1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file promotes memory references to be register references. It promotes 10 // alloca instructions which only have loads and stores as uses. An alloca is 11 // transformed by using iterated dominator frontiers to place PHI nodes, then 12 // traversing the function in depth-first order to rewrite loads and stores as 13 // appropriate. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/IteratedDominanceFrontier.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constant.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DIBuilder.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugProgramInstruction.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Intrinsics.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <iterator> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "mem2reg" 58 59 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block"); 60 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store"); 61 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed"); 62 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted"); 63 64 bool llvm::isAllocaPromotable(const AllocaInst *AI) { 65 // Only allow direct and non-volatile loads and stores... 66 for (const User *U : AI->users()) { 67 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { 68 // Note that atomic loads can be transformed; atomic semantics do 69 // not have any meaning for a local alloca. 70 if (LI->isVolatile() || LI->getType() != AI->getAllocatedType()) 71 return false; 72 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 73 if (SI->getValueOperand() == AI || 74 SI->getValueOperand()->getType() != AI->getAllocatedType()) 75 return false; // Don't allow a store OF the AI, only INTO the AI. 76 // Note that atomic stores can be transformed; atomic semantics do 77 // not have any meaning for a local alloca. 78 if (SI->isVolatile()) 79 return false; 80 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 81 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 82 return false; 83 } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) { 84 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI)) 85 return false; 86 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) { 87 if (!GEPI->hasAllZeroIndices()) 88 return false; 89 if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI)) 90 return false; 91 } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) { 92 if (!onlyUsedByLifetimeMarkers(ASCI)) 93 return false; 94 } else { 95 return false; 96 } 97 } 98 99 return true; 100 } 101 102 namespace { 103 104 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 105 DILocalVariable *Variable, 106 DIExpression *Expression, const DILocation *DI, 107 DPValue *InsertBefore) { 108 // FIXME: Merge these two functions now that DIBuilder supports DPValues. 109 // We neeed the API to accept DPValues as an insert point for that to work. 110 (void)DIB; 111 DPValue::createDPValue(NewValue, Variable, Expression, DI, *InsertBefore); 112 } 113 static void createDebugValue(DIBuilder &DIB, Value *NewValue, 114 DILocalVariable *Variable, 115 DIExpression *Expression, const DILocation *DI, 116 Instruction *InsertBefore) { 117 DIB.insertDbgValueIntrinsic(NewValue, Variable, Expression, DI, InsertBefore); 118 } 119 120 /// Helper for updating assignment tracking debug info when promoting allocas. 121 class AssignmentTrackingInfo { 122 /// DbgAssignIntrinsics linked to the alloca with at most one per variable 123 /// fragment. (i.e. not be a comprehensive set if there are multiple 124 /// dbg.assigns for one variable fragment). 125 SmallVector<DbgVariableIntrinsic *> DbgAssigns; 126 SmallVector<DPValue *> DPVAssigns; 127 128 public: 129 void init(AllocaInst *AI) { 130 SmallSet<DebugVariable, 2> Vars; 131 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) { 132 if (Vars.insert(DebugVariable(DAI)).second) 133 DbgAssigns.push_back(DAI); 134 } 135 for (DPValue *DPV : at::getDPVAssignmentMarkers(AI)) { 136 if (Vars.insert(DebugVariable(DPV)).second) 137 DPVAssigns.push_back(DPV); 138 } 139 } 140 141 /// Update assignment tracking debug info given for the to-be-deleted store 142 /// \p ToDelete that stores to this alloca. 143 void 144 updateForDeletedStore(StoreInst *ToDelete, DIBuilder &DIB, 145 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 146 SmallSet<DPValue *, 8> *DPVAssignsToDelete) const { 147 // There's nothing to do if the alloca doesn't have any variables using 148 // assignment tracking. 149 if (DbgAssigns.empty() && DPVAssigns.empty()) 150 return; 151 152 // Insert a dbg.value where the linked dbg.assign is and remember to delete 153 // the dbg.assign later. Demoting to dbg.value isn't necessary for 154 // correctness but does reduce compile time and memory usage by reducing 155 // unnecessary function-local metadata. Remember that we've seen a 156 // dbg.assign for each variable fragment for the untracked store handling 157 // (after this loop). 158 SmallSet<DebugVariableAggregate, 2> VarHasDbgAssignForStore; 159 auto InsertValueForAssign = [&](auto *DbgAssign, auto *&AssignList) { 160 VarHasDbgAssignForStore.insert(DebugVariableAggregate(DbgAssign)); 161 AssignList->insert(DbgAssign); 162 createDebugValue(DIB, DbgAssign->getValue(), DbgAssign->getVariable(), 163 DbgAssign->getExpression(), DbgAssign->getDebugLoc(), 164 DbgAssign); 165 }; 166 for (auto *Assign : at::getAssignmentMarkers(ToDelete)) 167 InsertValueForAssign(Assign, DbgAssignsToDelete); 168 for (auto *Assign : at::getDPVAssignmentMarkers(ToDelete)) 169 InsertValueForAssign(Assign, DPVAssignsToDelete); 170 171 // It's possible for variables using assignment tracking to have no 172 // dbg.assign linked to this store. These are variables in DbgAssigns that 173 // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign 174 // to mark the assignment - and the store is going to be deleted - insert a 175 // dbg.value to do that now. An untracked store may be either one that 176 // cannot be represented using assignment tracking (non-const offset or 177 // size) or one that is trackable but has had its DIAssignID attachment 178 // dropped accidentally. 