xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 1540da3b788272e9aacc698ef96e75a4a5839ee1)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/LoopUtils.h"
31 
32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
34 #else
35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
36 #endif
37 
38 using namespace llvm;
39 
40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
41     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
42     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
43              "controls the budget that is considered cheap (default = 4)"));
44 
45 using namespace PatternMatch;
46 
47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
49 /// creating a new one.
50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
51                                        Instruction::CastOps Op,
52                                        BasicBlock::iterator IP) {
53   // This function must be called with the builder having a valid insertion
54   // point. It doesn't need to be the actual IP where the uses of the returned
55   // cast will be added, but it must dominate such IP.
56   // We use this precondition to produce a cast that will dominate all its
57   // uses. In particular, this is crucial for the case where the builder's
58   // insertion point *is* the point where we were asked to put the cast.
59   // Since we don't know the builder's insertion point is actually
60   // where the uses will be added (only that it dominates it), we are
61   // not allowed to move it.
62   BasicBlock::iterator BIP = Builder.GetInsertPoint();
63 
64   Value *Ret = nullptr;
65 
66   // Check to see if there is already a cast!
67   for (User *U : V->users()) {
68     if (U->getType() != Ty)
69       continue;
70     CastInst *CI = dyn_cast<CastInst>(U);
71     if (!CI || CI->getOpcode() != Op)
72       continue;
73 
74     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
75     // the cast must also properly dominate the Builder's insertion point.
76     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
77         (&*IP == CI || CI->comesBefore(&*IP))) {
78       Ret = CI;
79       break;
80     }
81   }
82 
83   // Create a new cast.
84   if (!Ret) {
85     SCEVInsertPointGuard Guard(Builder, this);
86     Builder.SetInsertPoint(&*IP);
87     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
88   }
89 
90   // We assert at the end of the function since IP might point to an
91   // instruction with different dominance properties than a cast
92   // (an invoke for example) and not dominate BIP (but the cast does).
93   assert(!isa<Instruction>(Ret) ||
94          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
95 
96   return Ret;
97 }
98 
99 BasicBlock::iterator
100 SCEVExpander::findInsertPointAfter(Instruction *I,
101                                    Instruction *MustDominate) const {
102   BasicBlock::iterator IP = ++I->getIterator();
103   if (auto *II = dyn_cast<InvokeInst>(I))
104     IP = II->getNormalDest()->begin();
105 
106   while (isa<PHINode>(IP))
107     ++IP;
108 
109   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
110     ++IP;
111   } else if (isa<CatchSwitchInst>(IP)) {
112     IP = MustDominate->getParent()->getFirstInsertionPt();
113   } else {
114     assert(!IP->isEHPad() && "unexpected eh pad!");
115   }
116 
117   // Adjust insert point to be after instructions inserted by the expander, so
118   // we can re-use already inserted instructions. Avoid skipping past the
119   // original \p MustDominate, in case it is an inserted instruction.
120   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
121     ++IP;
122 
123   return IP;
124 }
125 
126 BasicBlock::iterator
127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
128   // Cast the argument at the beginning of the entry block, after
129   // any bitcasts of other arguments.
130   if (Argument *A = dyn_cast<Argument>(V)) {
131     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
132     while ((isa<BitCastInst>(IP) &&
133             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
134             cast<BitCastInst>(IP)->getOperand(0) != A) ||
135            isa<DbgInfoIntrinsic>(IP))
136       ++IP;
137     return IP;
138   }
139 
140   // Cast the instruction immediately after the instruction.
141   if (Instruction *I = dyn_cast<Instruction>(V))
142     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
143 
144   // Otherwise, this must be some kind of a constant,
145   // so let's plop this cast into the function's entry block.
146   assert(isa<Constant>(V) &&
147          "Expected the cast argument to be a global/constant");
148   return Builder.GetInsertBlock()
149       ->getParent()
150       ->getEntryBlock()
151       .getFirstInsertionPt();
152 }
153 
154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
155 /// which must be possible with a noop cast, doing what we can to share
156 /// the casts.
157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
158   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
159   assert((Op == Instruction::BitCast ||
160           Op == Instruction::PtrToInt ||
161           Op == Instruction::IntToPtr) &&
162          "InsertNoopCastOfTo cannot perform non-noop casts!");
163   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
164          "InsertNoopCastOfTo cannot change sizes!");
165 
166   // inttoptr only works for integral pointers. For non-integral pointers, we
167   // can create a GEP on i8* null  with the integral value as index. Note that
168   // it is safe to use GEP of null instead of inttoptr here, because only
169   // expressions already based on a GEP of null should be converted to pointers
170   // during expansion.
171   if (Op == Instruction::IntToPtr) {
172     auto *PtrTy = cast<PointerType>(Ty);
173     if (DL.isNonIntegralPointerType(PtrTy)) {
174       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
175       assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 &&
176              "alloc size of i8 must by 1 byte for the GEP to be correct");
177       auto *GEP = Builder.CreateGEP(
178           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
179       return Builder.CreateBitCast(GEP, Ty);
180     }
181   }
182   // Short-circuit unnecessary bitcasts.
183   if (Op == Instruction::BitCast) {
184     if (V->getType() == Ty)
185       return V;
186     if (CastInst *CI = dyn_cast<CastInst>(V)) {
187       if (CI->getOperand(0)->getType() == Ty)
188         return CI->getOperand(0);
189     }
190   }
191   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
192   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
193       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
194     if (CastInst *CI = dyn_cast<CastInst>(V))
195       if ((CI->getOpcode() == Instruction::PtrToInt ||
196            CI->getOpcode() == Instruction::IntToPtr) &&
197           SE.getTypeSizeInBits(CI->getType()) ==
198           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
199         return CI->getOperand(0);
200     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
201       if ((CE->getOpcode() == Instruction::PtrToInt ||
202            CE->getOpcode() == Instruction::IntToPtr) &&
203           SE.getTypeSizeInBits(CE->getType()) ==
204           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
205         return CE->getOperand(0);
206   }
207 
208   // Fold a cast of a constant.
209   if (Constant *C = dyn_cast<Constant>(V))
210     return ConstantExpr::getCast(Op, C, Ty);
211 
212   // Try to reuse existing cast, or insert one.
213   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
214 }
215 
216 /// InsertBinop - Insert the specified binary operator, doing a small amount
217 /// of work to avoid inserting an obviously redundant operation, and hoisting
218 /// to an outer loop when the opportunity is there and it is safe.
219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
220                                  Value *LHS, Value *RHS,
221                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
222   // Fold a binop with constant operands.
223   if (Constant *CLHS = dyn_cast<Constant>(LHS))
224     if (Constant *CRHS = dyn_cast<Constant>(RHS))
225       return ConstantExpr::get(Opcode, CLHS, CRHS);
226 
227   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
228   unsigned ScanLimit = 6;
229   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
230   // Scanning starts from the last instruction before the insertion point.
231   BasicBlock::iterator IP = Builder.GetInsertPoint();
232   if (IP != BlockBegin) {
233     --IP;
234     for (; ScanLimit; --IP, --ScanLimit) {
235       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
236       // generated code.
237       if (isa<DbgInfoIntrinsic>(IP))
238         ScanLimit++;
239 
240       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
241         // Ensure that no-wrap flags match.
242         if (isa<OverflowingBinaryOperator>(I)) {
243           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
244             return true;
245           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
246             return true;
247         }
248         // Conservatively, do not use any instruction which has any of exact
249         // flags installed.
250         if (isa<PossiblyExactOperator>(I) && I->isExact())
251           return true;
252         return false;
253       };
254       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
255           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
256         return &*IP;
257       if (IP == BlockBegin) break;
258     }
259   }
260 
261   // Save the original insertion point so we can restore it when we're done.
262   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
263   SCEVInsertPointGuard Guard(Builder, this);
264 
265   if (IsSafeToHoist) {
266     // Move the insertion point out of as many loops as we can.
267     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
268       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
269       BasicBlock *Preheader = L->getLoopPreheader();
270       if (!Preheader) break;
271 
272       // Ok, move up a level.
273       Builder.SetInsertPoint(Preheader->getTerminator());
274     }
275   }
276 
277   // If we haven't found this binop, insert it.
278   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
279   BO->setDebugLoc(Loc);
280   if (Flags & SCEV::FlagNUW)
281     BO->setHasNoUnsignedWrap();
282   if (Flags & SCEV::FlagNSW)
283     BO->setHasNoSignedWrap();
284 
285   return BO;
286 }
287 
288 /// FactorOutConstant - Test if S is divisible by Factor, using signed
289 /// division. If so, update S with Factor divided out and return true.
290 /// S need not be evenly divisible if a reasonable remainder can be
291 /// computed.
292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
293                               const SCEV *Factor, ScalarEvolution &SE,
294                               const DataLayout &DL) {
295   // Everything is divisible by one.
296   if (Factor->isOne())
297     return true;
298 
299   // x/x == 1.
300   if (S == Factor) {
301     S = SE.getConstant(S->getType(), 1);
302     return true;
303   }
304 
305   // For a Constant, check for a multiple of the given factor.
306   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
307     // 0/x == 0.
308     if (C->isZero())
309       return true;
310     // Check for divisibility.
311     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
312       ConstantInt *CI =
313           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
314       // If the quotient is zero and the remainder is non-zero, reject
315       // the value at this scale. It will be considered for subsequent
316       // smaller scales.
317       if (!CI->isZero()) {
318         const SCEV *Div = SE.getConstant(CI);
319         S = Div;
320         Remainder = SE.getAddExpr(
321             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
322         return true;
323       }
324     }
325   }
326 
327   // In a Mul, check if there is a constant operand which is a multiple
328   // of the given factor.
329   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
330     // Size is known, check if there is a constant operand which is a multiple
331     // of the given factor. If so, we can factor it.
332     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
333       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
334         if (!C->getAPInt().srem(FC->getAPInt())) {
335           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
336           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
337           S = SE.getMulExpr(NewMulOps);
338           return true;
339         }
340   }
341 
342   // In an AddRec, check if both start and step are divisible.
343   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
344     const SCEV *Step = A->getStepRecurrence(SE);
345     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
346     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
347       return false;
348     if (!StepRem->isZero())
349       return false;
350     const SCEV *Start = A->getStart();
351     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
352       return false;
353     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
354                          A->getNoWrapFlags(SCEV::FlagNW));
355     return true;
356   }
357 
358   return false;
359 }
360 
361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
362 /// is the number of SCEVAddRecExprs present, which are kept at the end of
363 /// the list.
364 ///
365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
366                                 Type *Ty,
367                                 ScalarEvolution &SE) {
368   unsigned NumAddRecs = 0;
369   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
370     ++NumAddRecs;
371   // Group Ops into non-addrecs and addrecs.
372   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
373   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
374   // Let ScalarEvolution sort and simplify the non-addrecs list.
375   const SCEV *Sum = NoAddRecs.empty() ?
376                     SE.getConstant(Ty, 0) :
377                     SE.getAddExpr(NoAddRecs);
378   // If it returned an add, use the operands. Otherwise it simplified
379   // the sum into a single value, so just use that.
