xref: /llvm-project/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp (revision 4ad8f7a189570dc2560d0efdd05e6a8153313808)
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file promotes memory references to be register references.  It promotes
10 // alloca instructions which only have loads and stores as uses.  An alloca is
11 // transformed by using iterated dominator frontiers to place PHI nodes, then
12 // traversing the function in depth-first order to rewrite loads and stores as
13 // appropriate.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/IteratedDominanceFrontier.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DIBuilder.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <iterator>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "mem2reg"
57 
58 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
59 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
60 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
61 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
62 
63 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
64   // Only allow direct and non-volatile loads and stores...
65   for (const User *U : AI->users()) {
66     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
67       // Note that atomic loads can be transformed; atomic semantics do
68       // not have any meaning for a local alloca.
69       if (LI->isVolatile() || LI->getType() != AI->getAllocatedType())
70         return false;
71     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
72       if (SI->getValueOperand() == AI ||
73           SI->getValueOperand()->getType() != AI->getAllocatedType())
74         return false; // Don't allow a store OF the AI, only INTO the AI.
75       // Note that atomic stores can be transformed; atomic semantics do
76       // not have any meaning for a local alloca.
77       if (SI->isVolatile())
78         return false;
79     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80       if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
81         return false;
82     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
83       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
84         return false;
85     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
86       if (!GEPI->hasAllZeroIndices())
87         return false;
88       if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
89         return false;
90     } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
91       if (!onlyUsedByLifetimeMarkers(ASCI))
92         return false;
93     } else {
94       return false;
95     }
96   }
97 
98   return true;
99 }
100 
101 namespace {
102 
103 /// Helper for updating assignment tracking debug info when promoting allocas.
104 class AssignmentTrackingInfo {
105   /// DbgAssignIntrinsics linked to the alloca with at most one per variable
106   /// fragment. (i.e. not be a comprehensive set if there are multiple
107   /// dbg.assigns for one variable fragment).
108   SmallVector<DbgVariableIntrinsic *> DbgAssigns;
109 
110 public:
111   void init(AllocaInst *AI) {
112     SmallSet<DebugVariable, 2> Vars;
113     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(AI)) {
114       if (Vars.insert(DebugVariable(DAI)).second)
115         DbgAssigns.push_back(DAI);
116     }
117   }
118 
119   /// Update assignment tracking debug info given for the to-be-deleted store
120   /// \p ToDelete that stores to this alloca.
121   void updateForDeletedStore(StoreInst *ToDelete, DIBuilder &DIB) const {
122     // There's nothing to do if the alloca doesn't have any variables using
123     // assignment tracking.
124     if (DbgAssigns.empty())
125       return;
126 
127     // Just leave dbg.assign intrinsics in place and remember that we've seen
128     // one for each variable fragment.
129     SmallSet<DebugVariable, 2> VarHasDbgAssignForStore;
130     for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(ToDelete))
131       VarHasDbgAssignForStore.insert(DebugVariable(DAI));
132 
133     // It's possible for variables using assignment tracking to have no
134     // dbg.assign linked to this store. These are variables in DbgAssigns that
135     // are missing from VarHasDbgAssignForStore. Since there isn't a dbg.assign
136     // to mark the assignment - and the store is going to be deleted - insert a
137     // dbg.value to do that now. An untracked store may be either one that
138     // cannot be represented using assignment tracking (non-const offset or
139     // size) or one that is trackable but has had its DIAssignID attachment
140     // dropped accidentally.
141     for (auto *DAI : DbgAssigns) {
142       if (VarHasDbgAssignForStore.contains(DebugVariable(DAI)))
143         continue;
144       ConvertDebugDeclareToDebugValue(DAI, ToDelete, DIB);
145     }
146   }
147 
148   /// Update assignment tracking debug info given for the newly inserted PHI \p
149   /// NewPhi.
150   void updateForNewPhi(PHINode *NewPhi, DIBuilder &DIB) const {
151     // Regardless of the position of dbg.assigns relative to stores, the
152     // incoming values into a new PHI should be the same for the (imaginary)
153     // debug-phi.
154     for (auto *DAI : DbgAssigns)
155       ConvertDebugDeclareToDebugValue(DAI, NewPhi, DIB);
156   }
157 
158   void clear() { DbgAssigns.clear(); }
159   bool empty() { return DbgAssigns.empty(); }
160 };
161 
162 struct AllocaInfo {
163   using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
164 
165   SmallVector<BasicBlock *, 32> DefiningBlocks;
166   SmallVector<BasicBlock *, 32> UsingBlocks;
167 
168   StoreInst *OnlyStore;
169   BasicBlock *OnlyBlock;
170   bool OnlyUsedInOneBlock;
171 
172   /// Debug users of the alloca - does not include dbg.assign intrinsics.
