1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/InstructionSimplify.h" 27 #include "llvm/Analysis/IteratedDominanceFrontier.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DIBuilder.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugProgramInstruction.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instruction.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Operator.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <iterator> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "mem2reg" 60 61 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 62 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 63 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 64 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 65 66 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 67 // Only allow direct and non-volatile loads and stores... 68 for (const User *U : AI->users()) { 69 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 70 // Note that atomic loads can be transformed; atomic semantics do 71 // not have any meaning for a local alloca. 72 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 73 return false; 74 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 75 if (SI->getValueOperand() == AI || 76 SI->getValueOperand()->getType() != AI->getAllocatedType()) 77 return false; // Don't allow a store OF the AI, only INTO the AI. 78 // Note that atomic stores can be transformed; atomic semantics do 79 // not have any meaning for a local alloca. 80 if (SI->isVolatile()) 81 return false; 82 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 83 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 84 return false; 85 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 86 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 87 return false; 88 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 89 if (!GEPI->hasAllZeroIndices()) 90 return false; 91 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 92 return false; 93 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 94 if (!onlyUsedByLifetimeMarkers(ASCI)) 95 return false; 96 } else { 97 return false; 98 } 99 } 100 101 return true; 102 } 103 104 namespace { 105 106 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 107 DILocalVariable *Variable, 108 DIExpression *Expression, const DILocation *DI, 109 DbgVariableRecord *InsertBefore) { 110 // FIXME: Merge these two functions now that DIBuilder supports 111 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 112 // insert point for that to work. 113 (void)DIB; 114 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 115 *InsertBefore); 116 } 117 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 118 DILocalVariable *Variable, 119 DIExpression *Expression, const DILocation *DI, 120 Instruction *InsertBefore) { 121 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 122 } 123 124 /// Helper for updating assignment tracking debug info when promoting allocas. 125 class AssignmentTrackingInfo { 126 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 127 /// fragment. (i.e. not be a comprehensive set if there are multiple 128 /// dbg.assigns for one variable fragment). 129 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 130 SmallVector<DbgVariableRecord *> DVRAssigns; 131 132 public: 133 void init(AllocaInst *AI) { 134 SmallSet<DebugVariable, 2> Vars; 135 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 136 if (Vars.insert(DebugVariable(DAI)).second) 137 DbgAssigns.push_back(DAI); 138 } 139 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 140 if (Vars.insert(DebugVariable(DVR)).second) 141 DVRAssigns.push_back(DVR); 142 } 143 } 144 145 /// Update assignment tracking debug info given for the to-be-deleted store 146 /// \p ToDelete that stores to this alloca. 147 void updateForDeletedStore( 148 StoreInst *ToDelete, DIBuilder &DIB, 149 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 150 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 151 // There's nothing to do if the alloca doesn't have any variables using 152 // assignment tracking. 153 if (DbgAssigns.empty() && DVRAssigns.empty()) 154 return; 155 156 // Insert a dbg.value where the linked dbg.assign is and remember to delete 157 // the dbg.assign later. Demoting to dbg.value isn't necessary for 158 // correctness but does reduce compile time and memory usage by reducing 159 // unnecessary function-local metadata. Remember that we've seen a 160 // dbg.assign for each variable fragment for the untracked store handling 161 // (after this loop). 162 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 163 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 164 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 165 AssignList->insert(DbgAssign); 166 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 167 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 168 DbgAssign); 169 }; 170 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 171 InsertValueForAssign(Assign, DbgAssignsToDelete); 172 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 173 InsertValueForAssign(Assign, DVRAssignsToDelete); 174 175 // It's possible for variables using assignment tracking to have no 176 // dbg.assign linked to this store. These are variables in DbgAssigns that 177 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 178 // to mark the assignment - and the store is going to be deleted - insert a 179 // dbg.value to do that now. An untracked store may be either one that 180 // cannot be represented using assignment tracking (non-const offset or 181 // size) or one that is trackable but has had its DIAssignID attachment 182 // dropped accidentally. 