380   Ops.clear();
381   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
382     Ops.append(Add->op_begin(), Add->op_end());
383   else if (!Sum->isZero())
384     Ops.push_back(Sum);
385   // Then append the addrecs.
386   Ops.append(AddRecs.begin(), AddRecs.end());
387 }
388 
389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
391 /// This helps expose more opportunities for folding parts of the expressions
392 /// into GEP indices.
393 ///
394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
395                          Type *Ty,
396                          ScalarEvolution &SE) {
397   // Find the addrecs.
398   SmallVector<const SCEV *, 8> AddRecs;
399   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
400     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
401       const SCEV *Start = A->getStart();
402       if (Start->isZero()) break;
403       const SCEV *Zero = SE.getConstant(Ty, 0);
404       AddRecs.push_back(SE.getAddRecExpr(Zero,
405                                          A->getStepRecurrence(SE),
406                                          A->getLoop(),
407                                          A->getNoWrapFlags(SCEV::FlagNW)));
408       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
409         Ops[i] = Zero;
410         Ops.append(Add->op_begin(), Add->op_end());
411         e += Add->getNumOperands();
412       } else {
413         Ops[i] = Start;
414       }
415     }
416   if (!AddRecs.empty()) {
417     // Add the addrecs onto the end of the list.
418     Ops.append(AddRecs.begin(), AddRecs.end());
419     // Resort the operand list, moving any constants to the front.
420     SimplifyAddOperands(Ops, Ty, SE);
421   }
422 }
423 
424 /// expandAddToGEP - Expand an addition expression with a pointer type into
425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
426 /// BasicAliasAnalysis and other passes analyze the result. See the rules
427 /// for getelementptr vs. inttoptr in
428 /// http://llvm.org/docs/LangRef.html#pointeraliasing
429 /// for details.
430 ///
431 /// Design note: The correctness of using getelementptr here depends on
432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
433 /// they may introduce pointer arithmetic which may not be safely converted
434 /// into getelementptr.
435 ///
436 /// Design note: It might seem desirable for this function to be more
437 /// loop-aware. If some of the indices are loop-invariant while others
438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
439 /// loop-invariant portions of the overall computation outside the loop.
440 /// However, there are a few reasons this is not done here. Hoisting simple
441 /// arithmetic is a low-level optimization that often isn't very
442 /// important until late in the optimization process. In fact, passes
443 /// like InstructionCombining will combine GEPs, even if it means
444 /// pushing loop-invariant computation down into loops, so even if the
445 /// GEPs were split here, the work would quickly be undone. The
446 /// LoopStrengthReduction pass, which is usually run quite late (and
447 /// after the last InstructionCombining pass), takes care of hoisting
448 /// loop-invariant portions of expressions, after considering what
449 /// can be folded using target addressing modes.
450 ///
451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
452                                     const SCEV *const *op_end,
453                                     PointerType *PTy,
454                                     Type *Ty,
455                                     Value *V) {
456   Type *OriginalElTy = PTy->getElementType();
457   Type *ElTy = OriginalElTy;
458   SmallVector<Value *, 4> GepIndices;
459   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
460   bool AnyNonZeroIndices = false;
461 
462   // Split AddRecs up into parts as either of the parts may be usable
463   // without the other.
464   SplitAddRecs(Ops, Ty, SE);
465 
466   Type *IntIdxTy = DL.getIndexType(PTy);
467 
468   // Descend down the pointer's type and attempt to convert the other
469   // operands into GEP indices, at each level. The first index in a GEP
470   // indexes into the array implied by the pointer operand; the rest of
471   // the indices index into the element or field type selected by the
472   // preceding index.
473   for (;;) {
474     // If the scale size is not 0, attempt to factor out a scale for
475     // array indexing.
476     SmallVector<const SCEV *, 8> ScaledOps;
477     if (ElTy->isSized()) {
478       const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
479       if (!ElSize->isZero()) {
480         SmallVector<const SCEV *, 8> NewOps;
481         for (const SCEV *Op : Ops) {
482           const SCEV *Remainder = SE.getConstant(Ty, 0);
483           if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
484             // Op now has ElSize factored out.
485             ScaledOps.push_back(Op);
486             if (!Remainder->isZero())
487               NewOps.push_back(Remainder);
488             AnyNonZeroIndices = true;
489           } else {
490             // The operand was not divisible, so add it to the list of operands
491             // we'll scan next iteration.
492             NewOps.push_back(Op);
493           }
494         }
495         // If we made any changes, update Ops.
496         if (!ScaledOps.empty()) {
497           Ops = NewOps;
498           SimplifyAddOperands(Ops, Ty, SE);
499         }
500       }
501     }
502 
503     // Record the scaled array index for this level of the type. If
504     // we didn't find any operands that could be factored, tentatively
505     // assume that element zero was selected (since the zero offset
506     // would obviously be folded away).
507     Value *Scaled =
508         ScaledOps.empty()
509             ? Constant::getNullValue(Ty)
510             : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
511     GepIndices.push_back(Scaled);
512 
513     // Collect struct field index operands.
514     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
515       bool FoundFieldNo = false;
516       // An empty struct has no fields.
517       if (STy->getNumElements() == 0) break;
518       // Field offsets are known. See if a constant offset falls within any of
519       // the struct fields.
520       if (Ops.empty())
521         break;
522       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
523         if (SE.getTypeSizeInBits(C->getType()) <= 64) {
524           const StructLayout &SL = *DL.getStructLayout(STy);
525           uint64_t FullOffset = C->getValue()->getZExtValue();
526           if (FullOffset < SL.getSizeInBytes()) {
527             unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
528             GepIndices.push_back(
529                 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
530             ElTy = STy->getTypeAtIndex(ElIdx);
531             Ops[0] =
532                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
533             AnyNonZeroIndices = true;
534             FoundFieldNo = true;
535           }
536         }
537       // If no struct field offsets were found, tentatively assume that
538       // field zero was selected (since the zero offset would obviously
539       // be folded away).
540       if (!FoundFieldNo) {
541         ElTy = STy->getTypeAtIndex(0u);
542         GepIndices.push_back(
543           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
544       }
545     }
546 
547     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
548       ElTy = ATy->getElementType();
549     else
550       // FIXME: Handle VectorType.
551       // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
552       // constant, therefore can not be factored out. The generated IR is less
553       // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
554       break;
555   }
556 
557   // If none of the operands were convertible to proper GEP indices, cast
558   // the base to i8* and do an ugly getelementptr with that. It's still
559   // better than ptrtoint+arithmetic+inttoptr at least.
560   if (!AnyNonZeroIndices) {
561     // Cast the base to i8*.
562     V = InsertNoopCastOfTo(V,
563        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
564 
565     assert(!isa<Instruction>(V) ||
566            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
567 
568     // Expand the operands for a plain byte offset.
569     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
570 
571     // Fold a GEP with constant operands.
572     if (Constant *CLHS = dyn_cast<Constant>(V))
573       if (Constant *CRHS = dyn_cast<Constant>(Idx))
574         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
575                                               CLHS, CRHS);
576 
577     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
578     unsigned ScanLimit = 6;
579     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
580     // Scanning starts from the last instruction before the insertion point.
581     BasicBlock::iterator IP = Builder.GetInsertPoint();
582     if (IP != BlockBegin) {
583       --IP;
584       for (; ScanLimit; --IP, --ScanLimit) {
585         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
586         // generated code.
587         if (isa<DbgInfoIntrinsic>(IP))
588           ScanLimit++;
589         if (IP->getOpcode() == Instruction::GetElementPtr &&
590             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
591           return &*IP;
592         if (IP == BlockBegin) break;
593       }
594     }
595 
596     // Save the original insertion point so we can restore it when we're done.
597     SCEVInsertPointGuard Guard(Builder, this);
598 
599     // Move the insertion point out of as many loops as we can.
600     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
601       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
602       BasicBlock *Preheader = L->getLoopPreheader();
603       if (!Preheader) break;
604 
605       // Ok, move up a level.
606       Builder.SetInsertPoint(Preheader->getTerminator());
607     }
608 
609     // Emit a GEP.
610     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
611   }
612 
613   {
614     SCEVInsertPointGuard Guard(Builder, this);
615 
616     // Move the insertion point out of as many loops as we can.
617     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
618       if (!L->isLoopInvariant(V)) break;
619 
620       bool AnyIndexNotLoopInvariant = any_of(
621           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
622 
623       if (AnyIndexNotLoopInvariant)
624         break;
625 
626       BasicBlock *Preheader = L->getLoopPreheader();
627       if (!Preheader) break;
628 
629       // Ok, move up a level.
630       Builder.SetInsertPoint(Preheader->getTerminator());
631     }
632 
633     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
634     // because ScalarEvolution may have changed the address arithmetic to
635     // compute a value which is beyond the end of the allocated object.
636     Value *Casted = V;
637     if (V->getType() != PTy)
638       Casted = InsertNoopCastOfTo(Casted, PTy);
639     Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
640     Ops.push_back(SE.getUnknown(GEP));
641   }
642 
643   return expand(SE.getAddExpr(Ops));
644 }
645 
646 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
647                                     Value *V) {
648   const SCEV *const Ops[1] = {Op};
649   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
650 }
651 
652 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
653 /// SCEV expansion. If they are nested, this is the most nested. If they are
654 /// neighboring, pick the later.
655 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
656                                         DominatorTree &DT) {
657   if (!A) return B;
658   if (!B) return A;
659   if (A->contains(B)) return B;
660   if (B->contains(A)) return A;
661   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
662   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
663   return A; // Arbitrarily break the tie.
664 }
665 
666 /// getRelevantLoop - Get the most relevant loop associated with the given
667 /// expression, according to PickMostRelevantLoop.
668 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
669   // Test whether we've already computed the most relevant loop for this SCEV.
670   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
671   if (!Pair.second)
672     return Pair.first->second;
673 
674   if (isa<SCEVConstant>(S))
675     // A constant has no relevant loops.
676     return nullptr;
677   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
678     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
679       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
680     // A non-instruction has no relevant loops.
681     return nullptr;
682   }
683   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
684     const Loop *L = nullptr;
685     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
686       L = AR->getLoop();
687     for (const SCEV *Op : N->operands())
688       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
689     return RelevantLoops[N] = L;
690   }
691   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
692     const Loop *Result = getRelevantLoop(C->getOperand());
693     return RelevantLoops[C] = Result;
694   }
695   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
696     const Loop *Result = PickMostRelevantLoop(
697         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
698     return RelevantLoops[D] = Result;
699   }
700   llvm_unreachable("Unexpected SCEV type!");
701 }
702 
703 namespace {
704 
705 /// LoopCompare - Compare loops by PickMostRelevantLoop.
706 class LoopCompare {
707   DominatorTree &DT;
708 public:
709   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
710 
711   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
712                   std::pair<const Loop *, const SCEV *> RHS) const {
713     // Keep pointer operands sorted at the end.
714     if (LHS.second->getType()->isPointerTy() !=
715         RHS.second->getType()->isPointerTy())
716       return LHS.second->getType()->isPointerTy();
717 
718     // Compare loops with PickMostRelevantLoop.
