1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Transforms/Utils/LoopUtils.h" 30 31 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 32 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33 #else 34 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35 #endif 36 37 using namespace llvm; 38 39 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 40 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 41 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 42 "controls the budget that is considered cheap (default = 4)")); 43 44 using namespace PatternMatch; 45 46 PoisonFlags::PoisonFlags(const Instruction *I) { 47 NUW = false; 48 NSW = false; 49 Exact = false; 50 Disjoint = false; 51 NNeg = false; 52 GEPNW = GEPNoWrapFlags::none(); 53 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 54 NUW = OBO->hasNoUnsignedWrap(); 55 NSW = OBO->hasNoSignedWrap(); 56 } 57 if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) 58 Exact = PEO->isExact(); 59 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 60 Disjoint = PDI->isDisjoint(); 61 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 62 NNeg = PNI->hasNonNeg(); 63 if (auto *TI = dyn_cast<TruncInst>(I)) { 64 NUW = TI->hasNoUnsignedWrap(); 65 NSW = TI->hasNoSignedWrap(); 66 } 67 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 68 GEPNW = GEP->getNoWrapFlags(); 69 } 70 71 void PoisonFlags::apply(Instruction *I) { 72 if (isa<OverflowingBinaryOperator>(I)) { 73 I->setHasNoUnsignedWrap(NUW); 74 I->setHasNoSignedWrap(NSW); 75 } 76 if (isa<PossiblyExactOperator>(I)) 77 I->setIsExact(Exact); 78 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 79 PDI->setIsDisjoint(Disjoint); 80 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 81 PNI->setNonNeg(NNeg); 82 if (isa<TruncInst>(I)) { 83 I->setHasNoUnsignedWrap(NUW); 84 I->setHasNoSignedWrap(NSW); 85 } 86 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 87 GEP->setNoWrapFlags(GEPNW); 88 } 89 90 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 91 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 92 /// creating a new one. 93 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 94 Instruction::CastOps Op, 95 BasicBlock::iterator IP) { 96 // This function must be called with the builder having a valid insertion 97 // point. It doesn't need to be the actual IP where the uses of the returned 98 // cast will be added, but it must dominate such IP. 99 // We use this precondition to produce a cast that will dominate all its 100 // uses. In particular, this is crucial for the case where the builder's 101 // insertion point *is* the point where we were asked to put the cast. 102 // Since we don't know the builder's insertion point is actually 103 // where the uses will be added (only that it dominates it), we are 104 // not allowed to move it. 105 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 106 107 Value *Ret = nullptr; 108 109 // Check to see if there is already a cast! 110 for (User *U : V->users()) { 111 if (U->getType() != Ty) 112 continue; 113 CastInst *CI = dyn_cast<CastInst>(U); 114 if (!CI || CI->getOpcode() != Op) 115 continue; 116 117 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 118 // the cast must also properly dominate the Builder's insertion point. 119 if (IP->getParent() == CI->getParent() && &*BIP != CI && 120 (&*IP == CI || CI->comesBefore(&*IP))) { 121 Ret = CI; 122 break; 123 } 124 } 125 126 // Create a new cast. 127 if (!Ret) { 128 SCEVInsertPointGuard Guard(Builder, this); 129 Builder.SetInsertPoint(&*IP); 130 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 131 } 132 133 // We assert at the end of the function since IP might point to an 134 // instruction with different dominance properties than a cast 135 // (an invoke for example) and not dominate BIP (but the cast does). 136 assert(!isa<Instruction>(Ret) || 137 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 138 139 return Ret; 140 } 141 142 BasicBlock::iterator 143 SCEVExpander::findInsertPointAfter(Instruction *I, 144 Instruction *MustDominate) const { 145 BasicBlock::iterator IP = ++I->getIterator(); 146 if (auto *II = dyn_cast<InvokeInst>(I)) 147 IP = II->getNormalDest()->begin(); 148 149 while (isa<PHINode>(IP)) 150 ++IP; 151 152 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 153 ++IP; 154 } else if (isa<CatchSwitchInst>(IP)) { 155 IP = MustDominate->getParent()->getFirstInsertionPt(); 156 } else { 157 assert(!IP->isEHPad() && "unexpected eh pad!"); 158 } 159 160 // Adjust insert point to be after instructions inserted by the expander, so 161 // we can re-use already inserted instructions. Avoid skipping past the 162 // original \p MustDominate, in case it is an inserted instruction. 163 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 164 ++IP; 165 166 return IP; 167 } 168 169 BasicBlock::iterator 170 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 171 // Cast the argument at the beginning of the entry block, after 172 // any bitcasts of other arguments. 173 if (Argument *A = dyn_cast<Argument>(V)) { 174 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 175 while ((isa<BitCastInst>(IP) && 176 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 177 cast<BitCastInst>(IP)->getOperand(0) != A) || 178 isa<DbgInfoIntrinsic>(IP)) 179 ++IP; 180 return IP; 181 } 182 183 // Cast the instruction immediately after the instruction. 184 if (Instruction *I = dyn_cast<Instruction>(V)) 185 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 186 187 // Otherwise, this must be some kind of a constant, 188 // so let's plop this cast into the function's entry block. 189 assert(isa<Constant>(V) && 190 "Expected the cast argument to be a global/constant"); 191 return Builder.GetInsertBlock() 192 ->getParent() 193 ->getEntryBlock() 194 .getFirstInsertionPt(); 195 } 196 197 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 198 /// which must be possible with a noop cast, doing what we can to share 199 /// the casts. 200 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 201 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 202 assert((Op == Instruction::BitCast || 203 Op == Instruction::PtrToInt || 204 Op == Instruction::IntToPtr) && 205 "InsertNoopCastOfTo cannot perform non-noop casts!"); 206 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 207 "InsertNoopCastOfTo cannot change sizes!"); 208 209 // inttoptr only works for integral pointers. For non-integral pointers, we 210 // can create a GEP on null with the integral value as index. Note that 211 // it is safe to use GEP of null instead of inttoptr here, because only 212 // expressions already based on a GEP of null should be converted to pointers 213 // during expansion. 214 if (Op == Instruction::IntToPtr) { 215 auto *PtrTy = cast<PointerType>(Ty); 216 if (DL.isNonIntegralPointerType(PtrTy)) 217 return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 218 } 219 // Short-circuit unnecessary bitcasts. 220 if (Op == Instruction::BitCast) { 221 if (V->getType() == Ty) 222 return V; 223 if (CastInst *CI = dyn_cast<CastInst>(V)) { 224 if (CI->getOperand(0)->getType() == Ty) 225 return CI->getOperand(0); 226 } 227 } 228 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 229 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 230 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 231 if (CastInst *CI = dyn_cast<CastInst>(V)) 232 if ((CI->getOpcode() == Instruction::PtrToInt || 233 CI->getOpcode() == Instruction::IntToPtr) && 234 SE.getTypeSizeInBits(CI->getType()) == 235 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 236 return CI->getOperand(0); 237 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 238 if ((CE->getOpcode() == Instruction::PtrToInt || 239 CE->getOpcode() == Instruction::IntToPtr) && 240 SE.getTypeSizeInBits(CE->getType()) == 241 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 242 return CE->getOperand(0); 243 } 244 245 // Fold a cast of a constant. 246 if (Constant *C = dyn_cast<Constant>(V)) 247 return ConstantExpr::getCast(Op, C, Ty); 248 249 // Try to reuse existing cast, or insert one. 250 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 251 } 252 253 /// InsertBinop - Insert the specified binary operator, doing a small amount 254 /// of work to avoid inserting an obviously redundant operation, and hoisting 255 /// to an outer loop when the opportunity is there and it is safe. 256 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 257 Value *LHS, Value *RHS, 258 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 259 // Fold a binop with constant operands. 260 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 261 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 262 if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 263 return Res; 264 265 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 266 unsigned ScanLimit = 6; 267 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 268 // Scanning starts from the last instruction before the insertion point. 269 BasicBlock::iterator IP = Builder.GetInsertPoint(); 270 if (IP != BlockBegin) { 271 --IP; 272 for (; ScanLimit; --IP, --ScanLimit) { 273 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 274 // generated code. 275 if (isa<DbgInfoIntrinsic>(IP)) 276 ScanLimit++; 277 278 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 279 // Ensure that no-wrap flags match. 280 if (isa<OverflowingBinaryOperator>(I)) { 281 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 282 return true; 283 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 284 return true; 285 } 286 // Conservatively, do not use any instruction which has any of exact 287 // flags installed. 288 if (isa<PossiblyExactOperator>(I) && I->isExact()) 289 return true; 290 return false; 291 }; 292 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 293 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 294 return &*IP; 295 if (IP == BlockBegin) break; 296 } 297 } 298 299 // Save the original insertion point so we can restore it when we're done. 300 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 301 SCEVInsertPointGuard Guard(Builder, this); 302 303 if (IsSafeToHoist) { 304 // Move the insertion point out of as many loops as we can. 305 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 306 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 307 BasicBlock *Preheader = L->getLoopPreheader(); 308 if (!Preheader) break; 309 310 // Ok, move up a level. 311 Builder.SetInsertPoint(Preheader->getTerminator()); 312 } 313 } 314 315 // If we haven't found this binop, insert it. 316 // TODO: Use the Builder, which will make CreateBinOp below fold with 317 // InstSimplifyFolder. 