183 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 184 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 185 return; 186 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 187 }; 188 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 189 for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 190 } 191 192 /// Update assignment tracking debug info given for the newly inserted PHI \p 193 /// NewPhi. 194 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 195 // Regardless of the position of dbg.assigns relative to stores, the 196 // incoming values into a new PHI should be the same for the (imaginary) 197 // debug-phi. 198 for (auto *DAI : DbgAssigns) 199 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 200 for (auto *DVR : DVRAssigns) 201 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 202 } 203 204 void clear() { 205 DbgAssigns.clear(); 206 DVRAssigns.clear(); 207 } 208 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 209 }; 210 211 struct AllocaInfo { 212 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 213 using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 214 215 SmallVector<BasicBlock *, 32> DefiningBlocks; 216 SmallVector<BasicBlock *, 32> UsingBlocks; 217 218 StoreInst *OnlyStore; 219 BasicBlock *OnlyBlock; 220 bool OnlyUsedInOneBlock; 221 222 /// Debug users of the alloca - does not include dbg.assign intrinsics. 223 DbgUserVec DbgUsers; 224 DPUserVec DPUsers; 225 /// Helper to update assignment tracking debug info. 226 AssignmentTrackingInfo AssignmentTracking; 227 228 void clear() { 229 DefiningBlocks.clear(); 230 UsingBlocks.clear(); 231 OnlyStore = nullptr; 232 OnlyBlock = nullptr; 233 OnlyUsedInOneBlock = true; 234 DbgUsers.clear(); 235 DPUsers.clear(); 236 AssignmentTracking.clear(); 237 } 238 239 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 240 /// by the rest of the pass to reason about the uses of this alloca. 241 void AnalyzeAlloca(AllocaInst *AI) { 242 clear(); 243 244 // As we scan the uses of the alloca instruction, keep track of stores, 245 // and decide whether all of the loads and stores to the alloca are within 246 // the same basic block. 247 for (User *U : AI->users()) { 248 Instruction *User = cast<Instruction>(U); 249 250 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 251 // Remember the basic blocks which define new values for the alloca 252 DefiningBlocks.push_back(SI->getParent()); 253 OnlyStore = SI; 254 } else { 255 LoadInst *LI = cast<LoadInst>(User); 256 // Otherwise it must be a load instruction, keep track of variable 257 // reads. 258 UsingBlocks.push_back(LI->getParent()); 259 } 260 261 if (OnlyUsedInOneBlock) { 262 if (!OnlyBlock) 263 OnlyBlock = User->getParent(); 264 else if (OnlyBlock != User->getParent()) 265 OnlyUsedInOneBlock = false; 266 } 267 } 268 DbgUserVec AllDbgUsers; 269 SmallVector<DbgVariableRecord *> AllDPUsers; 270 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 271 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 272 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 273 return !isa<DbgAssignIntrinsic>(DII); 274 }); 275 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 276 std::back_inserter(DPUsers), 277 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 278 AssignmentTracking.init(AI); 279 } 280 }; 281 282 /// Data package used by RenamePass(). 283 struct RenamePassData { 284 using ValVector = std::vector<Value *>; 285 using LocationVector = std::vector<DebugLoc>; 286 287 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 288 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 289 290 BasicBlock *BB; 291 BasicBlock *Pred; 292 ValVector Values; 293 LocationVector Locations; 294 }; 295 296 /// This assigns and keeps a per-bb relative ordering of load/store 297 /// instructions in the block that directly load or store an alloca. 298 /// 299 /// This functionality is important because it avoids scanning large basic 300 /// blocks multiple times when promoting many allocas in the same block. 301 class LargeBlockInfo { 302 /// For each instruction that we track, keep the index of the 303 /// instruction. 304 /// 305 /// The index starts out as the number of the instruction from the start of 306 /// the block. 307 DenseMap<const Instruction *, unsigned> InstNumbers; 308 309 public: 310 311 /// This code only looks at accesses to allocas. 312 static bool isInterestingInstruction(const Instruction *I) { 313 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 314 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 315 } 316 317 /// Get or calculate the index of the specified instruction. 318 unsigned getInstructionIndex(const Instruction *I) { 319 assert(isInterestingInstruction(I) && 320 "Not a load/store to/from an alloca?"); 321 322 // If we already have this instruction number, return it. 323 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 324 if (It != InstNumbers.end()) 325 return It->second; 326 327 // Scan the whole block to get the instruction. This accumulates 328 // information for every interesting instruction in the block, in order to 329 // avoid gratuitus rescans. 330 const BasicBlock *BB = I->getParent(); 331 unsigned InstNo = 0; 332 for (const Instruction &BBI : *BB) 333 if (isInterestingInstruction(&BBI)) 334 InstNumbers[&BBI] = InstNo++; 335 It = InstNumbers.find(I); 336 337 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 338 return It->second; 339 } 340 341 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 342 343 void clear() { InstNumbers.clear(); } 344 }; 345 346 struct PromoteMem2Reg { 347 /// The alloca instructions being promoted. 