1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugProgramInstruction.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "mem2reg" 60 61 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 62 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 63 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 64 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 65 66 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 67 // Only allow direct and non-volatile loads and stores... 68 for (const User *U : AI->users()) { 69 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 70 // Note that atomic loads can be transformed; atomic semantics do 71 // not have any meaning for a local alloca. 72 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 73 return false; 74 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 75 if (SI->getValueOperand() == AI || 76 SI->getValueOperand()->getType() != AI->getAllocatedType()) 77 return false; // Don't allow a store OF the AI, only INTO the AI. 78 // Note that atomic stores can be transformed; atomic semantics do 79 // not have any meaning for a local alloca. 80 if (SI->isVolatile()) 81 return false; 82 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 83 if (!II->isLifetimeStartOrEnd() && !II->isDroppable() && 84 II->getIntrinsicID() != Intrinsic::fake_use) 85 return false; 86 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 87 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 88 return false; 89 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 90 if (!GEPI->hasAllZeroIndices()) 91 return false; 92 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 93 return false; 94 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 95 if (!onlyUsedByLifetimeMarkers(ASCI)) 96 return false; 97 } else { 98 return false; 99 } 100 } 101 102 return true; 103 } 104 105 namespace { 106 107 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 108 DILocalVariable *Variable, 109 DIExpression *Expression, const DILocation *DI, 110 DbgVariableRecord *InsertBefore) { 111 // FIXME: Merge these two functions now that DIBuilder supports 112 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 113 // insert point for that to work. 114 (void)DIB; 115 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 116 *InsertBefore); 117 } 118 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 119 DILocalVariable *Variable, 120 DIExpression *Expression, const DILocation *DI, 121 Instruction *InsertBefore) { 122 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 123 } 124 125 /// Helper for updating assignment tracking debug info when promoting allocas. 126 class AssignmentTrackingInfo { 127 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 128 /// fragment. (i.e. not be a comprehensive set if there are multiple 129 /// dbg.assigns for one variable fragment). 130 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 131 SmallVector<DbgVariableRecord *> DVRAssigns; 132 133 public: 134 void init(AllocaInst *AI) { 135 SmallSet<DebugVariable, 2> Vars; 136 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 137 if (Vars.insert(DebugVariable(DAI)).second) 138 DbgAssigns.push_back(DAI); 139 } 140 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 141 if (Vars.insert(DebugVariable(DVR)).second) 142 DVRAssigns.push_back(DVR); 143 } 144 } 145 146 /// Update assignment tracking debug info given for the to-be-deleted store 147 /// \p ToDelete that stores to this alloca. 148 void updateForDeletedStore( 149 StoreInst *ToDelete, DIBuilder &DIB, 150 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 151 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 152 // There's nothing to do if the alloca doesn't have any variables using 153 // assignment tracking. 154 if (DbgAssigns.empty() && DVRAssigns.empty()) 155 return; 156 157 // Insert a dbg.value where the linked dbg.assign is and remember to delete 158 // the dbg.assign later. Demoting to dbg.value isn't necessary for 159 // correctness but does reduce compile time and memory usage by reducing 160 // unnecessary function-local metadata. Remember that we've seen a 161 // dbg.assign for each variable fragment for the untracked store handling 162 // (after this loop). 163 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 164 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 165 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 166 AssignList->insert(DbgAssign); 167 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 168 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 169 DbgAssign); 170 }; 171 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 172 InsertValueForAssign(Assign, DbgAssignsToDelete); 173 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 174 InsertValueForAssign(Assign, DVRAssignsToDelete); 175 176 // It's possible for variables using assignment tracking to have no 177 // dbg.assign linked to this store. These are variables in DbgAssigns that 178 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 179 // to mark the assignment - and the store is going to be deleted - insert a 180 // dbg.value to do that now. An untracked store may be either one that 181 // cannot be represented using assignment tracking (non-const offset or 182 // size) or one that is trackable but has had its DIAssignID attachment 183 // dropped accidentally. 184 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 185 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 186 return; 187 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 188 }; 189 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 190 for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 191 } 192 193 /// Update assignment tracking debug info given for the newly inserted PHI \p 194 /// NewPhi. 