1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Transforms/Utils/LoopUtils.h" 29 30 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 31 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 32 #else 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 34 #endif 35 36 using namespace llvm; 37 38 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 39 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 40 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 41 "controls the budget that is considered cheap (default = 4)")); 42 43 using namespace PatternMatch; 44 45 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 46 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 47 /// creating a new one. 48 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 49 Instruction::CastOps Op, 50 BasicBlock::iterator IP) { 51 // This function must be called with the builder having a valid insertion 52 // point. It doesn't need to be the actual IP where the uses of the returned 53 // cast will be added, but it must dominate such IP. 54 // We use this precondition to produce a cast that will dominate all its 55 // uses. In particular, this is crucial for the case where the builder's 56 // insertion point *is* the point where we were asked to put the cast. 57 // Since we don't know the builder's insertion point is actually 58 // where the uses will be added (only that it dominates it), we are 59 // not allowed to move it. 60 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 61 62 Value *Ret = nullptr; 63 64 // Check to see if there is already a cast! 65 for (User *U : V->users()) { 66 if (U->getType() != Ty) 67 continue; 68 CastInst *CI = dyn_cast<CastInst>(U); 69 if (!CI || CI->getOpcode() != Op) 70 continue; 71 72 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 73 // the cast must also properly dominate the Builder's insertion point. 74 if (IP->getParent() == CI->getParent() && &*BIP != CI && 75 (&*IP == CI || CI->comesBefore(&*IP))) { 76 Ret = CI; 77 break; 78 } 79 } 80 81 // Create a new cast. 82 if (!Ret) { 83 SCEVInsertPointGuard Guard(Builder, this); 84 Builder.SetInsertPoint(&*IP); 85 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 86 } 87 88 // We assert at the end of the function since IP might point to an 89 // instruction with different dominance properties than a cast 90 // (an invoke for example) and not dominate BIP (but the cast does). 91 assert(!isa<Instruction>(Ret) || 92 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 93 94 return Ret; 95 } 96 97 BasicBlock::iterator 98 SCEVExpander::findInsertPointAfter(Instruction *I, 99 Instruction *MustDominate) const { 100 BasicBlock::iterator IP = ++I->getIterator(); 101 if (auto *II = dyn_cast<InvokeInst>(I)) 102 IP = II->getNormalDest()->begin(); 103 104 while (isa<PHINode>(IP)) 105 ++IP; 106 107 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 108 ++IP; 109 } else if (isa<CatchSwitchInst>(IP)) { 110 IP = MustDominate->getParent()->getFirstInsertionPt(); 111 } else { 112 assert(!IP->isEHPad() && "unexpected eh pad!"); 113 } 114 115 // Adjust insert point to be after instructions inserted by the expander, so 116 // we can re-use already inserted instructions. Avoid skipping past the 117 // original \p MustDominate, in case it is an inserted instruction. 118 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 119 ++IP; 120 121 return IP; 122 } 123 124 BasicBlock::iterator 125 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 126 // Cast the argument at the beginning of the entry block, after 127 // any bitcasts of other arguments. 128 if (Argument *A = dyn_cast<Argument>(V)) { 129 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 130 while ((isa<BitCastInst>(IP) && 131 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 132 cast<BitCastInst>(IP)->getOperand(0) != A) || 133 isa<DbgInfoIntrinsic>(IP)) 134 ++IP; 135 return IP; 136 } 137 138 // Cast the instruction immediately after the instruction. 139 if (Instruction *I = dyn_cast<Instruction>(V)) 140 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 141 142 // Otherwise, this must be some kind of a constant, 143 // so let's plop this cast into the function's entry block. 144 assert(isa<Constant>(V) && 145 "Expected the cast argument to be a global/constant"); 146 return Builder.GetInsertBlock() 147 ->getParent() 148 ->getEntryBlock() 149 .getFirstInsertionPt(); 150 } 151 152 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 153 /// which must be possible with a noop cast, doing what we can to share 154 /// the casts. 155 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 156 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 157 assert((Op == Instruction::BitCast || 158 Op == Instruction::PtrToInt || 159 Op == Instruction::IntToPtr) && 160 "InsertNoopCastOfTo cannot perform non-noop casts!"); 161 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 162 "InsertNoopCastOfTo cannot change sizes!"); 163 164 // inttoptr only works for integral pointers. For non-integral pointers, we 165 // can create a GEP on i8* null with the integral value as index. Note that 166 // it is safe to use GEP of null instead of inttoptr here, because only 167 // expressions already based on a GEP of null should be converted to pointers 168 // during expansion. 169 if (Op == Instruction::IntToPtr) { 170 auto *PtrTy = cast<PointerType>(Ty); 171 if (DL.isNonIntegralPointerType(PtrTy)) { 172 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 173 assert(DL.getTypeAllocSize(Builder.getInt8Ty()) == 1 && 174 "alloc size of i8 must by 1 byte for the GEP to be correct"); 175 auto *GEP = Builder.CreateGEP( 176 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 177 return Builder.CreateBitCast(GEP, Ty); 178 } 179 } 180 // Short-circuit unnecessary bitcasts. 181 if (Op == Instruction::BitCast) { 182 if (V->getType() == Ty) 183 return V; 184 if (CastInst *CI = dyn_cast<CastInst>(V)) { 185 if (CI->getOperand(0)->getType() == Ty) 186 return CI->getOperand(0); 187 } 188 } 189 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 190 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 191 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 192 if (CastInst *CI = dyn_cast<CastInst>(V)) 193 if ((CI->getOpcode() == Instruction::PtrToInt || 194 CI->getOpcode() == Instruction::IntToPtr) && 195 SE.getTypeSizeInBits(CI->getType()) == 196 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 197 return CI->getOperand(0); 198 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 199 if ((CE->getOpcode() == Instruction::PtrToInt || 200 CE->getOpcode() == Instruction::IntToPtr) && 201 SE.getTypeSizeInBits(CE->getType()) == 202 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 203 return CE->getOperand(0); 204 } 205 206 // Fold a cast of a constant. 207 if (Constant *C = dyn_cast<Constant>(V)) 208 return ConstantExpr::getCast(Op, C, Ty); 209 210 // Try to reuse existing cast, or insert one. 211 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 212 } 213 214 /// InsertBinop - Insert the specified binary operator, doing a small amount 215 /// of work to avoid inserting an obviously redundant operation, and hoisting 216 /// to an outer loop when the opportunity is there and it is safe. 217 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 218 Value *LHS, Value *RHS, 219 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 220 // Fold a binop with constant operands. 221 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 222 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 223 return ConstantExpr::get(Opcode, CLHS, CRHS); 224 225 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 226 unsigned ScanLimit = 6; 227 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 228 // Scanning starts from the last instruction before the insertion point. 229 BasicBlock::iterator IP = Builder.GetInsertPoint(); 230 if (IP != BlockBegin) { 231 --IP; 232 for (; ScanLimit; --IP, --ScanLimit) { 233 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 234 // generated code. 235 if (isa<DbgInfoIntrinsic>(IP)) 236 ScanLimit++; 237 238 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 239 // Ensure that no-wrap flags match. 240 if (isa<OverflowingBinaryOperator>(I)) { 241 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 242 return true; 243 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 244 return true; 245 } 246 // Conservatively, do not use any instruction which has any of exact 247 // flags installed. 248 if (isa<PossiblyExactOperator>(I) && I->isExact()) 249 return true; 250 return false; 251 }; 252 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 253 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 254 return &*IP; 255 if (IP == BlockBegin) break; 256 } 257 } 258 259 // Save the original insertion point so we can restore it when we're done. 260 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 261 SCEVInsertPointGuard Guard(Builder, this); 262 263 if (IsSafeToHoist) { 264 // Move the insertion point out of as many loops as we can. 265 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 266 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 267 BasicBlock *Preheader = L->getLoopPreheader(); 268 if (!Preheader) break; 269 270 // Ok, move up a level. 271 Builder.SetInsertPoint(Preheader->getTerminator()); 272 } 273 } 274 275 // If we haven't found this binop, insert it. 276 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 277 BO->setDebugLoc(Loc); 278 if (Flags & SCEV::FlagNUW) 279 BO->setHasNoUnsignedWrap(); 280 if (Flags & SCEV::FlagNSW) 281 BO->setHasNoSignedWrap(); 282 283 return BO; 284 } 285 286 /// FactorOutConstant - Test if S is divisible by Factor, using signed 287 /// division. If so, update S with Factor divided out and return true. 288 /// S need not be evenly divisible if a reasonable remainder can be 289 /// computed. 290 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 291 const SCEV *Factor, ScalarEvolution &SE, 292 const DataLayout &DL) { 293 // Everything is divisible by one. 294 if (Factor->isOne()) 295 return true; 296 297 // x/x == 1. 298 if (S == Factor) { 299 S = SE.getConstant(S->getType(), 1); 300 return true; 301 } 302 303 // For a Constant, check for a multiple of the given factor. 304 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 305 // 0/x == 0. 306 if (C->isZero()) 307 return true; 308 // Check for divisibility. 309 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 310 ConstantInt *CI = 311 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 312 // If the quotient is zero and the remainder is non-zero, reject 313 // the value at this scale. It will be considered for subsequent 314 // smaller scales. 315 if (!CI->isZero()) { 316 const SCEV *Div = SE.getConstant(CI); 317 S = Div; 318 Remainder = SE.getAddExpr( 319 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 320 return true; 321 } 322 } 323 } 324 325 // In a Mul, check if there is a constant operand which is a multiple 326 // of the given factor. 327 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 328 // Size is known, check if there is a constant operand which is a multiple 329 // of the given factor. If so, we can factor it. 330 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 331 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 332 if (!C->getAPInt().srem(FC->getAPInt())) { 333 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 334 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 335 S = SE.getMulExpr(NewMulOps); 336 return true; 337 } 338 } 339 340 // In an AddRec, check if both start and step are divisible. 341 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 342 const SCEV *Step = A->getStepRecurrence(SE); 343 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 344 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 345 return false; 346 if (!StepRem->isZero()) 347 return false; 348 const SCEV *Start = A->getStart(); 349 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 350 return false; 351 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 352 A->getNoWrapFlags(SCEV::FlagNW)); 353 return true; 354 } 355 356 return false; 357 } 358 359 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 360 /// is the number of SCEVAddRecExprs present, which are kept at the end of 361 /// the list. 362 /// 363 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 364 Type *Ty, 365 ScalarEvolution &SE) { 366 unsigned NumAddRecs = 0; 367 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 368 ++NumAddRecs; 369 // Group Ops into non-addrecs and addrecs. 