1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------===// 8 // 9 // This file implements the PredicateInfo class. 10 // 11 //===----------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Utils/PredicateInfo.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/IR/AssemblyAnnotationWriter.h" 20 #include "llvm/IR/Dominators.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/DebugCounter.h" 29 #include "llvm/Support/FormattedStream.h" 30 #define DEBUG_TYPE "predicateinfo" 31 using namespace llvm; 32 using namespace PatternMatch; 33 34 static cl::opt<bool> VerifyPredicateInfo( 35 "verify-predicateinfo", cl::init(false), cl::Hidden, 36 cl::desc("Verify PredicateInfo in legacy printer pass.")); 37 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", 38 "Controls which variables are renamed with predicateinfo"); 39 40 // Maximum number of conditions considered for renaming for each branch/assume. 41 // This limits renaming of deep and/or chains. 42 static const unsigned MaxCondsPerBranch = 8; 43 44 namespace { 45 // Given a predicate info that is a type of branching terminator, get the 46 // branching block. 47 const BasicBlock *getBranchBlock(const PredicateBase *PB) { 48 assert(isa<PredicateWithEdge>(PB) && 49 "Only branches and switches should have PHIOnly defs that " 50 "require branch blocks."); 51 return cast<PredicateWithEdge>(PB)->From; 52 } 53 54 // Given a predicate info that is a type of branching terminator, get the 55 // branching terminator. 56 static Instruction *getBranchTerminator(const PredicateBase *PB) { 57 assert(isa<PredicateWithEdge>(PB) && 58 "Not a predicate info type we know how to get a terminator from."); 59 return cast<PredicateWithEdge>(PB)->From->getTerminator(); 60 } 61 62 // Given a predicate info that is a type of branching terminator, get the 63 // edge this predicate info represents 64 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) { 65 assert(isa<PredicateWithEdge>(PB) && 66 "Not a predicate info type we know how to get an edge from."); 67 const auto *PEdge = cast<PredicateWithEdge>(PB); 68 return std::make_pair(PEdge->From, PEdge->To); 69 } 70 } 71 72 namespace llvm { 73 enum LocalNum { 74 // Operations that must appear first in the block. 75 LN_First, 76 // Operations that are somewhere in the middle of the block, and are sorted on 77 // demand. 78 LN_Middle, 79 // Operations that must appear last in a block, like successor phi node uses. 80 LN_Last 81 }; 82 83 // Associate global and local DFS info with defs and uses, so we can sort them 84 // into a global domination ordering. 85 struct ValueDFS { 86 int DFSIn = 0; 87 int DFSOut = 0; 88 unsigned int LocalNum = LN_Middle; 89 // Only one of Def or Use will be set. 90 Value *Def = nullptr; 91 Use *U = nullptr; 92 // Neither PInfo nor EdgeOnly participate in the ordering 93 PredicateBase *PInfo = nullptr; 94 bool EdgeOnly = false; 95 }; 96 97 // Perform a strict weak ordering on instructions and arguments. 98 static bool valueComesBefore(const Value *A, const Value *B) { 99 auto *ArgA = dyn_cast_or_null<Argument>(A); 100 auto *ArgB = dyn_cast_or_null<Argument>(B); 101 if (ArgA && !ArgB) 102 return true; 103 if (ArgB && !ArgA) 104 return false; 105 if (ArgA && ArgB) 106 return ArgA->getArgNo() < ArgB->getArgNo(); 107 return cast<Instruction>(A)->comesBefore(cast<Instruction>(B)); 108 } 109 110 // This compares ValueDFS structures. Doing so allows us to walk the minimum 111 // number of instructions necessary to compute our def/use ordering. 112 struct ValueDFS_Compare { 113 DominatorTree &DT; 114 ValueDFS_Compare(DominatorTree &DT) : DT(DT) {} 115 116 bool operator()(const ValueDFS &A, const ValueDFS &B) const { 117 if (&A == &B) 118 return false; 119 // The only case we can't directly compare them is when they in the same 120 // block, and both have localnum == middle. In that case, we have to use 121 // comesbefore to see what the real ordering is, because they are in the 122 // same basic block. 