195 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 196 // Regardless of the position of dbg.assigns relative to stores, the 197 // incoming values into a new PHI should be the same for the (imaginary) 198 // debug-phi. 199 for (auto *DAI : DbgAssigns) 200 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 201 for (auto *DVR : DVRAssigns) 202 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 203 } 204 205 void clear() { 206 DbgAssigns.clear(); 207 DVRAssigns.clear(); 208 } 209 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 210 }; 211 212 struct AllocaInfo { 213 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 214 using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 215 216 SmallVector<BasicBlock *, 32> DefiningBlocks; 217 SmallVector<BasicBlock *, 32> UsingBlocks; 218 219 StoreInst *OnlyStore; 220 BasicBlock *OnlyBlock; 221 bool OnlyUsedInOneBlock; 222 223 /// Debug users of the alloca - does not include dbg.assign intrinsics. 224 DbgUserVec DbgUsers; 225 DPUserVec DPUsers; 226 /// Helper to update assignment tracking debug info. 227 AssignmentTrackingInfo AssignmentTracking; 228 229 void clear() { 230 DefiningBlocks.clear(); 231 UsingBlocks.clear(); 232 OnlyStore = nullptr; 233 OnlyBlock = nullptr; 234 OnlyUsedInOneBlock = true; 235 DbgUsers.clear(); 236 DPUsers.clear(); 237 AssignmentTracking.clear(); 238 } 239 240 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 241 /// by the rest of the pass to reason about the uses of this alloca. 242 void AnalyzeAlloca(AllocaInst *AI) { 243 clear(); 244 245 // As we scan the uses of the alloca instruction, keep track of stores, 246 // and decide whether all of the loads and stores to the alloca are within 247 // the same basic block. 248 for (User *U : AI->users()) { 249 Instruction *User = cast<Instruction>(U); 250 251 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 252 // Remember the basic blocks which define new values for the alloca 253 DefiningBlocks.push_back(SI->getParent()); 254 OnlyStore = SI; 255 } else { 256 LoadInst *LI = cast<LoadInst>(User); 257 // Otherwise it must be a load instruction, keep track of variable 258 // reads. 259 UsingBlocks.push_back(LI->getParent()); 260 } 261 262 if (OnlyUsedInOneBlock) { 263 if (!OnlyBlock) 264 OnlyBlock = User->getParent(); 265 else if (OnlyBlock != User->getParent()) 266 OnlyUsedInOneBlock = false; 267 } 268 } 269 DbgUserVec AllDbgUsers; 270 SmallVector<DbgVariableRecord *> AllDPUsers; 271 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 272 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 273 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 274 return !isa<DbgAssignIntrinsic>(DII); 275 }); 276 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 277 std::back_inserter(DPUsers), 278 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 279 AssignmentTracking.init(AI); 280 } 281 }; 282 283 /// Data package used by RenamePass(). 284 struct RenamePassData { 285 using ValVector = std::vector<Value *>; 286 using LocationVector = std::vector<DebugLoc>; 287 288 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 289 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 290 291 BasicBlock *BB; 292 BasicBlock *Pred; 293 ValVector Values; 294 LocationVector Locations; 295 }; 296 297 /// This assigns and keeps a per-bb relative ordering of load/store 298 /// instructions in the block that directly load or store an alloca. 299 /// 300 /// This functionality is important because it avoids scanning large basic 301 /// blocks multiple times when promoting many allocas in the same block. 302 class LargeBlockInfo { 303 /// For each instruction that we track, keep the index of the 304 /// instruction. 305 /// 306 /// The index starts out as the number of the instruction from the start of 307 /// the block. 308 DenseMap<const Instruction *, unsigned> InstNumbers; 309 310 public: 311 312 /// This code only looks at accesses to allocas. 313 static bool isInterestingInstruction(const Instruction *I) { 314 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 315 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 316 } 317 318 /// Get or calculate the index of the specified instruction. 319 unsigned getInstructionIndex(const Instruction *I) { 320 assert(isInterestingInstruction(I) && 321 "Not a load/store to/from an alloca?"); 322 323 // If we already have this instruction number, return it. 324 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 325 if (It != InstNumbers.end()) 326 return It->second; 327 328 // Scan the whole block to get the instruction. This accumulates 329 // information for every interesting instruction in the block, in order to 330 // avoid gratuitus rescans. 331 const BasicBlock *BB = I->getParent(); 332 unsigned InstNo = 0; 333 for (const Instruction &BBI : *BB) 334 if (isInterestingInstruction(&BBI)) 335 InstNumbers[&BBI] = InstNo++; 336 It = InstNumbers.find(I); 337 338 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 339 return It->second; 340 } 341 342 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 343 344 void clear() { InstNumbers.clear(); } 345 }; 346 347 struct PromoteMem2Reg { 348 /// The alloca instructions being promoted. 349 std::vector<AllocaInst *> Allocas; 350 351 DominatorTree &DT; 352 DIBuilder DIB; 353 354 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 355 AssumptionCache *AC; 356 357 const SimplifyQuery SQ; 358 359 /// Reverse mapping of Allocas. 360 DenseMap<AllocaInst *, unsigned> AllocaLookup; 361 362 /// The PhiNodes we're adding. 