370 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 371 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 372 // Let ScalarEvolution sort and simplify the non-addrecs list. 373 const SCEV *Sum = NoAddRecs.empty() ? 374 SE.getConstant(Ty, 0) : 375 SE.getAddExpr(NoAddRecs); 376 // If it returned an add, use the operands. Otherwise it simplified 377 // the sum into a single value, so just use that. 378 Ops.clear(); 379 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 380 Ops.append(Add->op_begin(), Add->op_end()); 381 else if (!Sum->isZero()) 382 Ops.push_back(Sum); 383 // Then append the addrecs. 384 Ops.append(AddRecs.begin(), AddRecs.end()); 385 } 386 387 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 388 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 389 /// This helps expose more opportunities for folding parts of the expressions 390 /// into GEP indices. 391 /// 392 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 393 Type *Ty, 394 ScalarEvolution &SE) { 395 // Find the addrecs. 396 SmallVector<const SCEV *, 8> AddRecs; 397 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 398 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 399 const SCEV *Start = A->getStart(); 400 if (Start->isZero()) break; 401 const SCEV *Zero = SE.getConstant(Ty, 0); 402 AddRecs.push_back(SE.getAddRecExpr(Zero, 403 A->getStepRecurrence(SE), 404 A->getLoop(), 405 A->getNoWrapFlags(SCEV::FlagNW))); 406 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 407 Ops[i] = Zero; 408 Ops.append(Add->op_begin(), Add->op_end()); 409 e += Add->getNumOperands(); 410 } else { 411 Ops[i] = Start; 412 } 413 } 414 if (!AddRecs.empty()) { 415 // Add the addrecs onto the end of the list. 416 Ops.append(AddRecs.begin(), AddRecs.end()); 417 // Resort the operand list, moving any constants to the front. 418 SimplifyAddOperands(Ops, Ty, SE); 419 } 420 } 421 422 /// expandAddToGEP - Expand an addition expression with a pointer type into 423 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 424 /// BasicAliasAnalysis and other passes analyze the result. See the rules 425 /// for getelementptr vs. inttoptr in 426 /// http://llvm.org/docs/LangRef.html#pointeraliasing 427 /// for details. 428 /// 429 /// Design note: The correctness of using getelementptr here depends on 430 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 431 /// they may introduce pointer arithmetic which may not be safely converted 432 /// into getelementptr. 433 /// 434 /// Design note: It might seem desirable for this function to be more 435 /// loop-aware. If some of the indices are loop-invariant while others 436 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 437 /// loop-invariant portions of the overall computation outside the loop. 438 /// However, there are a few reasons this is not done here. Hoisting simple 439 /// arithmetic is a low-level optimization that often isn't very 440 /// important until late in the optimization process. In fact, passes 441 /// like InstructionCombining will combine GEPs, even if it means 442 /// pushing loop-invariant computation down into loops, so even if the 443 /// GEPs were split here, the work would quickly be undone. The 444 /// LoopStrengthReduction pass, which is usually run quite late (and 445 /// after the last InstructionCombining pass), takes care of hoisting 446 /// loop-invariant portions of expressions, after considering what 447 /// can be folded using target addressing modes. 448 /// 449 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 450 const SCEV *const *op_end, 451 PointerType *PTy, 452 Type *Ty, 453 Value *V) { 454 SmallVector<Value *, 4> GepIndices; 455 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 456 bool AnyNonZeroIndices = false; 457 458 // Split AddRecs up into parts as either of the parts may be usable 459 // without the other. 460 SplitAddRecs(Ops, Ty, SE); 461 462 Type *IntIdxTy = DL.getIndexType(PTy); 463 464 // For opaque pointers, always generate i8 GEP. 465 if (!PTy->isOpaque()) { 466 // Descend down the pointer's type and attempt to convert the other 467 // operands into GEP indices, at each level. The first index in a GEP 468 // indexes into the array implied by the pointer operand; the rest of 469 // the indices index into the element or field type selected by the 470 // preceding index. 471 Type *ElTy = PTy->getNonOpaquePointerElementType(); 472 for (;;) { 473 // If the scale size is not 0, attempt to factor out a scale for 474 // array indexing. 475 SmallVector<const SCEV *, 8> ScaledOps; 476 if (ElTy->isSized()) { 477 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 478 if (!ElSize->isZero()) { 479 SmallVector<const SCEV *, 8> NewOps; 480 for (const SCEV *Op : Ops) { 481 const SCEV *Remainder = SE.getConstant(Ty, 0); 482 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 483 // Op now has ElSize factored out. 484 ScaledOps.push_back(Op); 485 if (!Remainder->isZero()) 486 NewOps.push_back(Remainder); 487 AnyNonZeroIndices = true; 488 } else { 489 // The operand was not divisible, so add it to the list of 490 // operands we'll scan next iteration. 491 NewOps.push_back(Op); 492 } 493 } 494 // If we made any changes, update Ops. 495 if (!ScaledOps.empty()) { 496 Ops = NewOps; 497 SimplifyAddOperands(Ops, Ty, SE); 498 } 499 } 500 } 501 502 // Record the scaled array index for this level of the type. If 503 // we didn't find any operands that could be factored, tentatively 504 // assume that element zero was selected (since the zero offset 505 // would obviously be folded away). 506 Value *Scaled = 507 ScaledOps.empty() 508 ? Constant::getNullValue(Ty) 509 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 510 GepIndices.push_back(Scaled); 511 512 // Collect struct field index operands. 513 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 514 bool FoundFieldNo = false; 515 // An empty struct has no fields. 516 if (STy->getNumElements() == 0) break; 517 // Field offsets are known. See if a constant offset falls within any of 518 // the struct fields. 519 if (Ops.empty()) 520 break; 521 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 522 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 523 const StructLayout &SL = *DL.getStructLayout(STy); 524 uint64_t FullOffset = C->getValue()->getZExtValue(); 525 if (FullOffset < SL.getSizeInBytes()) { 526 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 527 GepIndices.push_back( 528 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 529 ElTy = STy->getTypeAtIndex(ElIdx); 530 Ops[0] = 531 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 532 AnyNonZeroIndices = true; 533 FoundFieldNo = true; 534 } 535 } 536 // If no struct field offsets were found, tentatively assume that 537 // field zero was selected (since the zero offset would obviously 538 // be folded away). 539 if (!FoundFieldNo) { 540 ElTy = STy->getTypeAtIndex(0u); 541 GepIndices.push_back( 542 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 543 } 544 } 545 546 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 547 ElTy = ATy->getElementType(); 548 else 549 // FIXME: Handle VectorType. 550 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 551 // constant, therefore can not be factored out. The generated IR is less 552 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 553 break; 554 } 555 } 556 557 // If none of the operands were convertible to proper GEP indices, cast 558 // the base to i8* and do an ugly getelementptr with that. It's still 559 // better than ptrtoint+arithmetic+inttoptr at least. 560 if (!AnyNonZeroIndices) { 561 // Cast the base to i8*. 562 if (!PTy->isOpaque()) 563 V = InsertNoopCastOfTo(V, 564 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 565 566 assert(!isa<Instruction>(V) || 567 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 568 569 // Expand the operands for a plain byte offset. 570 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 571 572 // Fold a GEP with constant operands. 573 if (Constant *CLHS = dyn_cast<Constant>(V)) 574 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 575 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 576 CLHS, CRHS); 577 578 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 579 unsigned ScanLimit = 6; 580 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 581 // Scanning starts from the last instruction before the insertion point. 582 BasicBlock::iterator IP = Builder.GetInsertPoint(); 583 if (IP != BlockBegin) { 584 --IP; 585 for (; ScanLimit; --IP, --ScanLimit) { 586 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 587 // generated code. 588 if (isa<DbgInfoIntrinsic>(IP)) 589 ScanLimit++; 590 if (IP->getOpcode() == Instruction::GetElementPtr && 591 IP->getOperand(0) == V && IP->getOperand(1) == Idx && 592 cast<GEPOperator>(&*IP)->getSourceElementType() == 593 Type::getInt8Ty(Ty->getContext())) 594 return &*IP; 595 if (IP == BlockBegin) break; 596 } 597 } 598 599 // Save the original insertion point so we can restore it when we're done. 600 SCEVInsertPointGuard Guard(Builder, this); 601 602 // Move the insertion point out of as many loops as we can. 603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 605 BasicBlock *Preheader = L->getLoopPreheader(); 606 if (!Preheader) break; 607 608 // Ok, move up a level. 609 Builder.SetInsertPoint(Preheader->getTerminator()); 610 } 611 612 // Emit a GEP. 613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 614 } 615 616 { 617 SCEVInsertPointGuard Guard(Builder, this); 618 619 // Move the insertion point out of as many loops as we can. 620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 621 if (!L->isLoopInvariant(V)) break; 622 623 bool AnyIndexNotLoopInvariant = any_of( 624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 625 626 if (AnyIndexNotLoopInvariant) 627 break; 628 629 BasicBlock *Preheader = L->getLoopPreheader(); 630 if (!Preheader) break; 631 632 // Ok, move up a level. 633 Builder.SetInsertPoint(Preheader->getTerminator()); 634 } 635 636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 637 // because ScalarEvolution may have changed the address arithmetic to 638 // compute a value which is beyond the end of the allocated object. 639 Value *Casted = V; 640 if (V->getType() != PTy) 641 Casted = InsertNoopCastOfTo(Casted, PTy); 642 Value *GEP = Builder.CreateGEP(PTy->getNonOpaquePointerElementType(), 643 Casted, GepIndices, "scevgep"); 644 Ops.push_back(SE.getUnknown(GEP)); 645 } 646 647 return expand(SE.getAddExpr(Ops)); 648 } 649 650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 651 Value *V) { 652 const SCEV *const Ops[1] = {Op}; 653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 654 } 655 656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 657 /// SCEV expansion. If they are nested, this is the most nested. If they are 658 /// neighboring, pick the later. 659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 660 DominatorTree &DT) { 661 if (!A) return B; 662 if (!B) return A; 663 if (A->contains(B)) return B; 664 if (B->contains(A)) return A; 665 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 666 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 667 return A; // Arbitrarily break the tie. 668 } 669 670 /// getRelevantLoop - Get the most relevant loop associated with the given 671 /// expression, according to PickMostRelevantLoop. 672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 673 // Test whether we've already computed the most relevant loop for this SCEV. 674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 675 if (!Pair.second) 676 return Pair.first->second; 677 678 if (isa<SCEVConstant>(S)) 679 // A constant has no relevant loops. 680 return nullptr; 681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 683 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 684 // A non-instruction has no relevant loops. 