179 auto ConvertUnlinkedAssignToValue = [&](auto *Assign) { 180 if (VarHasDbgAssignForStore.contains(DebugVariableAggregate(Assign))) 181 return; 182 ConvertDebugDeclareToDebugValue(Assign, ToDelete, DIB); 183 }; 184 for_each(DbgAssigns, ConvertUnlinkedAssignToValue); 185 for_each(DPVAssigns, ConvertUnlinkedAssignToValue); 186 } 187 188 /// Update assignment tracking debug info given for the newly inserted PHI \p 189 /// NewPhi. 190 void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const { 191 // Regardless of the position of dbg.assigns relative to stores, the 192 // incoming values into a new PHI should be the same for the (imaginary) 193 // debug-phi. 194 for (auto *DAI : DbgAssigns) 195 ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB); 196 for (auto *DPV : DPVAssigns) 197 ConvertDebugDeclareToDebugValue(DPV, NewPhi, DIB); 198 } 199 200 void clear() { 201 DbgAssigns.clear(); 202 DPVAssigns.clear(); 203 } 204 bool empty() { return DbgAssigns.empty() && DPVAssigns.empty(); } 205 }; 206 207 struct AllocaInfo { 208 using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>; 209 using DPUserVec = SmallVector<DPValue *, 1>; 210 211 SmallVector<BasicBlock *, 32> DefiningBlocks; 212 SmallVector<BasicBlock *, 32> UsingBlocks; 213 214 StoreInst *OnlyStore; 215 BasicBlock *OnlyBlock; 216 bool OnlyUsedInOneBlock; 217 218 /// Debug users of the alloca - does not include dbg.assign intrinsics. 219 DbgUserVec DbgUsers; 220 DPUserVec DPUsers; 221 /// Helper to update assignment tracking debug info. 222 AssignmentTrackingInfo AssignmentTracking; 223 224 void clear() { 225 DefiningBlocks.clear(); 226 UsingBlocks.clear(); 227 OnlyStore = nullptr; 228 OnlyBlock = nullptr; 229 OnlyUsedInOneBlock = true; 230 DbgUsers.clear(); 231 DPUsers.clear(); 232 AssignmentTracking.clear(); 233 } 234 235 /// Scan the uses of the specified alloca, filling in the AllocaInfo used 236 /// by the rest of the pass to reason about the uses of this alloca. 237 void AnalyzeAlloca(AllocaInst *AI) { 238 clear(); 239 240 // As we scan the uses of the alloca instruction, keep track of stores, 241 // and decide whether all of the loads and stores to the alloca are within 242 // the same basic block. 243 for (User *U : AI->users()) { 244 Instruction *User = cast<Instruction>(U); 245 246 if (StoreInst *SI = dyn_cast<StoreInst>(User)) { 247 // Remember the basic blocks which define new values for the alloca 248 DefiningBlocks.push_back(SI->getParent()); 249 OnlyStore = SI; 250 } else { 251 LoadInst *LI = cast<LoadInst>(User); 252 // Otherwise it must be a load instruction, keep track of variable 253 // reads. 254 UsingBlocks.push_back(LI->getParent()); 255 } 256 257 if (OnlyUsedInOneBlock) { 258 if (!OnlyBlock) 259 OnlyBlock = User->getParent(); 260 else if (OnlyBlock != User->getParent()) 261 OnlyUsedInOneBlock = false; 262 } 263 } 264 DbgUserVec AllDbgUsers; 265 SmallVector<DPValue *> AllDPUsers; 266 findDbgUsers(AllDbgUsers, AI, &AllDPUsers); 267 std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(), 268 std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) { 269 return !isa<DbgAssignIntrinsic>(DII); 270 }); 271 std::copy_if(AllDPUsers.begin(), AllDPUsers.end(), 272 std::back_inserter(DPUsers), 273 [](DPValue *DPV) { return !DPV->isDbgAssign(); }); 274 AssignmentTracking.init(AI); 275 } 276 }; 277 278 /// Data package used by RenamePass(). 279 struct RenamePassData { 280 using ValVector = std::vector<Value *>; 281 using LocationVector = std::vector<DebugLoc>; 282 283 RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L) 284 : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {} 285 286 BasicBlock *BB; 287 BasicBlock *Pred; 288 ValVector Values; 289 LocationVector Locations; 290 }; 291 292 /// This assigns and keeps a per-bb relative ordering of load/store 293 /// instructions in the block that directly load or store an alloca. 294 /// 295 /// This functionality is important because it avoids scanning large basic 296 /// blocks multiple times when promoting many allocas in the same block. 297 class LargeBlockInfo { 298 /// For each instruction that we track, keep the index of the 299 /// instruction. 300 /// 301 /// The index starts out as the number of the instruction from the start of 302 /// the block. 303 DenseMap<const Instruction *, unsigned> InstNumbers; 304 305 public: 306 307 /// This code only looks at accesses to allocas. 308 static bool isInterestingInstruction(const Instruction *I) { 309 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) || 310 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1))); 311 } 312 313 /// Get or calculate the index of the specified instruction. 314 unsigned getInstructionIndex(const Instruction *I) { 315 assert(isInterestingInstruction(I) && 316 "Not a load/store to/from an alloca?"); 317 318 // If we already have this instruction number, return it. 319 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I); 320 if (It != InstNumbers.end()) 321 return It->second; 322 323 // Scan the whole block to get the instruction. This accumulates 324 // information for every interesting instruction in the block, in order to 325 // avoid gratuitus rescans. 