1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/IteratedDominanceFrontier.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugProgramInstruction.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "mem2reg" 59 60 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 61 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 62 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 63 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 64 65 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 66 // Only allow direct and non-volatile loads and stores... 67 for (const User *U : AI->users()) { 68 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 69 // Note that atomic loads can be transformed; atomic semantics do 70 // not have any meaning for a local alloca. 71 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 72 return false; 73 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 74 if (SI->getValueOperand() == AI || 75 SI->getValueOperand()->getType() != AI->getAllocatedType()) 76 return false; // Don't allow a store OF the AI, only INTO the AI. 77 // Note that atomic stores can be transformed; atomic semantics do 78 // not have any meaning for a local alloca. 79 if (SI->isVolatile()) 80 return false; 81 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 82 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 83 return false; 84 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 85 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 86 return false; 87 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 88 if (!GEPI->hasAllZeroIndices()) 89 return false; 90 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 91 return false; 92 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 93 if (!onlyUsedByLifetimeMarkers(ASCI)) 94 return false; 95 } else { 96 return false; 97 } 98 } 99 100 return true; 101 } 102 103 namespace { 104 105 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 106 DILocalVariable *Variable, 107 DIExpression *Expression, const DILocation *DI, 108 DbgVariableRecord *InsertBefore) { 109 // FIXME: Merge these two functions now that DIBuilder supports 110 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 111 // insert point for that to work. 112 (void)DIB; 113 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 114 *InsertBefore); 115 } 116 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 117 DILocalVariable *Variable, 118 DIExpression *Expression, const DILocation *DI, 119 Instruction *InsertBefore) { 120 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 121 } 122 123 /// Helper for updating assignment tracking debug info when promoting allocas. 124 class AssignmentTrackingInfo { 125 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 126 /// fragment. (i.e. not be a comprehensive set if there are multiple 127 /// dbg.assigns for one variable fragment). 128 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 129 SmallVector<DbgVariableRecord *> DVRAssigns; 130 131 public: 132 void init(AllocaInst *AI) { 133 SmallSet<DebugVariable, 2> Vars; 134 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 135 if (Vars.insert(DebugVariable(DAI)).second) 136 DbgAssigns.push_back(DAI); 137 } 138 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 139 if (Vars.insert(DebugVariable(DVR)).second) 140 DVRAssigns.push_back(DVR); 141 } 142 } 143 144 /// Update assignment tracking debug info given for the to-be-deleted store 145 /// \p ToDelete that stores to this alloca. 146 void updateForDeletedStore( 147 StoreInst *ToDelete, DIBuilder &DIB, 148 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 149 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 150 // There's nothing to do if the alloca doesn't have any variables using 151 // assignment tracking. 152 if (DbgAssigns.empty() && DVRAssigns.empty()) 153 return; 154 155 // Insert a dbg.value where the linked dbg.assign is and remember to delete 156 // the dbg.assign later. Demoting to dbg.value isn't necessary for 157 // correctness but does reduce compile time and memory usage by reducing 158 // unnecessary function-local metadata. Remember that we've seen a 159 // dbg.assign for each variable fragment for the untracked store handling 160 // (after this loop). 161 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 162 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 163 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 164 AssignList->insert(DbgAssign); 165 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 166 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 167 DbgAssign); 168 }; 169 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 170 InsertValueForAssign(Assign, DbgAssignsToDelete); 171 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 172 InsertValueForAssign(Assign, DVRAssignsToDelete); 173 174 // It's possible for variables using assignment tracking to have no 175 // dbg.assign linked to this store. These are variables in DbgAssigns that 176 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 177 // to mark the assignment - and the store is going to be deleted - insert a 178 // dbg.value to do that now. An untracked store may be either one that 179 // cannot be represented using assignment tracking (non-const offset or 180 // size) or one that is trackable but has had its DIAssignID attachment 181 // dropped accidentally. 182 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 183 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 184 return; 185 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 186 }; 187 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 188 for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 189 } 190 191 /// Update assignment tracking debug info given for the newly inserted PHI \p 192 /// NewPhi. 