685 return nullptr; 686 } 687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 688 const Loop *L = nullptr; 689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 690 L = AR->getLoop(); 691 for (const SCEV *Op : N->operands()) 692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 693 return RelevantLoops[N] = L; 694 } 695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 696 const Loop *Result = getRelevantLoop(C->getOperand()); 697 return RelevantLoops[C] = Result; 698 } 699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 700 const Loop *Result = PickMostRelevantLoop( 701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 702 return RelevantLoops[D] = Result; 703 } 704 llvm_unreachable("Unexpected SCEV type!"); 705 } 706 707 namespace { 708 709 /// LoopCompare - Compare loops by PickMostRelevantLoop. 710 class LoopCompare { 711 DominatorTree &DT; 712 public: 713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 714 715 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 716 std::pair<const Loop *, const SCEV *> RHS) const { 717 // Keep pointer operands sorted at the end. 718 if (LHS.second->getType()->isPointerTy() != 719 RHS.second->getType()->isPointerTy()) 720 return LHS.second->getType()->isPointerTy(); 721 722 // Compare loops with PickMostRelevantLoop. 723 if (LHS.first != RHS.first) 724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 725 726 // If one operand is a non-constant negative and the other is not, 727 // put the non-constant negative on the right so that a sub can 728 // be used instead of a negate and add. 729 if (LHS.second->isNonConstantNegative()) { 730 if (!RHS.second->isNonConstantNegative()) 731 return false; 732 } else if (RHS.second->isNonConstantNegative()) 733 return true; 734 735 // Otherwise they are equivalent according to this comparison. 736 return false; 737 } 738 }; 739 740 } 741 742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 743 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 744 745 // Collect all the add operands in a loop, along with their associated loops. 746 // Iterate in reverse so that constants are emitted last, all else equal, and 747 // so that pointer operands are inserted first, which the code below relies on 748 // to form more involved GEPs. 749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 750 for (const SCEV *Op : reverse(S->operands())) 751 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 752 753 // Sort by loop. Use a stable sort so that constants follow non-constants and 754 // pointer operands precede non-pointer operands. 755 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 756 757 // Emit instructions to add all the operands. Hoist as much as possible 758 // out of loops, and form meaningful getelementptrs where possible. 759 Value *Sum = nullptr; 760 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 761 const Loop *CurLoop = I->first; 762 const SCEV *Op = I->second; 763 if (!Sum) { 764 // This is the first operand. Just expand it. 765 Sum = expand(Op); 766 ++I; 767 continue; 768 } 769 770 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 771 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 772 // The running sum expression is a pointer. Try to form a getelementptr 773 // at this level with that as the base. 774 SmallVector<const SCEV *, 4> NewOps; 775 for (; I != E && I->first == CurLoop; ++I) { 776 // If the operand is SCEVUnknown and not instructions, peek through 777 // it, to enable more of it to be folded into the GEP. 778 const SCEV *X = I->second; 779 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 780 if (!isa<Instruction>(U->getValue())) 781 X = SE.getSCEV(U->getValue()); 782 NewOps.push_back(X); 783 } 784 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 785 } else if (Op->isNonConstantNegative()) { 786 // Instead of doing a negate and add, just do a subtract. 787 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 788 Sum = InsertNoopCastOfTo(Sum, Ty); 789 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 790 /*IsSafeToHoist*/ true); 791 ++I; 792 } else { 793 // A simple add. 794 Value *W = expandCodeForImpl(Op, Ty, false); 795 Sum = InsertNoopCastOfTo(Sum, Ty); 796 // Canonicalize a constant to the RHS. 797 if (isa<Constant>(Sum)) std::swap(Sum, W); 798 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 799 /*IsSafeToHoist*/ true); 800 ++I; 801 } 802 } 803 804 return Sum; 805 } 806 807 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 808 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 809 810 // Collect all the mul operands in a loop, along with their associated loops. 811 // Iterate in reverse so that constants are emitted last, all else equal. 812 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 813 for (const SCEV *Op : reverse(S->operands())) 814 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 815 816 // Sort by loop. Use a stable sort so that constants follow non-constants. 817 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 818 819 // Emit instructions to mul all the operands. Hoist as much as possible 820 // out of loops. 821 Value *Prod = nullptr; 822 auto I = OpsAndLoops.begin(); 823 824 // Expand the calculation of X pow N in the following manner: 825 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 826 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 827 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 828 auto E = I; 829 // Calculate how many times the same operand from the same loop is included 830 // into this power. 831 uint64_t Exponent = 0; 832 const uint64_t MaxExponent = UINT64_MAX >> 1; 833 // No one sane will ever try to calculate such huge exponents, but if we 834 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 835 // below when the power of 2 exceeds our Exponent, and we want it to be 836 // 1u << 31 at most to not deal with unsigned overflow. 837 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 838 ++Exponent; 839 ++E; 840 } 841 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 842 843 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 844 // that are needed into the result. 845 Value *P = expandCodeForImpl(I->second, Ty, false); 846 Value *Result = nullptr; 847 if (Exponent & 1) 848 Result = P; 849 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 850 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 851 /*IsSafeToHoist*/ true); 852 if (Exponent & BinExp) 853 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 854 SCEV::FlagAnyWrap, 855 /*IsSafeToHoist*/ true) 856 : P; 857 } 858 859 I = E; 860 assert(Result && "Nothing was expanded?"); 861 return Result; 862 }; 863 864 while (I != OpsAndLoops.end()) { 865 if (!Prod) { 866 // This is the first operand. Just expand it. 867 Prod = ExpandOpBinPowN(); 868 } else if (I->second->isAllOnesValue()) { 869 // Instead of doing a multiply by negative one, just do a negate. 870 Prod = InsertNoopCastOfTo(Prod, Ty); 871 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 872 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 873 ++I; 874 } else { 875 // A simple mul. 876 Value *W = ExpandOpBinPowN(); 877 Prod = InsertNoopCastOfTo(Prod, Ty); 878 // Canonicalize a constant to the RHS. 879 if (isa<Constant>(Prod)) std::swap(Prod, W); 880 const APInt *RHS; 881 if (match(W, m_Power2(RHS))) { 882 // Canonicalize Prod*(1<<C) to Prod<<C. 883 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 884 auto NWFlags = S->getNoWrapFlags(); 885 // clear nsw flag if shl will produce poison value. 886 if (RHS->logBase2() == RHS->getBitWidth() - 1) 887 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 888 Prod = InsertBinop(Instruction::Shl, Prod, 889 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 890 /*IsSafeToHoist*/ true); 891 } else { 892 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 893 /*IsSafeToHoist*/ true); 894 } 895 } 896 } 897 898 return Prod; 899 } 900 901 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 902 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 903 904 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 905 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 906 const APInt &RHS = SC->getAPInt(); 907 if (RHS.isPowerOf2()) 908 return InsertBinop(Instruction::LShr, LHS, 909 ConstantInt::get(Ty, RHS.logBase2()), 910 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 911 } 912 913 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 914 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 915 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 916 } 917 918 /// Determine if this is a well-behaved chain of instructions leading back to 919 /// the PHI. If so, it may be reused by expanded expressions. 920 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 921 const Loop *L) { 922 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 923 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 924 return false; 925 // If any of the operands don't dominate the insert position, bail. 926 // Addrec operands are always loop-invariant, so this can only happen 927 // if there are instructions which haven't been hoisted. 928 if (L == IVIncInsertLoop) { 929 for (Use &Op : llvm::drop_begin(IncV->operands())) 930 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 931 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 932 return false; 933 } 934 // Advance to the next instruction. 935 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 936 if (!IncV) 937 return false; 938 939 if (IncV->mayHaveSideEffects()) 940 return false; 941 942 if (IncV == PN) 943 return true; 944 945 return isNormalAddRecExprPHI(PN, IncV, L); 946 } 947 948 /// getIVIncOperand returns an induction variable increment's induction 949 /// variable operand. 950 /// 951 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 952 /// operands dominate InsertPos. 953 /// 954 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 955 /// simple patterns generated by getAddRecExprPHILiterally and 956 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 957 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 958 Instruction *InsertPos, 959 bool allowScale) { 960 if (IncV == InsertPos) 961 return nullptr; 962 963 switch (IncV->getOpcode()) { 964 default: 965 return nullptr; 966 // Check for a simple Add/Sub or GEP of a loop invariant step. 967 case Instruction::Add: 968 case Instruction::Sub: { 969 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 970 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 971 return dyn_cast<Instruction>(IncV->getOperand(0)); 972 return nullptr; 973 } 974 case Instruction::BitCast: 975 return dyn_cast<Instruction>(IncV->getOperand(0)); 976 case Instruction::GetElementPtr: 977 for (Use &U : llvm::drop_begin(IncV->operands())) { 978 if (isa<Constant>(U)) 979 continue; 980 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 981 if (!SE.DT.dominates(OInst, InsertPos)) 982 return nullptr; 983 } 984 if (allowScale) { 985 // allow any kind of GEP as long as it can be hoisted. 986 continue; 987 } 988 // This must be a pointer addition of constants (pretty), which is already 989 // handled, or some number of address-size elements (ugly). Ugly geps 990 // have 2 operands. i1* is used by the expander to represent an 991 // address-size element. 992 if (IncV->getNumOperands() != 2) 993 return nullptr; 994 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 995 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 996 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 997 return nullptr; 998 break; 999 } 1000 return dyn_cast<Instruction>(IncV->getOperand(0)); 1001 } 1002 } 1003 1004 /// If the insert point of the current builder or any of the builders on the 1005 /// stack of saved builders has 'I' as its insert point, update it to point to 1006 /// the instruction after 'I'. This is intended to be used when the instruction 1007 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1008 /// different block, the inconsistent insert point (with a mismatched 1009 /// Instruction and Block) can lead to an instruction being inserted in a block 1010 /// other than its parent. 1011 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1012 BasicBlock::iterator It(*I); 1013 BasicBlock::iterator NewInsertPt = std::next(It); 1014 if (Builder.GetInsertPoint() == It) 1015 Builder.SetInsertPoint(&*NewInsertPt); 1016 for (auto *InsertPtGuard : InsertPointGuards) 1017 if (InsertPtGuard->GetInsertPoint() == It) 1018 InsertPtGuard->SetInsertPoint(NewInsertPt); 1019 } 1020 1021 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1022 /// it available to other uses in this loop. Recursively hoist any operands, 1023 /// until we reach a value that dominates InsertPos. 