1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/IteratedDominanceFrontier.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugProgramInstruction.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // Only allow direct and non-volatile loads and stores... 66 for (const User *U : AI->users()) { 67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 68 // Note that atomic loads can be transformed; atomic semantics do 69 // not have any meaning for a local alloca. 70 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 71 return false; 72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 73 if (SI->getValueOperand() == AI || 74 SI->getValueOperand()->getType() != AI->getAllocatedType()) 75 return false; // Don't allow a store OF the AI, only INTO the AI. 76 // Note that atomic stores can be transformed; atomic semantics do 77 // not have any meaning for a local alloca. 78 if (SI->isVolatile()) 79 return false; 80 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 81 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 82 return false; 83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 84 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 85 return false; 86 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 87 if (!GEPI->hasAllZeroIndices()) 88 return false; 89 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 90 return false; 91 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 92 if (!onlyUsedByLifetimeMarkers(ASCI)) 93 return false; 94 } else { 95 return false; 96 } 97 } 98 99 return true; 100 } 101 102 namespace { 103 104 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 105 DILocalVariable *Variable, 106 DIExpression *Expression, const DILocation *DI, 107 DbgVariableRecord *InsertBefore) { 108 // FIXME: Merge these two functions now that DIBuilder supports 109 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 110 // insert point for that to work. 111 (void)DIB; 112 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 113 *InsertBefore); 114 } 115 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 116 DILocalVariable *Variable, 117 DIExpression *Expression, const DILocation *DI, 118 Instruction *InsertBefore) { 119 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 120 } 121 122 /// Helper for updating assignment tracking debug info when promoting allocas. 123 class AssignmentTrackingInfo { 124 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 125 /// fragment. (i.e. not be a comprehensive set if there are multiple 126 /// dbg.assigns for one variable fragment). 127 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 128 SmallVector<DbgVariableRecord *> DVRAssigns; 129 130 public: 131 void init(AllocaInst *AI) { 132 SmallSet<DebugVariable, 2> Vars; 133 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 134 if (Vars.insert(DebugVariable(DAI)).second) 135 DbgAssigns.push_back(DAI); 136 } 137 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 138 if (Vars.insert(DebugVariable(DVR)).second) 139 DVRAssigns.push_back(DVR); 140 } 141 } 142 143 /// Update assignment tracking debug info given for the to-be-deleted store 144 /// \p ToDelete that stores to this alloca. 145 void updateForDeletedStore( 146 StoreInst *ToDelete, DIBuilder &DIB, 147 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 148 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 149 // There's nothing to do if the alloca doesn't have any variables using 150 // assignment tracking. 151 if (DbgAssigns.empty() && DVRAssigns.empty()) 152 return; 153 154 // Insert a dbg.value where the linked dbg.assign is and remember to delete 155 // the dbg.assign later. Demoting to dbg.value isn't necessary for 156 // correctness but does reduce compile time and memory usage by reducing 157 // unnecessary function-local metadata. Remember that we've seen a 158 // dbg.assign for each variable fragment for the untracked store handling 159 // (after this loop). 160 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 161 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 162 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 163 AssignList->insert(DbgAssign); 164 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 165 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 166 DbgAssign); 167 }; 168 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 169 InsertValueForAssign(Assign, DbgAssignsToDelete); 170 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 171 InsertValueForAssign(Assign, DVRAssignsToDelete); 172 173 // It's possible for variables using assignment tracking to have no 174 // dbg.assign linked to this store. These are variables in DbgAssigns that 175 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 176 // to mark the assignment - and the store is going to be deleted - insert a 177 // dbg.value to do that now. An untracked store may be either one that 178 // cannot be represented using assignment tracking (non-const offset or 179 // size) or one that is trackable but has had its DIAssignID attachment 180 // dropped accidentally. 181 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 182 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 183 return; 184 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 185 }; 186 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 187 for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 188 } 189 190 /// Update assignment tracking debug info given for the newly inserted PHI \p 191 /// NewPhi. 