1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution expander, 10 // which is used to generate the code corresponding to a given scalar evolution 11 // expression. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Transforms/Utils/LoopUtils.h" 31 32 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 33 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 34 #else 35 #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 36 #endif 37 38 using namespace llvm; 39 40 cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 41 "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 42 cl::desc("When performing SCEV expansion only if it is cheap to do, this " 43 "controls the budget that is considered cheap (default = 4)")); 44 45 using namespace PatternMatch; 46 47 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 48 /// reusing an existing cast if a suitable one (= dominating IP) exists, or 49 /// creating a new one. 50 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 51 Instruction::CastOps Op, 52 BasicBlock::iterator IP) { 53 // This function must be called with the builder having a valid insertion 54 // point. It doesn't need to be the actual IP where the uses of the returned 55 // cast will be added, but it must dominate such IP. 56 // We use this precondition to produce a cast that will dominate all its 57 // uses. In particular, this is crucial for the case where the builder's 58 // insertion point *is* the point where we were asked to put the cast. 59 // Since we don't know the builder's insertion point is actually 60 // where the uses will be added (only that it dominates it), we are 61 // not allowed to move it. 62 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 63 64 Value *Ret = nullptr; 65 66 // Check to see if there is already a cast! 67 for (User *U : V->users()) { 68 if (U->getType() != Ty) 69 continue; 70 CastInst *CI = dyn_cast<CastInst>(U); 71 if (!CI || CI->getOpcode() != Op) 72 continue; 73 74 // Found a suitable cast that is at IP or comes before IP. Use it. Note that 75 // the cast must also properly dominate the Builder's insertion point. 76 if (IP->getParent() == CI->getParent() && &*BIP != CI && 77 (&*IP == CI || CI->comesBefore(&*IP))) { 78 Ret = CI; 79 break; 80 } 81 } 82 83 // Create a new cast. 84 if (!Ret) { 85 SCEVInsertPointGuard Guard(Builder, this); 86 Builder.SetInsertPoint(&*IP); 87 Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 88 } 89 90 // We assert at the end of the function since IP might point to an 91 // instruction with different dominance properties than a cast 92 // (an invoke for example) and not dominate BIP (but the cast does). 93 assert(!isa<Instruction>(Ret) || 94 SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 95 96 return Ret; 97 } 98 99 BasicBlock::iterator 100 SCEVExpander::findInsertPointAfter(Instruction *I, 101 Instruction *MustDominate) const { 102 BasicBlock::iterator IP = ++I->getIterator(); 103 if (auto *II = dyn_cast<InvokeInst>(I)) 104 IP = II->getNormalDest()->begin(); 105 106 while (isa<PHINode>(IP)) 107 ++IP; 108 109 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 110 ++IP; 111 } else if (isa<CatchSwitchInst>(IP)) { 112 IP = MustDominate->getParent()->getFirstInsertionPt(); 113 } else { 114 assert(!IP->isEHPad() && "unexpected eh pad!"); 115 } 116 117 // Adjust insert point to be after instructions inserted by the expander, so 118 // we can re-use already inserted instructions. Avoid skipping past the 119 // original \p MustDominate, in case it is an inserted instruction. 120 while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 121 ++IP; 122 123 return IP; 124 } 125 126 BasicBlock::iterator 127 SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 128 // Cast the argument at the beginning of the entry block, after 129 // any bitcasts of other arguments. 130 if (Argument *A = dyn_cast<Argument>(V)) { 131 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 132 while ((isa<BitCastInst>(IP) && 133 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 134 cast<BitCastInst>(IP)->getOperand(0) != A) || 135 isa<DbgInfoIntrinsic>(IP)) 136 ++IP; 137 return IP; 138 } 139 140 // Cast the instruction immediately after the instruction. 141 if (Instruction *I = dyn_cast<Instruction>(V)) 142 return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 143 144 // Otherwise, this must be some kind of a constant, 145 // so let's plop this cast into the function's entry block. 146 assert(isa<Constant>(V) && 147 "Expected the cast argument to be a global/constant"); 148 return Builder.GetInsertBlock() 149 ->getParent() 150 ->getEntryBlock() 151 .getFirstInsertionPt(); 152 } 153 154 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 155 /// which must be possible with a noop cast, doing what we can to share 156 /// the casts. 157 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 158 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 159 assert((Op == Instruction::BitCast || 160 Op == Instruction::PtrToInt || 161 Op == Instruction::IntToPtr) && 162 "InsertNoopCastOfTo cannot perform non-noop casts!"); 163 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 164 "InsertNoopCastOfTo cannot change sizes!"); 165 166 // inttoptr only works for integral pointers. For non-integral pointers, we 167 // can create a GEP on i8* null with the integral value as index. Note that 168 // it is safe to use GEP of null instead of inttoptr here, because only 169 // expressions already based on a GEP of null should be converted to pointers 170 // during expansion. 171 if (Op == Instruction::IntToPtr) { 172 auto *PtrTy = cast<PointerType>(Ty); 173 if (DL.isNonIntegralPointerType(PtrTy)) { 174 auto *Int8PtrTy = Builder.getInt8PtrTy(PtrTy->getAddressSpace()); 175 assert(DL.getTypeAllocSize(Int8PtrTy->getElementType()) == 1 && 176 "alloc size of i8 must by 1 byte for the GEP to be correct"); 177 auto *GEP = Builder.CreateGEP( 178 Builder.getInt8Ty(), Constant::getNullValue(Int8PtrTy), V, "uglygep"); 179 return Builder.CreateBitCast(GEP, Ty); 180 } 181 } 182 // Short-circuit unnecessary bitcasts. 183 if (Op == Instruction::BitCast) { 184 if (V->getType() == Ty) 185 return V; 186 if (CastInst *CI = dyn_cast<CastInst>(V)) { 187 if (CI->getOperand(0)->getType() == Ty) 188 return CI->getOperand(0); 189 } 190 } 191 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 192 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 193 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 194 if (CastInst *CI = dyn_cast<CastInst>(V)) 195 if ((CI->getOpcode() == Instruction::PtrToInt || 196 CI->getOpcode() == Instruction::IntToPtr) && 197 SE.getTypeSizeInBits(CI->getType()) == 198 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 199 return CI->getOperand(0); 200 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 201 if ((CE->getOpcode() == Instruction::PtrToInt || 202 CE->getOpcode() == Instruction::IntToPtr) && 203 SE.getTypeSizeInBits(CE->getType()) == 204 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 205 return CE->getOperand(0); 206 } 207 208 // Fold a cast of a constant. 209 if (Constant *C = dyn_cast<Constant>(V)) 210 return ConstantExpr::getCast(Op, C, Ty); 211 212 // Try to reuse existing cast, or insert one. 213 return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 214 } 215 216 /// InsertBinop - Insert the specified binary operator, doing a small amount 217 /// of work to avoid inserting an obviously redundant operation, and hoisting 218 /// to an outer loop when the opportunity is there and it is safe. 219 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 220 Value *LHS, Value *RHS, 221 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 222 // Fold a binop with constant operands. 223 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 224 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 225 return ConstantExpr::get(Opcode, CLHS, CRHS); 226 227 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 228 unsigned ScanLimit = 6; 229 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 230 // Scanning starts from the last instruction before the insertion point. 231 BasicBlock::iterator IP = Builder.GetInsertPoint(); 232 if (IP != BlockBegin) { 233 --IP; 234 for (; ScanLimit; --IP, --ScanLimit) { 235 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 236 // generated code. 237 if (isa<DbgInfoIntrinsic>(IP)) 238 ScanLimit++; 239 240 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 241 // Ensure that no-wrap flags match. 242 if (isa<OverflowingBinaryOperator>(I)) { 243 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 244 return true; 245 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 246 return true; 247 } 248 // Conservatively, do not use any instruction which has any of exact 249 // flags installed. 250 if (isa<PossiblyExactOperator>(I) && I->isExact()) 251 return true; 252 return false; 253 }; 254 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 255 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 256 return &*IP; 257 if (IP == BlockBegin) break; 258 } 259 } 260 261 // Save the original insertion point so we can restore it when we're done. 262 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 263 SCEVInsertPointGuard Guard(Builder, this); 264 265 if (IsSafeToHoist) { 266 // Move the insertion point out of as many loops as we can. 267 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 268 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 269 BasicBlock *Preheader = L->getLoopPreheader(); 270 if (!Preheader) break; 271 272 // Ok, move up a level. 273 Builder.SetInsertPoint(Preheader->getTerminator()); 274 } 275 } 276 277 // If we haven't found this binop, insert it. 278 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 279 BO->setDebugLoc(Loc); 280 if (Flags & SCEV::FlagNUW) 281 BO->setHasNoUnsignedWrap(); 282 if (Flags & SCEV::FlagNSW) 283 BO->setHasNoSignedWrap(); 284 285 return BO; 286 } 287 288 /// FactorOutConstant - Test if S is divisible by Factor, using signed 289 /// division. If so, update S with Factor divided out and return true. 290 /// S need not be evenly divisible if a reasonable remainder can be 291 /// computed. 292 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder, 293 const SCEV *Factor, ScalarEvolution &SE, 294 const DataLayout &DL) { 295 // Everything is divisible by one. 296 if (Factor->isOne()) 297 return true; 298 299 // x/x == 1. 300 if (S == Factor) { 301 S = SE.getConstant(S->getType(), 1); 302 return true; 303 } 304 305 // For a Constant, check for a multiple of the given factor. 306 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 307 // 0/x == 0. 308 if (C->isZero()) 309 return true; 310 // Check for divisibility. 311 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 312 ConstantInt *CI = 313 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt())); 314 // If the quotient is zero and the remainder is non-zero, reject 315 // the value at this scale. It will be considered for subsequent 316 // smaller scales. 317 if (!CI->isZero()) { 318 const SCEV *Div = SE.getConstant(CI); 319 S = Div; 320 Remainder = SE.getAddExpr( 321 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt()))); 322 return true; 323 } 324 } 325 } 326 327 // In a Mul, check if there is a constant operand which is a multiple 328 // of the given factor. 329 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 330 // Size is known, check if there is a constant operand which is a multiple 331 // of the given factor. If so, we can factor it. 332 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) 333 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 334 if (!C->getAPInt().srem(FC->getAPInt())) { 335 SmallVector<const SCEV *, 4> NewMulOps(M->operands()); 336 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt())); 337 S = SE.getMulExpr(NewMulOps); 338 return true; 339 } 340 } 341 342 // In an AddRec, check if both start and step are divisible. 343 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 344 const SCEV *Step = A->getStepRecurrence(SE); 345 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 346 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL)) 347 return false; 348 if (!StepRem->isZero()) 349 return false; 350 const SCEV *Start = A->getStart(); 351 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL)) 352 return false; 353 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 354 A->getNoWrapFlags(SCEV::FlagNW)); 355 return true; 356 } 357 358 return false; 359 } 360 361 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 362 /// is the number of SCEVAddRecExprs present, which are kept at the end of 363 /// the list. 364 /// 365 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 366 Type *Ty, 367 ScalarEvolution &SE) { 368 unsigned NumAddRecs = 0; 369 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 370 ++NumAddRecs; 371 // Group Ops into non-addrecs and addrecs. 