193 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 194 // Regardless of the position of dbg.assigns relative to stores, the 195 // incoming values into a new PHI should be the same for the (imaginary) 196 // debug-phi. 197 for (auto *DAI : DbgAssigns) 198 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 199 for (auto *DVR : DVRAssigns) 200 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 201 } 202 203 void clear() { 204 DbgAssigns.clear(); 205 DVRAssigns.clear(); 206 } 207 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 208 }; 209 210 struct AllocaInfo { 211 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 212 using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 213 214 SmallVector<BasicBlock *, 32> DefiningBlocks; 215 SmallVector<BasicBlock *, 32> UsingBlocks; 216 217 StoreInst *OnlyStore; 218 BasicBlock *OnlyBlock; 219 bool OnlyUsedInOneBlock; 220 221 /// Debug users of the alloca - does not include dbg.assign intrinsics. 222 DbgUserVec DbgUsers; 223 DPUserVec DPUsers; 224 /// Helper to update assignment tracking debug info. 225 AssignmentTrackingInfo AssignmentTracking; 226 227 void clear() { 228 DefiningBlocks.clear(); 229 UsingBlocks.clear(); 230 OnlyStore = nullptr; 231 OnlyBlock = nullptr; 232 OnlyUsedInOneBlock = true; 233 DbgUsers.clear(); 234 DPUsers.clear(); 235 AssignmentTracking.clear(); 236 } 237 238 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 239 /// by the rest of the pass to reason about the uses of this alloca. 240 void AnalyzeAlloca(AllocaInst *AI) { 241 clear(); 242 243 // As we scan the uses of the alloca instruction, keep track of stores, 244 // and decide whether all of the loads and stores to the alloca are within 245 // the same basic block. 246 for (User *U : AI->users()) { 247 Instruction *User = cast<Instruction>(U); 248 249 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 250 // Remember the basic blocks which define new values for the alloca 251 DefiningBlocks.push_back(SI->getParent()); 252 OnlyStore = SI; 253 } else { 254 LoadInst *LI = cast<LoadInst>(User); 255 // Otherwise it must be a load instruction, keep track of variable 256 // reads. 257 UsingBlocks.push_back(LI->getParent()); 258 } 259 260 if (OnlyUsedInOneBlock) { 261 if (!OnlyBlock) 262 OnlyBlock = User->getParent(); 263 else if (OnlyBlock != User->getParent()) 264 OnlyUsedInOneBlock = false; 265 } 266 } 267 DbgUserVec AllDbgUsers; 268 SmallVector<DbgVariableRecord *> AllDPUsers; 269 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 270 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 271 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 272 return !isa<DbgAssignIntrinsic>(DII); 273 }); 274 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 275 std::back_inserter(DPUsers), 276 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 277 AssignmentTracking.init(AI); 278 } 279 }; 280 281 /// Data package used by RenamePass(). 282 struct RenamePassData { 283 using ValVector = std::vector<Value *>; 284 using LocationVector = std::vector<DebugLoc>; 285 286 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 287 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 288 289 BasicBlock *BB; 290 BasicBlock *Pred; 291 ValVector Values; 292 LocationVector Locations; 293 }; 294 295 /// This assigns and keeps a per-bb relative ordering of load/store 296 /// instructions in the block that directly load or store an alloca. 297 /// 298 /// This functionality is important because it avoids scanning large basic 299 /// blocks multiple times when promoting many allocas in the same block. 300 class LargeBlockInfo { 301 /// For each instruction that we track, keep the index of the 302 /// instruction. 303 /// 304 /// The index starts out as the number of the instruction from the start of 305 /// the block. 306 DenseMap<const Instruction *, unsigned> InstNumbers; 307 308 public: 309 310 /// This code only looks at accesses to allocas. 311 static bool isInterestingInstruction(const Instruction *I) { 312 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 313 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 314 } 315 316 /// Get or calculate the index of the specified instruction. 317 unsigned getInstructionIndex(const Instruction *I) { 318 assert(isInterestingInstruction(I) && 319 "Not a load/store to/from an alloca?"); 320 321 // If we already have this instruction number, return it. 322 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 323 if (It != InstNumbers.end()) 324 return It->second; 325 326 // Scan the whole block to get the instruction. This accumulates 327 // information for every interesting instruction in the block, in order to 328 // avoid gratuitus rescans. 329 const BasicBlock *BB = I->getParent(); 330 unsigned InstNo = 0; 331 for (const Instruction &BBI : *BB) 332 if (isInterestingInstruction(&BBI)) 333 InstNumbers[&BBI] = InstNo++; 334 It = InstNumbers.find(I); 335 336 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 337 return It->second; 338 } 339 340 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 341 342 void clear() { InstNumbers.clear(); } 343 }; 344 345 struct PromoteMem2Reg { 346 /// The alloca instructions being promoted. 347 std::vector<AllocaInst *> Allocas; 348 349 DominatorTree &DT; 350 DIBuilder DIB; 351 352 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 353 AssumptionCache *AC; 354 355 const SimplifyQuery SQ; 356 357 /// Reverse mapping of Allocas. 