192 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 193 // Regardless of the position of dbg.assigns relative to stores, the 194 // incoming values into a new PHI should be the same for the (imaginary) 195 // debug-phi. 196 for (auto *DAI : DbgAssigns) 197 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 198 for (auto *DVR : DVRAssigns) 199 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 200 } 201 202 void clear() { 203 DbgAssigns.clear(); 204 DVRAssigns.clear(); 205 } 206 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 207 }; 208 209 struct AllocaInfo { 210 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 211 using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 212 213 SmallVector<BasicBlock *, 32> DefiningBlocks; 214 SmallVector<BasicBlock *, 32> UsingBlocks; 215 216 StoreInst *OnlyStore; 217 BasicBlock *OnlyBlock; 218 bool OnlyUsedInOneBlock; 219 220 /// Debug users of the alloca - does not include dbg.assign intrinsics. 221 DbgUserVec DbgUsers; 222 DPUserVec DPUsers; 223 /// Helper to update assignment tracking debug info. 224 AssignmentTrackingInfo AssignmentTracking; 225 226 void clear() { 227 DefiningBlocks.clear(); 228 UsingBlocks.clear(); 229 OnlyStore = nullptr; 230 OnlyBlock = nullptr; 231 OnlyUsedInOneBlock = true; 232 DbgUsers.clear(); 233 DPUsers.clear(); 234 AssignmentTracking.clear(); 235 } 236 237 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 238 /// by the rest of the pass to reason about the uses of this alloca. 239 void AnalyzeAlloca(AllocaInst *AI) { 240 clear(); 241 242 // As we scan the uses of the alloca instruction, keep track of stores, 243 // and decide whether all of the loads and stores to the alloca are within 244 // the same basic block. 245 for (User *U : AI->users()) { 246 Instruction *User = cast<Instruction>(U); 247 248 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 249 // Remember the basic blocks which define new values for the alloca 250 DefiningBlocks.push_back(SI->getParent()); 251 OnlyStore = SI; 252 } else { 253 LoadInst *LI = cast<LoadInst>(User); 254 // Otherwise it must be a load instruction, keep track of variable 255 // reads. 256 UsingBlocks.push_back(LI->getParent()); 257 } 258 259 if (OnlyUsedInOneBlock) { 260 if (!OnlyBlock) 261 OnlyBlock = User->getParent(); 262 else if (OnlyBlock != User->getParent()) 263 OnlyUsedInOneBlock = false; 264 } 265 } 266 DbgUserVec AllDbgUsers; 267 SmallVector<DbgVariableRecord *> AllDPUsers; 268 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 269 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 270 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 271 return !isa<DbgAssignIntrinsic>(DII); 272 }); 273 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 274 std::back_inserter(DPUsers), 275 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 276 AssignmentTracking.init(AI); 277 } 278 }; 279 280 /// Data package used by RenamePass(). 281 struct RenamePassData { 282 using ValVector = std::vector<Value *>; 283 using LocationVector = std::vector<DebugLoc>; 284 285 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 286 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 287 288 BasicBlock *BB; 289 BasicBlock *Pred; 290 ValVector Values; 291 LocationVector Locations; 292 }; 293 294 /// This assigns and keeps a per-bb relative ordering of load/store 295 /// instructions in the block that directly load or store an alloca. 296 /// 297 /// This functionality is important because it avoids scanning large basic 298 /// blocks multiple times when promoting many allocas in the same block. 299 class LargeBlockInfo { 300 /// For each instruction that we track, keep the index of the 301 /// instruction. 302 /// 303 /// The index starts out as the number of the instruction from the start of 304 /// the block. 305 DenseMap<const Instruction *, unsigned> InstNumbers; 306 307 public: 308 309 /// This code only looks at accesses to allocas. 310 static bool isInterestingInstruction(const Instruction *I) { 311 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 312 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 313 } 314 315 /// Get or calculate the index of the specified instruction. 316 unsigned getInstructionIndex(const Instruction *I) { 317 assert(isInterestingInstruction(I) && 318 "Not a load/store to/from an alloca?"); 319 320 // If we already have this instruction number, return it. 321 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 322 if (It != InstNumbers.end()) 323 return It->second; 324 325 // Scan the whole block to get the instruction. This accumulates 326 // information for every interesting instruction in the block, in order to 327 // avoid gratuitus rescans. 328 const BasicBlock *BB = I->getParent(); 329 unsigned InstNo = 0; 330 for (const Instruction &BBI : *BB) 331 if (isInterestingInstruction(&BBI)) 332 InstNumbers[&BBI] = InstNo++; 333 It = InstNumbers.find(I); 334 335 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 336 return It->second; 337 } 338 339 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 340 341 void clear() { InstNumbers.clear(); } 342 }; 343 344 struct PromoteMem2Reg { 345 /// The alloca instructions being promoted. 346 std::vector<AllocaInst *> Allocas; 347 348 DominatorTree &DT; 349 DIBuilder DIB; 350 351 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 352 AssumptionCache *AC; 353 354 const SimplifyQuery SQ; 355 356 /// Reverse mapping of Allocas. 