372 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 373 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 374 // Let ScalarEvolution sort and simplify the non-addrecs list. 375 const SCEV *Sum = NoAddRecs.empty() ? 376 SE.getConstant(Ty, 0) : 377 SE.getAddExpr(NoAddRecs); 378 // If it returned an add, use the operands. Otherwise it simplified 379 // the sum into a single value, so just use that. 380 Ops.clear(); 381 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 382 Ops.append(Add->op_begin(), Add->op_end()); 383 else if (!Sum->isZero()) 384 Ops.push_back(Sum); 385 // Then append the addrecs. 386 Ops.append(AddRecs.begin(), AddRecs.end()); 387 } 388 389 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 390 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 391 /// This helps expose more opportunities for folding parts of the expressions 392 /// into GEP indices. 393 /// 394 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 395 Type *Ty, 396 ScalarEvolution &SE) { 397 // Find the addrecs. 398 SmallVector<const SCEV *, 8> AddRecs; 399 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 400 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 401 const SCEV *Start = A->getStart(); 402 if (Start->isZero()) break; 403 const SCEV *Zero = SE.getConstant(Ty, 0); 404 AddRecs.push_back(SE.getAddRecExpr(Zero, 405 A->getStepRecurrence(SE), 406 A->getLoop(), 407 A->getNoWrapFlags(SCEV::FlagNW))); 408 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 409 Ops[i] = Zero; 410 Ops.append(Add->op_begin(), Add->op_end()); 411 e += Add->getNumOperands(); 412 } else { 413 Ops[i] = Start; 414 } 415 } 416 if (!AddRecs.empty()) { 417 // Add the addrecs onto the end of the list. 418 Ops.append(AddRecs.begin(), AddRecs.end()); 419 // Resort the operand list, moving any constants to the front. 420 SimplifyAddOperands(Ops, Ty, SE); 421 } 422 } 423 424 /// expandAddToGEP - Expand an addition expression with a pointer type into 425 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 426 /// BasicAliasAnalysis and other passes analyze the result. See the rules 427 /// for getelementptr vs. inttoptr in 428 /// http://llvm.org/docs/LangRef.html#pointeraliasing 429 /// for details. 430 /// 431 /// Design note: The correctness of using getelementptr here depends on 432 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 433 /// they may introduce pointer arithmetic which may not be safely converted 434 /// into getelementptr. 435 /// 436 /// Design note: It might seem desirable for this function to be more 437 /// loop-aware. If some of the indices are loop-invariant while others 438 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 439 /// loop-invariant portions of the overall computation outside the loop. 440 /// However, there are a few reasons this is not done here. Hoisting simple 441 /// arithmetic is a low-level optimization that often isn't very 442 /// important until late in the optimization process. In fact, passes 443 /// like InstructionCombining will combine GEPs, even if it means 444 /// pushing loop-invariant computation down into loops, so even if the 445 /// GEPs were split here, the work would quickly be undone. The 446 /// LoopStrengthReduction pass, which is usually run quite late (and 447 /// after the last InstructionCombining pass), takes care of hoisting 448 /// loop-invariant portions of expressions, after considering what 449 /// can be folded using target addressing modes. 450 /// 451 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 452 const SCEV *const *op_end, 453 PointerType *PTy, 454 Type *Ty, 455 Value *V) { 456 SmallVector<Value *, 4> GepIndices; 457 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 458 bool AnyNonZeroIndices = false; 459 460 // Split AddRecs up into parts as either of the parts may be usable 461 // without the other. 462 SplitAddRecs(Ops, Ty, SE); 463 464 Type *IntIdxTy = DL.getIndexType(PTy); 465 466 // For opaque pointers, always generate i8 GEP. 467 if (!PTy->isOpaque()) { 468 // Descend down the pointer's type and attempt to convert the other 469 // operands into GEP indices, at each level. The first index in a GEP 470 // indexes into the array implied by the pointer operand; the rest of 471 // the indices index into the element or field type selected by the 472 // preceding index. 473 Type *ElTy = PTy->getElementType(); 474 for (;;) { 475 // If the scale size is not 0, attempt to factor out a scale for 476 // array indexing. 477 SmallVector<const SCEV *, 8> ScaledOps; 478 if (ElTy->isSized()) { 479 const SCEV *ElSize = SE.getSizeOfExpr(IntIdxTy, ElTy); 480 if (!ElSize->isZero()) { 481 SmallVector<const SCEV *, 8> NewOps; 482 for (const SCEV *Op : Ops) { 483 const SCEV *Remainder = SE.getConstant(Ty, 0); 484 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) { 485 // Op now has ElSize factored out. 486 ScaledOps.push_back(Op); 487 if (!Remainder->isZero()) 488 NewOps.push_back(Remainder); 489 AnyNonZeroIndices = true; 490 } else { 491 // The operand was not divisible, so add it to the list of 492 // operands we'll scan next iteration. 493 NewOps.push_back(Op); 494 } 495 } 496 // If we made any changes, update Ops. 497 if (!ScaledOps.empty()) { 498 Ops = NewOps; 499 SimplifyAddOperands(Ops, Ty, SE); 500 } 501 } 502 } 503 504 // Record the scaled array index for this level of the type. If 505 // we didn't find any operands that could be factored, tentatively 506 // assume that element zero was selected (since the zero offset 507 // would obviously be folded away). 508 Value *Scaled = 509 ScaledOps.empty() 510 ? Constant::getNullValue(Ty) 511 : expandCodeForImpl(SE.getAddExpr(ScaledOps), Ty, false); 512 GepIndices.push_back(Scaled); 513 514 // Collect struct field index operands. 515 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 516 bool FoundFieldNo = false; 517 // An empty struct has no fields. 518 if (STy->getNumElements() == 0) break; 519 // Field offsets are known. See if a constant offset falls within any of 520 // the struct fields. 521 if (Ops.empty()) 522 break; 523 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 524 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 525 const StructLayout &SL = *DL.getStructLayout(STy); 526 uint64_t FullOffset = C->getValue()->getZExtValue(); 527 if (FullOffset < SL.getSizeInBytes()) { 528 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 529 GepIndices.push_back( 530 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 531 ElTy = STy->getTypeAtIndex(ElIdx); 532 Ops[0] = 533 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 534 AnyNonZeroIndices = true; 535 FoundFieldNo = true; 536 } 537 } 538 // If no struct field offsets were found, tentatively assume that 539 // field zero was selected (since the zero offset would obviously 540 // be folded away). 541 if (!FoundFieldNo) { 542 ElTy = STy->getTypeAtIndex(0u); 543 GepIndices.push_back( 544 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 545 } 546 } 547 548 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 549 ElTy = ATy->getElementType(); 550 else 551 // FIXME: Handle VectorType. 552 // E.g., If ElTy is scalable vector, then ElSize is not a compile-time 553 // constant, therefore can not be factored out. The generated IR is less 554 // ideal with base 'V' cast to i8* and do ugly getelementptr over that. 555 break; 556 } 557 } 558 559 // If none of the operands were convertible to proper GEP indices, cast 560 // the base to i8* and do an ugly getelementptr with that. It's still 561 // better than ptrtoint+arithmetic+inttoptr at least. 562 if (!AnyNonZeroIndices) { 563 // Cast the base to i8*. 564 if (!PTy->isOpaque()) 565 V = InsertNoopCastOfTo(V, 566 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 567 568 assert(!isa<Instruction>(V) || 569 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 570 571 // Expand the operands for a plain byte offset. 572 Value *Idx = expandCodeForImpl(SE.getAddExpr(Ops), Ty, false); 573 574 // Fold a GEP with constant operands. 575 if (Constant *CLHS = dyn_cast<Constant>(V)) 576 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 577 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()), 578 CLHS, CRHS); 579 580 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 581 unsigned ScanLimit = 6; 582 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 583 // Scanning starts from the last instruction before the insertion point. 584 BasicBlock::iterator IP = Builder.GetInsertPoint(); 585 if (IP != BlockBegin) { 586 --IP; 587 for (; ScanLimit; --IP, --ScanLimit) { 588 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 589 // generated code. 590 if (isa<DbgInfoIntrinsic>(IP)) 591 ScanLimit++; 592 if (IP->getOpcode() == Instruction::GetElementPtr && 593 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 594 return &*IP; 595 if (IP == BlockBegin) break; 596 } 597 } 598 599 // Save the original insertion point so we can restore it when we're done. 600 SCEVInsertPointGuard Guard(Builder, this); 601 602 // Move the insertion point out of as many loops as we can. 603 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 604 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 605 BasicBlock *Preheader = L->getLoopPreheader(); 606 if (!Preheader) break; 607 608 // Ok, move up a level. 609 Builder.SetInsertPoint(Preheader->getTerminator()); 610 } 611 612 // Emit a GEP. 613 return Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep"); 614 } 615 616 { 617 SCEVInsertPointGuard Guard(Builder, this); 618 619 // Move the insertion point out of as many loops as we can. 620 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 621 if (!L->isLoopInvariant(V)) break; 622 623 bool AnyIndexNotLoopInvariant = any_of( 624 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); }); 625 626 if (AnyIndexNotLoopInvariant) 627 break; 628 629 BasicBlock *Preheader = L->getLoopPreheader(); 630 if (!Preheader) break; 631 632 // Ok, move up a level. 633 Builder.SetInsertPoint(Preheader->getTerminator()); 634 } 635 636 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 637 // because ScalarEvolution may have changed the address arithmetic to 638 // compute a value which is beyond the end of the allocated object. 639 Value *Casted = V; 640 if (V->getType() != PTy) 641 Casted = InsertNoopCastOfTo(Casted, PTy); 642 Value *GEP = Builder.CreateGEP(PTy->getElementType(), Casted, GepIndices, 643 "scevgep"); 644 Ops.push_back(SE.getUnknown(GEP)); 645 } 646 647 return expand(SE.getAddExpr(Ops)); 648 } 649 650 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, 651 Value *V) { 652 const SCEV *const Ops[1] = {Op}; 653 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V); 654 } 655 656 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 657 /// SCEV expansion. If they are nested, this is the most nested. If they are 658 /// neighboring, pick the later. 659 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 660 DominatorTree &DT) { 661 if (!A) return B; 662 if (!B) return A; 663 if (A->contains(B)) return B; 664 if (B->contains(A)) return A; 665 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 666 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 667 return A; // Arbitrarily break the tie. 668 } 669 670 /// getRelevantLoop - Get the most relevant loop associated with the given 671 /// expression, according to PickMostRelevantLoop. 672 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 673 // Test whether we've already computed the most relevant loop for this SCEV. 674 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 675 if (!Pair.second) 676 return Pair.first->second; 677 678 if (isa<SCEVConstant>(S)) 679 // A constant has no relevant loops. 680 return nullptr; 681 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 682 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 683 return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 684 // A non-instruction has no relevant loops. 685 return nullptr; 686 } 687 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 688 const Loop *L = nullptr; 689 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 690 L = AR->getLoop(); 691 for (const SCEV *Op : N->operands()) 692 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 693 return RelevantLoops[N] = L; 694 } 695 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 696 const Loop *Result = getRelevantLoop(C->getOperand()); 697 return RelevantLoops[C] = Result; 698 } 699 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 700 const Loop *Result = PickMostRelevantLoop( 701 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT); 702 return RelevantLoops[D] = Result; 703 } 704 llvm_unreachable("Unexpected SCEV type!"); 705 } 706 707 namespace { 708 709 /// LoopCompare - Compare loops by PickMostRelevantLoop. 