719     if (LHS.first != RHS.first)
720       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
721 
722     // If one operand is a non-constant negative and the other is not,
723     // put the non-constant negative on the right so that a sub can
724     // be used instead of a negate and add.
725     if (LHS.second->isNonConstantNegative()) {
726       if (!RHS.second->isNonConstantNegative())
727         return false;
728     } else if (RHS.second->isNonConstantNegative())
729       return true;
730 
731     // Otherwise they are equivalent according to this comparison.
732     return false;
733   }
734 };
735 
736 }
737 
738 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
739   Type *Ty = SE.getEffectiveSCEVType(S->getType());
740 
741   // Collect all the add operands in a loop, along with their associated loops.
742   // Iterate in reverse so that constants are emitted last, all else equal, and
743   // so that pointer operands are inserted first, which the code below relies on
744   // to form more involved GEPs.
745   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
746   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
747        E(S->op_begin()); I != E; ++I)
748     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
749 
750   // Sort by loop. Use a stable sort so that constants follow non-constants and
751   // pointer operands precede non-pointer operands.
752   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
753 
754   // Emit instructions to add all the operands. Hoist as much as possible
755   // out of loops, and form meaningful getelementptrs where possible.
756   Value *Sum = nullptr;
757   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
758     const Loop *CurLoop = I->first;
759     const SCEV *Op = I->second;
760     if (!Sum) {
761       // This is the first operand. Just expand it.
762       Sum = expand(Op);
763       ++I;
764     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
765       // The running sum expression is a pointer. Try to form a getelementptr
766       // at this level with that as the base.
767       SmallVector<const SCEV *, 4> NewOps;
768       for (; I != E && I->first == CurLoop; ++I) {
769         // If the operand is SCEVUnknown and not instructions, peek through
770         // it, to enable more of it to be folded into the GEP.
771         const SCEV *X = I->second;
772         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
773           if (!isa<Instruction>(U->getValue()))
774             X = SE.getSCEV(U->getValue());
775         NewOps.push_back(X);
776       }
777       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
778     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
779       // The running sum is an integer, and there's a pointer at this level.
780       // Try to form a getelementptr. If the running sum is instructions,
781       // use a SCEVUnknown to avoid re-analyzing them.
782       SmallVector<const SCEV *, 4> NewOps;
783       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
784                                                SE.getSCEV(Sum));
785       for (++I; I != E && I->first == CurLoop; ++I)
786         NewOps.push_back(I->second);
787       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
788     } else if (Op->isNonConstantNegative()) {
789       // Instead of doing a negate and add, just do a subtract.
790       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
791       Sum = InsertNoopCastOfTo(Sum, Ty);
792       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
793                         /*IsSafeToHoist*/ true);
794       ++I;
795     } else {
796       // A simple add.
797       Value *W = expandCodeForImpl(Op, Ty, false);
798       Sum = InsertNoopCastOfTo(Sum, Ty);
799       // Canonicalize a constant to the RHS.
800       if (isa<Constant>(Sum)) std::swap(Sum, W);
801       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
802                         /*IsSafeToHoist*/ true);
803       ++I;
804     }
805   }
806 
807   return Sum;
808 }
809 
810 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
811   Type *Ty = SE.getEffectiveSCEVType(S->getType());
812 
813   // Collect all the mul operands in a loop, along with their associated loops.
814   // Iterate in reverse so that constants are emitted last, all else equal.
815   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
816   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
817        E(S->op_begin()); I != E; ++I)
818     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
819 
820   // Sort by loop. Use a stable sort so that constants follow non-constants.
821   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
822 
823   // Emit instructions to mul all the operands. Hoist as much as possible
824   // out of loops.
825   Value *Prod = nullptr;
826   auto I = OpsAndLoops.begin();
827 
828   // Expand the calculation of X pow N in the following manner:
829   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
830   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
831   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
832     auto E = I;
833     // Calculate how many times the same operand from the same loop is included
834     // into this power.
835     uint64_t Exponent = 0;
836     const uint64_t MaxExponent = UINT64_MAX >> 1;
837     // No one sane will ever try to calculate such huge exponents, but if we
838     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
839     // below when the power of 2 exceeds our Exponent, and we want it to be
840     // 1u << 31 at most to not deal with unsigned overflow.
841     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
842       ++Exponent;
843       ++E;
844     }
845     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
846 
847     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
848     // that are needed into the result.
849     Value *P = expandCodeForImpl(I->second, Ty, false);
850     Value *Result = nullptr;
851     if (Exponent & 1)
852       Result = P;
853     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
854       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
855                       /*IsSafeToHoist*/ true);
856       if (Exponent & BinExp)
857         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
858                                       SCEV::FlagAnyWrap,
859                                       /*IsSafeToHoist*/ true)
860                         : P;
861     }
862 
863     I = E;
864     assert(Result && "Nothing was expanded?");
865     return Result;
866   };
867 
868   while (I != OpsAndLoops.end()) {
869     if (!Prod) {
870       // This is the first operand. Just expand it.
871       Prod = ExpandOpBinPowN();
872     } else if (I->second->isAllOnesValue()) {
873       // Instead of doing a multiply by negative one, just do a negate.
874       Prod = InsertNoopCastOfTo(Prod, Ty);
875       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
876                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
877       ++I;
878     } else {
879       // A simple mul.
880       Value *W = ExpandOpBinPowN();
881       Prod = InsertNoopCastOfTo(Prod, Ty);
882       // Canonicalize a constant to the RHS.
883       if (isa<Constant>(Prod)) std::swap(Prod, W);
884       const APInt *RHS;
885       if (match(W, m_Power2(RHS))) {
886         // Canonicalize Prod*(1<<C) to Prod<<C.
887         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
888         auto NWFlags = S->getNoWrapFlags();
889         // clear nsw flag if shl will produce poison value.
890         if (RHS->logBase2() == RHS->getBitWidth() - 1)
891           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
892         Prod = InsertBinop(Instruction::Shl, Prod,
893                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
894                            /*IsSafeToHoist*/ true);
895       } else {
896         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
897                            /*IsSafeToHoist*/ true);
898       }
899     }
900   }
901 
902   return Prod;
903 }
904 
905 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
906   Type *Ty = SE.getEffectiveSCEVType(S->getType());
907 
908   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
909   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
910     const APInt &RHS = SC->getAPInt();
911     if (RHS.isPowerOf2())
912       return InsertBinop(Instruction::LShr, LHS,
913                          ConstantInt::get(Ty, RHS.logBase2()),
914                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
915   }
916 
917   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
918   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
919                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
920 }
921 
922 /// Move parts of Base into Rest to leave Base with the minimal
923 /// expression that provides a pointer operand suitable for a
924 /// GEP expansion.
925 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
926                               ScalarEvolution &SE) {
927   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
928     Base = A->getStart();
929     Rest = SE.getAddExpr(Rest,
930                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
931                                           A->getStepRecurrence(SE),
932                                           A->getLoop(),
933                                           A->getNoWrapFlags(SCEV::FlagNW)));
934   }
935   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
936     Base = A->getOperand(A->getNumOperands()-1);
937     SmallVector<const SCEV *, 8> NewAddOps(A->operands());
938     NewAddOps.back() = Rest;
939     Rest = SE.getAddExpr(NewAddOps);
940     ExposePointerBase(Base, Rest, SE);
941   }
942 }
943 
944 /// Determine if this is a well-behaved chain of instructions leading back to
945 /// the PHI. If so, it may be reused by expanded expressions.
946 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
947                                          const Loop *L) {
948   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
949       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
950     return false;
951   // If any of the operands don't dominate the insert position, bail.
952   // Addrec operands are always loop-invariant, so this can only happen
953   // if there are instructions which haven't been hoisted.
954   if (L == IVIncInsertLoop) {
955     for (Use &Op : llvm::drop_begin(IncV->operands()))
956       if (Instruction *OInst = dyn_cast<Instruction>(Op))
957         if (!SE.DT.dominates(OInst, IVIncInsertPos))
958           return false;
959   }
960   // Advance to the next instruction.
961   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
962   if (!IncV)
963     return false;
964 
965   if (IncV->mayHaveSideEffects())
966     return false;
967 
968   if (IncV == PN)
969     return true;
970 
971   return isNormalAddRecExprPHI(PN, IncV, L);
972 }
973 
974 /// getIVIncOperand returns an induction variable increment's induction
975 /// variable operand.
976 ///
977 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
978 /// operands dominate InsertPos.
979 ///
980 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
981 /// simple patterns generated by getAddRecExprPHILiterally and
982 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
983 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
984                                            Instruction *InsertPos,
985                                            bool allowScale) {
986   if (IncV == InsertPos)
987     return nullptr;
988 
989   switch (IncV->getOpcode()) {
990   default:
991     return nullptr;
992   // Check for a simple Add/Sub or GEP of a loop invariant step.
993   case Instruction::Add:
994   case Instruction::Sub: {
995     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
996     if (!OInst || SE.DT.dominates(OInst, InsertPos))
997       return dyn_cast<Instruction>(IncV->getOperand(0));
998     return nullptr;
999   }
1000   case Instruction::BitCast:
1001     return dyn_cast<Instruction>(IncV->getOperand(0));
1002   case Instruction::GetElementPtr:
1003     for (Use &U : llvm::drop_begin(IncV->operands())) {
1004       if (isa<Constant>(U))
1005         continue;
1006       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
1007         if (!SE.DT.dominates(OInst, InsertPos))
1008           return nullptr;
1009       }
1010       if (allowScale) {
1011         // allow any kind of GEP as long as it can be hoisted.
1012         continue;
1013       }
1014       // This must be a pointer addition of constants (pretty), which is already
1015       // handled, or some number of address-size elements (ugly). Ugly geps
1016       // have 2 operands. i1* is used by the expander to represent an
1017       // address-size element.
1018       if (IncV->getNumOperands() != 2)
1019         return nullptr;
1020       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
1021       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
1022           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
1023         return nullptr;
1024       break;
1025     }
1026     return dyn_cast<Instruction>(IncV->getOperand(0));
1027   }
1028 }
1029 
1030 /// If the insert point of the current builder or any of the builders on the
1031 /// stack of saved builders has 'I' as its insert point, update it to point to
1032 /// the instruction after 'I'.  This is intended to be used when the instruction
1033 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1034 /// different block, the inconsistent insert point (with a mismatched
1035 /// Instruction and Block) can lead to an instruction being inserted in a block
1036 /// other than its parent.
1037 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1038   BasicBlock::iterator It(*I);
1039   BasicBlock::iterator NewInsertPt = std::next(It);
1040   if (Builder.GetInsertPoint() == It)
1041     Builder.SetInsertPoint(&*NewInsertPt);
1042   for (auto *InsertPtGuard : InsertPointGuards)
1043     if (InsertPtGuard->GetInsertPoint() == It)
1044       InsertPtGuard->SetInsertPoint(NewInsertPt);
1045 }
1046 
1047 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1048 /// it available to other uses in this loop. Recursively hoist any operands,
1049 /// until we reach a value that dominates InsertPos.
1050 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1051   if (SE.DT.dominates(IncV, InsertPos))
1052       return true;
1053 
1054   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1055   // its existing users.