357 DenseMap<AllocaInst *, unsigned> AllocaLookup; 358 359 /// The PhiNodes we're adding. 360 /// 361 /// That map is used to simplify some Phi nodes as we iterate over it, so 362 /// it should have deterministic iterators. We could use a MapVector, but 363 /// since we already maintain a map from BasicBlock* to a stable numbering 364 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 365 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 366 367 /// For each PHI node, keep track of which entry in Allocas it corresponds 368 /// to. 369 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 370 371 /// For each alloca, we keep track of the dbg.declare intrinsic that 372 /// describes it, if any, so that we can convert it to a dbg.value 373 /// intrinsic if the alloca gets promoted. 374 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 375 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 376 377 /// For each alloca, keep an instance of a helper class that gives us an easy 378 /// way to update assignment tracking debug info if the alloca is promoted. 379 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 380 /// A set of dbg.assigns to delete because they've been demoted to 381 /// dbg.values. Call cleanUpDbgAssigns to delete them. 382 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 383 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 384 385 /// The set of basic blocks the renamer has already visited. 386 SmallPtrSet<BasicBlock *, 16> Visited; 387 388 /// Contains a stable numbering of basic blocks to avoid non-determinstic 389 /// behavior. 390 DenseMap<BasicBlock *, unsigned> BBNumbers; 391 392 /// Lazily compute the number of predecessors a block has. 393 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 394 395 public: 396 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 397 AssumptionCache *AC) 398 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 399 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 400 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 401 nullptr, &DT, AC) {} 402 403 void run(); 404 405 private: 406 void RemoveFromAllocasList(unsigned &AllocaIdx) { 407 Allocas[AllocaIdx] = Allocas.back(); 408 Allocas.pop_back(); 409 --AllocaIdx; 410 } 411 412 unsigned getNumPreds(const BasicBlock *BB) { 413 unsigned &NP = BBNumPreds[BB]; 414 if (NP == 0) 415 NP = pred_size(BB) + 1; 416 return NP - 1; 417 } 418 419 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 420 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 421 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 422 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 423 RenamePassData::ValVector &IncVals, 424 RenamePassData::LocationVector &IncLocs, 425 std::vector<RenamePassData> &Worklist); 426 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 427 428 /// Delete dbg.assigns that have been demoted to dbg.values. 429 void cleanUpDbgAssigns() { 430 for (auto *DAI : DbgAssignsToDelete) 431 DAI->eraseFromParent(); 432 DbgAssignsToDelete.clear(); 433 for (auto *DVR : DVRAssignsToDelete) 434 DVR->eraseFromParent(); 435 DVRAssignsToDelete.clear(); 436 } 437 }; 438 439 } // end anonymous namespace 440 441 /// Given a LoadInst LI this adds assume(LI != null) after it. 442 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 443 Function *AssumeIntrinsic = 444 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 445 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 446 Constant::getNullValue(LI->getType())); 447 LoadNotNull->insertAfter(LI); 448 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 449 CI->insertAfter(LoadNotNull); 450 AC->registerAssumption(cast<AssumeInst>(CI)); 451 } 452 453 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 454 const DataLayout &DL, AssumptionCache *AC, 455 const DominatorTree *DT) { 456 // If the load was marked as nonnull we don't want to lose that information 457 // when we erase this Load. So we preserve it with an assume. As !nonnull 458 // returns poison while assume violations are immediate undefined behavior, 459 // we can only do this if the value is known non-poison. 460 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 461 LI->getMetadata(LLVMContext::MD_noundef) && 462 !isKnownNonZero(Val, DL, 0, AC, LI, DT)) 463 addAssumeNonNull(AC, LI); 464 } 465 466 static void removeIntrinsicUsers(AllocaInst *AI) { 467 // Knowing that this alloca is promotable, we know that it's safe to kill all 468 // instructions except for load and store. 469 470 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 471 Instruction *I = cast<Instruction>(U.getUser()); 472 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 473 continue; 474 475 // Drop the use of AI in droppable instructions. 476 if (I->isDroppable()) { 477 I->dropDroppableUse(U); 478 continue; 479 } 480 481 if (!I->getType()->isVoidTy()) { 482 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 483 // Follow the use/def chain to erase them now instead of leaving it for 484 // dead code elimination later. 485 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 486 Instruction *Inst = cast<Instruction>(UU.getUser()); 487 488 // Drop the use of I in droppable instructions. 489 if (Inst->isDroppable()) { 490 Inst->dropDroppableUse(UU); 491 continue; 492 } 493 Inst->eraseFromParent(); 494 } 495 } 496 I->eraseFromParent(); 497 } 498 } 499 500 /// Rewrite as many loads as possible given a single store. 