348 std::vector<AllocaInst *> Allocas; 349 350 DominatorTree &DT; 351 DIBuilder DIB; 352 353 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 354 AssumptionCache *AC; 355 356 const SimplifyQuery SQ; 357 358 /// Reverse mapping of Allocas. 359 DenseMap<AllocaInst *, unsigned> AllocaLookup; 360 361 /// The PhiNodes we're adding. 362 /// 363 /// That map is used to simplify some Phi nodes as we iterate over it, so 364 /// it should have deterministic iterators. We could use a MapVector, but 365 /// since basic blocks have numbers, using these are more efficient. 366 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 367 368 /// For each PHI node, keep track of which entry in Allocas it corresponds 369 /// to. 370 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 371 372 /// For each alloca, we keep track of the dbg.declare intrinsic that 373 /// describes it, if any, so that we can convert it to a dbg.value 374 /// intrinsic if the alloca gets promoted. 375 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 376 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 377 378 /// For each alloca, keep an instance of a helper class that gives us an easy 379 /// way to update assignment tracking debug info if the alloca is promoted. 380 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 381 /// A set of dbg.assigns to delete because they've been demoted to 382 /// dbg.values. Call cleanUpDbgAssigns to delete them. 383 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 384 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 385 386 /// The set of basic blocks the renamer has already visited. 387 BitVector Visited; 388 389 /// Lazily compute the number of predecessors a block has, indexed by block 390 /// number. 391 SmallVector<unsigned> BBNumPreds; 392 393 /// Whether the function has the no-signed-zeros-fp-math attribute set. 394 bool NoSignedZeros = false; 395 396 public: 397 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 398 AssumptionCache *AC) 399 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 400 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 401 AC(AC), SQ(DT.getRoot()->getDataLayout(), 402 nullptr, &DT, AC) {} 403 404 void run(); 405 406 private: 407 void RemoveFromAllocasList(unsigned &AllocaIdx) { 408 Allocas[AllocaIdx] = Allocas.back(); 409 Allocas.pop_back(); 410 --AllocaIdx; 411 } 412 413 unsigned getNumPreds(const BasicBlock *BB) { 414 // BBNumPreds is resized to getMaxBlockNumber() at the beginning. 415 unsigned &NP = BBNumPreds[BB->getNumber()]; 416 if (NP == 0) 417 NP = pred_size(BB) + 1; 418 return NP - 1; 419 } 420 421 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 422 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 423 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 424 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 425 RenamePassData::ValVector &IncVals, 426 RenamePassData::LocationVector &IncLocs, 427 std::vector<RenamePassData> &Worklist); 428 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 429 430 /// Delete dbg.assigns that have been demoted to dbg.values. 431 void cleanUpDbgAssigns() { 432 for (auto *DAI : DbgAssignsToDelete) 433 DAI->eraseFromParent(); 434 DbgAssignsToDelete.clear(); 435 for (auto *DVR : DVRAssignsToDelete) 436 DVR->eraseFromParent(); 437 DVRAssignsToDelete.clear(); 438 } 439 }; 440 441 } // end anonymous namespace 442 443 /// Given a LoadInst LI this adds assume(LI != null) after it. 444 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 445 Function *AssumeIntrinsic = 446 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 447 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 448 Constant::getNullValue(LI->getType())); 449 LoadNotNull->insertAfter(LI); 450 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 451 CI->insertAfter(LoadNotNull); 452 AC->registerAssumption(cast<AssumeInst>(CI)); 453 } 454 455 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 456 const DataLayout &DL, AssumptionCache *AC, 457 const DominatorTree *DT) { 458 if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { 459 // Insert non-terminator unreachable. 460 LLVMContext &Ctx = LI->getContext(); 461 new StoreInst(ConstantInt::getTrue(Ctx), 462 PoisonValue::get(PointerType::getUnqual(Ctx)), 463 /*isVolatile=*/false, Align(1), LI); 464 return; 465 } 466 467 // If the load was marked as nonnull we don't want to lose that information 468 // when we erase this Load. So we preserve it with an assume. As !nonnull 469 // returns poison while assume violations are immediate undefined behavior, 470 // we can only do this if the value is known non-poison. 471 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 472 LI->getMetadata(LLVMContext::MD_noundef) && 473 !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) 474 addAssumeNonNull(AC, LI); 475 } 476 477 static void removeIntrinsicUsers(AllocaInst *AI) { 478 // Knowing that this alloca is promotable, we know that it's safe to kill all 479 // instructions except for load and store. 480 481 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 482 Instruction *I = cast<Instruction>(U.getUser()); 483 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 484 continue; 485 486 // Drop the use of AI in droppable instructions. 487 if (I->isDroppable()) { 488 I->dropDroppableUse(U); 489 continue; 490 } 491 492 if (!I->getType()->isVoidTy()) { 493 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 494 // Follow the use/def chain to erase them now instead of leaving it for 495 // dead code elimination later. 496 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 497 Instruction *Inst = cast<Instruction>(UU.getUser()); 498 499 // Drop the use of I in droppable instructions. 