xref: /llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 0e10f1284455aaa54cbcad145238ecedd0d57e48)
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 
30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
32 #else
33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
34 #endif
35 
36 using namespace llvm;
37 
38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
39     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
40     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
41              "controls the budget that is considered cheap (default = 4)"));
42 
43 using namespace PatternMatch;
44 
45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or
47 /// creating a new one.
48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
49                                        Instruction::CastOps Op,
50                                        BasicBlock::iterator IP) {
51   // This function must be called with the builder having a valid insertion
52   // point. It doesn't need to be the actual IP where the uses of the returned
53   // cast will be added, but it must dominate such IP.
54   // We use this precondition to produce a cast that will dominate all its
55   // uses. In particular, this is crucial for the case where the builder's
56   // insertion point *is* the point where we were asked to put the cast.
57   // Since we don't know the builder's insertion point is actually
58   // where the uses will be added (only that it dominates it), we are
59   // not allowed to move it.
60   BasicBlock::iterator BIP = Builder.GetInsertPoint();
61 
62   Value *Ret = nullptr;
63 
64   // Check to see if there is already a cast!
65   for (User *U : V->users()) {
66     if (U->getType() != Ty)
67       continue;
68     CastInst *CI = dyn_cast<CastInst>(U);
69     if (!CI || CI->getOpcode() != Op)
70       continue;
71 
72     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
73     // the cast must also properly dominate the Builder's insertion point.
74     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
75         (&*IP == CI || CI->comesBefore(&*IP))) {
76       Ret = CI;
77       break;
78     }
79   }
80 
81   // Create a new cast.
82   if (!Ret) {
83     SCEVInsertPointGuard Guard(Builder, this);
84     Builder.SetInsertPoint(&*IP);
85     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
86   }
87 
88   // We assert at the end of the function since IP might point to an
89   // instruction with different dominance properties than a cast
90   // (an invoke for example) and not dominate BIP (but the cast does).
91   assert(!isa<Instruction>(Ret) ||
92          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
93 
94   return Ret;
95 }
96 
97 BasicBlock::iterator
98 SCEVExpander::findInsertPointAfter(Instruction *I,
99                                    Instruction *MustDominate) const {
100   BasicBlock::iterator IP = ++I->getIterator();
101   if (auto *II = dyn_cast<InvokeInst>(I))
102     IP = II->getNormalDest()->begin();
103 
104   while (isa<PHINode>(IP))
105     ++IP;
106 
107   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
108     ++IP;
109   } else if (isa<CatchSwitchInst>(IP)) {
110     IP = MustDominate->getParent()->getFirstInsertionPt();
111   } else {
112     assert(!IP->isEHPad() && "unexpected eh pad!");
113   }
114 
115   // Adjust insert point to be after instructions inserted by the expander, so
116   // we can re-use already inserted instructions. Avoid skipping past the
117   // original \p MustDominate, in case it is an inserted instruction.
118   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
119     ++IP;
120 
121   return IP;
122 }
123 
124 BasicBlock::iterator
125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
126   // Cast the argument at the beginning of the entry block, after
127   // any bitcasts of other arguments.
128   if (Argument *A = dyn_cast<Argument>(V)) {
129     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
130     while ((isa<BitCastInst>(IP) &&
131             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
132             cast<BitCastInst>(IP)->getOperand(0) != A) ||
133            isa<DbgInfoIntrinsic>(IP))
134       ++IP;
135     return IP;
136   }
137 
138   // Cast the instruction immediately after the instruction.
139   if (Instruction *I = dyn_cast<Instruction>(V))
140     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
141 
142   // Otherwise, this must be some kind of a constant,
143   // so let's plop this cast into the function's entry block.
144   assert(isa<Constant>(V) &&
145          "Expected the cast argument to be a global/constant");
146   return Builder.GetInsertBlock()
147       ->getParent()
148       ->getEntryBlock()
149       .getFirstInsertionPt();
150 }
151 
152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
153 /// which must be possible with a noop cast, doing what we can to share
154 /// the casts.
155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
156   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
157   assert((Op == Instruction::BitCast ||
158           Op == Instruction::PtrToInt ||
159           Op == Instruction::IntToPtr) &&
160          "InsertNoopCastOfTo cannot perform non-noop casts!");
161   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
162          "InsertNoopCastOfTo cannot change sizes!");
163 
164   // inttoptr only works for integral pointers. For non-integral pointers, we
165   // can create a GEP on i8* null  with the integral value as index. Note that
166   // it is safe to use GEP of null instead of inttoptr here, because only
167   // expressions already based on a GEP of null should be converted to pointers
168   // during expansion.
169   if (Op == Instruction::IntToPtr) {
170     auto *PtrTy = cast<PointerType>(Ty);
171     if (DL.isNonIntegralPointerType(PtrTy)) {
172       auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace());
173       assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 &&
174              "alloc size of i8 must by 1 byte for the GEP to be correct");
175       auto *GEP = Builder.CreateGEP(
176           Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep");
177       return Builder.CreateBitCast(GEP, Ty);
178     }
179   }
180   // Short-circuit unnecessary bitcasts.
181   if (Op == Instruction::BitCast) {
182     if (V->getType() == Ty)
183       return V;
184     if (CastInst *CI = dyn_cast<CastInst>(V)) {
185       if (CI->getOperand(0)->getType() == Ty)
186         return CI->getOperand(0);
187     }
188   }
189   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
190   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
191       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
192     if (CastInst *CI = dyn_cast<CastInst>(V))
193       if ((CI->getOpcode() == Instruction::PtrToInt ||
194            CI->getOpcode() == Instruction::IntToPtr) &&
195           SE.getTypeSizeInBits(CI->getType()) ==
196           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
197         return CI->getOperand(0);
198     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
199       if ((CE->getOpcode() == Instruction::PtrToInt ||
200            CE->getOpcode() == Instruction::IntToPtr) &&
201           SE.getTypeSizeInBits(CE->getType()) ==
202           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
203         return CE->getOperand(0);
204   }
205 
206   // Fold a cast of a constant.
207   if (Constant *C = dyn_cast<Constant>(V))
208     return ConstantExpr::getCast(Op, C, Ty);
209 
210   // Try to reuse existing cast, or insert one.
211   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
212 }
213 
214 /// InsertBinop - Insert the specified binary operator, doing a small amount
215 /// of work to avoid inserting an obviously redundant operation, and hoisting
216 /// to an outer loop when the opportunity is there and it is safe.
217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
218                                  Value *LHS, Value *RHS,
219                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
220   // Fold a binop with constant operands.
221   if (Constant *CLHS = dyn_cast<Constant>(LHS))
222     if (Constant *CRHS = dyn_cast<Constant>(RHS))
223       return ConstantExpr::get(Opcode, CLHS, CRHS);
224 
225   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
226   unsigned ScanLimit = 6;
227   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
228   // Scanning starts from the last instruction before the insertion point.
229   BasicBlock::iterator IP = Builder.GetInsertPoint();
230   if (IP != BlockBegin) {
231     --IP;
232     for (; ScanLimit; --IP, --ScanLimit) {
233       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
234       // generated code.
235       if (isa<DbgInfoIntrinsic>(IP))
236         ScanLimit++;
237 
238       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
239         // Ensure that no-wrap flags match.
240         if (isa<OverflowingBinaryOperator>(I)) {
241           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
242             return true;
243           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
244             return true;
245         }
246         // Conservatively, do not use any instruction which has any of exact
247         // flags installed.
248         if (isa<PossiblyExactOperator>(I) && I->isExact())
249           return true;
250         return false;
251       };
252       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
253           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
254         return &*IP;
255       if (IP == BlockBegin) break;
256     }
257   }
258 
259   // Save the original insertion point so we can restore it when we're done.
260   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
261   SCEVInsertPointGuard Guard(Builder, this);
262 
263   if (IsSafeToHoist) {
264     // Move the insertion point out of as many loops as we can.
265     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
266       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
267       BasicBlock *Preheader = L->getLoopPreheader();
268       if (!Preheader) break;
269 
270       // Ok, move up a level.
271       Builder.SetInsertPoint(Preheader->getTerminator());
272     }
273   }
274 
275   // If we haven't found this binop, insert it.
276   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
277   BO->setDebugLoc(Loc);
278   if (Flags & SCEV::FlagNUW)
279     BO->setHasNoUnsignedWrap();
280   if (Flags & SCEV::FlagNSW)
281     BO->setHasNoSignedWrap();
282 
283   return BO;
284 }
285 
286 /// FactorOutConstant - Test if S is divisible by Factor, using signed
287 /// division. If so, update S with Factor divided out and return true.
288 /// S need not be evenly divisible if a reasonable remainder can be
289 /// computed.
290 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
291                               const SCEV *Factor, ScalarEvolution &SE,
292                               const DataLayout &DL) {
293   // Everything is divisible by one.
294   if (Factor->isOne())
295     return true;
296 
297   // x/x == 1.
298   if (S == Factor) {
299     S = SE.getConstant(S->getType(), 1);
300     return true;
301   }
302 
303   // For a Constant, check for a multiple of the given factor.
304   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
305     // 0/x == 0.
306     if (C->isZero())
307       return true;
308     // Check for divisibility.
309     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
310       ConstantInt *CI =
311           ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
312       // If the quotient is zero and the remainder is non-zero, reject
313       // the value at this scale. It will be considered for subsequent
314       // smaller scales.
315       if (!CI->isZero()) {
316         const SCEV *Div = SE.getConstant(CI);
317         S = Div;
318         Remainder = SE.getAddExpr(
319             Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
320         return true;
321       }
322     }
323   }
324 
325   // In a Mul, check if there is a constant operand which is a multiple
326   // of the given factor.
327   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
328     // Size is known, check if there is a constant operand which is a multiple
329     // of the given factor. If so, we can factor it.
330     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor))
331       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
332         if (!C->getAPInt().srem(FC->getAPInt())) {
333           SmallVector<const SCEV *, 4> NewMulOps(M->operands());
334           NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
335           S = SE.getMulExpr(NewMulOps);
336           return true;
337         }
338   }
339 
340   // In an AddRec, check if both start and step are divisible.
341   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
342     const SCEV *Step = A->getStepRecurrence(SE);
343     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
344     if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
345       return false;
346     if (!StepRem->isZero())
347       return false;
348     const SCEV *Start = A->getStart();
349     if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
350       return false;
351     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
352                          A->getNoWrapFlags(SCEV::FlagNW));
353     return true;
354   }
355 
356   return false;
357 }
358 
359 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
360 /// is the number of SCEVAddRecExprs present, which are kept at the end of
361 /// the list.
362 ///
363 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
364                                 Type *Ty,
365                                 ScalarEvolution &SE) {
366   unsigned NumAddRecs = 0;
367   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
368     ++NumAddRecs;
369   // Group Ops into non-addrecs and addrecs.
370   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
371   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
372   // Let ScalarEvolution sort and simplify the non-addrecs list.
373   const SCEV *Sum = NoAddRecs.empty() ?