710 class LoopCompare { 711 DominatorTree &DT; 712 public: 713 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 714 715 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 716 std::pair<const Loop *, const SCEV *> RHS) const { 717 // Keep pointer operands sorted at the end. 718 if (LHS.second->getType()->isPointerTy() != 719 RHS.second->getType()->isPointerTy()) 720 return LHS.second->getType()->isPointerTy(); 721 722 // Compare loops with PickMostRelevantLoop. 723 if (LHS.first != RHS.first) 724 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 725 726 // If one operand is a non-constant negative and the other is not, 727 // put the non-constant negative on the right so that a sub can 728 // be used instead of a negate and add. 729 if (LHS.second->isNonConstantNegative()) { 730 if (!RHS.second->isNonConstantNegative()) 731 return false; 732 } else if (RHS.second->isNonConstantNegative()) 733 return true; 734 735 // Otherwise they are equivalent according to this comparison. 736 return false; 737 } 738 }; 739 740 } 741 742 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 743 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 744 745 // Collect all the add operands in a loop, along with their associated loops. 746 // Iterate in reverse so that constants are emitted last, all else equal, and 747 // so that pointer operands are inserted first, which the code below relies on 748 // to form more involved GEPs. 749 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 750 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 751 E(S->op_begin()); I != E; ++I) 752 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 753 754 // Sort by loop. Use a stable sort so that constants follow non-constants and 755 // pointer operands precede non-pointer operands. 756 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 757 758 // Emit instructions to add all the operands. Hoist as much as possible 759 // out of loops, and form meaningful getelementptrs where possible. 760 Value *Sum = nullptr; 761 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 762 const Loop *CurLoop = I->first; 763 const SCEV *Op = I->second; 764 if (!Sum) { 765 // This is the first operand. Just expand it. 766 Sum = expand(Op); 767 ++I; 768 continue; 769 } 770 771 assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 772 if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 773 // The running sum expression is a pointer. Try to form a getelementptr 774 // at this level with that as the base. 775 SmallVector<const SCEV *, 4> NewOps; 776 for (; I != E && I->first == CurLoop; ++I) { 777 // If the operand is SCEVUnknown and not instructions, peek through 778 // it, to enable more of it to be folded into the GEP. 779 const SCEV *X = I->second; 780 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 781 if (!isa<Instruction>(U->getValue())) 782 X = SE.getSCEV(U->getValue()); 783 NewOps.push_back(X); 784 } 785 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 786 } else if (Op->isNonConstantNegative()) { 787 // Instead of doing a negate and add, just do a subtract. 788 Value *W = expandCodeForImpl(SE.getNegativeSCEV(Op), Ty, false); 789 Sum = InsertNoopCastOfTo(Sum, Ty); 790 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 791 /*IsSafeToHoist*/ true); 792 ++I; 793 } else { 794 // A simple add. 795 Value *W = expandCodeForImpl(Op, Ty, false); 796 Sum = InsertNoopCastOfTo(Sum, Ty); 797 // Canonicalize a constant to the RHS. 798 if (isa<Constant>(Sum)) std::swap(Sum, W); 799 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 800 /*IsSafeToHoist*/ true); 801 ++I; 802 } 803 } 804 805 return Sum; 806 } 807 808 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 809 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 810 811 // Collect all the mul operands in a loop, along with their associated loops. 812 // Iterate in reverse so that constants are emitted last, all else equal. 813 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 814 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 815 E(S->op_begin()); I != E; ++I) 816 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 817 818 // Sort by loop. Use a stable sort so that constants follow non-constants. 819 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 820 821 // Emit instructions to mul all the operands. Hoist as much as possible 822 // out of loops. 823 Value *Prod = nullptr; 824 auto I = OpsAndLoops.begin(); 825 826 // Expand the calculation of X pow N in the following manner: 827 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 828 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 829 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() { 830 auto E = I; 831 // Calculate how many times the same operand from the same loop is included 832 // into this power. 833 uint64_t Exponent = 0; 834 const uint64_t MaxExponent = UINT64_MAX >> 1; 835 // No one sane will ever try to calculate such huge exponents, but if we 836 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 837 // below when the power of 2 exceeds our Exponent, and we want it to be 838 // 1u << 31 at most to not deal with unsigned overflow. 839 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 840 ++Exponent; 841 ++E; 842 } 843 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 844 845 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 846 // that are needed into the result. 847 Value *P = expandCodeForImpl(I->second, Ty, false); 848 Value *Result = nullptr; 849 if (Exponent & 1) 850 Result = P; 851 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 852 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 853 /*IsSafeToHoist*/ true); 854 if (Exponent & BinExp) 855 Result = Result ? InsertBinop(Instruction::Mul, Result, P, 856 SCEV::FlagAnyWrap, 857 /*IsSafeToHoist*/ true) 858 : P; 859 } 860 861 I = E; 862 assert(Result && "Nothing was expanded?"); 863 return Result; 864 }; 865 866 while (I != OpsAndLoops.end()) { 867 if (!Prod) { 868 // This is the first operand. Just expand it. 869 Prod = ExpandOpBinPowN(); 870 } else if (I->second->isAllOnesValue()) { 871 // Instead of doing a multiply by negative one, just do a negate. 872 Prod = InsertNoopCastOfTo(Prod, Ty); 873 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 874 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 875 ++I; 876 } else { 877 // A simple mul. 878 Value *W = ExpandOpBinPowN(); 879 Prod = InsertNoopCastOfTo(Prod, Ty); 880 // Canonicalize a constant to the RHS. 881 if (isa<Constant>(Prod)) std::swap(Prod, W); 882 const APInt *RHS; 883 if (match(W, m_Power2(RHS))) { 884 // Canonicalize Prod*(1<<C) to Prod<<C. 885 assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 886 auto NWFlags = S->getNoWrapFlags(); 887 // clear nsw flag if shl will produce poison value. 888 if (RHS->logBase2() == RHS->getBitWidth() - 1) 889 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 890 Prod = InsertBinop(Instruction::Shl, Prod, 891 ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 892 /*IsSafeToHoist*/ true); 893 } else { 894 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 895 /*IsSafeToHoist*/ true); 896 } 897 } 898 } 899 900 return Prod; 901 } 902 903 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 904 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 905 906 Value *LHS = expandCodeForImpl(S->getLHS(), Ty, false); 907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 908 const APInt &RHS = SC->getAPInt(); 909 if (RHS.isPowerOf2()) 910 return InsertBinop(Instruction::LShr, LHS, 911 ConstantInt::get(Ty, RHS.logBase2()), 912 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 913 } 914 915 Value *RHS = expandCodeForImpl(S->getRHS(), Ty, false); 916 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 917 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 918 } 919 920 /// Move parts of Base into Rest to leave Base with the minimal 921 /// expression that provides a pointer operand suitable for a 922 /// GEP expansion. 923 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 924 ScalarEvolution &SE) { 925 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 926 Base = A->getStart(); 927 Rest = SE.getAddExpr(Rest, 928 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 929 A->getStepRecurrence(SE), 930 A->getLoop(), 931 A->getNoWrapFlags(SCEV::FlagNW))); 932 } 933 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 934 Base = A->getOperand(A->getNumOperands()-1); 935 SmallVector<const SCEV *, 8> NewAddOps(A->operands()); 936 NewAddOps.back() = Rest; 937 Rest = SE.getAddExpr(NewAddOps); 938 ExposePointerBase(Base, Rest, SE); 939 } 940 } 941 942 /// Determine if this is a well-behaved chain of instructions leading back to 943 /// the PHI. If so, it may be reused by expanded expressions. 944 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 945 const Loop *L) { 946 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 947 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 948 return false; 949 // If any of the operands don't dominate the insert position, bail. 950 // Addrec operands are always loop-invariant, so this can only happen 951 // if there are instructions which haven't been hoisted. 952 if (L == IVIncInsertLoop) { 953 for (Use &Op : llvm::drop_begin(IncV->operands())) 954 if (Instruction *OInst = dyn_cast<Instruction>(Op)) 955 if (!SE.DT.dominates(OInst, IVIncInsertPos)) 956 return false; 957 } 958 // Advance to the next instruction. 959 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 960 if (!IncV) 961 return false; 962 963 if (IncV->mayHaveSideEffects()) 964 return false; 965 966 if (IncV == PN) 967 return true; 968 969 return isNormalAddRecExprPHI(PN, IncV, L); 970 } 971 972 /// getIVIncOperand returns an induction variable increment's induction 973 /// variable operand. 974 /// 975 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 976 /// operands dominate InsertPos. 977 /// 978 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 979 /// simple patterns generated by getAddRecExprPHILiterally and 980 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 981 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 982 Instruction *InsertPos, 983 bool allowScale) { 984 if (IncV == InsertPos) 985 return nullptr; 986 987 switch (IncV->getOpcode()) { 988 default: 989 return nullptr; 990 // Check for a simple Add/Sub or GEP of a loop invariant step. 991 case Instruction::Add: 992 case Instruction::Sub: { 993 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 994 if (!OInst || SE.DT.dominates(OInst, InsertPos)) 995 return dyn_cast<Instruction>(IncV->getOperand(0)); 996 return nullptr; 997 } 998 case Instruction::BitCast: 999 return dyn_cast<Instruction>(IncV->getOperand(0)); 1000 case Instruction::GetElementPtr: 1001 for (Use &U : llvm::drop_begin(IncV->operands())) { 1002 if (isa<Constant>(U)) 1003 continue; 1004 if (Instruction *OInst = dyn_cast<Instruction>(U)) { 1005 if (!SE.DT.dominates(OInst, InsertPos)) 1006 return nullptr; 1007 } 1008 if (allowScale) { 1009 // allow any kind of GEP as long as it can be hoisted. 1010 continue; 1011 } 1012 // This must be a pointer addition of constants (pretty), which is already 1013 // handled, or some number of address-size elements (ugly). Ugly geps 1014 // have 2 operands. i1* is used by the expander to represent an 1015 // address-size element. 1016 if (IncV->getNumOperands() != 2) 1017 return nullptr; 1018 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 1019 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 1020 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 1021 return nullptr; 1022 break; 1023 } 1024 return dyn_cast<Instruction>(IncV->getOperand(0)); 1025 } 1026 } 1027 1028 /// If the insert point of the current builder or any of the builders on the 1029 /// stack of saved builders has 'I' as its insert point, update it to point to 1030 /// the instruction after 'I'. This is intended to be used when the instruction 1031 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 1032 /// different block, the inconsistent insert point (with a mismatched 1033 /// Instruction and Block) can lead to an instruction being inserted in a block 1034 /// other than its parent. 1035 void SCEVExpander::fixupInsertPoints(Instruction *I) { 1036 BasicBlock::iterator It(*I); 1037 BasicBlock::iterator NewInsertPt = std::next(It); 1038 if (Builder.GetInsertPoint() == It) 1039 Builder.SetInsertPoint(&*NewInsertPt); 1040 for (auto *InsertPtGuard : InsertPointGuards) 1041 if (InsertPtGuard->GetInsertPoint() == It) 1042 InsertPtGuard->SetInsertPoint(NewInsertPt); 1043 } 1044 1045 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 1046 /// it available to other uses in this loop. Recursively hoist any operands, 1047 /// until we reach a value that dominates InsertPos. 