326 const BasicBlock *BB = I->getParent(); 327 unsigned InstNo = 0; 328 for (const Instruction &BBI : *BB) 329 if (isInterestingInstruction(&BBI)) 330 InstNumbers[&BBI] = InstNo++; 331 It = InstNumbers.find(I); 332 333 assert(It != InstNumbers.end() && "Didn't insert instruction?"); 334 return It->second; 335 } 336 337 void deleteValue(const Instruction *I) { InstNumbers.erase(I); } 338 339 void clear() { InstNumbers.clear(); } 340 }; 341 342 struct PromoteMem2Reg { 343 /// The alloca instructions being promoted. 344 std::vector<AllocaInst *> Allocas; 345 346 DominatorTree &DT; 347 DIBuilder DIB; 348 349 /// A cache of @llvm.assume intrinsics used by SimplifyInstruction. 350 AssumptionCache *AC; 351 352 const SimplifyQuery SQ; 353 354 /// Reverse mapping of Allocas. 355 DenseMap<AllocaInst *, unsigned> AllocaLookup; 356 357 /// The PhiNodes we're adding. 358 /// 359 /// That map is used to simplify some Phi nodes as we iterate over it, so 360 /// it should have deterministic iterators. We could use a MapVector, but 361 /// since we already maintain a map from BasicBlock* to a stable numbering 362 /// (BBNumbers), the DenseMap is more efficient (also supports removal). 363 DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes; 364 365 /// For each PHI node, keep track of which entry in Allocas it corresponds 366 /// to. 367 DenseMap<PHINode *, unsigned> PhiToAllocaMap; 368 369 /// For each alloca, we keep track of the dbg.declare intrinsic that 370 /// describes it, if any, so that we can convert it to a dbg.value 371 /// intrinsic if the alloca gets promoted. 372 SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers; 373 SmallVector<AllocaInfo::DPUserVec, 8> AllocaDPUsers; 374 375 /// For each alloca, keep an instance of a helper class that gives us an easy 376 /// way to update assignment tracking debug info if the alloca is promoted. 377 SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo; 378 /// A set of dbg.assigns to delete because they've been demoted to 379 /// dbg.values. Call cleanUpDbgAssigns to delete them. 380 SmallSet<DbgAssignIntrinsic *, 8> DbgAssignsToDelete; 381 SmallSet<DPValue *, 8> DPVAssignsToDelete; 382 383 /// The set of basic blocks the renamer has already visited. 384 SmallPtrSet<BasicBlock *, 16> Visited; 385 386 /// Contains a stable numbering of basic blocks to avoid non-determinstic 387 /// behavior. 388 DenseMap<BasicBlock *, unsigned> BBNumbers; 389 390 /// Lazily compute the number of predecessors a block has. 391 DenseMap<const BasicBlock *, unsigned> BBNumPreds; 392 393 public: 394 PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 395 AssumptionCache *AC) 396 : Allocas(Allocas.begin(), Allocas.end()), DT(DT), 397 DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false), 398 AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(), 399 nullptr, &DT, AC) {} 400 401 void run(); 402 403 private: 404 void RemoveFromAllocasList(unsigned &AllocaIdx) { 405 Allocas[AllocaIdx] = Allocas.back(); 406 Allocas.pop_back(); 407 --AllocaIdx; 408 } 409 410 unsigned getNumPreds(const BasicBlock *BB) { 411 unsigned &NP = BBNumPreds[BB]; 412 if (NP == 0) 413 NP = pred_size(BB) + 1; 414 return NP - 1; 415 } 416 417 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info, 418 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 419 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks); 420 void RenamePass(BasicBlock *BB, BasicBlock *Pred, 421 RenamePassData::ValVector &IncVals, 422 RenamePassData::LocationVector &IncLocs, 423 std::vector<RenamePassData> &Worklist); 424 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version); 425 426 /// Delete dbg.assigns that have been demoted to dbg.values. 427 void cleanUpDbgAssigns() { 428 for (auto *DAI : DbgAssignsToDelete) 429 DAI->eraseFromParent(); 430 DbgAssignsToDelete.clear(); 431 for (auto *DPV : DPVAssignsToDelete) 432 DPV->eraseFromParent(); 433 DPVAssignsToDelete.clear(); 434 } 435 }; 436 437 } // end anonymous namespace 438 439 /// Given a LoadInst LI this adds assume(LI != null) after it. 440 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) { 441 Function *AssumeIntrinsic = 442 Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume); 443 ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI, 444 Constant::getNullValue(LI->getType())); 445 LoadNotNull->insertAfter(LI); 446 CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull}); 447 CI->insertAfter(LoadNotNull); 448 AC->registerAssumption(cast<AssumeInst>(CI)); 449 } 450 451 static void convertMetadataToAssumes(LoadInst *LI, Value *Val, 452 const DataLayout &DL, AssumptionCache *AC, 453 const DominatorTree *DT) { 454 // If the load was marked as nonnull we don't want to lose that information 455 // when we erase this Load. So we preserve it with an assume. As !nonnull 456 // returns poison while assume violations are immediate undefined behavior, 457 // we can only do this if the value is known non-poison. 458 if (AC && LI->getMetadata(LLVMContext::MD_nonnull) && 459 LI->getMetadata(LLVMContext::MD_noundef) && 460 !isKnownNonZero(Val, DL, 0, AC, LI, DT)) 461 addAssumeNonNull(AC, LI); 462 } 463 464 static void removeIntrinsicUsers(AllocaInst *AI) { 465 // Knowing that this alloca is promotable, we know that it's safe to kill all 466 // instructions except for load and store. 467 468 for (Use &U : llvm::make_early_inc_range(AI->uses())) { 469 Instruction *I = cast<Instruction>(U.getUser()); 470 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 471 continue; 472 473 // Drop the use of AI in droppable instructions. 