374                     SE.getConstant(Ty, 0) :
375                     SE.getAddExpr(NoAddRecs);
376   // If it returned an add, use the operands. Otherwise it simplified
377   // the sum into a single value, so just use that.
378   Ops.clear();
379   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
380     Ops.append(Add->op_begin(), Add->op_end());
381   else if (!Sum->isZero())
382     Ops.push_back(Sum);
383   // Then append the addrecs.
384   Ops.append(AddRecs.begin(), AddRecs.end());
385 }
386 
387 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
388 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
389 /// This helps expose more opportunities for folding parts of the expressions
390 /// into GEP indices.
391 ///
392 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
393                          Type *Ty,
394                          ScalarEvolution &SE) {
395   // Find the addrecs.
396   SmallVector<const SCEV *, 8> AddRecs;
397   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
398     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
399       const SCEV *Start = A->getStart();
400       if (Start->isZero()) break;
401       const SCEV *Zero = SE.getConstant(Ty, 0);
402       AddRecs.push_back(SE.getAddRecExpr(Zero,
403                                          A->getStepRecurrence(SE),
404                                          A->getLoop(),
405                                          A->getNoWrapFlags(SCEV::FlagNW)));
406       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
407         Ops[i] = Zero;
408         Ops.append(Add->op_begin(), Add->op_end());
409         e += Add->getNumOperands();
410       } else {
411         Ops[i] = Start;
412       }
413     }
414   if (!AddRecs.empty()) {
415     // Add the addrecs onto the end of the list.
416     Ops.append(AddRecs.begin(), AddRecs.end());
417     // Resort the operand list, moving any constants to the front.
418     SimplifyAddOperands(Ops, Ty, SE);
419   }
420 }
421 
422 /// expandAddToGEP - Expand an addition expression with a pointer type into
423 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
424 /// BasicAliasAnalysis and other passes analyze the result. See the rules
425 /// for getelementptr vs. inttoptr in
426 /// http://llvm.org/docs/LangRef.html#pointeraliasing
427 /// for details.
428 ///
429 /// Design note: The correctness of using getelementptr here depends on
430 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
431 /// they may introduce pointer arithmetic which may not be safely converted
432 /// into getelementptr.
433 ///
434 /// Design note: It might seem desirable for this function to be more
435 /// loop-aware. If some of the indices are loop-invariant while others
436 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
437 /// loop-invariant portions of the overall computation outside the loop.
438 /// However, there are a few reasons this is not done here. Hoisting simple
439 /// arithmetic is a low-level optimization that often isn't very
440 /// important until late in the optimization process. In fact, passes
441 /// like InstructionCombining will combine GEPs, even if it means
442 /// pushing loop-invariant computation down into loops, so even if the
443 /// GEPs were split here, the work would quickly be undone. The
444 /// LoopStrengthReduction pass, which is usually run quite late (and
445 /// after the last InstructionCombining pass), takes care of hoisting
446 /// loop-invariant portions of expressions, after considering what
447 /// can be folded using target addressing modes.
448 ///
449 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
450                                     const SCEV *const *op_end,
451                                     PointerType *PTy,
452                                     Type *Ty,
453                                     Value *V) {
454   SmallVector<Value *, 4> GepIndices;
455   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
456   bool AnyNonZeroIndices = false;
457 
458   // Split AddRecs up into parts as either of the parts may be usable
459   // without the other.
460   SplitAddRecs(Ops, Ty, SE);
461 
462   Type *IntIdxTy = DL.getIndexType(PTy);
463 
464   // For opaque pointers, always generate i8 GEP.
465   if (!PTy->isOpaque()) {
466     // Descend down the pointer's type and attempt to convert the other
467     // operands into GEP indices, at each level. The first index in a GEP
468     // indexes into the array implied by the pointer operand; the rest of
469     // the indices index into the element or field type selected by the
470     // preceding index.
471     Type *ElTy = PTy->getNonOpaquePointerElementType();
472     for (;;) {
473       // If the scale size is not 0, attempt to factor out a scale for
474       // array indexing.
475       SmallVector<const SCEV *, 8> ScaledOps;
476       if (ElTy->isSized()) {
477         const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy);
478         if (!ElSize->isZero()) {
479           SmallVector<const SCEV *, 8> NewOps;
480           for (const SCEV *Op : Ops) {
481             const SCEV *Remainder = SE.getConstant(Ty, 0);
482             if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
483               // Op now has ElSize factored out.
484               ScaledOps.push_back(Op);
485               if (!Remainder->isZero())
486                 NewOps.push_back(Remainder);
487               AnyNonZeroIndices = true;
488             } else {
489               // The operand was not divisible, so add it to the list of
490               // operands we'll scan next iteration.
491               NewOps.push_back(Op);
492             }
493           }
494           // If we made any changes, update Ops.
495           if (!ScaledOps.empty()) {
496             Ops = NewOps;
497             SimplifyAddOperands(Ops, Ty, SE);
498           }
499         }
500       }
501 
502       // Record the scaled array index for this level of the type. If
503       // we didn't find any operands that could be factored, tentatively
504       // assume that element zero was selected (since the zero offset
505       // would obviously be folded away).
506       Value *Scaled =
507           ScaledOps.empty()
508               ? Constant::getNullValue(Ty)
509               : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false);
510       GepIndices.push_back(Scaled);
511 
512       // Collect struct field index operands.
513       while (StructType *STy = dyn_cast<StructType>(ElTy)) {
514         bool FoundFieldNo = false;
515         // An empty struct has no fields.
516         if (STy->getNumElements() == 0) break;
517         // Field offsets are known. See if a constant offset falls within any of
518         // the struct fields.
519         if (Ops.empty())
520           break;
521         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
522           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
523             const StructLayout &SL = *DL.getStructLayout(STy);
524             uint64_t FullOffset = C->getValue()->getZExtValue();
525             if (FullOffset < SL.getSizeInBytes()) {
526               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
527               GepIndices.push_back(
528                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
529               ElTy = STy->getTypeAtIndex(ElIdx);
530               Ops[0] =
531                   SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
532               AnyNonZeroIndices = true;
533               FoundFieldNo = true;
534             }
535           }
536         // If no struct field offsets were found, tentatively assume that
537         // field zero was selected (since the zero offset would obviously
538         // be folded away).
539         if (!FoundFieldNo) {
540           ElTy = STy->getTypeAtIndex(0u);
541           GepIndices.push_back(
542             Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
543         }
544       }
545 
546       if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
547         ElTy = ATy->getElementType();
548       else
549         // FIXME: Handle VectorType.
550         // E.g., If ElTy is scalable vector, then ElSize is not a compile-time
551         // constant, therefore can not be factored out. The generated IR is less
552         // ideal with base 'V' cast to i8* and do ugly getelementptr over that.
553         break;
554     }
555   }
556 
557   // If none of the operands were convertible to proper GEP indices, cast
558   // the base to i8* and do an ugly getelementptr with that. It's still
559   // better than ptrtoint+arithmetic+inttoptr at least.
560   if (!AnyNonZeroIndices) {
561     // Cast the base to i8*.
562     if (!PTy->isOpaque())
563       V = InsertNoopCastOfTo(V,
564          Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
565 
566     assert(!isa<Instruction>(V) ||
567            SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
568 
569     // Expand the operands for a plain byte offset.
570     Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false);
571 
572     // Fold a GEP with constant operands.
573     if (Constant *CLHS = dyn_cast<Constant>(V))
574       if (Constant *CRHS = dyn_cast<Constant>(Idx))
575         return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
576                                               CLHS, CRHS);
577 
578     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
579     unsigned ScanLimit = 6;
580     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
581     // Scanning starts from the last instruction before the insertion point.
582     BasicBlock::iterator IP = Builder.GetInsertPoint();
583     if (IP != BlockBegin) {
584       --IP;
585       for (; ScanLimit; --IP, --ScanLimit) {
586         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
587         // generated code.
588         if (isa<DbgInfoIntrinsic>(IP))
589           ScanLimit++;
590         if (IP->getOpcode() == Instruction::GetElementPtr &&
591             IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
592             cast<GEPOperator>(&*IP)->getSourceElementType() ==
593                 Type::getInt8Ty(Ty->getContext()))
594           return &*IP;
595         if (IP == BlockBegin) break;
596       }
597     }
598 
599     // Save the original insertion point so we can restore it when we're done.
600     SCEVInsertPointGuard Guard(Builder, this);
601 
602     // Move the insertion point out of as many loops as we can.
603     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
604       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
605       BasicBlock *Preheader = L->getLoopPreheader();
606       if (!Preheader) break;
607 
608       // Ok, move up a level.
609       Builder.SetInsertPoint(Preheader->getTerminator());
610     }
611 
612     // Emit a GEP.
613     return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
614   }
615 
616   {
617     SCEVInsertPointGuard Guard(Builder, this);
618 
619     // Move the insertion point out of as many loops as we can.
620     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
621       if (!L->isLoopInvariant(V)) break;
622 
623       bool AnyIndexNotLoopInvariant = any_of(
624           GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
625 
626       if (AnyIndexNotLoopInvariant)
627         break;
628 
629       BasicBlock *Preheader = L->getLoopPreheader();
630       if (!Preheader) break;
631 
632       // Ok, move up a level.
633       Builder.SetInsertPoint(Preheader->getTerminator());
634     }
635 
636     // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
637     // because ScalarEvolution may have changed the address arithmetic to
638     // compute a value which is beyond the end of the allocated object.
639     Value *Casted = V;
640     if (V->getType() != PTy)
641       Casted = InsertNoopCastOfTo(Casted, PTy);
642     Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(),
643                                    Casted, GepIndices, "scevgep");
644     Ops.push_back(SE.getUnknown(GEP));
645   }
646 
647   return expand(SE.getAddExpr(Ops));
648 }
649 
650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
651                                     Value *V) {
652   const SCEV *const Ops[1] = {Op};
653   return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
654 }
655 
656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
657 /// SCEV expansion. If they are nested, this is the most nested. If they are
658 /// neighboring, pick the later.
659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
660                                         DominatorTree &DT) {
661   if (!A) return B;
662   if (!B) return A;
663   if (A->contains(B)) return B;
664   if (B->contains(A)) return A;
665   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
666   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
667   return A; // Arbitrarily break the tie.
668 }
669 
670 /// getRelevantLoop - Get the most relevant loop associated with the given
671 /// expression, according to PickMostRelevantLoop.
672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
673   // Test whether we've already computed the most relevant loop for this SCEV.
674   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
675   if (!Pair.second)
676     return Pair.first->second;
677 
678   if (isa<SCEVConstant>(S))
679     // A constant has no relevant loops.
680     return nullptr;
681   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
682     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
683       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
684     // A non-instruction has no relevant loops.