1024 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1025 if (SE.DT.dominates(IncV, InsertPos)) 1026 return true; 1027 1028 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1029 // its existing users. 1030 if (isa<PHINode>(InsertPos) || 1031 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1032 return false; 1033 1034 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1035 return false; 1036 1037 // Check that the chain of IV operands leading back to Phi can be hoisted. 1038 SmallVector<Instruction*, 4> IVIncs; 1039 for(;;) { 1040 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1041 if (!Oper) 1042 return false; 1043 // IncV is safe to hoist. 1044 IVIncs.push_back(IncV); 1045 IncV = Oper; 1046 if (SE.DT.dominates(IncV, InsertPos)) 1047 break; 1048 } 1049 for (Instruction *I : llvm::reverse(IVIncs)) { 1050 fixupInsertPoints(I); 1051 I->moveBefore(InsertPos); 1052 } 1053 return true; 1054 } 1055 1056 /// Determine if this cyclic phi is in a form that would have been generated by 1057 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1058 /// as it is in a low-cost form, for example, no implied multiplication. This 1059 /// should match any patterns generated by getAddRecExprPHILiterally and 1060 /// expandAddtoGEP. 1061 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1062 const Loop *L) { 1063 for(Instruction *IVOper = IncV; 1064 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1065 /*allowScale=*/false));) { 1066 if (IVOper == PN) 1067 return true; 1068 } 1069 return false; 1070 } 1071 1072 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1073 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1074 /// need to materialize IV increments elsewhere to handle difficult situations. 1075 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1076 Type *ExpandTy, Type *IntTy, 1077 bool useSubtract) { 1078 Value *IncV; 1079 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1080 if (ExpandTy->isPointerTy()) { 1081 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1082 // If the step isn't constant, don't use an implicitly scaled GEP, because 1083 // that would require a multiply inside the loop. 1084 if (!isa<ConstantInt>(StepV)) 1085 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1086 GEPPtrTy->getAddressSpace()); 1087 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1088 if (IncV->getType() != PN->getType()) 1089 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1090 } else { 1091 IncV = useSubtract ? 1092 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1093 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1094 } 1095 return IncV; 1096 } 1097 1098 /// Check whether we can cheaply express the requested SCEV in terms of 1099 /// the available PHI SCEV by truncation and/or inversion of the step. 1100 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1101 const SCEVAddRecExpr *Phi, 1102 const SCEVAddRecExpr *Requested, 1103 bool &InvertStep) { 1104 // We can't transform to match a pointer PHI. 1105 if (Phi->getType()->isPointerTy()) 1106 return false; 1107 1108 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1109 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1110 1111 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1112 return false; 1113 1114 // Try truncate it if necessary. 1115 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1116 if (!Phi) 1117 return false; 1118 1119 // Check whether truncation will help. 1120 if (Phi == Requested) { 1121 InvertStep = false; 1122 return true; 1123 } 1124 1125 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1126 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1127 InvertStep = true; 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1135 if (!isa<IntegerType>(AR->getType())) 1136 return false; 1137 1138 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1139 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1140 const SCEV *Step = AR->getStepRecurrence(SE); 1141 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1142 SE.getSignExtendExpr(AR, WideTy)); 1143 const SCEV *ExtendAfterOp = 1144 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1145 return ExtendAfterOp == OpAfterExtend; 1146 } 1147 1148 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1149 if (!isa<IntegerType>(AR->getType())) 1150 return false; 1151 1152 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1153 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1154 const SCEV *Step = AR->getStepRecurrence(SE); 1155 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1156 SE.getZeroExtendExpr(AR, WideTy)); 1157 const SCEV *ExtendAfterOp = 1158 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1159 return ExtendAfterOp == OpAfterExtend; 1160 } 1161 1162 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1163 /// the base addrec, which is the addrec without any non-loop-dominating 1164 /// values, and return the PHI. 1165 PHINode * 1166 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1167 const Loop *L, 1168 Type *ExpandTy, 1169 Type *IntTy, 1170 Type *&TruncTy, 1171 bool &InvertStep) { 1172 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1173 1174 // Reuse a previously-inserted PHI, if present. 1175 BasicBlock *LatchBlock = L->getLoopLatch(); 1176 if (LatchBlock) { 1177 PHINode *AddRecPhiMatch = nullptr; 1178 Instruction *IncV = nullptr; 1179 TruncTy = nullptr; 1180 InvertStep = false; 1181 1182 // Only try partially matching scevs that need truncation and/or 1183 // step-inversion if we know this loop is outside the current loop. 1184 bool TryNonMatchingSCEV = 1185 IVIncInsertLoop && 1186 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1187 1188 for (PHINode &PN : L->getHeader()->phis()) { 1189 if (!SE.isSCEVable(PN.getType())) 1190 continue; 1191 1192 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1193 // PHI has no meaning at all. 1194 if (!PN.isComplete()) { 1195 SCEV_DEBUG_WITH_TYPE( 1196 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1197 continue; 1198 } 1199 1200 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1201 if (!PhiSCEV) 1202 continue; 1203 1204 bool IsMatchingSCEV = PhiSCEV == Normalized; 1205 // We only handle truncation and inversion of phi recurrences for the 1206 // expanded expression if the expanded expression's loop dominates the 1207 // loop we insert to. Check now, so we can bail out early. 1208 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1209 continue; 1210 1211 // TODO: this possibly can be reworked to avoid this cast at all. 1212 Instruction *TempIncV = 1213 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1214 if (!TempIncV) 1215 continue; 1216 1217 // Check whether we can reuse this PHI node. 1218 if (LSRMode) { 1219 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1220 continue; 1221 } else { 1222 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1223 continue; 1224 } 1225 1226 // Stop if we have found an exact match SCEV. 1227 if (IsMatchingSCEV) { 1228 IncV = TempIncV; 1229 TruncTy = nullptr; 1230 InvertStep = false; 1231 AddRecPhiMatch = &PN; 1232 break; 1233 } 1234 1235 // Try whether the phi can be translated into the requested form 1236 // (truncated and/or offset by a constant). 1237 if ((!TruncTy || InvertStep) && 1238 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1239 // Record the phi node. But don't stop we might find an exact match 1240 // later. 1241 AddRecPhiMatch = &PN; 1242 IncV = TempIncV; 1243 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1244 } 1245 } 1246 1247 if (AddRecPhiMatch) { 1248 // Ok, the add recurrence looks usable. 1249 // Remember this PHI, even in post-inc mode. 1250 InsertedValues.insert(AddRecPhiMatch); 1251 // Remember the increment. 1252 rememberInstruction(IncV); 1253 // Those values were not actually inserted but re-used. 1254 ReusedValues.insert(AddRecPhiMatch); 1255 ReusedValues.insert(IncV); 1256 return AddRecPhiMatch; 1257 } 1258 } 1259 1260 // Save the original insertion point so we can restore it when we're done. 1261 SCEVInsertPointGuard Guard(Builder, this); 1262 1263 // Another AddRec may need to be recursively expanded below. For example, if 1264 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1265 // loop. Remove this loop from the PostIncLoops set before expanding such 1266 // AddRecs. Otherwise, we cannot find a valid position for the step 1267 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1268 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1269 // so it's not worth implementing SmallPtrSet::swap. 1270 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1271 PostIncLoops.clear(); 1272 1273 // Expand code for the start value into the loop preheader. 1274 assert(L->getLoopPreheader() && 1275 "Can't expand add recurrences without a loop preheader!"); 1276 Value *StartV = 1277 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1278 L->getLoopPreheader()->getTerminator(), false); 1279 1280 // StartV must have been be inserted into L's preheader to dominate the new 1281 // phi. 1282 assert(!isa<Instruction>(StartV) || 1283 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1284 L->getHeader())); 1285 1286 // Expand code for the step value. Do this before creating the PHI so that PHI 1287 // reuse code doesn't see an incomplete PHI. 1288 const SCEV *Step = Normalized->getStepRecurrence(SE); 1289 // If the stride is negative, insert a sub instead of an add for the increment 1290 // (unless it's a constant, because subtracts of constants are canonicalized 1291 // to adds). 1292 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1293 if (useSubtract) 1294 Step = SE.getNegativeSCEV(Step); 1295 // Expand the step somewhere that dominates the loop header. 1296 Value *StepV = expandCodeForImpl( 1297 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1298 1299 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1300 // we actually do emit an addition. It does not apply if we emit a 1301 // subtraction. 1302 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1303 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1304 1305 // Create the PHI. 1306 BasicBlock *Header = L->getHeader(); 1307 Builder.SetInsertPoint(Header, Header->begin()); 1308 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1309 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1310 Twine(IVName) + ".iv"); 1311 1312 // Create the step instructions and populate the PHI. 1313 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1314 BasicBlock *Pred = *HPI; 1315 1316 // Add a start value. 1317 if (!L->contains(Pred)) { 1318 PN->addIncoming(StartV, Pred); 1319 continue; 1320 } 1321 1322 // Create a step value and add it to the PHI. 1323 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1324 // instructions at IVIncInsertPos. 1325 Instruction *InsertPos = L == IVIncInsertLoop ? 1326 IVIncInsertPos : Pred->getTerminator(); 1327 Builder.SetInsertPoint(InsertPos); 1328 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1329 1330 if (isa<OverflowingBinaryOperator>(IncV)) { 1331 if (IncrementIsNUW) 1332 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1333 if (IncrementIsNSW) 1334 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1335 } 1336 PN->addIncoming(IncV, Pred); 1337 } 1338 1339 // After expanding subexpressions, restore the PostIncLoops set so the caller 1340 // can ensure that IVIncrement dominates the current uses. 1341 PostIncLoops = SavedPostIncLoops; 1342 1343 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1344 // effective when we are able to use an IV inserted here, so record it. 1345 InsertedValues.insert(PN); 1346 InsertedIVs.push_back(PN); 1347 return PN; 1348 } 1349 1350 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1351 Type *STy = S->getType(); 1352 Type *IntTy = SE.getEffectiveSCEVType(STy); 1353 const Loop *L = S->getLoop(); 1354 1355 // Determine a normalized form of this expression, which is the expression 1356 // before any post-inc adjustment is made. 1357 const SCEVAddRecExpr *Normalized = S; 1358 if (PostIncLoops.count(L)) { 1359 PostIncLoopSet Loops; 1360 Loops.insert(L); 1361 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1362 } 1363 1364 // Strip off any non-loop-dominating component from the addrec start. 