1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/IteratedDominanceFrontier.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugProgramInstruction.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "mem2reg" 59 60 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 61 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 62 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 63 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 64 65 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 66 // Only allow direct and non-volatile loads and stores... 67 for (const User *U : AI->users()) { 68 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 69 // Note that atomic loads can be transformed; atomic semantics do 70 // not have any meaning for a local alloca. 71 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 72 return false; 73 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 74 if (SI->getValueOperand() == AI || 75 SI->getValueOperand()->getType() != AI->getAllocatedType()) 76 return false; // Don't allow a store OF the AI, only INTO the AI. 77 // Note that atomic stores can be transformed; atomic semantics do 78 // not have any meaning for a local alloca. 79 if (SI->isVolatile()) 80 return false; 81 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 82 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 83 return false; 84 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 85 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 86 return false; 87 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 88 if (!GEPI->hasAllZeroIndices()) 89 return false; 90 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 91 return false; 92 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 93 if (!onlyUsedByLifetimeMarkers(ASCI)) 94 return false; 95 } else { 96 return false; 97 } 98 } 99 100 return true; 101 } 102 103 namespace { 104 105 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 106 DILocalVariable *Variable, 107 DIExpression *Expression, const DILocation *DI, 108 DbgVariableRecord *InsertBefore) { 109 // FIXME: Merge these two functions now that DIBuilder supports 110 // DbgVariableRecords. We neeed the API to accept DbgVariableRecords as an 111 // insert point for that to work. 112 (void)DIB; 113 DbgVariableRecord::createDbgVariableRecord(NewValue, Variable, Expression, DI, 114 *InsertBefore); 115 } 116 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 117 DILocalVariable *Variable, 118 DIExpression *Expression, const DILocation *DI, 119 Instruction *InsertBefore) { 120 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 121 } 122 123 /// Helper for updating assignment tracking debug info when promoting allocas. 124 class AssignmentTrackingInfo { 125 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 126 /// fragment. (i.e. not be a comprehensive set if there are multiple 127 /// dbg.assigns for one variable fragment). 128 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 129 SmallVector<DbgVariableRecord *> DVRAssigns; 130 131 public: 132 void init(AllocaInst *AI) { 133 SmallSet<DebugVariable, 2> Vars; 134 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 135 if (Vars.insert(DebugVariable(DAI)).second) 136 DbgAssigns.push_back(DAI); 137 } 138 for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(AI)) { 139 if (Vars.insert(DebugVariable(DVR)).second) 140 DVRAssigns.push_back(DVR); 141 } 142 } 143 144 /// Update assignment tracking debug info given for the to-be-deleted store 145 /// \p ToDelete that stores to this alloca. 146 void updateForDeletedStore( 147 StoreInst *ToDelete, DIBuilder &DIB, 148 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 149 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) const { 150 // There's nothing to do if the alloca doesn't have any variables using 151 // assignment tracking. 152 if (DbgAssigns.empty() && DVRAssigns.empty()) 153 return; 154 155 // Insert a dbg.value where the linked dbg.assign is and remember to delete 156 // the dbg.assign later. Demoting to dbg.value isn't necessary for 157 // correctness but does reduce compile time and memory usage by reducing 158 // unnecessary function-local metadata. Remember that we've seen a 159 // dbg.assign for each variable fragment for the untracked store handling 160 // (after this loop). 161 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 162 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 163 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 164 AssignList->insert(DbgAssign); 165 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 166 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 167 DbgAssign); 168 }; 169 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 170 InsertValueForAssign(Assign, DbgAssignsToDelete); 171 for (auto *Assign : at::getDVRAssignmentMarkers(ToDelete)) 172 InsertValueForAssign(Assign, DVRAssignsToDelete); 173 174 // It's possible for variables using assignment tracking to have no 175 // dbg.assign linked to this store. These are variables in DbgAssigns that 176 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 177 // to mark the assignment - and the store is going to be deleted - insert a 178 // dbg.value to do that now. An untracked store may be either one that 179 // cannot be represented using assignment tracking (non-const offset or 180 // size) or one that is trackable but has had its DIAssignID attachment 181 // dropped accidentally. 