318 Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 319 BO->setDebugLoc(Loc); 320 if (Flags & SCEV::FlagNUW) 321 BO->setHasNoUnsignedWrap(); 322 if (Flags & SCEV::FlagNSW) 323 BO->setHasNoSignedWrap(); 324 325 return BO; 326 } 327 328 /// expandAddToGEP - Expand an addition expression with a pointer type into 329 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 330 /// BasicAliasAnalysis and other passes analyze the result. See the rules 331 /// for getelementptr vs. inttoptr in 332 /// http://llvm.org/docs/LangRef.html#pointeraliasing 333 /// for details. 334 /// 335 /// Design note: The correctness of using getelementptr here depends on 336 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 337 /// they may introduce pointer arithmetic which may not be safely converted 338 /// into getelementptr. 339 /// 340 /// Design note: It might seem desirable for this function to be more 341 /// loop-aware. If some of the indices are loop-invariant while others 342 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 343 /// loop-invariant portions of the overall computation outside the loop. 344 /// However, there are a few reasons this is not done here. Hoisting simple 345 /// arithmetic is a low-level optimization that often isn't very 346 /// important until late in the optimization process. In fact, passes 347 /// like InstructionCombining will combine GEPs, even if it means 348 /// pushing loop-invariant computation down into loops, so even if the 349 /// GEPs were split here, the work would quickly be undone. The 350 /// LoopStrengthReduction pass, which is usually run quite late (and 351 /// after the last InstructionCombining pass), takes care of hoisting 352 /// loop-invariant portions of expressions, after considering what 353 /// can be folded using target addressing modes. 354 /// 355 Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V, 356 SCEV::NoWrapFlags Flags) { 357 assert(!isa<Instruction>(V) || 358 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 359 360 Value *Idx = expand(Offset); 361 GEPNoWrapFlags NW = (Flags & SCEV::FlagNUW) ? GEPNoWrapFlags::noUnsignedWrap() 362 : GEPNoWrapFlags::none(); 363 364 // Fold a GEP with constant operands. 365 if (Constant *CLHS = dyn_cast<Constant>(V)) 366 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 367 return Builder.CreatePtrAdd(CLHS, CRHS, "", NW); 368 369 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 370 unsigned ScanLimit = 6; 371 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 372 // Scanning starts from the last instruction before the insertion point. 373 BasicBlock::iterator IP = Builder.GetInsertPoint(); 374 if (IP != BlockBegin) { 375 --IP; 376 for (; ScanLimit; --IP, --ScanLimit) { 377 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 378 // generated code. 379 if (isa<DbgInfoIntrinsic>(IP)) 380 ScanLimit++; 381 if (auto *GEP = dyn_cast<GetElementPtrInst>(IP)) { 382 if (GEP->getPointerOperand() == V && 383 GEP->getSourceElementType() == Builder.getInt8Ty() && 384 GEP->getOperand(1) == Idx) { 385 rememberFlags(GEP); 386 GEP->setNoWrapFlags(GEP->getNoWrapFlags() & NW); 387 return &*IP; 388 } 389 } 390 if (IP == BlockBegin) break; 391 } 392 } 393 394 // Save the original insertion point so we can restore it when we're done. 395 SCEVInsertPointGuard Guard(Builder, this); 396 397 // Move the insertion point out of as many loops as we can. 398 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 399 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 400 BasicBlock *Preheader = L->getLoopPreheader(); 401 if (!Preheader) break; 402 403 // Ok, move up a level. 404 Builder.SetInsertPoint(Preheader->getTerminator()); 405 } 406 407 // Emit a GEP. 408 return Builder.CreatePtrAdd(V, Idx, "scevgep", NW); 409 } 410 411 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 412 /// SCEV expansion. If they are nested, this is the most nested. If they are 413 /// neighboring, pick the later. 414 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 415 DominatorTree &DT) { 416 if (!A) return B; 417 if (!B) return A; 418 if (A->contains(B)) return B; 419 if (B->contains(A)) return A; 420 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 421 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 422 return A; // Arbitrarily break the tie. 423 } 424 425 /// getRelevantLoop - Get the most relevant loop associated with the given 426 /// expression, according to PickMostRelevantLoop. 427 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 428 // Test whether we've already computed the most relevant loop for this SCEV. 429 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 430 if (!Pair.second) 431 return Pair.first->second; 432 433 switch (S->getSCEVType()) { 434 case scConstant: 435 case scVScale: 436 return nullptr; // A constant has no relevant loops. 437 case scTruncate: 438 case scZeroExtend: 439 case scSignExtend: 440 case scPtrToInt: 441 case scAddExpr: 442 case scMulExpr: 443 case scUDivExpr: 444 case scAddRecExpr: 445 case scUMaxExpr: 446 case scSMaxExpr: 447 case scUMinExpr: 448 case scSMinExpr: 449 case scSequentialUMinExpr: { 450 const Loop *L = nullptr; 451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 452 L = AR->getLoop(); 453 for (const SCEV *Op : S->operands()) 454 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 455 return RelevantLoops[S] = L; 456 } 457 case scUnknown: { 458 const SCEVUnknown *U = cast<SCEVUnknown>(S); 459 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 460 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 461 // A non-instruction has no relevant loops. 462 return nullptr; 463 } 464 case scCouldNotCompute: 465 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 466 } 467 llvm_unreachable("Unexpected SCEV type!"); 468 } 469 470 namespace { 471 472 /// LoopCompare - Compare loops by PickMostRelevantLoop. 473 class LoopCompare { 474 DominatorTree &DT; 475 public: 476 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 477 478 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 479 std::pair<const Loop *, const SCEV *> RHS) const { 480 // Keep pointer operands sorted at the end. 481 if (LHS.second->getType()->isPointerTy() != 482 RHS.second->getType()->isPointerTy()) 483 return LHS.second->getType()->isPointerTy(); 484 485 // Compare loops with PickMostRelevantLoop. 486 if (LHS.first != RHS.first) 487 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 488 489 // If one operand is a non-constant negative and the other is not, 490 // put the non-constant negative on the right so that a sub can 491 // be used instead of a negate and add. 492 if (LHS.second->isNonConstantNegative()) { 493 if (!RHS.second->isNonConstantNegative()) 494 return false; 495 } else if (RHS.second->isNonConstantNegative()) 496 return true; 497 498 // Otherwise they are equivalent according to this comparison. 499 return false; 500 } 501 }; 502 503 } 504 505 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 506 // Recognize the canonical representation of an unsimplifed urem. 507 const SCEV *URemLHS = nullptr; 508 const SCEV *URemRHS = nullptr; 509 if (SE.matchURem(S, URemLHS, URemRHS)) { 510 Value *LHS = expand(URemLHS); 511 Value *RHS = expand(URemRHS); 512 return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap, 513 /*IsSafeToHoist*/ false); 514 } 515 516 // Collect all the add operands in a loop, along with their associated loops. 517 // Iterate in reverse so that constants are emitted last, all else equal, and 518 // so that pointer operands are inserted first, which the code below relies on 519 // to form more involved GEPs. 520 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 521 for (const SCEV *Op : reverse(S->operands())) 522 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 523 524 // Sort by loop. Use a stable sort so that constants follow non-constants and 525 // pointer operands precede non-pointer operands. 526 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 527 528 // Emit instructions to add all the operands. Hoist as much as possible 529 // out of loops, and form meaningful getelementptrs where possible. 530 Value *Sum = nullptr; 531 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 532 const Loop *CurLoop = I->first; 533 const SCEV *Op = I->second; 534 if (!Sum) { 535 // This is the first operand. Just expand it. 536 Sum = expand(Op); 537 ++I; 538 continue; 539 } 540 541 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 542 if (isa<PointerType>(Sum->getType())) { 543 // The running sum expression is a pointer. Try to form a getelementptr 544 // at this level with that as the base. 545 SmallVector<const SCEV *, 4> NewOps; 546 for (; I != E && I->first == CurLoop; ++I) { 547 // If the operand is SCEVUnknown and not instructions, peek through 548 // it, to enable more of it to be folded into the GEP. 549 const SCEV *X = I->second; 550 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 551 if (!isa<Instruction>(U->getValue())) 552 X = SE.getSCEV(U->getValue()); 553 NewOps.push_back(X); 554 } 555 Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum, S->getNoWrapFlags()); 556 } else if (Op->isNonConstantNegative()) { 557 // Instead of doing a negate and add, just do a subtract. 558 Value *W = expand(SE.getNegativeSCEV(Op)); 559 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 560 /*IsSafeToHoist*/ true); 561 ++I; 562 } else { 563 // A simple add. 564 Value *W = expand(Op); 565 // Canonicalize a constant to the RHS. 566 if (isa<Constant>(Sum)) 567 std::swap(Sum, W); 568 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 569 /*IsSafeToHoist*/ true); 570 ++I; 571 } 572 } 573 574 return Sum; 575 } 576 577 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 578 Type *Ty = S->getType(); 579 580 // Collect all the mul operands in a loop, along with their associated loops. 581 // Iterate in reverse so that constants are emitted last, all else equal. 582 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 583 for (const SCEV *Op : reverse(S->operands())) 584 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 585 586 // Sort by loop. Use a stable sort so that constants follow non-constants. 587 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 588 589 // Emit instructions to mul all the operands. Hoist as much as possible 590 // out of loops. 591 Value *Prod = nullptr; 592 auto I = OpsAndLoops.begin(); 593 594 // Expand the calculation of X pow N in the following manner: 595 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 596 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 597 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 598 auto E = I; 599 // Calculate how many times the same operand from the same loop is included 600 // into this power. 601 uint64_t Exponent = 0; 602 const uint64_t MaxExponent = UINT64_MAX >> 1; 603 // No one sane will ever try to calculate such huge exponents, but if we 604 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 605 // below when the power of 2 exceeds our Exponent, and we want it to be 606 // 1u << 31 at most to not deal with unsigned overflow. 607 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 608 ++Exponent; 609 ++E; 610 } 611 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 612 613 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 614 // that are needed into the result. 