358 DenseMap<AllocaInst *, unsigned> AllocaLookup; 359 360 /// The PhiNodes we're adding. 361 /// 362 /// That map is used to simplify some Phi nodes as we iterate over it, so 363 /// it should have deterministic iterators. We could use a MapVector, but 364 /// since we already maintain a map from BasicBlock* to a stable numbering 365 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 366 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 367 368 /// For each PHI node, keep track of which entry in Allocas it corresponds 369 /// to. 370 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 371 372 /// For each alloca, we keep track of the dbg.declare intrinsic that 373 /// describes it, if any, so that we can convert it to a dbg.value 374 /// intrinsic if the alloca gets promoted. 375 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 376 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 377 378 /// For each alloca, keep an instance of a helper class that gives us an easy 379 /// way to update assignment tracking debug info if the alloca is promoted. 380 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 381 /// A set of dbg.assigns to delete because they've been demoted to 382 /// dbg.values. Call cleanUpDbgAssigns to delete them. 383 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 384 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 385 386 /// The set of basic blocks the renamer has already visited. 387 SmallPtrSet<BasicBlock *, 16> Visited; 388 389 /// Contains a stable numbering of basic blocks to avoid non-determinstic 390 /// behavior. 391 DenseMap<BasicBlock *, unsigned> BBNumbers; 392 393 /// Lazily compute the number of predecessors a block has. 394 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 395 396 public: 397 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 398 AssumptionCache *AC) 399 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 400 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 401 AC(AC), SQ(DT.getRoot()->getDataLayout(), 402 nullptr, &DT, AC) {} 403 404 void run(); 405 406 private: 407 void RemoveFromAllocasList(unsigned &AllocaIdx) { 408 Allocas[AllocaIdx] = Allocas.back(); 409 Allocas.pop_back(); 410 --AllocaIdx; 411 } 412 413 unsigned getNumPreds(const BasicBlock *BB) { 414 unsigned &NP = BBNumPreds[BB]; 415 if (NP == 0) 416 NP = pred_size(BB) + 1; 417 return NP - 1; 418 } 419 420 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 421 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 422 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 423 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 424 RenamePassData::ValVector &IncVals, 425 RenamePassData::LocationVector &IncLocs, 426 std::vector<RenamePassData> &Worklist); 427 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 428 429 /// Delete dbg.assigns that have been demoted to dbg.values. 430 void cleanUpDbgAssigns() { 431 for (auto *DAI : DbgAssignsToDelete) 432 DAI->eraseFromParent(); 433 DbgAssignsToDelete.clear(); 434 for (auto *DVR : DVRAssignsToDelete) 435 DVR->eraseFromParent(); 436 DVRAssignsToDelete.clear(); 437 } 438 }; 439 440 } // end anonymous namespace 441 442 /// Given a LoadInst LI this adds assume(LI != null) after it. 443 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 444 Function *AssumeIntrinsic = 445 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 446 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 447 Constant::getNullValue(LI->getType())); 448 LoadNotNull->insertAfter(LI); 449 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 450 CI->insertAfter(LoadNotNull); 451 AC->registerAssumption(cast<AssumeInst>(CI)); 452 } 453 454 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 455 const DataLayout &DL, AssumptionCache *AC, 456 const DominatorTree *DT) { 457 if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { 458 // Insert non-terminator unreachable. 459 LLVMContext &Ctx = LI->getContext(); 460 new StoreInst(ConstantInt::getTrue(Ctx), 461 PoisonValue::get(PointerType::getUnqual(Ctx)), 462 /*isVolatile=*/false, Align(1), LI); 463 return; 464 } 465 466 // If the load was marked as nonnull we don't want to lose that information 467 // when we erase this Load. So we preserve it with an assume. As !nonnull 468 // returns poison while assume violations are immediate undefined behavior, 469 // we can only do this if the value is known non-poison. 470 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 471 LI->getMetadata(LLVMContext::MD_noundef) && 472 !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) 473 addAssumeNonNull(AC, LI); 474 } 475 476 static void removeIntrinsicUsers(AllocaInst *AI) { 477 // Knowing that this alloca is promotable, we know that it's safe to kill all 478 // instructions except for load and store. 479 480 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 481 Instruction *I = cast<Instruction>(U.getUser()); 482 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 483 continue; 484 485 // Drop the use of AI in droppable instructions. 486 if (I->isDroppable()) { 487 I->dropDroppableUse(U); 488 continue; 489 } 490 491 if (!I->getType()->isVoidTy()) { 492 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 493 // Follow the use/def chain to erase them now instead of leaving it for 494 // dead code elimination later. 495 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 496 Instruction *Inst = cast<Instruction>(UU.getUser()); 497 498 // Drop the use of I in droppable instructions. 