182 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 183 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 184 return; 185 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 186 }; 187 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 188 for_each(DVRAssigns, ConvertUnlinkedAssignToValue); 189 } 190 191 /// Update assignment tracking debug info given for the newly inserted PHI \p 192 /// NewPhi. 193 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 194 // Regardless of the position of dbg.assigns relative to stores, the 195 // incoming values into a new PHI should be the same for the (imaginary) 196 // debug-phi. 197 for (auto *DAI : DbgAssigns) 198 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 199 for (auto *DVR : DVRAssigns) 200 ConvertDebugDeclareToDebugValue(DVR, NewPhi, DIB); 201 } 202 203 void clear() { 204 DbgAssigns.clear(); 205 DVRAssigns.clear(); 206 } 207 bool empty() { return DbgAssigns.empty() && DVRAssigns.empty(); } 208 }; 209 210 struct AllocaInfo { 211 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 212 using DPUserVec = SmallVector<DbgVariableRecord *, 1>; 213 214 SmallVector<BasicBlock *, 32> DefiningBlocks; 215 SmallVector<BasicBlock *, 32> UsingBlocks; 216 217 StoreInst *OnlyStore; 218 BasicBlock *OnlyBlock; 219 bool OnlyUsedInOneBlock; 220 221 /// Debug users of the alloca - does not include dbg.assign intrinsics. 222 DbgUserVec DbgUsers; 223 DPUserVec DPUsers; 224 /// Helper to update assignment tracking debug info. 225 AssignmentTrackingInfo AssignmentTracking; 226 227 void clear() { 228 DefiningBlocks.clear(); 229 UsingBlocks.clear(); 230 OnlyStore = nullptr; 231 OnlyBlock = nullptr; 232 OnlyUsedInOneBlock = true; 233 DbgUsers.clear(); 234 DPUsers.clear(); 235 AssignmentTracking.clear(); 236 } 237 238 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 239 /// by the rest of the pass to reason about the uses of this alloca. 240 void AnalyzeAlloca(AllocaInst *AI) { 241 clear(); 242 243 // As we scan the uses of the alloca instruction, keep track of stores, 244 // and decide whether all of the loads and stores to the alloca are within 245 // the same basic block. 246 for (User *U : AI->users()) { 247 Instruction *User = cast<Instruction>(U); 248 249 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 250 // Remember the basic blocks which define new values for the alloca 251 DefiningBlocks.push_back(SI->getParent()); 252 OnlyStore = SI; 253 } else { 254 LoadInst *LI = cast<LoadInst>(User); 255 // Otherwise it must be a load instruction, keep track of variable 256 // reads. 257 UsingBlocks.push_back(LI->getParent()); 258 } 259 260 if (OnlyUsedInOneBlock) { 261 if (!OnlyBlock) 262 OnlyBlock = User->getParent(); 263 else if (OnlyBlock != User->getParent()) 264 OnlyUsedInOneBlock = false; 265 } 266 } 267 DbgUserVec AllDbgUsers; 268 SmallVector<DbgVariableRecord *> AllDPUsers; 269 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 270 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 271 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 272 return !isa<DbgAssignIntrinsic>(DII); 273 }); 274 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 275 std::back_inserter(DPUsers), 276 [](DbgVariableRecord *DVR) { return !DVR->isDbgAssign(); }); 277 AssignmentTracking.init(AI); 278 } 279 }; 280 281 /// Data package used by RenamePass(). 282 struct RenamePassData { 283 using ValVector = std::vector<Value *>; 284 using LocationVector = std::vector<DebugLoc>; 285 286 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 287 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 288 289 BasicBlock *BB; 290 BasicBlock *Pred; 291 ValVector Values; 292 LocationVector Locations; 293 }; 294 295 /// This assigns and keeps a per-bb relative ordering of load/store 296 /// instructions in the block that directly load or store an alloca. 297 /// 298 /// This functionality is important because it avoids scanning large basic 299 /// blocks multiple times when promoting many allocas in the same block. 300 class LargeBlockInfo { 301 /// For each instruction that we track, keep the index of the 302 /// instruction. 303 /// 304 /// The index starts out as the number of the instruction from the start of 305 /// the block. 306 DenseMap<const Instruction *, unsigned> InstNumbers; 307 308 public: 309 310 /// This code only looks at accesses to allocas. 311 static bool isInterestingInstruction(const Instruction *I) { 312 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 313 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 314 } 315 316 /// Get or calculate the index of the specified instruction. 317 unsigned getInstructionIndex(const Instruction *I) { 318 assert(isInterestingInstruction(I) && 319 "Not a load/store to/from an alloca?"); 320 321 // If we already have this instruction number, return it. 322 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 323 if (It != InstNumbers.end()) 324 return It->second; 325 326 // Scan the whole block to get the instruction. This accumulates 327 // information for every interesting instruction in the block, in order to 328 // avoid gratuitus rescans. 329 const BasicBlock *BB = I->getParent(); 330 unsigned InstNo = 0; 331 for (const Instruction &BBI : *BB) 332 if (isInterestingInstruction(&BBI)) 333 InstNumbers[&BBI] = InstNo++; 334 It = InstNumbers.find(I); 335 336 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 337 return It->second; 338 } 339 340 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 341 342 void clear() { InstNumbers.clear(); } 343 }; 344 345 struct PromoteMem2Reg { 346 /// The alloca instructions being promoted. 347 std::vector<AllocaInst *> Allocas; 348 349 DominatorTree &DT; 350 DIBuilder DIB; 351 352 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 353 AssumptionCache *AC; 354 355 const SimplifyQuery SQ; 356 357 /// Reverse mapping of Allocas. 