123 124 assert((A.DFSIn != B.DFSIn || A.DFSOut == B.DFSOut) && 125 "Equal DFS-in numbers imply equal out numbers"); 126 bool SameBlock = A.DFSIn == B.DFSIn; 127 128 // We want to put the def that will get used for a given set of phi uses, 129 // before those phi uses. 130 // So we sort by edge, then by def. 131 // Note that only phi nodes uses and defs can come last. 132 if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) 133 return comparePHIRelated(A, B); 134 135 bool isADef = A.Def; 136 bool isBDef = B.Def; 137 if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) 138 return std::tie(A.DFSIn, A.LocalNum, isADef) < 139 std::tie(B.DFSIn, B.LocalNum, isBDef); 140 return localComesBefore(A, B); 141 } 142 143 // For a phi use, or a non-materialized def, return the edge it represents. 144 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const { 145 if (!VD.Def && VD.U) { 146 auto *PHI = cast<PHINode>(VD.U->getUser()); 147 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); 148 } 149 // This is really a non-materialized def. 150 return ::getBlockEdge(VD.PInfo); 151 } 152 153 // For two phi related values, return the ordering. 154 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { 155 BasicBlock *ASrc, *ADest, *BSrc, *BDest; 156 std::tie(ASrc, ADest) = getBlockEdge(A); 157 std::tie(BSrc, BDest) = getBlockEdge(B); 158 159 #ifndef NDEBUG 160 // This function should only be used for values in the same BB, check that. 161 DomTreeNode *DomASrc = DT.getNode(ASrc); 162 DomTreeNode *DomBSrc = DT.getNode(BSrc); 163 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn && 164 "DFS numbers for A should match the ones of the source block"); 165 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn && 166 "DFS numbers for B should match the ones of the source block"); 167 assert(A.DFSIn == B.DFSIn && "Values must be in the same block"); 168 #endif 169 (void)ASrc; 170 (void)BSrc; 171 172 // Use DFS numbers to compare destination blocks, to guarantee a 173 // deterministic order. 174 DomTreeNode *DomADest = DT.getNode(ADest); 175 DomTreeNode *DomBDest = DT.getNode(BDest); 176 unsigned AIn = DomADest->getDFSNumIn(); 177 unsigned BIn = DomBDest->getDFSNumIn(); 178 bool isADef = A.Def; 179 bool isBDef = B.Def; 180 assert((!A.Def || !A.U) && (!B.Def || !B.U) && 181 "Def and U cannot be set at the same time"); 182 // Now sort by edge destination and then defs before uses. 183 return std::tie(AIn, isADef) < std::tie(BIn, isBDef); 184 } 185 186 // Get the definition of an instruction that occurs in the middle of a block. 187 Value *getMiddleDef(const ValueDFS &VD) const { 188 if (VD.Def) 189 return VD.Def; 190 // It's possible for the defs and uses to be null. For branches, the local 191 // numbering will say the placed predicaeinfos should go first (IE 192 // LN_beginning), so we won't be in this function. For assumes, we will end 193 // up here, beause we need to order the def we will place relative to the 194 // assume. So for the purpose of ordering, we pretend the def is right 195 // after the assume, because that is where we will insert the info. 196 if (!VD.U) { 197 assert(VD.PInfo && 198 "No def, no use, and no predicateinfo should not occur"); 199 assert(isa<PredicateAssume>(VD.PInfo) && 200 "Middle of block should only occur for assumes"); 201 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode(); 202 } 203 return nullptr; 204 } 205 206 // Return either the Def, if it's not null, or the user of the Use, if the def 207 // is null. 208 const Instruction *getDefOrUser(const Value *Def, const Use *U) const { 209 if (Def) 210 return cast<Instruction>(Def); 211 return cast<Instruction>(U->getUser()); 212 } 213 214 // This performs the necessary local basic block ordering checks to tell 215 // whether A comes before B, where both are in the same basic block. 216 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { 217 auto *ADef = getMiddleDef(A); 218 auto *BDef = getMiddleDef(B); 219 220 // See if we have real values or uses. If we have real values, we are 221 // guaranteed they are instructions or arguments. No matter what, we are 222 // guaranteed they are in the same block if they are instructions. 