499 if (Inst->isDroppable()) { 500 Inst->dropDroppableUse(UU); 501 continue; 502 } 503 Inst->eraseFromParent(); 504 } 505 } 506 I->eraseFromParent(); 507 } 508 } 509 510 /// Rewrite as many loads as possible given a single store. 511 /// 512 /// When there is only a single store, we can use the domtree to trivially 513 /// replace all of the dominated loads with the stored value. Do so, and return 514 /// true if this has successfully promoted the alloca entirely. If this returns 515 /// false there were some loads which were not dominated by the single store 516 /// and thus must be phi-ed with undef. We fall back to the standard alloca 517 /// promotion algorithm in that case. 518 static bool 519 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 520 const DataLayout &DL, DominatorTree &DT, 521 AssumptionCache *AC, 522 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 523 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 524 StoreInst *OnlyStore = Info.OnlyStore; 525 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 526 BasicBlock *StoreBB = OnlyStore->getParent(); 527 int StoreIndex = -1; 528 529 // Clear out UsingBlocks. We will reconstruct it here if needed. 530 Info.UsingBlocks.clear(); 531 532 for (User *U : make_early_inc_range(AI->users())) { 533 Instruction *UserInst = cast<Instruction>(U); 534 if (UserInst == OnlyStore) 535 continue; 536 LoadInst *LI = cast<LoadInst>(UserInst); 537 538 // Okay, if we have a load from the alloca, we want to replace it with the 539 // only value stored to the alloca. We can do this if the value is 540 // dominated by the store. If not, we use the rest of the mem2reg machinery 541 // to insert the phi nodes as needed. 542 if (!StoringGlobalVal) { // Non-instructions are always dominated. 543 if (LI->getParent() == StoreBB) { 544 // If we have a use that is in the same block as the store, compare the 545 // indices of the two instructions to see which one came first. If the 546 // load came before the store, we can't handle it. 547 if (StoreIndex == -1) 548 StoreIndex = LBI.getInstructionIndex(OnlyStore); 549 550 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 551 // Can't handle this load, bail out. 552 Info.UsingBlocks.push_back(StoreBB); 553 continue; 554 } 555 } else if (!DT.dominates(StoreBB, LI->getParent())) { 556 // If the load and store are in different blocks, use BB dominance to 557 // check their relationships. If the store doesn't dom the use, bail 558 // out. 559 Info.UsingBlocks.push_back(LI->getParent()); 560 continue; 561 } 562 } 563 564 // Otherwise, we *can* safely rewrite this load. 565 Value *ReplVal = OnlyStore->getOperand(0); 566 // If the replacement value is the load, this must occur in unreachable 567 // code. 568 if (ReplVal == LI) 569 ReplVal = PoisonValue::get(LI->getType()); 570 571 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 572 LI->replaceAllUsesWith(ReplVal); 573 LI->eraseFromParent(); 574 LBI.deleteValue(LI); 575 } 576 577 // Finally, after the scan, check to see if the store is all that is left. 578 if (!Info.UsingBlocks.empty()) 579 return false; // If not, we'll have to fall back for the remainder. 580 581 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 582 // Update assignment tracking info for the store we're going to delete. 583 Info.AssignmentTracking.updateForDeletedStore( 584 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 585 586 // Record debuginfo for the store and remove the declaration's 587 // debuginfo. 588 auto ConvertDebugInfoForStore = [&](auto &Container) { 589 for (auto *DbgItem : Container) { 590 if (DbgItem->isAddressOfVariable()) { 591 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 592 DbgItem->eraseFromParent(); 593 } else if (DbgItem->getExpression()->startsWithDeref()) { 594 DbgItem->eraseFromParent(); 595 } 596 } 597 }; 598 ConvertDebugInfoForStore(Info.DbgUsers); 599 ConvertDebugInfoForStore(Info.DPUsers); 600 601 // Remove dbg.assigns linked to the alloca as these are now redundant. 602 at::deleteAssignmentMarkers(AI); 603 604 // Remove the (now dead) store and alloca. 605 Info.OnlyStore->eraseFromParent(); 606 LBI.deleteValue(Info.OnlyStore); 607 608 AI->eraseFromParent(); 609 return true; 610 } 611 612 /// Many allocas are only used within a single basic block. If this is the 613 /// case, avoid traversing the CFG and inserting a lot of potentially useless 614 /// PHI nodes by just performing a single linear pass over the basic block 615 /// using the Alloca. 616 /// 617 /// If we cannot promote this alloca (because it is read before it is written), 618 /// return false. This is necessary in cases where, due to control flow, the 619 /// alloca is undefined only on some control flow paths. e.g. code like 620 /// this is correct in LLVM IR: 621 /// // A is an alloca with no stores so far 622 /// for (...) { 623 /// int t = *A; 624 /// if (!first_iteration) 625 /// use(t); 626 /// *A = 42; 627 /// } 628 static bool 629 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 630 LargeBlockInfo &LBI, const DataLayout &DL, 631 DominatorTree &DT, AssumptionCache *AC, 632 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 633 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 634 // The trickiest case to handle is when we have large blocks. Because of this, 635 // this code is optimized assuming that large blocks happen. This does not 636 // significantly pessimize the small block case. This uses LargeBlockInfo to 637 // make it efficient to get the index of various operations in the block. 638 639 // Walk the use-def list of the alloca, getting the locations of all stores. 