363 /// 364 /// That map is used to simplify some Phi nodes as we iterate over it, so 365 /// it should have deterministic iterators. We could use a MapVector, but 366 /// since basic blocks have numbers, using these are more efficient. 367 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 368 369 /// For each PHI node, keep track of which entry in Allocas it corresponds 370 /// to. 371 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 372 373 /// For each alloca, we keep track of the dbg.declare intrinsic that 374 /// describes it, if any, so that we can convert it to a dbg.value 375 /// intrinsic if the alloca gets promoted. 376 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 377 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 378 379 /// For each alloca, keep an instance of a helper class that gives us an easy 380 /// way to update assignment tracking debug info if the alloca is promoted. 381 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 382 /// A set of dbg.assigns to delete because they've been demoted to 383 /// dbg.values. Call cleanUpDbgAssigns to delete them. 384 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 385 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 386 387 /// The set of basic blocks the renamer has already visited. 388 BitVector Visited; 389 390 /// Lazily compute the number of predecessors a block has, indexed by block 391 /// number. 392 SmallVector<unsigned> BBNumPreds; 393 394 /// Whether the function has the no-signed-zeros-fp-math attribute set. 395 bool NoSignedZeros = false; 396 397 public: 398 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 399 AssumptionCache *AC) 400 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 401 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 402 AC(AC), SQ(DT.getRoot()->getDataLayout(), 403 nullptr, &DT, AC) {} 404 405 void run(); 406 407 private: 408 void RemoveFromAllocasList(unsigned &AllocaIdx) { 409 Allocas[AllocaIdx] = Allocas.back(); 410 Allocas.pop_back(); 411 --AllocaIdx; 412 } 413 414 unsigned getNumPreds(const BasicBlock *BB) { 415 // BBNumPreds is resized to getMaxBlockNumber() at the beginning. 416 unsigned &NP = BBNumPreds[BB->getNumber()]; 417 if (NP == 0) 418 NP = pred_size(BB) + 1; 419 return NP - 1; 420 } 421 422 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 423 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 424 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 425 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 426 RenamePassData::ValVector &IncVals, 427 RenamePassData::LocationVector &IncLocs, 428 std::vector<RenamePassData> &Worklist); 429 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 430 431 /// Delete dbg.assigns that have been demoted to dbg.values. 432 void cleanUpDbgAssigns() { 433 for (auto *DAI : DbgAssignsToDelete) 434 DAI->eraseFromParent(); 435 DbgAssignsToDelete.clear(); 436 for (auto *DVR : DVRAssignsToDelete) 437 DVR->eraseFromParent(); 438 DVRAssignsToDelete.clear(); 439 } 440 }; 441 442 } // end anonymous namespace 443 444 /// Given a LoadInst LI this adds assume(LI != null) after it. 445 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 446 Function *AssumeIntrinsic = 447 Intrinsic::getOrInsertDeclaration(LI->getModule(), Intrinsic::assume); 448 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 449 Constant::getNullValue(LI->getType())); 450 LoadNotNull->insertAfter(LI->getIterator()); 451 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 452 CI->insertAfter(LoadNotNull->getIterator()); 453 AC->registerAssumption(cast<AssumeInst>(CI)); 454 } 455 456 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 457 const DataLayout &DL, AssumptionCache *AC, 458 const DominatorTree *DT) { 459 if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { 460 // Insert non-terminator unreachable. 461 LLVMContext &Ctx = LI->getContext(); 462 new StoreInst(ConstantInt::getTrue(Ctx), 463 PoisonValue::get(PointerType::getUnqual(Ctx)), 464 /*isVolatile=*/false, Align(1), LI->getIterator()); 465 return; 466 } 467 468 // If the load was marked as nonnull we don't want to lose that information 469 // when we erase this Load. So we preserve it with an assume. As !nonnull 470 // returns poison while assume violations are immediate undefined behavior, 471 // we can only do this if the value is known non-poison. 472 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 473 LI->getMetadata(LLVMContext::MD_noundef) && 474 !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) 475 addAssumeNonNull(AC, LI); 476 } 477 478 static void removeIntrinsicUsers(AllocaInst *AI) { 479 // Knowing that this alloca is promotable, we know that it's safe to kill all 480 // instructions except for load and store. 481 482 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 483 Instruction *I = cast<Instruction>(U.getUser()); 484 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 485 continue; 486 487 // Drop the use of AI in droppable instructions. 488 if (I->isDroppable()) { 489 I->dropDroppableUse(U); 490 continue; 491 } 492 493 if (!I->getType()->isVoidTy()) { 494 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 495 // Follow the use/def chain to erase them now instead of leaving it for 496 // dead code elimination later. 497 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 498 Instruction *Inst = cast<Instruction>(UU.getUser()); 499 500 // Drop the use of I in droppable instructions. 501 if (Inst->isDroppable()) { 502 Inst->dropDroppableUse(UU); 503 continue; 504 } 505 Inst->eraseFromParent(); 506 } 507 } 508 I->eraseFromParent(); 509 } 510 } 511 512 /// Rewrite as many loads as possible given a single store. 