615 Value *P = expand(I->second); 616 Value *Result = nullptr; 617 if (Exponent & 1) 618 Result = P; 619 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 620 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 621 /*IsSafeToHoist*/ true); 622 if (Exponent & BinExp) 623 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 624 SCEV::FlagAnyWrap, 625 /*IsSafeToHoist*/ true) 626 : P; 627 } 628 629 I = E; 630 assert(Result && "Nothing was expanded?"); 631 return Result; 632 }; 633 634 while (I != OpsAndLoops.end()) { 635 if (!Prod) { 636 // This is the first operand. Just expand it. 637 Prod = ExpandOpBinPowN(); 638 } else if (I->second->isAllOnesValue()) { 639 // Instead of doing a multiply by negative one, just do a negate. 640 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 641 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 642 ++I; 643 } else { 644 // A simple mul. 645 Value *W = ExpandOpBinPowN(); 646 // Canonicalize a constant to the RHS. 647 if (isa<Constant>(Prod)) std::swap(Prod, W); 648 const APInt *RHS; 649 if (match(W, m_Power2(RHS))) { 650 // Canonicalize Prod*(1<<C) to Prod<<C. 651 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 652 auto NWFlags = S->getNoWrapFlags(); 653 // clear nsw flag if shl will produce poison value. 654 if (RHS->logBase2() == RHS->getBitWidth() - 1) 655 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 656 Prod = InsertBinop(Instruction::Shl, Prod, 657 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 658 /*IsSafeToHoist*/ true); 659 } else { 660 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 661 /*IsSafeToHoist*/ true); 662 } 663 } 664 } 665 666 return Prod; 667 } 668 669 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 670 Value *LHS = expand(S->getLHS()); 671 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 672 const APInt &RHS = SC->getAPInt(); 673 if (RHS.isPowerOf2()) 674 return InsertBinop(Instruction::LShr, LHS, 675 ConstantInt::get(SC->getType(), RHS.logBase2()), 676 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 677 } 678 679 Value *RHS = expand(S->getRHS()); 680 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 681 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 682 } 683 684 /// Determine if this is a well-behaved chain of instructions leading back to 685 /// the PHI. If so, it may be reused by expanded expressions. 686 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 687 const Loop *L) { 688 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 689 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 690 return false; 691 // If any of the operands don't dominate the insert position, bail. 692 // Addrec operands are always loop-invariant, so this can only happen 693 // if there are instructions which haven't been hoisted. 694 if (L == IVIncInsertLoop) { 695 for (Use &Op : llvm::drop_begin(IncV->operands())) 696 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 697 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 698 return false; 699 } 700 // Advance to the next instruction. 701 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 702 if (!IncV) 703 return false; 704 705 if (IncV->mayHaveSideEffects()) 706 return false; 707 708 if (IncV == PN) 709 return true; 710 711 return isNormalAddRecExprPHI(PN, IncV, L); 712 } 713 714 /// getIVIncOperand returns an induction variable increment's induction 715 /// variable operand. 716 /// 717 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 718 /// operands dominate InsertPos. 719 /// 720 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 721 /// simple patterns generated by getAddRecExprPHILiterally and 722 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 723 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 724 Instruction *InsertPos, 725 bool allowScale) { 726 if (IncV == InsertPos) 727 return nullptr; 728 729 switch (IncV->getOpcode()) { 730 default: 731 return nullptr; 732 // Check for a simple Add/Sub or GEP of a loop invariant step. 733 case Instruction::Add: 734 case Instruction::Sub: { 735 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 736 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 737 return dyn_cast<Instruction>(IncV->getOperand(0)); 738 return nullptr; 739 } 740 case Instruction::BitCast: 741 return dyn_cast<Instruction>(IncV->getOperand(0)); 742 case Instruction::GetElementPtr: 743 for (Use &U : llvm::drop_begin(IncV->operands())) { 744 if (isa<Constant>(U)) 745 continue; 746 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 747 if (!SE.DT.dominates(OInst, InsertPos)) 748 return nullptr; 749 } 750 if (allowScale) { 751 // allow any kind of GEP as long as it can be hoisted. 752 continue; 753 } 754 // GEPs produced by SCEVExpander use i8 element type. 755 if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 756 return nullptr; 757 break; 758 } 759 return dyn_cast<Instruction>(IncV->getOperand(0)); 760 } 761 } 762 763 /// If the insert point of the current builder or any of the builders on the 764 /// stack of saved builders has 'I' as its insert point, update it to point to 765 /// the instruction after 'I'. This is intended to be used when the instruction 766 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 767 /// different block, the inconsistent insert point (with a mismatched 768 /// Instruction and Block) can lead to an instruction being inserted in a block 769 /// other than its parent. 770 void SCEVExpander::fixupInsertPoints(Instruction *I) { 771 BasicBlock::iterator It(*I); 772 BasicBlock::iterator NewInsertPt = std::next(It); 773 if (Builder.GetInsertPoint() == It) 774 Builder.SetInsertPoint(&*NewInsertPt); 775 for (auto *InsertPtGuard : InsertPointGuards) 776 if (InsertPtGuard->GetInsertPoint() == It) 777 InsertPtGuard->SetInsertPoint(NewInsertPt); 778 } 779 780 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 781 /// it available to other uses in this loop. Recursively hoist any operands, 782 /// until we reach a value that dominates InsertPos. 783 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 784 bool RecomputePoisonFlags) { 785 auto FixupPoisonFlags = [this](Instruction *I) { 786 // Drop flags that are potentially inferred from old context and infer flags 787 // in new context. 788 rememberFlags(I); 789 I->dropPoisonGeneratingFlags(); 790 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 791 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 792 auto *BO = cast<BinaryOperator>(I); 793 BO->setHasNoUnsignedWrap( 794 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 795 BO->setHasNoSignedWrap( 796 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 797 } 798 }; 799 800 if (SE.DT.dominates(IncV, InsertPos)) { 801 if (RecomputePoisonFlags) 802 FixupPoisonFlags(IncV); 803 return true; 804 } 805 806 // InsertPos must itself dominate IncV so that IncV's new position satisfies 807 // its existing users. 808 if (isa<PHINode>(InsertPos) || 809 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 810 return false; 811 812 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 813 return false; 814 815 // Check that the chain of IV operands leading back to Phi can be hoisted. 816 SmallVector<Instruction*, 4> IVIncs; 817 for(;;) { 818 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 819 if (!Oper) 820 return false; 821 // IncV is safe to hoist. 822 IVIncs.push_back(IncV); 823 IncV = Oper; 824 if (SE.DT.dominates(IncV, InsertPos)) 825 break; 826 } 827 for (Instruction *I : llvm::reverse(IVIncs)) { 828 fixupInsertPoints(I); 829 I->moveBefore(InsertPos); 830 if (RecomputePoisonFlags) 831 FixupPoisonFlags(I); 832 } 833 return true; 834 } 835 836 bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, 837 PHINode *WidePhi, 838 Instruction *OrigInc, 839 Instruction *WideInc) { 840 return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) && 841 match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) && 842 OrigInc->getOpcode() == WideInc->getOpcode(); 843 } 844 845 /// Determine if this cyclic phi is in a form that would have been generated by 846 /// LSR. We don't care if the phi was actually expanded in this pass, as long 847 /// as it is in a low-cost form, for example, no implied multiplication. This 848 /// should match any patterns generated by getAddRecExprPHILiterally and 849 /// expandAddtoGEP. 850 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 851 const Loop *L) { 852 for(Instruction *IVOper = IncV; 853 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 854 /*allowScale=*/false));) { 855 if (IVOper == PN) 856 return true; 857 } 858 return false; 859 } 860 861 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 862 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 863 /// need to materialize IV increments elsewhere to handle difficult situations. 864 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 865 bool useSubtract) { 866 Value *IncV; 867 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 868 if (PN->getType()->isPointerTy()) { 869 // TODO: Change name to IVName.iv.next. 870 IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep"); 871 } else { 872 IncV = useSubtract ? 873 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 874 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 875 } 876 return IncV; 877 } 878 879 /// Check whether we can cheaply express the requested SCEV in terms of 880 /// the available PHI SCEV by truncation and/or inversion of the step. 881 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 882 const SCEVAddRecExpr *Phi, 883 const SCEVAddRecExpr *Requested, 884 bool &InvertStep) { 885 // We can't transform to match a pointer PHI. 886 Type *PhiTy = Phi->getType(); 887 Type *RequestedTy = Requested->getType(); 888 if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 889 return false; 890 891 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 892 return false; 893 894 // Try truncate it if necessary. 