991 int64_t ESize = SE.getTypeSizeInBits(Ety); 1992 if ((Offset * 8) % ESize == 0) { 1993 ConstantInt *Idx = 1994 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1995 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1996 } else { 1997 ConstantInt *Idx = 1998 ConstantInt::getSigned(VO.second->getType(), -Offset); 1999 unsigned AS = Vty->getAddressSpace(); 2000 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 2001 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 2002 "uglygep"); 2003 V = Builder.CreateBitCast(V, Vty); 2004 } 2005 } else { 2006 V = Builder.CreateSub(V, VO.second); 2007 } 2008 } 2009 // Remember the expanded value for this SCEV at this location. 2010 // 2011 // This is independent of PostIncLoops. The mapped value simply materializes 2012 // the expression at this insertion point. If the mapped value happened to be 2013 // a postinc expansion, it could be reused by a non-postinc user, but only if 2014 // its insertion point was already at the head of the loop. 2015 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 2016 return V; 2017 } 2018 2019 void SCEVExpander::rememberInstruction(Value *I) { 2020 auto DoInsert = [this](Value *V) { 2021 if (!PostIncLoops.empty()) 2022 InsertedPostIncValues.insert(V); 2023 else 2024 InsertedValues.insert(V); 2025 }; 2026 DoInsert(I); 2027 2028 if (!PreserveLCSSA) 2029 return; 2030 2031 if (auto *Inst = dyn_cast<Instruction>(I)) { 2032 // A new instruction has been added, which might introduce new uses outside 2033 // a defining loop. Fix LCSSA from for each operand of the new instruction, 2034 // if required. 2035 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 2036 OpIdx++) 2037 fixupLCSSAFormFor(Inst, OpIdx); 2038 } 2039 } 2040 2041 /// replaceCongruentIVs - Check for congruent phis in this loop header and 2042 /// replace them with their most canonical representative. Return the number of 2043 /// phis eliminated. 2044 /// 2045 /// This does not depend on any SCEVExpander state but should be used in 2046 /// the same context that SCEVExpander is used. 2047 unsigned 2048 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 2049 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2050 const TargetTransformInfo *TTI) { 2051 // Find integer phis in order of increasing width. 2052 SmallVector<PHINode*, 8> Phis; 2053 for (PHINode &PN : L->getHeader()->phis()) 2054 Phis.push_back(&PN); 2055 2056 if (TTI) 2057 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2058 // Put pointers at the back and make sure pointer < pointer = false. 2059 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2060 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2061 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 2062 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 2063 }); 2064 2065 unsigned NumElim = 0; 2066 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2067 // Process phis from wide to narrow. Map wide phis to their truncation 2068 // so narrow phis can reuse them. 2069 for (PHINode *Phi : Phis) { 2070 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2071 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2072 return V; 2073 if (!SE.isSCEVable(PN->getType())) 2074 return nullptr; 2075 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2076 if (!Const) 2077 return nullptr; 2078 return Const->getValue(); 2079 }; 2080 2081 // Fold constant phis. They may be congruent to other constant phis and 2082 // would confuse the logic below that expects proper IVs. 2083 if (Value *V = SimplifyPHINode(Phi)) { 2084 if (V->getType() != Phi->getType()) 2085 continue; 2086 Phi->replaceAllUsesWith(V); 2087 DeadInsts.emplace_back(Phi); 2088 ++NumElim; 2089 DEBUG_WITH_TYPE(DebugType, dbgs() 2090 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 2091 continue; 2092 } 2093 2094 if (!SE.isSCEVable(Phi->getType())) 2095 continue; 2096 2097 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2098 if (!OrigPhiRef) { 2099 OrigPhiRef = Phi; 2100 if (Phi->getType()->isIntegerTy() && TTI && 2101 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2102 // This phi can be freely truncated to the narrowest phi type. Map the 2103 // truncated expression to it so it will be reused for narrow types. 2104 const SCEV *TruncExpr = 2105 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2106 ExprToIVMap[TruncExpr] = Phi; 2107 } 2108 continue; 2109 } 2110 2111 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2112 // sense. 