173   DbgUserVec DbgUsers;
174   /// Helper to update assignment tracking debug info.
175   AssignmentTrackingInfo AssignmentTracking;
176 
177   void clear() {
178     DefiningBlocks.clear();
179     UsingBlocks.clear();
180     OnlyStore = nullptr;
181     OnlyBlock = nullptr;
182     OnlyUsedInOneBlock = true;
183     DbgUsers.clear();
184     AssignmentTracking.clear();
185   }
186 
187   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
188   /// by the rest of the pass to reason about the uses of this alloca.
189   void AnalyzeAlloca(AllocaInst *AI) {
190     clear();
191 
192     // As we scan the uses of the alloca instruction, keep track of stores,
193     // and decide whether all of the loads and stores to the alloca are within
194     // the same basic block.
195     for (User *U : AI->users()) {
196       Instruction *User = cast<Instruction>(U);
197 
198       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
199         // Remember the basic blocks which define new values for the alloca
200         DefiningBlocks.push_back(SI->getParent());
201         OnlyStore = SI;
202       } else {
203         LoadInst *LI = cast<LoadInst>(User);
204         // Otherwise it must be a load instruction, keep track of variable
205         // reads.
206         UsingBlocks.push_back(LI->getParent());
207       }
208 
209       if (OnlyUsedInOneBlock) {
210         if (!OnlyBlock)
211           OnlyBlock = User->getParent();
212         else if (OnlyBlock != User->getParent())
213           OnlyUsedInOneBlock = false;
214       }
215     }
216     DbgUserVec AllDbgUsers;
217     findDbgUsers(AllDbgUsers, AI);
218     std::copy_if(AllDbgUsers.begin(), AllDbgUsers.end(),
219                  std::back_inserter(DbgUsers), [](DbgVariableIntrinsic *DII) {
220                    return !isa<DbgAssignIntrinsic>(DII);
221                  });
222     AssignmentTracking.init(AI);
223   }
224 };
225 
226 /// Data package used by RenamePass().
227 struct RenamePassData {
228   using ValVector = std::vector<Value *>;
229   using LocationVector = std::vector<DebugLoc>;
230 
231   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
232       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
233 
234   BasicBlock *BB;
235   BasicBlock *Pred;
236   ValVector Values;
237   LocationVector Locations;
238 };
239 
240 /// This assigns and keeps a per-bb relative ordering of load/store
241 /// instructions in the block that directly load or store an alloca.
242 ///
243 /// This functionality is important because it avoids scanning large basic
244 /// blocks multiple times when promoting many allocas in the same block.
245 class LargeBlockInfo {
246   /// For each instruction that we track, keep the index of the
247   /// instruction.
248   ///
249   /// The index starts out as the number of the instruction from the start of
250   /// the block.
251   DenseMap<const Instruction *, unsigned> InstNumbers;
252 
253 public:
254 
255   /// This code only looks at accesses to allocas.
256   static bool isInterestingInstruction(const Instruction *I) {
257     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
258            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
259   }
260 
261   /// Get or calculate the index of the specified instruction.
262   unsigned getInstructionIndex(const Instruction *I) {
263     assert(isInterestingInstruction(I) &&
264            "Not a load/store to/from an alloca?");
265 
266     // If we already have this instruction number, return it.
267     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
268     if (It != InstNumbers.end())
269       return It->second;
270 
271     // Scan the whole block to get the instruction.  This accumulates
272     // information for every interesting instruction in the block, in order to
273     // avoid gratuitus rescans.
274     const BasicBlock *BB = I->getParent();
275     unsigned InstNo = 0;
276     for (const Instruction &BBI : *BB)
277       if (isInterestingInstruction(&BBI))
278         InstNumbers[&BBI] = InstNo++;
279     It = InstNumbers.find(I);
280 
281     assert(It != InstNumbers.end() && "Didn't insert instruction?");
282     return It->second;
283   }
284 
285   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
286 
287   void clear() { InstNumbers.clear(); }
288 };
289 
290 struct PromoteMem2Reg {
291   /// The alloca instructions being promoted.
292   std::vector<AllocaInst *> Allocas;
293 
294   DominatorTree &DT;
295   DIBuilder DIB;
296 
297   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
298   AssumptionCache *AC;
299 
300   const SimplifyQuery SQ;
301 
302   /// Reverse mapping of Allocas.
303   DenseMap<AllocaInst *, unsigned> AllocaLookup;
304 
305   /// The PhiNodes we're adding.
306   ///
307   /// That map is used to simplify some Phi nodes as we iterate over it, so
308   /// it should have deterministic iterators.  We could use a MapVector, but
309   /// since we already maintain a map from BasicBlock* to a stable numbering
310   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
311   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
312 
313   /// For each PHI node, keep track of which entry in Allocas it corresponds
314   /// to.