895 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 896 if (!Phi) 897 return false; 898 899 // Check whether truncation will help. 900 if (Phi == Requested) { 901 InvertStep = false; 902 return true; 903 } 904 905 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 906 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 907 InvertStep = true; 908 return true; 909 } 910 911 return false; 912 } 913 914 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 915 if (!isa<IntegerType>(AR->getType())) 916 return false; 917 918 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 919 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 920 const SCEV *Step = AR->getStepRecurrence(SE); 921 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 922 SE.getSignExtendExpr(AR, WideTy)); 923 const SCEV *ExtendAfterOp = 924 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 925 return ExtendAfterOp == OpAfterExtend; 926 } 927 928 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 929 if (!isa<IntegerType>(AR->getType())) 930 return false; 931 932 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 933 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 934 const SCEV *Step = AR->getStepRecurrence(SE); 935 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 936 SE.getZeroExtendExpr(AR, WideTy)); 937 const SCEV *ExtendAfterOp = 938 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 939 return ExtendAfterOp == OpAfterExtend; 940 } 941 942 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 943 /// the base addrec, which is the addrec without any non-loop-dominating 944 /// values, and return the PHI. 945 PHINode * 946 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 947 const Loop *L, Type *&TruncTy, 948 bool &InvertStep) { 949 assert((!IVIncInsertLoop || IVIncInsertPos) && 950 "Uninitialized insert position"); 951 952 // Reuse a previously-inserted PHI, if present. 953 BasicBlock *LatchBlock = L->getLoopLatch(); 954 if (LatchBlock) { 955 PHINode *AddRecPhiMatch = nullptr; 956 Instruction *IncV = nullptr; 957 TruncTy = nullptr; 958 InvertStep = false; 959 960 // Only try partially matching scevs that need truncation and/or 961 // step-inversion if we know this loop is outside the current loop. 962 bool TryNonMatchingSCEV = 963 IVIncInsertLoop && 964 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 965 966 for (PHINode &PN : L->getHeader()->phis()) { 967 if (!SE.isSCEVable(PN.getType())) 968 continue; 969 970 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 971 // PHI has no meaning at all. 972 if (!PN.isComplete()) { 973 SCEV_DEBUG_WITH_TYPE( 974 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 975 continue; 976 } 977 978 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 979 if (!PhiSCEV) 980 continue; 981 982 bool IsMatchingSCEV = PhiSCEV == Normalized; 983 // We only handle truncation and inversion of phi recurrences for the 984 // expanded expression if the expanded expression's loop dominates the 985 // loop we insert to. Check now, so we can bail out early. 986 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 987 continue; 988 989 // TODO: this possibly can be reworked to avoid this cast at all. 990 Instruction *TempIncV = 991 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 992 if (!TempIncV) 993 continue; 994 995 // Check whether we can reuse this PHI node. 996 if (LSRMode) { 997 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 998 continue; 999 } else { 1000 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1001 continue; 1002 } 1003 1004 // Stop if we have found an exact match SCEV. 1005 if (IsMatchingSCEV) { 1006 IncV = TempIncV; 1007 TruncTy = nullptr; 1008 InvertStep = false; 1009 AddRecPhiMatch = &PN; 1010 break; 1011 } 1012 1013 // Try whether the phi can be translated into the requested form 1014 // (truncated and/or offset by a constant). 1015 if ((!TruncTy || InvertStep) && 1016 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1017 // Record the phi node. But don't stop we might find an exact match 1018 // later. 1019 AddRecPhiMatch = &PN; 1020 IncV = TempIncV; 1021 TruncTy = Normalized->getType(); 1022 } 1023 } 1024 1025 if (AddRecPhiMatch) { 1026 // Ok, the add recurrence looks usable. 1027 // Remember this PHI, even in post-inc mode. 1028 InsertedValues.insert(AddRecPhiMatch); 1029 // Remember the increment. 1030 rememberInstruction(IncV); 1031 // Those values were not actually inserted but re-used. 1032 ReusedValues.insert(AddRecPhiMatch); 1033 ReusedValues.insert(IncV); 1034 return AddRecPhiMatch; 1035 } 1036 } 1037 1038 // Save the original insertion point so we can restore it when we're done. 1039 SCEVInsertPointGuard Guard(Builder, this); 1040 1041 // Another AddRec may need to be recursively expanded below. For example, if 1042 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1043 // loop. Remove this loop from the PostIncLoops set before expanding such 1044 // AddRecs. Otherwise, we cannot find a valid position for the step 1045 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1046 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1047 // so it's not worth implementing SmallPtrSet::swap. 1048 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1049 PostIncLoops.clear(); 1050 1051 // Expand code for the start value into the loop preheader. 1052 assert(L->getLoopPreheader() && 1053 "Can't expand add recurrences without a loop preheader!"); 1054 Value *StartV = 1055 expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 1056 1057 // StartV must have been be inserted into L's preheader to dominate the new 1058 // phi. 1059 assert(!isa<Instruction>(StartV) || 1060 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1061 L->getHeader())); 1062 1063 // Expand code for the step value. Do this before creating the PHI so that PHI 1064 // reuse code doesn't see an incomplete PHI. 1065 const SCEV *Step = Normalized->getStepRecurrence(SE); 1066 Type *ExpandTy = Normalized->getType(); 1067 // If the stride is negative, insert a sub instead of an add for the increment 1068 // (unless it's a constant, because subtracts of constants are canonicalized 1069 // to adds). 1070 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1071 if (useSubtract) 1072 Step = SE.getNegativeSCEV(Step); 1073 // Expand the step somewhere that dominates the loop header. 1074 Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1075 1076 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1077 // we actually do emit an addition. It does not apply if we emit a 1078 // subtraction. 1079 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1080 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1081 1082 // Create the PHI. 1083 BasicBlock *Header = L->getHeader(); 1084 Builder.SetInsertPoint(Header, Header->begin()); 1085 PHINode *PN = 1086 Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv"); 1087 1088 // Create the step instructions and populate the PHI. 1089 for (BasicBlock *Pred : predecessors(Header)) { 1090 // Add a start value. 1091 if (!L->contains(Pred)) { 1092 PN->addIncoming(StartV, Pred); 1093 continue; 1094 } 1095 1096 // Create a step value and add it to the PHI. 1097 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1098 // instructions at IVIncInsertPos. 1099 Instruction *InsertPos = L == IVIncInsertLoop ? 1100 IVIncInsertPos : Pred->getTerminator(); 1101 Builder.SetInsertPoint(InsertPos); 1102 Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 1103 1104 if (isa<OverflowingBinaryOperator>(IncV)) { 1105 if (IncrementIsNUW) 1106 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1107 if (IncrementIsNSW) 1108 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1109 } 1110 PN->addIncoming(IncV, Pred); 1111 } 1112 1113 // After expanding subexpressions, restore the PostIncLoops set so the caller 1114 // can ensure that IVIncrement dominates the current uses. 1115 PostIncLoops = SavedPostIncLoops; 1116 1117 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1118 // effective when we are able to use an IV inserted here, so record it. 1119 InsertedValues.insert(PN); 1120 InsertedIVs.push_back(PN); 1121 return PN; 1122 } 1123 1124 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1125 const Loop *L = S->getLoop(); 1126 1127 // Determine a normalized form of this expression, which is the expression 1128 // before any post-inc adjustment is made. 1129 const SCEVAddRecExpr *Normalized = S; 1130 if (PostIncLoops.count(L)) { 1131 PostIncLoopSet Loops; 1132 Loops.insert(L); 1133 Normalized = cast<SCEVAddRecExpr>( 1134 normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 1135 } 1136 1137 [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 1138 const SCEV *Step = Normalized->getStepRecurrence(SE); 1139 assert(SE.properlyDominates(Start, L->getHeader()) && 1140 "Start does not properly dominate loop header"); 1141 assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 1142 1143 // In some cases, we decide to reuse an existing phi node but need to truncate 1144 // it and/or invert the step. 1145 Type *TruncTy = nullptr; 1146 bool InvertStep = false; 1147 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 1148 1149 // Accommodate post-inc mode, if necessary. 1150 Value *Result; 1151 if (!PostIncLoops.count(L)) 1152 Result = PN; 1153 else { 1154 // In PostInc mode, use the post-incremented value. 1155 BasicBlock *LatchBlock = L->getLoopLatch(); 1156 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1157 Result = PN->getIncomingValueForBlock(LatchBlock); 1158 1159 // We might be introducing a new use of the post-inc IV that is not poison 1160 // safe, in which case we should drop poison generating flags. Only keep 1161 // those flags for which SCEV has proven that they always hold. 1162 if (isa<OverflowingBinaryOperator>(Result)) { 1163 auto *I = cast<Instruction>(Result); 1164 if (!S->hasNoUnsignedWrap()) 1165 I->setHasNoUnsignedWrap(false); 1166 if (!S->hasNoSignedWrap()) 1167 I->setHasNoSignedWrap(false); 1168 } 1169 1170 // For an expansion to use the postinc form, the client must call 1171 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1172 // or dominated by IVIncInsertPos. 1173 if (isa<Instruction>(Result) && 1174 !SE.DT.dominates(cast<Instruction>(Result), 1175 &*Builder.GetInsertPoint())) { 1176 // The induction variable's postinc expansion does not dominate this use. 1177 // IVUsers tries to prevent this case, so it is rare. However, it can 1178 // happen when an IVUser outside the loop is not dominated by the latch 1179 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1180 // all cases. Consider a phi outside whose operand is replaced during 1181 // expansion with the value of the postinc user. Without fundamentally 1182 // changing the way postinc users are tracked, the only remedy is 1183 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1184 // but hopefully expandCodeFor handles that. 1185 bool useSubtract = 1186 !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 1187 if (useSubtract) 1188 Step = SE.getNegativeSCEV(Step); 1189 Value *StepV; 1190 { 1191 // Expand the step somewhere that dominates the loop header. 1192 SCEVInsertPointGuard Guard(Builder, this); 1193 StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 1194 } 1195 Result = expandIVInc(PN, StepV, L, useSubtract); 1196 } 1197 } 1198 1199 // We have decided to reuse an induction variable of a dominating loop. Apply 1200 // truncation and/or inversion of the step. 1201 if (TruncTy) { 1202 // Truncate the result. 1203 if (TruncTy != Result->getType()) 1204 Result = Builder.CreateTrunc(Result, TruncTy); 1205 1206 // Invert the result. 