223 auto *ArgA = dyn_cast_or_null<Argument>(ADef); 224 auto *ArgB = dyn_cast_or_null<Argument>(BDef); 225 226 if (ArgA || ArgB) 227 return valueComesBefore(ArgA, ArgB); 228 229 auto *AInst = getDefOrUser(ADef, A.U); 230 auto *BInst = getDefOrUser(BDef, B.U); 231 return valueComesBefore(AInst, BInst); 232 } 233 }; 234 235 class PredicateInfoBuilder { 236 // Used to store information about each value we might rename. 237 struct ValueInfo { 238 SmallVector<PredicateBase *, 4> Infos; 239 }; 240 241 PredicateInfo &PI; 242 Function &F; 243 DominatorTree &DT; 244 AssumptionCache &AC; 245 246 // This stores info about each operand or comparison result we make copies 247 // of. The real ValueInfos start at index 1, index 0 is unused so that we 248 // can more easily detect invalid indexing. 249 SmallVector<ValueInfo, 32> ValueInfos; 250 251 // This gives the index into the ValueInfos array for a given Value. Because 252 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell 253 // whether it returned a valid result. 254 DenseMap<Value *, unsigned int> ValueInfoNums; 255 256 // The set of edges along which we can only handle phi uses, due to critical 257 // edges. 258 DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly; 259 260 ValueInfo &getOrCreateValueInfo(Value *); 261 const ValueInfo &getValueInfo(Value *) const; 262 263 void processAssume(IntrinsicInst *, BasicBlock *, 264 SmallVectorImpl<Value *> &OpsToRename); 265 void processBranch(BranchInst *, BasicBlock *, 266 SmallVectorImpl<Value *> &OpsToRename); 267 void processSwitch(SwitchInst *, BasicBlock *, 268 SmallVectorImpl<Value *> &OpsToRename); 269 void renameUses(SmallVectorImpl<Value *> &OpsToRename); 270 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op, 271 PredicateBase *PB); 272 273 typedef SmallVectorImpl<ValueDFS> ValueDFSStack; 274 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &); 275 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *); 276 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const; 277 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &); 278 279 public: 280 PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, 281 AssumptionCache &AC) 282 : PI(PI), F(F), DT(DT), AC(AC) { 283 // Push an empty operand info so that we can detect 0 as not finding one 284 ValueInfos.resize(1); 285 } 286 287 void buildPredicateInfo(); 288 }; 289 290 bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack, 291 const ValueDFS &VDUse) const { 292 if (Stack.empty()) 293 return false; 294 // If it's a phi only use, make sure it's for this phi node edge, and that the 295 // use is in a phi node. If it's anything else, and the top of the stack is 296 // EdgeOnly, we need to pop the stack. We deliberately sort phi uses next to 297 // the defs they must go with so that we can know it's time to pop the stack 298 // when we hit the end of the phi uses for a given def. 299 if (Stack.back().EdgeOnly) { 300 if (!VDUse.U) 301 return false; 302 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); 303 if (!PHI) 304 return false; 305 // Check edge 306 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); 307 if (EdgePred != getBranchBlock(Stack.back().PInfo)) 308 return false; 309 310 // Use dominates, which knows how to handle edge dominance. 311 return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); 312 } 313 314 return (VDUse.DFSIn >= Stack.back().DFSIn && 315 VDUse.DFSOut <= Stack.back().DFSOut); 316 } 317 318 void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack, 319 const ValueDFS &VD) { 320 while (!Stack.empty() && !stackIsInScope(Stack, VD)) 321 Stack.pop_back(); 322 } 323 324 // Convert the uses of Op into a vector of uses, associating global and local 325 // DFS info with each one. 326 void PredicateInfoBuilder::convertUsesToDFSOrdered( 327 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { 328 for (auto &U : Op->uses()) { 329 if (auto *I = dyn_cast<Instruction>(U.getUser())) { 330 ValueDFS VD; 331 // Put the phi node uses in the incoming block. 