358 DenseMap<AllocaInst *, unsigned> AllocaLookup; 359 360 /// The PhiNodes we're adding. 361 /// 362 /// That map is used to simplify some Phi nodes as we iterate over it, so 363 /// it should have deterministic iterators. We could use a MapVector, but 364 /// since we already maintain a map from BasicBlock* to a stable numbering 365 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 366 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 367 368 /// For each PHI node, keep track of which entry in Allocas it corresponds 369 /// to. 370 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 371 372 /// For each alloca, we keep track of the dbg.declare intrinsic that 373 /// describes it, if any, so that we can convert it to a dbg.value 374 /// intrinsic if the alloca gets promoted. 375 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 376 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 377 378 /// For each alloca, keep an instance of a helper class that gives us an easy 379 /// way to update assignment tracking debug info if the alloca is promoted. 380 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 381 /// A set of dbg.assigns to delete because they've been demoted to 382 /// dbg.values. Call cleanUpDbgAssigns to delete them. 383 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 384 SmallSet<DbgVariableRecord *, 8> DVRAssignsToDelete; 385 386 /// The set of basic blocks the renamer has already visited. 387 SmallPtrSet<BasicBlock *, 16> Visited; 388 389 /// Contains a stable numbering of basic blocks to avoid non-determinstic 390 /// behavior. 391 DenseMap<BasicBlock *, unsigned> BBNumbers; 392 393 /// Lazily compute the number of predecessors a block has. 394 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 395 396 /// Whether the function has the no-signed-zeros-fp-math attribute set. 397 bool NoSignedZeros = false; 398 399 public: 400 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 401 AssumptionCache *AC) 402 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 403 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 404 AC(AC), SQ(DT.getRoot()->getDataLayout(), 405 nullptr, &DT, AC) {} 406 407 void run(); 408 409 private: 410 void RemoveFromAllocasList(unsigned &AllocaIdx) { 411 Allocas[AllocaIdx] = Allocas.back(); 412 Allocas.pop_back(); 413 --AllocaIdx; 414 } 415 416 unsigned getNumPreds(const BasicBlock *BB) { 417 unsigned &NP = BBNumPreds[BB]; 418 if (NP == 0) 419 NP = pred_size(BB) + 1; 420 return NP - 1; 421 } 422 423 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 424 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 425 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 426 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 427 RenamePassData::ValVector &IncVals, 428 RenamePassData::LocationVector &IncLocs, 429 std::vector<RenamePassData> &Worklist); 430 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 431 432 /// Delete dbg.assigns that have been demoted to dbg.values. 433 void cleanUpDbgAssigns() { 434 for (auto *DAI : DbgAssignsToDelete) 435 DAI->eraseFromParent(); 436 DbgAssignsToDelete.clear(); 437 for (auto *DVR : DVRAssignsToDelete) 438 DVR->eraseFromParent(); 439 DVRAssignsToDelete.clear(); 440 } 441 }; 442 443 } // end anonymous namespace 444 445 /// Given a LoadInst LI this adds assume(LI != null) after it. 446 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 447 Function *AssumeIntrinsic = 448 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 449 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 450 Constant::getNullValue(LI->getType())); 451 LoadNotNull->insertAfter(LI); 452 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 453 CI->insertAfter(LoadNotNull); 454 AC->registerAssumption(cast<AssumeInst>(CI)); 455 } 456 457 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 458 const DataLayout &DL, AssumptionCache *AC, 459 const DominatorTree *DT) { 460 if (isa<UndefValue>(Val) && LI->hasMetadata(LLVMContext::MD_noundef)) { 461 // Insert non-terminator unreachable. 462 LLVMContext &Ctx = LI->getContext(); 463 new StoreInst(ConstantInt::getTrue(Ctx), 464 PoisonValue::get(PointerType::getUnqual(Ctx)), 465 /*isVolatile=*/false, Align(1), LI); 466 return; 467 } 468 469 // If the load was marked as nonnull we don't want to lose that information 470 // when we erase this Load. So we preserve it with an assume. As !nonnull 471 // returns poison while assume violations are immediate undefined behavior, 472 // we can only do this if the value is known non-poison. 473 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 474 LI->getMetadata(LLVMContext::MD_noundef) && 475 !isKnownNonZero(Val, SimplifyQuery(DL, DT, AC, LI))) 476 addAssumeNonNull(AC, LI); 477 } 478 479 static void removeIntrinsicUsers(AllocaInst *AI) { 480 // Knowing that this alloca is promotable, we know that it's safe to kill all 481 // instructions except for load and store. 482 483 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 484 Instruction *I = cast<Instruction>(U.getUser()); 485 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 486 continue; 487 488 // Drop the use of AI in droppable instructions. 489 if (I->isDroppable()) { 490 I->dropDroppableUse(U); 491 continue; 492 } 493 494 if (!I->getType()->isVoidTy()) { 495 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 496 // Follow the use/def chain to erase them now instead of leaving it for 497 // dead code elimination later. 498 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 499 Instruction *Inst = cast<Instruction>(UU.getUser()); 500 501 // Drop the use of I in droppable instructions. 