500 if (Inst->isDroppable()) { 501 Inst->dropDroppableUse(UU); 502 continue; 503 } 504 Inst->eraseFromParent(); 505 } 506 } 507 I->eraseFromParent(); 508 } 509 } 510 511 /// Rewrite as many loads as possible given a single store. 512 /// 513 /// When there is only a single store, we can use the domtree to trivially 514 /// replace all of the dominated loads with the stored value. Do so, and return 515 /// true if this has successfully promoted the alloca entirely. If this returns 516 /// false there were some loads which were not dominated by the single store 517 /// and thus must be phi-ed with undef. We fall back to the standard alloca 518 /// promotion algorithm in that case. 519 static bool 520 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 521 const DataLayout &DL, DominatorTree &DT, 522 AssumptionCache *AC, 523 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 524 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 525 StoreInst *OnlyStore = Info.OnlyStore; 526 Value *ReplVal = OnlyStore->getOperand(0); 527 // Loads may either load the stored value or uninitialized memory (undef). 528 // If the stored value may be poison, then replacing an uninitialized memory 529 // load with it would be incorrect. If the store dominates the load, we know 530 // it is always initialized. 531 bool RequireDominatingStore = 532 isa<Instruction>(ReplVal) || !isGuaranteedNotToBePoison(ReplVal); 533 BasicBlock *StoreBB = OnlyStore->getParent(); 534 int StoreIndex = -1; 535 536 // Clear out UsingBlocks. We will reconstruct it here if needed. 537 Info.UsingBlocks.clear(); 538 539 for (User *U : make_early_inc_range(AI->users())) { 540 Instruction *UserInst = cast<Instruction>(U); 541 if (UserInst == OnlyStore) 542 continue; 543 LoadInst *LI = cast<LoadInst>(UserInst); 544 545 // Okay, if we have a load from the alloca, we want to replace it with the 546 // only value stored to the alloca. We can do this if the value is 547 // dominated by the store. If not, we use the rest of the mem2reg machinery 548 // to insert the phi nodes as needed. 549 if (RequireDominatingStore) { 550 if (LI->getParent() == StoreBB) { 551 // If we have a use that is in the same block as the store, compare the 552 // indices of the two instructions to see which one came first. If the 553 // load came before the store, we can't handle it. 554 if (StoreIndex == -1) 555 StoreIndex = LBI.getInstructionIndex(OnlyStore); 556 557 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 558 // Can't handle this load, bail out. 559 Info.UsingBlocks.push_back(StoreBB); 560 continue; 561 } 562 } else if (!DT.dominates(StoreBB, LI->getParent())) { 563 // If the load and store are in different blocks, use BB dominance to 564 // check their relationships. If the store doesn't dom the use, bail 565 // out. 566 Info.UsingBlocks.push_back(LI->getParent()); 567 continue; 568 } 569 } 570 571 // Otherwise, we *can* safely rewrite this load. 572 // If the replacement value is the load, this must occur in unreachable 573 // code. 574 if (ReplVal == LI) 575 ReplVal = PoisonValue::get(LI->getType()); 576 577 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 578 LI->replaceAllUsesWith(ReplVal); 579 LI->eraseFromParent(); 580 LBI.deleteValue(LI); 581 } 582 583 // Finally, after the scan, check to see if the store is all that is left. 584 if (!Info.UsingBlocks.empty()) 585 return false; // If not, we'll have to fall back for the remainder. 586 587 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 588 // Update assignment tracking info for the store we're going to delete. 589 Info.AssignmentTracking.updateForDeletedStore( 590 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 591 592 // Record debuginfo for the store and remove the declaration's 593 // debuginfo. 594 auto ConvertDebugInfoForStore = [&](auto &Container) { 595 for (auto *DbgItem : Container) { 596 if (DbgItem->isAddressOfVariable()) { 597 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 598 DbgItem->eraseFromParent(); 599 } else if (DbgItem->getExpression()->startsWithDeref()) { 600 DbgItem->eraseFromParent(); 601 } 602 } 603 }; 604 ConvertDebugInfoForStore(Info.DbgUsers); 605 ConvertDebugInfoForStore(Info.DPUsers); 606 607 // Remove dbg.assigns linked to the alloca as these are now redundant. 608 at::deleteAssignmentMarkers(AI); 609 610 // Remove the (now dead) store and alloca. 611 Info.OnlyStore->eraseFromParent(); 612 LBI.deleteValue(Info.OnlyStore); 613 614 AI->eraseFromParent(); 615 return true; 616 } 617 618 /// Many allocas are only used within a single basic block. If this is the 619 /// case, avoid traversing the CFG and inserting a lot of potentially useless 620 /// PHI nodes by just performing a single linear pass over the basic block 621 /// using the Alloca. 622 /// 623 /// If we cannot promote this alloca (because it is read before it is written), 624 /// return false. This is necessary in cases where, due to control flow, the 625 /// alloca is undefined only on some control flow paths. e.g. code like 626 /// this is correct in LLVM IR: 627 /// // A is an alloca with no stores so far 628 /// for (...) { 629 /// int t = *A; 630 /// if (!first_iteration) 631 /// use(t); 632 /// *A = 42; 633 /// } 634 static bool 635 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 636 LargeBlockInfo &LBI, const DataLayout &DL, 637 DominatorTree &DT, AssumptionCache *AC, 638 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 639 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 640 // The trickiest case to handle is when we have large blocks. Because of this, 641 // this code is optimized assuming that large blocks happen. This does not 642 // significantly pessimize the small block case. This uses LargeBlockInfo to 643 // make it efficient to get the index of various operations in the block. 