685     return nullptr;
686   }
687   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
688     const Loop *L = nullptr;
689     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
690       L = AR->getLoop();
691     for (const SCEV *Op : N->operands())
692       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
693     return RelevantLoops[N] = L;
694   }
695   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
696     const Loop *Result = getRelevantLoop(C->getOperand());
697     return RelevantLoops[C] = Result;
698   }
699   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
700     const Loop *Result = PickMostRelevantLoop(
701         getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
702     return RelevantLoops[D] = Result;
703   }
704   llvm_unreachable("Unexpected SCEV type!");
705 }
706 
707 namespace {
708 
709 /// LoopCompare - Compare loops by PickMostRelevantLoop.
710 class LoopCompare {
711   DominatorTree &DT;
712 public:
713   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
714 
715   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
716                   std::pair<const Loop *, const SCEV *> RHS) const {
717     // Keep pointer operands sorted at the end.
718     if (LHS.second->getType()->isPointerTy() !=
719         RHS.second->getType()->isPointerTy())
720       return LHS.second->getType()->isPointerTy();
721 
722     // Compare loops with PickMostRelevantLoop.
723     if (LHS.first != RHS.first)
724       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
725 
726     // If one operand is a non-constant negative and the other is not,
727     // put the non-constant negative on the right so that a sub can
728     // be used instead of a negate and add.
729     if (LHS.second->isNonConstantNegative()) {
730       if (!RHS.second->isNonConstantNegative())
731         return false;
732     } else if (RHS.second->isNonConstantNegative())
733       return true;
734 
735     // Otherwise they are equivalent according to this comparison.
736     return false;
737   }
738 };
739 
740 }
741 
742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
743   Type *Ty = SE.getEffectiveSCEVType(S->getType());
744 
745   // Collect all the add operands in a loop, along with their associated loops.
746   // Iterate in reverse so that constants are emitted last, all else equal, and
747   // so that pointer operands are inserted first, which the code below relies on
748   // to form more involved GEPs.
749   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
750   for (const SCEV *Op : reverse(S->operands()))
751     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
752 
753   // Sort by loop. Use a stable sort so that constants follow non-constants and
754   // pointer operands precede non-pointer operands.
755   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
756 
757   // Emit instructions to add all the operands. Hoist as much as possible
758   // out of loops, and form meaningful getelementptrs where possible.
759   Value *Sum = nullptr;
760   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
761     const Loop *CurLoop = I->first;
762     const SCEV *Op = I->second;
763     if (!Sum) {
764       // This is the first operand. Just expand it.
765       Sum = expand(Op);
766       ++I;
767       continue;
768     }
769 
770     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
771     if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
772       // The running sum expression is a pointer. Try to form a getelementptr
773       // at this level with that as the base.
774       SmallVector<const SCEV *, 4> NewOps;
775       for (; I != E && I->first == CurLoop; ++I) {
776         // If the operand is SCEVUnknown and not instructions, peek through
777         // it, to enable more of it to be folded into the GEP.
778         const SCEV *X = I->second;
779         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
780           if (!isa<Instruction>(U->getValue()))
781             X = SE.getSCEV(U->getValue());
782         NewOps.push_back(X);
783       }
784       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
785     } else if (Op->isNonConstantNegative()) {
786       // Instead of doing a negate and add, just do a subtract.
787       Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false);
788       Sum = InsertNoopCastOfTo(Sum, Ty);
789       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
790                         /*IsSafeToHoist*/ true);
791       ++I;
792     } else {
793       // A simple add.
794       Value *W = expandCodeForImpl(Op, Ty, false);
795       Sum = InsertNoopCastOfTo(Sum, Ty);
796       // Canonicalize a constant to the RHS.
797       if (isa<Constant>(Sum)) std::swap(Sum, W);
798       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
799                         /*IsSafeToHoist*/ true);
800       ++I;
801     }
802   }
803 
804   return Sum;
805 }
806 
807 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
808   Type *Ty = SE.getEffectiveSCEVType(S->getType());
809 
810   // Collect all the mul operands in a loop, along with their associated loops.
811   // Iterate in reverse so that constants are emitted last, all else equal.
812   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
813   for (const SCEV *Op : reverse(S->operands()))
814     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
815 
816   // Sort by loop. Use a stable sort so that constants follow non-constants.
817   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
818 
819   // Emit instructions to mul all the operands. Hoist as much as possible
820   // out of loops.
821   Value *Prod = nullptr;
822   auto I = OpsAndLoops.begin();
823 
824   // Expand the calculation of X pow N in the following manner:
825   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
826   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
827   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
828     auto E = I;
829     // Calculate how many times the same operand from the same loop is included
830     // into this power.
831     uint64_t Exponent = 0;
832     const uint64_t MaxExponent = UINT64_MAX >> 1;
833     // No one sane will ever try to calculate such huge exponents, but if we
834     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
835     // below when the power of 2 exceeds our Exponent, and we want it to be
836     // 1u << 31 at most to not deal with unsigned overflow.
837     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
838       ++Exponent;
839       ++E;
840     }
841     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
842 
843     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
844     // that are needed into the result.
845     Value *P = expandCodeForImpl(I->second, Ty, false);
846     Value *Result = nullptr;
847     if (Exponent & 1)
848       Result = P;
849     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
850       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
851                       /*IsSafeToHoist*/ true);
852       if (Exponent & BinExp)
853         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
854                                       SCEV::FlagAnyWrap,
855                                       /*IsSafeToHoist*/ true)
856                         : P;
857     }
858 
859     I = E;
860     assert(Result && "Nothing was expanded?");
861     return Result;
862   };
863 
864   while (I != OpsAndLoops.end()) {
865     if (!Prod) {
866       // This is the first operand. Just expand it.
867       Prod = ExpandOpBinPowN();
868     } else if (I->second->isAllOnesValue()) {
869       // Instead of doing a multiply by negative one, just do a negate.
870       Prod = InsertNoopCastOfTo(Prod, Ty);
871       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
872                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
873       ++I;
874     } else {
875       // A simple mul.
876       Value *W = ExpandOpBinPowN();
877       Prod = InsertNoopCastOfTo(Prod, Ty);
878       // Canonicalize a constant to the RHS.
879       if (isa<Constant>(Prod)) std::swap(Prod, W);
880       const APInt *RHS;
881       if (match(W, m_Power2(RHS))) {
882         // Canonicalize Prod*(1<<C) to Prod<<C.
883         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
884         auto NWFlags = S->getNoWrapFlags();
885         // clear nsw flag if shl will produce poison value.
886         if (RHS->logBase2() == RHS->getBitWidth() - 1)
887           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
888         Prod = InsertBinop(Instruction::Shl, Prod,
889                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
890                            /*IsSafeToHoist*/ true);
891       } else {
892         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
893                            /*IsSafeToHoist*/ true);
894       }
895     }
896   }
897 
898   return Prod;
899 }
900 
901 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
902   Type *Ty = SE.getEffectiveSCEVType(S->getType());
903 
904   Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false);
905   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
906     const APInt &RHS = SC->getAPInt();
907     if (RHS.isPowerOf2())
908       return InsertBinop(Instruction::LShr, LHS,
909                          ConstantInt::get(Ty, RHS.logBase2()),
910                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
911   }
912 
913   Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false);
914   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
915                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
916 }
917 
918 /// Determine if this is a well-behaved chain of instructions leading back to
919 /// the PHI. If so, it may be reused by expanded expressions.
920 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
921                                          const Loop *L) {
922   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
923       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
924     return false;
925   // If any of the operands don't dominate the insert position, bail.
926   // Addrec operands are always loop-invariant, so this can only happen
927   // if there are instructions which haven't been hoisted.
928   if (L == IVIncInsertLoop) {
929     for (Use &Op : llvm::drop_begin(IncV->operands()))
930       if (Instruction *OInst = dyn_cast<Instruction>(Op))
931         if (!SE.DT.dominates(OInst, IVIncInsertPos))
932           return false;
933   }
934   // Advance to the next instruction.
935   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
936   if (!IncV)
937     return false;
938 
939   if (IncV->mayHaveSideEffects())
940     return false;
941 
942   if (IncV == PN)
943     return true;
944 
945   return isNormalAddRecExprPHI(PN, IncV, L);
946 }
947 
948 /// getIVIncOperand returns an induction variable increment's induction
949 /// variable operand.
950 ///
951 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
952 /// operands dominate InsertPos.
953 ///
954 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
955 /// simple patterns generated by getAddRecExprPHILiterally and
956 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
957 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
958                                            Instruction *InsertPos,
959                                            bool allowScale) {
960   if (IncV == InsertPos)
961     return nullptr;
962 
963   switch (IncV->getOpcode()) {
964   default:
965     return nullptr;
966   // Check for a simple Add/Sub or GEP of a loop invariant step.
967   case Instruction::Add:
968   case Instruction::Sub: {
969     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
970     if (!OInst || SE.DT.dominates(OInst, InsertPos))
971       return dyn_cast<Instruction>(IncV->getOperand(0));
972     return nullptr;
973   }
974   case Instruction::BitCast:
975     return dyn_cast<Instruction>(IncV->getOperand(0));
976   case Instruction::GetElementPtr:
977     for (Use &U : llvm::drop_begin(IncV->operands())) {
978       if (isa<Constant>(U))
979         continue;
980       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
981         if (!SE.DT.dominates(OInst, InsertPos))
982           return nullptr;
983       }
984       if (allowScale) {
985         // allow any kind of GEP as long as it can be hoisted.
986         continue;
987       }
988       // This must be a pointer addition of constants (pretty), which is already
989       // handled, or some number of address-size elements (ugly). Ugly geps
990       // have 2 operands. i1* is used by the expander to represent an
991       // address-size element.
992       if (IncV->getNumOperands() != 2)
993         return nullptr;
994       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
995       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
996           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
997         return nullptr;
998       break;
999     }
1000     return dyn_cast<Instruction>(IncV->getOperand(0));
1001   }
1002 }
1003 
1004 /// If the insert point of the current builder or any of the builders on the
1005 /// stack of saved builders has 'I' as its insert point, update it to point to
1006 /// the instruction after 'I'.  This is intended to be used when the instruction
1007 /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
1008 /// different block, the inconsistent insert point (with a mismatched
1009 /// Instruction and Block) can lead to an instruction being inserted in a block
1010 /// other than its parent.
1011 void SCEVExpander::fixupInsertPoints(Instruction *I) {
1012   BasicBlock::iterator It(*I);
1013   BasicBlock::iterator NewInsertPt = std::next(It);
1014   if (Builder.GetInsertPoint() == It)
1015     Builder.SetInsertPoint(&*NewInsertPt);
1016   for (auto *InsertPtGuard : InsertPointGuards)
1017     if (InsertPtGuard->GetInsertPoint() == It)
1018       InsertPtGuard->SetInsertPoint(NewInsertPt);
1019 }
1020 
1021 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
1022 /// it available to other uses in this loop. Recursively hoist any operands,
1023 /// until we reach a value that dominates InsertPos.
1024 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1025   if (SE.DT.dominates(IncV, InsertPos))
1026       return true;
1027 
1028   // InsertPos must itself dominate IncV so that IncV's new position satisfies
1029   // its existing users.