332 BasicBlock *IBlock; 333 if (auto *PN = dyn_cast<PHINode>(I)) { 334 IBlock = PN->getIncomingBlock(U); 335 // Make phi node users appear last in the incoming block 336 // they are from. 337 VD.LocalNum = LN_Last; 338 } else { 339 // If it's not a phi node use, it is somewhere in the middle of the 340 // block. 341 IBlock = I->getParent(); 342 VD.LocalNum = LN_Middle; 343 } 344 DomTreeNode *DomNode = DT.getNode(IBlock); 345 // It's possible our use is in an unreachable block. Skip it if so. 346 if (!DomNode) 347 continue; 348 VD.DFSIn = DomNode->getDFSNumIn(); 349 VD.DFSOut = DomNode->getDFSNumOut(); 350 VD.U = &U; 351 DFSOrderedSet.push_back(VD); 352 } 353 } 354 } 355 356 bool shouldRename(Value *V) { 357 // Only want real values, not constants. Additionally, operands with one use 358 // are only being used in the comparison, which means they will not be useful 359 // for us to consider for predicateinfo. 360 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse(); 361 } 362 363 // Collect relevant operations from Comparison that we may want to insert copies 364 // for. 365 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { 366 auto *Op0 = Comparison->getOperand(0); 367 auto *Op1 = Comparison->getOperand(1); 368 if (Op0 == Op1) 369 return; 370 371 CmpOperands.push_back(Op0); 372 CmpOperands.push_back(Op1); 373 } 374 375 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. 376 void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename, 377 Value *Op, PredicateBase *PB) { 378 auto &OperandInfo = getOrCreateValueInfo(Op); 379 if (OperandInfo.Infos.empty()) 380 OpsToRename.push_back(Op); 381 PI.AllInfos.push_back(PB); 382 OperandInfo.Infos.push_back(PB); 383 } 384 385 // Process an assume instruction and place relevant operations we want to rename 386 // into OpsToRename. 387 void PredicateInfoBuilder::processAssume( 388 IntrinsicInst *II, BasicBlock *AssumeBB, 389 SmallVectorImpl<Value *> &OpsToRename) { 390 SmallVector<Value *, 4> Worklist; 391 SmallPtrSet<Value *, 4> Visited; 392 Worklist.push_back(II->getOperand(0)); 393 while (!Worklist.empty()) { 394 Value *Cond = Worklist.pop_back_val(); 395 if (!Visited.insert(Cond).second) 396 continue; 397 if (Visited.size() > MaxCondsPerBranch) 398 break; 399 400 Value *Op0, *Op1; 401 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 402 Worklist.push_back(Op1); 403 Worklist.push_back(Op0); 404 } 405 406 SmallVector<Value *, 4> Values; 407 Values.push_back(Cond); 408 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 409 collectCmpOps(Cmp, Values); 410 411 for (Value *V : Values) { 412 if (shouldRename(V)) { 413 auto *PA = new PredicateAssume(V, II, Cond); 414 addInfoFor(OpsToRename, V, PA); 415 } 416 } 417 } 418 } 419 420 // Process a block terminating branch, and place relevant operations to be 421 // renamed into OpsToRename. 422 void PredicateInfoBuilder::processBranch( 423 BranchInst *BI, BasicBlock *BranchBB, 424 SmallVectorImpl<Value *> &OpsToRename) { 425 BasicBlock *FirstBB = BI->getSuccessor(0); 426 BasicBlock *SecondBB = BI->getSuccessor(1); 427 428 for (BasicBlock *Succ : {FirstBB, SecondBB}) { 429 bool TakenEdge = Succ == FirstBB; 430 // Don't try to insert on a self-edge. This is mainly because we will 431 // eliminate during renaming anyway. 432 if (Succ == BranchBB) 433 continue; 434 435 SmallVector<Value *, 4> Worklist; 436 SmallPtrSet<Value *, 4> Visited; 437 Worklist.push_back(BI->getCondition()); 438 while (!Worklist.empty()) { 439 Value *Cond = Worklist.pop_back_val(); 440 if (!Visited.insert(Cond).second) 441 continue; 442 if (Visited.size() > MaxCondsPerBranch) 443 break; 444 445 Value *Op0, *Op1; 446 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) 447 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 448 Worklist.push_back(Op1); 449 Worklist.push_back(Op0); 450 } 451 452 SmallVector<Value *, 4> Values; 453 Values.push_back(Cond); 454 if (auto *Cmp = dyn_cast<CmpInst>(Cond)) 455 collectCmpOps(Cmp, Values); 456 457 for (Value *V : Values) { 458 if (shouldRename(V)) { 459 PredicateBase *PB = 460 new PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge); 461 addInfoFor(OpsToRename, V, PB); 462 if (!Succ->getSinglePredecessor()) 463 EdgeUsesOnly.insert({BranchBB, Succ}); 464 } 465 } 466 } 467 } 468 } 469 // Process a block terminating switch, and place relevant operations to be 470 // renamed into OpsToRename. 