1056   if (isa<PHINode>(InsertPos) ||
1057       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1058     return false;
1059 
1060   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1061     return false;
1062 
1063   // Check that the chain of IV operands leading back to Phi can be hoisted.
1064   SmallVector<Instruction*, 4> IVIncs;
1065   for(;;) {
1066     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1067     if (!Oper)
1068       return false;
1069     // IncV is safe to hoist.
1070     IVIncs.push_back(IncV);
1071     IncV = Oper;
1072     if (SE.DT.dominates(IncV, InsertPos))
1073       break;
1074   }
1075   for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1076     fixupInsertPoints(*I);
1077     (*I)->moveBefore(InsertPos);
1078   }
1079   return true;
1080 }
1081 
1082 /// Determine if this cyclic phi is in a form that would have been generated by
1083 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1084 /// as it is in a low-cost form, for example, no implied multiplication. This
1085 /// should match any patterns generated by getAddRecExprPHILiterally and
1086 /// expandAddtoGEP.
1087 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1088                                            const Loop *L) {
1089   for(Instruction *IVOper = IncV;
1090       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1091                                 /*allowScale=*/false));) {
1092     if (IVOper == PN)
1093       return true;
1094   }
1095   return false;
1096 }
1097 
1098 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1099 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1100 /// need to materialize IV increments elsewhere to handle difficult situations.
1101 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1102                                  Type *ExpandTy, Type *IntTy,
1103                                  bool useSubtract) {
1104   Value *IncV;
1105   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1106   if (ExpandTy->isPointerTy()) {
1107     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1108     // If the step isn't constant, don't use an implicitly scaled GEP, because
1109     // that would require a multiply inside the loop.
1110     if (!isa<ConstantInt>(StepV))
1111       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1112                                   GEPPtrTy->getAddressSpace());
1113     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1114     if (IncV->getType() != PN->getType())
1115       IncV = Builder.CreateBitCast(IncV, PN->getType());
1116   } else {
1117     IncV = useSubtract ?
1118       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1119       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1120   }
1121   return IncV;
1122 }
1123 
1124 /// Hoist the addrec instruction chain rooted in the loop phi above the
1125 /// position. This routine assumes that this is possible (has been checked).
1126 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1127                                   Instruction *Pos, PHINode *LoopPhi) {
1128   do {
1129     if (DT->dominates(InstToHoist, Pos))
1130       break;
1131     // Make sure the increment is where we want it. But don't move it
1132     // down past a potential existing post-inc user.
1133     fixupInsertPoints(InstToHoist);
1134     InstToHoist->moveBefore(Pos);
1135     Pos = InstToHoist;
1136     InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1137   } while (InstToHoist != LoopPhi);
1138 }
1139 
1140 /// Check whether we can cheaply express the requested SCEV in terms of
1141 /// the available PHI SCEV by truncation and/or inversion of the step.
1142 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1143                                     const SCEVAddRecExpr *Phi,
1144                                     const SCEVAddRecExpr *Requested,
1145                                     bool &InvertStep) {
1146   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1147   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1148 
1149   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1150     return false;
1151 
1152   // Try truncate it if necessary.
1153   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1154   if (!Phi)
1155     return false;
1156 
1157   // Check whether truncation will help.
1158   if (Phi == Requested) {
1159     InvertStep = false;
1160     return true;
1161   }
1162 
1163   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1164   if (SE.getAddExpr(Requested->getStart(),
1165                     SE.getNegativeSCEV(Requested)) == Phi) {
1166     InvertStep = true;
1167     return true;
1168   }
1169 
1170   return false;
1171 }
1172 
1173 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1174   if (!isa<IntegerType>(AR->getType()))
1175     return false;
1176 
1177   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1178   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1179   const SCEV *Step = AR->getStepRecurrence(SE);
1180   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1181                                             SE.getSignExtendExpr(AR, WideTy));
1182   const SCEV *ExtendAfterOp =
1183     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1184   return ExtendAfterOp == OpAfterExtend;
1185 }
1186 
1187 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1188   if (!isa<IntegerType>(AR->getType()))
1189     return false;
1190 
1191   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1192   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1193   const SCEV *Step = AR->getStepRecurrence(SE);
1194   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1195                                             SE.getZeroExtendExpr(AR, WideTy));
1196   const SCEV *ExtendAfterOp =
1197     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1198   return ExtendAfterOp == OpAfterExtend;
1199 }
1200 
1201 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1202 /// the base addrec, which is the addrec without any non-loop-dominating
1203 /// values, and return the PHI.
1204 PHINode *
1205 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1206                                         const Loop *L,
1207                                         Type *ExpandTy,
1208                                         Type *IntTy,
1209                                         Type *&TruncTy,
1210                                         bool &InvertStep) {
1211   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1212 
1213   // Reuse a previously-inserted PHI, if present.
1214   BasicBlock *LatchBlock = L->getLoopLatch();
1215   if (LatchBlock) {
1216     PHINode *AddRecPhiMatch = nullptr;
1217     Instruction *IncV = nullptr;
1218     TruncTy = nullptr;
1219     InvertStep = false;
1220 
1221     // Only try partially matching scevs that need truncation and/or
1222     // step-inversion if we know this loop is outside the current loop.
1223     bool TryNonMatchingSCEV =
1224         IVIncInsertLoop &&
1225         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1226 
1227     for (PHINode &PN : L->getHeader()->phis()) {
1228       if (!SE.isSCEVable(PN.getType()))
1229         continue;
1230 
1231       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1232       // PHI has no meaning at all.
1233       if (!PN.isComplete()) {
1234         SCEV_DEBUG_WITH_TYPE(
1235             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1236         continue;
1237       }
1238 
1239       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1240       if (!PhiSCEV)
1241         continue;
1242 
1243       bool IsMatchingSCEV = PhiSCEV == Normalized;
1244       // We only handle truncation and inversion of phi recurrences for the
1245       // expanded expression if the expanded expression's loop dominates the
1246       // loop we insert to. Check now, so we can bail out early.
1247       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1248           continue;
1249 
1250       // TODO: this possibly can be reworked to avoid this cast at all.
1251       Instruction *TempIncV =
1252           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1253       if (!TempIncV)
1254         continue;
1255 
1256       // Check whether we can reuse this PHI node.
1257       if (LSRMode) {
1258         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1259           continue;
1260         if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1261           continue;
1262       } else {
1263         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1264           continue;
1265       }
1266 
1267       // Stop if we have found an exact match SCEV.
1268       if (IsMatchingSCEV) {
1269         IncV = TempIncV;
1270         TruncTy = nullptr;
1271         InvertStep = false;
1272         AddRecPhiMatch = &PN;
1273         break;
1274       }
1275 
1276       // Try whether the phi can be translated into the requested form
1277       // (truncated and/or offset by a constant).
1278       if ((!TruncTy || InvertStep) &&
1279           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1280         // Record the phi node. But don't stop we might find an exact match
1281         // later.
1282         AddRecPhiMatch = &PN;
1283         IncV = TempIncV;
1284         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1285       }
1286     }
1287 
1288     if (AddRecPhiMatch) {
1289       // Potentially, move the increment. We have made sure in
1290       // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1291       if (L == IVIncInsertLoop)
1292         hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1293 
1294       // Ok, the add recurrence looks usable.
1295       // Remember this PHI, even in post-inc mode.
1296       InsertedValues.insert(AddRecPhiMatch);
1297       // Remember the increment.
1298       rememberInstruction(IncV);
1299       // Those values were not actually inserted but re-used.
1300       ReusedValues.insert(AddRecPhiMatch);
1301       ReusedValues.insert(IncV);
1302       return AddRecPhiMatch;
1303     }
1304   }
1305 
1306   // Save the original insertion point so we can restore it when we're done.
1307   SCEVInsertPointGuard Guard(Builder, this);
1308 
1309   // Another AddRec may need to be recursively expanded below. For example, if
1310   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1311   // loop. Remove this loop from the PostIncLoops set before expanding such
1312   // AddRecs. Otherwise, we cannot find a valid position for the step
1313   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1314   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1315   // so it's not worth implementing SmallPtrSet::swap.
1316   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1317   PostIncLoops.clear();
1318 
1319   // Expand code for the start value into the loop preheader.
1320   assert(L->getLoopPreheader() &&
1321          "Can't expand add recurrences without a loop preheader!");
1322   Value *StartV =
1323       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1324                         L->getLoopPreheader()->getTerminator(), false);
1325 
1326   // StartV must have been be inserted into L's preheader to dominate the new
1327   // phi.
1328   assert(!isa<Instruction>(StartV) ||
1329          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1330                                  L->getHeader()));
1331 
1332   // Expand code for the step value. Do this before creating the PHI so that PHI
1333   // reuse code doesn't see an incomplete PHI.
1334   const SCEV *Step = Normalized->getStepRecurrence(SE);
1335   // If the stride is negative, insert a sub instead of an add for the increment
1336   // (unless it's a constant, because subtracts of constants are canonicalized
1337   // to adds).
1338   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1339   if (useSubtract)
1340     Step = SE.getNegativeSCEV(Step);
1341   // Expand the step somewhere that dominates the loop header.
1342   Value *StepV = expandCodeForImpl(
1343       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1344 
1345   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1346   // we actually do emit an addition.  It does not apply if we emit a
1347   // subtraction.
1348   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1349   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1350 
1351   // Create the PHI.
1352   BasicBlock *Header = L->getHeader();
1353   Builder.SetInsertPoint(Header, Header->begin());
1354   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1355   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1356                                   Twine(IVName) + ".iv");
1357 
1358   // Create the step instructions and populate the PHI.
1359   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1360     BasicBlock *Pred = *HPI;
1361 
1362     // Add a start value.
1363     if (!L->contains(Pred)) {
1364       PN->addIncoming(StartV, Pred);
1365       continue;
1366     }
1367 
1368     // Create a step value and add it to the PHI.
1369     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1370     // instructions at IVIncInsertPos.
1371     Instruction *InsertPos = L == IVIncInsertLoop ?
1372       IVIncInsertPos : Pred->getTerminator();
1373     Builder.SetInsertPoint(InsertPos);
1374     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1375 
1376     if (isa<OverflowingBinaryOperator>(IncV)) {
1377       if (IncrementIsNUW)
1378         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1379       if (IncrementIsNSW)
1380         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1381     }
1382     PN->addIncoming(IncV, Pred);
1383   }
1384 
1385   // After expanding subexpressions, restore the PostIncLoops set so the caller
1386   // can ensure that IVIncrement dominates the current uses.
1387   PostIncLoops = SavedPostIncLoops;
1388 
1389   // Remember this PHI, even in post-inc mode.
1390   InsertedValues.insert(PN);
1391 
1392   return PN;
1393 }
1394 
1395 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1396   Type *STy = S->getType();
1397   Type *IntTy = SE.getEffectiveSCEVType(STy);
1398   const Loop *L = S->getLoop();
1399 
1400   // Determine a normalized form of this expression, which is the expression
1401   // before any post-inc adjustment is made.