474 if (I->isDroppable()) { 475 I->dropDroppableUse(U); 476 continue; 477 } 478 479 if (!I->getType()->isVoidTy()) { 480 // The only users of this bitcast/GEP instruction are lifetime intrinsics. 481 // Follow the use/def chain to erase them now instead of leaving it for 482 // dead code elimination later. 483 for (Use &UU : llvm::make_early_inc_range(I->uses())) { 484 Instruction *Inst = cast<Instruction>(UU.getUser()); 485 486 // Drop the use of I in droppable instructions. 487 if (Inst->isDroppable()) { 488 Inst->dropDroppableUse(UU); 489 continue; 490 } 491 Inst->eraseFromParent(); 492 } 493 } 494 I->eraseFromParent(); 495 } 496 } 497 498 /// Rewrite as many loads as possible given a single store. 499 /// 500 /// When there is only a single store, we can use the domtree to trivially 501 /// replace all of the dominated loads with the stored value. Do so, and return 502 /// true if this has successfully promoted the alloca entirely. If this returns 503 /// false there were some loads which were not dominated by the single store 504 /// and thus must be phi-ed with undef. We fall back to the standard alloca 505 /// promotion algorithm in that case. 506 static bool 507 rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, 508 const DataLayout &DL, DominatorTree &DT, 509 AssumptionCache *AC, 510 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 511 SmallSet<DPValue *, 8> *DPVAssignsToDelete) { 512 StoreInst *OnlyStore = Info.OnlyStore; 513 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0)); 514 BasicBlock *StoreBB = OnlyStore->getParent(); 515 int StoreIndex = -1; 516 517 // Clear out UsingBlocks. We will reconstruct it here if needed. 518 Info.UsingBlocks.clear(); 519 520 for (User *U : make_early_inc_range(AI->users())) { 521 Instruction *UserInst = cast<Instruction>(U); 522 if (UserInst == OnlyStore) 523 continue; 524 LoadInst *LI = cast<LoadInst>(UserInst); 525 526 // Okay, if we have a load from the alloca, we want to replace it with the 527 // only value stored to the alloca. We can do this if the value is 528 // dominated by the store. If not, we use the rest of the mem2reg machinery 529 // to insert the phi nodes as needed. 530 if (!StoringGlobalVal) { // Non-instructions are always dominated. 531 if (LI->getParent() == StoreBB) { 532 // If we have a use that is in the same block as the store, compare the 533 // indices of the two instructions to see which one came first. If the 534 // load came before the store, we can't handle it. 535 if (StoreIndex == -1) 536 StoreIndex = LBI.getInstructionIndex(OnlyStore); 537 538 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) { 539 // Can't handle this load, bail out. 540 Info.UsingBlocks.push_back(StoreBB); 541 continue; 542 } 543 } else if (!DT.dominates(StoreBB, LI->getParent())) { 544 // If the load and store are in different blocks, use BB dominance to 545 // check their relationships. If the store doesn't dom the use, bail 546 // out. 547 Info.UsingBlocks.push_back(LI->getParent()); 548 continue; 549 } 550 } 551 552 // Otherwise, we *can* safely rewrite this load. 553 Value *ReplVal = OnlyStore->getOperand(0); 554 // If the replacement value is the load, this must occur in unreachable 555 // code. 556 if (ReplVal == LI) 557 ReplVal = PoisonValue::get(LI->getType()); 558 559 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 560 LI->replaceAllUsesWith(ReplVal); 561 LI->eraseFromParent(); 562 LBI.deleteValue(LI); 563 } 564 565 // Finally, after the scan, check to see if the store is all that is left. 566 if (!Info.UsingBlocks.empty()) 567 return false; // If not, we'll have to fall back for the remainder. 568 569 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 570 // Update assignment tracking info for the store we're going to delete. 571 Info.AssignmentTracking.updateForDeletedStore( 572 Info.OnlyStore, DIB, DbgAssignsToDelete, DPVAssignsToDelete); 573 574 // Record debuginfo for the store and remove the declaration's 575 // debuginfo. 576 auto ConvertDebugInfoForStore = [&](auto &Container) { 577 for (auto *DbgItem : Container) { 578 if (DbgItem->isAddressOfVariable()) { 579 ConvertDebugDeclareToDebugValue(DbgItem, Info.OnlyStore, DIB); 580 DbgItem->eraseFromParent(); 581 } else if (DbgItem->getExpression()->startsWithDeref()) { 582 DbgItem->eraseFromParent(); 583 } 584 } 585 }; 586 ConvertDebugInfoForStore(Info.DbgUsers); 587 ConvertDebugInfoForStore(Info.DPUsers); 588 589 // Remove dbg.assigns linked to the alloca as these are now redundant. 590 at::deleteAssignmentMarkers(AI); 591 592 // Remove the (now dead) store and alloca. 593 Info.OnlyStore->eraseFromParent(); 594 LBI.deleteValue(Info.OnlyStore); 595 596 AI->eraseFromParent(); 597 return true; 598 } 599 600 /// Many allocas are only used within a single basic block. If this is the 601 /// case, avoid traversing the CFG and inserting a lot of potentially useless 602 /// PHI nodes by just performing a single linear pass over the basic block 603 /// using the Alloca. 604 /// 605 /// If we cannot promote this alloca (because it is read before it is written), 606 /// return false. This is necessary in cases where, due to control flow, the 607 /// alloca is undefined only on some control flow paths. e.g. code like 608 /// this is correct in LLVM IR: 609 /// // A is an alloca with no stores so far 610 /// for (...) { 611 /// int t = *A; 612 /// if (!first_iteration) 613 /// use(t); 614 /// *A = 42; 615 /// } 616 static bool 617 promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, 618 LargeBlockInfo &LBI, const DataLayout &DL, 619 DominatorTree &DT, AssumptionCache *AC, 620 SmallSet<DbgAssignIntrinsic *, 8> *DbgAssignsToDelete, 621 SmallSet<DPValue *, 8> *DPVAssignsToDelete) { 622 // The trickiest case to handle is when we have large blocks. Because of this, 623 // this code is optimized assuming that large blocks happen. This does not 624 // significantly pessimize the small block case. This uses LargeBlockInfo to 625 // make it efficient to get the index of various operations in the block. 