315   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
316 
317   /// For each alloca, we keep track of the dbg.declare intrinsic that
318   /// describes it, if any, so that we can convert it to a dbg.value
319   /// intrinsic if the alloca gets promoted.
320   SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
321 
322   /// For each alloca, keep an instance of a helper class that gives us an easy
323   /// way to update assignment tracking debug info if the alloca is promoted.
324   SmallVector<AssignmentTrackingInfo, 8> AllocaATInfo;
325 
326   /// The set of basic blocks the renamer has already visited.
327   SmallPtrSet<BasicBlock *, 16> Visited;
328 
329   /// Contains a stable numbering of basic blocks to avoid non-determinstic
330   /// behavior.
331   DenseMap<BasicBlock *, unsigned> BBNumbers;
332 
333   /// Lazily compute the number of predecessors a block has.
334   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
335 
336 public:
337   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
338                  AssumptionCache *AC)
339       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
340         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
341         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
342                    nullptr, &DT, AC) {}
343 
344   void run();
345 
346 private:
347   void RemoveFromAllocasList(unsigned &AllocaIdx) {
348     Allocas[AllocaIdx] = Allocas.back();
349     Allocas.pop_back();
350     --AllocaIdx;
351   }
352 
353   unsigned getNumPreds(const BasicBlock *BB) {
354     unsigned &NP = BBNumPreds[BB];
355     if (NP == 0)
356       NP = pred_size(BB) + 1;
357     return NP - 1;
358   }
359 
360   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
361                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
362                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
363   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
364                   RenamePassData::ValVector &IncVals,
365                   RenamePassData::LocationVector &IncLocs,
366                   std::vector<RenamePassData> &Worklist);
367   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
368 };
369 
370 } // end anonymous namespace
371 
372 /// Given a LoadInst LI this adds assume(LI != null) after it.
373 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
374   Function *AssumeIntrinsic =
375       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
376   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
377                                        Constant::getNullValue(LI->getType()));
378   LoadNotNull->insertAfter(LI);
379   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
380   CI->insertAfter(LoadNotNull);
381   AC->registerAssumption(cast<AssumeInst>(CI));
382 }
383 
384 static void convertMetadataToAssumes(LoadInst *LI, Value *Val,
385                                      const DataLayout &DL, AssumptionCache *AC,
386                                      const DominatorTree *DT) {
387   // If the load was marked as nonnull we don't want to lose that information
388   // when we erase this Load. So we preserve it with an assume. As !nonnull
389   // returns poison while assume violations are immediate undefined behavior,
390   // we can only do this if the value is known non-poison.
391   if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
392       LI->getMetadata(LLVMContext::MD_noundef) &&
393       !isKnownNonZero(Val, DL, 0, AC, LI, DT))
394     addAssumeNonNull(AC, LI);
395 }
396 
397 static void removeIntrinsicUsers(AllocaInst *AI) {
398   // Knowing that this alloca is promotable, we know that it's safe to kill all
399   // instructions except for load and store.
400 
401   for (Use &U : llvm::make_early_inc_range(AI->uses())) {
402     Instruction *I = cast<Instruction>(U.getUser());
403     if (isa<LoadInst>(I) || isa<StoreInst>(I))
404       continue;
405 
406     // Drop the use of AI in droppable instructions.
407     if (I->isDroppable()) {
408       I->dropDroppableUse(U);
409       continue;
410     }
411 
412     if (!I->getType()->isVoidTy()) {
413       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
414       // Follow the use/def chain to erase them now instead of leaving it for
415       // dead code elimination later.
416       for (Use &UU : llvm::make_early_inc_range(I->uses())) {
417         Instruction *Inst = cast<Instruction>(UU.getUser());
418 
419         // Drop the use of I in droppable instructions.
420         if (Inst->isDroppable()) {
421           Inst->dropDroppableUse(UU);
422           continue;
423         }
424         Inst->eraseFromParent();
425       }
426     }
427     I->eraseFromParent();
428   }
429 }
430 
431 /// Rewrite as many loads as possible given a single store.
432 ///
433 /// When there is only a single store, we can use the domtree to trivially
434 /// replace all of the dominated loads with the stored value. Do so, and return
435 /// true if this has successfully promoted the alloca entirely. If this returns
436 /// false there were some loads which were not dominated by the single store
437 /// and thus must be phi-ed with undef. We fall back to the standard alloca
438 /// promotion algorithm in that case.
439 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
440                                      LargeBlockInfo &LBI, const DataLayout &DL,
441                                      DominatorTree &DT, AssumptionCache *AC) {
442   StoreInst *OnlyStore = Info.OnlyStore;
443   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
444   BasicBlock *StoreBB = OnlyStore->getParent();
445   int StoreIndex = -1;
446 
447   // Clear out UsingBlocks.  We will reconstruct it here if needed.