1030   if (isa<PHINode>(InsertPos) ||
1031       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1032     return false;
1033 
1034   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1035     return false;
1036 
1037   // Check that the chain of IV operands leading back to Phi can be hoisted.
1038   SmallVector<Instruction*, 4> IVIncs;
1039   for(;;) {
1040     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1041     if (!Oper)
1042       return false;
1043     // IncV is safe to hoist.
1044     IVIncs.push_back(IncV);
1045     IncV = Oper;
1046     if (SE.DT.dominates(IncV, InsertPos))
1047       break;
1048   }
1049   for (Instruction *I : llvm::reverse(IVIncs)) {
1050     fixupInsertPoints(I);
1051     I->moveBefore(InsertPos);
1052   }
1053   return true;
1054 }
1055 
1056 /// Determine if this cyclic phi is in a form that would have been generated by
1057 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1058 /// as it is in a low-cost form, for example, no implied multiplication. This
1059 /// should match any patterns generated by getAddRecExprPHILiterally and
1060 /// expandAddtoGEP.
1061 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1062                                            const Loop *L) {
1063   for(Instruction *IVOper = IncV;
1064       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1065                                 /*allowScale=*/false));) {
1066     if (IVOper == PN)
1067       return true;
1068   }
1069   return false;
1070 }
1071 
1072 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1073 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1074 /// need to materialize IV increments elsewhere to handle difficult situations.
1075 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1076                                  Type *ExpandTy, Type *IntTy,
1077                                  bool useSubtract) {
1078   Value *IncV;
1079   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1080   if (ExpandTy->isPointerTy()) {
1081     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1082     // If the step isn't constant, don't use an implicitly scaled GEP, because
1083     // that would require a multiply inside the loop.
1084     if (!isa<ConstantInt>(StepV))
1085       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1086                                   GEPPtrTy->getAddressSpace());
1087     IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1088     if (IncV->getType() != PN->getType())
1089       IncV = Builder.CreateBitCast(IncV, PN->getType());
1090   } else {
1091     IncV = useSubtract ?
1092       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1093       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1094   }
1095   return IncV;
1096 }
1097 
1098 /// Check whether we can cheaply express the requested SCEV in terms of
1099 /// the available PHI SCEV by truncation and/or inversion of the step.
1100 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1101                                     const SCEVAddRecExpr *Phi,
1102                                     const SCEVAddRecExpr *Requested,
1103                                     bool &InvertStep) {
1104   // We can't transform to match a pointer PHI.
1105   if (Phi->getType()->isPointerTy())
1106     return false;
1107 
1108   Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1109   Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1110 
1111   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1112     return false;
1113 
1114   // Try truncate it if necessary.
1115   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1116   if (!Phi)
1117     return false;
1118 
1119   // Check whether truncation will help.
1120   if (Phi == Requested) {
1121     InvertStep = false;
1122     return true;
1123   }
1124 
1125   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1126   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
1127     InvertStep = true;
1128     return true;
1129   }
1130 
1131   return false;
1132 }
1133 
1134 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1135   if (!isa<IntegerType>(AR->getType()))
1136     return false;
1137 
1138   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1139   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1140   const SCEV *Step = AR->getStepRecurrence(SE);
1141   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1142                                             SE.getSignExtendExpr(AR, WideTy));
1143   const SCEV *ExtendAfterOp =
1144     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1145   return ExtendAfterOp == OpAfterExtend;
1146 }
1147 
1148 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1149   if (!isa<IntegerType>(AR->getType()))
1150     return false;
1151 
1152   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1153   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1154   const SCEV *Step = AR->getStepRecurrence(SE);
1155   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1156                                             SE.getZeroExtendExpr(AR, WideTy));
1157   const SCEV *ExtendAfterOp =
1158     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1159   return ExtendAfterOp == OpAfterExtend;
1160 }
1161 
1162 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1163 /// the base addrec, which is the addrec without any non-loop-dominating
1164 /// values, and return the PHI.
1165 PHINode *
1166 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1167                                         const Loop *L,
1168                                         Type *ExpandTy,
1169                                         Type *IntTy,
1170                                         Type *&TruncTy,
1171                                         bool &InvertStep) {
1172   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1173 
1174   // Reuse a previously-inserted PHI, if present.
1175   BasicBlock *LatchBlock = L->getLoopLatch();
1176   if (LatchBlock) {
1177     PHINode *AddRecPhiMatch = nullptr;
1178     Instruction *IncV = nullptr;
1179     TruncTy = nullptr;
1180     InvertStep = false;
1181 
1182     // Only try partially matching scevs that need truncation and/or
1183     // step-inversion if we know this loop is outside the current loop.
1184     bool TryNonMatchingSCEV =
1185         IVIncInsertLoop &&
1186         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1187 
1188     for (PHINode &PN : L->getHeader()->phis()) {
1189       if (!SE.isSCEVable(PN.getType()))
1190         continue;
1191 
1192       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
1193       // PHI has no meaning at all.
1194       if (!PN.isComplete()) {
1195         SCEV_DEBUG_WITH_TYPE(
1196             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
1197         continue;
1198       }
1199 
1200       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1201       if (!PhiSCEV)
1202         continue;
1203 
1204       bool IsMatchingSCEV = PhiSCEV == Normalized;
1205       // We only handle truncation and inversion of phi recurrences for the
1206       // expanded expression if the expanded expression's loop dominates the
1207       // loop we insert to. Check now, so we can bail out early.
1208       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1209           continue;
1210 
1211       // TODO: this possibly can be reworked to avoid this cast at all.
1212       Instruction *TempIncV =
1213           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1214       if (!TempIncV)
1215         continue;
1216 
1217       // Check whether we can reuse this PHI node.
1218       if (LSRMode) {
1219         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1220           continue;
1221       } else {
1222         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1223           continue;
1224       }
1225 
1226       // Stop if we have found an exact match SCEV.
1227       if (IsMatchingSCEV) {
1228         IncV = TempIncV;
1229         TruncTy = nullptr;
1230         InvertStep = false;
1231         AddRecPhiMatch = &PN;
1232         break;
1233       }
1234 
1235       // Try whether the phi can be translated into the requested form
1236       // (truncated and/or offset by a constant).
1237       if ((!TruncTy || InvertStep) &&
1238           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1239         // Record the phi node. But don't stop we might find an exact match
1240         // later.
1241         AddRecPhiMatch = &PN;
1242         IncV = TempIncV;
1243         TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1244       }
1245     }
1246 
1247     if (AddRecPhiMatch) {
1248       // Ok, the add recurrence looks usable.
1249       // Remember this PHI, even in post-inc mode.
1250       InsertedValues.insert(AddRecPhiMatch);
1251       // Remember the increment.
1252       rememberInstruction(IncV);
1253       // Those values were not actually inserted but re-used.
1254       ReusedValues.insert(AddRecPhiMatch);
1255       ReusedValues.insert(IncV);
1256       return AddRecPhiMatch;
1257     }
1258   }
1259 
1260   // Save the original insertion point so we can restore it when we're done.
1261   SCEVInsertPointGuard Guard(Builder, this);
1262 
1263   // Another AddRec may need to be recursively expanded below. For example, if
1264   // this AddRec is quadratic, the StepV may itself be an AddRec in this
1265   // loop. Remove this loop from the PostIncLoops set before expanding such
1266   // AddRecs. Otherwise, we cannot find a valid position for the step
1267   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1268   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1269   // so it's not worth implementing SmallPtrSet::swap.
1270   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1271   PostIncLoops.clear();
1272 
1273   // Expand code for the start value into the loop preheader.
1274   assert(L->getLoopPreheader() &&
1275          "Can't expand add recurrences without a loop preheader!");
1276   Value *StartV =
1277       expandCodeForImpl(Normalized->getStart(), ExpandTy,
1278                         L->getLoopPreheader()->getTerminator(), false);
1279 
1280   // StartV must have been be inserted into L's preheader to dominate the new
1281   // phi.
1282   assert(!isa<Instruction>(StartV) ||
1283          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1284                                  L->getHeader()));
1285 
1286   // Expand code for the step value. Do this before creating the PHI so that PHI
1287   // reuse code doesn't see an incomplete PHI.
1288   const SCEV *Step = Normalized->getStepRecurrence(SE);
1289   // If the stride is negative, insert a sub instead of an add for the increment
1290   // (unless it's a constant, because subtracts of constants are canonicalized
1291   // to adds).
1292   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1293   if (useSubtract)
1294     Step = SE.getNegativeSCEV(Step);
1295   // Expand the step somewhere that dominates the loop header.
1296   Value *StepV = expandCodeForImpl(
1297       Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1298 
1299   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1300   // we actually do emit an addition.  It does not apply if we emit a
1301   // subtraction.
1302   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1303   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1304 
1305   // Create the PHI.
1306   BasicBlock *Header = L->getHeader();
1307   Builder.SetInsertPoint(Header, Header->begin());
1308   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1309   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1310                                   Twine(IVName) + ".iv");
1311 
1312   // Create the step instructions and populate the PHI.
1313   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1314     BasicBlock *Pred = *HPI;
1315 
1316     // Add a start value.
1317     if (!L->contains(Pred)) {
1318       PN->addIncoming(StartV, Pred);
1319       continue;
1320     }
1321 
1322     // Create a step value and add it to the PHI.
1323     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1324     // instructions at IVIncInsertPos.
1325     Instruction *InsertPos = L == IVIncInsertLoop ?
1326       IVIncInsertPos : Pred->getTerminator();
1327     Builder.SetInsertPoint(InsertPos);
1328     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1329 
1330     if (isa<OverflowingBinaryOperator>(IncV)) {
1331       if (IncrementIsNUW)
1332         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1333       if (IncrementIsNSW)
1334         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1335     }
1336     PN->addIncoming(IncV, Pred);
1337   }
1338 
1339   // After expanding subexpressions, restore the PostIncLoops set so the caller
1340   // can ensure that IVIncrement dominates the current uses.
1341   PostIncLoops = SavedPostIncLoops;
1342 
1343   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1344   // effective when we are able to use an IV inserted here, so record it.
1345   InsertedValues.insert(PN);
1346   InsertedIVs.push_back(PN);
1347   return PN;
1348 }
1349 
1350 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1351   Type *STy = S->getType();
1352   Type *IntTy = SE.getEffectiveSCEVType(STy);
1353   const Loop *L = S->getLoop();
1354 
1355   // Determine a normalized form of this expression, which is the expression
1356   // before any post-inc adjustment is made.
1357   const SCEVAddRecExpr *Normalized = S;
1358   if (PostIncLoops.count(L)) {
1359     PostIncLoopSet Loops;
1360     Loops.insert(L);
1361     Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1362   }
1363 
1364   // Strip off any non-loop-dominating component from the addrec start.