626 627 // Walk the use-def list of the alloca, getting the locations of all stores. 628 using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>; 629 StoresByIndexTy StoresByIndex; 630 631 for (User *U : AI->users()) 632 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 633 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI)); 634 635 // Sort the stores by their index, making it efficient to do a lookup with a 636 // binary search. 637 llvm::sort(StoresByIndex, less_first()); 638 639 // Walk all of the loads from this alloca, replacing them with the nearest 640 // store above them, if any. 641 for (User *U : make_early_inc_range(AI->users())) { 642 LoadInst *LI = dyn_cast<LoadInst>(U); 643 if (!LI) 644 continue; 645 646 unsigned LoadIdx = LBI.getInstructionIndex(LI); 647 648 // Find the nearest store that has a lower index than this load. 649 StoresByIndexTy::iterator I = llvm::lower_bound( 650 StoresByIndex, 651 std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)), 652 less_first()); 653 Value *ReplVal; 654 if (I == StoresByIndex.begin()) { 655 if (StoresByIndex.empty()) 656 // If there are no stores, the load takes the undef value. 657 ReplVal = UndefValue::get(LI->getType()); 658 else 659 // There is no store before this load, bail out (load may be affected 660 // by the following stores - see main comment). 661 return false; 662 } else { 663 // Otherwise, there was a store before this load, the load takes its 664 // value. 665 ReplVal = std::prev(I)->second->getOperand(0); 666 } 667 668 convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT); 669 670 // If the replacement value is the load, this must occur in unreachable 671 // code. 672 if (ReplVal == LI) 673 ReplVal = PoisonValue::get(LI->getType()); 674 675 LI->replaceAllUsesWith(ReplVal); 676 LI->eraseFromParent(); 677 LBI.deleteValue(LI); 678 } 679 680 // Remove the (now dead) stores and alloca. 681 DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false); 682 while (!AI->use_empty()) { 683 StoreInst *SI = cast<StoreInst>(AI->user_back()); 684 // Update assignment tracking info for the store we're going to delete. 685 Info.AssignmentTracking.updateForDeletedStore(SI, DIB, DbgAssignsToDelete, 686 DPVAssignsToDelete); 687 // Record debuginfo for the store before removing it. 688 auto DbgUpdateForStore = [&](auto &Container) { 689 for (auto *DbgItem : Container) { 690 if (DbgItem->isAddressOfVariable()) { 691 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 692 } 693 } 694 }; 695 DbgUpdateForStore(Info.DbgUsers); 696 DbgUpdateForStore(Info.DPUsers); 697 698 SI->eraseFromParent(); 699 LBI.deleteValue(SI); 700 } 701 702 // Remove dbg.assigns linked to the alloca as these are now redundant. 703 at::deleteAssignmentMarkers(AI); 704 AI->eraseFromParent(); 705 706 // The alloca's debuginfo can be removed as well. 707 auto DbgUpdateForAlloca = [&](auto &Container) { 708 for (auto *DbgItem : Container) 709 if (DbgItem->isAddressOfVariable() || 710 DbgItem->getExpression()->startsWithDeref()) 711 DbgItem->eraseFromParent(); 712 }; 713 DbgUpdateForAlloca(Info.DbgUsers); 714 DbgUpdateForAlloca(Info.DPUsers); 715 716 ++NumLocalPromoted; 717 return true; 718 } 719 720 void PromoteMem2Reg::run() { 721 Function &F = *DT.getRoot()->getParent(); 722 723 AllocaDbgUsers.resize(Allocas.size()); 724 AllocaATInfo.resize(Allocas.size()); 725 AllocaDPUsers.resize(Allocas.size()); 726 727 AllocaInfo Info; 728 LargeBlockInfo LBI; 729 ForwardIDFCalculator IDF(DT); 730 731 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) { 732 AllocaInst *AI = Allocas[AllocaNum]; 733 734 assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!"); 735 assert(AI->getParent()->getParent() == &F && 736 "All allocas should be in the same function, which is same as DF!"); 737 738 removeIntrinsicUsers(AI); 739 740 if (AI->use_empty()) { 741 // If there are no uses of the alloca, just delete it now. 742 AI->eraseFromParent(); 743 744 // Remove the alloca from the Allocas list, since it has been processed 745 RemoveFromAllocasList(AllocaNum); 746 ++NumDeadAlloca; 747 continue; 748 } 749 750 // Calculate the set of read and write-locations for each alloca. This is 751 // analogous to finding the 'uses' and 'definitions' of each variable. 752 Info.AnalyzeAlloca(AI); 753 754 // If there is only a single store to this value, replace any loads of 755 // it that are directly dominated by the definition with the value stored. 756 if (Info.DefiningBlocks.size() == 1) { 757 if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC, 758 &DbgAssignsToDelete, &DPVAssignsToDelete)) { 759 // The alloca has been processed, move on. 760 RemoveFromAllocasList(AllocaNum); 761 ++NumSingleStore; 762 continue; 763 } 764 } 765 766 // If the alloca is only read and written in one basic block, just perform a 767 // linear sweep over the block to eliminate it. 768 if (Info.OnlyUsedInOneBlock && 769 promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC, 770 &DbgAssignsToDelete, &DPVAssignsToDelete)) { 771 // The alloca has been processed, move on. 772 RemoveFromAllocasList(AllocaNum); 773 continue; 774 } 775 776 // If we haven't computed a numbering for the BB's in the function, do so 777 // now. 778 if (BBNumbers.empty()) { 779 unsigned ID = 0; 780 for (auto &BB : F) 781 BBNumbers[&BB] = ID++; 782 } 783 784 // Remember the dbg.declare intrinsic describing this alloca, if any. 785 if (!Info.DbgUsers.empty()) 786 AllocaDbgUsers[AllocaNum] = Info.DbgUsers; 787 if (!Info.AssignmentTracking.empty()) 788 AllocaATInfo[AllocaNum] = Info.AssignmentTracking; 789 if (!Info.DPUsers.empty()) 790 AllocaDPUsers[AllocaNum] = Info.DPUsers; 791 792 // Keep the reverse mapping of the 'Allocas' array for the rename pass. 793 AllocaLookup[Allocas[AllocaNum]] = AllocaNum; 794 795 // Unique the set of defining blocks for efficient lookup. 