513 /// 514 /// When there is only a single store, we can use the domtree to trivially 515 /// replace all of the dominated loads with the stored value. Do so, and return 516 /// true if this has successfully promoted the alloca entirely. If this returns 517 /// false there were some loads which were not dominated by the single store 518 /// and thus must be phi-ed with undef. We fall back to the standard alloca 519 /// promotion algorithm in that case. 520 static bool 521 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 522 const DataLayout &DL, DominatorTree &DT, 523 AssumptionCache *AC, 524 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 525 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 526 StoreInst *OnlyStore = Info.OnlyStore; 527 Value *ReplVal = OnlyStore->getOperand(0); 528 // Loads may either load the stored value or uninitialized memory (undef). 529 // If the stored value may be poison, then replacing an uninitialized memory 530 // load with it would be incorrect. If the store dominates the load, we know 531 // it is always initialized. 532 bool RequireDominatingStore = 533 isa<Instruction>(ReplVal) || !isGuaranteedNotToBePoison(ReplVal); 534 BasicBlock *StoreBB = OnlyStore->getParent(); 535 int StoreIndex = -1; 536 537 // Clear out UsingBlocks. We will reconstruct it here if needed. 538 Info.UsingBlocks.clear(); 539 540 for (User *U : make_early_inc_range(AI->users())) { 541 Instruction *UserInst = cast<Instruction>(U); 542 if (UserInst == OnlyStore) 543 continue; 544 LoadInst *LI = cast<LoadInst>(UserInst); 545 546 // Okay, if we have a load from the alloca, we want to replace it with the 547 // only value stored to the alloca. We can do this if the value is 548 // dominated by the store. If not, we use the rest of the mem2reg machinery 549 // to insert the phi nodes as needed. 550 if (RequireDominatingStore) { 551 if (LI->getParent() == StoreBB) { 552 // If we have a use that is in the same block as the store, compare the 553 // indices of the two instructions to see which one came first. If the 554 // load came before the store, we can't handle it. 555 if (StoreIndex == -1) 556 StoreIndex = LBI.getInstructionIndex(OnlyStore); 557 558 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 559 // Can't handle this load, bail out. 560 Info.UsingBlocks.push_back(StoreBB); 561 continue; 562 } 563 } else if (!DT.dominates(StoreBB, LI->getParent())) { 564 // If the load and store are in different blocks, use BB dominance to 565 // check their relationships. If the store doesn't dom the use, bail 566 // out. 567 Info.UsingBlocks.push_back(LI->getParent()); 568 continue; 569 } 570 } 571 572 // Otherwise, we *can* safely rewrite this load. 573 // If the replacement value is the load, this must occur in unreachable 574 // code. 575 if (ReplVal == LI) 576 ReplVal = PoisonValue::get(LI->getType()); 577 578 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 579 LI->replaceAllUsesWith(ReplVal); 580 LI->eraseFromParent(); 581 LBI.deleteValue(LI); 582 } 583 584 // Finally, after the scan, check to see if the store is all that is left. 585 if (!Info.UsingBlocks.empty()) 586 return false; // If not, we'll have to fall back for the remainder. 587 588 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 589 // Update assignment tracking info for the store we're going to delete. 590 Info.AssignmentTracking.updateForDeletedStore( 591 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 592 593 // Record debuginfo for the store and remove the declaration's 594 // debuginfo. 595 auto ConvertDebugInfoForStore = [&](auto &Container) { 596 for (auto *DbgItem : Container) { 597 if (DbgItem->isAddressOfVariable()) { 598 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 599 DbgItem->eraseFromParent(); 600 } else if (DbgItem->isValueOfVariable() && 601 DbgItem->getExpression()->startsWithDeref()) { 602 InsertDebugValueAtStoreLoc(DbgItem, Info.OnlyStore, DIB); 603 DbgItem->eraseFromParent(); 604 } else if (DbgItem->getExpression()->startsWithDeref()) { 605 DbgItem->eraseFromParent(); 606 } 607 } 608 }; 609 ConvertDebugInfoForStore(Info.DbgUsers); 610 ConvertDebugInfoForStore(Info.DPUsers); 611 612 // Remove dbg.assigns linked to the alloca as these are now redundant. 613 at::deleteAssignmentMarkers(AI); 614 615 // Remove the (now dead) store and alloca. 616 Info.OnlyStore->eraseFromParent(); 617 LBI.deleteValue(Info.OnlyStore); 618 619 AI->eraseFromParent(); 620 return true; 621 } 622 623 /// Many allocas are only used within a single basic block. If this is the 624 /// case, avoid traversing the CFG and inserting a lot of potentially useless 625 /// PHI nodes by just performing a single linear pass over the basic block 626 /// using the Alloca. 627 /// 628 /// If we cannot promote this alloca (because it is read before it is written), 629 /// return false. This is necessary in cases where, due to control flow, the 630 /// alloca is undefined only on some control flow paths. e.g. code like 631 /// this is correct in LLVM IR: 632 /// // A is an alloca with no stores so far 633 /// for (...) { 634 /// int t = *A; 635 /// if (!first_iteration) 636 /// use(t); 637 /// *A = 42; 638 /// } 639 static bool 640 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 641 LargeBlockInfo &LBI, const DataLayout &DL, 642 DominatorTree &DT, AssumptionCache *AC, 643 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 644 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 645 // The trickiest case to handle is when we have large blocks. Because of this, 646 // this code is optimized assuming that large blocks happen. This does not 647 // significantly pessimize the small block case. This uses LargeBlockInfo to 648 // make it efficient to get the index of various operations in the block. 