644 645 // Walk the use-def list of the alloca, getting the locations of all stores. 646 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 647 StoresByIndexTy StoresByIndex; 648 649 for (User *U : AI->users()) 650 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 651 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 652 653 // Sort the stores by their index, making it efficient to do a lookup with a 654 // binary search. 655 llvm::sort(StoresByIndex, less_first()); 656 657 // Walk all of the loads from this alloca, replacing them with the nearest 658 // store above them, if any. 659 for (User *U : make_early_inc_range(AI->users())) { 660 LoadInst *LI = dyn_cast<LoadInst>(U); 661 if (!LI) 662 continue; 663 664 unsigned LoadIdx = LBI.getInstructionIndex(LI); 665 666 // Find the nearest store that has a lower index than this load. 667 StoresByIndexTy::iterator I = llvm::lower_bound( 668 StoresByIndex, 669 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 670 less_first()); 671 Value *ReplVal; 672 if (I == StoresByIndex.begin()) { 673 if (StoresByIndex.empty()) 674 // If there are no stores, the load takes the undef value. 675 ReplVal = UndefValue::get(LI->getType()); 676 else 677 // There is no store before this load, bail out (load may be affected 678 // by the following stores - see main comment). 679 return false; 680 } else { 681 // Otherwise, there was a store before this load, the load takes its 682 // value. 683 ReplVal = std::prev(I)->second->getOperand(0); 684 } 685 686 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 687 688 // If the replacement value is the load, this must occur in unreachable 689 // code. 690 if (ReplVal == LI) 691 ReplVal = PoisonValue::get(LI->getType()); 692 693 LI->replaceAllUsesWith(ReplVal); 694 LI->eraseFromParent(); 695 LBI.deleteValue(LI); 696 } 697 698 // Remove the (now dead) stores and alloca. 699 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 700 while (!AI->use_empty()) { 701 StoreInst *SI = cast<StoreInst>(AI->user_back()); 702 // Update assignment tracking info for the store we're going to delete. 703 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 704 DVRAssignsToDelete); 705 // Record debuginfo for the store before removing it. 706 auto DbgUpdateForStore = [&](auto &Container) { 707 for (auto *DbgItem : Container) { 708 if (DbgItem->isAddressOfVariable()) { 709 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 710 } 711 } 712 }; 713 DbgUpdateForStore(Info.DbgUsers); 714 DbgUpdateForStore(Info.DPUsers); 715 716 SI->eraseFromParent(); 717 LBI.deleteValue(SI); 718 } 719 720 // Remove dbg.assigns linked to the alloca as these are now redundant. 721 at::deleteAssignmentMarkers(AI); 722 AI->eraseFromParent(); 723 724 // The alloca's debuginfo can be removed as well. 725 auto DbgUpdateForAlloca = [&](auto &Container) { 726 for (auto *DbgItem : Container) 727 if (DbgItem->isAddressOfVariable() || 728 DbgItem->getExpression()->startsWithDeref()) 729 DbgItem->eraseFromParent(); 730 }; 731 DbgUpdateForAlloca(Info.DbgUsers); 732 DbgUpdateForAlloca(Info.DPUsers); 733 734 ++NumLocalPromoted; 735 return true; 736 } 737 738 void PromoteMem2Reg::run() { 739 Function &F = *DT.getRoot()->getParent(); 740 741 AllocaDbgUsers.resize(Allocas.size()); 742 AllocaATInfo.resize(Allocas.size()); 743 AllocaDPUsers.resize(Allocas.size()); 744 745 AllocaInfo Info; 746 LargeBlockInfo LBI; 747 ForwardIDFCalculator IDF(DT); 748 749 NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool(); 750 751 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 752 AllocaInst *AI = Allocas[AllocaNum]; 753 754 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 755 assert(AI->getParent()->getParent() == &F && 756 "All allocas should be in the same function, which is same as DF!"); 757 758 removeIntrinsicUsers(AI); 759 760 if (AI->use_empty()) { 761 // If there are no uses of the alloca, just delete it now. 762 AI->eraseFromParent(); 763 764 // Remove the alloca from the Allocas list, since it has been processed 765 RemoveFromAllocasList(AllocaNum); 766 ++NumDeadAlloca; 767 continue; 768 } 769 770 // Calculate the set of read and write-locations for each alloca. This is 771 // analogous to finding the 'uses' and 'definitions' of each variable. 772 Info.AnalyzeAlloca(AI); 773 774 // If there is only a single store to this value, replace any loads of 775 // it that are directly dominated by the definition with the value stored. 776 if (Info.DefiningBlocks.size() == 1) { 777 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 778 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 779 // The alloca has been processed, move on. 780 RemoveFromAllocasList(AllocaNum); 781 ++NumSingleStore; 782 continue; 783 } 784 } 785 786 // If the alloca is only read and written in one basic block, just perform a 787 // linear sweep over the block to eliminate it. 788 if (Info.OnlyUsedInOneBlock && 789 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 790 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 791 // The alloca has been processed, move on. 792 RemoveFromAllocasList(AllocaNum); 793 continue; 794 } 795 796 // Initialize BBNumPreds lazily 797 if (BBNumPreds.empty()) 798 BBNumPreds.resize(F.getMaxBlockNumber()); 799 800 // Remember the dbg.declare intrinsic describing this alloca, if any. 801 if (!Info.DbgUsers.empty()) 802 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 803 if (!Info.AssignmentTracking.empty()) 804 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 805 if (!Info.DPUsers.empty()) 806 AllocaDPUsers[AllocaNum] = Info.DPUsers; 807 808 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 809 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 810 811 // Unique the set of defining blocks for efficient lookup. 