1365   const SCEV *Start = Normalized->getStart();
1366   const SCEV *PostLoopOffset = nullptr;
1367   if (!SE.properlyDominates(Start, L->getHeader())) {
1368     PostLoopOffset = Start;
1369     Start = SE.getConstant(Normalized->getType(), 0);
1370     Normalized = cast<SCEVAddRecExpr>(
1371       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1372                        Normalized->getLoop(),
1373                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
1374   }
1375 
1376   // Strip off any non-loop-dominating component from the addrec step.
1377   const SCEV *Step = Normalized->getStepRecurrence(SE);
1378   const SCEV *PostLoopScale = nullptr;
1379   if (!SE.dominates(Step, L->getHeader())) {
1380     PostLoopScale = Step;
1381     Step = SE.getConstant(Normalized->getType(), 1);
1382     if (!Start->isZero()) {
1383         // The normalization below assumes that Start is constant zero, so if
1384         // it isn't re-associate Start to PostLoopOffset.
1385         assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1386         PostLoopOffset = Start;
1387         Start = SE.getConstant(Normalized->getType(), 0);
1388     }
1389     Normalized =
1390       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1391                              Start, Step, Normalized->getLoop(),
1392                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
1393   }
1394 
1395   // Expand the core addrec. If we need post-loop scaling, force it to
1396   // expand to an integer type to avoid the need for additional casting.
1397   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1398   // We can't use a pointer type for the addrec if the pointer type is
1399   // non-integral.
1400   Type *AddRecPHIExpandTy =
1401       DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1402 
1403   // In some cases, we decide to reuse an existing phi node but need to truncate
1404   // it and/or invert the step.
1405   Type *TruncTy = nullptr;
1406   bool InvertStep = false;
1407   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1408                                           IntTy, TruncTy, InvertStep);
1409 
1410   // Accommodate post-inc mode, if necessary.
1411   Value *Result;
1412   if (!PostIncLoops.count(L))
1413     Result = PN;
1414   else {
1415     // In PostInc mode, use the post-incremented value.
1416     BasicBlock *LatchBlock = L->getLoopLatch();
1417     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1418     Result = PN->getIncomingValueForBlock(LatchBlock);
1419 
1420     // We might be introducing a new use of the post-inc IV that is not poison
1421     // safe, in which case we should drop poison generating flags. Only keep
1422     // those flags for which SCEV has proven that they always hold.
1423     if (isa<OverflowingBinaryOperator>(Result)) {
1424       auto *I = cast<Instruction>(Result);
1425       if (!S->hasNoUnsignedWrap())
1426         I->setHasNoUnsignedWrap(false);
1427       if (!S->hasNoSignedWrap())
1428         I->setHasNoSignedWrap(false);
1429     }
1430 
1431     // For an expansion to use the postinc form, the client must call
1432     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1433     // or dominated by IVIncInsertPos.
1434     if (isa<Instruction>(Result) &&
1435         !SE.DT.dominates(cast<Instruction>(Result),
1436                          &*Builder.GetInsertPoint())) {
1437       // The induction variable's postinc expansion does not dominate this use.
1438       // IVUsers tries to prevent this case, so it is rare. However, it can
1439       // happen when an IVUser outside the loop is not dominated by the latch
1440       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1441       // all cases. Consider a phi outside whose operand is replaced during
1442       // expansion with the value of the postinc user. Without fundamentally
1443       // changing the way postinc users are tracked, the only remedy is
1444       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1445       // but hopefully expandCodeFor handles that.
1446       bool useSubtract =
1447         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1448       if (useSubtract)
1449         Step = SE.getNegativeSCEV(Step);
1450       Value *StepV;
1451       {
1452         // Expand the step somewhere that dominates the loop header.
1453         SCEVInsertPointGuard Guard(Builder, this);
1454         StepV = expandCodeForImpl(
1455             Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false);
1456       }
1457       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1458     }
1459   }
1460 
1461   // We have decided to reuse an induction variable of a dominating loop. Apply
1462   // truncation and/or inversion of the step.
1463   if (TruncTy) {
1464     Type *ResTy = Result->getType();
1465     // Normalize the result type.
1466     if (ResTy != SE.getEffectiveSCEVType(ResTy))
1467       Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1468     // Truncate the result.
1469     if (TruncTy != Result->getType())
1470       Result = Builder.CreateTrunc(Result, TruncTy);
1471 
1472     // Invert the result.
1473     if (InvertStep)
1474       Result = Builder.CreateSub(
1475           expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result);
1476   }
1477 
1478   // Re-apply any non-loop-dominating scale.
1479   if (PostLoopScale) {
1480     assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1481     Result = InsertNoopCastOfTo(Result, IntTy);
1482     Result = Builder.CreateMul(Result,
1483                                expandCodeForImpl(PostLoopScale, IntTy, false));
1484   }
1485 
1486   // Re-apply any non-loop-dominating offset.
1487   if (PostLoopOffset) {
1488     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1489       if (Result->getType()->isIntegerTy()) {
1490         Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false);
1491         Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1492       } else {
1493         Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1494       }
1495     } else {
1496       Result = InsertNoopCastOfTo(Result, IntTy);
1497       Result = Builder.CreateAdd(
1498           Result, expandCodeForImpl(PostLoopOffset, IntTy, false));
1499     }
1500   }
1501 
1502   return Result;
1503 }
1504 
1505 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1506   // In canonical mode we compute the addrec as an expression of a canonical IV
1507   // using evaluateAtIteration and expand the resulting SCEV expression. This
1508   // way we avoid introducing new IVs to carry on the comutation of the addrec
1509   // throughout the loop.
1510   //
1511   // For nested addrecs evaluateAtIteration might need a canonical IV of a
1512   // type wider than the addrec itself. Emitting a canonical IV of the
1513   // proper type might produce non-legal types, for example expanding an i64
1514   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1515   // back to non-canonical mode for nested addrecs.
1516   if (!CanonicalMode || (S->getNumOperands() > 2))
1517     return expandAddRecExprLiterally(S);
1518 
1519   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1520   const Loop *L = S->getLoop();
1521 
1522   // First check for an existing canonical IV in a suitable type.
1523   PHINode *CanonicalIV = nullptr;
1524   if (PHINode *PN = L->getCanonicalInductionVariable())
1525     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1526       CanonicalIV = PN;
1527 
1528   // Rewrite an AddRec in terms of the canonical induction variable, if
1529   // its type is more narrow.
1530   if (CanonicalIV &&
1531       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1532       !S->getType()->isPointerTy()) {
1533     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1534     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1535       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1536     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1537                                        S->getNoWrapFlags(SCEV::FlagNW)));
1538     BasicBlock::iterator NewInsertPt =
1539         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
1540     V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1541                           &*NewInsertPt, false);
1542     return V;
1543   }
1544 
1545   // {X,+,F} --> X + {0,+,F}
1546   if (!S->getStart()->isZero()) {
1547     if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) {
1548       Value *StartV = expand(SE.getPointerBase(S));
1549       assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1550       return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV);
1551     }
1552 
1553     SmallVector<const SCEV *, 4> NewOps(S->operands());
1554     NewOps[0] = SE.getConstant(Ty, 0);
1555     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1556                                         S->getNoWrapFlags(SCEV::FlagNW));
1557 
1558     // Just do a normal add. Pre-expand the operands to suppress folding.
1559     //
1560     // The LHS and RHS values are factored out of the expand call to make the
1561     // output independent of the argument evaluation order.
1562     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1563     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1564     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1565   }
1566 
1567   // If we don't yet have a canonical IV, create one.
1568   if (!CanonicalIV) {
1569     // Create and insert the PHI node for the induction variable in the
1570     // specified loop.
1571     BasicBlock *Header = L->getHeader();
1572     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1573     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1574                                   &Header->front());
1575     rememberInstruction(CanonicalIV);
1576 
1577     SmallSet<BasicBlock *, 4> PredSeen;
1578     Constant *One = ConstantInt::get(Ty, 1);
1579     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1580       BasicBlock *HP = *HPI;
1581       if (!PredSeen.insert(HP).second) {
1582         // There must be an incoming value for each predecessor, even the
1583         // duplicates!
1584         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1585         continue;
1586       }
1587 
1588       if (L->contains(HP)) {
1589         // Insert a unit add instruction right before the terminator
1590         // corresponding to the back-edge.
1591         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1592                                                      "indvar.next",
1593                                                      HP->getTerminator());
1594         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1595         rememberInstruction(Add);
1596         CanonicalIV->addIncoming(Add, HP);
1597       } else {
1598         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1599       }
1600     }
1601   }
1602 
1603   // {0,+,1} --> Insert a canonical induction variable into the loop!
1604   if (S->isAffine() && S->getOperand(1)->isOne()) {
1605     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1606            "IVs with types different from the canonical IV should "
1607            "already have been handled!");
1608     return CanonicalIV;
1609   }
1610 
1611   // {0,+,F} --> {0,+,1} * F
1612 
1613   // If this is a simple linear addrec, emit it now as a special case.
1614   if (S->isAffine())    // {0,+,F} --> i*F
1615     return
1616       expand(SE.getTruncateOrNoop(
1617         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1618                       SE.getNoopOrAnyExtend(S->getOperand(1),
1619                                             CanonicalIV->getType())),
1620         Ty));
1621 
1622   // If this is a chain of recurrences, turn it into a closed form, using the
1623   // folders, then expandCodeFor the closed form.  This allows the folders to
1624   // simplify the expression without having to build a bunch of special code
1625   // into this folder.
1626   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1627 
1628   // Promote S up to the canonical IV type, if the cast is foldable.
1629   const SCEV *NewS = S;
1630   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1631   if (isa<SCEVAddRecExpr>(Ext))
1632     NewS = Ext;
1633 
1634   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1635 
1636   // Truncate the result down to the original type, if needed.
1637   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1638   return expand(T);
1639 }
1640 
1641 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
1642   Value *V =
1643       expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false);
1644   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1645                            GetOptimalInsertionPointForCastOf(V));
1646 }
1647 
1648 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1649   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1650   Value *V = expandCodeForImpl(
1651       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1652       false);
1653   return Builder.CreateTrunc(V, Ty);
1654 }
1655 
1656 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1657   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1658   Value *V = expandCodeForImpl(
1659       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1660       false);
1661   return Builder.CreateZExt(V, Ty);
1662 }
1663 
1664 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1665   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1666   Value *V = expandCodeForImpl(
1667       S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()),
1668       false);
1669   return Builder.CreateSExt(V, Ty);
1670 }
1671 
1672 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
1673                                       Intrinsic::ID IntrinID, Twine Name,
1674                                       bool IsSequential) {
1675   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1676   Type *Ty = LHS->getType();
1677   if (IsSequential)
1678     LHS = Builder.CreateFreeze(LHS);
1679   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1680     Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false);
1681     if (IsSequential && i != 0)
1682       RHS = Builder.CreateFreeze(RHS);
1683     Value *Sel;
1684     if (Ty->isIntegerTy())
1685       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
1686                                     /*FMFSource=*/nullptr, Name);
1687     else {
1688       Value *ICmp =
1689           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
1690       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1691     }
1692     LHS = Sel;
1693   }
1694   return LHS;
1695 }
1696 
1697 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1698   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
1699 }
1700 
1701 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1702   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
1703 }
1704 
1705 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1706   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
1707 }
1708 
1709 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1710   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
1711 }
1712 
1713 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
1714   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
1715 }
1716 
1717 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty,
1718                                        Instruction *IP, bool Root) {
1719   setInsertPoint(IP);
1720   Value *V = expandCodeForImpl(SH, Ty, Root);
1721   return V;
1722 }
1723 
1724 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) {
1725   // Expand the code for this SCEV.