649 650 // Walk the use-def list of the alloca, getting the locations of all stores. 651 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 652 StoresByIndexTy StoresByIndex; 653 654 for (User *U : AI->users()) 655 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 656 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 657 658 // Sort the stores by their index, making it efficient to do a lookup with a 659 // binary search. 660 llvm::sort(StoresByIndex, less_first()); 661 662 // Walk all of the loads from this alloca, replacing them with the nearest 663 // store above them, if any. 664 for (User *U : make_early_inc_range(AI->users())) { 665 LoadInst *LI = dyn_cast<LoadInst>(U); 666 if (!LI) 667 continue; 668 669 unsigned LoadIdx = LBI.getInstructionIndex(LI); 670 671 // Find the nearest store that has a lower index than this load. 672 StoresByIndexTy::iterator I = llvm::lower_bound( 673 StoresByIndex, 674 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 675 less_first()); 676 Value *ReplVal; 677 if (I == StoresByIndex.begin()) { 678 if (StoresByIndex.empty()) 679 // If there are no stores, the load takes the undef value. 680 ReplVal = UndefValue::get(LI->getType()); 681 else 682 // There is no store before this load, bail out (load may be affected 683 // by the following stores - see main comment). 684 return false; 685 } else { 686 // Otherwise, there was a store before this load, the load takes its 687 // value. 688 ReplVal = std::prev(I)->second->getOperand(0); 689 } 690 691 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 692 693 // If the replacement value is the load, this must occur in unreachable 694 // code. 695 if (ReplVal == LI) 696 ReplVal = PoisonValue::get(LI->getType()); 697 698 LI->replaceAllUsesWith(ReplVal); 699 LI->eraseFromParent(); 700 LBI.deleteValue(LI); 701 } 702 703 // Remove the (now dead) stores and alloca. 704 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 705 while (!AI->use_empty()) { 706 StoreInst *SI = cast<StoreInst>(AI->user_back()); 707 // Update assignment tracking info for the store we're going to delete. 708 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 709 DVRAssignsToDelete); 710 // Record debuginfo for the store before removing it. 711 auto DbgUpdateForStore = [&](auto &Container) { 712 for (auto *DbgItem : Container) { 713 if (DbgItem->isAddressOfVariable()) { 714 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 715 } 716 } 717 }; 718 DbgUpdateForStore(Info.DbgUsers); 719 DbgUpdateForStore(Info.DPUsers); 720 721 SI->eraseFromParent(); 722 LBI.deleteValue(SI); 723 } 724 725 // Remove dbg.assigns linked to the alloca as these are now redundant. 726 at::deleteAssignmentMarkers(AI); 727 AI->eraseFromParent(); 728 729 // The alloca's debuginfo can be removed as well. 730 auto DbgUpdateForAlloca = [&](auto &Container) { 731 for (auto *DbgItem : Container) 732 if (DbgItem->isAddressOfVariable() || 733 DbgItem->getExpression()->startsWithDeref()) 734 DbgItem->eraseFromParent(); 735 }; 736 DbgUpdateForAlloca(Info.DbgUsers); 737 DbgUpdateForAlloca(Info.DPUsers); 738 739 ++NumLocalPromoted; 740 return true; 741 } 742 743 void PromoteMem2Reg::run() { 744 Function &F = *DT.getRoot()->getParent(); 745 746 AllocaDbgUsers.resize(Allocas.size()); 747 AllocaATInfo.resize(Allocas.size()); 748 AllocaDPUsers.resize(Allocas.size()); 749 750 AllocaInfo Info; 751 LargeBlockInfo LBI; 752 ForwardIDFCalculator IDF(DT); 753 754 NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool(); 755 756 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 757 AllocaInst *AI = Allocas[AllocaNum]; 758 759 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 760 assert(AI->getParent()->getParent() == &F && 761 "All allocas should be in the same function, which is same as DF!"); 762 763 removeIntrinsicUsers(AI); 764 765 if (AI->use_empty()) { 766 // If there are no uses of the alloca, just delete it now. 767 AI->eraseFromParent(); 768 769 // Remove the alloca from the Allocas list, since it has been processed 770 RemoveFromAllocasList(AllocaNum); 771 ++NumDeadAlloca; 772 continue; 773 } 774 775 // Calculate the set of read and write-locations for each alloca. This is 776 // analogous to finding the 'uses' and 'definitions' of each variable. 777 Info.AnalyzeAlloca(AI); 778 779 // If there is only a single store to this value, replace any loads of 780 // it that are directly dominated by the definition with the value stored. 781 if (Info.DefiningBlocks.size() == 1) { 782 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 783 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 784 // The alloca has been processed, move on. 785 RemoveFromAllocasList(AllocaNum); 786 ++NumSingleStore; 787 continue; 788 } 789 } 790 791 // If the alloca is only read and written in one basic block, just perform a 792 // linear sweep over the block to eliminate it. 793 if (Info.OnlyUsedInOneBlock && 794 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 795 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 796 // The alloca has been processed, move on. 797 RemoveFromAllocasList(AllocaNum); 798 continue; 799 } 800 801 // Initialize BBNumPreds lazily 802 if (BBNumPreds.empty()) 803 BBNumPreds.resize(F.getMaxBlockNumber()); 804 805 // Remember the dbg.declare intrinsic describing this alloca, if any. 806 if (!Info.DbgUsers.empty()) 807 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 808 if (!Info.AssignmentTracking.empty()) 809 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 810 if (!Info.DPUsers.empty()) 811 AllocaDPUsers[AllocaNum] = Info.DPUsers; 812 813 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 814 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 815 816 // Unique the set of defining blocks for efficient lookup. 