1365 const SCEV *Start = Normalized->getStart(); 1366 const SCEV *PostLoopOffset = nullptr; 1367 if (!SE.properlyDominates(Start, L->getHeader())) { 1368 PostLoopOffset = Start; 1369 Start = SE.getConstant(Normalized->getType(), 0); 1370 Normalized = cast<SCEVAddRecExpr>( 1371 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1372 Normalized->getLoop(), 1373 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1374 } 1375 1376 // Strip off any non-loop-dominating component from the addrec step. 1377 const SCEV *Step = Normalized->getStepRecurrence(SE); 1378 const SCEV *PostLoopScale = nullptr; 1379 if (!SE.dominates(Step, L->getHeader())) { 1380 PostLoopScale = Step; 1381 Step = SE.getConstant(Normalized->getType(), 1); 1382 if (!Start->isZero()) { 1383 // The normalization below assumes that Start is constant zero, so if 1384 // it isn't re-associate Start to PostLoopOffset. 1385 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1386 PostLoopOffset = Start; 1387 Start = SE.getConstant(Normalized->getType(), 0); 1388 } 1389 Normalized = 1390 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1391 Start, Step, Normalized->getLoop(), 1392 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1393 } 1394 1395 // Expand the core addrec. If we need post-loop scaling, force it to 1396 // expand to an integer type to avoid the need for additional casting. 1397 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1398 // We can't use a pointer type for the addrec if the pointer type is 1399 // non-integral. 1400 Type *AddRecPHIExpandTy = 1401 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1402 1403 // In some cases, we decide to reuse an existing phi node but need to truncate 1404 // it and/or invert the step. 1405 Type *TruncTy = nullptr; 1406 bool InvertStep = false; 1407 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1408 IntTy, TruncTy, InvertStep); 1409 1410 // Accommodate post-inc mode, if necessary. 1411 Value *Result; 1412 if (!PostIncLoops.count(L)) 1413 Result = PN; 1414 else { 1415 // In PostInc mode, use the post-incremented value. 1416 BasicBlock *LatchBlock = L->getLoopLatch(); 1417 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1418 Result = PN->getIncomingValueForBlock(LatchBlock); 1419 1420 // We might be introducing a new use of the post-inc IV that is not poison 1421 // safe, in which case we should drop poison generating flags. Only keep 1422 // those flags for which SCEV has proven that they always hold. 1423 if (isa<OverflowingBinaryOperator>(Result)) { 1424 auto *I = cast<Instruction>(Result); 1425 if (!S->hasNoUnsignedWrap()) 1426 I->setHasNoUnsignedWrap(false); 1427 if (!S->hasNoSignedWrap()) 1428 I->setHasNoSignedWrap(false); 1429 } 1430 1431 // For an expansion to use the postinc form, the client must call 1432 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1433 // or dominated by IVIncInsertPos. 1434 if (isa<Instruction>(Result) && 1435 !SE.DT.dominates(cast<Instruction>(Result), 1436 &*Builder.GetInsertPoint())) { 1437 // The induction variable's postinc expansion does not dominate this use. 1438 // IVUsers tries to prevent this case, so it is rare. However, it can 1439 // happen when an IVUser outside the loop is not dominated by the latch 1440 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1441 // all cases. Consider a phi outside whose operand is replaced during 1442 // expansion with the value of the postinc user. Without fundamentally 1443 // changing the way postinc users are tracked, the only remedy is 1444 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1445 // but hopefully expandCodeFor handles that. 1446 bool useSubtract = 1447 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1448 if (useSubtract) 1449 Step = SE.getNegativeSCEV(Step); 1450 Value *StepV; 1451 { 1452 // Expand the step somewhere that dominates the loop header. 1453 SCEVInsertPointGuard Guard(Builder, this); 1454 StepV = expandCodeForImpl( 1455 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1456 } 1457 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1458 } 1459 } 1460 1461 // We have decided to reuse an induction variable of a dominating loop. Apply 1462 // truncation and/or inversion of the step. 1463 if (TruncTy) { 1464 Type *ResTy = Result->getType(); 1465 // Normalize the result type. 1466 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1467 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1468 // Truncate the result. 1469 if (TruncTy != Result->getType()) 1470 Result = Builder.CreateTrunc(Result, TruncTy); 1471 1472 // Invert the result. 1473 if (InvertStep) 1474 Result = Builder.CreateSub( 1475 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1476 } 1477 1478 // Re-apply any non-loop-dominating scale. 1479 if (PostLoopScale) { 1480 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1481 Result = InsertNoopCastOfTo(Result, IntTy); 1482 Result = Builder.CreateMul(Result, 1483 expandCodeForImpl(PostLoopScale, IntTy, false)); 1484 } 1485 1486 // Re-apply any non-loop-dominating offset. 1487 if (PostLoopOffset) { 1488 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1489 if (Result->getType()->isIntegerTy()) { 1490 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1491 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1492 } else { 1493 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1494 } 1495 } else { 1496 Result = InsertNoopCastOfTo(Result, IntTy); 1497 Result = Builder.CreateAdd( 1498 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1499 } 1500 } 1501 1502 return Result; 1503 } 1504 1505 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1506 // In canonical mode we compute the addrec as an expression of a canonical IV 1507 // using evaluateAtIteration and expand the resulting SCEV expression. This 1508 // way we avoid introducing new IVs to carry on the comutation of the addrec 1509 // throughout the loop. 1510 // 1511 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1512 // type wider than the addrec itself. Emitting a canonical IV of the 1513 // proper type might produce non-legal types, for example expanding an i64 1514 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1515 // back to non-canonical mode for nested addrecs. 1516 if (!CanonicalMode || (S->getNumOperands() > 2)) 1517 return expandAddRecExprLiterally(S); 1518 1519 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1520 const Loop *L = S->getLoop(); 1521 1522 // First check for an existing canonical IV in a suitable type. 1523 PHINode *CanonicalIV = nullptr; 1524 if (PHINode *PN = L->getCanonicalInductionVariable()) 1525 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1526 CanonicalIV = PN; 1527 1528 // Rewrite an AddRec in terms of the canonical induction variable, if 1529 // its type is more narrow. 1530 if (CanonicalIV && 1531 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1532 !S->getType()->isPointerTy()) { 1533 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1534 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1535 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1536 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1537 S->getNoWrapFlags(SCEV::FlagNW))); 1538 BasicBlock::iterator NewInsertPt = 1539 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1540 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1541 &*NewInsertPt, false); 1542 return V; 1543 } 1544 1545 // {X,+,F} --> X + {0,+,F} 1546 if (!S->getStart()->isZero()) { 1547 if (PointerType *PTy = dyn_cast<PointerType>(S->getType())) { 1548 Value *StartV = expand(SE.getPointerBase(S)); 1549 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1550 return expandAddToGEP(SE.removePointerBase(S), PTy, Ty, StartV); 1551 } 1552 1553 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1554 NewOps[0] = SE.getConstant(Ty, 0); 1555 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1556 S->getNoWrapFlags(SCEV::FlagNW)); 1557 1558 // Just do a normal add. Pre-expand the operands to suppress folding. 1559 // 1560 // The LHS and RHS values are factored out of the expand call to make the 1561 // output independent of the argument evaluation order. 1562 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1563 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1564 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1565 } 1566 1567 // If we don't yet have a canonical IV, create one. 1568 if (!CanonicalIV) { 1569 // Create and insert the PHI node for the induction variable in the 1570 // specified loop. 1571 BasicBlock *Header = L->getHeader(); 1572 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1573 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1574 &Header->front()); 1575 rememberInstruction(CanonicalIV); 1576 1577 SmallSet<BasicBlock *, 4> PredSeen; 1578 Constant *One = ConstantInt::get(Ty, 1); 1579 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1580 BasicBlock *HP = *HPI; 1581 if (!PredSeen.insert(HP).second) { 1582 // There must be an incoming value for each predecessor, even the 1583 // duplicates! 1584 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1585 continue; 1586 } 1587 1588 if (L->contains(HP)) { 1589 // Insert a unit add instruction right before the terminator 1590 // corresponding to the back-edge. 1591 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1592 "indvar.next", 1593 HP->getTerminator()); 1594 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1595 rememberInstruction(Add); 1596 CanonicalIV->addIncoming(Add, HP); 1597 } else { 1598 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1599 } 1600 } 1601 } 1602 1603 // {0,+,1} --> Insert a canonical induction variable into the loop! 1604 if (S->isAffine() && S->getOperand(1)->isOne()) { 1605 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1606 "IVs with types different from the canonical IV should " 1607 "already have been handled!"); 1608 return CanonicalIV; 1609 } 1610 1611 // {0,+,F} --> {0,+,1} * F 1612 1613 // If this is a simple linear addrec, emit it now as a special case. 1614 if (S->isAffine()) // {0,+,F} --> i*F 1615 return 1616 expand(SE.getTruncateOrNoop( 1617 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1618 SE.getNoopOrAnyExtend(S->getOperand(1), 1619 CanonicalIV->getType())), 1620 Ty)); 1621 1622 // If this is a chain of recurrences, turn it into a closed form, using the 1623 // folders, then expandCodeFor the closed form. This allows the folders to 1624 // simplify the expression without having to build a bunch of special code 1625 // into this folder. 1626 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1627 1628 // Promote S up to the canonical IV type, if the cast is foldable. 1629 const SCEV *NewS = S; 1630 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1631 if (isa<SCEVAddRecExpr>(Ext)) 1632 NewS = Ext; 1633 1634 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1635 1636 // Truncate the result down to the original type, if needed. 