1048 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 1049 if (SE.DT.dominates(IncV, InsertPos)) 1050 return true; 1051 1052 // InsertPos must itself dominate IncV so that IncV's new position satisfies 1053 // its existing users. 1054 if (isa<PHINode>(InsertPos) || 1055 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 1056 return false; 1057 1058 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 1059 return false; 1060 1061 // Check that the chain of IV operands leading back to Phi can be hoisted. 1062 SmallVector<Instruction*, 4> IVIncs; 1063 for(;;) { 1064 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 1065 if (!Oper) 1066 return false; 1067 // IncV is safe to hoist. 1068 IVIncs.push_back(IncV); 1069 IncV = Oper; 1070 if (SE.DT.dominates(IncV, InsertPos)) 1071 break; 1072 } 1073 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) { 1074 fixupInsertPoints(*I); 1075 (*I)->moveBefore(InsertPos); 1076 } 1077 return true; 1078 } 1079 1080 /// Determine if this cyclic phi is in a form that would have been generated by 1081 /// LSR. We don't care if the phi was actually expanded in this pass, as long 1082 /// as it is in a low-cost form, for example, no implied multiplication. This 1083 /// should match any patterns generated by getAddRecExprPHILiterally and 1084 /// expandAddtoGEP. 1085 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 1086 const Loop *L) { 1087 for(Instruction *IVOper = IncV; 1088 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 1089 /*allowScale=*/false));) { 1090 if (IVOper == PN) 1091 return true; 1092 } 1093 return false; 1094 } 1095 1096 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 1097 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 1098 /// need to materialize IV increments elsewhere to handle difficult situations. 1099 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 1100 Type *ExpandTy, Type *IntTy, 1101 bool useSubtract) { 1102 Value *IncV; 1103 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1104 if (ExpandTy->isPointerTy()) { 1105 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1106 // If the step isn't constant, don't use an implicitly scaled GEP, because 1107 // that would require a multiply inside the loop. 1108 if (!isa<ConstantInt>(StepV)) 1109 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1110 GEPPtrTy->getAddressSpace()); 1111 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN); 1112 if (IncV->getType() != PN->getType()) 1113 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1114 } else { 1115 IncV = useSubtract ? 1116 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1117 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1118 } 1119 return IncV; 1120 } 1121 1122 /// Check whether we can cheaply express the requested SCEV in terms of 1123 /// the available PHI SCEV by truncation and/or inversion of the step. 1124 static bool canBeCheaplyTransformed(ScalarEvolution &SE, 1125 const SCEVAddRecExpr *Phi, 1126 const SCEVAddRecExpr *Requested, 1127 bool &InvertStep) { 1128 // We can't transform to match a pointer PHI. 1129 if (Phi->getType()->isPointerTy()) 1130 return false; 1131 1132 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType()); 1133 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType()); 1134 1135 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 1136 return false; 1137 1138 // Try truncate it if necessary. 1139 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 1140 if (!Phi) 1141 return false; 1142 1143 // Check whether truncation will help. 1144 if (Phi == Requested) { 1145 InvertStep = false; 1146 return true; 1147 } 1148 1149 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 1150 if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 1151 InvertStep = true; 1152 return true; 1153 } 1154 1155 return false; 1156 } 1157 1158 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1159 if (!isa<IntegerType>(AR->getType())) 1160 return false; 1161 1162 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1163 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1164 const SCEV *Step = AR->getStepRecurrence(SE); 1165 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 1166 SE.getSignExtendExpr(AR, WideTy)); 1167 const SCEV *ExtendAfterOp = 1168 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1169 return ExtendAfterOp == OpAfterExtend; 1170 } 1171 1172 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 1173 if (!isa<IntegerType>(AR->getType())) 1174 return false; 1175 1176 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 1177 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 1178 const SCEV *Step = AR->getStepRecurrence(SE); 1179 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 1180 SE.getZeroExtendExpr(AR, WideTy)); 1181 const SCEV *ExtendAfterOp = 1182 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 1183 return ExtendAfterOp == OpAfterExtend; 1184 } 1185 1186 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1187 /// the base addrec, which is the addrec without any non-loop-dominating 1188 /// values, and return the PHI. 1189 PHINode * 1190 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1191 const Loop *L, 1192 Type *ExpandTy, 1193 Type *IntTy, 1194 Type *&TruncTy, 1195 bool &InvertStep) { 1196 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1197 1198 // Reuse a previously-inserted PHI, if present. 1199 BasicBlock *LatchBlock = L->getLoopLatch(); 1200 if (LatchBlock) { 1201 PHINode *AddRecPhiMatch = nullptr; 1202 Instruction *IncV = nullptr; 1203 TruncTy = nullptr; 1204 InvertStep = false; 1205 1206 // Only try partially matching scevs that need truncation and/or 1207 // step-inversion if we know this loop is outside the current loop. 1208 bool TryNonMatchingSCEV = 1209 IVIncInsertLoop && 1210 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 1211 1212 for (PHINode &PN : L->getHeader()->phis()) { 1213 if (!SE.isSCEVable(PN.getType())) 1214 continue; 1215 1216 // We should not look for a incomplete PHI. Getting SCEV for a incomplete 1217 // PHI has no meaning at all. 1218 if (!PN.isComplete()) { 1219 SCEV_DEBUG_WITH_TYPE( 1220 DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 1221 continue; 1222 } 1223 1224 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 1225 if (!PhiSCEV) 1226 continue; 1227 1228 bool IsMatchingSCEV = PhiSCEV == Normalized; 1229 // We only handle truncation and inversion of phi recurrences for the 1230 // expanded expression if the expanded expression's loop dominates the 1231 // loop we insert to. Check now, so we can bail out early. 1232 if (!IsMatchingSCEV && !TryNonMatchingSCEV) 1233 continue; 1234 1235 // TODO: this possibly can be reworked to avoid this cast at all. 1236 Instruction *TempIncV = 1237 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 1238 if (!TempIncV) 1239 continue; 1240 1241 // Check whether we can reuse this PHI node. 1242 if (LSRMode) { 1243 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 1244 continue; 1245 } else { 1246 if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 1247 continue; 1248 } 1249 1250 // Stop if we have found an exact match SCEV. 1251 if (IsMatchingSCEV) { 1252 IncV = TempIncV; 1253 TruncTy = nullptr; 1254 InvertStep = false; 1255 AddRecPhiMatch = &PN; 1256 break; 1257 } 1258 1259 // Try whether the phi can be translated into the requested form 1260 // (truncated and/or offset by a constant). 1261 if ((!TruncTy || InvertStep) && 1262 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 1263 // Record the phi node. But don't stop we might find an exact match 1264 // later. 1265 AddRecPhiMatch = &PN; 1266 IncV = TempIncV; 1267 TruncTy = SE.getEffectiveSCEVType(Normalized->getType()); 1268 } 1269 } 1270 1271 if (AddRecPhiMatch) { 1272 // Ok, the add recurrence looks usable. 1273 // Remember this PHI, even in post-inc mode. 1274 InsertedValues.insert(AddRecPhiMatch); 1275 // Remember the increment. 1276 rememberInstruction(IncV); 1277 // Those values were not actually inserted but re-used. 1278 ReusedValues.insert(AddRecPhiMatch); 1279 ReusedValues.insert(IncV); 1280 return AddRecPhiMatch; 1281 } 1282 } 1283 1284 // Save the original insertion point so we can restore it when we're done. 1285 SCEVInsertPointGuard Guard(Builder, this); 1286 1287 // Another AddRec may need to be recursively expanded below. For example, if 1288 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1289 // loop. Remove this loop from the PostIncLoops set before expanding such 1290 // AddRecs. Otherwise, we cannot find a valid position for the step 1291 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1292 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1293 // so it's not worth implementing SmallPtrSet::swap. 1294 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1295 PostIncLoops.clear(); 1296 1297 // Expand code for the start value into the loop preheader. 1298 assert(L->getLoopPreheader() && 1299 "Can't expand add recurrences without a loop preheader!"); 1300 Value *StartV = 1301 expandCodeForImpl(Normalized->getStart(), ExpandTy, 1302 L->getLoopPreheader()->getTerminator(), false); 1303 1304 // StartV must have been be inserted into L's preheader to dominate the new 1305 // phi. 1306 assert(!isa<Instruction>(StartV) || 1307 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 1308 L->getHeader())); 1309 1310 // Expand code for the step value. Do this before creating the PHI so that PHI 1311 // reuse code doesn't see an incomplete PHI. 1312 const SCEV *Step = Normalized->getStepRecurrence(SE); 1313 // If the stride is negative, insert a sub instead of an add for the increment 1314 // (unless it's a constant, because subtracts of constants are canonicalized 1315 // to adds). 1316 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1317 if (useSubtract) 1318 Step = SE.getNegativeSCEV(Step); 1319 // Expand the step somewhere that dominates the loop header. 1320 Value *StepV = expandCodeForImpl( 1321 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1322 1323 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 1324 // we actually do emit an addition. It does not apply if we emit a 1325 // subtraction. 1326 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 1327 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 1328 1329 // Create the PHI. 1330 BasicBlock *Header = L->getHeader(); 1331 Builder.SetInsertPoint(Header, Header->begin()); 1332 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1333 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1334 Twine(IVName) + ".iv"); 1335 1336 // Create the step instructions and populate the PHI. 1337 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1338 BasicBlock *Pred = *HPI; 1339 1340 // Add a start value. 1341 if (!L->contains(Pred)) { 1342 PN->addIncoming(StartV, Pred); 1343 continue; 1344 } 1345 1346 // Create a step value and add it to the PHI. 1347 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1348 // instructions at IVIncInsertPos. 1349 Instruction *InsertPos = L == IVIncInsertLoop ? 1350 IVIncInsertPos : Pred->getTerminator(); 1351 Builder.SetInsertPoint(InsertPos); 1352 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1353 1354 if (isa<OverflowingBinaryOperator>(IncV)) { 1355 if (IncrementIsNUW) 1356 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1357 if (IncrementIsNSW) 1358 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1359 } 1360 PN->addIncoming(IncV, Pred); 1361 } 1362 1363 // After expanding subexpressions, restore the PostIncLoops set so the caller 1364 // can ensure that IVIncrement dominates the current uses. 1365 PostIncLoops = SavedPostIncLoops; 1366 1367 // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1368 // effective when we are able to use an IV inserted here, so record it. 1369 InsertedValues.insert(PN); 1370 InsertedIVs.push_back(PN); 1371 return PN; 1372 } 1373 1374 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1375 Type *STy = S->getType(); 1376 Type *IntTy = SE.getEffectiveSCEVType(STy); 1377 const Loop *L = S->getLoop(); 1378 1379 // Determine a normalized form of this expression, which is the expression 1380 // before any post-inc adjustment is made. 1381 const SCEVAddRecExpr *Normalized = S; 1382 if (PostIncLoops.count(L)) { 1383 PostIncLoopSet Loops; 1384 Loops.insert(L); 1385 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE)); 1386 } 1387 1388 // Strip off any non-loop-dominating component from the addrec start. 1389 const SCEV *Start = Normalized->getStart(); 1390 const SCEV *PostLoopOffset = nullptr; 1391 if (!SE.properlyDominates(Start, L->getHeader())) { 1392 PostLoopOffset = Start; 1393 Start = SE.getConstant(Normalized->getType(), 0); 1394 Normalized = cast<SCEVAddRecExpr>( 1395 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1396 Normalized->getLoop(), 1397 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1398 } 1399 1400 // Strip off any non-loop-dominating component from the addrec step. 1401 const SCEV *Step = Normalized->getStepRecurrence(SE); 1402 const SCEV *PostLoopScale = nullptr; 1403 if (!SE.dominates(Step, L->getHeader())) { 1404 PostLoopScale = Step; 1405 Step = SE.getConstant(Normalized->getType(), 1); 1406 if (!Start->isZero()) { 1407 // The normalization below assumes that Start is constant zero, so if 1408 // it isn't re-associate Start to PostLoopOffset. 