501 /// 502 /// When there is only a single store, we can use the domtree to trivially 503 /// replace all of the dominated loads with the stored value. Do so, and return 504 /// true if this has successfully promoted the alloca entirely. If this returns 505 /// false there were some loads which were not dominated by the single store 506 /// and thus must be phi-ed with undef. We fall back to the standard alloca 507 /// promotion algorithm in that case. 508 static bool 509 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 510 const DataLayout &DL, DominatorTree &DT, 511 AssumptionCache *AC, 512 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 513 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 514 StoreInst *OnlyStore = Info.OnlyStore; 515 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 516 BasicBlock *StoreBB = OnlyStore->getParent(); 517 int StoreIndex = -1; 518 519 // Clear out UsingBlocks. We will reconstruct it here if needed. 520 Info.UsingBlocks.clear(); 521 522 for (User *U : make_early_inc_range(AI->users())) { 523 Instruction *UserInst = cast<Instruction>(U); 524 if (UserInst == OnlyStore) 525 continue; 526 LoadInst *LI = cast<LoadInst>(UserInst); 527 528 // Okay, if we have a load from the alloca, we want to replace it with the 529 // only value stored to the alloca. We can do this if the value is 530 // dominated by the store. If not, we use the rest of the mem2reg machinery 531 // to insert the phi nodes as needed. 532 if (!StoringGlobalVal) { // Non-instructions are always dominated. 533 if (LI->getParent() == StoreBB) { 534 // If we have a use that is in the same block as the store, compare the 535 // indices of the two instructions to see which one came first. If the 536 // load came before the store, we can't handle it. 537 if (StoreIndex == -1) 538 StoreIndex = LBI.getInstructionIndex(OnlyStore); 539 540 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 541 // Can't handle this load, bail out. 542 Info.UsingBlocks.push_back(StoreBB); 543 continue; 544 } 545 } else if (!DT.dominates(StoreBB, LI->getParent())) { 546 // If the load and store are in different blocks, use BB dominance to 547 // check their relationships. If the store doesn't dom the use, bail 548 // out. 549 Info.UsingBlocks.push_back(LI->getParent()); 550 continue; 551 } 552 } 553 554 // Otherwise, we *can* safely rewrite this load. 555 Value *ReplVal = OnlyStore->getOperand(0); 556 // If the replacement value is the load, this must occur in unreachable 557 // code. 558 if (ReplVal == LI) 559 ReplVal = PoisonValue::get(LI->getType()); 560 561 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 562 LI->replaceAllUsesWith(ReplVal); 563 LI->eraseFromParent(); 564 LBI.deleteValue(LI); 565 } 566 567 // Finally, after the scan, check to see if the store is all that is left. 568 if (!Info.UsingBlocks.empty()) 569 return false; // If not, we'll have to fall back for the remainder. 570 571 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 572 // Update assignment tracking info for the store we're going to delete. 573 Info.AssignmentTracking.updateForDeletedStore( 574 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 575 576 // Record debuginfo for the store and remove the declaration's 577 // debuginfo. 578 auto ConvertDebugInfoForStore = [&](auto &Container) { 579 for (auto *DbgItem : Container) { 580 if (DbgItem->isAddressOfVariable()) { 581 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 582 DbgItem->eraseFromParent(); 583 } else if (DbgItem->getExpression()->startsWithDeref()) { 584 DbgItem->eraseFromParent(); 585 } 586 } 587 }; 588 ConvertDebugInfoForStore(Info.DbgUsers); 589 ConvertDebugInfoForStore(Info.DPUsers); 590 591 // Remove dbg.assigns linked to the alloca as these are now redundant. 592 at::deleteAssignmentMarkers(AI); 593 594 // Remove the (now dead) store and alloca. 595 Info.OnlyStore->eraseFromParent(); 596 LBI.deleteValue(Info.OnlyStore); 597 598 AI->eraseFromParent(); 599 return true; 600 } 601 602 /// Many allocas are only used within a single basic block. If this is the 603 /// case, avoid traversing the CFG and inserting a lot of potentially useless 604 /// PHI nodes by just performing a single linear pass over the basic block 605 /// using the Alloca. 606 /// 607 /// If we cannot promote this alloca (because it is read before it is written), 608 /// return false. This is necessary in cases where, due to control flow, the 609 /// alloca is undefined only on some control flow paths. e.g. code like 610 /// this is correct in LLVM IR: 611 /// // A is an alloca with no stores so far 612 /// for (...) { 613 /// int t = *A; 614 /// if (!first_iteration) 615 /// use(t); 616 /// *A = 42; 617 /// } 618 static bool 619 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 620 LargeBlockInfo &LBI, const DataLayout &DL, 621 DominatorTree &DT, AssumptionCache *AC, 622 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 623 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 624 // The trickiest case to handle is when we have large blocks. Because of this, 625 // this code is optimized assuming that large blocks happen. This does not 626 // significantly pessimize the small block case. This uses LargeBlockInfo to 627 // make it efficient to get the index of various operations in the block. 628 629 // Walk the use-def list of the alloca, getting the locations of all stores. 