1637 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1638 return expand(T); 1639 } 1640 1641 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1642 Value *V = 1643 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1644 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1645 GetOptimalInsertionPointForCastOf(V)); 1646 } 1647 1648 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1649 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1650 Value *V = expandCodeForImpl( 1651 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1652 false); 1653 return Builder.CreateTrunc(V, Ty); 1654 } 1655 1656 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1657 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1658 Value *V = expandCodeForImpl( 1659 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1660 false); 1661 return Builder.CreateZExt(V, Ty); 1662 } 1663 1664 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1665 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1666 Value *V = expandCodeForImpl( 1667 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1668 false); 1669 return Builder.CreateSExt(V, Ty); 1670 } 1671 1672 Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 1673 Intrinsic::ID IntrinID, Twine Name, 1674 bool IsSequential) { 1675 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1676 Type *Ty = LHS->getType(); 1677 if (IsSequential) 1678 LHS = Builder.CreateFreeze(LHS); 1679 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1680 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1681 if (IsSequential && i != 0) 1682 RHS = Builder.CreateFreeze(RHS); 1683 Value *Sel; 1684 if (Ty->isIntegerTy()) 1685 Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 1686 /*FMFSource=*/nullptr, Name); 1687 else { 1688 Value *ICmp = 1689 Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 1690 Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1691 } 1692 LHS = Sel; 1693 } 1694 return LHS; 1695 } 1696 1697 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1698 return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 1699 } 1700 1701 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1702 return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 1703 } 1704 1705 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1706 return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 1707 } 1708 1709 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1710 return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 1711 } 1712 1713 Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 1714 return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 1715 } 1716 1717 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1718 Instruction *IP, bool Root) { 1719 setInsertPoint(IP); 1720 Value *V = expandCodeForImpl(SH, Ty, Root); 1721 return V; 1722 } 1723 1724 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1725 // Expand the code for this SCEV. 1726 Value *V = expand(SH); 1727 1728 if (PreserveLCSSA) { 1729 if (auto *Inst = dyn_cast<Instruction>(V)) { 1730 // Create a temporary instruction to at the current insertion point, so we 1731 // can hand it off to the helper to create LCSSA PHIs if required for the 1732 // new use. 1733 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1734 // would accept a insertion point and return an LCSSA phi for that 1735 // insertion point, so there is no need to insert & remove the temporary 1736 // instruction. 1737 Instruction *Tmp; 1738 if (Inst->getType()->isIntegerTy()) 1739 Tmp = cast<Instruction>(Builder.CreateIntToPtr( 1740 Inst, Inst->getType()->getPointerTo(), "tmp.lcssa.user")); 1741 else { 1742 assert(Inst->getType()->isPointerTy()); 1743 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1744 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1745 } 1746 V = fixupLCSSAFormFor(Tmp, 0); 1747 1748 // Clean up temporary instruction. 1749 InsertedValues.erase(Tmp); 1750 InsertedPostIncValues.erase(Tmp); 1751 Tmp->eraseFromParent(); 1752 } 1753 } 1754 1755 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1756 if (Ty) { 1757 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1758 "non-trivial casts should be done with the SCEVs directly!"); 1759 V = InsertNoopCastOfTo(V, Ty); 1760 } 1761 return V; 1762 } 1763 1764 Value *SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1765 const Instruction *InsertPt) { 1766 // If the expansion is not in CanonicalMode, and the SCEV contains any 1767 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1768 if (!CanonicalMode && SE.containsAddRecurrence(S)) 1769 return nullptr; 1770 1771 // If S is a constant, it may be worse to reuse an existing Value. 1772 if (isa<SCEVConstant>(S)) 1773 return nullptr; 1774 1775 // Choose a Value from the set which dominates the InsertPt. 1776 // InsertPt should be inside the Value's parent loop so as not to break 1777 // the LCSSA form. 1778 for (Value *V : SE.getSCEVValues(S)) { 1779 Instruction *EntInst = dyn_cast<Instruction>(V); 1780 if (!EntInst) 1781 continue; 1782 1783 assert(EntInst->getFunction() == InsertPt->getFunction()); 1784 if (S->getType() == V->getType() && 1785 SE.DT.dominates(EntInst, InsertPt) && 1786 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1787 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1788 return V; 1789 } 1790 return nullptr; 1791 } 1792 1793 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1794 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1795 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1796 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1797 // the expansion will try to reuse Value from ExprValueMap, and only when it 1798 // fails, expand the SCEV literally. 1799 Value *SCEVExpander::expand(const SCEV *S) { 1800 // Compute an insertion point for this SCEV object. Hoist the instructions 1801 // as far out in the loop nest as possible. 1802 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1803 1804 // We can move insertion point only if there is no div or rem operations 1805 // otherwise we are risky to move it over the check for zero denominator. 1806 auto SafeToHoist = [](const SCEV *S) { 1807 return !SCEVExprContains(S, [](const SCEV *S) { 1808 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1809 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1810 // Division by non-zero constants can be hoisted. 1811 return SC->getValue()->isZero(); 1812 // All other divisions should not be moved as they may be 1813 // divisions by zero and should be kept within the 1814 // conditions of the surrounding loops that guard their 1815 // execution (see PR35406). 1816 return true; 1817 } 1818 return false; 1819 }); 1820 }; 1821 if (SafeToHoist(S)) { 1822 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1823 L = L->getParentLoop()) { 1824 if (SE.isLoopInvariant(S, L)) { 1825 if (!L) break; 1826 if (BasicBlock *Preheader = L->getLoopPreheader()) 1827 InsertPt = Preheader->getTerminator(); 1828 else 1829 // LSR sets the insertion point for AddRec start/step values to the 1830 // block start to simplify value reuse, even though it's an invalid 1831 // position. SCEVExpander must correct for this in all cases. 1832 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1833 } else { 1834 // If the SCEV is computable at this level, insert it into the header 1835 // after the PHIs (and after any other instructions that we've inserted 1836 // there) so that it is guaranteed to dominate any user inside the loop. 1837 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1838 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1839 1840 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1841 (isInsertedInstruction(InsertPt) || 1842 isa<DbgInfoIntrinsic>(InsertPt))) { 1843 InsertPt = &*std::next(InsertPt->getIterator()); 1844 } 1845 break; 1846 } 1847 } 1848 } 1849 1850 // Check to see if we already expanded this here. 1851 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1852 if (I != InsertedExpressions.end()) 1853 return I->second; 1854 1855 SCEVInsertPointGuard Guard(Builder, this); 1856 Builder.SetInsertPoint(InsertPt); 1857 1858 // Expand the expression into instructions. 1859 Value *V = FindValueInExprValueMap(S, InsertPt); 1860 if (!V) 1861 V = visit(S); 1862 else { 1863 // If we're reusing an existing instruction, we are effectively CSEing two 1864 // copies of the instruction (with potentially different flags). As such, 1865 // we need to drop any poison generating flags unless we can prove that 1866 // said flags must be valid for all new users. 1867 if (auto *I = dyn_cast<Instruction>(V)) 1868 if (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(I)) 1869 I->dropPoisonGeneratingFlags(); 1870 } 1871 // Remember the expanded value for this SCEV at this location. 1872 // 1873 // This is independent of PostIncLoops. The mapped value simply materializes 1874 // the expression at this insertion point. If the mapped value happened to be 1875 // a postinc expansion, it could be reused by a non-postinc user, but only if 1876 // its insertion point was already at the head of the loop. 1877 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1878 return V; 1879 } 1880 1881 void SCEVExpander::rememberInstruction(Value *I) { 1882 auto DoInsert = [this](Value *V) { 1883 if (!PostIncLoops.empty()) 1884 InsertedPostIncValues.insert(V); 1885 else 1886 InsertedValues.insert(V); 1887 }; 1888 DoInsert(I); 1889 1890 if (!PreserveLCSSA) 1891 return; 1892 1893 if (auto *Inst = dyn_cast<Instruction>(I)) { 1894 // A new instruction has been added, which might introduce new uses outside 1895 // a defining loop. Fix LCSSA from for each operand of the new instruction, 1896 // if required. 1897 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 1898 OpIdx++) 1899 fixupLCSSAFormFor(Inst, OpIdx); 1900 } 1901 } 1902 1903 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1904 /// replace them with their most canonical representative. Return the number of 1905 /// phis eliminated. 1906 /// 1907 /// This does not depend on any SCEVExpander state but should be used in 1908 /// the same context that SCEVExpander is used. 1909 unsigned 1910 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1911 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1912 const TargetTransformInfo *TTI) { 1913 // Find integer phis in order of increasing width. 1914 SmallVector<PHINode*, 8> Phis; 1915 for (PHINode &PN : L->getHeader()->phis()) 1916 Phis.push_back(&PN); 1917 1918 if (TTI) 1919 // Use stable_sort to preserve order of equivalent PHIs, so the order 1920 // of the sorted Phis is the same from run to run on the same loop. 1921 llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 1922 // Put pointers at the back and make sure pointer < pointer = false. 1923 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 1924 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1925 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 1926 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 1927 }); 1928 1929 unsigned NumElim = 0; 1930 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1931 // Process phis from wide to narrow. Map wide phis to their truncation 1932 // so narrow phis can reuse them. 1933 for (PHINode *Phi : Phis) { 1934 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 1935 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 1936 return V; 1937 if (!SE.isSCEVable(PN->getType())) 1938 return nullptr; 1939 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 1940 if (!Const) 1941 return nullptr; 1942 return Const->getValue(); 1943 }; 1944 1945 // Fold constant phis. They may be congruent to other constant phis and 1946 // would confuse the logic below that expects proper IVs. 1947 if (Value *V = SimplifyPHINode(Phi)) { 1948 if (V->getType() != Phi->getType()) 1949 continue; 1950 Phi->replaceAllUsesWith(V); 1951 DeadInsts.emplace_back(Phi); 1952 ++NumElim; 1953 SCEV_DEBUG_WITH_TYPE(DebugType, 1954 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1955 << '\n'); 1956 continue; 1957 } 1958 1959 if (!SE.isSCEVable(Phi->getType())) 1960 continue; 1961 1962 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1963 if (!OrigPhiRef) { 1964 OrigPhiRef = Phi; 1965 if (Phi->getType()->isIntegerTy() && TTI && 1966 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1967 // This phi can be freely truncated to the narrowest phi type. Map the 1968 // truncated expression to it so it will be reused for narrow types. 1969 const SCEV *TruncExpr = 1970 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1971 ExprToIVMap[TruncExpr] = Phi; 1972 } 1973 continue; 1974 } 1975 1976 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1977 // sense. 1978 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1979 continue; 1980 1981 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1982 Instruction *OrigInc = dyn_cast<Instruction>( 1983 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1984 Instruction *IsomorphicInc = 1985 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1986 1987 if (OrigInc && IsomorphicInc) { 1988 // If this phi has the same width but is more canonical, replace the 1989 // original with it. As part of the "more canonical" determination, 1990 // respect a prior decision to use an IV chain. 1991 if (OrigPhiRef->getType() == Phi->getType() && 1992 !