817 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 818 Info.DefiningBlocks.end()); 819 820 // Determine which blocks the value is live in. These are blocks which lead 821 // to uses. 822 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 823 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 824 825 // At this point, we're committed to promoting the alloca using IDF's, and 826 // the standard SSA construction algorithm. Determine which blocks need phi 827 // nodes and see if we can optimize out some work by avoiding insertion of 828 // dead phi nodes. 829 IDF.setLiveInBlocks(LiveInBlocks); 830 IDF.setDefiningBlocks(DefBlocks); 831 SmallVector<BasicBlock *, 32> PHIBlocks; 832 IDF.calculate(PHIBlocks); 833 llvm::sort(PHIBlocks, [](BasicBlock *A, BasicBlock *B) { 834 return A->getNumber() < B->getNumber(); 835 }); 836 837 unsigned CurrentVersion = 0; 838 for (BasicBlock *BB : PHIBlocks) 839 QueuePhiNode(BB, AllocaNum, CurrentVersion); 840 } 841 842 if (Allocas.empty()) { 843 cleanUpDbgAssigns(); 844 return; // All of the allocas must have been trivial! 845 } 846 LBI.clear(); 847 848 // Set the incoming values for the basic block to be null values for all of 849 // the alloca's. We do this in case there is a load of a value that has not 850 // been stored yet. In this case, it will get this null value. 851 RenamePassData::ValVector Values(Allocas.size()); 852 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 853 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 854 855 // When handling debug info, treat all incoming values as if they have unknown 856 // locations until proven otherwise. 857 RenamePassData::LocationVector Locations(Allocas.size()); 858 859 // The renamer uses the Visited set to avoid infinite loops. 860 Visited.resize(F.getMaxBlockNumber()); 861 862 // Walks all basic blocks in the function performing the SSA rename algorithm 863 // and inserting the phi nodes we marked as necessary 864 std::vector<RenamePassData> RenamePassWorkList; 865 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 866 std::move(Locations)); 867 do { 868 RenamePassData RPD = std::move(RenamePassWorkList.back()); 869 RenamePassWorkList.pop_back(); 870 // RenamePass may add new worklist entries. 871 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 872 } while (!RenamePassWorkList.empty()); 873 874 // Remove the allocas themselves from the function. 875 for (Instruction *A : Allocas) { 876 // Remove dbg.assigns linked to the alloca as these are now redundant. 877 at::deleteAssignmentMarkers(A); 878 // If there are any uses of the alloca instructions left, they must be in 879 // unreachable basic blocks that were not processed by walking the dominator 880 // tree. Just delete the users now. 881 if (!A->use_empty()) 882 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 883 A->eraseFromParent(); 884 } 885 886 // Remove alloca's dbg.declare intrinsics from the function. 887 auto RemoveDbgDeclares = [&](auto &Container) { 888 for (auto &DbgUsers : Container) { 889 for (auto *DbgItem : DbgUsers) 890 if (DbgItem->isAddressOfVariable() || 891 DbgItem->getExpression()->startsWithDeref()) 892 DbgItem->eraseFromParent(); 893 } 894 }; 895 RemoveDbgDeclares(AllocaDbgUsers); 896 RemoveDbgDeclares(AllocaDPUsers); 897 898 // Loop over all of the PHI nodes and see if there are any that we can get 899 // rid of because they merge all of the same incoming values. This can 900 // happen due to undef values coming into the PHI nodes. This process is 901 // iterative, because eliminating one PHI node can cause others to be removed. 902 bool EliminatedAPHI = true; 903 while (EliminatedAPHI) { 904 EliminatedAPHI = false; 905 906 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 907 // simplify and RAUW them as we go. If it was not, we could add uses to 908 // the values we replace with in a non-deterministic order, thus creating 909 // non-deterministic def->use chains. 910 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 911 I = NewPhiNodes.begin(), 912 E = NewPhiNodes.end(); 913 I != E;) { 914 PHINode *PN = I->second; 915 916 // If this PHI node merges one value and/or undefs, get the value. 917 if (Value *V = simplifyInstruction(PN, SQ)) { 918 PN->replaceAllUsesWith(V); 919 PN->eraseFromParent(); 920 NewPhiNodes.erase(I++); 921 EliminatedAPHI = true; 922 continue; 923 } 924 ++I; 925 } 926 } 927 928 // At this point, the renamer has added entries to PHI nodes for all reachable 929 // code. Unfortunately, there may be unreachable blocks which the renamer 930 // hasn't traversed. If this is the case, the PHI nodes may not 931 // have incoming values for all predecessors. Loop over all PHI nodes we have 932 // created, inserting poison values if they are missing any incoming values. 933 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 934 I = NewPhiNodes.begin(), 935 E = NewPhiNodes.end(); 936 I != E; ++I) { 937 // We want to do this once per basic block. As such, only process a block 938 // when we find the PHI that is the first entry in the block. 939 PHINode *SomePHI = I->second; 940 BasicBlock *BB = SomePHI->getParent(); 941 if (&BB->front() != SomePHI) 942 continue; 943 944 // Only do work here if there the PHI nodes are missing incoming values. We 945 // know that all PHI nodes that were inserted in a block will have the same 946 // number of incoming values, so we can just check any of them. 947 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 948 continue; 949 950 // Get the preds for BB. 951 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 952 953 // Ok, now we know that all of the PHI nodes are missing entries for some 954 // basic blocks. Start by sorting the incoming predecessors for efficient 955 // access. 