640 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 641 StoresByIndexTy StoresByIndex; 642 643 for (User *U : AI->users()) 644 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 645 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 646 647 // Sort the stores by their index, making it efficient to do a lookup with a 648 // binary search. 649 llvm::sort(StoresByIndex, less_first()); 650 651 // Walk all of the loads from this alloca, replacing them with the nearest 652 // store above them, if any. 653 for (User *U : make_early_inc_range(AI->users())) { 654 LoadInst *LI = dyn_cast<LoadInst>(U); 655 if (!LI) 656 continue; 657 658 unsigned LoadIdx = LBI.getInstructionIndex(LI); 659 660 // Find the nearest store that has a lower index than this load. 661 StoresByIndexTy::iterator I = llvm::lower_bound( 662 StoresByIndex, 663 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 664 less_first()); 665 Value *ReplVal; 666 if (I == StoresByIndex.begin()) { 667 if (StoresByIndex.empty()) 668 // If there are no stores, the load takes the undef value. 669 ReplVal = UndefValue::get(LI->getType()); 670 else 671 // There is no store before this load, bail out (load may be affected 672 // by the following stores - see main comment). 673 return false; 674 } else { 675 // Otherwise, there was a store before this load, the load takes its 676 // value. 677 ReplVal = std::prev(I)->second->getOperand(0); 678 } 679 680 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 681 682 // If the replacement value is the load, this must occur in unreachable 683 // code. 684 if (ReplVal == LI) 685 ReplVal = PoisonValue::get(LI->getType()); 686 687 LI->replaceAllUsesWith(ReplVal); 688 LI->eraseFromParent(); 689 LBI.deleteValue(LI); 690 } 691 692 // Remove the (now dead) stores and alloca. 693 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 694 while (!AI->use_empty()) { 695 StoreInst *SI = cast<StoreInst>(AI->user_back()); 696 // Update assignment tracking info for the store we're going to delete. 697 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 698 DVRAssignsToDelete); 699 // Record debuginfo for the store before removing it. 700 auto DbgUpdateForStore = [&](auto &Container) { 701 for (auto *DbgItem : Container) { 702 if (DbgItem->isAddressOfVariable()) { 703 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 704 } 705 } 706 }; 707 DbgUpdateForStore(Info.DbgUsers); 708 DbgUpdateForStore(Info.DPUsers); 709 710 SI->eraseFromParent(); 711 LBI.deleteValue(SI); 712 } 713 714 // Remove dbg.assigns linked to the alloca as these are now redundant. 715 at::deleteAssignmentMarkers(AI); 716 AI->eraseFromParent(); 717 718 // The alloca's debuginfo can be removed as well. 719 auto DbgUpdateForAlloca = [&](auto &Container) { 720 for (auto *DbgItem : Container) 721 if (DbgItem->isAddressOfVariable() || 722 DbgItem->getExpression()->startsWithDeref()) 723 DbgItem->eraseFromParent(); 724 }; 725 DbgUpdateForAlloca(Info.DbgUsers); 726 DbgUpdateForAlloca(Info.DPUsers); 727 728 ++NumLocalPromoted; 729 return true; 730 } 731 732 void PromoteMem2Reg::run() { 733 Function &F = *DT.getRoot()->getParent(); 734 735 AllocaDbgUsers.resize(Allocas.size()); 736 AllocaATInfo.resize(Allocas.size()); 737 AllocaDPUsers.resize(Allocas.size()); 738 739 AllocaInfo Info; 740 LargeBlockInfo LBI; 741 ForwardIDFCalculator IDF(DT); 742 743 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 744 AllocaInst *AI = Allocas[AllocaNum]; 745 746 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 747 assert(AI->getParent()->getParent() == &F && 748 "All allocas should be in the same function, which is same as DF!"); 749 750 removeIntrinsicUsers(AI); 751 752 if (AI->use_empty()) { 753 // If there are no uses of the alloca, just delete it now. 754 AI->eraseFromParent(); 755 756 // Remove the alloca from the Allocas list, since it has been processed 757 RemoveFromAllocasList(AllocaNum); 758 ++NumDeadAlloca; 759 continue; 760 } 761 762 // Calculate the set of read and write-locations for each alloca. This is 763 // analogous to finding the 'uses' and 'definitions' of each variable. 764 Info.AnalyzeAlloca(AI); 765 766 // If there is only a single store to this value, replace any loads of 767 // it that are directly dominated by the definition with the value stored. 768 if (Info.DefiningBlocks.size() == 1) { 769 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 770 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 771 // The alloca has been processed, move on. 772 RemoveFromAllocasList(AllocaNum); 773 ++NumSingleStore; 774 continue; 775 } 776 } 777 778 // If the alloca is only read and written in one basic block, just perform a 779 // linear sweep over the block to eliminate it. 780 if (Info.OnlyUsedInOneBlock && 781 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 782 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 783 // The alloca has been processed, move on. 784 RemoveFromAllocasList(AllocaNum); 785 continue; 786 } 787 788 // If we haven't computed a numbering for the BB's in the function, do so 789 // now. 790 if (BBNumbers.empty()) { 791 unsigned ID = 0; 792 for (auto &BB : F) 793 BBNumbers[&BB] = ID++; 794 } 795 796 // Remember the dbg.declare intrinsic describing this alloca, if any. 797 if (!Info.DbgUsers.empty()) 798 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 799 if (!Info.AssignmentTracking.empty()) 800 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 801 if (!Info.DPUsers.empty()) 802 AllocaDPUsers[AllocaNum] = Info.DPUsers; 803 804 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 805 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 806 807 // Unique the set of defining blocks for efficient lookup. 