2113 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2114 continue; 2115 2116 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2117 Instruction *OrigInc = dyn_cast<Instruction>( 2118 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2119 Instruction *IsomorphicInc = 2120 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2121 2122 if (OrigInc && IsomorphicInc) { 2123 // If this phi has the same width but is more canonical, replace the 2124 // original with it. As part of the "more canonical" determination, 2125 // respect a prior decision to use an IV chain. 2126 if (OrigPhiRef->getType() == Phi->getType() && 2127 !(ChainedPhis.count(Phi) || 2128 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2129 (ChainedPhis.count(Phi) || 2130 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2131 std::swap(OrigPhiRef, Phi); 2132 std::swap(OrigInc, IsomorphicInc); 2133 } 2134 // Replacing the congruent phi is sufficient because acyclic 2135 // redundancy elimination, CSE/GVN, should handle the 2136 // rest. However, once SCEV proves that a phi is congruent, 2137 // it's often the head of an IV user cycle that is isomorphic 2138 // with the original phi. It's worth eagerly cleaning up the 2139 // common case of a single IV increment so that DeleteDeadPHIs 2140 // can remove cycles that had postinc uses. 2141 const SCEV *TruncExpr = 2142 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2143 if (OrigInc != IsomorphicInc && 2144 TruncExpr == SE.getSCEV(IsomorphicInc) && 2145 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2146 hoistIVInc(OrigInc, IsomorphicInc)) { 2147 DEBUG_WITH_TYPE(DebugType, 2148 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2149 << *IsomorphicInc << '\n'); 2150 Value *NewInc = OrigInc; 2151 if (OrigInc->getType() != IsomorphicInc->getType()) { 2152 Instruction *IP = nullptr; 2153 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2154 IP = &*PN->getParent()->getFirstInsertionPt(); 2155 else 2156 IP = OrigInc->getNextNode(); 2157 2158 IRBuilder<> Builder(IP); 2159 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2160 NewInc = Builder.CreateTruncOrBitCast( 2161 OrigInc, IsomorphicInc->getType(), IVName); 2162 } 2163 IsomorphicInc->replaceAllUsesWith(NewInc); 2164 DeadInsts.emplace_back(IsomorphicInc); 2165 } 2166 } 2167 } 2168 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: " 2169 << *Phi << '\n'); 2170 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Original iv: " 2171 << *OrigPhiRef << '\n'); 2172 ++NumElim; 2173 Value *NewIV = OrigPhiRef; 2174 if (OrigPhiRef->getType() != Phi->getType()) { 2175 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2176 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2177 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2178 } 2179 Phi->replaceAllUsesWith(NewIV); 2180 DeadInsts.emplace_back(Phi); 2181 } 2182 return NumElim; 2183 } 2184 2185 Optional<ScalarEvolution::ValueOffsetPair> 2186 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2187 Loop *L) { 2188 using namespace llvm::PatternMatch; 2189 2190 SmallVector<BasicBlock *, 4> ExitingBlocks; 2191 L->getExitingBlocks(ExitingBlocks); 2192 2193 // Look for suitable value in simple conditions at the loop exits. 2194 for (BasicBlock *BB : ExitingBlocks) { 2195 ICmpInst::Predicate Pred; 2196 Instruction *LHS, *RHS; 2197 2198 if (!match(BB->getTerminator(), 2199 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2200 m_BasicBlock(), m_BasicBlock()))) 2201 continue; 2202 2203 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2204 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2205 2206 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2207 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2208 } 2209 2210 // Use expand's logic which is used for reusing a previous Value in 2211 // ExprValueMap. 2212 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2213 if (VO.first) 2214 return VO; 2215 2216 // There is potential to make this significantly smarter, but this simple 2217 // heuristic already gets some interesting cases. 2218 2219 // Can not find suitable value. 2220 return None; 2221 } 2222 2223 template<typename T> static InstructionCost costAndCollectOperands( 2224 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2225 TargetTransformInfo::TargetCostKind CostKind, 2226 SmallVectorImpl<SCEVOperand> &Worklist) { 2227 2228 const T *S = cast<T>(WorkItem.S); 2229 InstructionCost Cost = 0; 2230 // Object to help map SCEV operands to expanded IR instructions. 