1409 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?"); 1410 PostLoopOffset = Start; 1411 Start = SE.getConstant(Normalized->getType(), 0); 1412 } 1413 Normalized = 1414 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1415 Start, Step, Normalized->getLoop(), 1416 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1417 } 1418 1419 // Expand the core addrec. If we need post-loop scaling, force it to 1420 // expand to an integer type to avoid the need for additional casting. 1421 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1422 // We can't use a pointer type for the addrec if the pointer type is 1423 // non-integral. 1424 Type *AddRecPHIExpandTy = 1425 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy; 1426 1427 // In some cases, we decide to reuse an existing phi node but need to truncate 1428 // it and/or invert the step. 1429 Type *TruncTy = nullptr; 1430 bool InvertStep = false; 1431 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy, 1432 IntTy, TruncTy, InvertStep); 1433 1434 // Accommodate post-inc mode, if necessary. 1435 Value *Result; 1436 if (!PostIncLoops.count(L)) 1437 Result = PN; 1438 else { 1439 // In PostInc mode, use the post-incremented value. 1440 BasicBlock *LatchBlock = L->getLoopLatch(); 1441 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1442 Result = PN->getIncomingValueForBlock(LatchBlock); 1443 1444 // We might be introducing a new use of the post-inc IV that is not poison 1445 // safe, in which case we should drop poison generating flags. Only keep 1446 // those flags for which SCEV has proven that they always hold. 1447 if (isa<OverflowingBinaryOperator>(Result)) { 1448 auto *I = cast<Instruction>(Result); 1449 if (!S->hasNoUnsignedWrap()) 1450 I->setHasNoUnsignedWrap(false); 1451 if (!S->hasNoSignedWrap()) 1452 I->setHasNoSignedWrap(false); 1453 } 1454 1455 // For an expansion to use the postinc form, the client must call 1456 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1457 // or dominated by IVIncInsertPos. 1458 if (isa<Instruction>(Result) && 1459 !SE.DT.dominates(cast<Instruction>(Result), 1460 &*Builder.GetInsertPoint())) { 1461 // The induction variable's postinc expansion does not dominate this use. 1462 // IVUsers tries to prevent this case, so it is rare. However, it can 1463 // happen when an IVUser outside the loop is not dominated by the latch 1464 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1465 // all cases. Consider a phi outside whose operand is replaced during 1466 // expansion with the value of the postinc user. Without fundamentally 1467 // changing the way postinc users are tracked, the only remedy is 1468 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1469 // but hopefully expandCodeFor handles that. 1470 bool useSubtract = 1471 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1472 if (useSubtract) 1473 Step = SE.getNegativeSCEV(Step); 1474 Value *StepV; 1475 { 1476 // Expand the step somewhere that dominates the loop header. 1477 SCEVInsertPointGuard Guard(Builder, this); 1478 StepV = expandCodeForImpl( 1479 Step, IntTy, &*L->getHeader()->getFirstInsertionPt(), false); 1480 } 1481 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1482 } 1483 } 1484 1485 // We have decided to reuse an induction variable of a dominating loop. Apply 1486 // truncation and/or inversion of the step. 1487 if (TruncTy) { 1488 Type *ResTy = Result->getType(); 1489 // Normalize the result type. 1490 if (ResTy != SE.getEffectiveSCEVType(ResTy)) 1491 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy)); 1492 // Truncate the result. 1493 if (TruncTy != Result->getType()) 1494 Result = Builder.CreateTrunc(Result, TruncTy); 1495 1496 // Invert the result. 1497 if (InvertStep) 1498 Result = Builder.CreateSub( 1499 expandCodeForImpl(Normalized->getStart(), TruncTy, false), Result); 1500 } 1501 1502 // Re-apply any non-loop-dominating scale. 1503 if (PostLoopScale) { 1504 assert(S->isAffine() && "Can't linearly scale non-affine recurrences."); 1505 Result = InsertNoopCastOfTo(Result, IntTy); 1506 Result = Builder.CreateMul(Result, 1507 expandCodeForImpl(PostLoopScale, IntTy, false)); 1508 } 1509 1510 // Re-apply any non-loop-dominating offset. 1511 if (PostLoopOffset) { 1512 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1513 if (Result->getType()->isIntegerTy()) { 1514 Value *Base = expandCodeForImpl(PostLoopOffset, ExpandTy, false); 1515 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base); 1516 } else { 1517 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result); 1518 } 1519 } else { 1520 Result = InsertNoopCastOfTo(Result, IntTy); 1521 Result = Builder.CreateAdd( 1522 Result, expandCodeForImpl(PostLoopOffset, IntTy, false)); 1523 } 1524 } 1525 1526 return Result; 1527 } 1528 1529 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1530 // In canonical mode we compute the addrec as an expression of a canonical IV 1531 // using evaluateAtIteration and expand the resulting SCEV expression. This 1532 // way we avoid introducing new IVs to carry on the comutation of the addrec 1533 // throughout the loop. 1534 // 1535 // For nested addrecs evaluateAtIteration might need a canonical IV of a 1536 // type wider than the addrec itself. Emitting a canonical IV of the 1537 // proper type might produce non-legal types, for example expanding an i64 1538 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 1539 // back to non-canonical mode for nested addrecs. 1540 if (!CanonicalMode || (S->getNumOperands() > 2)) 1541 return expandAddRecExprLiterally(S); 1542 1543 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1544 const Loop *L = S->getLoop(); 1545 1546 // First check for an existing canonical IV in a suitable type. 1547 PHINode *CanonicalIV = nullptr; 1548 if (PHINode *PN = L->getCanonicalInductionVariable()) 1549 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1550 CanonicalIV = PN; 1551 1552 // Rewrite an AddRec in terms of the canonical induction variable, if 1553 // its type is more narrow. 1554 if (CanonicalIV && 1555 SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1556 !S->getType()->isPointerTy()) { 1557 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1558 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1559 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1560 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1561 S->getNoWrapFlags(SCEV::FlagNW))); 1562 BasicBlock::iterator NewInsertPt = 1563 findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 1564 V = expandCodeForImpl(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr, 1565 &*NewInsertPt, false); 1566 return V; 1567 } 1568 1569 // {X,+,F} --> X + {0,+,F} 1570 if (!S->getStart()->isZero()) { 1571 SmallVector<const SCEV *, 4> NewOps(S->operands()); 1572 NewOps[0] = SE.getConstant(Ty, 0); 1573 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1574 S->getNoWrapFlags(SCEV::FlagNW)); 1575 1576 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1577 // comments on expandAddToGEP for details. 1578 const SCEV *Base = S->getStart(); 1579 // Dig into the expression to find the pointer base for a GEP. 1580 const SCEV *ExposedRest = Rest; 1581 ExposePointerBase(Base, ExposedRest, SE); 1582 // If we found a pointer, expand the AddRec with a GEP. 1583 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1584 Value *StartV = expand(Base); 1585 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1586 return expandAddToGEP(ExposedRest, PTy, Ty, StartV); 1587 } 1588 1589 // Just do a normal add. Pre-expand the operands to suppress folding. 1590 // 1591 // The LHS and RHS values are factored out of the expand call to make the 1592 // output independent of the argument evaluation order. 1593 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 1594 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 1595 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 1596 } 1597 1598 // If we don't yet have a canonical IV, create one. 1599 if (!CanonicalIV) { 1600 // Create and insert the PHI node for the induction variable in the 1601 // specified loop. 1602 BasicBlock *Header = L->getHeader(); 1603 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1604 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1605 &Header->front()); 1606 rememberInstruction(CanonicalIV); 1607 1608 SmallSet<BasicBlock *, 4> PredSeen; 1609 Constant *One = ConstantInt::get(Ty, 1); 1610 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1611 BasicBlock *HP = *HPI; 1612 if (!PredSeen.insert(HP).second) { 1613 // There must be an incoming value for each predecessor, even the 1614 // duplicates! 1615 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 1616 continue; 1617 } 1618 1619 if (L->contains(HP)) { 1620 // Insert a unit add instruction right before the terminator 1621 // corresponding to the back-edge. 1622 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1623 "indvar.next", 1624 HP->getTerminator()); 1625 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1626 rememberInstruction(Add); 1627 CanonicalIV->addIncoming(Add, HP); 1628 } else { 1629 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1630 } 1631 } 1632 } 1633 1634 // {0,+,1} --> Insert a canonical induction variable into the loop! 1635 if (S->isAffine() && S->getOperand(1)->isOne()) { 1636 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1637 "IVs with types different from the canonical IV should " 1638 "already have been handled!"); 1639 return CanonicalIV; 1640 } 1641 1642 // {0,+,F} --> {0,+,1} * F 1643 1644 // If this is a simple linear addrec, emit it now as a special case. 1645 if (S->isAffine()) // {0,+,F} --> i*F 1646 return 1647 expand(SE.getTruncateOrNoop( 1648 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1649 SE.getNoopOrAnyExtend(S->getOperand(1), 1650 CanonicalIV->getType())), 1651 Ty)); 1652 1653 // If this is a chain of recurrences, turn it into a closed form, using the 1654 // folders, then expandCodeFor the closed form. This allows the folders to 1655 // simplify the expression without having to build a bunch of special code 1656 // into this folder. 1657 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1658 1659 // Promote S up to the canonical IV type, if the cast is foldable. 1660 const SCEV *NewS = S; 1661 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1662 if (isa<SCEVAddRecExpr>(Ext)) 1663 NewS = Ext; 1664 1665 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1666 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1667 1668 // Truncate the result down to the original type, if needed. 1669 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1670 return expand(T); 1671 } 1672 1673 Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 1674 Value *V = 1675 expandCodeForImpl(S->getOperand(), S->getOperand()->getType(), false); 1676 return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1677 GetOptimalInsertionPointForCastOf(V)); 1678 } 1679 1680 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1681 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1682 Value *V = expandCodeForImpl( 1683 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1684 false); 1685 return Builder.CreateTrunc(V, Ty); 1686 } 1687 1688 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1689 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1690 Value *V = expandCodeForImpl( 1691 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1692 false); 1693 return Builder.CreateZExt(V, Ty); 1694 } 1695 1696 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1697 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1698 Value *V = expandCodeForImpl( 1699 S->getOperand(), SE.getEffectiveSCEVType(S->getOperand()->getType()), 1700 false); 1701 return Builder.CreateSExt(V, Ty); 1702 } 1703 1704 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1705 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1706 Type *Ty = LHS->getType(); 1707 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1708 // In the case of mixed integer and pointer types, do the 1709 // rest of the comparisons as integer. 