448   Info.UsingBlocks.clear();
449 
450   for (User *U : make_early_inc_range(AI->users())) {
451     Instruction *UserInst = cast<Instruction>(U);
452     if (UserInst == OnlyStore)
453       continue;
454     LoadInst *LI = cast<LoadInst>(UserInst);
455 
456     // Okay, if we have a load from the alloca, we want to replace it with the
457     // only value stored to the alloca.  We can do this if the value is
458     // dominated by the store.  If not, we use the rest of the mem2reg machinery
459     // to insert the phi nodes as needed.
460     if (!StoringGlobalVal) { // Non-instructions are always dominated.
461       if (LI->getParent() == StoreBB) {
462         // If we have a use that is in the same block as the store, compare the
463         // indices of the two instructions to see which one came first.  If the
464         // load came before the store, we can't handle it.
465         if (StoreIndex == -1)
466           StoreIndex = LBI.getInstructionIndex(OnlyStore);
467 
468         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
469           // Can't handle this load, bail out.
470           Info.UsingBlocks.push_back(StoreBB);
471           continue;
472         }
473       } else if (!DT.dominates(StoreBB, LI->getParent())) {
474         // If the load and store are in different blocks, use BB dominance to
475         // check their relationships.  If the store doesn't dom the use, bail
476         // out.
477         Info.UsingBlocks.push_back(LI->getParent());
478         continue;
479       }
480     }
481 
482     // Otherwise, we *can* safely rewrite this load.
483     Value *ReplVal = OnlyStore->getOperand(0);
484     // If the replacement value is the load, this must occur in unreachable
485     // code.
486     if (ReplVal == LI)
487       ReplVal = PoisonValue::get(LI->getType());
488 
489     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
490     LI->replaceAllUsesWith(ReplVal);
491     LI->eraseFromParent();
492     LBI.deleteValue(LI);
493   }
494 
495   // Finally, after the scan, check to see if the store is all that is left.
496   if (!Info.UsingBlocks.empty())
497     return false; // If not, we'll have to fall back for the remainder.
498 
499   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
500   // Update assignment tracking info for the store we're going to delete.
501   Info.AssignmentTracking.updateForDeletedStore(Info.OnlyStore, DIB);
502 
503   // Record debuginfo for the store and remove the declaration's
504   // debuginfo.
505   for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
506     if (DII->isAddressOfVariable()) {
507       ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
508       DII->eraseFromParent();
509     } else if (DII->getExpression()->startsWithDeref()) {
510       DII->eraseFromParent();
511     }
512   }
513 
514   // Remove dbg.assigns linked to the alloca as these are now redundant.
515   at::deleteAssignmentMarkers(AI);
516 
517   // Remove the (now dead) store and alloca.
518   Info.OnlyStore->eraseFromParent();
519   LBI.deleteValue(Info.OnlyStore);
520 
521   AI->eraseFromParent();
522   return true;
523 }
524 
525 /// Many allocas are only used within a single basic block.  If this is the
526 /// case, avoid traversing the CFG and inserting a lot of potentially useless
527 /// PHI nodes by just performing a single linear pass over the basic block
528 /// using the Alloca.
529 ///
530 /// If we cannot promote this alloca (because it is read before it is written),
531 /// return false.  This is necessary in cases where, due to control flow, the
532 /// alloca is undefined only on some control flow paths.  e.g. code like
533 /// this is correct in LLVM IR:
534 ///  // A is an alloca with no stores so far
535 ///  for (...) {
536 ///    int t = *A;
537 ///    if (!first_iteration)
538 ///      use(t);
539 ///    *A = 42;
540 ///  }
541 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
542                                      LargeBlockInfo &LBI,
543                                      const DataLayout &DL,
544                                      DominatorTree &DT,
545                                      AssumptionCache *AC) {
546   // The trickiest case to handle is when we have large blocks. Because of this,
547   // this code is optimized assuming that large blocks happen.  This does not
548   // significantly pessimize the small block case.  This uses LargeBlockInfo to
549   // make it efficient to get the index of various operations in the block.
550 
551   // Walk the use-def list of the alloca, getting the locations of all stores.
552   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
553   StoresByIndexTy StoresByIndex;
554 
555   for (User *U : AI->users())
556     if (StoreInst *SI = dyn_cast<StoreInst>(U))
557       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
558 
559   // Sort the stores by their index, making it efficient to do a lookup with a
560   // binary search.
561   llvm::sort(StoresByIndex, less_first());
562 
563   // Walk all of the loads from this alloca, replacing them with the nearest
564   // store above them, if any.