502 if (Inst->isDroppable()) { 503 Inst->dropDroppableUse(UU); 504 continue; 505 } 506 Inst->eraseFromParent(); 507 } 508 } 509 I->eraseFromParent(); 510 } 511 } 512 513 /// Rewrite as many loads as possible given a single store. 514 /// 515 /// When there is only a single store, we can use the domtree to trivially 516 /// replace all of the dominated loads with the stored value. Do so, and return 517 /// true if this has successfully promoted the alloca entirely. If this returns 518 /// false there were some loads which were not dominated by the single store 519 /// and thus must be phi-ed with undef. We fall back to the standard alloca 520 /// promotion algorithm in that case. 521 static bool 522 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 523 const DataLayout &DL, DominatorTree &DT, 524 AssumptionCache *AC, 525 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 526 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 527 StoreInst *OnlyStore = Info.OnlyStore; 528 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 529 BasicBlock *StoreBB = OnlyStore->getParent(); 530 int StoreIndex = -1; 531 532 // Clear out UsingBlocks. We will reconstruct it here if needed. 533 Info.UsingBlocks.clear(); 534 535 for (User *U : make_early_inc_range(AI->users())) { 536 Instruction *UserInst = cast<Instruction>(U); 537 if (UserInst == OnlyStore) 538 continue; 539 LoadInst *LI = cast<LoadInst>(UserInst); 540 541 // Okay, if we have a load from the alloca, we want to replace it with the 542 // only value stored to the alloca. We can do this if the value is 543 // dominated by the store. If not, we use the rest of the mem2reg machinery 544 // to insert the phi nodes as needed. 545 if (!StoringGlobalVal) { // Non-instructions are always dominated. 546 if (LI->getParent() == StoreBB) { 547 // If we have a use that is in the same block as the store, compare the 548 // indices of the two instructions to see which one came first. If the 549 // load came before the store, we can't handle it. 550 if (StoreIndex == -1) 551 StoreIndex = LBI.getInstructionIndex(OnlyStore); 552 553 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 554 // Can't handle this load, bail out. 555 Info.UsingBlocks.push_back(StoreBB); 556 continue; 557 } 558 } else if (!DT.dominates(StoreBB, LI->getParent())) { 559 // If the load and store are in different blocks, use BB dominance to 560 // check their relationships. If the store doesn't dom the use, bail 561 // out. 562 Info.UsingBlocks.push_back(LI->getParent()); 563 continue; 564 } 565 } 566 567 // Otherwise, we *can* safely rewrite this load. 568 Value *ReplVal = OnlyStore->getOperand(0); 569 // If the replacement value is the load, this must occur in unreachable 570 // code. 571 if (ReplVal == LI) 572 ReplVal = PoisonValue::get(LI->getType()); 573 574 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 575 LI->replaceAllUsesWith(ReplVal); 576 LI->eraseFromParent(); 577 LBI.deleteValue(LI); 578 } 579 580 // Finally, after the scan, check to see if the store is all that is left. 581 if (!Info.UsingBlocks.empty()) 582 return false; // If not, we'll have to fall back for the remainder. 583 584 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 585 // Update assignment tracking info for the store we're going to delete. 586 Info.AssignmentTracking.updateForDeletedStore( 587 Info.OnlyStore, DIB, DbgAssignsToDelete, DVRAssignsToDelete); 588 589 // Record debuginfo for the store and remove the declaration's 590 // debuginfo. 591 auto ConvertDebugInfoForStore = [&](auto &Container) { 592 for (auto *DbgItem : Container) { 593 if (DbgItem->isAddressOfVariable()) { 594 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 595 DbgItem->eraseFromParent(); 596 } else if (DbgItem->getExpression()->startsWithDeref()) { 597 DbgItem->eraseFromParent(); 598 } 599 } 600 }; 601 ConvertDebugInfoForStore(Info.DbgUsers); 602 ConvertDebugInfoForStore(Info.DPUsers); 603 604 // Remove dbg.assigns linked to the alloca as these are now redundant. 605 at::deleteAssignmentMarkers(AI); 606 607 // Remove the (now dead) store and alloca. 608 Info.OnlyStore->eraseFromParent(); 609 LBI.deleteValue(Info.OnlyStore); 610 611 AI->eraseFromParent(); 612 return true; 613 } 614 615 /// Many allocas are only used within a single basic block. If this is the 616 /// case, avoid traversing the CFG and inserting a lot of potentially useless 617 /// PHI nodes by just performing a single linear pass over the basic block 618 /// using the Alloca. 619 /// 620 /// If we cannot promote this alloca (because it is read before it is written), 621 /// return false. This is necessary in cases where, due to control flow, the 622 /// alloca is undefined only on some control flow paths. e.g. code like 623 /// this is correct in LLVM IR: 624 /// // A is an alloca with no stores so far 625 /// for (...) { 626 /// int t = *A; 627 /// if (!first_iteration) 628 /// use(t); 629 /// *A = 42; 630 /// } 631 static bool 632 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 633 LargeBlockInfo &LBI, const DataLayout &DL, 634 DominatorTree &DT, AssumptionCache *AC, 635 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 636 SmallSet<DbgVariableRecord *, 8> *DVRAssignsToDelete) { 637 // The trickiest case to handle is when we have large blocks. Because of this, 638 // this code is optimized assuming that large blocks happen. This does not 639 // significantly pessimize the small block case. This uses LargeBlockInfo to 640 // make it efficient to get the index of various operations in the block. 