812 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 813 Info.DefiningBlocks.end()); 814 815 // Determine which blocks the value is live in. These are blocks which lead 816 // to uses. 817 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 818 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 819 820 // At this point, we're committed to promoting the alloca using IDF's, and 821 // the standard SSA construction algorithm. Determine which blocks need phi 822 // nodes and see if we can optimize out some work by avoiding insertion of 823 // dead phi nodes. 824 IDF.setLiveInBlocks(LiveInBlocks); 825 IDF.setDefiningBlocks(DefBlocks); 826 SmallVector<BasicBlock *, 32> PHIBlocks; 827 IDF.calculate(PHIBlocks); 828 llvm::sort(PHIBlocks, [](BasicBlock *A, BasicBlock *B) { 829 return A->getNumber() < B->getNumber(); 830 }); 831 832 unsigned CurrentVersion = 0; 833 for (BasicBlock *BB : PHIBlocks) 834 QueuePhiNode(BB, AllocaNum, CurrentVersion); 835 } 836 837 if (Allocas.empty()) { 838 cleanUpDbgAssigns(); 839 return; // All of the allocas must have been trivial! 840 } 841 LBI.clear(); 842 843 // Set the incoming values for the basic block to be null values for all of 844 // the alloca's. We do this in case there is a load of a value that has not 845 // been stored yet. In this case, it will get this null value. 846 RenamePassData::ValVector Values(Allocas.size()); 847 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 848 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 849 850 // When handling debug info, treat all incoming values as if they have unknown 851 // locations until proven otherwise. 852 RenamePassData::LocationVector Locations(Allocas.size()); 853 854 // The renamer uses the Visited set to avoid infinite loops. 855 Visited.resize(F.getMaxBlockNumber()); 856 857 // Walks all basic blocks in the function performing the SSA rename algorithm 858 // and inserting the phi nodes we marked as necessary 859 std::vector<RenamePassData> RenamePassWorkList; 860 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 861 std::move(Locations)); 862 do { 863 RenamePassData RPD = std::move(RenamePassWorkList.back()); 864 RenamePassWorkList.pop_back(); 865 // RenamePass may add new worklist entries. 866 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 867 } while (!RenamePassWorkList.empty()); 868 869 // Remove the allocas themselves from the function. 870 for (Instruction *A : Allocas) { 871 // Remove dbg.assigns linked to the alloca as these are now redundant. 872 at::deleteAssignmentMarkers(A); 873 // If there are any uses of the alloca instructions left, they must be in 874 // unreachable basic blocks that were not processed by walking the dominator 875 // tree. Just delete the users now. 876 if (!A->use_empty()) 877 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 878 A->eraseFromParent(); 879 } 880 881 // Remove alloca's dbg.declare intrinsics from the function. 882 auto RemoveDbgDeclares = [&](auto &Container) { 883 for (auto &DbgUsers : Container) { 884 for (auto *DbgItem : DbgUsers) 885 if (DbgItem->isAddressOfVariable() || 886 DbgItem->getExpression()->startsWithDeref()) 887 DbgItem->eraseFromParent(); 888 } 889 }; 890 RemoveDbgDeclares(AllocaDbgUsers); 891 RemoveDbgDeclares(AllocaDPUsers); 892 893 // Loop over all of the PHI nodes and see if there are any that we can get 894 // rid of because they merge all of the same incoming values. This can 895 // happen due to undef values coming into the PHI nodes. This process is 896 // iterative, because eliminating one PHI node can cause others to be removed. 897 bool EliminatedAPHI = true; 898 while (EliminatedAPHI) { 899 EliminatedAPHI = false; 900 901 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 902 // simplify and RAUW them as we go. If it was not, we could add uses to 903 // the values we replace with in a non-deterministic order, thus creating 904 // non-deterministic def->use chains. 905 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 906 I = NewPhiNodes.begin(), 907 E = NewPhiNodes.end(); 908 I != E;) { 909 PHINode *PN = I->second; 910 911 // If this PHI node merges one value and/or undefs, get the value. 912 if (Value *V = simplifyInstruction(PN, SQ)) { 913 PN->replaceAllUsesWith(V); 914 PN->eraseFromParent(); 915 NewPhiNodes.erase(I++); 916 EliminatedAPHI = true; 917 continue; 918 } 919 ++I; 920 } 921 } 922 923 // At this point, the renamer has added entries to PHI nodes for all reachable 924 // code. Unfortunately, there may be unreachable blocks which the renamer 925 // hasn't traversed. If this is the case, the PHI nodes may not 926 // have incoming values for all predecessors. Loop over all PHI nodes we have 927 // created, inserting poison values if they are missing any incoming values. 928 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 929 I = NewPhiNodes.begin(), 930 E = NewPhiNodes.end(); 931 I != E; ++I) { 932 // We want to do this once per basic block. As such, only process a block 933 // when we find the PHI that is the first entry in the block. 