565   for (User *U : make_early_inc_range(AI->users())) {
566     LoadInst *LI = dyn_cast<LoadInst>(U);
567     if (!LI)
568       continue;
569 
570     unsigned LoadIdx = LBI.getInstructionIndex(LI);
571 
572     // Find the nearest store that has a lower index than this load.
573     StoresByIndexTy::iterator I = llvm::lower_bound(
574         StoresByIndex,
575         std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
576         less_first());
577     Value *ReplVal;
578     if (I == StoresByIndex.begin()) {
579       if (StoresByIndex.empty())
580         // If there are no stores, the load takes the undef value.
581         ReplVal = UndefValue::get(LI->getType());
582       else
583         // There is no store before this load, bail out (load may be affected
584         // by the following stores - see main comment).
585         return false;
586     } else {
587       // Otherwise, there was a store before this load, the load takes its
588       // value.
589       ReplVal = std::prev(I)->second->getOperand(0);
590     }
591 
592     convertMetadataToAssumes(LI, ReplVal, DL, AC, &DT);
593 
594     // If the replacement value is the load, this must occur in unreachable
595     // code.
596     if (ReplVal == LI)
597       ReplVal = PoisonValue::get(LI->getType());
598 
599     LI->replaceAllUsesWith(ReplVal);
600     LI->eraseFromParent();
601     LBI.deleteValue(LI);
602   }
603 
604   // Remove the (now dead) stores and alloca.
605   DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
606   while (!AI->use_empty()) {
607     StoreInst *SI = cast<StoreInst>(AI->user_back());
608     // Update assignment tracking info for the store we're going to delete.
609     Info.AssignmentTracking.updateForDeletedStore(SI, DIB);
610     // Record debuginfo for the store before removing it.
611     for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
612       if (DII->isAddressOfVariable()) {
613         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
614       }
615     }
616     SI->eraseFromParent();
617     LBI.deleteValue(SI);
618   }
619 
620   // Remove dbg.assigns linked to the alloca as these are now redundant.
621   at::deleteAssignmentMarkers(AI);
622   AI->eraseFromParent();
623 
624   // The alloca's debuginfo can be removed as well.
625   for (DbgVariableIntrinsic *DII : Info.DbgUsers)
626     if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
627       DII->eraseFromParent();
628 
629   ++NumLocalPromoted;
630   return true;
631 }
632 
633 void PromoteMem2Reg::run() {
634   Function &F = *DT.getRoot()->getParent();
635 
636   AllocaDbgUsers.resize(Allocas.size());
637   AllocaATInfo.resize(Allocas.size());
638 
639   AllocaInfo Info;
640   LargeBlockInfo LBI;
641   ForwardIDFCalculator IDF(DT);
642 
643   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
644     AllocaInst *AI = Allocas[AllocaNum];
645 
646     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
647     assert(AI->getParent()->getParent() == &F &&
648            "All allocas should be in the same function, which is same as DF!");
649 
650     removeIntrinsicUsers(AI);
651 
652     if (AI->use_empty()) {
653       // If there are no uses of the alloca, just delete it now.
654       AI->eraseFromParent();
655 
656       // Remove the alloca from the Allocas list, since it has been processed
657       RemoveFromAllocasList(AllocaNum);
658       ++NumDeadAlloca;
659       continue;
660     }
661 
662     // Calculate the set of read and write-locations for each alloca.  This is
663     // analogous to finding the 'uses' and 'definitions' of each variable.
664     Info.AnalyzeAlloca(AI);
665 
666     // If there is only a single store to this value, replace any loads of
667     // it that are directly dominated by the definition with the value stored.
668     if (Info.DefiningBlocks.size() == 1) {
669       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
670         // The alloca has been processed, move on.
671         RemoveFromAllocasList(AllocaNum);
672         ++NumSingleStore;
673         continue;
674       }
675     }
676 
677     // If the alloca is only read and written in one basic block, just perform a
678     // linear sweep over the block to eliminate it.
679     if (Info.OnlyUsedInOneBlock &&
680         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
681       // The alloca has been processed, move on.
682       RemoveFromAllocasList(AllocaNum);
683       continue;
684     }
685 
686     // If we haven't computed a numbering for the BB's in the function, do so
687     // now.
688     if (BBNumbers.empty()) {
689       unsigned ID = 0;
690       for (auto &BB : F)
691         BBNumbers[&BB] = ID++;
692     }
693 
694     // Remember the dbg.declare intrinsic describing this alloca, if any.
695     if (!Info.DbgUsers.empty())
696       AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
697     if (!Info.AssignmentTracking.empty())
698       AllocaATInfo[AllocaNum] = Info.AssignmentTracking;
699 
700     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
701     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
702 
703     // Unique the set of defining blocks for efficient lookup.