641 642 // Walk the use-def list of the alloca, getting the locations of all stores. 643 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 644 StoresByIndexTy StoresByIndex; 645 646 for (User *U : AI->users()) 647 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 648 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 649 650 // Sort the stores by their index, making it efficient to do a lookup with a 651 // binary search. 652 llvm::sort(StoresByIndex, less_first()); 653 654 // Walk all of the loads from this alloca, replacing them with the nearest 655 // store above them, if any. 656 for (User *U : make_early_inc_range(AI->users())) { 657 LoadInst *LI = dyn_cast<LoadInst>(U); 658 if (!LI) 659 continue; 660 661 unsigned LoadIdx = LBI.getInstructionIndex(LI); 662 663 // Find the nearest store that has a lower index than this load. 664 StoresByIndexTy::iterator I = llvm::lower_bound( 665 StoresByIndex, 666 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 667 less_first()); 668 Value *ReplVal; 669 if (I == StoresByIndex.begin()) { 670 if (StoresByIndex.empty()) 671 // If there are no stores, the load takes the undef value. 672 ReplVal = UndefValue::get(LI->getType()); 673 else 674 // There is no store before this load, bail out (load may be affected 675 // by the following stores - see main comment). 676 return false; 677 } else { 678 // Otherwise, there was a store before this load, the load takes its 679 // value. 680 ReplVal = std::prev(I)->second->getOperand(0); 681 } 682 683 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 684 685 // If the replacement value is the load, this must occur in unreachable 686 // code. 687 if (ReplVal == LI) 688 ReplVal = PoisonValue::get(LI->getType()); 689 690 LI->replaceAllUsesWith(ReplVal); 691 LI->eraseFromParent(); 692 LBI.deleteValue(LI); 693 } 694 695 // Remove the (now dead) stores and alloca. 696 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 697 while (!AI->use_empty()) { 698 StoreInst *SI = cast<StoreInst>(AI->user_back()); 699 // Update assignment tracking info for the store we're going to delete. 700 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 701 DVRAssignsToDelete); 702 // Record debuginfo for the store before removing it. 703 auto DbgUpdateForStore = [&](auto &Container) { 704 for (auto *DbgItem : Container) { 705 if (DbgItem->isAddressOfVariable()) { 706 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 707 } 708 } 709 }; 710 DbgUpdateForStore(Info.DbgUsers); 711 DbgUpdateForStore(Info.DPUsers); 712 713 SI->eraseFromParent(); 714 LBI.deleteValue(SI); 715 } 716 717 // Remove dbg.assigns linked to the alloca as these are now redundant. 718 at::deleteAssignmentMarkers(AI); 719 AI->eraseFromParent(); 720 721 // The alloca's debuginfo can be removed as well. 722 auto DbgUpdateForAlloca = [&](auto &Container) { 723 for (auto *DbgItem : Container) 724 if (DbgItem->isAddressOfVariable() || 725 DbgItem->getExpression()->startsWithDeref()) 726 DbgItem->eraseFromParent(); 727 }; 728 DbgUpdateForAlloca(Info.DbgUsers); 729 DbgUpdateForAlloca(Info.DPUsers); 730 731 ++NumLocalPromoted; 732 return true; 733 } 734 735 void PromoteMem2Reg::run() { 736 Function &F = *DT.getRoot()->getParent(); 737 738 AllocaDbgUsers.resize(Allocas.size()); 739 AllocaATInfo.resize(Allocas.size()); 740 AllocaDPUsers.resize(Allocas.size()); 741 742 AllocaInfo Info; 743 LargeBlockInfo LBI; 744 ForwardIDFCalculator IDF(DT); 745 746 NoSignedZeros = F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool(); 747 748 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 749 AllocaInst *AI = Allocas[AllocaNum]; 750 751 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 752 assert(AI->getParent()->getParent() == &F && 753 "All allocas should be in the same function, which is same as DF!"); 754 755 removeIntrinsicUsers(AI); 756 757 if (AI->use_empty()) { 758 // If there are no uses of the alloca, just delete it now. 759 AI->eraseFromParent(); 760 761 // Remove the alloca from the Allocas list, since it has been processed 762 RemoveFromAllocasList(AllocaNum); 763 ++NumDeadAlloca; 764 continue; 765 } 766 767 // Calculate the set of read and write-locations for each alloca. This is 768 // analogous to finding the 'uses' and 'definitions' of each variable. 769 Info.AnalyzeAlloca(AI); 770 771 // If there is only a single store to this value, replace any loads of 772 // it that are directly dominated by the definition with the value stored. 773 if (Info.DefiningBlocks.size() == 1) { 774 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 775 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 776 // The alloca has been processed, move on. 777 RemoveFromAllocasList(AllocaNum); 778 ++NumSingleStore; 779 continue; 780 } 781 } 782 783 // If the alloca is only read and written in one basic block, just perform a 784 // linear sweep over the block to eliminate it. 785 if (Info.OnlyUsedInOneBlock && 786 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 787 &DbgAssignsToDelete, &DVRAssignsToDelete)) { 788 // The alloca has been processed, move on. 789 RemoveFromAllocasList(AllocaNum); 790 continue; 791 } 792 793 // If we haven't computed a numbering for the BB's in the function, do so 794 // now. 795 if (BBNumbers.empty()) { 796 unsigned ID = 0; 797 for (auto &BB : F) 798 BBNumbers[&BB] = ID++; 799 } 800 801 // Remember the dbg.declare intrinsic describing this alloca, if any. 802 if (!Info.DbgUsers.empty()) 803 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 804 if (!Info.AssignmentTracking.empty()) 805 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 806 if (!Info.DPUsers.empty()) 807 AllocaDPUsers[AllocaNum] = Info.DPUsers; 808 809 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 810 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 811 812 // Unique the set of defining blocks for efficient lookup. 