1207 if (InvertStep) 1208 Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 1209 } 1210 1211 return Result; 1212 } 1213 1214 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1215 // In canonical mode we compute the addrec as an expression of a canonical IV 1216 // using evaluateAtIteration and expand the resulting SCEV expression. This 1217 // way we avoid introducing new IVs to carry on the computation of the addrec 1218 // throughout the loop. 1219 // 1220 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1221 // type wider than the addrec itself. Emitting a canonical IV of the 1222 // proper type might produce non-legal types, for example expanding an i64 1223 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1224 // back to non-canonical mode for nested addrecs. 1225 if (!CanonicalMode || (S->getNumOperands() > 2)) 1226 return expandAddRecExprLiterally(S); 1227 1228 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1229 const Loop *L = S->getLoop(); 1230 1231 // First check for an existing canonical IV in a suitable type. 1232 PHINode *CanonicalIV = nullptr; 1233 if (PHINode *PN = L->getCanonicalInductionVariable()) 1234 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1235 CanonicalIV = PN; 1236 1237 // Rewrite an AddRec in terms of the canonical induction variable, if 1238 // its type is more narrow. 1239 if (CanonicalIV && 1240 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1241 !S->getType()->isPointerTy()) { 1242 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1243 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1244 NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 1245 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1246 S->getNoWrapFlags(SCEV::FlagNW))); 1247 BasicBlock::iterator NewInsertPt = 1248 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1249 V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 1250 return V; 1251 } 1252 1253 // {X,+,F} --> X + {0,+,F} 1254 if (!S->getStart()->isZero()) { 1255 if (isa<PointerType>(S->getType())) { 1256 Value *StartV = expand(SE.getPointerBase(S)); 1257 return expandAddToGEP(SE.removePointerBase(S), StartV, 1258 S->getNoWrapFlags(SCEV::FlagNUW)); 1259 } 1260 1261 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1262 NewOps[0] = SE.getConstant(Ty, 0); 1263 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1264 S->getNoWrapFlags(SCEV::FlagNW)); 1265 1266 // Just do a normal add. Pre-expand the operands to suppress folding. 1267 // 1268 // The LHS and RHS values are factored out of the expand call to make the 1269 // output independent of the argument evaluation order. 1270 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1271 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1272 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1273 } 1274 1275 // If we don't yet have a canonical IV, create one. 1276 if (!CanonicalIV) { 1277 // Create and insert the PHI node for the induction variable in the 1278 // specified loop. 1279 BasicBlock *Header = L->getHeader(); 1280 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1281 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 1282 CanonicalIV->insertBefore(Header->begin()); 1283 rememberInstruction(CanonicalIV); 1284 1285 SmallSet<BasicBlock *, 4> PredSeen; 1286 Constant *One = ConstantInt::get(Ty, 1); 1287 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1288 BasicBlock *HP = *HPI; 1289 if (!PredSeen.insert(HP).second) { 1290 // There must be an incoming value for each predecessor, even the 1291 // duplicates! 1292 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1293 continue; 1294 } 1295 1296 if (L->contains(HP)) { 1297 // Insert a unit add instruction right before the terminator 1298 // corresponding to the back-edge. 1299 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1300 "indvar.next", 1301 HP->getTerminator()->getIterator()); 1302 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1303 rememberInstruction(Add); 1304 CanonicalIV->addIncoming(Add, HP); 1305 } else { 1306 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1307 } 1308 } 1309 } 1310 1311 // {0,+,1} --> Insert a canonical induction variable into the loop! 1312 if (S->isAffine() && S->getOperand(1)->isOne()) { 1313 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1314 "IVs with types different from the canonical IV should " 1315 "already have been handled!"); 1316 return CanonicalIV; 1317 } 1318 1319 // {0,+,F} --> {0,+,1} * F 1320 1321 // If this is a simple linear addrec, emit it now as a special case. 1322 if (S->isAffine()) // {0,+,F} --> i*F 1323 return 1324 expand(SE.getTruncateOrNoop( 1325 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1326 SE.getNoopOrAnyExtend(S->getOperand(1), 1327 CanonicalIV->getType())), 1328 Ty)); 1329 1330 // If this is a chain of recurrences, turn it into a closed form, using the 1331 // folders, then expandCodeFor the closed form. This allows the folders to 1332 // simplify the expression without having to build a bunch of special code 1333 // into this folder. 1334 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1335 1336 // Promote S up to the canonical IV type, if the cast is foldable. 1337 const SCEV *NewS = S; 1338 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1339 if (isa<SCEVAddRecExpr>(Ext)) 1340 NewS = Ext; 1341 1342 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1343 1344 // Truncate the result down to the original type, if needed. 1345 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1346 return expand(T); 1347 } 1348 1349 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1350 Value *V = expand(S->getOperand()); 1351 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1352 GetOptimalInsertionPointForCastOf(V)); 1353 } 1354 1355 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1356 Value *V = expand(S->getOperand()); 1357 return Builder.CreateTrunc(V, S->getType()); 1358 } 1359 1360 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1361 Value *V = expand(S->getOperand()); 1362 return Builder.CreateZExt(V, S->getType(), "", 1363 SE.isKnownNonNegative(S->getOperand())); 1364 } 1365 1366 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1367 Value *V = expand(S->getOperand()); 1368 return Builder.CreateSExt(V, S->getType()); 1369 } 1370 1371 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1372 Intrinsic::ID IntrinID, Twine Name, 1373 bool IsSequential) { 1374 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1375 Type *Ty = LHS->getType(); 1376 if (IsSequential) 1377 LHS = Builder.CreateFreeze(LHS); 1378 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1379 Value *RHS = expand(S->getOperand(i)); 1380 if (IsSequential && i != 0) 1381 RHS = Builder.CreateFreeze(RHS); 1382 Value *Sel; 1383 if (Ty->isIntegerTy()) 1384 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1385 /*FMFSource=*/nullptr, Name); 1386 else { 1387 Value *ICmp = 1388 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1389 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1390 } 1391 LHS = Sel; 1392 } 1393 return LHS; 1394 } 1395 1396 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1397 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1398 } 1399 1400 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1401 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1402 } 1403 1404 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1405 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1406 } 1407 1408 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1409 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1410 } 1411 1412 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1413 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1414 } 1415 1416 Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 1417 return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 1418 } 1419 1420 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1421 BasicBlock::iterator IP) { 1422 setInsertPoint(IP); 1423 Value *V = expandCodeFor(SH, Ty); 1424 return V; 1425 } 1426 1427 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1428 // Expand the code for this SCEV. 1429 Value *V = expand(SH); 1430 1431 if (Ty) { 1432 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1433 "non-trivial casts should be done with the SCEVs directly!"); 1434 V = InsertNoopCastOfTo(V, Ty); 1435 } 1436 return V; 1437 } 1438 1439 Value *SCEVExpander::FindValueInExprValueMap( 1440 const SCEV *S, const Instruction *InsertPt, 1441 SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 1442 // If the expansion is not in CanonicalMode, and the SCEV contains any 1443 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1444 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1445 return nullptr; 1446 1447 // If S is a constant, it may be worse to reuse an existing Value. 1448 if (isa<SCEVConstant>(S)) 1449 return nullptr; 1450 1451 for (Value *V : SE.getSCEVValues(S)) { 1452 Instruction *EntInst = dyn_cast<Instruction>(V); 1453 if (!EntInst) 1454 continue; 1455 1456 // Choose a Value from the set which dominates the InsertPt. 1457 // InsertPt should be inside the Value's parent loop so as not to break 1458 // the LCSSA form. 1459 assert(EntInst->getFunction() == InsertPt->getFunction()); 1460 if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 1461 !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1462 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1463 continue; 1464 1465 // Make sure reusing the instruction is poison-safe. 1466 if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 1467 return V; 1468 DropPoisonGeneratingInsts.clear(); 1469 } 1470 return nullptr; 1471 } 1472 1473 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1474 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1475 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1476 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1477 // the expansion will try to reuse Value from ExprValueMap, and only when it 1478 // fails, expand the SCEV literally. 1479 Value *SCEVExpander::expand(const SCEV *S) { 1480 // Compute an insertion point for this SCEV object. Hoist the instructions 1481 // as far out in the loop nest as possible. 1482 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 1483 1484 // We can move insertion point only if there is no div or rem operations 1485 // otherwise we are risky to move it over the check for zero denominator. 1486 auto SafeToHoist = [](const SCEV *S) { 1487 return !SCEVExprContains(S, [](const SCEV *S) { 1488 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1489 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1490 // Division by non-zero constants can be hoisted. 1491 return SC->getValue()->isZero(); 1492 // All other divisions should not be moved as they may be 1493 // divisions by zero and should be kept within the 1494 // conditions of the surrounding loops that guard their 1495 // execution (see PR35406). 