808 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 809 Info.DefiningBlocks.end()); 810 811 // Determine which blocks the value is live in. These are blocks which lead 812 // to uses. 813 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 814 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 815 816 // At this point, we're committed to promoting the alloca using IDF's, and 817 // the standard SSA construction algorithm. Determine which blocks need phi 818 // nodes and see if we can optimize out some work by avoiding insertion of 819 // dead phi nodes. 820 IDF.setLiveInBlocks(LiveInBlocks); 821 IDF.setDefiningBlocks(DefBlocks); 822 SmallVector<BasicBlock *, 32> PHIBlocks; 823 IDF.calculate(PHIBlocks); 824 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 825 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 826 }); 827 828 unsigned CurrentVersion = 0; 829 for (BasicBlock *BB : PHIBlocks) 830 QueuePhiNode(BB, AllocaNum, CurrentVersion); 831 } 832 833 if (Allocas.empty()) { 834 cleanUpDbgAssigns(); 835 return; // All of the allocas must have been trivial! 836 } 837 LBI.clear(); 838 839 // Set the incoming values for the basic block to be null values for all of 840 // the alloca's. We do this in case there is a load of a value that has not 841 // been stored yet. In this case, it will get this null value. 842 RenamePassData::ValVector Values(Allocas.size()); 843 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 844 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 845 846 // When handling debug info, treat all incoming values as if they have unknown 847 // locations until proven otherwise. 848 RenamePassData::LocationVector Locations(Allocas.size()); 849 850 // Walks all basic blocks in the function performing the SSA rename algorithm 851 // and inserting the phi nodes we marked as necessary 852 std::vector<RenamePassData> RenamePassWorkList; 853 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 854 std::move(Locations)); 855 do { 856 RenamePassData RPD = std::move(RenamePassWorkList.back()); 857 RenamePassWorkList.pop_back(); 858 // RenamePass may add new worklist entries. 859 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 860 } while (!RenamePassWorkList.empty()); 861 862 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 863 Visited.clear(); 864 865 // Remove the allocas themselves from the function. 866 for (Instruction *A : Allocas) { 867 // Remove dbg.assigns linked to the alloca as these are now redundant. 868 at::deleteAssignmentMarkers(A); 869 // If there are any uses of the alloca instructions left, they must be in 870 // unreachable basic blocks that were not processed by walking the dominator 871 // tree. Just delete the users now. 872 if (!A->use_empty()) 873 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 874 A->eraseFromParent(); 875 } 876 877 // Remove alloca's dbg.declare intrinsics from the function. 878 auto RemoveDbgDeclares = [&](auto &Container) { 879 for (auto &DbgUsers : Container) { 880 for (auto *DbgItem : DbgUsers) 881 if (DbgItem->isAddressOfVariable() || 882 DbgItem->getExpression()->startsWithDeref()) 883 DbgItem->eraseFromParent(); 884 } 885 }; 886 RemoveDbgDeclares(AllocaDbgUsers); 887 RemoveDbgDeclares(AllocaDPUsers); 888 889 // Loop over all of the PHI nodes and see if there are any that we can get 890 // rid of because they merge all of the same incoming values. This can 891 // happen due to undef values coming into the PHI nodes. This process is 892 // iterative, because eliminating one PHI node can cause others to be removed. 893 bool EliminatedAPHI = true; 894 while (EliminatedAPHI) { 895 EliminatedAPHI = false; 896 897 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 898 // simplify and RAUW them as we go. If it was not, we could add uses to 899 // the values we replace with in a non-deterministic order, thus creating 900 // non-deterministic def->use chains. 901 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 902 I = NewPhiNodes.begin(), 903 E = NewPhiNodes.end(); 904 I != E;) { 905 PHINode *PN = I->second; 906 907 // If this PHI node merges one value and/or undefs, get the value. 908 if (Value *V = simplifyInstruction(PN, SQ)) { 909 PN->replaceAllUsesWith(V); 910 PN->eraseFromParent(); 911 NewPhiNodes.erase(I++); 912 EliminatedAPHI = true; 913 continue; 914 } 915 ++I; 916 } 917 } 918 919 // At this point, the renamer has added entries to PHI nodes for all reachable 920 // code. Unfortunately, there may be unreachable blocks which the renamer 921 // hasn't traversed. If this is the case, the PHI nodes may not 922 // have incoming values for all predecessors. Loop over all PHI nodes we have 923 // created, inserting poison values if they are missing any incoming values. 924 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 925 I = NewPhiNodes.begin(), 926 E = NewPhiNodes.end(); 927 I != E; ++I) { 928 // We want to do this once per basic block. As such, only process a block 929 // when we find the PHI that is the first entry in the block. 930 PHINode *SomePHI = I->second; 931 BasicBlock *BB = SomePHI->getParent(); 932 if (&BB->front() != SomePHI) 933 continue; 934 935 // Only do work here if there the PHI nodes are missing incoming values. We 936 // know that all PHI nodes that were inserted in a block will have the same 937 // number of incoming values, so we can just check any of them. 938 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 939 continue; 940 941 // Get the preds for BB. 942 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 943 944 // Ok, now we know that all of the PHI nodes are missing entries for some 945 // basic blocks. Start by sorting the incoming predecessors for efficient 946 // access. 