1710 Type *OpTy = S->getOperand(i)->getType(); 1711 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1712 Ty = SE.getEffectiveSCEVType(Ty); 1713 LHS = InsertNoopCastOfTo(LHS, Ty); 1714 } 1715 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1716 Value *Sel; 1717 if (Ty->isIntegerTy()) 1718 Sel = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, {LHS, RHS}, 1719 /*FMFSource=*/nullptr, "smax"); 1720 else { 1721 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1722 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1723 } 1724 LHS = Sel; 1725 } 1726 // In the case of mixed integer and pointer types, cast the 1727 // final result back to the pointer type. 1728 if (LHS->getType() != S->getType()) 1729 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1730 return LHS; 1731 } 1732 1733 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1734 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1735 Type *Ty = LHS->getType(); 1736 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1737 // In the case of mixed integer and pointer types, do the 1738 // rest of the comparisons as integer. 1739 Type *OpTy = S->getOperand(i)->getType(); 1740 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1741 Ty = SE.getEffectiveSCEVType(Ty); 1742 LHS = InsertNoopCastOfTo(LHS, Ty); 1743 } 1744 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1745 Value *Sel; 1746 if (Ty->isIntegerTy()) 1747 Sel = Builder.CreateIntrinsic(Intrinsic::umax, {Ty}, {LHS, RHS}, 1748 /*FMFSource=*/nullptr, "umax"); 1749 else { 1750 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1751 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1752 } 1753 LHS = Sel; 1754 } 1755 // In the case of mixed integer and pointer types, cast the 1756 // final result back to the pointer type. 1757 if (LHS->getType() != S->getType()) 1758 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1759 return LHS; 1760 } 1761 1762 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 1763 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1764 Type *Ty = LHS->getType(); 1765 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1766 // In the case of mixed integer and pointer types, do the 1767 // rest of the comparisons as integer. 1768 Type *OpTy = S->getOperand(i)->getType(); 1769 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1770 Ty = SE.getEffectiveSCEVType(Ty); 1771 LHS = InsertNoopCastOfTo(LHS, Ty); 1772 } 1773 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1774 Value *Sel; 1775 if (Ty->isIntegerTy()) 1776 Sel = Builder.CreateIntrinsic(Intrinsic::smin, {Ty}, {LHS, RHS}, 1777 /*FMFSource=*/nullptr, "smin"); 1778 else { 1779 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS); 1780 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin"); 1781 } 1782 LHS = Sel; 1783 } 1784 // In the case of mixed integer and pointer types, cast the 1785 // final result back to the pointer type. 1786 if (LHS->getType() != S->getType()) 1787 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1788 return LHS; 1789 } 1790 1791 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 1792 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 1793 Type *Ty = LHS->getType(); 1794 for (int i = S->getNumOperands() - 2; i >= 0; --i) { 1795 // In the case of mixed integer and pointer types, do the 1796 // rest of the comparisons as integer. 1797 Type *OpTy = S->getOperand(i)->getType(); 1798 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) { 1799 Ty = SE.getEffectiveSCEVType(Ty); 1800 LHS = InsertNoopCastOfTo(LHS, Ty); 1801 } 1802 Value *RHS = expandCodeForImpl(S->getOperand(i), Ty, false); 1803 Value *Sel; 1804 if (Ty->isIntegerTy()) 1805 Sel = Builder.CreateIntrinsic(Intrinsic::umin, {Ty}, {LHS, RHS}, 1806 /*FMFSource=*/nullptr, "umin"); 1807 else { 1808 Value *ICmp = Builder.CreateICmpULT(LHS, RHS); 1809 Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin"); 1810 } 1811 LHS = Sel; 1812 } 1813 // In the case of mixed integer and pointer types, cast the 1814 // final result back to the pointer type. 1815 if (LHS->getType() != S->getType()) 1816 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1817 return LHS; 1818 } 1819 1820 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, 1821 Instruction *IP, bool Root) { 1822 setInsertPoint(IP); 1823 Value *V = expandCodeForImpl(SH, Ty, Root); 1824 return V; 1825 } 1826 1827 Value *SCEVExpander::expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root) { 1828 // Expand the code for this SCEV. 1829 Value *V = expand(SH); 1830 1831 if (PreserveLCSSA) { 1832 if (auto *Inst = dyn_cast<Instruction>(V)) { 1833 // Create a temporary instruction to at the current insertion point, so we 1834 // can hand it off to the helper to create LCSSA PHIs if required for the 1835 // new use. 1836 // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 1837 // would accept a insertion point and return an LCSSA phi for that 1838 // insertion point, so there is no need to insert & remove the temporary 1839 // instruction. 1840 Instruction *Tmp; 1841 if (Inst->getType()->isIntegerTy()) 1842 Tmp = 1843 cast<Instruction>(Builder.CreateAdd(Inst, Inst, "tmp.lcssa.user")); 1844 else { 1845 assert(Inst->getType()->isPointerTy()); 1846 Tmp = cast<Instruction>(Builder.CreatePtrToInt( 1847 Inst, Type::getInt32Ty(Inst->getContext()), "tmp.lcssa.user")); 1848 } 1849 V = fixupLCSSAFormFor(Tmp, 0); 1850 1851 // Clean up temporary instruction. 1852 InsertedValues.erase(Tmp); 1853 InsertedPostIncValues.erase(Tmp); 1854 Tmp->eraseFromParent(); 1855 } 1856 } 1857 1858 InsertedExpressions[std::make_pair(SH, &*Builder.GetInsertPoint())] = V; 1859 if (Ty) { 1860 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1861 "non-trivial casts should be done with the SCEVs directly!"); 1862 V = InsertNoopCastOfTo(V, Ty); 1863 } 1864 return V; 1865 } 1866 1867 ScalarEvolution::ValueOffsetPair 1868 SCEVExpander::FindValueInExprValueMap(const SCEV *S, 1869 const Instruction *InsertPt) { 1870 auto *Set = SE.getSCEVValues(S); 1871 // If the expansion is not in CanonicalMode, and the SCEV contains any 1872 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 1873 if (CanonicalMode || !SE.containsAddRecurrence(S)) { 1874 // If S is scConstant, it may be worse to reuse an existing Value. 1875 if (S->getSCEVType() != scConstant && Set) { 1876 // Choose a Value from the set which dominates the insertPt. 1877 // insertPt should be inside the Value's parent loop so as not to break 1878 // the LCSSA form. 1879 for (auto const &VOPair : *Set) { 1880 Value *V = VOPair.first; 1881 ConstantInt *Offset = VOPair.second; 1882 Instruction *EntInst = nullptr; 1883 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) && 1884 S->getType() == V->getType() && 1885 EntInst->getFunction() == InsertPt->getFunction() && 1886 SE.DT.dominates(EntInst, InsertPt) && 1887 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 1888 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 1889 return {V, Offset}; 1890 } 1891 } 1892 } 1893 return {nullptr, nullptr}; 1894 } 1895 1896 // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 1897 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 1898 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 1899 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 1900 // the expansion will try to reuse Value from ExprValueMap, and only when it 1901 // fails, expand the SCEV literally. 1902 Value *SCEVExpander::expand(const SCEV *S) { 1903 // Compute an insertion point for this SCEV object. Hoist the instructions 1904 // as far out in the loop nest as possible. 1905 Instruction *InsertPt = &*Builder.GetInsertPoint(); 1906 1907 // We can move insertion point only if there is no div or rem operations 1908 // otherwise we are risky to move it over the check for zero denominator. 1909 auto SafeToHoist = [](const SCEV *S) { 1910 return !SCEVExprContains(S, [](const SCEV *S) { 1911 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 1912 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 1913 // Division by non-zero constants can be hoisted. 1914 return SC->getValue()->isZero(); 1915 // All other divisions should not be moved as they may be 1916 // divisions by zero and should be kept within the 1917 // conditions of the surrounding loops that guard their 1918 // execution (see PR35406). 1919 return true; 1920 } 1921 return false; 1922 }); 1923 }; 1924 if (SafeToHoist(S)) { 1925 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 1926 L = L->getParentLoop()) { 1927 if (SE.isLoopInvariant(S, L)) { 1928 if (!L) break; 1929 if (BasicBlock *Preheader = L->getLoopPreheader()) 1930 InsertPt = Preheader->getTerminator(); 1931 else 1932 // LSR sets the insertion point for AddRec start/step values to the 1933 // block start to simplify value reuse, even though it's an invalid 1934 // position. SCEVExpander must correct for this in all cases. 1935 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1936 } else { 1937 // If the SCEV is computable at this level, insert it into the header 1938 // after the PHIs (and after any other instructions that we've inserted 1939 // there) so that it is guaranteed to dominate any user inside the loop. 1940 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1941 InsertPt = &*L->getHeader()->getFirstInsertionPt(); 1942 1943 while (InsertPt->getIterator() != Builder.GetInsertPoint() && 1944 (isInsertedInstruction(InsertPt) || 1945 isa<DbgInfoIntrinsic>(InsertPt))) { 1946 InsertPt = &*std::next(InsertPt->getIterator()); 1947 } 1948 break; 1949 } 1950 } 1951 } 1952 1953 // Check to see if we already expanded this here. 1954 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1955 if (I != InsertedExpressions.end()) 1956 return I->second; 1957 1958 SCEVInsertPointGuard Guard(Builder, this); 1959 Builder.SetInsertPoint(InsertPt); 1960 1961 // Expand the expression into instructions. 1962 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt); 1963 Value *V = VO.first; 1964 1965 if (!V) 1966 V = visit(S); 1967 else if (VO.second) { 1968 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) { 1969 Type *Ety = Vty->getPointerElementType(); 1970 int64_t Offset = VO.second->getSExtValue(); 1971 int64_t ESize = SE.getTypeSizeInBits(Ety); 1972 if ((Offset * 8) % ESize == 0) { 1973 ConstantInt *Idx = 1974 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize); 1975 V = Builder.CreateGEP(Ety, V, Idx, "scevgep"); 1976 } else { 1977 ConstantInt *Idx = 1978 ConstantInt::getSigned(VO.second->getType(), -Offset); 1979 unsigned AS = Vty->getAddressSpace(); 1980 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS)); 1981 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx, 1982 "uglygep"); 1983 V = Builder.CreateBitCast(V, Vty); 1984 } 1985 } else { 1986 V = Builder.CreateSub(V, VO.second); 1987 } 1988 } 1989 // Remember the expanded value for this SCEV at this location. 1990 // 1991 // This is independent of PostIncLoops. The mapped value simply materializes 1992 // the expression at this insertion point. If the mapped value happened to be 1993 // a postinc expansion, it could be reused by a non-postinc user, but only if 1994 // its insertion point was already at the head of the loop. 1995 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1996 return V; 1997 } 1998 1999 void SCEVExpander::rememberInstruction(Value *I) { 2000 auto DoInsert = [this](Value *V) { 2001 if (!PostIncLoops.empty()) 2002 InsertedPostIncValues.insert(V); 2003 else 2004 InsertedValues.insert(V); 2005 }; 2006 DoInsert(I); 2007 2008 if (!PreserveLCSSA) 2009 return; 2010 2011 if (auto *Inst = dyn_cast<Instruction>(I)) { 2012 // A new instruction has been added, which might introduce new uses outside 2013 // a defining loop. Fix LCSSA from for each operand of the new instruction, 2014 // if required. 2015 for (unsigned OpIdx = 0, OpEnd = Inst->getNumOperands(); OpIdx != OpEnd; 2016 OpIdx++) 2017 fixupLCSSAFormFor(Inst, OpIdx); 2018 } 2019 } 2020 2021 /// replaceCongruentIVs - Check for congruent phis in this loop header and 2022 /// replace them with their most canonical representative. Return the number of 2023 /// phis eliminated. 2024 /// 2025 /// This does not depend on any SCEVExpander state but should be used in 2026 /// the same context that SCEVExpander is used. 2027 unsigned 2028 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 2029 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 2030 const TargetTransformInfo *TTI) { 2031 // Find integer phis in order of increasing width. 2032 SmallVector<PHINode*, 8> Phis; 2033 for (PHINode &PN : L->getHeader()->phis()) 2034 Phis.push_back(&PN); 2035 2036 if (TTI) 2037 llvm::sort(Phis, [](Value *LHS, Value *RHS) { 2038 // Put pointers at the back and make sure pointer < pointer = false. 