956 auto CompareBBNumbers = [](BasicBlock *A, BasicBlock *B) { 957 return A->getNumber() < B->getNumber(); 958 }; 959 llvm::sort(Preds, CompareBBNumbers); 960 961 // Now we loop through all BB's which have entries in SomePHI and remove 962 // them from the Preds list. 963 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 964 // Do a log(n) search of the Preds list for the entry we want. 965 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 966 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 967 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 968 "PHI node has entry for a block which is not a predecessor!"); 969 970 // Remove the entry 971 Preds.erase(EntIt); 972 } 973 974 // At this point, the blocks left in the preds list must have dummy 975 // entries inserted into every PHI nodes for the block. Update all the phi 976 // nodes in this block that we are inserting (there could be phis before 977 // mem2reg runs). 978 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 979 BasicBlock::iterator BBI = BB->begin(); 980 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 981 SomePHI->getNumIncomingValues() == NumBadPreds) { 982 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 983 for (BasicBlock *Pred : Preds) 984 SomePHI->addIncoming(PoisonVal, Pred); 985 } 986 } 987 988 NewPhiNodes.clear(); 989 cleanUpDbgAssigns(); 990 } 991 992 /// Determine which blocks the value is live in. 993 /// 994 /// These are blocks which lead to uses. Knowing this allows us to avoid 995 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 996 /// inserted phi nodes would be dead). 997 void PromoteMem2Reg::ComputeLiveInBlocks( 998 AllocaInst *AI, AllocaInfo &Info, 999 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 1000 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 1001 // To determine liveness, we must iterate through the predecessors of blocks 1002 // where the def is live. Blocks are added to the worklist if we need to 1003 // check their predecessors. Start with all the using blocks. 1004 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 1005 Info.UsingBlocks.end()); 1006 1007 // If any of the using blocks is also a definition block, check to see if the 1008 // definition occurs before or after the use. If it happens before the use, 1009 // the value isn't really live-in. 1010 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 1011 BasicBlock *BB = LiveInBlockWorklist[i]; 1012 if (!DefBlocks.count(BB)) 1013 continue; 1014 1015 // Okay, this is a block that both uses and defines the value. If the first 1016 // reference to the alloca is a def (store), then we know it isn't live-in. 1017 for (BasicBlock::iterator I = BB->begin();; ++I) { 1018 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1019 if (SI->getOperand(1) != AI) 1020 continue; 1021 1022 // We found a store to the alloca before a load. The alloca is not 1023 // actually live-in here. 1024 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1025 LiveInBlockWorklist.pop_back(); 1026 --i; 1027 --e; 1028 break; 1029 } 1030 1031 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1032 // Okay, we found a load before a store to the alloca. It is actually 1033 // live into this block. 1034 if (LI->getOperand(0) == AI) 1035 break; 1036 } 1037 } 1038 1039 // Now that we have a set of blocks where the phi is live-in, recursively add 1040 // their predecessors until we find the full region the value is live. 1041 while (!LiveInBlockWorklist.empty()) { 1042 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1043 1044 // The block really is live in here, insert it into the set. If already in 1045 // the set, then it has already been processed. 1046 if (!LiveInBlocks.insert(BB).second) 1047 continue; 1048 1049 // Since the value is live into BB, it is either defined in a predecessor or 1050 // live into it to. Add the preds to the worklist unless they are a 1051 // defining block. 1052 for (BasicBlock *P : predecessors(BB)) { 1053 // The value is not live into a predecessor if it defines the value. 1054 if (DefBlocks.count(P)) 1055 continue; 1056 1057 // Otherwise it is, add to the worklist. 1058 LiveInBlockWorklist.push_back(P); 1059 } 1060 } 1061 } 1062 1063 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1064 /// 1065 /// Returns true if there wasn't already a phi-node for that variable 1066 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1067 unsigned &Version) { 1068 // Look up the basic-block in question. 1069 PHINode *&PN = NewPhiNodes[std::make_pair(BB->getNumber(), AllocaNo)]; 1070 1071 // If the BB already has a phi node added for the i'th alloca then we're done! 1072 if (PN) 1073 return false; 1074 1075 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1076 // BasicBlock. 1077 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1078 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1079 PN->insertBefore(BB->begin()); 1080 ++NumPHIInsert; 1081 PhiToAllocaMap[PN] = AllocaNo; 1082 return true; 1083 } 1084 1085 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1086 /// create a merged location incorporating \p DL, or to set \p DL directly. 1087 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1088 bool ApplyMergedLoc) { 1089 if (ApplyMergedLoc) 1090 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1091 else 1092 PN->setDebugLoc(DL); 1093 } 1094 1095 /// Recursively traverse the CFG of the function, renaming loads and 1096 /// stores to the allocas which we are promoting. 