813 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 814 Info.DefiningBlocks.end()); 815 816 // Determine which blocks the value is live in. These are blocks which lead 817 // to uses. 818 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 819 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 820 821 // At this point, we're committed to promoting the alloca using IDF's, and 822 // the standard SSA construction algorithm. Determine which blocks need phi 823 // nodes and see if we can optimize out some work by avoiding insertion of 824 // dead phi nodes. 825 IDF.setLiveInBlocks(LiveInBlocks); 826 IDF.setDefiningBlocks(DefBlocks); 827 SmallVector<BasicBlock *, 32> PHIBlocks; 828 IDF.calculate(PHIBlocks); 829 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 830 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 831 }); 832 833 unsigned CurrentVersion = 0; 834 for (BasicBlock *BB : PHIBlocks) 835 QueuePhiNode(BB, AllocaNum, CurrentVersion); 836 } 837 838 if (Allocas.empty()) { 839 cleanUpDbgAssigns(); 840 return; // All of the allocas must have been trivial! 841 } 842 LBI.clear(); 843 844 // Set the incoming values for the basic block to be null values for all of 845 // the alloca's. We do this in case there is a load of a value that has not 846 // been stored yet. In this case, it will get this null value. 847 RenamePassData::ValVector Values(Allocas.size()); 848 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 849 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 850 851 // When handling debug info, treat all incoming values as if they have unknown 852 // locations until proven otherwise. 853 RenamePassData::LocationVector Locations(Allocas.size()); 854 855 // Walks all basic blocks in the function performing the SSA rename algorithm 856 // and inserting the phi nodes we marked as necessary 857 std::vector<RenamePassData> RenamePassWorkList; 858 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 859 std::move(Locations)); 860 do { 861 RenamePassData RPD = std::move(RenamePassWorkList.back()); 862 RenamePassWorkList.pop_back(); 863 // RenamePass may add new worklist entries. 864 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 865 } while (!RenamePassWorkList.empty()); 866 867 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 868 Visited.clear(); 869 870 // Remove the allocas themselves from the function. 871 for (Instruction *A : Allocas) { 872 // Remove dbg.assigns linked to the alloca as these are now redundant. 873 at::deleteAssignmentMarkers(A); 874 // If there are any uses of the alloca instructions left, they must be in 875 // unreachable basic blocks that were not processed by walking the dominator 876 // tree. Just delete the users now. 877 if (!A->use_empty()) 878 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 879 A->eraseFromParent(); 880 } 881 882 // Remove alloca's dbg.declare intrinsics from the function. 883 auto RemoveDbgDeclares = [&](auto &Container) { 884 for (auto &DbgUsers : Container) { 885 for (auto *DbgItem : DbgUsers) 886 if (DbgItem->isAddressOfVariable() || 887 DbgItem->getExpression()->startsWithDeref()) 888 DbgItem->eraseFromParent(); 889 } 890 }; 891 RemoveDbgDeclares(AllocaDbgUsers); 892 RemoveDbgDeclares(AllocaDPUsers); 893 894 // Loop over all of the PHI nodes and see if there are any that we can get 895 // rid of because they merge all of the same incoming values. This can 896 // happen due to undef values coming into the PHI nodes. This process is 897 // iterative, because eliminating one PHI node can cause others to be removed. 898 bool EliminatedAPHI = true; 899 while (EliminatedAPHI) { 900 EliminatedAPHI = false; 901 902 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 903 // simplify and RAUW them as we go. If it was not, we could add uses to 904 // the values we replace with in a non-deterministic order, thus creating 905 // non-deterministic def->use chains. 906 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 907 I = NewPhiNodes.begin(), 908 E = NewPhiNodes.end(); 909 I != E;) { 910 PHINode *PN = I->second; 911 912 // If this PHI node merges one value and/or undefs, get the value. 913 if (Value *V = simplifyInstruction(PN, SQ)) { 914 PN->replaceAllUsesWith(V); 915 PN->eraseFromParent(); 916 NewPhiNodes.erase(I++); 917 EliminatedAPHI = true; 918 continue; 919 } 920 ++I; 921 } 922 } 923 924 // At this point, the renamer has added entries to PHI nodes for all reachable 925 // code. Unfortunately, there may be unreachable blocks which the renamer 926 // hasn't traversed. If this is the case, the PHI nodes may not 927 // have incoming values for all predecessors. Loop over all PHI nodes we have 928 // created, inserting poison values if they are missing any incoming values. 929 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 930 I = NewPhiNodes.begin(), 931 E = NewPhiNodes.end(); 932 I != E; ++I) { 933 // We want to do this once per basic block. As such, only process a block 934 // when we find the PHI that is the first entry in the block. 935 PHINode *SomePHI = I->second; 936 BasicBlock *BB = SomePHI->getParent(); 937 if (&BB->front() != SomePHI) 938 continue; 939 940 // Only do work here if there the PHI nodes are missing incoming values. We 941 // know that all PHI nodes that were inserted in a block will have the same 942 // number of incoming values, so we can just check any of them. 943 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 944 continue; 945 946 // Get the preds for BB. 947 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 948 949 // Ok, now we know that all of the PHI nodes are missing entries for some 950 // basic blocks. Start by sorting the incoming predecessors for efficient 951 // access. 