471 void PredicateInfoBuilder::processSwitch( 472 SwitchInst *SI, BasicBlock *BranchBB, 473 SmallVectorImpl<Value *> &OpsToRename) { 474 Value *Op = SI->getCondition(); 475 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) 476 return; 477 478 // Remember how many outgoing edges there are to every successor. 479 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 480 for (BasicBlock *TargetBlock : successors(BranchBB)) 481 ++SwitchEdges[TargetBlock]; 482 483 // Now propagate info for each case value 484 for (auto C : SI->cases()) { 485 BasicBlock *TargetBlock = C.getCaseSuccessor(); 486 if (SwitchEdges.lookup(TargetBlock) == 1) { 487 PredicateSwitch *PS = new PredicateSwitch( 488 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); 489 addInfoFor(OpsToRename, Op, PS); 490 if (!TargetBlock->getSinglePredecessor()) 491 EdgeUsesOnly.insert({BranchBB, TargetBlock}); 492 } 493 } 494 } 495 496 // Build predicate info for our function 497 void PredicateInfoBuilder::buildPredicateInfo() { 498 DT.updateDFSNumbers(); 499 // Collect operands to rename from all conditional branch terminators, as well 500 // as assume statements. 501 SmallVector<Value *, 8> OpsToRename; 502 for (auto *DTN : depth_first(DT.getRootNode())) { 503 BasicBlock *BranchBB = DTN->getBlock(); 504 if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { 505 if (!BI->isConditional()) 506 continue; 507 // Can't insert conditional information if they all go to the same place. 508 if (BI->getSuccessor(0) == BI->getSuccessor(1)) 509 continue; 510 processBranch(BI, BranchBB, OpsToRename); 511 } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { 512 processSwitch(SI, BranchBB, OpsToRename); 513 } 514 } 515 for (auto &Assume : AC.assumptions()) { 516 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) 517 if (DT.isReachableFromEntry(II->getParent())) 518 processAssume(II, II->getParent(), OpsToRename); 519 } 520 // Now rename all our operations. 521 renameUses(OpsToRename); 522 } 523 524 // Given the renaming stack, make all the operands currently on the stack real 525 // by inserting them into the IR. Return the last operation's value. 526 Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter, 527 ValueDFSStack &RenameStack, 528 Value *OrigOp) { 529 // Find the first thing we have to materialize 530 auto RevIter = RenameStack.rbegin(); 531 for (; RevIter != RenameStack.rend(); ++RevIter) 532 if (RevIter->Def) 533 break; 534 535 size_t Start = RevIter - RenameStack.rbegin(); 536 // The maximum number of things we should be trying to materialize at once 537 // right now is 4, depending on if we had an assume, a branch, and both used 538 // and of conditions. 539 for (auto RenameIter = RenameStack.end() - Start; 540 RenameIter != RenameStack.end(); ++RenameIter) { 541 auto *Op = 542 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; 543 ValueDFS &Result = *RenameIter; 544 auto *ValInfo = Result.PInfo; 545 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin() 546 ? OrigOp 547 : (RenameStack.end() - Start - 1)->Def; 548 // For edge predicates, we can just place the operand in the block before 549 // the terminator. For assume, we have to place it right before the assume 550 // to ensure we dominate all of our uses. Always insert right before the 551 // relevant instruction (terminator, assume), so that we insert in proper 552 // order in the case of multiple predicateinfo in the same block. 553 // The number of named values is used to detect if a new declaration was 554 // added. If so, that declaration is tracked so that it can be removed when 555 // the analysis is done. The corner case were a new declaration results in 556 // a name clash and the old name being renamed is not considered as that 557 // represents an invalid module. 