630 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 631 StoresByIndexTy StoresByIndex; 632 633 for (User *U : AI->users()) 634 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 635 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 636 637 // Sort the stores by their index, making it efficient to do a lookup with a 638 // binary search. 639 llvm::sort(StoresByIndex, less_first()); 640 641 // Walk all of the loads from this alloca, replacing them with the nearest 642 // store above them, if any. 643 for (User *U : make_early_inc_range(AI->users())) { 644 LoadInst *LI = dyn_cast<LoadInst>(U); 645 if (!LI) 646 continue; 647 648 unsigned LoadIdx = LBI.getInstructionIndex(LI); 649 650 // Find the nearest store that has a lower index than this load. 651 StoresByIndexTy::iterator I = llvm::lower_bound( 652 StoresByIndex, 653 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 654 less_first()); 655 Value *ReplVal; 656 if (I == StoresByIndex.begin()) { 657 if (StoresByIndex.empty()) 658 // If there are no stores, the load takes the undef value. 659 ReplVal = UndefValue::get(LI->getType()); 660 else 661 // There is no store before this load, bail out (load may be affected 662 // by the following stores - see main comment). 663 return false; 664 } else { 665 // Otherwise, there was a store before this load, the load takes its 666 // value. 667 ReplVal = std::prev(I)->second->getOperand(0); 668 } 669 670 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 671 672 // If the replacement value is the load, this must occur in unreachable 673 // code. 674 if (ReplVal == LI) 675 ReplVal = PoisonValue::get(LI->getType()); 676 677 LI->replaceAllUsesWith(ReplVal); 678 LI->eraseFromParent(); 679 LBI.deleteValue(LI); 680 } 681 682 // Remove the (now dead) stores and alloca. 683 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 684 while (!AI->use_empty()) { 685 StoreInst *SI = cast<StoreInst>(AI->user_back()); 686 // Update assignment tracking info for the store we're going to delete. 687 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 688 DVRAssignsToDelete); 689 // Record debuginfo for the store before removing it. 690 auto DbgUpdateForStore = [&](auto &Container) { 691 for (auto *DbgItem : Container) { 692 if (DbgItem->isAddressOfVariable()) { 693 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 694 } 695 } 696 }; 697 DbgUpdateForStore(Info.DbgUsers); 698 DbgUpdateForStore(Info.DPUsers); 699 700 SI->eraseFromParent(); 701 LBI.deleteValue(SI); 702 } 703 704 // Remove dbg.assigns linked to the alloca as these are now redundant. 705 at::deleteAssignmentMarkers(AI); 706 AI->eraseFromParent(); 707 708 // The alloca's debuginfo can be removed as well. 709 auto DbgUpdateForAlloca = [&](auto &Container) { 710 for (auto *DbgItem : Container) 711 if (DbgItem->isAddressOfVariable() || 712 DbgItem->getExpression()->startsWithDeref()) 713 DbgItem->eraseFromParent(); 714 }; 715 DbgUpdateForAlloca(Info.DbgUsers); 716 DbgUpdateForAlloca(Info.DPUsers); 717 718 ++NumLocalPromoted; 719 return true; 720 } 721 722 void PromoteMem2Reg::run() { 723 Function &F = *DT.getRoot()->getParent(); 724 725 AllocaDbgUsers.resize(Allocas.size()); 726 AllocaATInfo.resize(Allocas.size()); 727 AllocaDPUsers.resize(Allocas.size()); 728 729 AllocaInfo Info; 730 LargeBlockInfo LBI; 731 ForwardIDFCalculator IDF(DT); 732 733 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 734 AllocaInst *AI = Allocas[AllocaNum]; 735 736 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 737 assert(AI->getParent()->getParent() == &F && 738 "All allocas should be in the same function, which is same as DF!"); 739 740 removeIntrinsicUsers(AI); 741 742 if (AI->use_empty()) { 743 // If there are no uses of the alloca, just delete it now. 744 AI->eraseFromParent(); 745 746 // Remove the alloca from the Allocas list, since it has been processed 747 RemoveFromAllocasList(AllocaNum); 748 ++NumDeadAlloca; 749 continue; 750 } 751 752 // Calculate the set of read and write-locations for each alloca. This is 753 // analogous to finding the 'uses' and 'definitions' of each variable. 754 Info.AnalyzeAlloca(AI); 755 756 // If there is only a single store to this value, replace any loads of 757 // it that are directly dominated by the definition with the value stored. 758 if (Info.DefiningBlocks.size() == 1) { 759 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 760 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 761 // The alloca has been processed, move on. 762 RemoveFromAllocasList(AllocaNum); 763 ++NumSingleStore; 764 continue; 765 } 766 } 767 768 // If the alloca is only read and written in one basic block, just perform a 769 // linear sweep over the block to eliminate it. 770 if (Info.OnlyUsedInOneBlock && 771 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 772 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 773 // The alloca has been processed, move on. 774 RemoveFromAllocasList(AllocaNum); 775 continue; 776 } 777 778 // If we haven't computed a numbering for the BB's in the function, do so 779 // now. 780 if (BBNumbers.empty()) { 781 unsigned ID = 0; 782 for (auto &BB : F) 783 BBNumbers[&BB] = ID++; 784 } 785 786 // Remember the dbg.declare intrinsic describing this alloca, if any. 787 if (!Info.DbgUsers.empty()) 788 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 789 if (!Info.AssignmentTracking.empty()) 790 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 791 if (!Info.DPUsers.empty()) 792 AllocaDPUsers[AllocaNum] = Info.DPUsers; 793 794 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 795 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 796 797 // Unique the set of defining blocks for efficient lookup. 