704     SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
705                                             Info.DefiningBlocks.end());
706 
707     // Determine which blocks the value is live in.  These are blocks which lead
708     // to uses.
709     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
710     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
711 
712     // At this point, we're committed to promoting the alloca using IDF's, and
713     // the standard SSA construction algorithm.  Determine which blocks need phi
714     // nodes and see if we can optimize out some work by avoiding insertion of
715     // dead phi nodes.
716     IDF.setLiveInBlocks(LiveInBlocks);
717     IDF.setDefiningBlocks(DefBlocks);
718     SmallVector<BasicBlock *, 32> PHIBlocks;
719     IDF.calculate(PHIBlocks);
720     llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
721       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
722     });
723 
724     unsigned CurrentVersion = 0;
725     for (BasicBlock *BB : PHIBlocks)
726       QueuePhiNode(BB, AllocaNum, CurrentVersion);
727   }
728 
729   if (Allocas.empty())
730     return; // All of the allocas must have been trivial!
731 
732   LBI.clear();
733 
734   // Set the incoming values for the basic block to be null values for all of
735   // the alloca's.  We do this in case there is a load of a value that has not
736   // been stored yet.  In this case, it will get this null value.
737   RenamePassData::ValVector Values(Allocas.size());
738   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
739     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
740 
741   // When handling debug info, treat all incoming values as if they have unknown
742   // locations until proven otherwise.
743   RenamePassData::LocationVector Locations(Allocas.size());
744 
745   // Walks all basic blocks in the function performing the SSA rename algorithm
746   // and inserting the phi nodes we marked as necessary
747   std::vector<RenamePassData> RenamePassWorkList;
748   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
749                                   std::move(Locations));
750   do {
751     RenamePassData RPD = std::move(RenamePassWorkList.back());
752     RenamePassWorkList.pop_back();
753     // RenamePass may add new worklist entries.
754     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
755   } while (!RenamePassWorkList.empty());
756 
757   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
758   Visited.clear();
759 
760   // Remove the allocas themselves from the function.
761   for (Instruction *A : Allocas) {
762     // Remove dbg.assigns linked to the alloca as these are now redundant.
763     at::deleteAssignmentMarkers(A);
764     // If there are any uses of the alloca instructions left, they must be in
765     // unreachable basic blocks that were not processed by walking the dominator
766     // tree. Just delete the users now.
767     if (!A->use_empty())
768       A->replaceAllUsesWith(PoisonValue::get(A->getType()));
769     A->eraseFromParent();
770   }
771 
772   // Remove alloca's dbg.declare intrinsics from the function.
773   for (auto &DbgUsers : AllocaDbgUsers) {
774     for (auto *DII : DbgUsers)
775       if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
776         DII->eraseFromParent();
777   }
778 
779   // Loop over all of the PHI nodes and see if there are any that we can get
780   // rid of because they merge all of the same incoming values.  This can
781   // happen due to undef values coming into the PHI nodes.  This process is
782   // iterative, because eliminating one PHI node can cause others to be removed.
783   bool EliminatedAPHI = true;
784   while (EliminatedAPHI) {
785     EliminatedAPHI = false;
786 
787     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
788     // simplify and RAUW them as we go.  If it was not, we could add uses to
789     // the values we replace with in a non-deterministic order, thus creating
790     // non-deterministic def->use chains.
791     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
792              I = NewPhiNodes.begin(),
793              E = NewPhiNodes.end();
794          I != E;) {
795       PHINode *PN = I->second;
796 
797       // If this PHI node merges one value and/or undefs, get the value.
798       if (Value *V = simplifyInstruction(PN, SQ)) {
799         PN->replaceAllUsesWith(V);
800         PN->eraseFromParent();
801         NewPhiNodes.erase(I++);
802         EliminatedAPHI = true;
803         continue;
804       }
805       ++I;
806     }
807   }
808 
809   // At this point, the renamer has added entries to PHI nodes for all reachable
810   // code.  Unfortunately, there may be unreachable blocks which the renamer
811   // hasn't traversed.  If this is the case, the PHI nodes may not
812   // have incoming values for all predecessors.  Loop over all PHI nodes we have
813   // created, inserting undef values if they are missing any incoming values.
814   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
815            I = NewPhiNodes.begin(),
816            E = NewPhiNodes.end();
817        I != E; ++I) {
818     // We want to do this once per basic block.  As such, only process a block
819     // when we find the PHI that is the first entry in the block.
820     PHINode *SomePHI = I->second;
821     BasicBlock *BB = SomePHI->getParent();
822     if (&BB->front() != SomePHI)
823       continue;
824 
825     // Only do work here if there the PHI nodes are missing incoming values.  We
826     // know that all PHI nodes that were inserted in a block will have the same
827     // number of incoming values, so we can just check any of them.