1402   const SCEVAddRecExpr *Normalized = S;
1403   if (PostIncLoops.count(L)) {
1404     PostIncLoopSet Loops;
1405     Loops.insert(L);
1406     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1407   }
1408 
1409   // Strip off any non-loop-dominating component from the addrec start.
1410   const SCEV *Start = Normalized->getStart();
1411   const SCEV *PostLoopOffset = nullptr;
1412   if (!SE.properlyDominates(Start, L->getHeader())) {
1413     PostLoopOffset = Start;
1414     Start = SE.getConstant(Normalized->getType(), 0);
1415     Normalized = cast<SCEVAddRecExpr>(
1416       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1417                        Normalized->getLoop(),
1418                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1419   }
1420 
1421   // Strip off any non-loop-dominating component from the addrec step.
1422   const SCEV *Step = Normalized->getStepRecurrence(SE);
1423   const SCEV *PostLoopScale = nullptr;
1424   if (!SE.dominates(Step, L->getHeader())) {
1425     PostLoopScale = Step;
1426     Step = SE.getConstant(Normalized->getType(), 1);
1427     if (!Start->isZero()) {
1428         // The normalization below assumes that Start is constant zero, so if
1429         // it isn't re-associate Start to PostLoopOffset.
1430         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1431         PostLoopOffset = Start;
1432         Start = SE.getConstant(Normalized->getType(), 0);
1433     }
1434     Normalized =
1435       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1436                              Start, Step, Normalized->getLoop(),
1437                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1438   }
1439 
1440   // Expand the core addrec. If we need post-loop scaling, force it to
1441   // expand to an integer type to avoid the need for additional casting.
1442   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1443   // We can't use a pointer type for the addrec if the pointer type is
1444   // non-integral.
1445   Type *AddRecPHIExpandTy =
1446       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1447 
1448   // In some cases, we decide to reuse an existing phi node but need to truncate
1449   // it and/or invert the step.
1450   Type *TruncTy = nullptr;
1451   bool InvertStep = false;
1452   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1453                                           IntTy, TruncTy, InvertStep);
1454 
1455   // Accommodate post-inc mode, if necessary.
1456   Value *Result;
1457   if (!PostIncLoops.count(L))
1458     Result = PN;
1459   else {
1460     // In PostInc mode, use the post-incremented value.
1461     BasicBlock *LatchBlock = L->getLoopLatch();
1462     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1463     Result = PN->getIncomingValueForBlock(LatchBlock);
1464 
1465     // We might be introducing a new use of the post-inc IV that is not poison
1466     // safe, in which case we should drop poison generating flags. Only keep
1467     // those flags for which SCEV has proven that they always hold.
1468     if (isa<OverflowingBinaryOperator>(Result)) {
1469       auto *I = cast<Instruction>(Result);
1470       if (!S->hasNoUnsignedWrap())
1471         I->setHasNoUnsignedWrap(false);
1472       if (!S->hasNoSignedWrap())
1473         I->setHasNoSignedWrap(false);
1474     }
1475 
1476     // For an expansion to use the postinc form, the client must call
1477     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1478     // or dominated by IVIncInsertPos.
1479     if (isa<Instruction>(Result) &&
1480         !SE.DT.dominates(cast<Instruction>(Result),
1481                          &*Builder.GetInsertPoint())) {
1482       // The induction variable's postinc expansion does not dominate this use.
1483       // IVUsers tries to prevent this case, so it is rare. However, it can
1484       // happen when an IVUser outside the loop is not dominated by the latch
1485       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1486       // all cases. Consider a phi outside whose operand is replaced during
1487       // expansion with the value of the postinc user. Without fundamentally
1488       // changing the way postinc users are tracked, the only remedy is
1489       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1490       // but hopefully expandCodeFor handles that.
1491       bool useSubtract =
1492         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1493       if (useSubtract)
1494         Step = SE.getNegativeSCEV(Step);
1495       Value *StepV;
1496       {
1497         // Expand the step somewhere that dominates the loop header.
1498         SCEVInsertPointGuard Guard(Builder, this);
1499         StepV = expandCodeForImpl(
1500             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1501       }
1502       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1503     }
1504   }
1505 
1506   // We have decided to reuse an induction variable of a dominating loop. Apply
1507   // truncation and/or inversion of the step.
1508   if (TruncTy) {
1509     Type *ResTy = Result->getType();
1510     // Normalize the result type.
1511     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1512       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1513     // Truncate the result.
1514     if (TruncTy != Result->getType())
1515       Result = Builder.CreateTrunc(Result, TruncTy);
1516 
1517     // Invert the result.
1518     if (InvertStep)
1519       Result = Builder.CreateSub(
1520           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1521   }
1522 
1523   // Re-apply any non-loop-dominating scale.
1524   if (PostLoopScale) {
1525     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1526     Result = InsertNoopCastOfTo(Result, IntTy);
1527     Result = Builder.CreateMul(Result,
1528                                expandCodeForImpl(PostLoopScale, IntTy, false));
1529   }
1530 
1531   // Re-apply any non-loop-dominating offset.
1532   if (PostLoopOffset) {
1533     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1534       if (Result->getType()->isIntegerTy()) {
1535         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1536         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1537       } else {
1538         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1539       }
1540     } else {
1541       Result = InsertNoopCastOfTo(Result, IntTy);
1542       Result = Builder.CreateAdd(
1543           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1544     }
1545   }
1546 
1547   return Result;
1548 }
1549 
1550 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1551   // In canonical mode we compute the addrec as an expression of a canonical IV
1552   // using evaluateAtIteration and expand the resulting SCEV expression. This
1553   // way we avoid introducing new IVs to carry on the comutation of the addrec
1554   // throughout the loop.
1555   //
1556   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1557   // type wider than the addrec itself. Emitting a canonical IV of the
1558   // proper type might produce non-legal types, for example expanding an i64
1559   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1560   // back to non-canonical mode for nested addrecs.
1561   if (!CanonicalMode || (S->getNumOperands() > 2))
1562     return expandAddRecExprLiterally(S);
1563 
1564   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1565   const Loop *L = S->getLoop();
1566 
1567   // First check for an existing canonical IV in a suitable type.
1568   PHINode *CanonicalIV = nullptr;
1569   if (PHINode *PN = L->getCanonicalInductionVariable())
1570     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1571       CanonicalIV = PN;
1572 
1573   // Rewrite an AddRec in terms of the canonical induction variable, if
1574   // its type is more narrow.
1575   if (CanonicalIV &&
1576       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1577       SE.getTypeSizeInBits(Ty)) {
1578     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1579     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1580       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1581     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1582                                        S->getNoWrapFlags(SCEV::FlagNW)));
1583     BasicBlock::iterator NewInsertPt =
1584         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1585     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1586                           &*NewInsertPt, false);
1587     return V;
1588   }
1589 
1590   // {X,+,F} --> X + {0,+,F}
1591   if (!S->getStart()->isZero()) {
1592     SmallVector<const SCEV *, 4> NewOps(S->operands());
1593     NewOps[0] = SE.getConstant(Ty, 0);
1594     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1595                                         S->getNoWrapFlags(SCEV::FlagNW));
1596 
1597     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1598     // comments on expandAddToGEP for details.
1599     const SCEV *Base = S->getStart();
1600     // Dig into the expression to find the pointer base for a GEP.
1601     const SCEV *ExposedRest = Rest;
1602     ExposePointerBase(Base, ExposedRest, SE);
1603     // If we found a pointer, expand the AddRec with a GEP.
1604     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1605       // Make sure the Base isn't something exotic, such as a multiplied
1606       // or divided pointer value. In those cases, the result type isn't
1607       // actually a pointer type.
1608       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1609         Value *StartV = expand(Base);
1610         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1611         return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1612       }
1613     }
1614 
1615     // Just do a normal add. Pre-expand the operands to suppress folding.
1616     //
1617     // The LHS and RHS values are factored out of the expand call to make the
1618     // output independent of the argument evaluation order.
1619     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1620     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1621     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1622   }
1623 
1624   // If we don't yet have a canonical IV, create one.
1625   if (!CanonicalIV) {
1626     // Create and insert the PHI node for the induction variable in the
1627     // specified loop.
1628     BasicBlock *Header = L->getHeader();
1629     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1630     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1631                                   &Header->front());
1632     rememberInstruction(CanonicalIV);
1633 
1634     SmallSet<BasicBlock *, 4> PredSeen;
1635     Constant *One = ConstantInt::get(Ty, 1);
1636     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1637       BasicBlock *HP = *HPI;
1638       if (!PredSeen.insert(HP).second) {
1639         // There must be an incoming value for each predecessor, even the
1640         // duplicates!
1641         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1642         continue;
1643       }
1644 
1645       if (L->contains(HP)) {
1646         // Insert a unit add instruction right before the terminator
1647         // corresponding to the back-edge.
1648         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1649                                                      "indvar.next",
1650                                                      HP->getTerminator());
1651         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1652         rememberInstruction(Add);
1653         CanonicalIV->addIncoming(Add, HP);
1654       } else {
1655         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1656       }
1657     }
1658   }
1659 
1660   // {0,+,1} --> Insert a canonical induction variable into the loop!
1661   if (S->isAffine() && S->getOperand(1)->isOne()) {
1662     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1663            "IVs with types different from the canonical IV should "
1664            "already have been handled!");
1665     return CanonicalIV;
1666   }
1667 
1668   // {0,+,F} --> {0,+,1} * F
1669 
1670   // If this is a simple linear addrec, emit it now as a special case.
1671   if (S->isAffine())    // {0,+,F} --> i*F
1672     return
1673       expand(SE.getTruncateOrNoop(
1674         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1675                       SE.getNoopOrAnyExtend(S->getOperand(1),
1676                                             CanonicalIV->getType())),
1677         Ty));
1678 
1679   // If this is a chain of recurrences, turn it into a closed form, using the
1680   // folders, then expandCodeFor the closed form.  This allows the folders to
1681   // simplify the expression without having to build a bunch of special code
1682   // into this folder.
1683   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1684 
1685   // Promote S up to the canonical IV type, if the cast is foldable.
1686   const SCEV *NewS = S;
1687   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1688   if (isa<SCEVAddRecExpr>(Ext))
1689     NewS = Ext;
1690 
1691   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1692   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1693 
1694   // Truncate the result down to the original type, if needed.
1695   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1696   return expand(T);
1697 }
1698 
1699 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1700   Value *V =
1701       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1702   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1703                            GetOptimalInsertionPointForCastOf(V));
1704 }
1705 
1706 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1707   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1708   Value *V = expandCodeForImpl(
1709       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1710       false);
1711   return Builder.CreateTrunc(V, Ty);
1712 }
1713 
1714 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1715   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1716   Value *V = expandCodeForImpl(
1717       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1718       false);
1719   return Builder.CreateZExt(V, Ty);
1720 }
1721 
1722 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1723   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1724   Value *V = expandCodeForImpl(
1725       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1726       false);
1727   return Builder.CreateSExt(V, Ty);
1728 }
1729 
1730 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1731   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1732   Type *Ty = LHS->getType();
1733   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1734     // In the case of mixed integer and pointer types, do the
1735     // rest of the comparisons as integer.