934 PHINode *SomePHI = I->second; 935 BasicBlock *BB = SomePHI->getParent(); 936 if (&BB->front() != SomePHI) 937 continue; 938 939 // Only do work here if there the PHI nodes are missing incoming values. We 940 // know that all PHI nodes that were inserted in a block will have the same 941 // number of incoming values, so we can just check any of them. 942 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 943 continue; 944 945 // Get the preds for BB. 946 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 947 948 // Ok, now we know that all of the PHI nodes are missing entries for some 949 // basic blocks. Start by sorting the incoming predecessors for efficient 950 // access. 951 auto CompareBBNumbers = [](BasicBlock *A, BasicBlock *B) { 952 return A->getNumber() < B->getNumber(); 953 }; 954 llvm::sort(Preds, CompareBBNumbers); 955 956 // Now we loop through all BB's which have entries in SomePHI and remove 957 // them from the Preds list. 958 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 959 // Do a log(n) search of the Preds list for the entry we want. 960 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 961 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 962 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 963 "PHI node has entry for a block which is not a predecessor!"); 964 965 // Remove the entry 966 Preds.erase(EntIt); 967 } 968 969 // At this point, the blocks left in the preds list must have dummy 970 // entries inserted into every PHI nodes for the block. Update all the phi 971 // nodes in this block that we are inserting (there could be phis before 972 // mem2reg runs). 973 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 974 BasicBlock::iterator BBI = BB->begin(); 975 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 976 SomePHI->getNumIncomingValues() == NumBadPreds) { 977 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 978 for (BasicBlock *Pred : Preds) 979 SomePHI->addIncoming(PoisonVal, Pred); 980 } 981 } 982 983 NewPhiNodes.clear(); 984 cleanUpDbgAssigns(); 985 } 986 987 /// Determine which blocks the value is live in. 988 /// 989 /// These are blocks which lead to uses. Knowing this allows us to avoid 990 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 991 /// inserted phi nodes would be dead). 992 void PromoteMem2Reg::ComputeLiveInBlocks( 993 AllocaInst *AI, AllocaInfo &Info, 994 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 995 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 996 // To determine liveness, we must iterate through the predecessors of blocks 997 // where the def is live. Blocks are added to the worklist if we need to 998 // check their predecessors. Start with all the using blocks. 999 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 1000 Info.UsingBlocks.end()); 1001 1002 // If any of the using blocks is also a definition block, check to see if the 1003 // definition occurs before or after the use. If it happens before the use, 1004 // the value isn't really live-in. 1005 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 1006 BasicBlock *BB = LiveInBlockWorklist[i]; 1007 if (!DefBlocks.count(BB)) 1008 continue; 1009 1010 // Okay, this is a block that both uses and defines the value. If the first 1011 // reference to the alloca is a def (store), then we know it isn't live-in. 1012 for (BasicBlock::iterator I = BB->begin();; ++I) { 1013 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1014 if (SI->getOperand(1) != AI) 1015 continue; 1016 1017 // We found a store to the alloca before a load. The alloca is not 1018 // actually live-in here. 1019 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1020 LiveInBlockWorklist.pop_back(); 1021 --i; 1022 --e; 1023 break; 1024 } 1025 1026 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1027 // Okay, we found a load before a store to the alloca. It is actually 1028 // live into this block. 1029 if (LI->getOperand(0) == AI) 1030 break; 1031 } 1032 } 1033 1034 // Now that we have a set of blocks where the phi is live-in, recursively add 1035 // their predecessors until we find the full region the value is live. 1036 while (!LiveInBlockWorklist.empty()) { 1037 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1038 1039 // The block really is live in here, insert it into the set. If already in 1040 // the set, then it has already been processed. 1041 if (!LiveInBlocks.insert(BB).second) 1042 continue; 1043 1044 // Since the value is live into BB, it is either defined in a predecessor or 1045 // live into it to. Add the preds to the worklist unless they are a 1046 // defining block. 1047 for (BasicBlock *P : predecessors(BB)) { 1048 // The value is not live into a predecessor if it defines the value. 1049 if (DefBlocks.count(P)) 1050 continue; 1051 1052 // Otherwise it is, add to the worklist. 1053 LiveInBlockWorklist.push_back(P); 1054 } 1055 } 1056 } 1057 1058 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1059 /// 1060 /// Returns true if there wasn't already a phi-node for that variable 1061 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1062 unsigned &Version) { 1063 // Look up the basic-block in question. 1064 PHINode *&PN = NewPhiNodes[std::make_pair(BB->getNumber(), AllocaNo)]; 1065 1066 // If the BB already has a phi node added for the i'th alloca then we're done! 1067 if (PN) 1068 return false; 1069 1070 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1071 // BasicBlock. 1072 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1073 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1074 PN->insertBefore(BB->begin()); 1075 ++NumPHIInsert; 1076 PhiToAllocaMap[PN] = AllocaNo; 1077 return true; 1078 } 1079 1080 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1081 /// create a merged location incorporating \p DL, or to set \p DL directly. 1082 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1083 bool ApplyMergedLoc) { 1084 if (ApplyMergedLoc) 1085 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1086 else 1087 PN->setDebugLoc(DL); 1088 } 1089 1090 /// Recursively traverse the CFG of the function, renaming loads and 1091 /// stores to the allocas which we are promoting. 