558 if (isa<PredicateWithEdge>(ValInfo)) { 559 IRBuilder<> B(getBranchTerminator(ValInfo)); 560 auto NumDecls = F.getParent()->getNumNamedValues(); 561 Function *IF = Intrinsic::getOrInsertDeclaration( 562 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 563 if (NumDecls != F.getParent()->getNumNamedValues()) 564 PI.CreatedDeclarations.insert(IF); 565 CallInst *PIC = 566 B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); 567 PI.PredicateMap.insert({PIC, ValInfo}); 568 Result.Def = PIC; 569 } else { 570 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); 571 assert(PAssume && 572 "Should not have gotten here without it being an assume"); 573 // Insert the predicate directly after the assume. While it also holds 574 // directly before it, assume(i1 true) is not a useful fact. 575 IRBuilder<> B(PAssume->AssumeInst->getNextNode()); 576 auto NumDecls = F.getParent()->getNumNamedValues(); 577 Function *IF = Intrinsic::getOrInsertDeclaration( 578 F.getParent(), Intrinsic::ssa_copy, Op->getType()); 579 if (NumDecls != F.getParent()->getNumNamedValues()) 580 PI.CreatedDeclarations.insert(IF); 581 CallInst *PIC = B.CreateCall(IF, Op); 582 PI.PredicateMap.insert({PIC, ValInfo}); 583 Result.Def = PIC; 584 } 585 } 586 return RenameStack.back().Def; 587 } 588 589 // Instead of the standard SSA renaming algorithm, which is O(Number of 590 // instructions), and walks the entire dominator tree, we walk only the defs + 591 // uses. The standard SSA renaming algorithm does not really rely on the 592 // dominator tree except to order the stack push/pops of the renaming stacks, so 593 // that defs end up getting pushed before hitting the correct uses. This does 594 // not require the dominator tree, only the *order* of the dominator tree. The 595 // complete and correct ordering of the defs and uses, in dominator tree is 596 // contained in the DFS numbering of the dominator tree. So we sort the defs and 597 // uses into the DFS ordering, and then just use the renaming stack as per 598 // normal, pushing when we hit a def (which is a predicateinfo instruction), 599 // popping when we are out of the dfs scope for that def, and replacing any uses 600 // with top of stack if it exists. In order to handle liveness without 601 // propagating liveness info, we don't actually insert the predicateinfo 602 // instruction def until we see a use that it would dominate. Once we see such 603 // a use, we materialize the predicateinfo instruction in the right place and 604 // use it. 605 // 606 // TODO: Use this algorithm to perform fast single-variable renaming in 607 // promotememtoreg and memoryssa. 608 void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) { 609 ValueDFS_Compare Compare(DT); 610 // Compute liveness, and rename in O(uses) per Op. 611 for (auto *Op : OpsToRename) { 612 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n"); 613 unsigned Counter = 0; 614 SmallVector<ValueDFS, 16> OrderedUses; 615 const auto &ValueInfo = getValueInfo(Op); 616 // Insert the possible copies into the def/use list. 617 // They will become real copies if we find a real use for them, and never 618 // created otherwise. 619 for (const auto &PossibleCopy : ValueInfo.Infos) { 620 ValueDFS VD; 621 // Determine where we are going to place the copy by the copy type. 622 // The predicate info for branches always come first, they will get 623 // materialized in the split block at the top of the block. 624 // The predicate info for assumes will be somewhere in the middle, 625 // it will get materialized in front of the assume. 