798 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 799 Info.DefiningBlocks.end()); 800 801 // Determine which blocks the value is live in. These are blocks which lead 802 // to uses. 803 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 804 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 805 806 // At this point, we're committed to promoting the alloca using IDF's, and 807 // the standard SSA construction algorithm. Determine which blocks need phi 808 // nodes and see if we can optimize out some work by avoiding insertion of 809 // dead phi nodes. 810 IDF.setLiveInBlocks(LiveInBlocks); 811 IDF.setDefiningBlocks(DefBlocks); 812 SmallVector<BasicBlock *, 32> PHIBlocks; 813 IDF.calculate(PHIBlocks); 814 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 815 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 816 }); 817 818 unsigned CurrentVersion = 0; 819 for (BasicBlock *BB : PHIBlocks) 820 QueuePhiNode(BB, AllocaNum, CurrentVersion); 821 } 822 823 if (Allocas.empty()) { 824 cleanUpDbgAssigns(); 825 return; // All of the allocas must have been trivial! 826 } 827 LBI.clear(); 828 829 // Set the incoming values for the basic block to be null values for all of 830 // the alloca's. We do this in case there is a load of a value that has not 831 // been stored yet. In this case, it will get this null value. 832 RenamePassData::ValVector Values(Allocas.size()); 833 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 834 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 835 836 // When handling debug info, treat all incoming values as if they have unknown 837 // locations until proven otherwise. 838 RenamePassData::LocationVector Locations(Allocas.size()); 839 840 // Walks all basic blocks in the function performing the SSA rename algorithm 841 // and inserting the phi nodes we marked as necessary 842 std::vector<RenamePassData> RenamePassWorkList; 843 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 844 std::move(Locations)); 845 do { 846 RenamePassData RPD = std::move(RenamePassWorkList.back()); 847 RenamePassWorkList.pop_back(); 848 // RenamePass may add new worklist entries. 849 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 850 } while (!RenamePassWorkList.empty()); 851 852 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 853 Visited.clear(); 854 855 // Remove the allocas themselves from the function. 856 for (Instruction *A : Allocas) { 857 // Remove dbg.assigns linked to the alloca as these are now redundant. 858 at::deleteAssignmentMarkers(A); 859 // If there are any uses of the alloca instructions left, they must be in 860 // unreachable basic blocks that were not processed by walking the dominator 861 // tree. Just delete the users now. 862 if (!A->use_empty()) 863 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 864 A->eraseFromParent(); 865 } 866 867 // Remove alloca's dbg.declare intrinsics from the function. 868 auto RemoveDbgDeclares = [&](auto &Container) { 869 for (auto &DbgUsers : Container) { 870 for (auto *DbgItem : DbgUsers) 871 if (DbgItem->isAddressOfVariable() || 872 DbgItem->getExpression()->startsWithDeref()) 873 DbgItem->eraseFromParent(); 874 } 875 }; 876 RemoveDbgDeclares(AllocaDbgUsers); 877 RemoveDbgDeclares(AllocaDPUsers); 878 879 // Loop over all of the PHI nodes and see if there are any that we can get 880 // rid of because they merge all of the same incoming values. This can 881 // happen due to undef values coming into the PHI nodes. This process is 882 // iterative, because eliminating one PHI node can cause others to be removed. 883 bool EliminatedAPHI = true; 884 while (EliminatedAPHI) { 885 EliminatedAPHI = false; 886 887 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 888 // simplify and RAUW them as we go. If it was not, we could add uses to 889 // the values we replace with in a non-deterministic order, thus creating 890 // non-deterministic def->use chains. 891 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 892 I = NewPhiNodes.begin(), 893 E = NewPhiNodes.end(); 894 I != E;) { 895 PHINode *PN = I->second; 896 897 // If this PHI node merges one value and/or undefs, get the value. 898 if (Value *V = simplifyInstruction(PN, SQ)) { 899 PN->replaceAllUsesWith(V); 900 PN->eraseFromParent(); 901 NewPhiNodes.erase(I++); 902 EliminatedAPHI = true; 903 continue; 904 } 905 ++I; 906 } 907 } 908 909 // At this point, the renamer has added entries to PHI nodes for all reachable 910 // code. Unfortunately, there may be unreachable blocks which the renamer 911 // hasn't traversed. If this is the case, the PHI nodes may not 912 // have incoming values for all predecessors. Loop over all PHI nodes we have 913 // created, inserting poison values if they are missing any incoming values. 914 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 915 I = NewPhiNodes.begin(), 916 E = NewPhiNodes.end(); 917 I != E; ++I) { 918 // We want to do this once per basic block. As such, only process a block 919 // when we find the PHI that is the first entry in the block. 