(ChainedPhis.count(Phi) || 1993 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 1994 (ChainedPhis.count(Phi) || 1995 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1996 std::swap(OrigPhiRef, Phi); 1997 std::swap(OrigInc, IsomorphicInc); 1998 } 1999 // Replacing the congruent phi is sufficient because acyclic 2000 // redundancy elimination, CSE/GVN, should handle the 2001 // rest. However, once SCEV proves that a phi is congruent, 2002 // it's often the head of an IV user cycle that is isomorphic 2003 // with the original phi. It's worth eagerly cleaning up the 2004 // common case of a single IV increment so that DeleteDeadPHIs 2005 // can remove cycles that had postinc uses. 2006 const SCEV *TruncExpr = 2007 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2008 if (OrigInc != IsomorphicInc && 2009 TruncExpr == SE.getSCEV(IsomorphicInc) && 2010 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2011 hoistIVInc(OrigInc, IsomorphicInc)) { 2012 SCEV_DEBUG_WITH_TYPE( 2013 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2014 << *IsomorphicInc << '\n'); 2015 Value *NewInc = OrigInc; 2016 if (OrigInc->getType() != IsomorphicInc->getType()) { 2017 Instruction *IP = nullptr; 2018 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2019 IP = &*PN->getParent()->getFirstInsertionPt(); 2020 else 2021 IP = OrigInc->getNextNode(); 2022 2023 IRBuilder<> Builder(IP); 2024 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2025 NewInc = Builder.CreateTruncOrBitCast( 2026 OrigInc, IsomorphicInc->getType(), IVName); 2027 } 2028 IsomorphicInc->replaceAllUsesWith(NewInc); 2029 DeadInsts.emplace_back(IsomorphicInc); 2030 } 2031 } 2032 } 2033 SCEV_DEBUG_WITH_TYPE(DebugType, 2034 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2035 << '\n'); 2036 SCEV_DEBUG_WITH_TYPE( 2037 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2038 ++NumElim; 2039 Value *NewIV = OrigPhiRef; 2040 if (OrigPhiRef->getType() != Phi->getType()) { 2041 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2042 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2043 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2044 } 2045 Phi->replaceAllUsesWith(NewIV); 2046 DeadInsts.emplace_back(Phi); 2047 } 2048 return NumElim; 2049 } 2050 2051 Value *SCEVExpander::getRelatedExistingExpansion(const SCEV *S, 2052 const Instruction *At, 2053 Loop *L) { 2054 using namespace llvm::PatternMatch; 2055 2056 SmallVector<BasicBlock *, 4> ExitingBlocks; 2057 L->getExitingBlocks(ExitingBlocks); 2058 2059 // Look for suitable value in simple conditions at the loop exits. 2060 for (BasicBlock *BB : ExitingBlocks) { 2061 ICmpInst::Predicate Pred; 2062 Instruction *LHS, *RHS; 2063 2064 if (!match(BB->getTerminator(), 2065 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2066 m_BasicBlock(), m_BasicBlock()))) 2067 continue; 2068 2069 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2070 return LHS; 2071 2072 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2073 return RHS; 2074 } 2075 2076 // Use expand's logic which is used for reusing a previous Value in 2077 // ExprValueMap. Note that we don't currently model the cost of 2078 // needing to drop poison generating flags on the instruction if we 2079 // want to reuse it. We effectively assume that has zero cost. 2080 return FindValueInExprValueMap(S, At); 2081 } 2082 2083 template<typename T> static InstructionCost costAndCollectOperands( 2084 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2085 TargetTransformInfo::TargetCostKind CostKind, 2086 SmallVectorImpl<SCEVOperand> &Worklist) { 2087 2088 const T *S = cast<T>(WorkItem.S); 2089 InstructionCost Cost = 0; 2090 // Object to help map SCEV operands to expanded IR instructions. 2091 struct OperationIndices { 2092 OperationIndices(unsigned Opc, size_t min, size_t max) : 2093 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2094 unsigned Opcode; 2095 size_t MinIdx; 2096 size_t MaxIdx; 2097 }; 2098 2099 // Collect the operations of all the instructions that will be needed to 2100 // expand the SCEVExpr. This is so that when we come to cost the operands, 2101 // we know what the generated user(s) will be. 2102 SmallVector<OperationIndices, 2> Operations; 2103 2104 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2105 Operations.emplace_back(Opcode, 0, 0); 2106 return TTI.getCastInstrCost(Opcode, S->getType(), 2107 S->getOperand(0)->getType(), 2108 TTI::CastContextHint::None, CostKind); 2109 }; 2110 2111 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2112 unsigned MinIdx = 0, 2113 unsigned MaxIdx = 1) -> InstructionCost { 2114 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2115 return NumRequired * 2116 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2117 }; 2118 2119 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2120 unsigned MaxIdx) -> InstructionCost { 2121 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2122 Type *OpType = S->getOperand(0)->getType(); 2123 return NumRequired * TTI.getCmpSelInstrCost( 2124 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2125 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2126 }; 2127 2128 switch (S->getSCEVType()) { 2129 case scCouldNotCompute: 2130 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2131 case scUnknown: 2132 case scConstant: 2133 return 0; 2134 case scPtrToInt: 2135 Cost = CastCost(Instruction::PtrToInt); 2136 break; 2137 case scTruncate: 2138 Cost = CastCost(Instruction::Trunc); 2139 break; 2140 case scZeroExtend: 2141 Cost = CastCost(Instruction::ZExt); 2142 break; 2143 case scSignExtend: 2144 Cost = CastCost(Instruction::SExt); 2145 break; 2146 case scUDivExpr: { 2147 unsigned Opcode = Instruction::UDiv; 2148 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2149 if (SC->getAPInt().isPowerOf2()) 2150 Opcode = Instruction::LShr; 2151 Cost = ArithCost(Opcode, 1); 2152 break; 2153 } 2154 case scAddExpr: 2155 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2156 break; 2157 case scMulExpr: 2158 // TODO: this is a very pessimistic cost modelling for Mul, 2159 // because of Bin Pow algorithm actually used by the expander, 2160 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2161 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2162 break; 2163 case scSMaxExpr: 2164 case scUMaxExpr: 2165 case scSMinExpr: 2166 case scUMinExpr: 2167 case scSequentialUMinExpr: { 2168 // FIXME: should this ask the cost for Intrinsic's? 2169 // The reduction tree. 2170 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2171 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2172 switch (S->getSCEVType()) { 2173 case scSequentialUMinExpr: { 2174 // The safety net against poison. 2175 // FIXME: this is broken. 2176 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 2177 Cost += ArithCost(Instruction::Or, 2178 S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 2179 Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 2180 break; 2181 } 2182 default: 2183 assert(!isa<SCEVSequentialMinMaxExpr>(S) && 2184 "Unhandled SCEV expression type?"); 2185 break; 2186 } 2187 break; 2188 } 2189 case scAddRecExpr: { 2190 // In this polynominal, we may have some zero operands, and we shouldn't 2191 // really charge for those. So how many non-zero coeffients are there? 2192 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2193 return !Op->isZero(); 2194 }); 2195 2196 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2197 assert(!(*std::prev(S->operands().end()))->isZero() && 2198 "Last operand should not be zero"); 2199 2200 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2201 int NumNonZeroDegreeNonOneTerms = 2202 llvm::count_if(S->operands(), [](const SCEV *Op) { 2203 auto *SConst = dyn_cast<SCEVConstant>(Op); 2204 return !SConst || SConst->getAPInt().ugt(1); 2205 }); 2206 2207 // Much like with normal add expr, the polynominal will require 2208 // one less addition than the number of it's terms. 2209 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2210 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2211 // Here, *each* one of those will require a multiplication. 2212 InstructionCost MulCost = 2213 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2214 Cost = AddCost + MulCost; 2215 2216 // What is the degree of this polynominal? 2217 int PolyDegree = S->getNumOperands() - 1; 2218 assert(PolyDegree >= 1 && "Should be at least affine."); 2219 2220 // The final term will be: 2221 // Op_{PolyDegree} * x ^ {PolyDegree} 2222 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2223 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2224 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2225 // FIXME: this is conservatively correct, but might be overly pessimistic. 2226 Cost += MulCost * (PolyDegree - 1); 2227 break; 2228 } 2229 } 2230 2231 for (auto &CostOp : Operations) { 2232 for (auto SCEVOp : enumerate(S->operands())) { 2233 // Clamp the index to account for multiple IR operations being chained. 2234 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2235 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2236 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2237 } 2238 } 2239 return Cost; 2240 } 2241 2242 bool SCEVExpander::isHighCostExpansionHelper( 2243 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2244 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2245 SmallPtrSetImpl<const SCEV *> &Processed, 2246 SmallVectorImpl<SCEVOperand> &Worklist) { 2247 if (Cost > Budget) 2248 return true; // Already run out of budget, give up. 2249 2250 const SCEV *S = WorkItem.S; 2251 // Was the cost of expansion of this expression already accounted for? 2252 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2253 return false; // We have already accounted for this expression. 2254 2255 // If we can find an existing value for this scev available at the point "At" 2256 // then consider the expression cheap. 2257 if (getRelatedExistingExpansion(S, &At, L)) 2258 return false; // Consider the expression to be free. 2259 2260 TargetTransformInfo::TargetCostKind CostKind = 2261 L->getHeader()->getParent()->hasMinSize() 2262 ? TargetTransformInfo::TCK_CodeSize 2263 : TargetTransformInfo::TCK_RecipThroughput; 2264 2265 switch (S->getSCEVType()) { 2266 case scCouldNotCompute: 2267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2268 case scUnknown: 2269 // Assume to be zero-cost. 2270 return false; 2271 case scConstant: { 2272 // Only evalulate the costs of constants when optimizing for size. 2273 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2274 return false; 2275 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2276 Type *Ty = S->getType(); 2277 Cost += TTI.getIntImmCostInst( 2278 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2279 return Cost > Budget; 2280 } 2281 case scTruncate: 2282 case scPtrToInt: 2283 case scZeroExtend: 2284 case scSignExtend: { 2285 Cost += 2286 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2287 return false; // Will answer upon next entry into this function. 2288 } 2289 case scUDivExpr: { 2290 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2291 // HowManyLessThans produced to compute a precise expression, rather than a 2292 // UDiv from the user's code. If we can't find a UDiv in the code with some 2293 // simple searching, we need to account for it's cost. 2294 2295 // At the beginning of this function we already tried to find existing 2296 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2297 // pattern involving division. This is just a simple search heuristic. 2298 if (getRelatedExistingExpansion( 2299 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2300 return false; // Consider it to be free. 2301 2302 Cost += 2303 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2304 return false; // Will answer upon next entry into this function. 2305 } 2306 case scAddExpr: 2307 case scMulExpr: 2308 case scUMaxExpr: 2309 case scSMaxExpr: 2310 case scUMinExpr: 2311 case scSMinExpr: 2312 case scSequentialUMinExpr: { 2313 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2314 "Nary expr should have more than 1 operand."); 2315 // The simple nary expr will require one less op (or pair of ops) 2316 // than the number of it's terms. 