2231 struct OperationIndices { 2232 OperationIndices(unsigned Opc, size_t min, size_t max) : 2233 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2234 unsigned Opcode; 2235 size_t MinIdx; 2236 size_t MaxIdx; 2237 }; 2238 2239 // Collect the operations of all the instructions that will be needed to 2240 // expand the SCEVExpr. This is so that when we come to cost the operands, 2241 // we know what the generated user(s) will be. 2242 SmallVector<OperationIndices, 2> Operations; 2243 2244 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2245 Operations.emplace_back(Opcode, 0, 0); 2246 return TTI.getCastInstrCost(Opcode, S->getType(), 2247 S->getOperand(0)->getType(), 2248 TTI::CastContextHint::None, CostKind); 2249 }; 2250 2251 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2252 unsigned MinIdx = 0, 2253 unsigned MaxIdx = 1) -> InstructionCost { 2254 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2255 return NumRequired * 2256 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2257 }; 2258 2259 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2260 unsigned MaxIdx) -> InstructionCost { 2261 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2262 Type *OpType = S->getOperand(0)->getType(); 2263 return NumRequired * TTI.getCmpSelInstrCost( 2264 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2265 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2266 }; 2267 2268 switch (S->getSCEVType()) { 2269 case scCouldNotCompute: 2270 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2271 case scUnknown: 2272 case scConstant: 2273 return 0; 2274 case scPtrToInt: 2275 Cost = CastCost(Instruction::PtrToInt); 2276 break; 2277 case scTruncate: 2278 Cost = CastCost(Instruction::Trunc); 2279 break; 2280 case scZeroExtend: 2281 Cost = CastCost(Instruction::ZExt); 2282 break; 2283 case scSignExtend: 2284 Cost = CastCost(Instruction::SExt); 2285 break; 2286 case scUDivExpr: { 2287 unsigned Opcode = Instruction::UDiv; 2288 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2289 if (SC->getAPInt().isPowerOf2()) 2290 Opcode = Instruction::LShr; 2291 Cost = ArithCost(Opcode, 1); 2292 break; 2293 } 2294 case scAddExpr: 2295 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2296 break; 2297 case scMulExpr: 2298 // TODO: this is a very pessimistic cost modelling for Mul, 2299 // because of Bin Pow algorithm actually used by the expander, 2300 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2301 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2302 break; 2303 case scSMaxExpr: 2304 case scUMaxExpr: 2305 case scSMinExpr: 2306 case scUMinExpr: { 2307 // FIXME: should this ask the cost for Intrinsic's? 2308 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2309 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2310 break; 2311 } 2312 case scAddRecExpr: { 2313 // In this polynominal, we may have some zero operands, and we shouldn't 2314 // really charge for those. So how many non-zero coeffients are there? 2315 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2316 return !Op->isZero(); 2317 }); 2318 2319 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2320 assert(!(*std::prev(S->operands().end()))->isZero() && 2321 "Last operand should not be zero"); 2322 2323 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2324 int NumNonZeroDegreeNonOneTerms = 2325 llvm::count_if(S->operands(), [](const SCEV *Op) { 2326 auto *SConst = dyn_cast<SCEVConstant>(Op); 2327 return !SConst || SConst->getAPInt().ugt(1); 2328 }); 2329 2330 // Much like with normal add expr, the polynominal will require 2331 // one less addition than the number of it's terms. 2332 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2333 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2334 // Here, *each* one of those will require a multiplication. 2335 InstructionCost MulCost = 2336 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2337 Cost = AddCost + MulCost; 2338 2339 // What is the degree of this polynominal? 2340 int PolyDegree = S->getNumOperands() - 1; 2341 assert(PolyDegree >= 1 && "Should be at least affine."); 2342 2343 // The final term will be: 2344 // Op_{PolyDegree} * x ^ {PolyDegree} 2345 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2346 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2347 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2348 // FIXME: this is conservatively correct, but might be overly pessimistic. 2349 Cost += MulCost * (PolyDegree - 1); 2350 break; 2351 } 2352 } 2353 2354 for (auto &CostOp : Operations) { 2355 for (auto SCEVOp : enumerate(S->operands())) { 2356 // Clamp the index to account for multiple IR operations being chained. 2357 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2358 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2359 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2360 } 2361 } 2362 return Cost; 2363 } 2364 2365 bool SCEVExpander::isHighCostExpansionHelper( 2366 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2367 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2368 SmallPtrSetImpl<const SCEV *> &Processed, 2369 SmallVectorImpl<SCEVOperand> &Worklist) { 2370 if (Cost > Budget) 2371 return true; // Already run out of budget, give up. 2372 2373 const SCEV *S = WorkItem.S; 2374 // Was the cost of expansion of this expression already accounted for? 2375 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2376 return false; // We have already accounted for this expression. 