920 PHINode *SomePHI = I->second; 921 BasicBlock *BB = SomePHI->getParent(); 922 if (&BB->front() != SomePHI) 923 continue; 924 925 // Only do work here if there the PHI nodes are missing incoming values. We 926 // know that all PHI nodes that were inserted in a block will have the same 927 // number of incoming values, so we can just check any of them. 928 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 929 continue; 930 931 // Get the preds for BB. 932 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 933 934 // Ok, now we know that all of the PHI nodes are missing entries for some 935 // basic blocks. Start by sorting the incoming predecessors for efficient 936 // access. 937 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 938 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 939 }; 940 llvm::sort(Preds, CompareBBNumbers); 941 942 // Now we loop through all BB's which have entries in SomePHI and remove 943 // them from the Preds list. 944 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 945 // Do a log(n) search of the Preds list for the entry we want. 946 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 947 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 948 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 949 "PHI node has entry for a block which is not a predecessor!"); 950 951 // Remove the entry 952 Preds.erase(EntIt); 953 } 954 955 // At this point, the blocks left in the preds list must have dummy 956 // entries inserted into every PHI nodes for the block. Update all the phi 957 // nodes in this block that we are inserting (there could be phis before 958 // mem2reg runs). 959 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 960 BasicBlock::iterator BBI = BB->begin(); 961 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 962 SomePHI->getNumIncomingValues() == NumBadPreds) { 963 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 964 for (BasicBlock *Pred : Preds) 965 SomePHI->addIncoming(PoisonVal, Pred); 966 } 967 } 968 969 NewPhiNodes.clear(); 970 cleanUpDbgAssigns(); 971 } 972 973 /// Determine which blocks the value is live in. 974 /// 975 /// These are blocks which lead to uses. Knowing this allows us to avoid 976 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 977 /// inserted phi nodes would be dead). 978 void PromoteMem2Reg::ComputeLiveInBlocks( 979 AllocaInst *AI, AllocaInfo &Info, 980 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 981 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 982 // To determine liveness, we must iterate through the predecessors of blocks 983 // where the def is live. Blocks are added to the worklist if we need to 984 // check their predecessors. Start with all the using blocks. 985 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 986 Info.UsingBlocks.end()); 987 988 // If any of the using blocks is also a definition block, check to see if the 989 // definition occurs before or after the use. If it happens before the use, 990 // the value isn't really live-in. 991 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 992 BasicBlock *BB = LiveInBlockWorklist[i]; 993 if (!DefBlocks.count(BB)) 994 continue; 995 996 // Okay, this is a block that both uses and defines the value. If the first 997 // reference to the alloca is a def (store), then we know it isn't live-in. 998 for (BasicBlock::iterator I = BB->begin();; ++I) { 999 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1000 if (SI->getOperand(1) != AI) 1001 continue; 1002 1003 // We found a store to the alloca before a load. The alloca is not 1004 // actually live-in here. 1005 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1006 LiveInBlockWorklist.pop_back(); 1007 --i; 1008 --e; 1009 break; 1010 } 1011 1012 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1013 // Okay, we found a load before a store to the alloca. It is actually 1014 // live into this block. 1015 if (LI->getOperand(0) == AI) 1016 break; 1017 } 1018 } 1019 1020 // Now that we have a set of blocks where the phi is live-in, recursively add 1021 // their predecessors until we find the full region the value is live. 1022 while (!LiveInBlockWorklist.empty()) { 1023 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1024 1025 // The block really is live in here, insert it into the set. If already in 1026 // the set, then it has already been processed. 1027 if (!LiveInBlocks.insert(BB).second) 1028 continue; 1029 1030 // Since the value is live into BB, it is either defined in a predecessor or 1031 // live into it to. Add the preds to the worklist unless they are a 1032 // defining block. 1033 for (BasicBlock *P : predecessors(BB)) { 1034 // The value is not live into a predecessor if it defines the value. 1035 if (DefBlocks.count(P)) 1036 continue; 1037 1038 // Otherwise it is, add to the worklist. 1039 LiveInBlockWorklist.push_back(P); 1040 } 1041 } 1042 } 1043 1044 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1045 /// 1046 /// Returns true if there wasn't already a phi-node for that variable 1047 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1048 unsigned &Version) { 1049 // Look up the basic-block in question. 1050 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 1051 1052 // If the BB already has a phi node added for the i'th alloca then we're done! 1053 if (PN) 1054 return false; 1055 1056 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1057 // BasicBlock. 1058 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1059 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1060 PN->insertBefore(BB->begin()); 1061 ++NumPHIInsert; 1062 PhiToAllocaMap[PN] = AllocaNo; 1063 return true; 1064 } 1065 1066 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1067 /// create a merged location incorporating \p DL, or to set \p DL directly. 