1726   Value *V = expand(SH);
1727 
1728   if (PreserveLCSSA) {
1729     if (auto *Inst = dyn_cast<Instruction>(V)) {
1730       // Create a temporary instruction to at the current insertion point, so we
1731       // can hand it off to the helper to create LCSSA PHIs if required for the
1732       // new use.
1733       // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
1734       // would accept a insertion point and return an LCSSA phi for that
1735       // insertion point, so there is no need to insert & remove the temporary
1736       // instruction.
1737       Instruction *Tmp;
1738       if (Inst->getType()->isIntegerTy())
1739         Tmp = cast<Instruction>(Builder.CreateIntToPtr(
1740             Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user"));
1741       else {
1742         assert(Inst->getType()->isPointerTy());
1743         Tmp = cast<Instruction>(Builder.CreatePtrToInt(
1744             Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user"));
1745       }
1746       V = fixupLCSSAFormFor(Tmp, 0);
1747 
1748       // Clean up temporary instruction.
1749       InsertedValues.erase(Tmp);
1750       InsertedPostIncValues.erase(Tmp);
1751       Tmp->eraseFromParent();
1752     }
1753   }
1754 
1755   InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V;
1756   if (Ty) {
1757     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1758            "non-trivial casts should be done with the SCEVs directly!");
1759     V = InsertNoopCastOfTo(V, Ty);
1760   }
1761   return V;
1762 }
1763 
1764 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1765                                              const Instruction *InsertPt) {
1766   // If the expansion is not in CanonicalMode, and the SCEV contains any
1767   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1768   if (!CanonicalMode && SE.containsAddRecurrence(S))
1769     return nullptr;
1770 
1771   // If S is a constant, it may be worse to reuse an existing Value.
1772   if (isa<SCEVConstant>(S))
1773     return nullptr;
1774 
1775   // Choose a Value from the set which dominates the InsertPt.
1776   // InsertPt should be inside the Value's parent loop so as not to break
1777   // the LCSSA form.
1778   for (Value *V : SE.getSCEVValues(S)) {
1779     Instruction *EntInst = dyn_cast<Instruction>(V);
1780     if (!EntInst)
1781       continue;
1782 
1783     assert(EntInst->getFunction() == InsertPt->getFunction());
1784     if (S->getType() == V->getType() &&
1785         SE.DT.dominates(EntInst, InsertPt) &&
1786         (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1787          SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1788       return V;
1789   }
1790   return nullptr;
1791 }
1792 
1793 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1794 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1795 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1796 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1797 // the expansion will try to reuse Value from ExprValueMap, and only when it
1798 // fails, expand the SCEV literally.
1799 Value *SCEVExpander::expand(const SCEV *S) {
1800   // Compute an insertion point for this SCEV object. Hoist the instructions
1801   // as far out in the loop nest as possible.
1802   Instruction *InsertPt = &*Builder.GetInsertPoint();
1803 
1804   // We can move insertion point only if there is no div or rem operations
1805   // otherwise we are risky to move it over the check for zero denominator.
1806   auto SafeToHoist = [](const SCEV *S) {
1807     return !SCEVExprContains(S, [](const SCEV *S) {
1808               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1809                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1810                   // Division by non-zero constants can be hoisted.
1811                   return SC->getValue()->isZero();
1812                 // All other divisions should not be moved as they may be
1813                 // divisions by zero and should be kept within the
1814                 // conditions of the surrounding loops that guard their
1815                 // execution (see PR35406).
1816                 return true;
1817               }
1818               return false;
1819             });
1820   };
1821   if (SafeToHoist(S)) {
1822     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1823          L = L->getParentLoop()) {
1824       if (SE.isLoopInvariant(S, L)) {
1825         if (!L) break;
1826         if (BasicBlock *Preheader = L->getLoopPreheader())
1827           InsertPt = Preheader->getTerminator();
1828         else
1829           // LSR sets the insertion point for AddRec start/step values to the
1830           // block start to simplify value reuse, even though it's an invalid
1831           // position. SCEVExpander must correct for this in all cases.
1832           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1833       } else {
1834         // If the SCEV is computable at this level, insert it into the header
1835         // after the PHIs (and after any other instructions that we've inserted
1836         // there) so that it is guaranteed to dominate any user inside the loop.
1837         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1838           InsertPt = &*L->getHeader()->getFirstInsertionPt();
1839 
1840         while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1841                (isInsertedInstruction(InsertPt) ||
1842                 isa<DbgInfoIntrinsic>(InsertPt))) {
1843           InsertPt = &*std::next(InsertPt->getIterator());
1844         }
1845         break;
1846       }
1847     }
1848   }
1849 
1850   // Check to see if we already expanded this here.
1851   auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1852   if (I != InsertedExpressions.end())
1853     return I->second;
1854 
1855   SCEVInsertPointGuard Guard(Builder, this);
1856   Builder.SetInsertPoint(InsertPt);
1857 
1858   // Expand the expression into instructions.
1859   Value *V = FindValueInExprValueMap(S, InsertPt);
1860   if (!V)
1861     V = visit(S);
1862   else {
1863     // If we're reusing an existing instruction, we are effectively CSEing two
1864     // copies of the instruction (with potentially different flags).  As such,
1865     // we need to drop any poison generating flags unless we can prove that
1866     // said flags must be valid for all new users.
1867     if (auto *I = dyn_cast<Instruction>(V))
1868       if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I))
1869         I->dropPoisonGeneratingFlags();
1870   }
1871   // Remember the expanded value for this SCEV at this location.
1872   //
1873   // This is independent of PostIncLoops. The mapped value simply materializes
1874   // the expression at this insertion point. If the mapped value happened to be
1875   // a postinc expansion, it could be reused by a non-postinc user, but only if
1876   // its insertion point was already at the head of the loop.
1877   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1878   return V;
1879 }
1880 
1881 void SCEVExpander::rememberInstruction(Value *I) {
1882   auto DoInsert = [this](Value *V) {
1883     if (!PostIncLoops.empty())
1884       InsertedPostIncValues.insert(V);
1885     else
1886       InsertedValues.insert(V);
1887   };
1888   DoInsert(I);
1889 
1890   if (!PreserveLCSSA)
1891     return;
1892 
1893   if (auto *Inst = dyn_cast<Instruction>(I)) {
1894     // A new instruction has been added, which might introduce new uses outside
1895     // a defining loop. Fix LCSSA from for each operand of the new instruction,
1896     // if required.
1897     for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd;
1898          OpIdx++)
1899       fixupLCSSAFormFor(Inst, OpIdx);
1900   }
1901 }
1902 
1903 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1904 /// replace them with their most canonical representative. Return the number of
1905 /// phis eliminated.
1906 ///
1907 /// This does not depend on any SCEVExpander state but should be used in
1908 /// the same context that SCEVExpander is used.
1909 unsigned
1910 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1911                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1912                                   const TargetTransformInfo *TTI) {
1913   // Find integer phis in order of increasing width.
1914   SmallVector<PHINode*, 8> Phis;
1915   for (PHINode &PN : L->getHeader()->phis())
1916     Phis.push_back(&PN);
1917 
1918   if (TTI)
1919     // Use stable_sort to preserve order of equivalent PHIs, so the order
1920     // of the sorted Phis is the same from run to run on the same loop.
1921     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
1922       // Put pointers at the back and make sure pointer < pointer = false.
1923       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1924         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1925       return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() <
1926              LHS->getType()->getPrimitiveSizeInBits().getFixedSize();
1927     });
1928 
1929   unsigned NumElim = 0;
1930   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1931   // Process phis from wide to narrow. Map wide phis to their truncation
1932   // so narrow phis can reuse them.
1933   for (PHINode *Phi : Phis) {
1934     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1935       if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1936         return V;
1937       if (!SE.isSCEVable(PN->getType()))
1938         return nullptr;
1939       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1940       if (!Const)
1941         return nullptr;
1942       return Const->getValue();
1943     };
1944 
1945     // Fold constant phis. They may be congruent to other constant phis and
1946     // would confuse the logic below that expects proper IVs.
1947     if (Value *V = SimplifyPHINode(Phi)) {
1948       if (V->getType() != Phi->getType())
1949         continue;
1950       Phi->replaceAllUsesWith(V);
1951       DeadInsts.emplace_back(Phi);
1952       ++NumElim;
1953       SCEV_DEBUG_WITH_TYPE(DebugType,
1954                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1955                                   << '\n');
1956       continue;
1957     }
1958 
1959     if (!SE.isSCEVable(Phi->getType()))
1960       continue;
1961 
1962     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1963     if (!OrigPhiRef) {
1964       OrigPhiRef = Phi;
1965       if (Phi->getType()->isIntegerTy() && TTI &&
1966           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1967         // This phi can be freely truncated to the narrowest phi type. Map the
1968         // truncated expression to it so it will be reused for narrow types.
1969         const SCEV *TruncExpr =
1970           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1971         ExprToIVMap[TruncExpr] = Phi;
1972       }
1973       continue;
1974     }
1975 
1976     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1977     // sense.
1978     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1979       continue;
1980 
1981     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1982       Instruction *OrigInc = dyn_cast<Instruction>(
1983           OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1984       Instruction *IsomorphicInc =
1985           dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1986 
1987       if (OrigInc && IsomorphicInc) {
1988         // If this phi has the same width but is more canonical, replace the
1989         // original with it. As part of the "more canonical" determination,
1990         // respect a prior decision to use an IV chain.
1991         if (OrigPhiRef->getType() == Phi->getType() &&
1992             !(ChainedPhis.count(Phi) ||
1993               isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
1994             (ChainedPhis.count(Phi) ||
1995              isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1996           std::swap(OrigPhiRef, Phi);
1997           std::swap(OrigInc, IsomorphicInc);
1998         }
1999         // Replacing the congruent phi is sufficient because acyclic
2000         // redundancy elimination, CSE/GVN, should handle the
2001         // rest. However, once SCEV proves that a phi is congruent,
2002         // it's often the head of an IV user cycle that is isomorphic
2003         // with the original phi. It's worth eagerly cleaning up the
2004         // common case of a single IV increment so that DeleteDeadPHIs
2005         // can remove cycles that had postinc uses.