1097 /// 1098 /// IncomingVals indicates what value each Alloca contains on exit from the 1099 /// predecessor block Pred. 1100 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1101 RenamePassData::ValVector &IncomingVals, 1102 RenamePassData::LocationVector &IncomingLocs, 1103 std::vector<RenamePassData> &Worklist) { 1104 NextIteration: 1105 // If we are inserting any phi nodes into this BB, they will already be in the 1106 // block. 1107 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1108 // If we have PHI nodes to update, compute the number of edges from Pred to 1109 // BB. 1110 if (PhiToAllocaMap.count(APN)) { 1111 // We want to be able to distinguish between PHI nodes being inserted by 1112 // this invocation of mem2reg from those phi nodes that already existed in 1113 // the IR before mem2reg was run. We determine that APN is being inserted 1114 // because it is missing incoming edges. All other PHI nodes being 1115 // inserted by this pass of mem2reg will have the same number of incoming 1116 // operands so far. Remember this count. 1117 unsigned NewPHINumOperands = APN->getNumOperands(); 1118 1119 unsigned NumEdges = llvm::count(successors(Pred), BB); 1120 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1121 1122 // Add entries for all the phis. 1123 BasicBlock::iterator PNI = BB->begin(); 1124 do { 1125 unsigned AllocaNo = PhiToAllocaMap[APN]; 1126 1127 // Update the location of the phi node. 1128 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1129 APN->getNumIncomingValues() > 0); 1130 1131 // Add N incoming values to the PHI node. 1132 for (unsigned i = 0; i != NumEdges; ++i) 1133 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1134 1135 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this 1136 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag 1137 // on the phi node generated at this stage, fabs folding does not 1138 // happen. So, we try to infer nsz flag from the function attributes to 1139 // enable this fabs folding. 1140 if (isa<FPMathOperator>(APN) && NoSignedZeros) 1141 APN->setHasNoSignedZeros(true); 1142 1143 // The currently active variable for this block is now the PHI. 1144 IncomingVals[AllocaNo] = APN; 1145 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1146 auto ConvertDbgDeclares = [&](auto &Container) { 1147 for (auto *DbgItem : Container) 1148 if (DbgItem->isAddressOfVariable()) 1149 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1150 }; 1151 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1152 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1153 1154 // Get the next phi node. 1155 ++PNI; 1156 APN = dyn_cast<PHINode>(PNI); 1157 if (!APN) 1158 break; 1159 1160 // Verify that it is missing entries. If not, it is not being inserted 1161 // by this mem2reg invocation so we want to ignore it. 1162 } while (APN->getNumOperands() == NewPHINumOperands); 1163 } 1164 } 1165 1166 // Don't revisit blocks. 1167 if (Visited.test(BB->getNumber())) 1168 return; 1169 Visited.set(BB->getNumber()); 1170 1171 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1172 Instruction *I = &*II++; // get the instruction, increment iterator 1173 1174 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1175 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1176 if (!Src) 1177 continue; 1178 1179 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1180 if (AI == AllocaLookup.end()) 1181 continue; 1182 1183 Value *V = IncomingVals[AI->second]; 1184 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1185 1186 // Anything using the load now uses the current value. 1187 LI->replaceAllUsesWith(V); 1188 LI->eraseFromParent(); 1189 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1190 // Delete this instruction and mark the name as the current holder of the 1191 // value 1192 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1193 if (!Dest) 1194 continue; 1195 1196 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1197 if (ai == AllocaLookup.end()) 1198 continue; 1199 1200 // what value were we writing? 1201 unsigned AllocaNo = ai->second; 1202 IncomingVals[AllocaNo] = SI->getOperand(0); 1203 1204 // Record debuginfo for the store before removing it. 1205 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1206 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1207 &DVRAssignsToDelete); 1208 auto ConvertDbgDeclares = [&](auto &Container) { 1209 for (auto *DbgItem : Container) 1210 if (DbgItem->isAddressOfVariable()) 1211 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1212 }; 1213 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1214 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1215 SI->eraseFromParent(); 1216 } 1217 } 1218 1219 // 'Recurse' to our successors. 1220 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1221 if (I == E) 1222 return; 1223 1224 // Keep track of the successors so we don't visit the same successor twice 1225 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1226 1227 // Handle the first successor without using the worklist. 1228 VisitedSuccs.insert(*I); 1229 Pred = BB; 1230 BB = *I; 1231 ++I; 1232 1233 for (; I != E; ++I) 1234 if (VisitedSuccs.insert(*I).second) 1235 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1236 1237 goto NextIteration; 1238 } 1239 1240 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1241 AssumptionCache *AC) { 1242 // If there is nothing to do, bail out... 1243 if (Allocas.empty()) 1244 return; 1245 1246 PromoteMem2Reg(Allocas, DT, AC).run(); 1247 } 1248