1092 /// 1093 /// IncomingVals indicates what value each Alloca contains on exit from the 1094 /// predecessor block Pred. 1095 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1096 RenamePassData::ValVector &IncomingVals, 1097 RenamePassData::LocationVector &IncomingLocs, 1098 std::vector<RenamePassData> &Worklist) { 1099 NextIteration: 1100 // If we are inserting any phi nodes into this BB, they will already be in the 1101 // block. 1102 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1103 // If we have PHI nodes to update, compute the number of edges from Pred to 1104 // BB. 1105 if (PhiToAllocaMap.count(APN)) { 1106 // We want to be able to distinguish between PHI nodes being inserted by 1107 // this invocation of mem2reg from those phi nodes that already existed in 1108 // the IR before mem2reg was run. We determine that APN is being inserted 1109 // because it is missing incoming edges. All other PHI nodes being 1110 // inserted by this pass of mem2reg will have the same number of incoming 1111 // operands so far. Remember this count. 1112 unsigned NewPHINumOperands = APN->getNumOperands(); 1113 1114 unsigned NumEdges = llvm::count(successors(Pred), BB); 1115 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1116 1117 // Add entries for all the phis. 1118 BasicBlock::iterator PNI = BB->begin(); 1119 do { 1120 unsigned AllocaNo = PhiToAllocaMap[APN]; 1121 1122 // Update the location of the phi node. 1123 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1124 APN->getNumIncomingValues() > 0); 1125 1126 // Add N incoming values to the PHI node. 1127 for (unsigned i = 0; i != NumEdges; ++i) 1128 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1129 1130 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this 1131 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag 1132 // on the phi node generated at this stage, fabs folding does not 1133 // happen. So, we try to infer nsz flag from the function attributes to 1134 // enable this fabs folding. 1135 if (isa<FPMathOperator>(APN) && NoSignedZeros) 1136 APN->setHasNoSignedZeros(true); 1137 1138 // The currently active variable for this block is now the PHI. 1139 IncomingVals[AllocaNo] = APN; 1140 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1141 auto ConvertDbgDeclares = [&](auto &Container) { 1142 for (auto *DbgItem : Container) 1143 if (DbgItem->isAddressOfVariable()) 1144 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1145 }; 1146 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1147 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1148 1149 // Get the next phi node. 1150 ++PNI; 1151 APN = dyn_cast<PHINode>(PNI); 1152 if (!APN) 1153 break; 1154 1155 // Verify that it is missing entries. If not, it is not being inserted 1156 // by this mem2reg invocation so we want to ignore it. 1157 } while (APN->getNumOperands() == NewPHINumOperands); 1158 } 1159 } 1160 1161 // Don't revisit blocks. 1162 if (Visited.test(BB->getNumber())) 1163 return; 1164 Visited.set(BB->getNumber()); 1165 1166 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1167 Instruction *I = &*II++; // get the instruction, increment iterator 1168 1169 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1170 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1171 if (!Src) 1172 continue; 1173 1174 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1175 if (AI == AllocaLookup.end()) 1176 continue; 1177 1178 Value *V = IncomingVals[AI->second]; 1179 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1180 1181 // Anything using the load now uses the current value. 1182 LI->replaceAllUsesWith(V); 1183 LI->eraseFromParent(); 1184 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1185 // Delete this instruction and mark the name as the current holder of the 1186 // value 1187 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1188 if (!Dest) 1189 continue; 1190 1191 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1192 if (ai == AllocaLookup.end()) 1193 continue; 1194 1195 // what value were we writing? 1196 unsigned AllocaNo = ai->second; 1197 IncomingVals[AllocaNo] = SI->getOperand(0); 1198 1199 // Record debuginfo for the store before removing it. 1200 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1201 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1202 &DVRAssignsToDelete); 1203 auto ConvertDbgDeclares = [&](auto &Container) { 1204 for (auto *DbgItem : Container) 1205 if (DbgItem->isAddressOfVariable()) 1206 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1207 }; 1208 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1209 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1210 SI->eraseFromParent(); 1211 } 1212 } 1213 1214 // 'Recurse' to our successors. 1215 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1216 if (I == E) 1217 return; 1218 1219 // Keep track of the successors so we don't visit the same successor twice 1220 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1221 1222 // Handle the first successor without using the worklist. 1223 VisitedSuccs.insert(*I); 1224 Pred = BB; 1225 BB = *I; 1226 ++I; 1227 1228 for (; I != E; ++I) 1229 if (VisitedSuccs.insert(*I).second) 1230 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1231 1232 goto NextIteration; 1233 } 1234 1235 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1236 AssumptionCache *AC) { 1237 // If there is nothing to do, bail out... 1238 if (Allocas.empty()) 1239 return; 1240 1241 PromoteMem2Reg(Allocas, DT, AC).run(); 1242 } 1243