2006         const SCEV *TruncExpr =
2007             SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2008         if (OrigInc != IsomorphicInc &&
2009             TruncExpr == SE.getSCEV(IsomorphicInc) &&
2010             SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2011             hoistIVInc(OrigInc, IsomorphicInc)) {
2012           SCEV_DEBUG_WITH_TYPE(
2013               DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2014                                 << *IsomorphicInc << '\n');
2015           Value *NewInc = OrigInc;
2016           if (OrigInc->getType() != IsomorphicInc->getType()) {
2017             Instruction *IP = nullptr;
2018             if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2019               IP = &*PN->getParent()->getFirstInsertionPt();
2020             else
2021               IP = OrigInc->getNextNode();
2022 
2023             IRBuilder<> Builder(IP);
2024             Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2025             NewInc = Builder.CreateTruncOrBitCast(
2026                 OrigInc, IsomorphicInc->getType(), IVName);
2027           }
2028           IsomorphicInc->replaceAllUsesWith(NewInc);
2029           DeadInsts.emplace_back(IsomorphicInc);
2030         }
2031       }
2032     }
2033     SCEV_DEBUG_WITH_TYPE(DebugType,
2034                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
2035                                 << '\n');
2036     SCEV_DEBUG_WITH_TYPE(
2037         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
2038     ++NumElim;
2039     Value *NewIV = OrigPhiRef;
2040     if (OrigPhiRef->getType() != Phi->getType()) {
2041       IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2042       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2043       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2044     }
2045     Phi->replaceAllUsesWith(NewIV);
2046     DeadInsts.emplace_back(Phi);
2047   }
2048   return NumElim;
2049 }
2050 
2051 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S,
2052                                                  const Instruction *At,
2053                                                  Loop *L) {
2054   using namespace llvm::PatternMatch;
2055 
2056   SmallVector<BasicBlock *, 4> ExitingBlocks;
2057   L->getExitingBlocks(ExitingBlocks);
2058 
2059   // Look for suitable value in simple conditions at the loop exits.
2060   for (BasicBlock *BB : ExitingBlocks) {
2061     ICmpInst::Predicate Pred;
2062     Instruction *LHS, *RHS;
2063 
2064     if (!match(BB->getTerminator(),
2065                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2066                     m_BasicBlock(), m_BasicBlock())))
2067       continue;
2068 
2069     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2070       return LHS;
2071 
2072     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2073       return RHS;
2074   }
2075 
2076   // Use expand's logic which is used for reusing a previous Value in
2077   // ExprValueMap.  Note that we don't currently model the cost of
2078   // needing to drop poison generating flags on the instruction if we
2079   // want to reuse it.  We effectively assume that has zero cost.
2080   return FindValueInExprValueMap(S, At);
2081 }
2082 
2083 template<typename T> static InstructionCost costAndCollectOperands(
2084   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
2085   TargetTransformInfo::TargetCostKind CostKind,
2086   SmallVectorImpl<SCEVOperand> &Worklist) {
2087 
2088   const T *S = cast<T>(WorkItem.S);
2089   InstructionCost Cost = 0;
2090   // Object to help map SCEV operands to expanded IR instructions.
2091   struct OperationIndices {
2092     OperationIndices(unsigned Opc, size_t min, size_t max) :
2093       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
2094     unsigned Opcode;
2095     size_t MinIdx;
2096     size_t MaxIdx;
2097   };
2098 
2099   // Collect the operations of all the instructions that will be needed to
2100   // expand the SCEVExpr. This is so that when we come to cost the operands,
2101   // we know what the generated user(s) will be.
2102   SmallVector<OperationIndices, 2> Operations;
2103 
2104   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
2105     Operations.emplace_back(Opcode, 0, 0);
2106     return TTI.getCastInstrCost(Opcode, S->getType(),
2107                                 S->getOperand(0)->getType(),
2108                                 TTI::CastContextHint::None, CostKind);
2109   };
2110 
2111   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
2112                        unsigned MinIdx = 0,
2113                        unsigned MaxIdx = 1) -> InstructionCost {
2114     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2115     return NumRequired *
2116       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
2117   };
2118 
2119   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
2120                         unsigned MaxIdx) -> InstructionCost {
2121     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
2122     Type *OpType = S->getOperand(0)->getType();
2123     return NumRequired * TTI.getCmpSelInstrCost(
2124                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
2125                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
2126   };
2127 
2128   switch (S->getSCEVType()) {
2129   case scCouldNotCompute:
2130     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2131   case scUnknown:
2132   case scConstant:
2133     return 0;
2134   case scPtrToInt:
2135     Cost = CastCost(Instruction::PtrToInt);
2136     break;
2137   case scTruncate:
2138     Cost = CastCost(Instruction::Trunc);
2139     break;
2140   case scZeroExtend:
2141     Cost = CastCost(Instruction::ZExt);
2142     break;
2143   case scSignExtend:
2144     Cost = CastCost(Instruction::SExt);
2145     break;
2146   case scUDivExpr: {
2147     unsigned Opcode = Instruction::UDiv;
2148     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
2149       if (SC->getAPInt().isPowerOf2())
2150         Opcode = Instruction::LShr;
2151     Cost = ArithCost(Opcode, 1);
2152     break;
2153   }
2154   case scAddExpr:
2155     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
2156     break;
2157   case scMulExpr:
2158     // TODO: this is a very pessimistic cost modelling for Mul,
2159     // because of Bin Pow algorithm actually used by the expander,
2160     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
2161     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
2162     break;
2163   case scSMaxExpr:
2164   case scUMaxExpr:
2165   case scSMinExpr:
2166   case scUMinExpr:
2167   case scSequentialUMinExpr: {
2168     // FIXME: should this ask the cost for Intrinsic's?
2169     // The reduction tree.
2170     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
2171     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
2172     switch (S->getSCEVType()) {
2173     case scSequentialUMinExpr: {
2174       // The safety net against poison.
2175       // FIXME: this is broken.
2176       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
2177       Cost += ArithCost(Instruction::Or,
2178                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
2179       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
2180       break;
2181     }
2182     default:
2183       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
2184              "Unhandled SCEV expression type?");
2185       break;
2186     }
2187     break;
2188   }
2189   case scAddRecExpr: {
2190     // In this polynominal, we may have some zero operands, and we shouldn't
2191     // really charge for those. So how many non-zero coeffients are there?
2192     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
2193                                     return !Op->isZero();
2194                                   });
2195 
2196     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
2197     assert(!(*std::prev(S->operands().end()))->isZero() &&
2198            "Last operand should not be zero");
2199 
2200     // Ignoring constant term (operand 0), how many of the coeffients are u> 1?
2201     int NumNonZeroDegreeNonOneTerms =
2202       llvm::count_if(S->operands(), [](const SCEV *Op) {
2203                       auto *SConst = dyn_cast<SCEVConstant>(Op);
2204                       return !SConst || SConst->getAPInt().ugt(1);
2205                     });
2206 
2207     // Much like with normal add expr, the polynominal will require
2208     // one less addition than the number of it's terms.
2209     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
2210                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
2211     // Here, *each* one of those will require a multiplication.
2212     InstructionCost MulCost =
2213         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
2214     Cost = AddCost + MulCost;
2215 
2216     // What is the degree of this polynominal?
2217     int PolyDegree = S->getNumOperands() - 1;
2218     assert(PolyDegree >= 1 && "Should be at least affine.");
2219 
2220     // The final term will be:
2221     //   Op_{PolyDegree} * x ^ {PolyDegree}
2222     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
2223     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
2224     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
2225     // FIXME: this is conservatively correct, but might be overly pessimistic.
2226     Cost += MulCost * (PolyDegree - 1);
2227     break;
2228   }
2229   }
2230 
2231   for (auto &CostOp : Operations) {
2232     for (auto SCEVOp : enumerate(S->operands())) {
2233       // Clamp the index to account for multiple IR operations being chained.
2234       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
2235       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
2236       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
2237     }
2238   }
2239   return Cost;
2240 }
2241 
2242 bool SCEVExpander::isHighCostExpansionHelper(
2243     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
2244     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
2245     SmallPtrSetImpl<const SCEV *> &Processed,
2246     SmallVectorImpl<SCEVOperand> &Worklist) {
2247   if (Cost > Budget)
2248     return true; // Already run out of budget, give up.
2249 
2250   const SCEV *S = WorkItem.S;
2251   // Was the cost of expansion of this expression already accounted for?
2252   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
2253     return false; // We have already accounted for this expression.
2254 
2255   // If we can find an existing value for this scev available at the point "At"
2256   // then consider the expression cheap.
2257   if (getRelatedExistingExpansion(S, &At, L))
2258     return false; // Consider the expression to be free.
2259 
2260   TargetTransformInfo::TargetCostKind CostKind =
2261       L->getHeader()->getParent()->hasMinSize()
2262           ? TargetTransformInfo::TCK_CodeSize
2263           : TargetTransformInfo::TCK_RecipThroughput;
2264 
2265   switch (S->getSCEVType()) {
2266   case scCouldNotCompute:
2267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
2268   case scUnknown:
2269     // Assume to be zero-cost.
2270     return false;
2271   case scConstant: {
2272     // Only evalulate the costs of constants when optimizing for size.
2273     if (CostKind != TargetTransformInfo::TCK_CodeSize)
2274       return false;
2275     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2276     Type *Ty = S->getType();
2277     Cost += TTI.getIntImmCostInst(
2278         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2279     return Cost > Budget;
2280   }
2281   case scTruncate:
2282   case scPtrToInt:
2283   case scZeroExtend:
2284   case scSignExtend: {
2285     Cost +=
2286         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
2287     return false; // Will answer upon next entry into this function.
2288   }
2289   case scUDivExpr: {
2290     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2291     // HowManyLessThans produced to compute a precise expression, rather than a
2292     // UDiv from the user's code. If we can't find a UDiv in the code with some
2293     // simple searching, we need to account for it's cost.
2294 
2295     // At the beginning of this function we already tried to find existing
2296     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
2297     // pattern involving division. This is just a simple search heuristic.
2298     if (getRelatedExistingExpansion(
2299             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
2300       return false; // Consider it to be free.
2301 
2302     Cost +=
2303         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
2304     return false; // Will answer upon next entry into this function.
2305   }
2306   case scAddExpr:
2307   case scMulExpr:
2308   case scUMaxExpr:
2309   case scSMaxExpr:
2310   case scUMinExpr:
2311   case scSMinExpr:
2312   case scSequentialUMinExpr: {
2313     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
2314            "Nary expr should have more than 1 operand.");
2315     // The simple nary expr will require one less op (or pair of ops)
2316     // than the number of it's terms.