1736     Type *OpTy = S->getOperand(i)->getType();
1737     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1738       Ty = SE.getEffectiveSCEVType(Ty);
1739       LHS = InsertNoopCastOfTo(LHS, Ty);
1740     }
1741     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1742     Value *Sel;
1743     if (Ty->isIntegerTy())
1744       Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS},
1745                                     /*FMFSource=*/nullptr, "smax");
1746     else {
1747       Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1748       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1749     }
1750     LHS = Sel;
1751   }
1752   // In the case of mixed integer and pointer types, cast the
1753   // final result back to the pointer type.
1754   if (LHS->getType() != S->getType())
1755     LHS = InsertNoopCastOfTo(LHS, S->getType());
1756   return LHS;
1757 }
1758 
1759 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1760   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1761   Type *Ty = LHS->getType();
1762   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1763     // In the case of mixed integer and pointer types, do the
1764     // rest of the comparisons as integer.
1765     Type *OpTy = S->getOperand(i)->getType();
1766     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1767       Ty = SE.getEffectiveSCEVType(Ty);
1768       LHS = InsertNoopCastOfTo(LHS, Ty);
1769     }
1770     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1771     Value *Sel;
1772     if (Ty->isIntegerTy())
1773       Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS},
1774                                     /*FMFSource=*/nullptr, "umax");
1775     else {
1776       Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1777       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1778     }
1779     LHS = Sel;
1780   }
1781   // In the case of mixed integer and pointer types, cast the
1782   // final result back to the pointer type.
1783   if (LHS->getType() != S->getType())
1784     LHS = InsertNoopCastOfTo(LHS, S->getType());
1785   return LHS;
1786 }
1787 
1788 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1789   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1790   Type *Ty = LHS->getType();
1791   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1792     // In the case of mixed integer and pointer types, do the
1793     // rest of the comparisons as integer.
1794     Type *OpTy = S->getOperand(i)->getType();
1795     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1796       Ty = SE.getEffectiveSCEVType(Ty);
1797       LHS = InsertNoopCastOfTo(LHS, Ty);
1798     }
1799     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1800     Value *Sel;
1801     if (Ty->isIntegerTy())
1802       Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS},
1803                                     /*FMFSource=*/nullptr, "smin");
1804     else {
1805       Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1806       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1807     }
1808     LHS = Sel;
1809   }
1810   // In the case of mixed integer and pointer types, cast the
1811   // final result back to the pointer type.
1812   if (LHS->getType() != S->getType())
1813     LHS = InsertNoopCastOfTo(LHS, S->getType());
1814   return LHS;
1815 }
1816 
1817 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1818   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1819   Type *Ty = LHS->getType();
1820   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1821     // In the case of mixed integer and pointer types, do the
1822     // rest of the comparisons as integer.
1823     Type *OpTy = S->getOperand(i)->getType();
1824     if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1825       Ty = SE.getEffectiveSCEVType(Ty);
1826       LHS = InsertNoopCastOfTo(LHS, Ty);
1827     }
1828     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1829     Value *Sel;
1830     if (Ty->isIntegerTy())
1831       Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS},
1832                                     /*FMFSource=*/nullptr, "umin");
1833     else {
1834       Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1835       Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1836     }
1837     LHS = Sel;
1838   }
1839   // In the case of mixed integer and pointer types, cast the
1840   // final result back to the pointer type.
1841   if (LHS->getType() != S->getType())
1842     LHS = InsertNoopCastOfTo(LHS, S->getType());
1843   return LHS;
1844 }
1845 
1846 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1847                                        Instruction *IP, bool Root) {
1848   setInsertPoint(IP);
1849   Value *V = expandCodeForImpl(SH, Ty, Root);
1850   return V;
1851 }
1852 
1853 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1854   // Expand the code for this SCEV.
1855   Value *V = expand(SH);
1856 
1857   if (PreserveLCSSA) {
1858     if (auto *Inst = dyn_cast<Instruction>(V)) {
1859       // Create a temporary instruction to at the current insertion point, so we
1860       // can hand it off to the helper to create LCSSA PHIs if required for the
1861       // new use.
1862       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1863       // would accept a insertion point and return an LCSSA phi for that
1864       // insertion point, so there is no need to insert & remove the temporary
1865       // instruction.
1866       Instruction *Tmp;
1867       if (Inst->getType()->isIntegerTy())
1868         Tmp =
1869             cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user"));
1870       else {
1871         assert(Inst->getType()->isPointerTy());
1872         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1873             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1874       }
1875       V = fixupLCSSAFormFor(Tmp, 0);
1876 
1877       // Clean up temporary instruction.
1878       InsertedValues.erase(Tmp);
1879       InsertedPostIncValues.erase(Tmp);
1880       Tmp->eraseFromParent();
1881     }
1882   }
1883 
1884   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1885   if (Ty) {
1886     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1887            "non-trivial casts should be done with the SCEVs directly!");
1888     V = InsertNoopCastOfTo(V, Ty);
1889   }
1890   return V;
1891 }
1892 
1893 ScalarEvolution::ValueOffsetPair
1894 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1895                                       const Instruction *InsertPt) {
1896   auto *Set = SE.getSCEVValues(S);
1897   // If the expansion is not in CanonicalMode, and the SCEV contains any
1898   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1899   if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1900     // If S is scConstant, it may be worse to reuse an existing Value.
1901     if (S->getSCEVType() != scConstant && Set) {
1902       // Choose a Value from the set which dominates the insertPt.
1903       // insertPt should be inside the Value's parent loop so as not to break
1904       // the LCSSA form.
1905       for (auto const &VOPair : *Set) {
1906         Value *V = VOPair.first;
1907         ConstantInt *Offset = VOPair.second;
1908         Instruction *EntInst = nullptr;
1909         if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1910             S->getType() == V->getType() &&
1911             EntInst->getFunction() == InsertPt->getFunction() &&
1912             SE.DT.dominates(EntInst, InsertPt) &&
1913             (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1914              SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1915           return {V, Offset};
1916       }
1917     }
1918   }
1919   return {nullptr, nullptr};
1920 }
1921 
1922 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1923 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1924 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1925 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1926 // the expansion will try to reuse Value from ExprValueMap, and only when it
1927 // fails, expand the SCEV literally.
1928 Value *SCEVExpander::expand(const SCEV *S) {
1929   // Compute an insertion point for this SCEV object. Hoist the instructions
1930   // as far out in the loop nest as possible.
1931   Instruction *InsertPt = &*Builder.GetInsertPoint();
1932 
1933   // We can move insertion point only if there is no div or rem operations
1934   // otherwise we are risky to move it over the check for zero denominator.
1935   auto SafeToHoist = [](const SCEV *S) {
1936     return !SCEVExprContains(S, [](const SCEV *S) {
1937               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1938                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1939                   // Division by non-zero constants can be hoisted.
1940                   return SC->getValue()->isZero();
1941                 // All other divisions should not be moved as they may be
1942                 // divisions by zero and should be kept within the
1943                 // conditions of the surrounding loops that guard their
1944                 // execution (see PR35406).
1945                 return true;
1946               }
1947               return false;
1948             });
1949   };
1950   if (SafeToHoist(S)) {
1951     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1952          L = L->getParentLoop()) {
1953       if (SE.isLoopInvariant(S, L)) {
1954         if (!L) break;
1955         if (BasicBlock *Preheader = L->getLoopPreheader())
1956           InsertPt = Preheader->getTerminator();
1957         else
1958           // LSR sets the insertion point for AddRec start/step values to the
1959           // block start to simplify value reuse, even though it's an invalid
1960           // position. SCEVExpander must correct for this in all cases.
1961           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1962       } else {
1963         // If the SCEV is computable at this level, insert it into the header
1964         // after the PHIs (and after any other instructions that we've inserted
1965         // there) so that it is guaranteed to dominate any user inside the loop.
1966         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1967           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1968 
1969         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1970                (isInsertedInstruction(InsertPt) ||
1971                 isa<DbgInfoIntrinsic>(InsertPt))) {
1972           InsertPt = &*std::next(InsertPt->getIterator());
1973         }
1974         break;
1975       }
1976     }
1977   }
1978 
1979   // Check to see if we already expanded this here.
1980   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1981   if (I != InsertedExpressions.end())
1982     return I->second;
1983 
1984   SCEVInsertPointGuard Guard(Builder, this);
1985   Builder.SetInsertPoint(InsertPt);
1986 
1987   // Expand the expression into instructions.
1988   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1989   Value *V = VO.first;
1990 
1991   if (!V)
1992     V = visit(S);
1993   else if (VO.second) {
1994     if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1995       Type *Ety = Vty->getPointerElementType();
1996       int64_t Offset = VO.second->getSExtValue();
1997       int64_t ESize = SE.getTypeSizeInBits(Ety);
1998       if ((Offset * 8) % ESize == 0) {
1999         ConstantInt *Idx =
2000             ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
2001         V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
2002       } else {
2003         ConstantInt *Idx =
2004             ConstantInt::getSigned(VO.second->getType(), -Offset);
2005         unsigned AS = Vty->getAddressSpace();
2006         V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
2007         V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
2008                               "uglygep");
2009         V = Builder.CreateBitCast(V, Vty);
2010       }
2011     } else {
2012       V = Builder.CreateSub(V, VO.second);
2013     }
2014   }
2015   // Remember the expanded value for this SCEV at this location.
2016   //
2017   // This is independent of PostIncLoops. The mapped value simply materializes
2018   // the expression at this insertion point. If the mapped value happened to be
2019   // a postinc expansion, it could be reused by a non-postinc user, but only if
2020   // its insertion point was already at the head of the loop.
2021   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
2022   return V;
2023 }
2024 
2025 void SCEVExpander::rememberInstruction(Value *I) {
2026   auto DoInsert = [this](Value *V) {
2027     if (!PostIncLoops.empty())
2028       InsertedPostIncValues.insert(V);
2029     else
2030       InsertedValues.insert(V);
2031   };
2032   DoInsert(I);
2033 
2034   if (!PreserveLCSSA)
2035     return;
2036 
2037   if (auto *Inst = dyn_cast<Instruction>(I)) {
2038     // A new instruction has been added, which might introduce new uses outside
2039     // a defining loop. Fix LCSSA from for each operand of the new instruction,
2040     // if required.
2041     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
2042          OpIdx++)
2043       fixupLCSSAFormFor(Inst, OpIdx);
2044   }
2045 }
2046 
2047 /// replaceCongruentIVs - Check for congruent phis in this loop header and
2048 /// replace them with their most canonical representative. Return the number of
2049 /// phis eliminated.
2050 ///
2051 /// This does not depend on any SCEVExpander state but should be used in
2052 /// the same context that SCEVExpander is used.
2053 unsigned
2054 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
2055                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
2056                                   const TargetTransformInfo *TTI) {
2057   // Find integer phis in order of increasing width.
2058   SmallVector<PHINode*, 8> Phis;
2059   for (PHINode &PN : L->getHeader()->phis())
2060     Phis.push_back(&PN);
2061 
2062   if (TTI)
2063     llvm::sort(Phis, [](Value *LHS, Value *RHS) {
2064       // Put pointers at the back and make sure pointer < pointer = false.