1068 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1069 bool ApplyMergedLoc) { 1070 if (ApplyMergedLoc) 1071 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1072 else 1073 PN->setDebugLoc(DL); 1074 } 1075 1076 /// Recursively traverse the CFG of the function, renaming loads and 1077 /// stores to the allocas which we are promoting. 1078 /// 1079 /// IncomingVals indicates what value each Alloca contains on exit from the 1080 /// predecessor block Pred. 1081 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1082 RenamePassData::ValVector &IncomingVals, 1083 RenamePassData::LocationVector &IncomingLocs, 1084 std::vector<RenamePassData> &Worklist) { 1085 NextIteration: 1086 // If we are inserting any phi nodes into this BB, they will already be in the 1087 // block. 1088 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1089 // If we have PHI nodes to update, compute the number of edges from Pred to 1090 // BB. 1091 if (PhiToAllocaMap.count(APN)) { 1092 // We want to be able to distinguish between PHI nodes being inserted by 1093 // this invocation of mem2reg from those phi nodes that already existed in 1094 // the IR before mem2reg was run. We determine that APN is being inserted 1095 // because it is missing incoming edges. All other PHI nodes being 1096 // inserted by this pass of mem2reg will have the same number of incoming 1097 // operands so far. Remember this count. 1098 unsigned NewPHINumOperands = APN->getNumOperands(); 1099 1100 unsigned NumEdges = llvm::count(successors(Pred), BB); 1101 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1102 1103 // Add entries for all the phis. 1104 BasicBlock::iterator PNI = BB->begin(); 1105 do { 1106 unsigned AllocaNo = PhiToAllocaMap[APN]; 1107 1108 // Update the location of the phi node. 1109 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1110 APN->getNumIncomingValues() > 0); 1111 1112 // Add N incoming values to the PHI node. 1113 for (unsigned i = 0; i != NumEdges; ++i) 1114 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1115 1116 // The currently active variable for this block is now the PHI. 1117 IncomingVals[AllocaNo] = APN; 1118 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1119 auto ConvertDbgDeclares = [&](auto &Container) { 1120 for (auto *DbgItem : Container) 1121 if (DbgItem->isAddressOfVariable()) 1122 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1123 }; 1124 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1125 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1126 1127 // Get the next phi node. 1128 ++PNI; 1129 APN = dyn_cast<PHINode>(PNI); 1130 if (!APN) 1131 break; 1132 1133 // Verify that it is missing entries. If not, it is not being inserted 1134 // by this mem2reg invocation so we want to ignore it. 1135 } while (APN->getNumOperands() == NewPHINumOperands); 1136 } 1137 } 1138 1139 // Don't revisit blocks. 1140 if (!Visited.insert(BB).second) 1141 return; 1142 1143 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1144 Instruction *I = &*II++; // get the instruction, increment iterator 1145 1146 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1147 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1148 if (!Src) 1149 continue; 1150 1151 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1152 if (AI == AllocaLookup.end()) 1153 continue; 1154 1155 Value *V = IncomingVals[AI->second]; 1156 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1157 1158 // Anything using the load now uses the current value. 1159 LI->replaceAllUsesWith(V); 1160 LI->eraseFromParent(); 1161 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1162 // Delete this instruction and mark the name as the current holder of the 1163 // value 1164 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1165 if (!Dest) 1166 continue; 1167 1168 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1169 if (ai == AllocaLookup.end()) 1170 continue; 1171 1172 // what value were we writing? 1173 unsigned AllocaNo = ai->second; 1174 IncomingVals[AllocaNo] = SI->getOperand(0); 1175 1176 // Record debuginfo for the store before removing it. 1177 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1178 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1179 &DVRAssignsToDelete); 1180 auto ConvertDbgDeclares = [&](auto &Container) { 1181 for (auto *DbgItem : Container) 1182 if (DbgItem->isAddressOfVariable()) 1183 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1184 }; 1185 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1186 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1187 SI->eraseFromParent(); 1188 } 1189 } 1190 1191 // 'Recurse' to our successors. 1192 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1193 if (I == E) 1194 return; 1195 1196 // Keep track of the successors so we don't visit the same successor twice 1197 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1198 1199 // Handle the first successor without using the worklist. 1200 VisitedSuccs.insert(*I); 1201 Pred = BB; 1202 BB = *I; 1203 ++I; 1204 1205 for (; I != E; ++I) 1206 if (VisitedSuccs.insert(*I).second) 1207 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1208 1209 goto NextIteration; 1210 } 1211 1212 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1213 AssumptionCache *AC) { 1214 // If there is nothing to do, bail out... 1215 if (Allocas.empty()) 1216 return; 1217 1218 PromoteMem2Reg(Allocas, DT, AC).run(); 1219 } 1220