2317     Cost +=
2318         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2319     return Cost > Budget;
2320   }
2321   case scAddRecExpr: {
2322     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2323            "Polynomial should be at least linear");
2324     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2325         WorkItem, TTI, CostKind, Worklist);
2326     return Cost > Budget;
2327   }
2328   }
2329   llvm_unreachable("Unknown SCEV kind!");
2330 }
2331 
2332 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2333                                             Instruction *IP) {
2334   assert(IP);
2335   switch (Pred->getKind()) {
2336   case SCEVPredicate::P_Union:
2337     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2338   case SCEVPredicate::P_Compare:
2339     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
2340   case SCEVPredicate::P_Wrap: {
2341     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2342     return expandWrapPredicate(AddRecPred, IP);
2343   }
2344   }
2345   llvm_unreachable("Unknown SCEV predicate type");
2346 }
2347 
2348 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
2349                                             Instruction *IP) {
2350   Value *Expr0 =
2351       expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false);
2352   Value *Expr1 =
2353       expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false);
2354 
2355   Builder.SetInsertPoint(IP);
2356   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
2357   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
2358   return I;
2359 }
2360 
2361 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2362                                            Instruction *Loc, bool Signed) {
2363   assert(AR->isAffine() && "Cannot generate RT check for "
2364                            "non-affine expression");
2365 
2366   // FIXME: It is highly suspicious that we're ignoring the predicates here.
2367   SmallVector<const SCEVPredicate *, 4> Pred;
2368   const SCEV *ExitCount =
2369       SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2370 
2371   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
2372 
2373   const SCEV *Step = AR->getStepRecurrence(SE);
2374   const SCEV *Start = AR->getStart();
2375 
2376   Type *ARTy = AR->getType();
2377   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2378   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2379 
2380   // The expression {Start,+,Step} has nusw/nssw if
2381   //   Step < 0, Start - |Step| * Backedge <= Start
2382   //   Step >= 0, Start + |Step| * Backedge > Start
2383   // and |Step| * Backedge doesn't unsigned overflow.
2384 
2385   IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2386   Builder.SetInsertPoint(Loc);
2387   Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false);
2388 
2389   IntegerType *Ty =
2390       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2391 
2392   Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false);
2393   Value *NegStepValue =
2394       expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false);
2395   Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false);
2396 
2397   ConstantInt *Zero =
2398       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
2399 
2400   Builder.SetInsertPoint(Loc);
2401   // Compute |Step|
2402   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2403   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2404 
2405   // Compute |Step| * Backedge
2406   // Compute:
2407   //   1. Start + |Step| * Backedge < Start
2408   //   2. Start - |Step| * Backedge > Start
2409   //
2410   // And select either 1. or 2. depending on whether step is positive or
2411   // negative. If Step is known to be positive or negative, only create
2412   // either 1. or 2.
2413   auto ComputeEndCheck = [&]() -> Value * {
2414     // Checking <u 0 is always false.
2415     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
2416       return ConstantInt::getFalse(Loc->getContext());
2417 
2418     // Get the backedge taken count and truncate or extended to the AR type.
2419     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2420 
2421     Value *MulV, *OfMul;
2422     if (Step->isOne()) {
2423       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2424       // needed, there is never an overflow, so to avoid artificially inflating
2425       // the cost of the check, directly emit the optimized IR.
2426       MulV = TruncTripCount;
2427       OfMul = ConstantInt::getFalse(MulV->getContext());
2428     } else {
2429       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2430                                              Intrinsic::umul_with_overflow, Ty);
2431       CallInst *Mul =
2432           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2433       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2434       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2435     }
2436 
2437     Value *Add = nullptr, *Sub = nullptr;
2438     bool NeedPosCheck = !SE.isKnownNegative(Step);
2439     bool NeedNegCheck = !SE.isKnownPositive(Step);
2440 
2441     if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) {
2442       StartValue = InsertNoopCastOfTo(
2443           StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace()));
2444       Value *NegMulV = Builder.CreateNeg(MulV);
2445       if (NeedPosCheck)
2446         Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV);
2447       if (NeedNegCheck)
2448         Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV);
2449     } else {
2450       if (NeedPosCheck)
2451         Add = Builder.CreateAdd(StartValue, MulV);
2452       if (NeedNegCheck)
2453         Sub = Builder.CreateSub(StartValue, MulV);
2454     }
2455 
2456     Value *EndCompareLT = nullptr;
2457     Value *EndCompareGT = nullptr;
2458     Value *EndCheck = nullptr;
2459     if (NeedPosCheck)
2460       EndCheck = EndCompareLT = Builder.CreateICmp(
2461           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2462     if (NeedNegCheck)
2463       EndCheck = EndCompareGT = Builder.CreateICmp(
2464           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2465     if (NeedPosCheck && NeedNegCheck) {
2466       // Select the answer based on the sign of Step.
2467       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2468     }
2469     return Builder.CreateOr(EndCheck, OfMul);
2470   };
2471   Value *EndCheck = ComputeEndCheck();
2472 
2473   // If the backedge taken count type is larger than the AR type,
2474   // check that we don't drop any bits by truncating it. If we are
2475   // dropping bits, then we have overflow (unless the step is zero).
2476   if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2477     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2478     auto *BackedgeCheck =
2479         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2480                            ConstantInt::get(Loc->getContext(), MaxVal));
2481     BackedgeCheck = Builder.CreateAnd(
2482         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2483 
2484     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2485   }
2486 
2487   return EndCheck;
2488 }
2489 
2490 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2491                                          Instruction *IP) {
2492   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2493   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2494 
2495   // Add a check for NUSW
2496   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2497     NUSWCheck = generateOverflowCheck(A, IP, false);
2498 
2499   // Add a check for NSSW
2500   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2501     NSSWCheck = generateOverflowCheck(A, IP, true);
2502 
2503   if (NUSWCheck && NSSWCheck)
2504     return Builder.CreateOr(NUSWCheck, NSSWCheck);
2505 
2506   if (NUSWCheck)
2507     return NUSWCheck;
2508 
2509   if (NSSWCheck)
2510     return NSSWCheck;
2511 
2512   return ConstantInt::getFalse(IP->getContext());
2513 }
2514 
2515 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2516                                           Instruction *IP) {
2517   // Loop over all checks in this set.
2518   SmallVector<Value *> Checks;
2519   for (auto Pred : Union->getPredicates()) {
2520     Checks.push_back(expandCodeForPredicate(Pred, IP));
2521     Builder.SetInsertPoint(IP);
2522   }
2523 
2524   if (Checks.empty())
2525     return ConstantInt::getFalse(IP->getContext());
2526   return Builder.CreateOr(Checks);
2527 }
2528 
2529 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) {
2530   assert(PreserveLCSSA);
2531   SmallVector<Instruction *, 1> ToUpdate;
2532 
2533   auto *OpV = User->getOperand(OpIdx);
2534   auto *OpI = dyn_cast<Instruction>(OpV);
2535   if (!OpI)
2536     return OpV;
2537 
2538   Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent());
2539   Loop *UseLoop = SE.LI.getLoopFor(User->getParent());
2540   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2541     return OpV;
2542 
2543   ToUpdate.push_back(OpI);
2544   SmallVector<PHINode *, 16> PHIsToRemove;
2545   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove);
2546   for (PHINode *PN : PHIsToRemove) {
2547     if (!PN->use_empty())
2548       continue;
2549     InsertedValues.erase(PN);
2550     InsertedPostIncValues.erase(PN);
2551     PN->eraseFromParent();
2552   }
2553 
2554   return User->getOperand(OpIdx);
2555 }
2556 
2557 namespace {
2558 // Search for a SCEV subexpression that is not safe to expand.  Any expression
2559 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2560 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2561 // instruction, but the important thing is that we prove the denominator is
2562 // nonzero before expansion.
2563 //
2564 // IVUsers already checks that IV-derived expressions are safe. So this check is
2565 // only needed when the expression includes some subexpression that is not IV
2566 // derived.
2567 //
2568 // Currently, we only allow division by a nonzero constant here. If this is
2569 // inadequate, we could easily allow division by SCEVUnknown by using
2570 // ValueTracking to check isKnownNonZero().
2571 //
2572 // We cannot generally expand recurrences unless the step dominates the loop
2573 // header. The expander handles the special case of affine recurrences by
2574 // scaling the recurrence outside the loop, but this technique isn't generally
2575 // applicable. Expanding a nested recurrence outside a loop requires computing
2576 // binomial coefficients. This could be done, but the recurrence has to be in a
2577 // perfectly reduced form, which can't be guaranteed.
2578 struct SCEVFindUnsafe {
2579   ScalarEvolution &SE;
2580   bool CanonicalMode;
2581   bool IsUnsafe = false;
2582 
2583   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
2584       : SE(SE), CanonicalMode(CanonicalMode) {}
2585 
2586   bool follow(const SCEV *S) {
2587     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2588       const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2589       if (!SC || SC->getValue()->isZero()) {
2590         IsUnsafe = true;
2591         return false;
2592       }
2593     }
2594     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2595       const SCEV *Step = AR->getStepRecurrence(SE);
2596       if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2597         IsUnsafe = true;
2598         return false;
2599       }
2600 
2601       // For non-affine addrecs or in non-canonical mode we need a preheader
2602       // to insert into.
2603       if (!AR->getLoop()->getLoopPreheader() &&
2604           (!CanonicalMode || !AR->isAffine())) {
2605         IsUnsafe = true;
2606         return false;
2607       }
2608     }
2609     return true;
2610   }
2611   bool isDone() const { return IsUnsafe; }
2612 };
2613 }
2614 
2615 namespace llvm {
2616 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) {
2617   SCEVFindUnsafe Search(SE, CanonicalMode);
2618   visitAll(S, Search);
2619   return !Search.IsUnsafe;
2620 }
2621 
2622 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2623                       ScalarEvolution &SE) {
2624   if (!isSafeToExpand(S, SE))
2625     return false;
2626   // We have to prove that the expanded site of S dominates InsertionPoint.
2627   // This is easy when not in the same block, but hard when S is an instruction
2628   // to be expanded somewhere inside the same block as our insertion point.
2629   // What we really need here is something analogous to an OrderedBasicBlock,
2630   // but for the moment, we paper over the problem by handling two common and
2631   // cheap to check cases.
2632   if (SE.properlyDominates(S, InsertionPoint->getParent()))
2633     return true;
2634   if (SE.dominates(S, InsertionPoint->getParent())) {
2635     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2636       return true;
2637     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2638       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
2639         return true;
2640   }
2641   return false;
2642 }
2643 
2644 void SCEVExpanderCleaner::cleanup() {
2645   // Result is used, nothing to remove.
2646   if (ResultUsed)
2647     return;
2648 
2649   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2650 #ifndef NDEBUG
2651   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2652                                             InsertedInstructions.end());
2653   (void)InsertedSet;
2654 #endif
2655   // Remove sets with value handles.
2656   Expander.clear();
2657 
2658   // Remove all inserted instructions.
2659   for (Instruction *I : reverse(InsertedInstructions)) {
2660 #ifndef NDEBUG
2661     assert(all_of(I->users(),
2662                   [&InsertedSet](Value *U) {
2663                     return InsertedSet.contains(cast<Instruction>(U));
2664                   }) &&
2665            "removed instruction should only be used by instructions inserted "
2666            "during expansion");
2667 #endif
2668     assert(!I->getType()->isVoidTy() &&
2669            "inserted instruction should have non-void types");
2670     I->replaceAllUsesWith(UndefValue::get(I->getType()));
2671     I->eraseFromParent();
2672   }
2673 }
2674 }
2675