2039 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 2040 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 2041 return RHS->getType()->getPrimitiveSizeInBits().getFixedSize() < 2042 LHS->getType()->getPrimitiveSizeInBits().getFixedSize(); 2043 }); 2044 2045 unsigned NumElim = 0; 2046 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 2047 // Process phis from wide to narrow. Map wide phis to their truncation 2048 // so narrow phis can reuse them. 2049 for (PHINode *Phi : Phis) { 2050 auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 2051 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 2052 return V; 2053 if (!SE.isSCEVable(PN->getType())) 2054 return nullptr; 2055 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 2056 if (!Const) 2057 return nullptr; 2058 return Const->getValue(); 2059 }; 2060 2061 // Fold constant phis. They may be congruent to other constant phis and 2062 // would confuse the logic below that expects proper IVs. 2063 if (Value *V = SimplifyPHINode(Phi)) { 2064 if (V->getType() != Phi->getType()) 2065 continue; 2066 Phi->replaceAllUsesWith(V); 2067 DeadInsts.emplace_back(Phi); 2068 ++NumElim; 2069 SCEV_DEBUG_WITH_TYPE(DebugType, 2070 dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 2071 << '\n'); 2072 continue; 2073 } 2074 2075 if (!SE.isSCEVable(Phi->getType())) 2076 continue; 2077 2078 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 2079 if (!OrigPhiRef) { 2080 OrigPhiRef = Phi; 2081 if (Phi->getType()->isIntegerTy() && TTI && 2082 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 2083 // This phi can be freely truncated to the narrowest phi type. Map the 2084 // truncated expression to it so it will be reused for narrow types. 2085 const SCEV *TruncExpr = 2086 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 2087 ExprToIVMap[TruncExpr] = Phi; 2088 } 2089 continue; 2090 } 2091 2092 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 2093 // sense. 2094 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 2095 continue; 2096 2097 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 2098 Instruction *OrigInc = dyn_cast<Instruction>( 2099 OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 2100 Instruction *IsomorphicInc = 2101 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 2102 2103 if (OrigInc && IsomorphicInc) { 2104 // If this phi has the same width but is more canonical, replace the 2105 // original with it. As part of the "more canonical" determination, 2106 // respect a prior decision to use an IV chain. 2107 if (OrigPhiRef->getType() == Phi->getType() && 2108 !(ChainedPhis.count(Phi) || 2109 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) && 2110 (ChainedPhis.count(Phi) || 2111 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 2112 std::swap(OrigPhiRef, Phi); 2113 std::swap(OrigInc, IsomorphicInc); 2114 } 2115 // Replacing the congruent phi is sufficient because acyclic 2116 // redundancy elimination, CSE/GVN, should handle the 2117 // rest. However, once SCEV proves that a phi is congruent, 2118 // it's often the head of an IV user cycle that is isomorphic 2119 // with the original phi. It's worth eagerly cleaning up the 2120 // common case of a single IV increment so that DeleteDeadPHIs 2121 // can remove cycles that had postinc uses. 2122 const SCEV *TruncExpr = 2123 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 2124 if (OrigInc != IsomorphicInc && 2125 TruncExpr == SE.getSCEV(IsomorphicInc) && 2126 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) && 2127 hoistIVInc(OrigInc, IsomorphicInc)) { 2128 SCEV_DEBUG_WITH_TYPE( 2129 DebugType, dbgs() << "INDVARS: Eliminated congruent iv.inc: " 2130 << *IsomorphicInc << '\n'); 2131 Value *NewInc = OrigInc; 2132 if (OrigInc->getType() != IsomorphicInc->getType()) { 2133 Instruction *IP = nullptr; 2134 if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 2135 IP = &*PN->getParent()->getFirstInsertionPt(); 2136 else 2137 IP = OrigInc->getNextNode(); 2138 2139 IRBuilder<> Builder(IP); 2140 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 2141 NewInc = Builder.CreateTruncOrBitCast( 2142 OrigInc, IsomorphicInc->getType(), IVName); 2143 } 2144 IsomorphicInc->replaceAllUsesWith(NewInc); 2145 DeadInsts.emplace_back(IsomorphicInc); 2146 } 2147 } 2148 } 2149 SCEV_DEBUG_WITH_TYPE(DebugType, 2150 dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 2151 << '\n'); 2152 SCEV_DEBUG_WITH_TYPE( 2153 DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 2154 ++NumElim; 2155 Value *NewIV = OrigPhiRef; 2156 if (OrigPhiRef->getType() != Phi->getType()) { 2157 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt()); 2158 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 2159 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 2160 } 2161 Phi->replaceAllUsesWith(NewIV); 2162 DeadInsts.emplace_back(Phi); 2163 } 2164 return NumElim; 2165 } 2166 2167 Optional<ScalarEvolution::ValueOffsetPair> 2168 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At, 2169 Loop *L) { 2170 using namespace llvm::PatternMatch; 2171 2172 SmallVector<BasicBlock *, 4> ExitingBlocks; 2173 L->getExitingBlocks(ExitingBlocks); 2174 2175 // Look for suitable value in simple conditions at the loop exits. 2176 for (BasicBlock *BB : ExitingBlocks) { 2177 ICmpInst::Predicate Pred; 2178 Instruction *LHS, *RHS; 2179 2180 if (!match(BB->getTerminator(), 2181 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 2182 m_BasicBlock(), m_BasicBlock()))) 2183 continue; 2184 2185 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 2186 return ScalarEvolution::ValueOffsetPair(LHS, nullptr); 2187 2188 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 2189 return ScalarEvolution::ValueOffsetPair(RHS, nullptr); 2190 } 2191 2192 // Use expand's logic which is used for reusing a previous Value in 2193 // ExprValueMap. 2194 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At); 2195 if (VO.first) 2196 return VO; 2197 2198 // There is potential to make this significantly smarter, but this simple 2199 // heuristic already gets some interesting cases. 2200 2201 // Can not find suitable value. 2202 return None; 2203 } 2204 2205 template<typename T> static InstructionCost costAndCollectOperands( 2206 const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 2207 TargetTransformInfo::TargetCostKind CostKind, 2208 SmallVectorImpl<SCEVOperand> &Worklist) { 2209 2210 const T *S = cast<T>(WorkItem.S); 2211 InstructionCost Cost = 0; 2212 // Object to help map SCEV operands to expanded IR instructions. 2213 struct OperationIndices { 2214 OperationIndices(unsigned Opc, size_t min, size_t max) : 2215 Opcode(Opc), MinIdx(min), MaxIdx(max) { } 2216 unsigned Opcode; 2217 size_t MinIdx; 2218 size_t MaxIdx; 2219 }; 2220 2221 // Collect the operations of all the instructions that will be needed to 2222 // expand the SCEVExpr. This is so that when we come to cost the operands, 2223 // we know what the generated user(s) will be. 2224 SmallVector<OperationIndices, 2> Operations; 2225 2226 auto CastCost = [&](unsigned Opcode) -> InstructionCost { 2227 Operations.emplace_back(Opcode, 0, 0); 2228 return TTI.getCastInstrCost(Opcode, S->getType(), 2229 S->getOperand(0)->getType(), 2230 TTI::CastContextHint::None, CostKind); 2231 }; 2232 2233 auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 2234 unsigned MinIdx = 0, 2235 unsigned MaxIdx = 1) -> InstructionCost { 2236 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2237 return NumRequired * 2238 TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 2239 }; 2240 2241 auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 2242 unsigned MaxIdx) -> InstructionCost { 2243 Operations.emplace_back(Opcode, MinIdx, MaxIdx); 2244 Type *OpType = S->getOperand(0)->getType(); 2245 return NumRequired * TTI.getCmpSelInstrCost( 2246 Opcode, OpType, CmpInst::makeCmpResultType(OpType), 2247 CmpInst::BAD_ICMP_PREDICATE, CostKind); 2248 }; 2249 2250 switch (S->getSCEVType()) { 2251 case scCouldNotCompute: 2252 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2253 case scUnknown: 2254 case scConstant: 2255 return 0; 2256 case scPtrToInt: 2257 Cost = CastCost(Instruction::PtrToInt); 2258 break; 2259 case scTruncate: 2260 Cost = CastCost(Instruction::Trunc); 2261 break; 2262 case scZeroExtend: 2263 Cost = CastCost(Instruction::ZExt); 2264 break; 2265 case scSignExtend: 2266 Cost = CastCost(Instruction::SExt); 2267 break; 2268 case scUDivExpr: { 2269 unsigned Opcode = Instruction::UDiv; 2270 if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 2271 if (SC->getAPInt().isPowerOf2()) 2272 Opcode = Instruction::LShr; 2273 Cost = ArithCost(Opcode, 1); 2274 break; 2275 } 2276 case scAddExpr: 2277 Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 2278 break; 2279 case scMulExpr: 2280 // TODO: this is a very pessimistic cost modelling for Mul, 2281 // because of Bin Pow algorithm actually used by the expander, 2282 // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 2283 Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 2284 break; 2285 case scSMaxExpr: 2286 case scUMaxExpr: 2287 case scSMinExpr: 2288 case scUMinExpr: { 2289 // FIXME: should this ask the cost for Intrinsic's? 2290 Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 2291 Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 2292 break; 2293 } 2294 case scAddRecExpr: { 2295 // In this polynominal, we may have some zero operands, and we shouldn't 2296 // really charge for those. So how many non-zero coeffients are there? 2297 int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 2298 return !Op->isZero(); 2299 }); 2300 2301 assert(NumTerms >= 1 && "Polynominal should have at least one term."); 2302 assert(!(*std::prev(S->operands().end()))->isZero() && 2303 "Last operand should not be zero"); 2304 2305 // Ignoring constant term (operand 0), how many of the coeffients are u> 1? 2306 int NumNonZeroDegreeNonOneTerms = 2307 llvm::count_if(S->operands(), [](const SCEV *Op) { 2308 auto *SConst = dyn_cast<SCEVConstant>(Op); 2309 return !SConst || SConst->getAPInt().ugt(1); 2310 }); 2311 2312 // Much like with normal add expr, the polynominal will require 2313 // one less addition than the number of it's terms. 2314 InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 2315 /*MinIdx*/ 1, /*MaxIdx*/ 1); 2316 // Here, *each* one of those will require a multiplication. 2317 InstructionCost MulCost = 2318 ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 2319 Cost = AddCost + MulCost; 2320 2321 // What is the degree of this polynominal? 2322 int PolyDegree = S->getNumOperands() - 1; 2323 assert(PolyDegree >= 1 && "Should be at least affine."); 2324 2325 // The final term will be: 2326 // Op_{PolyDegree} * x ^ {PolyDegree} 2327 // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 2328 // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 2329 // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 2330 // FIXME: this is conservatively correct, but might be overly pessimistic. 2331 Cost += MulCost * (PolyDegree - 1); 2332 break; 2333 } 2334 } 2335 2336 for (auto &CostOp : Operations) { 2337 for (auto SCEVOp : enumerate(S->operands())) { 2338 // Clamp the index to account for multiple IR operations being chained. 2339 size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 2340 size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 2341 Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 2342 } 2343 } 2344 return Cost; 2345 } 2346 2347 bool SCEVExpander::isHighCostExpansionHelper( 2348 const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 2349 InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 2350 SmallPtrSetImpl<const SCEV *> &Processed, 2351 SmallVectorImpl<SCEVOperand> &Worklist) { 2352 if (Cost > Budget) 2353 return true; // Already run out of budget, give up. 2354 2355 const SCEV *S = WorkItem.S; 2356 // Was the cost of expansion of this expression already accounted for? 2357 if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 2358 return false; // We have already accounted for this expression. 2359 2360 // If we can find an existing value for this scev available at the point "At" 2361 // then consider the expression cheap. 2362 if (getRelatedExistingExpansion(S, &At, L)) 2363 return false; // Consider the expression to be free. 2364 2365 TargetTransformInfo::TargetCostKind CostKind = 2366 L->getHeader()->getParent()->hasMinSize() 2367 ? TargetTransformInfo::TCK_CodeSize 2368 : TargetTransformInfo::TCK_RecipThroughput; 2369 2370 switch (S->getSCEVType()) { 2371 case scCouldNotCompute: 2372 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 2373 case scUnknown: 2374 // Assume to be zero-cost. 2375 return false; 2376 case scConstant: { 2377 // Only evalulate the costs of constants when optimizing for size. 2378 if (CostKind != TargetTransformInfo::TCK_CodeSize) 2379 return 0; 2380 const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2381 Type *Ty = S->getType(); 2382 Cost += TTI.getIntImmCostInst( 2383 WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2384 return Cost > Budget; 2385 } 2386 case scTruncate: 2387 case scPtrToInt: 2388 case scZeroExtend: 2389 case scSignExtend: { 2390 Cost += 2391 costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 2392 return false; // Will answer upon next entry into this function. 