2065       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
2066         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
2067       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
2068              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
2069     });
2070 
2071   unsigned NumElim = 0;
2072   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
2073   // Process phis from wide to narrow. Map wide phis to their truncation
2074   // so narrow phis can reuse them.
2075   for (PHINode *Phi : Phis) {
2076     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
2077       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
2078         return V;
2079       if (!SE.isSCEVable(PN->getType()))
2080         return nullptr;
2081       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
2082       if (!Const)
2083         return nullptr;
2084       return Const->getValue();
2085     };
2086 
2087     // Fold constant phis. They may be congruent to other constant phis and
2088     // would confuse the logic below that expects proper IVs.
2089     if (Value *V = SimplifyPHINode(Phi)) {
2090       if (V->getType() != Phi->getType())
2091         continue;
2092       Phi->replaceAllUsesWith(V);
2093       DeadInsts.emplace_back(Phi);
2094       ++NumElim;
2095       SCEV_DEBUG_WITH_TYPE(DebugType,
2096                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
2097                                   << '\n');
2098       continue;
2099     }
2100 
2101     if (!SE.isSCEVable(Phi->getType()))
2102       continue;
2103 
2104     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
2105     if (!OrigPhiRef) {
2106       OrigPhiRef = Phi;
2107       if (Phi->getType()->isIntegerTy() && TTI &&
2108           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2109         // This phi can be freely truncated to the narrowest phi type. Map the
2110         // truncated expression to it so it will be reused for narrow types.
2111         const SCEV *TruncExpr =
2112           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2113         ExprToIVMap[TruncExpr] = Phi;
2114       }
2115       continue;
2116     }
2117 
2118     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2119     // sense.
2120     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2121       continue;
2122 
2123     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2124       Instruction *OrigInc = dyn_cast<Instruction>(
2125           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2126       Instruction *IsomorphicInc =
2127           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2128 
2129       if (OrigInc && IsomorphicInc) {
2130         // If this phi has the same width but is more canonical, replace the
2131         // original with it. As part of the "more canonical" determination,
2132         // respect a prior decision to use an IV chain.
2133         if (OrigPhiRef->getType() == Phi->getType() &&
2134             !(ChainedPhis.count(Phi) ||
2135               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2136             (ChainedPhis.count(Phi) ||
2137              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2138           std::swap(OrigPhiRef, Phi);
2139           std::swap(OrigInc, IsomorphicInc);
2140         }
2141         // Replacing the congruent phi is sufficient because acyclic
2142         // redundancy elimination, CSE/GVN, should handle the
2143         // rest. However, once SCEV proves that a phi is congruent,
2144         // it's often the head of an IV user cycle that is isomorphic
2145         // with the original phi. It's worth eagerly cleaning up the
2146         // common case of a single IV increment so that DeleteDeadPHIs
2147         // can remove cycles that had postinc uses.
2148         const SCEV *TruncExpr =
2149             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2150         if (OrigInc != IsomorphicInc &&
2151             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2152             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2153             hoistIVInc(OrigInc, IsomorphicInc)) {
2154           SCEV_DEBUG_WITH_TYPE(
2155               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2156                                 << *IsomorphicInc << '\n');
2157           Value *NewInc = OrigInc;
2158           if (OrigInc->getType() != IsomorphicInc->getType()) {
2159             Instruction *IP = nullptr;
2160             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2161               IP = &*PN->getParent()->getFirstInsertionPt();
2162             else
2163               IP = OrigInc->getNextNode();
2164 
2165             IRBuilder<> Builder(IP);
2166             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2167             NewInc = Builder.CreateTruncOrBitCast(
2168                 OrigInc, IsomorphicInc->getType(), IVName);
2169           }
2170           IsomorphicInc->replaceAllUsesWith(NewInc);
2171           DeadInsts.emplace_back(IsomorphicInc);
2172         }
2173       }
2174     }
2175     SCEV_DEBUG_WITH_TYPE(DebugType,
2176                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2177                                 << '\n');
2178     SCEV_DEBUG_WITH_TYPE(
2179         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2180     ++NumElim;
2181     Value *NewIV = OrigPhiRef;
2182     if (OrigPhiRef->getType() != Phi->getType()) {
2183       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2184       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2185       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2186     }
2187     Phi->replaceAllUsesWith(NewIV);
2188     DeadInsts.emplace_back(Phi);
2189   }
2190   return NumElim;
2191 }
2192 
2193 Optional<ScalarEvolution::ValueOffsetPair>
2194 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2195                                           Loop *L) {
2196   using namespace llvm::PatternMatch;
2197 
2198   SmallVector<BasicBlock *, 4> ExitingBlocks;
2199   L->getExitingBlocks(ExitingBlocks);
2200 
2201   // Look for suitable value in simple conditions at the loop exits.
2202   for (BasicBlock *BB : ExitingBlocks) {
2203     ICmpInst::Predicate Pred;
2204     Instruction *LHS, *RHS;
2205 
2206     if (!match(BB->getTerminator(),
2207                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2208                     m_BasicBlock(), m_BasicBlock())))
2209       continue;
2210 
2211     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2212       return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2213 
2214     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2215       return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2216   }
2217 
2218   // Use expand's logic which is used for reusing a previous Value in
2219   // ExprValueMap.
2220   ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2221   if (VO.first)
2222     return VO;
2223 
2224   // There is potential to make this significantly smarter, but this simple
2225   // heuristic already gets some interesting cases.
2226 
2227   // Can not find suitable value.
2228   return None;
2229 }
2230 
2231 template<typename T> static InstructionCost costAndCollectOperands(
2232   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2233   TargetTransformInfo::TargetCostKind CostKind,
2234   SmallVectorImpl<SCEVOperand> &Worklist) {
2235 
2236   const T *S = cast<T>(WorkItem.S);
2237   InstructionCost Cost = 0;
2238   // Object to help map SCEV operands to expanded IR instructions.
2239   struct OperationIndices {
2240     OperationIndices(unsigned Opc, size_t min, size_t max) :
2241       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2242     unsigned Opcode;
2243     size_t MinIdx;
2244     size_t MaxIdx;
2245   };
2246 
2247   // Collect the operations of all the instructions that will be needed to
2248   // expand the SCEVExpr. This is so that when we come to cost the operands,
2249   // we know what the generated user(s) will be.
2250   SmallVector<OperationIndices, 2> Operations;
2251 
2252   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2253     Operations.emplace_back(Opcode, 0, 0);
2254     return TTI.getCastInstrCost(Opcode, S->getType(),
2255                                 S->getOperand(0)->getType(),
2256                                 TTI::CastContextHint::None, CostKind);
2257   };
2258 
2259   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2260                        unsigned MinIdx = 0,
2261                        unsigned MaxIdx = 1) -> InstructionCost {
2262     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2263     return NumRequired *
2264       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2265   };
2266 
2267   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2268                         unsigned MaxIdx) -> InstructionCost {
2269     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2270     Type *OpType = S->getOperand(0)->getType();
2271     return NumRequired * TTI.getCmpSelInstrCost(
2272                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2273                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2274   };
2275 
2276   switch (S->getSCEVType()) {
2277   case scCouldNotCompute:
2278     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2279   case scUnknown:
2280   case scConstant:
2281     return 0;
2282   case scPtrToInt:
2283     Cost = CastCost(Instruction::PtrToInt);
2284     break;
2285   case scTruncate:
2286     Cost = CastCost(Instruction::Trunc);
2287     break;
2288   case scZeroExtend:
2289     Cost = CastCost(Instruction::ZExt);
2290     break;
2291   case scSignExtend:
2292     Cost = CastCost(Instruction::SExt);
2293     break;
2294   case scUDivExpr: {
2295     unsigned Opcode = Instruction::UDiv;
2296     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2297       if (SC->getAPInt().isPowerOf2())
2298         Opcode = Instruction::LShr;
2299     Cost = ArithCost(Opcode, 1);
2300     break;
2301   }
2302   case scAddExpr:
2303     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2304     break;
2305   case scMulExpr:
2306     // TODO: this is a very pessimistic cost modelling for Mul,
2307     // because of Bin Pow algorithm actually used by the expander,
2308     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2309     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2310     break;
2311   case scSMaxExpr:
2312   case scUMaxExpr:
2313   case scSMinExpr:
2314   case scUMinExpr: {
2315     // FIXME: should this ask the cost for Intrinsic's?
2316     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2317     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2318     break;
2319   }
2320   case scAddRecExpr: {
2321     // In this polynominal, we may have some zero operands, and we shouldn't
2322     // really charge for those. So how many non-zero coeffients are there?
2323     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2324                                     return !Op->isZero();
2325                                   });
2326 
2327     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2328     assert(!(*std::prev(S->operands().end()))->isZero() &&
2329            "Last operand should not be zero");
2330 
2331     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2332     int NumNonZeroDegreeNonOneTerms =
2333       llvm::count_if(S->operands(), [](const SCEV *Op) {
2334                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2335                       return !SConst || SConst->getAPInt().ugt(1);
2336                     });
2337 
2338     // Much like with normal add expr, the polynominal will require
2339     // one less addition than the number of it's terms.
2340     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2341                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2342     // Here, *each* one of those will require a multiplication.
2343     InstructionCost MulCost =
2344         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2345     Cost = AddCost + MulCost;
2346 
2347     // What is the degree of this polynominal?
2348     int PolyDegree = S->getNumOperands() - 1;
2349     assert(PolyDegree >= 1 && "Should be at least affine.");
2350 
2351     // The final term will be:
2352     //   Op_{PolyDegree} * x ^ {PolyDegree}
2353     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2354     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2355     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2356     // FIXME: this is conservatively correct, but might be overly pessimistic.
2357     Cost += MulCost * (PolyDegree - 1);
2358     break;
2359   }
2360   }
2361 
2362   for (auto &CostOp : Operations) {
2363     for (auto SCEVOp : enumerate(S->operands())) {
2364       // Clamp the index to account for multiple IR operations being chained.
2365       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2366       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2367       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2368     }
2369   }
2370   return Cost;
2371 }
2372 
2373 bool SCEVExpander::isHighCostExpansionHelper(
2374     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2375     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2376     SmallPtrSetImpl<const SCEV *> &Processed,
2377     SmallVectorImpl<SCEVOperand> &Worklist) {
2378   if (Cost > Budget)
2379     return true; // Already run out of budget, give up.
2380 
2381   const SCEV *S = WorkItem.S;
2382   // Was the cost of expansion of this expression already accounted for?
2383   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2384     return false; // We have already accounted for this expression.
2385 
2386   // If we can find an existing value for this scev available at the point "At"
2387   // then consider the expression cheap.
2388   if (getRelatedExistingExpansion(S, &At, L))
2389     return false; // Consider the expression to be free.
2390 
2391   TargetTransformInfo::TargetCostKind CostKind =
2392       L->getHeader()->getParent()->hasMinSize()
2393           ? TargetTransformInfo::TCK_CodeSize
2394           : TargetTransformInfo::TCK_RecipThroughput;
2395 
2396   switch (S->getSCEVType()) {
2397   case scCouldNotCompute:
2398     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2399   case scUnknown:
2400     // Assume to be zero-cost.