2317 Cost += 2318 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2319 return Cost > Budget; 2320 } 2321 case scAddRecExpr: { 2322 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2323 "Polynomial should be at least linear"); 2324 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2325 WorkItem, TTI, CostKind, Worklist); 2326 return Cost > Budget; 2327 } 2328 } 2329 llvm_unreachable("Unknown SCEV kind!"); 2330 } 2331 2332 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2333 Instruction *IP) { 2334 assert(IP); 2335 switch (Pred->getKind()) { 2336 case SCEVPredicate::P_Union: 2337 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2338 case SCEVPredicate::P_Compare: 2339 return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 2340 case SCEVPredicate::P_Wrap: { 2341 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2342 return expandWrapPredicate(AddRecPred, IP); 2343 } 2344 } 2345 llvm_unreachable("Unknown SCEV predicate type"); 2346 } 2347 2348 Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 2349 Instruction *IP) { 2350 Value *Expr0 = 2351 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2352 Value *Expr1 = 2353 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2354 2355 Builder.SetInsertPoint(IP); 2356 auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 2357 auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 2358 return I; 2359 } 2360 2361 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2362 Instruction *Loc, bool Signed) { 2363 assert(AR->isAffine() && "Cannot generate RT check for " 2364 "non-affine expression"); 2365 2366 // FIXME: It is highly suspicious that we're ignoring the predicates here. 2367 SmallVector<const SCEVPredicate *, 4> Pred; 2368 const SCEV *ExitCount = 2369 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2370 2371 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2372 2373 const SCEV *Step = AR->getStepRecurrence(SE); 2374 const SCEV *Start = AR->getStart(); 2375 2376 Type *ARTy = AR->getType(); 2377 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2378 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2379 2380 // The expression {Start,+,Step} has nusw/nssw if 2381 // Step < 0, Start - |Step| * Backedge <= Start 2382 // Step >= 0, Start + |Step| * Backedge > Start 2383 // and |Step| * Backedge doesn't unsigned overflow. 2384 2385 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2386 Builder.SetInsertPoint(Loc); 2387 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2388 2389 IntegerType *Ty = 2390 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2391 2392 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2393 Value *NegStepValue = 2394 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2395 Value *StartValue = expandCodeForImpl(Start, ARTy, Loc, false); 2396 2397 ConstantInt *Zero = 2398 ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 2399 2400 Builder.SetInsertPoint(Loc); 2401 // Compute |Step| 2402 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2403 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2404 2405 // Compute |Step| * Backedge 2406 // Compute: 2407 // 1. Start + |Step| * Backedge < Start 2408 // 2. Start - |Step| * Backedge > Start 2409 // 2410 // And select either 1. or 2. depending on whether step is positive or 2411 // negative. If Step is known to be positive or negative, only create 2412 // either 1. or 2. 2413 auto ComputeEndCheck = [&]() -> Value * { 2414 // Checking <u 0 is always false. 2415 if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 2416 return ConstantInt::getFalse(Loc->getContext()); 2417 2418 // Get the backedge taken count and truncate or extended to the AR type. 2419 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2420 2421 Value *MulV, *OfMul; 2422 if (Step->isOne()) { 2423 // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2424 // needed, there is never an overflow, so to avoid artificially inflating 2425 // the cost of the check, directly emit the optimized IR. 2426 MulV = TruncTripCount; 2427 OfMul = ConstantInt::getFalse(MulV->getContext()); 2428 } else { 2429 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2430 Intrinsic::umul_with_overflow, Ty); 2431 CallInst *Mul = 2432 Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2433 MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2434 OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2435 } 2436 2437 Value *Add = nullptr, *Sub = nullptr; 2438 bool NeedPosCheck = !SE.isKnownNegative(Step); 2439 bool NeedNegCheck = !SE.isKnownPositive(Step); 2440 2441 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARTy)) { 2442 StartValue = InsertNoopCastOfTo( 2443 StartValue, Builder.getInt8PtrTy(ARPtrTy->getAddressSpace())); 2444 Value *NegMulV = Builder.CreateNeg(MulV); 2445 if (NeedPosCheck) 2446 Add = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, MulV); 2447 if (NeedNegCheck) 2448 Sub = Builder.CreateGEP(Builder.getInt8Ty(), StartValue, NegMulV); 2449 } else { 2450 if (NeedPosCheck) 2451 Add = Builder.CreateAdd(StartValue, MulV); 2452 if (NeedNegCheck) 2453 Sub = Builder.CreateSub(StartValue, MulV); 2454 } 2455 2456 Value *EndCompareLT = nullptr; 2457 Value *EndCompareGT = nullptr; 2458 Value *EndCheck = nullptr; 2459 if (NeedPosCheck) 2460 EndCheck = EndCompareLT = Builder.CreateICmp( 2461 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2462 if (NeedNegCheck) 2463 EndCheck = EndCompareGT = Builder.CreateICmp( 2464 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2465 if (NeedPosCheck && NeedNegCheck) { 2466 // Select the answer based on the sign of Step. 2467 EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2468 } 2469 return Builder.CreateOr(EndCheck, OfMul); 2470 }; 2471 Value *EndCheck = ComputeEndCheck(); 2472 2473 // If the backedge taken count type is larger than the AR type, 2474 // check that we don't drop any bits by truncating it. If we are 2475 // dropping bits, then we have overflow (unless the step is zero). 2476 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2477 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2478 auto *BackedgeCheck = 2479 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2480 ConstantInt::get(Loc->getContext(), MaxVal)); 2481 BackedgeCheck = Builder.CreateAnd( 2482 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2483 2484 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2485 } 2486 2487 return EndCheck; 2488 } 2489 2490 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2491 Instruction *IP) { 2492 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2493 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2494 2495 // Add a check for NUSW 2496 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2497 NUSWCheck = generateOverflowCheck(A, IP, false); 2498 2499 // Add a check for NSSW 2500 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2501 NSSWCheck = generateOverflowCheck(A, IP, true); 2502 2503 if (NUSWCheck && NSSWCheck) 2504 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2505 2506 if (NUSWCheck) 2507 return NUSWCheck; 2508 2509 if (NSSWCheck) 2510 return NSSWCheck; 2511 2512 return ConstantInt::getFalse(IP->getContext()); 2513 } 2514 2515 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2516 Instruction *IP) { 2517 // Loop over all checks in this set. 2518 SmallVector<Value *> Checks; 2519 for (auto Pred : Union->getPredicates()) { 2520 Checks.push_back(expandCodeForPredicate(Pred, IP)); 2521 Builder.SetInsertPoint(IP); 2522 } 2523 2524 if (Checks.empty()) 2525 return ConstantInt::getFalse(IP->getContext()); 2526 return Builder.CreateOr(Checks); 2527 } 2528 2529 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2530 assert(PreserveLCSSA); 2531 SmallVector<Instruction *, 1> ToUpdate; 2532 2533 auto *OpV = User->getOperand(OpIdx); 2534 auto *OpI = dyn_cast<Instruction>(OpV); 2535 if (!OpI) 2536 return OpV; 2537 2538 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2539 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2540 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2541 return OpV; 2542 2543 ToUpdate.push_back(OpI); 2544 SmallVector<PHINode *, 16> PHIsToRemove; 2545 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2546 for (PHINode *PN : PHIsToRemove) { 2547 if (!PN->use_empty()) 2548 continue; 2549 InsertedValues.erase(PN); 2550 InsertedPostIncValues.erase(PN); 2551 PN->eraseFromParent(); 2552 } 2553 2554 return User->getOperand(OpIdx); 2555 } 2556 2557 namespace { 2558 // Search for a SCEV subexpression that is not safe to expand. Any expression 2559 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2560 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2561 // instruction, but the important thing is that we prove the denominator is 2562 // nonzero before expansion. 2563 // 2564 // IVUsers already checks that IV-derived expressions are safe. So this check is 2565 // only needed when the expression includes some subexpression that is not IV 2566 // derived. 2567 // 2568 // Currently, we only allow division by a nonzero constant here. If this is 2569 // inadequate, we could easily allow division by SCEVUnknown by using 2570 // ValueTracking to check isKnownNonZero(). 2571 // 2572 // We cannot generally expand recurrences unless the step dominates the loop 2573 // header. The expander handles the special case of affine recurrences by 2574 // scaling the recurrence outside the loop, but this technique isn't generally 2575 // applicable. Expanding a nested recurrence outside a loop requires computing 2576 // binomial coefficients. This could be done, but the recurrence has to be in a 2577 // perfectly reduced form, which can't be guaranteed. 2578 struct SCEVFindUnsafe { 2579 ScalarEvolution &SE; 2580 bool CanonicalMode; 2581 bool IsUnsafe = false; 2582 2583 SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 2584 : SE(SE), CanonicalMode(CanonicalMode) {} 2585 2586 bool follow(const SCEV *S) { 2587 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2588 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2589 if (!SC || SC->getValue()->isZero()) { 2590 IsUnsafe = true; 2591 return false; 2592 } 2593 } 2594 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2595 const SCEV *Step = AR->getStepRecurrence(SE); 2596 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2597 IsUnsafe = true; 2598 return false; 2599 } 2600 2601 // For non-affine addrecs or in non-canonical mode we need a preheader 2602 // to insert into. 2603 if (!AR->getLoop()->getLoopPreheader() && 2604 (!CanonicalMode || !AR->isAffine())) { 2605 IsUnsafe = true; 2606 return false; 2607 } 2608 } 2609 return true; 2610 } 2611 bool isDone() const { return IsUnsafe; } 2612 }; 2613 } 2614 2615 namespace llvm { 2616 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE, bool CanonicalMode) { 2617 SCEVFindUnsafe Search(SE, CanonicalMode); 2618 visitAll(S, Search); 2619 return !Search.IsUnsafe; 2620 } 2621 2622 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2623 ScalarEvolution &SE) { 2624 if (!isSafeToExpand(S, SE)) 2625 return false; 2626 // We have to prove that the expanded site of S dominates InsertionPoint. 2627 // This is easy when not in the same block, but hard when S is an instruction 2628 // to be expanded somewhere inside the same block as our insertion point. 2629 // What we really need here is something analogous to an OrderedBasicBlock, 2630 // but for the moment, we paper over the problem by handling two common and 2631 // cheap to check cases. 2632 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2633 return true; 2634 if (SE.dominates(S, InsertionPoint->getParent())) { 2635 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2636 return true; 2637 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2638 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2639 return true; 2640 } 2641 return false; 2642 } 2643 2644 void SCEVExpanderCleaner::cleanup() { 2645 // Result is used, nothing to remove. 2646 if (ResultUsed) 2647 return; 2648 2649 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2650 #ifndef NDEBUG 2651 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2652 InsertedInstructions.end()); 2653 (void)InsertedSet; 2654 #endif 2655 // Remove sets with value handles. 2656 Expander.clear(); 2657 2658 // Remove all inserted instructions. 2659 for (Instruction *I : reverse(InsertedInstructions)) { 2660 #ifndef NDEBUG 2661 assert(all_of(I->users(), 2662 [&InsertedSet](Value *U) { 2663 return InsertedSet.contains(cast<Instruction>(U)); 2664 }) && 2665 "removed instruction should only be used by instructions inserted " 2666 "during expansion"); 2667 #endif 2668 assert(!I->getType()->isVoidTy() && 2669 "inserted instruction should have non-void types"); 2670 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2671 I->eraseFromParent(); 2672 } 2673 } 2674 } 2675