2393 } 2394 case scUDivExpr: { 2395 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 2396 // HowManyLessThans produced to compute a precise expression, rather than a 2397 // UDiv from the user's code. If we can't find a UDiv in the code with some 2398 // simple searching, we need to account for it's cost. 2399 2400 // At the beginning of this function we already tried to find existing 2401 // value for plain 'S'. Now try to lookup 'S + 1' since it is common 2402 // pattern involving division. This is just a simple search heuristic. 2403 if (getRelatedExistingExpansion( 2404 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 2405 return false; // Consider it to be free. 2406 2407 Cost += 2408 costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 2409 return false; // Will answer upon next entry into this function. 2410 } 2411 case scAddExpr: 2412 case scMulExpr: 2413 case scUMaxExpr: 2414 case scSMaxExpr: 2415 case scUMinExpr: 2416 case scSMinExpr: { 2417 assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 2418 "Nary expr should have more than 1 operand."); 2419 // The simple nary expr will require one less op (or pair of ops) 2420 // than the number of it's terms. 2421 Cost += 2422 costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2423 return Cost > Budget; 2424 } 2425 case scAddRecExpr: { 2426 assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2427 "Polynomial should be at least linear"); 2428 Cost += costAndCollectOperands<SCEVAddRecExpr>( 2429 WorkItem, TTI, CostKind, Worklist); 2430 return Cost > Budget; 2431 } 2432 } 2433 llvm_unreachable("Unknown SCEV kind!"); 2434 } 2435 2436 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 2437 Instruction *IP) { 2438 assert(IP); 2439 switch (Pred->getKind()) { 2440 case SCEVPredicate::P_Union: 2441 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 2442 case SCEVPredicate::P_Equal: 2443 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP); 2444 case SCEVPredicate::P_Wrap: { 2445 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 2446 return expandWrapPredicate(AddRecPred, IP); 2447 } 2448 } 2449 llvm_unreachable("Unknown SCEV predicate type"); 2450 } 2451 2452 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred, 2453 Instruction *IP) { 2454 Value *Expr0 = 2455 expandCodeForImpl(Pred->getLHS(), Pred->getLHS()->getType(), IP, false); 2456 Value *Expr1 = 2457 expandCodeForImpl(Pred->getRHS(), Pred->getRHS()->getType(), IP, false); 2458 2459 Builder.SetInsertPoint(IP); 2460 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check"); 2461 return I; 2462 } 2463 2464 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 2465 Instruction *Loc, bool Signed) { 2466 assert(AR->isAffine() && "Cannot generate RT check for " 2467 "non-affine expression"); 2468 2469 SCEVUnionPredicate Pred; 2470 const SCEV *ExitCount = 2471 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred); 2472 2473 assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 2474 2475 const SCEV *Step = AR->getStepRecurrence(SE); 2476 const SCEV *Start = AR->getStart(); 2477 2478 Type *ARTy = AR->getType(); 2479 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 2480 unsigned DstBits = SE.getTypeSizeInBits(ARTy); 2481 2482 // The expression {Start,+,Step} has nusw/nssw if 2483 // Step < 0, Start - |Step| * Backedge <= Start 2484 // Step >= 0, Start + |Step| * Backedge > Start 2485 // and |Step| * Backedge doesn't unsigned overflow. 2486 2487 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits); 2488 Builder.SetInsertPoint(Loc); 2489 Value *TripCountVal = expandCodeForImpl(ExitCount, CountTy, Loc, false); 2490 2491 IntegerType *Ty = 2492 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 2493 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty; 2494 2495 Value *StepValue = expandCodeForImpl(Step, Ty, Loc, false); 2496 Value *NegStepValue = 2497 expandCodeForImpl(SE.getNegativeSCEV(Step), Ty, Loc, false); 2498 Value *StartValue = expandCodeForImpl( 2499 isa<PointerType>(ARExpandTy) ? Start 2500 : SE.getPtrToIntExpr(Start, ARExpandTy), 2501 ARExpandTy, Loc, false); 2502 2503 ConstantInt *Zero = 2504 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits)); 2505 2506 Builder.SetInsertPoint(Loc); 2507 // Compute |Step| 2508 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 2509 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 2510 2511 // Get the backedge taken count and truncate or extended to the AR type. 2512 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 2513 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2514 Intrinsic::umul_with_overflow, Ty); 2515 2516 // Compute |Step| * Backedge 2517 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2518 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2519 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2520 2521 // Compute: 2522 // Start + |Step| * Backedge < Start 2523 // Start - |Step| * Backedge > Start 2524 Value *Add = nullptr, *Sub = nullptr; 2525 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) { 2526 const SCEV *MulS = SE.getSCEV(MulV); 2527 const SCEV *NegMulS = SE.getNegativeSCEV(MulS); 2528 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue), 2529 ARPtrTy); 2530 Sub = Builder.CreateBitCast( 2531 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy); 2532 } else { 2533 Add = Builder.CreateAdd(StartValue, MulV); 2534 Sub = Builder.CreateSub(StartValue, MulV); 2535 } 2536 2537 Value *EndCompareGT = Builder.CreateICmp( 2538 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 2539 2540 Value *EndCompareLT = Builder.CreateICmp( 2541 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 2542 2543 // Select the answer based on the sign of Step. 2544 Value *EndCheck = 2545 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 2546 2547 // If the backedge taken count type is larger than the AR type, 2548 // check that we don't drop any bits by truncating it. If we are 2549 // dropping bits, then we have overflow (unless the step is zero). 2550 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) { 2551 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 2552 auto *BackedgeCheck = 2553 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 2554 ConstantInt::get(Loc->getContext(), MaxVal)); 2555 BackedgeCheck = Builder.CreateAnd( 2556 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 2557 2558 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 2559 } 2560 2561 return Builder.CreateOr(EndCheck, OfMul); 2562 } 2563 2564 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 2565 Instruction *IP) { 2566 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 2567 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 2568 2569 // Add a check for NUSW 2570 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 2571 NUSWCheck = generateOverflowCheck(A, IP, false); 2572 2573 // Add a check for NSSW 2574 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 2575 NSSWCheck = generateOverflowCheck(A, IP, true); 2576 2577 if (NUSWCheck && NSSWCheck) 2578 return Builder.CreateOr(NUSWCheck, NSSWCheck); 2579 2580 if (NUSWCheck) 2581 return NUSWCheck; 2582 2583 if (NSSWCheck) 2584 return NSSWCheck; 2585 2586 return ConstantInt::getFalse(IP->getContext()); 2587 } 2588 2589 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 2590 Instruction *IP) { 2591 auto *BoolType = IntegerType::get(IP->getContext(), 1); 2592 Value *Check = ConstantInt::getNullValue(BoolType); 2593 2594 // Loop over all checks in this set. 2595 for (auto Pred : Union->getPredicates()) { 2596 auto *NextCheck = expandCodeForPredicate(Pred, IP); 2597 Builder.SetInsertPoint(IP); 2598 Check = Builder.CreateOr(Check, NextCheck); 2599 } 2600 2601 return Check; 2602 } 2603 2604 Value *SCEVExpander::fixupLCSSAFormFor(Instruction *User, unsigned OpIdx) { 2605 assert(PreserveLCSSA); 2606 SmallVector<Instruction *, 1> ToUpdate; 2607 2608 auto *OpV = User->getOperand(OpIdx); 2609 auto *OpI = dyn_cast<Instruction>(OpV); 2610 if (!OpI) 2611 return OpV; 2612 2613 Loop *DefLoop = SE.LI.getLoopFor(OpI->getParent()); 2614 Loop *UseLoop = SE.LI.getLoopFor(User->getParent()); 2615 if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2616 return OpV; 2617 2618 ToUpdate.push_back(OpI); 2619 SmallVector<PHINode *, 16> PHIsToRemove; 2620 formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, Builder, &PHIsToRemove); 2621 for (PHINode *PN : PHIsToRemove) { 2622 if (!PN->use_empty()) 2623 continue; 2624 InsertedValues.erase(PN); 2625 InsertedPostIncValues.erase(PN); 2626 PN->eraseFromParent(); 2627 } 2628 2629 return User->getOperand(OpIdx); 2630 } 2631 2632 namespace { 2633 // Search for a SCEV subexpression that is not safe to expand. Any expression 2634 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 2635 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 2636 // instruction, but the important thing is that we prove the denominator is 2637 // nonzero before expansion. 2638 // 2639 // IVUsers already checks that IV-derived expressions are safe. So this check is 2640 // only needed when the expression includes some subexpression that is not IV 2641 // derived. 2642 // 2643 // Currently, we only allow division by a nonzero constant here. If this is 2644 // inadequate, we could easily allow division by SCEVUnknown by using 2645 // ValueTracking to check isKnownNonZero(). 2646 // 2647 // We cannot generally expand recurrences unless the step dominates the loop 2648 // header. The expander handles the special case of affine recurrences by 2649 // scaling the recurrence outside the loop, but this technique isn't generally 2650 // applicable. Expanding a nested recurrence outside a loop requires computing 2651 // binomial coefficients. This could be done, but the recurrence has to be in a 2652 // perfectly reduced form, which can't be guaranteed. 2653 struct SCEVFindUnsafe { 2654 ScalarEvolution &SE; 2655 bool IsUnsafe; 2656 2657 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {} 2658 2659 bool follow(const SCEV *S) { 2660 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2661 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 2662 if (!SC || SC->getValue()->isZero()) { 2663 IsUnsafe = true; 2664 return false; 2665 } 2666 } 2667 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2668 const SCEV *Step = AR->getStepRecurrence(SE); 2669 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) { 2670 IsUnsafe = true; 2671 return false; 2672 } 2673 } 2674 return true; 2675 } 2676 bool isDone() const { return IsUnsafe; } 2677 }; 2678 } 2679 2680 namespace llvm { 2681 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) { 2682 SCEVFindUnsafe Search(SE); 2683 visitAll(S, Search); 2684 return !Search.IsUnsafe; 2685 } 2686 2687 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, 2688 ScalarEvolution &SE) { 2689 if (!isSafeToExpand(S, SE)) 2690 return false; 2691 // We have to prove that the expanded site of S dominates InsertionPoint. 2692 // This is easy when not in the same block, but hard when S is an instruction 2693 // to be expanded somewhere inside the same block as our insertion point. 2694 // What we really need here is something analogous to an OrderedBasicBlock, 2695 // but for the moment, we paper over the problem by handling two common and 2696 // cheap to check cases. 2697 if (SE.properlyDominates(S, InsertionPoint->getParent())) 2698 return true; 2699 if (SE.dominates(S, InsertionPoint->getParent())) { 2700 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 2701 return true; 2702 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2703 if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 2704 return true; 2705 } 2706 return false; 2707 } 2708 2709 void SCEVExpanderCleaner::cleanup() { 2710 // Result is used, nothing to remove. 2711 if (ResultUsed) 2712 return; 2713 2714 auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2715 #ifndef NDEBUG 2716 SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2717 InsertedInstructions.end()); 2718 (void)InsertedSet; 2719 #endif 2720 // Remove sets with value handles. 2721 Expander.clear(); 2722 2723 // Sort so that earlier instructions do not dominate later instructions. 2724 stable_sort(InsertedInstructions, [this](Instruction *A, Instruction *B) { 2725 return DT.dominates(B, A); 2726 }); 2727 // Remove all inserted instructions. 2728 for (Instruction *I : InsertedInstructions) { 2729 2730 #ifndef NDEBUG 2731 assert(all_of(I->users(), 2732 [&InsertedSet](Value *U) { 2733 return InsertedSet.contains(cast<Instruction>(U)); 2734 }) && 2735 "removed instruction should only be used by instructions inserted " 2736 "during expansion"); 2737 #endif 2738 assert(!I->getType()->isVoidTy() && 2739 "inserted instruction should have non-void types"); 2740 I->replaceAllUsesWith(UndefValue::get(I->getType())); 2741 I->eraseFromParent(); 2742 } 2743 } 2744 } 2745