1496 return true; 1497 } 1498 return false; 1499 }); 1500 }; 1501 if (SafeToHoist(S)) { 1502 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1503 L = L->getParentLoop()) { 1504 if (SE.isLoopInvariant(S, L)) { 1505 if (!L) break; 1506 if (BasicBlock *Preheader = L->getLoopPreheader()) { 1507 InsertPt = Preheader->getTerminator()->getIterator(); 1508 } else { 1509 // LSR sets the insertion point for AddRec start/step values to the 1510 // block start to simplify value reuse, even though it's an invalid 1511 // position. SCEVExpander must correct for this in all cases. 1512 InsertPt = L->getHeader()->getFirstInsertionPt(); 1513 } 1514 } else { 1515 // If the SCEV is computable at this level, insert it into the header 1516 // after the PHIs (and after any other instructions that we've inserted 1517 // there) so that it is guaranteed to dominate any user inside the loop. 1518 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1519 InsertPt = L->getHeader()->getFirstInsertionPt(); 1520 1521 while (InsertPt != Builder.GetInsertPoint() && 1522 (isInsertedInstruction(&*InsertPt) || 1523 isa<DbgInfoIntrinsic>(&*InsertPt))) { 1524 InsertPt = std::next(InsertPt); 1525 } 1526 break; 1527 } 1528 } 1529 } 1530 1531 // Check to see if we already expanded this here. 1532 auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 1533 if (I != InsertedExpressions.end()) 1534 return I->second; 1535 1536 SCEVInsertPointGuard Guard(Builder, this); 1537 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1538 1539 // Expand the expression into instructions. 1540 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1541 Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1542 if (!V) { 1543 V = visit(S); 1544 V = fixupLCSSAFormFor(V); 1545 } else { 1546 for (Instruction *I : DropPoisonGeneratingInsts) { 1547 rememberFlags(I); 1548 I->dropPoisonGeneratingAnnotations(); 1549 // See if we can re-infer from first principles any of the flags we just 1550 // dropped. 1551 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 1552 if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 1553 auto *BO = cast<BinaryOperator>(I); 1554 BO->setHasNoUnsignedWrap( 1555 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 1556 BO->setHasNoSignedWrap( 1557 ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 1558 } 1559 if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 1560 auto *Src = NNI->getOperand(0); 1561 if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 1562 Constant::getNullValue(Src->getType()), I, 1563 DL).value_or(false)) 1564 NNI->setNonNeg(true); 1565 } 1566 } 1567 } 1568 // Remember the expanded value for this SCEV at this location. 1569 // 1570 // This is independent of PostIncLoops. The mapped value simply materializes 1571 // the expression at this insertion point. If the mapped value happened to be 1572 // a postinc expansion, it could be reused by a non-postinc user, but only if 1573 // its insertion point was already at the head of the loop. 1574 InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 1575 return V; 1576 } 1577 1578 void SCEVExpander::rememberInstruction(Value *I) { 1579 auto DoInsert = [this](Value *V) { 1580 if (!PostIncLoops.empty()) 1581 InsertedPostIncValues.insert(V); 1582 else 1583 InsertedValues.insert(V); 1584 }; 1585 DoInsert(I); 1586 } 1587 1588 void SCEVExpander::rememberFlags(Instruction *I) { 1589 // If we already have flags for the instruction, keep the existing ones. 1590 OrigFlags.try_emplace(I, PoisonFlags(I)); 1591 } 1592 1593 void SCEVExpander::replaceCongruentIVInc( 1594 PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT, 1595 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1596 BasicBlock *LatchBlock = L->getLoopLatch(); 1597 if (!LatchBlock) 1598 return; 1599 1600 Instruction *OrigInc = 1601 dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1602 Instruction *IsomorphicInc = 1603 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1604 if (!OrigInc || !IsomorphicInc) 1605 return; 1606 1607 // If this phi has the same width but is more canonical, replace the 1608 // original with it. As part of the "more canonical" determination, 1609 // respect a prior decision to use an IV chain. 1610 if (OrigPhi->getType() == Phi->getType() && 1611 !(ChainedPhis.count(Phi) || 1612 isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) && 1613 (ChainedPhis.count(Phi) || 1614 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1615 std::swap(OrigPhi, Phi); 1616 std::swap(OrigInc, IsomorphicInc); 1617 } 1618 1619 // Replacing the congruent phi is sufficient because acyclic 1620 // redundancy elimination, CSE/GVN, should handle the 1621 // rest. However, once SCEV proves that a phi is congruent, 1622 // it's often the head of an IV user cycle that is isomorphic 1623 // with the original phi. It's worth eagerly cleaning up the 1624 // common case of a single IV increment so that DeleteDeadPHIs 1625 // can remove cycles that had postinc uses. 1626 // Because we may potentially introduce a new use of OrigIV that didn't 1627 // exist before at this point, its poison flags need readjustment. 1628 const SCEV *TruncExpr = 1629 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1630 if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) || 1631 !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc)) 1632 return; 1633 1634 bool BothHaveNUW = false; 1635 bool BothHaveNSW = false; 1636 auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc); 1637 auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc); 1638 if (OBOIncV && OBOIsomorphic) { 1639 BothHaveNUW = 1640 OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap(); 1641 BothHaveNSW = 1642 OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap(); 1643 } 1644 1645 if (!hoistIVInc(OrigInc, IsomorphicInc, 1646 /*RecomputePoisonFlags*/ true)) 1647 return; 1648 1649 // We are replacing with a wider increment. If both OrigInc and IsomorphicInc 1650 // are NUW/NSW, then we can preserve them on the wider increment; the narrower 1651 // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't 1652 // make IsomorphicInc's uses more poisonous. 1653 assert(OrigInc->getType()->getScalarSizeInBits() >= 1654 IsomorphicInc->getType()->getScalarSizeInBits() && 1655 "Should only replace an increment with a wider one."); 1656 if (BothHaveNUW || BothHaveNSW) { 1657 OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW); 1658 OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW); 1659 } 1660 1661 SCEV_DEBUG_WITH_TYPE(DebugType, 1662 dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1663 << *IsomorphicInc << '\n'); 1664 Value *NewInc = OrigInc; 1665 if (OrigInc->getType() != IsomorphicInc->getType()) { 1666 BasicBlock::iterator IP; 1667 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1668 IP = PN->getParent()->getFirstInsertionPt(); 1669 else 1670 IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1671 1672 IRBuilder<> Builder(IP->getParent(), IP); 1673 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1674 NewInc = 1675 Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1676 } 1677 IsomorphicInc->replaceAllUsesWith(NewInc); 1678 DeadInsts.emplace_back(IsomorphicInc); 1679 } 1680 1681 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1682 /// replace them with their most canonical representative. Return the number of 1683 /// phis eliminated. 1684 /// 1685 /// This does not depend on any SCEVExpander state but should be used in 1686 /// the same context that SCEVExpander is used. 1687 unsigned 1688 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1689 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1690 const TargetTransformInfo *TTI) { 1691 // Find integer phis in order of increasing width. 1692 SmallVector<PHINode*, 8> Phis; 1693 for (PHINode &PN : L->getHeader()->phis()) 1694 Phis.push_back(&PN); 1695 1696 if (TTI) 1697 // Use stable_sort to preserve order of equivalent PHIs, so the order 1698 // of the sorted Phis is the same from run to run on the same loop. 1699 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1700 // Put pointers at the back and make sure pointer < pointer = false. 1701 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1702 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1703 return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1704 LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 1705 }); 1706 1707 unsigned NumElim = 0; 1708 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1709 // Process phis from wide to narrow. Map wide phis to their truncation 1710 // so narrow phis can reuse them. 1711 for (PHINode *Phi : Phis) { 1712 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1713 if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1714 return V; 1715 if (!SE.isSCEVable(PN->getType())) 1716 return nullptr; 1717 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1718 if (!Const) 1719 return nullptr; 1720 return Const->getValue(); 1721 }; 1722 1723 // Fold constant phis. They may be congruent to other constant phis and 1724 // would confuse the logic below that expects proper IVs. 1725 if (Value *V = SimplifyPHINode(Phi)) { 1726 if (V->getType() != Phi->getType()) 1727 continue; 1728 SE.forgetValue(Phi); 1729 Phi->replaceAllUsesWith(V); 1730 DeadInsts.emplace_back(Phi); 1731 ++NumElim; 1732 SCEV_DEBUG_WITH_TYPE(DebugType, 1733 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1734 << '\n'); 1735 continue; 1736 } 1737 1738 if (!SE.isSCEVable(Phi->getType())) 1739 continue; 1740 1741 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1742 if (!OrigPhiRef) { 1743 OrigPhiRef = Phi; 1744 if (Phi->getType()->isIntegerTy() && TTI && 1745 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1746 // Make sure we only rewrite using simple induction variables; 1747 // otherwise, we can make the trip count of a loop unanalyzable 1748 // to SCEV. 1749 const SCEV *PhiExpr = SE.getSCEV(Phi); 1750 if (isa<SCEVAddRecExpr>(PhiExpr)) { 1751 // This phi can be freely truncated to the narrowest phi type. Map the 1752 // truncated expression to it so it will be reused for narrow types. 1753 const SCEV *TruncExpr = 1754 SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 1755 ExprToIVMap[TruncExpr] = Phi; 1756 } 1757 } 1758 continue; 1759 } 1760 1761 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1762 // sense. 1763 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1764 continue; 1765 1766 replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts); 1767 SCEV_DEBUG_WITH_TYPE(DebugType, 1768 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1769 << '\n'); 1770 SCEV_DEBUG_WITH_TYPE( 1771 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 1772 ++NumElim; 1773 Value *NewIV = OrigPhiRef; 1774 if (OrigPhiRef->getType() != Phi->getType()) { 1775 IRBuilder<> Builder(L->getHeader(), 1776 L->getHeader()->getFirstInsertionPt()); 1777 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1778 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1779 } 1780 Phi->replaceAllUsesWith(NewIV); 1781 DeadInsts.emplace_back(Phi); 1782 } 1783 return NumElim; 1784 } 1785 1786 bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 1787 const Instruction *At, 1788 Loop *L) { 1789 using namespace llvm::PatternMatch; 1790 1791 SmallVector<BasicBlock *, 4> ExitingBlocks; 1792 L->getExitingBlocks(ExitingBlocks); 1793 1794 // Look for suitable value in simple conditions at the loop exits. 