2377 2378 // If we can find an existing value for this scev available at the point "At" 2379 // then consider the expression cheap. 2380 if (getRelatedExistingExpansion(S, &At, L)) 2381 return false; // Consider the expression to be free. 2382 2383 TargetTransformInfo::TargetCostKind CostKind = 2384 L->getHeader()->getParent()->hasMinSize() 2385 ? TargetTransformInfo::TCK_CodeSize 2386 : TargetTransformInfo::TCK_RecipThroughput; 2387 2388 switch (S->getSCEVType()) { 2389 case scCouldNotCompute: 2390 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2391 case scUnknown: 2392 // Assume to be zero-cost. 2393 return false; 2394 case scConstant: { 2395 // Only evalulate the costs of constants when optimizing for size. 2396 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2397 return 0; 2398 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2399 Type *Ty = S->getType(); 2400 Cost += TTI.getIntImmCostInst( 2401 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2402 return Cost > Budget; 2403 } 2404 case scTruncate: 2405 case scPtrToInt: 2406 case scZeroExtend: 2407 case scSignExtend: { 2408 Cost += 2409 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2410 return false; // Will answer upon next entry into this function. 2411 } 2412 case scUDivExpr: { 2413 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2414 // HowManyLessThans produced to compute a precise expression, rather than a 2415 // UDiv from the user's code. If we can't find a UDiv in the code with some 2416 // simple searching, we need to account for it's cost. 2417 2418 // At the beginning of this function we already tried to find existing 2419 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2420 // pattern involving division. This is just a simple search heuristic. 2421 if (getRelatedExistingExpansion( 2422 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2423 return false; // Consider it to be free. 2424 2425 Cost += 2426 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2427 return false; // Will answer upon next entry into this function. 2428 } 2429 case scAddExpr: 2430 case scMulExpr: 2431 case scUMaxExpr: 2432 case scSMaxExpr: 2433 case scUMinExpr: 2434 case scSMinExpr: { 2435 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2436 "Nary expr should have more than 1 operand."); 2437 // The simple nary expr will require one less op (or pair of ops) 2438 // than the number of it's terms. 2439 Cost += 2440 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2441 return Cost > Budget; 2442 } 2443 case scAddRecExpr: { 2444 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2445 "Polynomial should be at least linear"); 2446 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2447 WorkItem, TTI, CostKind, Worklist); 2448 return Cost > Budget; 2449 } 2450 } 2451 llvm_unreachable("Unknown SCEV kind!"); 2452 } 2453 2454 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2455 Instruction *IP) { 2456 assert(IP); 2457 switch (Pred->getKind()) { 2458 case SCEVPredicate::P_Union: 2459 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2460 case SCEVPredicate::P_Equal: 2461 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2462 case SCEVPredicate::P_Wrap: { 2463 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2464 return expandWrapPredicate(AddRecPred, IP); 2465 } 2466 } 2467 llvm_unreachable("Unknown SCEV predicate type"); 2468 } 2469 2470 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2471 Instruction *IP) { 2472 Value *Expr0 = 2473 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2474 Value *Expr1 = 2475 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2476 2477 Builder.SetInsertPoint(IP); 2478 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2479 return I; 2480 } 2481 2482 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2483 Instruction *Loc, bool Signed) { 2484 assert(AR->isAffine() && "Cannot generate RT check for " 2485 "non-affine expression"); 2486 2487 SCEVUnionPredicate Pred; 2488 const SCEV *ExitCount = 2489 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2490 2491 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2492 2493 const SCEV *Step = AR->getStepRecurrence(SE); 2494 const SCEV *Start = AR->getStart(); 2495 2496 Type *ARTy = AR->getType(); 2497 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2498 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2499 2500 // The expression {Start,+,Step} has nusw/nssw if 2501 // Step < 0, Start - |Step| * Backedge <= Start 2502 // Step >= 0, Start + |Step| * Backedge > Start 2503 // and |Step| * Backedge doesn't unsigned overflow. 