796 SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(), 797 Info.DefiningBlocks.end()); 798 799 // Determine which blocks the value is live in. These are blocks which lead 800 // to uses. 801 SmallPtrSet<BasicBlock *, 32> LiveInBlocks; 802 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks); 803 804 // At this point, we're committed to promoting the alloca using IDF's, and 805 // the standard SSA construction algorithm. Determine which blocks need phi 806 // nodes and see if we can optimize out some work by avoiding insertion of 807 // dead phi nodes. 808 IDF.setLiveInBlocks(LiveInBlocks); 809 IDF.setDefiningBlocks(DefBlocks); 810 SmallVector<BasicBlock *, 32> PHIBlocks; 811 IDF.calculate(PHIBlocks); 812 llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) { 813 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 814 }); 815 816 unsigned CurrentVersion = 0; 817 for (BasicBlock *BB : PHIBlocks) 818 QueuePhiNode(BB, AllocaNum, CurrentVersion); 819 } 820 821 if (Allocas.empty()) { 822 cleanUpDbgAssigns(); 823 return; // All of the allocas must have been trivial! 824 } 825 LBI.clear(); 826 827 // Set the incoming values for the basic block to be null values for all of 828 // the alloca's. We do this in case there is a load of a value that has not 829 // been stored yet. In this case, it will get this null value. 830 RenamePassData::ValVector Values(Allocas.size()); 831 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) 832 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType()); 833 834 // When handling debug info, treat all incoming values as if they have unknown 835 // locations until proven otherwise. 836 RenamePassData::LocationVector Locations(Allocas.size()); 837 838 // Walks all basic blocks in the function performing the SSA rename algorithm 839 // and inserting the phi nodes we marked as necessary 840 std::vector<RenamePassData> RenamePassWorkList; 841 RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values), 842 std::move(Locations)); 843 do { 844 RenamePassData RPD = std::move(RenamePassWorkList.back()); 845 RenamePassWorkList.pop_back(); 846 // RenamePass may add new worklist entries. 847 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList); 848 } while (!RenamePassWorkList.empty()); 849 850 // The renamer uses the Visited set to avoid infinite loops. Clear it now. 851 Visited.clear(); 852 853 // Remove the allocas themselves from the function. 854 for (Instruction *A : Allocas) { 855 // Remove dbg.assigns linked to the alloca as these are now redundant. 856 at::deleteAssignmentMarkers(A); 857 // If there are any uses of the alloca instructions left, they must be in 858 // unreachable basic blocks that were not processed by walking the dominator 859 // tree. Just delete the users now. 860 if (!A->use_empty()) 861 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 862 A->eraseFromParent(); 863 } 864 865 // Remove alloca's dbg.declare intrinsics from the function. 866 auto RemoveDbgDeclares = [&](auto &Container) { 867 for (auto &DbgUsers : Container) { 868 for (auto *DbgItem : DbgUsers) 869 if (DbgItem->isAddressOfVariable() || 870 DbgItem->getExpression()->startsWithDeref()) 871 DbgItem->eraseFromParent(); 872 } 873 }; 874 RemoveDbgDeclares(AllocaDbgUsers); 875 RemoveDbgDeclares(AllocaDPUsers); 876 877 // Loop over all of the PHI nodes and see if there are any that we can get 878 // rid of because they merge all of the same incoming values. This can 879 // happen due to undef values coming into the PHI nodes. This process is 880 // iterative, because eliminating one PHI node can cause others to be removed. 881 bool EliminatedAPHI = true; 882 while (EliminatedAPHI) { 883 EliminatedAPHI = false; 884 885 // Iterating over NewPhiNodes is deterministic, so it is safe to try to 886 // simplify and RAUW them as we go. If it was not, we could add uses to 887 // the values we replace with in a non-deterministic order, thus creating 888 // non-deterministic def->use chains. 889 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 890 I = NewPhiNodes.begin(), 891 E = NewPhiNodes.end(); 892 I != E;) { 893 PHINode *PN = I->second; 894 895 // If this PHI node merges one value and/or undefs, get the value. 896 if (Value *V = simplifyInstruction(PN, SQ)) { 897 PN->replaceAllUsesWith(V); 898 PN->eraseFromParent(); 899 NewPhiNodes.erase(I++); 900 EliminatedAPHI = true; 901 continue; 902 } 903 ++I; 904 } 905 } 906 907 // At this point, the renamer has added entries to PHI nodes for all reachable 908 // code. Unfortunately, there may be unreachable blocks which the renamer 909 // hasn't traversed. If this is the case, the PHI nodes may not 910 // have incoming values for all predecessors. Loop over all PHI nodes we have 911 // created, inserting poison values if they are missing any incoming values. 912 for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator 913 I = NewPhiNodes.begin(), 914 E = NewPhiNodes.end(); 915 I != E; ++I) { 916 // We want to do this once per basic block. As such, only process a block 917 // when we find the PHI that is the first entry in the block. 