1795 for (BasicBlock *BB : ExitingBlocks) { 1796 ICmpInst::Predicate Pred; 1797 Instruction *LHS, *RHS; 1798 1799 if (!match(BB->getTerminator(), 1800 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 1801 m_BasicBlock(), m_BasicBlock()))) 1802 continue; 1803 1804 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 1805 return true; 1806 1807 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 1808 return true; 1809 } 1810 1811 // Use expand's logic which is used for reusing a previous Value in 1812 // ExprValueMap. Note that we don't currently model the cost of 1813 // needing to drop poison generating flags on the instruction if we 1814 // want to reuse it. We effectively assume that has zero cost. 1815 SmallVector<Instruction *> DropPoisonGeneratingInsts; 1816 return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 1817 } 1818 1819 template<typename T> static InstructionCost costAndCollectOperands( 1820 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1821 TargetTransformInfo::TargetCostKind CostKind, 1822 SmallVectorImpl<SCEVOperand> &Worklist) { 1823 1824 const T *S = cast<T>(WorkItem.S); 1825 InstructionCost Cost = 0; 1826 // Object to help map SCEV operands to expanded IR instructions. 1827 struct OperationIndices { 1828 OperationIndices(unsigned Opc, size_t min, size_t max) : 1829 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1830 unsigned Opcode; 1831 size_t MinIdx; 1832 size_t MaxIdx; 1833 }; 1834 1835 // Collect the operations of all the instructions that will be needed to 1836 // expand the SCEVExpr. This is so that when we come to cost the operands, 1837 // we know what the generated user(s) will be. 1838 SmallVector<OperationIndices, 2> Operations; 1839 1840 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1841 Operations.emplace_back(Opcode, 0, 0); 1842 return TTI.getCastInstrCost(Opcode, S->getType(), 1843 S->getOperand(0)->getType(), 1844 TTI::CastContextHint::None, CostKind); 1845 }; 1846 1847 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1848 unsigned MinIdx = 0, 1849 unsigned MaxIdx = 1) -> InstructionCost { 1850 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1851 return NumRequired * 1852 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1853 }; 1854 1855 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1856 unsigned MaxIdx) -> InstructionCost { 1857 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1858 Type *OpType = S->getType(); 1859 return NumRequired * TTI.getCmpSelInstrCost( 1860 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1861 CmpInst::BAD_ICMP_PREDICATE, CostKind); 1862 }; 1863 1864 switch (S->getSCEVType()) { 1865 case scCouldNotCompute: 1866 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1867 case scUnknown: 1868 case scConstant: 1869 case scVScale: 1870 return 0; 1871 case scPtrToInt: 1872 Cost = CastCost(Instruction::PtrToInt); 1873 break; 1874 case scTruncate: 1875 Cost = CastCost(Instruction::Trunc); 1876 break; 1877 case scZeroExtend: 1878 Cost = CastCost(Instruction::ZExt); 1879 break; 1880 case scSignExtend: 1881 Cost = CastCost(Instruction::SExt); 1882 break; 1883 case scUDivExpr: { 1884 unsigned Opcode = Instruction::UDiv; 1885 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1886 if (SC->getAPInt().isPowerOf2()) 1887 Opcode = Instruction::LShr; 1888 Cost = ArithCost(Opcode, 1); 1889 break; 1890 } 1891 case scAddExpr: 1892 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1893 break; 1894 case scMulExpr: 1895 // TODO: this is a very pessimistic cost modelling for Mul, 1896 // because of Bin Pow algorithm actually used by the expander, 1897 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1898 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1899 break; 1900 case scSMaxExpr: 1901 case scUMaxExpr: 1902 case scSMinExpr: 1903 case scUMinExpr: 1904 case scSequentialUMinExpr: { 1905 // FIXME: should this ask the cost for Intrinsic's? 1906 // The reduction tree. 1907 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1908 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 1909 switch (S->getSCEVType()) { 1910 case scSequentialUMinExpr: { 1911 // The safety net against poison. 1912 // FIXME: this is broken. 1913 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 1914 Cost += ArithCost(Instruction::Or, 1915 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 1916 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 1917 break; 1918 } 1919 default: 1920 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 1921 "Unhandled SCEV expression type?"); 1922 break; 1923 } 1924 break; 1925 } 1926 case scAddRecExpr: { 1927 // Addrec expands to a phi and add per recurrence. 1928 unsigned NumRecurrences = S->getNumOperands() - 1; 1929 Cost += TTI.getCFInstrCost(Instruction::PHI, CostKind) * NumRecurrences; 1930 Cost += 1931 TTI.getArithmeticInstrCost(Instruction::Add, S->getType(), CostKind) * 1932 NumRecurrences; 1933 // AR start is used in phi. 1934 Worklist.emplace_back(Instruction::PHI, 0, S->getOperand(0)); 1935 // Other operands are used in add. 1936 for (const SCEV *Op : S->operands().drop_front()) 1937 Worklist.emplace_back(Instruction::Add, 1, Op); 1938 break; 1939 } 1940 } 1941 1942 for (auto &CostOp : Operations) { 1943 for (auto SCEVOp : enumerate(S->operands())) { 1944 // Clamp the index to account for multiple IR operations being chained. 1945 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1946 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1947 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1948 } 1949 } 1950 return Cost; 1951 } 1952 1953 bool SCEVExpander::isHighCostExpansionHelper( 1954 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1955 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1956 SmallPtrSetImpl<const SCEV *> &Processed, 1957 SmallVectorImpl<SCEVOperand> &Worklist) { 1958 if (Cost > Budget) 1959 return true; // Already run out of budget, give up. 1960 1961 const SCEV *S = WorkItem.S; 1962 // Was the cost of expansion of this expression already accounted for? 1963 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 1964 return false; // We have already accounted for this expression. 1965 1966 // If we can find an existing value for this scev available at the point "At" 1967 // then consider the expression cheap. 1968 if (hasRelatedExistingExpansion(S, &At, L)) 1969 return false; // Consider the expression to be free. 1970 1971 TargetTransformInfo::TargetCostKind CostKind = 1972 L->getHeader()->getParent()->hasMinSize() 1973 ? TargetTransformInfo::TCK_CodeSize 1974 : TargetTransformInfo::TCK_RecipThroughput; 1975 1976 switch (S->getSCEVType()) { 1977 case scCouldNotCompute: 1978 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1979 case scUnknown: 1980 case scVScale: 1981 // Assume to be zero-cost. 1982 return false; 1983 case scConstant: { 1984 // Only evalulate the costs of constants when optimizing for size. 1985 if (CostKind != TargetTransformInfo::TCK_CodeSize) 1986 return false; 1987 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 1988 Type *Ty = S->getType(); 1989 Cost += TTI.getIntImmCostInst( 1990 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 1991 return Cost > Budget; 1992 } 1993 case scTruncate: 1994 case scPtrToInt: 1995 case scZeroExtend: 1996 case scSignExtend: { 1997 Cost += 1998 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 1999 return false; // Will answer upon next entry into this function. 2000 } 2001 case scUDivExpr: { 2002 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2003 // HowManyLessThans produced to compute a precise expression, rather than a 2004 // UDiv from the user's code. If we can't find a UDiv in the code with some 2005 // simple searching, we need to account for it's cost. 2006 2007 // At the beginning of this function we already tried to find existing 2008 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2009 // pattern involving division. This is just a simple search heuristic. 2010 if (hasRelatedExistingExpansion( 2011 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2012 return false; // Consider it to be free. 2013 2014 Cost += 2015 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2016 return false; // Will answer upon next entry into this function. 2017 } 2018 case scAddExpr: 2019 case scMulExpr: 2020 case scUMaxExpr: 2021 case scSMaxExpr: 2022 case scUMinExpr: 2023 case scSMinExpr: 2024 case scSequentialUMinExpr: { 2025 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2026 "Nary expr should have more than 1 operand."); 2027 // The simple nary expr will require one less op (or pair of ops) 2028 // than the number of it's terms. 2029 Cost += 2030 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2031 return Cost > Budget; 2032 } 2033 case scAddRecExpr: { 2034 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2035 "Polynomial should be at least linear"); 2036 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2037 WorkItem, TTI, CostKind, Worklist); 2038 return Cost > Budget; 2039 } 2040 } 2041 llvm_unreachable("Unknown SCEV kind!"); 2042 } 2043 2044 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2045 Instruction *IP) { 2046 assert(IP); 2047 switch (Pred->getKind()) { 2048 case SCEVPredicate::P_Union: 2049 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2050 case SCEVPredicate::P_Compare: 2051 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2052 case SCEVPredicate::P_Wrap: { 2053 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2054 return expandWrapPredicate(AddRecPred, IP); 2055 } 2056 } 2057 llvm_unreachable("Unknown SCEV predicate type"); 2058 } 2059 2060 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2061 Instruction *IP) { 2062 Value *Expr0 = expand(Pred->getLHS(), IP); 2063 Value *Expr1 = expand(Pred->getRHS(), IP); 2064 2065 Builder.SetInsertPoint(IP); 2066 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2067 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2068 return I; 2069 } 2070 2071 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2072 Instruction *Loc, bool Signed) { 2073 assert(AR->isAffine() && "Cannot generate RT check for " 2074 "non-affine expression"); 2075 2076 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2077 SmallVector<const SCEVPredicate *, 4> Pred; 2078 const SCEV *ExitCount = 2079 SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred); 2080 2081 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2082 2083 const SCEV *Step = AR->getStepRecurrence(SE); 2084 const SCEV *Start = AR->getStart(); 2085 2086 Type *ARTy = AR->getType(); 2087 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2088 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2089 2090 // The expression {Start,+,Step} has nusw/nssw if 2091 // Step < 0, Start - |Step| * Backedge <= Start 2092 // Step >= 0, Start + |Step| * Backedge > Start 2093 // and |Step| * Backedge doesn't unsigned overflow. 