2504 2505 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2506 Builder.SetInsertPoint(Loc); 2507 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2508 2509 IntegerType *Ty = 2510 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2511 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2512 2513 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2514 Value *NegStepValue = 2515 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2516 Value *StartValue = expandCodeForImpl( 2517 isa<PointerType>(ARExpandTy) ? Start 2518 : SE.getPtrToIntExpr(Start, ARExpandTy), 2519 ARExpandTy, Loc, false); 2520 2521 ConstantInt *Zero = 2522 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2523 2524 Builder.SetInsertPoint(Loc); 2525 // Compute |Step| 2526 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2527 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2528 2529 // Get the backedge taken count and truncate or extended to the AR type. 2530 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2531 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2532 Intrinsic::umul_with_overflow, Ty); 2533 2534 // Compute |Step| * Backedge 2535 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2536 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2537 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2538 2539 // Compute: 2540 // Start + |Step| * Backedge < Start 2541 // Start - |Step| * Backedge > Start 2542 Value *Add = nullptr, *Sub = nullptr; 2543 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2544 const SCEV *MulS = SE.getSCEV(MulV); 2545 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2546 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2547 ARPtrTy); 2548 Sub = Builder.CreateBitCast( 2549 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2550 } else { 2551 Add = Builder.CreateAdd(StartValue, MulV); 2552 Sub = Builder.CreateSub(StartValue, MulV); 2553 } 2554 2555 Value *EndCompareGT = Builder.CreateICmp( 2556 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2557 2558 Value *EndCompareLT = Builder.CreateICmp( 2559 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2560 2561 // Select the answer based on the sign of Step. 2562 Value *EndCheck = 2563 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2564 2565 // If the backedge taken count type is larger than the AR type, 2566 // check that we don't drop any bits by truncating it. If we are 2567 // dropping bits, then we have overflow (unless the step is zero). 2568 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2569 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2570 auto *BackedgeCheck = 2571 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2572 ConstantInt::get(Loc->getContext(), MaxVal)); 2573 BackedgeCheck = Builder.CreateAnd( 2574 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2575 2576 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2577 } 2578 2579 return Builder.CreateOr(EndCheck, OfMul); 2580 } 2581 2582 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2583 Instruction *IP) { 2584 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2585 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2586 2587 // Add a check for NUSW 2588 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2589 NUSWCheck = generateOverflowCheck(A, IP, false); 2590 2591 // Add a check for NSSW 2592 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2593 NSSWCheck = generateOverflowCheck(A, IP, true); 2594 2595 if (NUSWCheck && NSSWCheck) 2596 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2597 2598 if (NUSWCheck) 2599 return NUSWCheck; 2600 2601 if (NSSWCheck) 2602 return NSSWCheck; 2603 2604 return ConstantInt::getFalse(IP->getContext()); 2605 } 2606 2607 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2608 Instruction *IP) { 2609 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2610 Value *Check = ConstantInt::getNullValue(BoolType); 2611 2612 // Loop over all checks in this set. 2613 for (auto Pred : Union->getPredicates()) { 2614 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2615 Builder.SetInsertPoint(IP); 2616 Check = Builder.CreateOr(Check, NextCheck); 2617 } 2618 2619 return Check; 2620 } 2621 2622 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2623 assert(PreserveLCSSA); 2624 SmallVector<Instruction *, 1> ToUpdate; 2625 2626 auto *OpV = User->getOperand(OpIdx); 2627 auto *OpI = dyn_cast<Instruction>(OpV); 2628 if (!OpI) 2629 return OpV; 2630 2631 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2632 