947 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 948 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 949 }; 950 llvm::sort(Preds, CompareBBNumbers); 951 952 // Now we loop through all BB's which have entries in SomePHI and remove 953 // them from the Preds list. 954 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 955 // Do a log(n) search of the Preds list for the entry we want. 956 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 957 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 958 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 959 "PHI node has entry for a block which is not a predecessor!"); 960 961 // Remove the entry 962 Preds.erase(EntIt); 963 } 964 965 // At this point, the blocks left in the preds list must have dummy 966 // entries inserted into every PHI nodes for the block. Update all the phi 967 // nodes in this block that we are inserting (there could be phis before 968 // mem2reg runs). 969 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 970 BasicBlock::iterator BBI = BB->begin(); 971 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 972 SomePHI->getNumIncomingValues() == NumBadPreds) { 973 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 974 for (BasicBlock *Pred : Preds) 975 SomePHI->addIncoming(PoisonVal, Pred); 976 } 977 } 978 979 NewPhiNodes.clear(); 980 cleanUpDbgAssigns(); 981 } 982 983 /// Determine which blocks the value is live in. 984 /// 985 /// These are blocks which lead to uses. Knowing this allows us to avoid 986 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 987 /// inserted phi nodes would be dead). 988 void PromoteMem2Reg::ComputeLiveInBlocks( 989 AllocaInst *AI, AllocaInfo &Info, 990 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 991 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 992 // To determine liveness, we must iterate through the predecessors of blocks 993 // where the def is live. Blocks are added to the worklist if we need to 994 // check their predecessors. Start with all the using blocks. 995 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 996 Info.UsingBlocks.end()); 997 998 // If any of the using blocks is also a definition block, check to see if the 999 // definition occurs before or after the use. If it happens before the use, 1000 // the value isn't really live-in. 1001 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 1002 BasicBlock *BB = LiveInBlockWorklist[i]; 1003 if (!DefBlocks.count(BB)) 1004 continue; 1005 1006 // Okay, this is a block that both uses and defines the value. If the first 1007 // reference to the alloca is a def (store), then we know it isn't live-in. 1008 for (BasicBlock::iterator I = BB->begin();; ++I) { 1009 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1010 if (SI->getOperand(1) != AI) 1011 continue; 1012 1013 // We found a store to the alloca before a load. The alloca is not 1014 // actually live-in here. 1015 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1016 LiveInBlockWorklist.pop_back(); 1017 --i; 1018 --e; 1019 break; 1020 } 1021 1022 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1023 // Okay, we found a load before a store to the alloca. It is actually 1024 // live into this block. 1025 if (LI->getOperand(0) == AI) 1026 break; 1027 } 1028 } 1029 1030 // Now that we have a set of blocks where the phi is live-in, recursively add 1031 // their predecessors until we find the full region the value is live. 1032 while (!LiveInBlockWorklist.empty()) { 1033 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1034 1035 // The block really is live in here, insert it into the set. If already in 1036 // the set, then it has already been processed. 1037 if (!LiveInBlocks.insert(BB).second) 1038 continue; 1039 1040 // Since the value is live into BB, it is either defined in a predecessor or 1041 // live into it to. Add the preds to the worklist unless they are a 1042 // defining block. 1043 for (BasicBlock *P : predecessors(BB)) { 1044 // The value is not live into a predecessor if it defines the value. 1045 if (DefBlocks.count(P)) 1046 continue; 1047 1048 // Otherwise it is, add to the worklist. 1049 LiveInBlockWorklist.push_back(P); 1050 } 1051 } 1052 } 1053 1054 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1055 /// 1056 /// Returns true if there wasn't already a phi-node for that variable 1057 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1058 unsigned &Version) { 1059 // Look up the basic-block in question. 1060 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 1061 1062 // If the BB already has a phi node added for the i'th alloca then we're done! 1063 if (PN) 1064 return false; 1065 1066 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1067 // BasicBlock. 1068 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1069 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1070 PN->insertBefore(BB->begin()); 1071 ++NumPHIInsert; 1072 PhiToAllocaMap[PN] = AllocaNo; 1073 return true; 1074 } 1075 1076 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1077 /// create a merged location incorporating \p DL, or to set \p DL directly. 1078 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1079 bool ApplyMergedLoc) { 1080 if (ApplyMergedLoc) 1081 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1082 else 1083 PN->setDebugLoc(DL); 1084 } 1085 1086 /// Recursively traverse the CFG of the function, renaming loads and 1087 /// stores to the allocas which we are promoting. 