2094 2095 Builder.SetInsertPoint(Loc); 2096 Value *TripCountVal = expand(ExitCount, Loc); 2097 2098 IntegerType *Ty = 2099 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2100 2101 Value *StepValue = expand(Step, Loc); 2102 Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 2103 Value *StartValue = expand(Start, Loc); 2104 2105 ConstantInt *Zero = 2106 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2107 2108 Builder.SetInsertPoint(Loc); 2109 // Compute |Step| 2110 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2111 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2112 2113 // Compute |Step| * Backedge 2114 // Compute: 2115 // 1. Start + |Step| * Backedge < Start 2116 // 2. Start - |Step| * Backedge > Start 2117 // 2118 // And select either 1. or 2. depending on whether step is positive or 2119 // negative. If Step is known to be positive or negative, only create 2120 // either 1. or 2. 2121 auto ComputeEndCheck = [&]() -> Value * { 2122 // Checking <u 0 is always false. 2123 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2124 return ConstantInt::getFalse(Loc->getContext()); 2125 2126 // Get the backedge taken count and truncate or extended to the AR type. 2127 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2128 2129 Value *MulV, *OfMul; 2130 if (Step->isOne()) { 2131 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2132 // needed, there is never an overflow, so to avoid artificially inflating 2133 // the cost of the check, directly emit the optimized IR. 2134 MulV = TruncTripCount; 2135 OfMul = ConstantInt::getFalse(MulV->getContext()); 2136 } else { 2137 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2138 Intrinsic::umul_with_overflow, Ty); 2139 CallInst *Mul = 2140 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2141 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2142 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2143 } 2144 2145 Value *Add = nullptr, *Sub = nullptr; 2146 bool NeedPosCheck = !SE.isKnownNegative(Step); 2147 bool NeedNegCheck = !SE.isKnownPositive(Step); 2148 2149 if (isa<PointerType>(ARTy)) { 2150 Value *NegMulV = Builder.CreateNeg(MulV); 2151 if (NeedPosCheck) 2152 Add = Builder.CreatePtrAdd(StartValue, MulV); 2153 if (NeedNegCheck) 2154 Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 2155 } else { 2156 if (NeedPosCheck) 2157 Add = Builder.CreateAdd(StartValue, MulV); 2158 if (NeedNegCheck) 2159 Sub = Builder.CreateSub(StartValue, MulV); 2160 } 2161 2162 Value *EndCompareLT = nullptr; 2163 Value *EndCompareGT = nullptr; 2164 Value *EndCheck = nullptr; 2165 if (NeedPosCheck) 2166 EndCheck = EndCompareLT = Builder.CreateICmp( 2167 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2168 if (NeedNegCheck) 2169 EndCheck = EndCompareGT = Builder.CreateICmp( 2170 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2171 if (NeedPosCheck && NeedNegCheck) { 2172 // Select the answer based on the sign of Step. 2173 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2174 } 2175 return Builder.CreateOr(EndCheck, OfMul); 2176 }; 2177 Value *EndCheck = ComputeEndCheck(); 2178 2179 // If the backedge taken count type is larger than the AR type, 2180 // check that we don't drop any bits by truncating it. If we are 2181 // dropping bits, then we have overflow (unless the step is zero). 2182 if (SrcBits > DstBits) { 2183 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2184 auto *BackedgeCheck = 2185 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2186 ConstantInt::get(Loc->getContext(), MaxVal)); 2187 BackedgeCheck = Builder.CreateAnd( 2188 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2189 2190 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2191 } 2192 2193 return EndCheck; 2194 } 2195 2196 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2197 Instruction *IP) { 2198 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2199 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2200 2201 // Add a check for NUSW 2202 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2203 NUSWCheck = generateOverflowCheck(A, IP, false); 2204 2205 // Add a check for NSSW 2206 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2207 NSSWCheck = generateOverflowCheck(A, IP, true); 2208 2209 if (NUSWCheck && NSSWCheck) 2210 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2211 2212 if (NUSWCheck) 2213 return NUSWCheck; 2214 2215 if (NSSWCheck) 2216 return NSSWCheck; 2217 2218 return ConstantInt::getFalse(IP->getContext()); 2219 } 2220 2221 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2222 Instruction *IP) { 2223 // Loop over all checks in this set. 2224 SmallVector<Value *> Checks; 2225 for (const auto *Pred : Union->getPredicates()) { 2226 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2227 Builder.SetInsertPoint(IP); 2228 } 2229 2230 if (Checks.empty()) 2231 return ConstantInt::getFalse(IP->getContext()); 2232 return Builder.CreateOr(Checks); 2233 } 2234 2235 Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2236 auto *DefI = dyn_cast<Instruction>(V); 2237 if (!PreserveLCSSA || !DefI) 2238 return V; 2239 2240 BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 2241 Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2242 Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2243 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2244 return V; 2245 2246 // Create a temporary instruction to at the current insertion point, so we 2247 // can hand it off to the helper to create LCSSA PHIs if required for the 2248 // new use. 2249 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2250 // would accept a insertion point and return an LCSSA phi for that 2251 // insertion point, so there is no need to insert & remove the temporary 2252 // instruction. 2253 Type *ToTy; 2254 if (DefI->getType()->isIntegerTy()) 2255 ToTy = PointerType::get(DefI->getContext(), 0); 2256 else 2257 ToTy = Type::getInt32Ty(DefI->getContext()); 2258 Instruction *User = 2259 CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2260 auto RemoveUserOnExit = 2261 make_scope_exit([User]() { User->eraseFromParent(); }); 2262 2263 SmallVector<Instruction *, 1> ToUpdate; 2264 ToUpdate.push_back(DefI); 2265 SmallVector<PHINode *, 16> PHIsToRemove; 2266 SmallVector<PHINode *, 16> InsertedPHIs; 2267 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 2268 &InsertedPHIs); 2269 for (PHINode *PN : InsertedPHIs) 2270 rememberInstruction(PN); 2271 for (PHINode *PN : PHIsToRemove) { 2272 if (!PN->use_empty()) 2273 continue; 2274 InsertedValues.erase(PN); 2275 InsertedPostIncValues.erase(PN); 2276 PN->eraseFromParent(); 2277 } 2278 2279 return User->getOperand(0); 2280 } 2281 2282 namespace { 2283 // Search for a SCEV subexpression that is not safe to expand. Any expression 2284 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2285 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2286 // instruction, but the important thing is that we prove the denominator is 2287 // nonzero before expansion. 2288 // 2289 // IVUsers already checks that IV-derived expressions are safe. So this check is 2290 // only needed when the expression includes some subexpression that is not IV 2291 // derived. 2292 // 2293 // Currently, we only allow division by a value provably non-zero here. 2294 // 2295 // We cannot generally expand recurrences unless the step dominates the loop 2296 // header. The expander handles the special case of affine recurrences by 2297 // scaling the recurrence outside the loop, but this technique isn't generally 2298 // applicable. Expanding a nested recurrence outside a loop requires computing 2299 // binomial coefficients. This could be done, but the recurrence has to be in a 2300 // perfectly reduced form, which can't be guaranteed. 2301 struct SCEVFindUnsafe { 2302 ScalarEvolution &SE; 2303 bool CanonicalMode; 2304 bool IsUnsafe = false; 2305 2306 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2307 : SE(SE), CanonicalMode(CanonicalMode) {} 2308 2309 bool follow(const SCEV *S) { 2310 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2311 if (!SE.isKnownNonZero(D->getRHS())) { 2312 IsUnsafe = true; 2313 return false; 2314 } 2315 } 2316 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2317 // For non-affine addrecs or in non-canonical mode we need a preheader 2318 // to insert into. 2319 if (!AR->getLoop()->getLoopPreheader() && 2320 (!CanonicalMode || !AR->isAffine())) { 2321 IsUnsafe = true; 2322 return false; 2323 } 2324 } 2325 return true; 2326 } 2327 bool isDone() const { return IsUnsafe; } 2328 }; 2329 } // namespace 2330 2331 bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2332 SCEVFindUnsafe Search(SE, CanonicalMode); 2333 visitAll(S, Search); 2334 return !Search.IsUnsafe; 2335 } 2336 2337 bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2338 const Instruction *InsertionPoint) const { 2339 if (!isSafeToExpand(S)) 2340 return false; 2341 // We have to prove that the expanded site of S dominates InsertionPoint. 2342 // This is easy when not in the same block, but hard when S is an instruction 2343 // to be expanded somewhere inside the same block as our insertion point. 2344 // What we really need here is something analogous to an OrderedBasicBlock, 2345 // but for the moment, we paper over the problem by handling two common and 2346 // cheap to check cases. 2347 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2348 return true; 2349 if (SE.dominates(S, InsertionPoint->getParent())) { 2350 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2351 return true; 2352 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2353 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2354 return true; 2355 } 2356 return false; 2357 } 2358 2359 void SCEVExpanderCleaner::cleanup() { 2360 // Result is used, nothing to remove. 2361 if (ResultUsed) 2362 return; 2363 2364 // Restore original poison flags. 2365 for (auto [I, Flags] : Expander.OrigFlags) 2366 Flags.apply(I); 2367 2368 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2369 #ifndef NDEBUG 2370 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2371 InsertedInstructions.end()); 2372 (void)InsertedSet; 2373 #endif 2374 // Remove sets with value handles. 2375 Expander.clear(); 2376 2377 // Remove all inserted instructions. 2378 for (Instruction *I : reverse(InsertedInstructions)) { 2379 #ifndef NDEBUG 2380 assert(all_of(I->users(), 2381 [&InsertedSet](Value *U) { 2382 return InsertedSet.contains(cast<Instruction>(U)); 2383 }) && 2384 "removed instruction should only be used by instructions inserted " 2385 "during expansion"); 2386 #endif 2387 assert(!I->getType()->isVoidTy() && 2388 "inserted instruction should have non-void types"); 2389 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2390 I->eraseFromParent(); 2391 } 2392 } 2393