828     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
829       continue;
830 
831     // Get the preds for BB.
832     SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
833 
834     // Ok, now we know that all of the PHI nodes are missing entries for some
835     // basic blocks.  Start by sorting the incoming predecessors for efficient
836     // access.
837     auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
838       return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
839     };
840     llvm::sort(Preds, CompareBBNumbers);
841 
842     // Now we loop through all BB's which have entries in SomePHI and remove
843     // them from the Preds list.
844     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
845       // Do a log(n) search of the Preds list for the entry we want.
846       SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
847           Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
848       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
849              "PHI node has entry for a block which is not a predecessor!");
850 
851       // Remove the entry
852       Preds.erase(EntIt);
853     }
854 
855     // At this point, the blocks left in the preds list must have dummy
856     // entries inserted into every PHI nodes for the block.  Update all the phi
857     // nodes in this block that we are inserting (there could be phis before
858     // mem2reg runs).
859     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
860     BasicBlock::iterator BBI = BB->begin();
861     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
862            SomePHI->getNumIncomingValues() == NumBadPreds) {
863       Value *UndefVal = UndefValue::get(SomePHI->getType());
864       for (BasicBlock *Pred : Preds)
865         SomePHI->addIncoming(UndefVal, Pred);
866     }
867   }
868 
869   NewPhiNodes.clear();
870 }
871 
872 /// Determine which blocks the value is live in.
873 ///
874 /// These are blocks which lead to uses.  Knowing this allows us to avoid
875 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
876 /// inserted phi nodes would be dead).
877 void PromoteMem2Reg::ComputeLiveInBlocks(
878     AllocaInst *AI, AllocaInfo &Info,
879     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
880     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
881   // To determine liveness, we must iterate through the predecessors of blocks
882   // where the def is live.  Blocks are added to the worklist if we need to
883   // check their predecessors.  Start with all the using blocks.
884   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
885                                                     Info.UsingBlocks.end());
886 
887   // If any of the using blocks is also a definition block, check to see if the
888   // definition occurs before or after the use.  If it happens before the use,
889   // the value isn't really live-in.
890   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
891     BasicBlock *BB = LiveInBlockWorklist[i];
892     if (!DefBlocks.count(BB))
893       continue;
894 
895     // Okay, this is a block that both uses and defines the value.  If the first
896     // reference to the alloca is a def (store), then we know it isn't live-in.
897     for (BasicBlock::iterator I = BB->begin();; ++I) {
898       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
899         if (SI->getOperand(1) != AI)
900           continue;
901 
902         // We found a store to the alloca before a load.  The alloca is not
903         // actually live-in here.
904         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
905         LiveInBlockWorklist.pop_back();
906         --i;
907         --e;
908         break;
909       }
910 
911       if (LoadInst *LI = dyn_cast<LoadInst>(I))
912         // Okay, we found a load before a store to the alloca.  It is actually
913         // live into this block.
914         if (LI->getOperand(0) == AI)
915           break;
916     }
917   }
918 
919   // Now that we have a set of blocks where the phi is live-in, recursively add
920   // their predecessors until we find the full region the value is live.
921   while (!LiveInBlockWorklist.empty()) {
922     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
923 
924     // The block really is live in here, insert it into the set.  If already in
925     // the set, then it has already been processed.
926     if (!LiveInBlocks.insert(BB).second)
927       continue;
928 
929     // Since the value is live into BB, it is either defined in a predecessor or
930     // live into it to.  Add the preds to the worklist unless they are a
931     // defining block.
932     for (BasicBlock *P : predecessors(BB)) {
933       // The value is not live into a predecessor if it defines the value.
934       if (DefBlocks.count(P))
935         continue;
936 
937       // Otherwise it is, add to the worklist.
938       LiveInBlockWorklist.push_back(P);
939     }
940   }
941 }
942 
943 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
944 ///
945 /// Returns true if there wasn't already a phi-node for that variable
946 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
947                                   unsigned &Version) {
948   // Look up the basic-block in question.
949   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
950 
951   // If the BB already has a phi node added for the i'th alloca then we're done!
952   if (PN)
953     return false;
954 
955   // Create a PhiNode using the dereferenced type... and add the phi-node to the
956   // BasicBlock.
957   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
958                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
959                        &BB->front());
960   ++NumPHIInsert;
961   PhiToAllocaMap[PN] = AllocaNo;
962   return true;
963 }
964 
965 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
966 /// create a merged location incorporating \p DL, or to set \p DL directly.
967 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
968                                            bool ApplyMergedLoc) {
969   if (ApplyMergedLoc)
970     PN->applyMergedLocation(PN->getDebugLoc(), DL);
971   else
972     PN->setDebugLoc(DL);
973 }
974 
975 /// Recursively traverse the CFG of the function, renaming loads and
976 /// stores to the allocas which we are promoting.