918 PHINode *SomePHI = I->second; 919 BasicBlock *BB = SomePHI->getParent(); 920 if (&BB->front() != SomePHI) 921 continue; 922 923 // Only do work here if there the PHI nodes are missing incoming values. We 924 // know that all PHI nodes that were inserted in a block will have the same 925 // number of incoming values, so we can just check any of them. 926 if (SomePHI->getNumIncomingValues() == getNumPreds(BB)) 927 continue; 928 929 // Get the preds for BB. 930 SmallVector<BasicBlock *, 16> Preds(predecessors(BB)); 931 932 // Ok, now we know that all of the PHI nodes are missing entries for some 933 // basic blocks. Start by sorting the incoming predecessors for efficient 934 // access. 935 auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) { 936 return BBNumbers.find(A)->second < BBNumbers.find(B)->second; 937 }; 938 llvm::sort(Preds, CompareBBNumbers); 939 940 // Now we loop through all BB's which have entries in SomePHI and remove 941 // them from the Preds list. 942 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) { 943 // Do a log(n) search of the Preds list for the entry we want. 944 SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound( 945 Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers); 946 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) && 947 "PHI node has entry for a block which is not a predecessor!"); 948 949 // Remove the entry 950 Preds.erase(EntIt); 951 } 952 953 // At this point, the blocks left in the preds list must have dummy 954 // entries inserted into every PHI nodes for the block. Update all the phi 955 // nodes in this block that we are inserting (there could be phis before 956 // mem2reg runs). 957 unsigned NumBadPreds = SomePHI->getNumIncomingValues(); 958 BasicBlock::iterator BBI = BB->begin(); 959 while ((SomePHI = dyn_cast<PHINode>(BBI++)) && 960 SomePHI->getNumIncomingValues() == NumBadPreds) { 961 Value *PoisonVal = PoisonValue::get(SomePHI->getType()); 962 for (BasicBlock *Pred : Preds) 963 SomePHI->addIncoming(PoisonVal, Pred); 964 } 965 } 966 967 NewPhiNodes.clear(); 968 cleanUpDbgAssigns(); 969 } 970 971 /// Determine which blocks the value is live in. 972 /// 973 /// These are blocks which lead to uses. Knowing this allows us to avoid 974 /// inserting PHI nodes into blocks which don't lead to uses (thus, the 975 /// inserted phi nodes would be dead). 976 void PromoteMem2Reg::ComputeLiveInBlocks( 977 AllocaInst *AI, AllocaInfo &Info, 978 const SmallPtrSetImpl<BasicBlock *> &DefBlocks, 979 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) { 980 // To determine liveness, we must iterate through the predecessors of blocks 981 // where the def is live. Blocks are added to the worklist if we need to 982 // check their predecessors. Start with all the using blocks. 983 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(), 984 Info.UsingBlocks.end()); 985 986 // If any of the using blocks is also a definition block, check to see if the 987 // definition occurs before or after the use. If it happens before the use, 988 // the value isn't really live-in. 989 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) { 990 BasicBlock *BB = LiveInBlockWorklist[i]; 991 if (!DefBlocks.count(BB)) 992 continue; 993 994 // Okay, this is a block that both uses and defines the value. If the first 995 // reference to the alloca is a def (store), then we know it isn't live-in. 996 for (BasicBlock::iterator I = BB->begin();; ++I) { 997 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 998 if (SI->getOperand(1) != AI) 999 continue; 1000 1001 // We found a store to the alloca before a load. The alloca is not 1002 // actually live-in here. 1003 LiveInBlockWorklist[i] = LiveInBlockWorklist.back(); 1004 LiveInBlockWorklist.pop_back(); 1005 --i; 1006 --e; 1007 break; 1008 } 1009 1010 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1011 // Okay, we found a load before a store to the alloca. It is actually 1012 // live into this block. 1013 if (LI->getOperand(0) == AI) 1014 break; 1015 } 1016 } 1017 1018 // Now that we have a set of blocks where the phi is live-in, recursively add 1019 // their predecessors until we find the full region the value is live. 1020 while (!LiveInBlockWorklist.empty()) { 1021 BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); 1022 1023 // The block really is live in here, insert it into the set. If already in 1024 // the set, then it has already been processed. 1025 if (!LiveInBlocks.insert(BB).second) 1026 continue; 1027 1028 // Since the value is live into BB, it is either defined in a predecessor or 1029 // live into it to. Add the preds to the worklist unless they are a 1030 // defining block. 1031 for (BasicBlock *P : predecessors(BB)) { 1032 // The value is not live into a predecessor if it defines the value. 1033 if (DefBlocks.count(P)) 1034 continue; 1035 1036 // Otherwise it is, add to the worklist. 1037 LiveInBlockWorklist.push_back(P); 1038 } 1039 } 1040 } 1041 1042 /// Queue a phi-node to be added to a basic-block for a specific Alloca. 1043 /// 1044 /// Returns true if there wasn't already a phi-node for that variable 1045 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo, 1046 unsigned &Version) { 1047 // Look up the basic-block in question. 1048 PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)]; 1049 1050 // If the BB already has a phi node added for the i'th alloca then we're done! 1051 if (PN) 1052 return false; 1053 1054 // Create a PhiNode using the dereferenced type... and add the phi-node to the 1055 // BasicBlock. 1056 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB), 1057 Allocas[AllocaNo]->getName() + "." + Twine(Version++)); 1058 PN->insertBefore(BB->begin()); 1059 ++NumPHIInsert; 1060 PhiToAllocaMap[PN] = AllocaNo; 1061 return true; 1062 } 1063 1064 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to 1065 /// create a merged location incorporating \p DL, or to set \p DL directly. 