952 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 953 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 954 }; 955 llvm::sort(Preds, CompareBBNumbers); 956 957 // Now we loop through all BB's which have entries in SomePHI and remove 958 // them from the Preds list. 959 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 960 // Do a log(n) search of the Preds list for the entry we want. 961 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 962 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 963 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 964 "PHI node has entry for a block which is not a predecessor!"); 965 966 // Remove the entry 967 Preds.erase(EntIt); 968 } 969 970 // At this point, the blocks left in the preds list must have dummy 971 // entries inserted into every PHI nodes for the block. Update all the phi 972 // nodes in this block that we are inserting (there could be phis before 973 // mem2reg runs). 974 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 975 BasicBlock::iterator BBI = BB->begin(); 976 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 977 SomePHI->getNumIncomingValues() == NumBadPreds) { 978 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 979 for (BasicBlock *Pred : Preds) 980 SomePHI->addIncoming(PoisonVal, Pred); 981 } 982 } 983 984 NewPhiNodes.clear(); 985 cleanUpDbgAssigns(); 986 } 987 988 /// Determine which blocks the value is live in. 989 /// 990 /// These are blocks which lead to uses. Knowing this allows us to avoid 991 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 992 /// inserted phi nodes would be dead). 993 void PromoteMem2Reg::ComputeLiveInBlocks( 994 AllocaInst *AI, AllocaInfo &Info, 995 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 996 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 997 // To determine liveness, we must iterate through the predecessors of blocks 998 // where the def is live. Blocks are added to the worklist if we need to 999 // check their predecessors. Start with all the using blocks. 1000 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 1001 Info.UsingBlocks.end()); 1002 1003 // If any of the using blocks is also a definition block, check to see if the 1004 // definition occurs before or after the use. If it happens before the use, 1005 // the value isn't really live-in. 1006 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 1007 BasicBlock *BB = LiveInBlockWorklist[i]; 1008 if (!DefBlocks.count(BB)) 1009 continue; 1010 1011 // Okay, this is a block that both uses and defines the value. If the first 1012 // reference to the alloca is a def (store), then we know it isn't live-in. 1013 for (BasicBlock::iterator I = BB->begin();; ++I) { 1014 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1015 if (SI->getOperand(1) != AI) 1016 continue; 1017 1018 // We found a store to the alloca before a load. The alloca is not 1019 // actually live-in here. 1020 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1021 LiveInBlockWorklist.pop_back(); 1022 --i; 1023 --e; 1024 break; 1025 } 1026 1027 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1028 // Okay, we found a load before a store to the alloca. It is actually 1029 // live into this block. 1030 if (LI->getOperand(0) == AI) 1031 break; 1032 } 1033 } 1034 1035 // Now that we have a set of blocks where the phi is live-in, recursively add 1036 // their predecessors until we find the full region the value is live. 1037 while (!LiveInBlockWorklist.empty()) { 1038 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1039 1040 // The block really is live in here, insert it into the set. If already in 1041 // the set, then it has already been processed. 1042 if (!LiveInBlocks.insert(BB).second) 1043 continue; 1044 1045 // Since the value is live into BB, it is either defined in a predecessor or 1046 // live into it to. Add the preds to the worklist unless they are a 1047 // defining block. 1048 for (BasicBlock *P : predecessors(BB)) { 1049 // The value is not live into a predecessor if it defines the value. 1050 if (DefBlocks.count(P)) 1051 continue; 1052 1053 // Otherwise it is, add to the worklist. 1054 LiveInBlockWorklist.push_back(P); 1055 } 1056 } 1057 } 1058 1059 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1060 /// 1061 /// Returns true if there wasn't already a phi-node for that variable 1062 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1063 unsigned &Version) { 1064 // Look up the basic-block in question. 1065 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 1066 1067 // If the BB already has a phi node added for the i'th alloca then we're done! 1068 if (PN) 1069 return false; 1070 1071 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1072 // BasicBlock. 1073 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1074 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1075 PN->insertBefore(BB->begin()); 1076 ++NumPHIInsert; 1077 PhiToAllocaMap[PN] = AllocaNo; 1078 return true; 1079 } 1080 1081 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1082 /// create a merged location incorporating \p DL, or to set \p DL directly. 1083 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1084 bool ApplyMergedLoc) { 1085 if (ApplyMergedLoc) 1086 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1087 else 1088 PN->setDebugLoc(DL); 1089 } 1090 1091 /// Recursively traverse the CFG of the function, renaming loads and 1092 /// stores to the allocas which we are promoting. 