977 ///
978 /// IncomingVals indicates what value each Alloca contains on exit from the
979 /// predecessor block Pred.
980 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
981                                 RenamePassData::ValVector &IncomingVals,
982                                 RenamePassData::LocationVector &IncomingLocs,
983                                 std::vector<RenamePassData> &Worklist) {
984 NextIteration:
985   // If we are inserting any phi nodes into this BB, they will already be in the
986   // block.
987   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
988     // If we have PHI nodes to update, compute the number of edges from Pred to
989     // BB.
990     if (PhiToAllocaMap.count(APN)) {
991       // We want to be able to distinguish between PHI nodes being inserted by
992       // this invocation of mem2reg from those phi nodes that already existed in
993       // the IR before mem2reg was run.  We determine that APN is being inserted
994       // because it is missing incoming edges.  All other PHI nodes being
995       // inserted by this pass of mem2reg will have the same number of incoming
996       // operands so far.  Remember this count.
997       unsigned NewPHINumOperands = APN->getNumOperands();
998 
999       unsigned NumEdges = llvm::count(successors(Pred), BB);
1000       assert(NumEdges && "Must be at least one edge from Pred to BB!");
1001 
1002       // Add entries for all the phis.
1003       BasicBlock::iterator PNI = BB->begin();
1004       do {
1005         unsigned AllocaNo = PhiToAllocaMap[APN];
1006 
1007         // Update the location of the phi node.
1008         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
1009                                        APN->getNumIncomingValues() > 0);
1010 
1011         // Add N incoming values to the PHI node.
1012         for (unsigned i = 0; i != NumEdges; ++i)
1013           APN->addIncoming(IncomingVals[AllocaNo], Pred);
1014 
1015         // The currently active variable for this block is now the PHI.
1016         IncomingVals[AllocaNo] = APN;
1017         AllocaATInfo[AllocaNo].updateForNewPhi(APN, DIB);
1018         for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
1019           if (DII->isAddressOfVariable())
1020             ConvertDebugDeclareToDebugValue(DII, APN, DIB);
1021 
1022         // Get the next phi node.
1023         ++PNI;
1024         APN = dyn_cast<PHINode>(PNI);
1025         if (!APN)
1026           break;
1027 
1028         // Verify that it is missing entries.  If not, it is not being inserted
1029         // by this mem2reg invocation so we want to ignore it.
1030       } while (APN->getNumOperands() == NewPHINumOperands);
1031     }
1032   }
1033 
1034   // Don't revisit blocks.
1035   if (!Visited.insert(BB).second)
1036     return;
1037 
1038   for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
1039     Instruction *I = &*II++; // get the instruction, increment iterator
1040 
1041     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1042       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1043       if (!Src)
1044         continue;
1045 
1046       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1047       if (AI == AllocaLookup.end())
1048         continue;
1049 
1050       Value *V = IncomingVals[AI->second];
1051       convertMetadataToAssumes(LI, V, SQ.DL, AC, &DT);
1052 
1053       // Anything using the load now uses the current value.
1054       LI->replaceAllUsesWith(V);
1055       LI->eraseFromParent();
1056     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1057       // Delete this instruction and mark the name as the current holder of the
1058       // value
1059       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1060       if (!Dest)
1061         continue;
1062 
1063       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1064       if (ai == AllocaLookup.end())
1065         continue;
1066 
1067       // what value were we writing?
1068       unsigned AllocaNo = ai->second;
1069       IncomingVals[AllocaNo] = SI->getOperand(0);
1070 
1071       // Record debuginfo for the store before removing it.
1072       IncomingLocs[AllocaNo] = SI->getDebugLoc();
1073       AllocaATInfo[AllocaNo].updateForDeletedStore(SI, DIB);
1074       for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
1075         if (DII->isAddressOfVariable())
1076           ConvertDebugDeclareToDebugValue(DII, SI, DIB);
1077       SI->eraseFromParent();
1078     }
1079   }
1080 
1081   // 'Recurse' to our successors.
1082   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1083   if (I == E)
1084     return;
1085 
1086   // Keep track of the successors so we don't visit the same successor twice
1087   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1088 
1089   // Handle the first successor without using the worklist.
1090   VisitedSuccs.insert(*I);
1091   Pred = BB;
1092   BB = *I;
1093   ++I;
1094 
1095   for (; I != E; ++I)
1096     if (VisitedSuccs.insert(*I).second)
1097       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1098 
1099   goto NextIteration;
1100 }
1101 
1102 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1103                            AssumptionCache *AC) {
1104   // If there is nothing to do, bail out...
1105   if (Allocas.empty())
1106     return;
1107 
1108   PromoteMem2Reg(Allocas, DT, AC).run();
1109 }
1110