1066 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL, 1067 bool ApplyMergedLoc) { 1068 if (ApplyMergedLoc) 1069 PN->applyMergedLocation(PN->getDebugLoc(), DL); 1070 else 1071 PN->setDebugLoc(DL); 1072 } 1073 1074 /// Recursively traverse the CFG of the function, renaming loads and 1075 /// stores to the allocas which we are promoting. 1076 /// 1077 /// IncomingVals indicates what value each Alloca contains on exit from the 1078 /// predecessor block Pred. 1079 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred, 1080 RenamePassData::ValVector &IncomingVals, 1081 RenamePassData::LocationVector &IncomingLocs, 1082 std::vector<RenamePassData> &Worklist) { 1083 NextIteration: 1084 // If we are inserting any phi nodes into this BB, they will already be in the 1085 // block. 1086 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) { 1087 // If we have PHI nodes to update, compute the number of edges from Pred to 1088 // BB. 1089 if (PhiToAllocaMap.count(APN)) { 1090 // We want to be able to distinguish between PHI nodes being inserted by 1091 // this invocation of mem2reg from those phi nodes that already existed in 1092 // the IR before mem2reg was run. We determine that APN is being inserted 1093 // because it is missing incoming edges. All other PHI nodes being 1094 // inserted by this pass of mem2reg will have the same number of incoming 1095 // operands so far. Remember this count. 1096 unsigned NewPHINumOperands = APN->getNumOperands(); 1097 1098 unsigned NumEdges = llvm::count(successors(Pred), BB); 1099 assert(NumEdges && "Must be at least one edge from Pred to BB!"); 1100 1101 // Add entries for all the phis. 1102 BasicBlock::iterator PNI = BB->begin(); 1103 do { 1104 unsigned AllocaNo = PhiToAllocaMap[APN]; 1105 1106 // Update the location of the phi node. 1107 updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo], 1108 APN->getNumIncomingValues() > 0); 1109 1110 // Add N incoming values to the PHI node. 1111 for (unsigned i = 0; i != NumEdges; ++i) 1112 APN->addIncoming(IncomingVals[AllocaNo], Pred); 1113 1114 // The currently active variable for this block is now the PHI. 1115 IncomingVals[AllocaNo] = APN; 1116 AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB); 1117 auto ConvertDbgDeclares = [&](auto &Container) { 1118 for (auto *DbgItem : Container) 1119 if (DbgItem->isAddressOfVariable()) 1120 ConvertDebugDeclareToDebugValue(DbgItem, APN, DIB); 1121 }; 1122 ConvertDbgDeclares(AllocaDbgUsers[AllocaNo]); 1123 ConvertDbgDeclares(AllocaDPUsers[AllocaNo]); 1124 1125 // Get the next phi node. 1126 ++PNI; 1127 APN = dyn_cast<PHINode>(PNI); 1128 if (!APN) 1129 break; 1130 1131 // Verify that it is missing entries. If not, it is not being inserted 1132 // by this mem2reg invocation so we want to ignore it. 1133 } while (APN->getNumOperands() == NewPHINumOperands); 1134 } 1135 } 1136 1137 // Don't revisit blocks. 1138 if (!Visited.insert(BB).second) 1139 return; 1140 1141 for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) { 1142 Instruction *I = &*II++; // get the instruction, increment iterator 1143 1144 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1145 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand()); 1146 if (!Src) 1147 continue; 1148 1149 DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src); 1150 if (AI == AllocaLookup.end()) 1151 continue; 1152 1153 Value *V = IncomingVals[AI->second]; 1154 convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT); 1155 1156 // Anything using the load now uses the current value. 1157 LI->replaceAllUsesWith(V); 1158 LI->eraseFromParent(); 1159 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1160 // Delete this instruction and mark the name as the current holder of the 1161 // value 1162 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand()); 1163 if (!Dest) 1164 continue; 1165 1166 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest); 1167 if (ai == AllocaLookup.end()) 1168 continue; 1169 1170 // what value were we writing? 1171 unsigned AllocaNo = ai->second; 1172 IncomingVals[AllocaNo] = SI->getOperand(0); 1173 1174 // Record debuginfo for the store before removing it. 1175 IncomingLocs[AllocaNo] = SI->getDebugLoc(); 1176 AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB, &DbgAssignsToDelete, 1177 &DPVAssignsToDelete); 1178 auto ConvertDbgDeclares = [&](auto &Container) { 1179 for (auto *DbgItem : Container) 1180 if (DbgItem->isAddressOfVariable()) 1181 ConvertDebugDeclareToDebugValue(DbgItem, SI, DIB); 1182 }; 1183 ConvertDbgDeclares(AllocaDbgUsers[ai->second]); 1184 ConvertDbgDeclares(AllocaDPUsers[ai->second]); 1185 SI->eraseFromParent(); 1186 } 1187 } 1188 1189 // 'Recurse' to our successors. 1190 succ_iterator I = succ_begin(BB), E = succ_end(BB); 1191 if (I == E) 1192 return; 1193 1194 // Keep track of the successors so we don't visit the same successor twice 1195 SmallPtrSet<BasicBlock *, 8> VisitedSuccs; 1196 1197 // Handle the first successor without using the worklist. 1198 VisitedSuccs.insert(*I); 1199 Pred = BB; 1200 BB = *I; 1201 ++I; 1202 1203 for (; I != E; ++I) 1204 if (VisitedSuccs.insert(*I).second) 1205 Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs); 1206 1207 goto NextIteration; 1208 } 1209 1210 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT, 1211 AssumptionCache *AC) { 1212 // If there is nothing to do, bail out... 1213 if (Allocas.empty()) 1214 return; 1215 1216 PromoteMem2Reg(Allocas, DT, AC).run(); 1217 } 1218