1088 /// 1089 /// IncomingVals indicates what value each Alloca contains on exit from the 1090 /// predecessor block Pred. 1091 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1092 RenamePassData::ValVector &IncomingVals, 1093 RenamePassData::LocationVector &IncomingLocs, 1094 std::vector<RenamePassData> &Worklist) { 1095 NextIteration: 1096 // If we are inserting any phi nodes into this BB, they will already be in the 1097 // block. 1098 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1099 // If we have PHI nodes to update, compute the number of edges from Pred to 1100 // BB. 1101 if (PhiToAllocaMap.count(APN)) { 1102 // We want to be able to distinguish between PHI nodes being inserted by 1103 // this invocation of mem2reg from those phi nodes that already existed in 1104 // the IR before mem2reg was run. We determine that APN is being inserted 1105 // because it is missing incoming edges. All other PHI nodes being 1106 // inserted by this pass of mem2reg will have the same number of incoming 1107 // operands so far. Remember this count. 1108 unsigned NewPHINumOperands = APN->getNumOperands(); 1109 1110 unsigned NumEdges = llvm::count(successors(Pred), BB); 1111 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1112 1113 // Add entries for all the phis. 1114 BasicBlock::iterator PNI = BB->begin(); 1115 do { 1116 unsigned AllocaNo = PhiToAllocaMap[APN]; 1117 1118 // Update the location of the phi node. 1119 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1120 APN->getNumIncomingValues() > 0); 1121 1122 // Add N incoming values to the PHI node. 1123 for (unsigned i = 0; i != NumEdges; ++i) 1124 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1125 1126 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this 1127 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag 1128 // on the phi node generated at this stage, fabs folding does not 1129 // happen. So, we try to infer nsz flag from the function attributes to 1130 // enable this fabs folding. 1131 if (APN->isComplete() && isa<FPMathOperator>(APN) && 1132 BB->getParent() 1133 ->getFnAttribute("no-signed-zeros-fp-math") 1134 .getValueAsBool()) 1135 APN->setHasNoSignedZeros(true); 1136 1137 // The currently active variable for this block is now the PHI. 1138 IncomingVals[AllocaNo] = APN; 1139 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1140 auto ConvertDbgDeclares = [&](auto &Container) { 1141 for (auto *DbgItem : Container) 1142 if (DbgItem->isAddressOfVariable()) 1143 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1144 }; 1145 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1146 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1147 1148 // Get the next phi node. 1149 ++PNI; 1150 APN = dyn_cast<PHINode>(PNI); 1151 if (!APN) 1152 break; 1153 1154 // Verify that it is missing entries. If not, it is not being inserted 1155 // by this mem2reg invocation so we want to ignore it. 1156 } while (APN->getNumOperands() == NewPHINumOperands); 1157 } 1158 } 1159 1160 // Don't revisit blocks. 1161 if (!Visited.insert(BB).second) 1162 return; 1163 1164 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1165 Instruction *I = &*II++; // get the instruction, increment iterator 1166 1167 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1168 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1169 if (!Src) 1170 continue; 1171 1172 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1173 if (AI == AllocaLookup.end()) 1174 continue; 1175 1176 Value *V = IncomingVals[AI->second]; 1177 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1178 1179 // Anything using the load now uses the current value. 1180 LI->replaceAllUsesWith(V); 1181 LI->eraseFromParent(); 1182 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1183 // Delete this instruction and mark the name as the current holder of the 1184 // value 1185 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1186 if (!Dest) 1187 continue; 1188 1189 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1190 if (ai == AllocaLookup.end()) 1191 continue; 1192 1193 // what value were we writing? 1194 unsigned AllocaNo = ai->second; 1195 IncomingVals[AllocaNo] = SI->getOperand(0); 1196 1197 // Record debuginfo for the store before removing it. 1198 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1199 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1200 &DVRAssignsToDelete); 1201 auto ConvertDbgDeclares = [&](auto &Container) { 1202 for (auto *DbgItem : Container) 1203 if (DbgItem->isAddressOfVariable()) 1204 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1205 }; 1206 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1207 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1208 SI->eraseFromParent(); 1209 } 1210 } 1211 1212 // 'Recurse' to our successors. 1213 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1214 if (I == E) 1215 return; 1216 1217 // Keep track of the successors so we don't visit the same successor twice 1218 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1219 1220 // Handle the first successor without using the worklist. 1221 VisitedSuccs.insert(*I); 1222 Pred = BB; 1223 BB = *I; 1224 ++I; 1225 1226 for (; I != E; ++I) 1227 if (VisitedSuccs.insert(*I).second) 1228 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1229 1230 goto NextIteration; 1231 } 1232 1233 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1234 AssumptionCache *AC) { 1235 // If there is nothing to do, bail out... 1236 if (Allocas.empty()) 1237 return; 1238 1239 PromoteMem2Reg(Allocas, DT, AC).run(); 1240 } 1241