2401     return false;
2402   case scConstant: {
2403     // Only evalulate the costs of constants when optimizing for size.
2404     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2405       return 0;
2406     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2407     Type *Ty = S->getType();
2408     Cost += TTI.getIntImmCostInst(
2409         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2410     return Cost > Budget;
2411   }
2412   case scTruncate:
2413   case scPtrToInt:
2414   case scZeroExtend:
2415   case scSignExtend: {
2416     Cost +=
2417         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2418     return false; // Will answer upon next entry into this function.
2419   }
2420   case scUDivExpr: {
2421     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2422     // HowManyLessThans produced to compute a precise expression, rather than a
2423     // UDiv from the user's code. If we can't find a UDiv in the code with some
2424     // simple searching, we need to account for it's cost.
2425 
2426     // At the beginning of this function we already tried to find existing
2427     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2428     // pattern involving division. This is just a simple search heuristic.
2429     if (getRelatedExistingExpansion(
2430             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2431       return false; // Consider it to be free.
2432 
2433     Cost +=
2434         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2435     return false; // Will answer upon next entry into this function.
2436   }
2437   case scAddExpr:
2438   case scMulExpr:
2439   case scUMaxExpr:
2440   case scSMaxExpr:
2441   case scUMinExpr:
2442   case scSMinExpr: {
2443     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2444            "Nary expr should have more than 1 operand.");
2445     // The simple nary expr will require one less op (or pair of ops)
2446     // than the number of it's terms.
2447     Cost +=
2448         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2449     return Cost > Budget;
2450   }
2451   case scAddRecExpr: {
2452     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2453            "Polynomial should be at least linear");
2454     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2455         WorkItem, TTI, CostKind, Worklist);
2456     return Cost > Budget;
2457   }
2458   }
2459   llvm_unreachable("Unknown SCEV kind!");
2460 }
2461 
2462 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2463                                             Instruction *IP) {
2464   assert(IP);
2465   switch (Pred->getKind()) {
2466   case SCEVPredicate::P_Union:
2467     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2468   case SCEVPredicate::P_Equal:
2469     return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2470   case SCEVPredicate::P_Wrap: {
2471     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2472     return expandWrapPredicate(AddRecPred, IP);
2473   }
2474   }
2475   llvm_unreachable("Unknown SCEV predicate type");
2476 }
2477 
2478 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2479                                           Instruction *IP) {
2480   Value *Expr0 =
2481       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2482   Value *Expr1 =
2483       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2484 
2485   Builder.SetInsertPoint(IP);
2486   auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2487   return I;
2488 }
2489 
2490 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2491                                            Instruction *Loc, bool Signed) {
2492   assert(AR->isAffine() && "Cannot generate RT check for "
2493                            "non-affine expression");
2494 
2495   SCEVUnionPredicate Pred;
2496   const SCEV *ExitCount =
2497       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2498 
2499   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2500 
2501   const SCEV *Step = AR->getStepRecurrence(SE);
2502   const SCEV *Start = AR->getStart();
2503 
2504   Type *ARTy = AR->getType();
2505   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2506   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2507 
2508   // The expression {Start,+,Step} has nusw/nssw if
2509   //   Step < 0, Start - |Step| * Backedge <= Start
2510   //   Step >= 0, Start + |Step| * Backedge > Start
2511   // and |Step| * Backedge doesn't unsigned overflow.
2512 
2513   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2514   Builder.SetInsertPoint(Loc);
2515   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2516 
2517   IntegerType *Ty =
2518       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2519   Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2520 
2521   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2522   Value *NegStepValue =
2523       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2524   Value *StartValue = expandCodeForImpl(
2525       isa<PointerType>(ARExpandTy) ? Start
2526                                    : SE.getPtrToIntExpr(Start, ARExpandTy),
2527       ARExpandTy, Loc, false);
2528 
2529   ConstantInt *Zero =
2530       ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2531 
2532   Builder.SetInsertPoint(Loc);
2533   // Compute |Step|
2534   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2535   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2536 
2537   // Get the backedge taken count and truncate or extended to the AR type.
2538   Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2539   auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2540                                          Intrinsic::umul_with_overflow, Ty);
2541 
2542   // Compute |Step| * Backedge
2543   CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2544   Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2545   Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2546 
2547   // Compute:
2548   //   Start + |Step| * Backedge < Start
2549   //   Start - |Step| * Backedge > Start
2550   Value *Add = nullptr, *Sub = nullptr;
2551   if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2552     const SCEV *MulS = SE.getSCEV(MulV);
2553     const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2554     Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2555                                 ARPtrTy);
2556     Sub = Builder.CreateBitCast(
2557         expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2558   } else {
2559     Add = Builder.CreateAdd(StartValue, MulV);
2560     Sub = Builder.CreateSub(StartValue, MulV);
2561   }
2562 
2563   Value *EndCompareGT = Builder.CreateICmp(
2564       Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2565 
2566   Value *EndCompareLT = Builder.CreateICmp(
2567       Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2568 
2569   // Select the answer based on the sign of Step.
2570   Value *EndCheck =
2571       Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2572 
2573   // If the backedge taken count type is larger than the AR type,
2574   // check that we don't drop any bits by truncating it. If we are
2575   // dropping bits, then we have overflow (unless the step is zero).
2576   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2577     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2578     auto *BackedgeCheck =
2579         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2580                            ConstantInt::get(Loc->getContext(), MaxVal));
2581     BackedgeCheck = Builder.CreateAnd(
2582         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2583 
2584     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2585   }
2586 
2587   return Builder.CreateOr(EndCheck, OfMul);
2588 }
2589 
2590 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2591                                          Instruction *IP) {
2592   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2593   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2594 
2595   // Add a check for NUSW
2596   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2597     NUSWCheck = generateOverflowCheck(A, IP, false);
2598 
2599   // Add a check for NSSW
2600   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2601     NSSWCheck = generateOverflowCheck(A, IP, true);
2602 
2603   if (NUSWCheck && NSSWCheck)
2604     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2605 
2606   if (NUSWCheck)
2607     return NUSWCheck;
2608 
2609   if (NSSWCheck)
2610     return NSSWCheck;
2611 
2612   return ConstantInt::getFalse(IP->getContext());
2613 }
2614 
2615 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2616                                           Instruction *IP) {
2617   auto *BoolType = IntegerType::get(IP->getContext(), 1);
2618   Value *Check = ConstantInt::getNullValue(BoolType);
2619 
2620   // Loop over all checks in this set.
2621   for (auto Pred : Union->getPredicates()) {
2622     auto *NextCheck = expandCodeForPredicate(Pred, IP);
2623     Builder.SetInsertPoint(IP);
2624     Check = Builder.CreateOr(Check, NextCheck);
2625   }
2626 
2627   return Check;
2628 }
2629 
2630 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2631   assert(PreserveLCSSA);
2632   SmallVector<Instruction *, 1> ToUpdate;
2633 
2634   auto *OpV = User->getOperand(OpIdx);
2635   auto *OpI = dyn_cast<Instruction>(OpV);
2636   if (!OpI)
2637     return OpV;
2638 
2639   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2640   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2641   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2642     return OpV;
2643 
2644   ToUpdate.push_back(OpI);
2645   SmallVector<PHINode *, 16> PHIsToRemove;
2646   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2647   for (PHINode *PN : PHIsToRemove) {
2648     if (!PN->use_empty())
2649       continue;
2650     InsertedValues.erase(PN);
2651     InsertedPostIncValues.erase(PN);
2652     PN->eraseFromParent();
2653   }
2654 
2655   return User->getOperand(OpIdx);
2656 }
2657 
2658 namespace {
2659 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2660 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2661 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2662 // instruction, but the important thing is that we prove the denominator is
2663 // nonzero before expansion.
2664 //
2665 // IVUsers already checks that IV-derived expressions are safe. So this check is
2666 // only needed when the expression includes some subexpression that is not IV
2667 // derived.
2668 //
2669 // Currently, we only allow division by a nonzero constant here. If this is
2670 // inadequate, we could easily allow division by SCEVUnknown by using
2671 // ValueTracking to check isKnownNonZero().
2672 //
2673 // We cannot generally expand recurrences unless the step dominates the loop
2674 // header. The expander handles the special case of affine recurrences by
2675 // scaling the recurrence outside the loop, but this technique isn't generally
2676 // applicable. Expanding a nested recurrence outside a loop requires computing
2677 // binomial coefficients. This could be done, but the recurrence has to be in a
2678 // perfectly reduced form, which can't be guaranteed.
2679 struct SCEVFindUnsafe {
2680   ScalarEvolution &SE;
2681   bool IsUnsafe;
2682 
2683   SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2684 
2685   bool follow(const SCEV *S) {
2686     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2687       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2688       if (!SC || SC->getValue()->isZero()) {
2689         IsUnsafe = true;
2690         return false;
2691       }
2692     }
2693     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2694       const SCEV *Step = AR->getStepRecurrence(SE);
2695       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2696         IsUnsafe = true;
2697         return false;
2698       }
2699     }
2700     return true;
2701   }
2702   bool isDone() const { return IsUnsafe; }
2703 };
2704 }
2705 
2706 namespace llvm {
2707 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2708   SCEVFindUnsafe Search(SE);
2709   visitAll(S, Search);
2710   return !Search.IsUnsafe;
2711 }
2712 
2713 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2714                       ScalarEvolution &SE) {
2715   if (!isSafeToExpand(S, SE))
2716     return false;
2717   // We have to prove that the expanded site of S dominates InsertionPoint.
2718   // This is easy when not in the same block, but hard when S is an instruction
2719   // to be expanded somewhere inside the same block as our insertion point.
2720   // What we really need here is something analogous to an OrderedBasicBlock,
2721   // but for the moment, we paper over the problem by handling two common and
2722   // cheap to check cases.
2723   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2724     return true;
2725   if (SE.dominates(S, InsertionPoint->getParent())) {
2726     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2727       return true;
2728     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2729       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2730         return true;
2731   }
2732   return false;
2733 }
2734 
2735 void SCEVExpanderCleaner::cleanup() {
2736   // Result is used, nothing to remove.
2737   if (ResultUsed)
2738     return;
2739 
2740   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2741 #ifndef NDEBUG
2742   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2743                                             InsertedInstructions.end());
2744   (void)InsertedSet;
2745 #endif
2746   // Remove sets with value handles.
2747   Expander.clear();
2748 
2749   // Sort so that earlier instructions do not dominate later instructions.
2750   stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) {
2751     return DT.dominates(B, A);
2752   });
2753   // Remove all inserted instructions.
2754   for (Instruction *I : InsertedInstructions) {
2755 
2756 #ifndef NDEBUG
2757     assert(all_of(I->users(),
2758                   [&InsertedSet](Value *U) {
2759                     return InsertedSet.contains(cast<Instruction>(U));
2760                   }) &&
2761            "removed instruction should only be used by instructions inserted "
2762            "during expansion");
2763 #endif
2764     assert(!I->getType()->isVoidTy() &&
2765            "inserted instruction should have non-void types");
2766     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2767     I->eraseFromParent();
2768   }
2769 }
2770 }
2771