1093 /// 1094 /// IncomingVals indicates what value each Alloca contains on exit from the 1095 /// predecessor block Pred. 1096 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1097 RenamePassData::ValVector &IncomingVals, 1098 RenamePassData::LocationVector &IncomingLocs, 1099 std::vector<RenamePassData> &Worklist) { 1100 NextIteration: 1101 // If we are inserting any phi nodes into this BB, they will already be in the 1102 // block. 1103 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1104 // If we have PHI nodes to update, compute the number of edges from Pred to 1105 // BB. 1106 if (PhiToAllocaMap.count(APN)) { 1107 // We want to be able to distinguish between PHI nodes being inserted by 1108 // this invocation of mem2reg from those phi nodes that already existed in 1109 // the IR before mem2reg was run. We determine that APN is being inserted 1110 // because it is missing incoming edges. All other PHI nodes being 1111 // inserted by this pass of mem2reg will have the same number of incoming 1112 // operands so far. Remember this count. 1113 unsigned NewPHINumOperands = APN->getNumOperands(); 1114 1115 unsigned NumEdges = llvm::count(successors(Pred), BB); 1116 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1117 1118 // Add entries for all the phis. 1119 BasicBlock::iterator PNI = BB->begin(); 1120 do { 1121 unsigned AllocaNo = PhiToAllocaMap[APN]; 1122 1123 // Update the location of the phi node. 1124 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1125 APN->getNumIncomingValues() > 0); 1126 1127 // Add N incoming values to the PHI node. 1128 for (unsigned i = 0; i != NumEdges; ++i) 1129 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1130 1131 // For the sequence `return X > 0.0 ? X : -X`, it is expected that this 1132 // results in fabs intrinsic. However, without no-signed-zeros(nsz) flag 1133 // on the phi node generated at this stage, fabs folding does not 1134 // happen. So, we try to infer nsz flag from the function attributes to 1135 // enable this fabs folding. 1136 if (isa<FPMathOperator>(APN) && NoSignedZeros) 1137 APN->setHasNoSignedZeros(true); 1138 1139 // The currently active variable for this block is now the PHI. 1140 IncomingVals[AllocaNo] = APN; 1141 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1142 auto ConvertDbgDeclares = [&](auto &Container) { 1143 for (auto *DbgItem : Container) 1144 if (DbgItem->isAddressOfVariable()) 1145 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1146 }; 1147 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1148 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1149 1150 // Get the next phi node. 1151 ++PNI; 1152 APN = dyn_cast<PHINode>(PNI); 1153 if (!APN) 1154 break; 1155 1156 // Verify that it is missing entries. If not, it is not being inserted 1157 // by this mem2reg invocation so we want to ignore it. 1158 } while (APN->getNumOperands() == NewPHINumOperands); 1159 } 1160 } 1161 1162 // Don't revisit blocks. 1163 if (!Visited.insert(BB).second) 1164 return; 1165 1166 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1167 Instruction *I = &*II++; // get the instruction, increment iterator 1168 1169 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1170 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1171 if (!Src) 1172 continue; 1173 1174 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1175 if (AI == AllocaLookup.end()) 1176 continue; 1177 1178 Value *V = IncomingVals[AI->second]; 1179 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1180 1181 // Anything using the load now uses the current value. 1182 LI->replaceAllUsesWith(V); 1183 LI->eraseFromParent(); 1184 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1185 // Delete this instruction and mark the name as the current holder of the 1186 // value 1187 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1188 if (!Dest) 1189 continue; 1190 1191 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1192 if (ai == AllocaLookup.end()) 1193 continue; 1194 1195 // what value were we writing? 1196 unsigned AllocaNo = ai->second; 1197 IncomingVals[AllocaNo] = SI->getOperand(0); 1198 1199 // Record debuginfo for the store before removing it. 1200 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1201 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1202 &DVRAssignsToDelete); 1203 auto ConvertDbgDeclares = [&](auto &Container) { 1204 for (auto *DbgItem : Container) 1205 if (DbgItem->isAddressOfVariable()) 1206 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1207 }; 1208 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1209 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1210 SI->eraseFromParent(); 1211 } 1212 } 1213 1214 // 'Recurse' to our successors. 1215 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1216 if (I == E) 1217 return; 1218 1219 // Keep track of the successors so we don't visit the same successor twice 1220 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1221 1222 // Handle the first successor without using the worklist. 1223 VisitedSuccs.insert(*I); 1224 Pred = BB; 1225 BB = *I; 1226 ++I; 1227 1228 for (; I != E; ++I) 1229 if (VisitedSuccs.insert(*I).second) 1230 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1231 1232 goto NextIteration; 1233 } 1234 1235 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1236 AssumptionCache *AC) { 1237 // If there is nothing to do, bail out... 1238 if (Allocas.empty()) 1239 return; 1240 1241 PromoteMem2Reg(Allocas, DT, AC).run(); 1242 } 1243