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2633 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2634 return OpV; 2635 2636 ToUpdate.push_back(OpI); 2637 SmallVector<PHINode *, 16> PHIsToRemove; 2638 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2639 for (PHINode *PN : PHIsToRemove) { 2640 if (!PN->use_empty()) 2641 continue; 2642 InsertedValues.erase(PN); 2643 InsertedPostIncValues.erase(PN); 2644 PN->eraseFromParent(); 2645 } 2646 2647 return User->getOperand(OpIdx); 2648 } 2649 2650 namespace { 2651 // Search for a SCEV subexpression that is not safe to expand. Any expression 2652 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2653 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2654 // instruction, but the important thing is that we prove the denominator is 2655 // nonzero before expansion. 2656 // 2657 // IVUsers already checks that IV-derived expressions are safe. So this check is 2658 // only needed when the expression includes some subexpression that is not IV 2659 // derived. 2660 // 2661 // Currently, we only allow division by a nonzero constant here. If this is 2662 // inadequate, we could easily allow division by SCEVUnknown by using 2663 // ValueTracking to check isKnownNonZero(). 2664 // 2665 // We cannot generally expand recurrences unless the step dominates the loop 2666 // header. The expander handles the special case of affine recurrences by 2667 // scaling the recurrence outside the loop, but this technique isn't generally 2668 // applicable. Expanding a nested recurrence outside a loop requires computing 2669 // binomial coefficients. This could be done, but the recurrence has to be in a 2670 // perfectly reduced form, which can't be guaranteed. 2671 struct SCEVFindUnsafe { 2672 ScalarEvolution &SE; 2673 bool IsUnsafe; 2674 2675 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2676 2677 bool follow(const SCEV *S) { 2678 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2679 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2680 if (!SC || SC->getValue()->isZero()) { 2681 IsUnsafe = true; 2682 return false; 2683 } 2684 } 2685 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2686 const SCEV *Step = AR->getStepRecurrence(SE); 2687 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2688 IsUnsafe = true; 2689 return false; 2690 } 2691 } 2692 return true; 2693 } 2694 bool isDone() const { return IsUnsafe; } 2695 }; 2696 } 2697 2698 namespace llvm { 2699 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2700 SCEVFindUnsafe Search(SE); 2701 visitAll(S, Search); 2702 return !Search.IsUnsafe; 2703 } 2704 2705 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2706 ScalarEvolution &SE) { 2707 if (!isSafeToExpand(S, SE)) 2708 return false; 2709 // We have to prove that the expanded site of S dominates InsertionPoint. 2710 // This is easy when not in the same block, but hard when S is an instruction 2711 // to be expanded somewhere inside the same block as our insertion point. 2712 // What we really need here is something analogous to an OrderedBasicBlock, 2713 // but for the moment, we paper over the problem by handling two common and 2714 // cheap to check cases. 2715 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2716 return true; 2717 if (SE.dominates(S, InsertionPoint->getParent())) { 2718 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2719 return true; 2720 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2721 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2722 return true; 2723 } 2724 return false; 2725 } 2726 2727 void SCEVExpanderCleaner::cleanup() { 2728 // Result is used, nothing to remove. 2729 if (ResultUsed) 2730 return; 2731 2732 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2733 #ifndef NDEBUG 2734 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2735 InsertedInstructions.end()); 2736 (void)InsertedSet; 2737 #endif 2738 // Remove sets with value handles. 2739 Expander.clear(); 2740 2741 // Sort so that earlier instructions do not dominate later instructions. 2742 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2743 return DT.dominates(B, A); 2744 }); 2745 // Remove all inserted instructions. 2746 for (Instruction *I : InsertedInstructions) { 2747 2748 #ifndef NDEBUG 2749 assert(all_of(I->users(), 2750 [&InsertedSet](Value *U) { 2751 return InsertedSet.contains(cast<Instruction>(U)); 2752 }) && 2753 "removed instruction should only be used by instructions inserted " 2754 "during expansion"); 2755 #endif 2756 assert(!I->getType()->isVoidTy() && 2757 "inserted instruction should have non-void types"); 2758 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2759 I->eraseFromParent(); 2760 } 2761 } 2762 } 2763