626 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { 627 VD.LocalNum = LN_Middle; 628 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); 629 if (!DomNode) 630 continue; 631 VD.DFSIn = DomNode->getDFSNumIn(); 632 VD.DFSOut = DomNode->getDFSNumOut(); 633 VD.PInfo = PossibleCopy; 634 OrderedUses.push_back(VD); 635 } else if (isa<PredicateWithEdge>(PossibleCopy)) { 636 // If we can only do phi uses, we treat it like it's in the branch 637 // block, and handle it specially. We know that it goes last, and only 638 // dominate phi uses. 639 auto BlockEdge = getBlockEdge(PossibleCopy); 640 if (EdgeUsesOnly.count(BlockEdge)) { 641 VD.LocalNum = LN_Last; 642 auto *DomNode = DT.getNode(BlockEdge.first); 643 if (DomNode) { 644 VD.DFSIn = DomNode->getDFSNumIn(); 645 VD.DFSOut = DomNode->getDFSNumOut(); 646 VD.PInfo = PossibleCopy; 647 VD.EdgeOnly = true; 648 OrderedUses.push_back(VD); 649 } 650 } else { 651 // Otherwise, we are in the split block (even though we perform 652 // insertion in the branch block). 653 // Insert a possible copy at the split block and before the branch. 654 VD.LocalNum = LN_First; 655 auto *DomNode = DT.getNode(BlockEdge.second); 656 if (DomNode) { 657 VD.DFSIn = DomNode->getDFSNumIn(); 658 VD.DFSOut = DomNode->getDFSNumOut(); 659 VD.PInfo = PossibleCopy; 660 OrderedUses.push_back(VD); 661 } 662 } 663 } 664 } 665 666 convertUsesToDFSOrdered(Op, OrderedUses); 667 // Here we require a stable sort because we do not bother to try to 668 // assign an order to the operands the uses represent. Thus, two 669 // uses in the same instruction do not have a strict sort order 670 // currently and will be considered equal. We could get rid of the 671 // stable sort by creating one if we wanted. 672 llvm::stable_sort(OrderedUses, Compare); 673 SmallVector<ValueDFS, 8> RenameStack; 674 // For each use, sorted into dfs order, push values and replaces uses with 675 // top of stack, which will represent the reaching def. 676 for (auto &VD : OrderedUses) { 677 // We currently do not materialize copy over copy, but we should decide if 678 // we want to. 679 bool PossibleCopy = VD.PInfo != nullptr; 680 if (RenameStack.empty()) { 681 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); 682 } else { 683 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" 684 << RenameStack.back().DFSIn << "," 685 << RenameStack.back().DFSOut << ")\n"); 686 } 687 688 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," 689 << VD.DFSOut << ")\n"); 690 691 bool ShouldPush = (VD.Def || PossibleCopy); 692 bool OutOfScope = !stackIsInScope(RenameStack, VD); 693 if (OutOfScope || ShouldPush) { 694 // Sync to our current scope. 695 popStackUntilDFSScope(RenameStack, VD); 696 if (ShouldPush) { 697 RenameStack.push_back(VD); 698 } 699 } 700 // If we get to this point, and the stack is empty we must have a use 701 // with no renaming needed, just skip it. 702 if (RenameStack.empty()) 703 continue; 704 // Skip values, only want to rename the uses 705 if (VD.Def || PossibleCopy) 706 continue; 707 if (!DebugCounter::shouldExecute(RenameCounter)) { 708 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); 709 continue; 710 } 711 ValueDFS &Result = RenameStack.back(); 712 713 // If the possible copy dominates something, materialize our stack up to 714 // this point. This ensures every comparison that affects our operation 715 // ends up with predicateinfo. 716 if (!Result.Def) 717 Result.Def = materializeStack(Counter, RenameStack, Op); 718 719 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " 720 << *VD.U->get() << " in " << *(VD.U->getUser()) 721 << "\n"); 722 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && 723 "Predicateinfo def should have dominated this use"); 724 VD.U->set(Result.Def); 725 } 726 } 727 } 728 729 PredicateInfoBuilder::ValueInfo & 730 PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) { 731 auto OIN = ValueInfoNums.find(Operand); 732 if (OIN == ValueInfoNums.end()) { 733 // This will grow it 734 ValueInfos.resize(ValueInfos.size() + 1); 735 // This will use the new size and give us a 0 based number of the info 736 auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); 737 assert(InsertResult.second && "Value info number already existed?"); 738 return ValueInfos[InsertResult.first->second]; 739 } 740 return ValueInfos[OIN->second]; 741 } 742 743 const PredicateInfoBuilder::ValueInfo & 744 PredicateInfoBuilder::getValueInfo(Value *Operand) const { 745 auto OINI = ValueInfoNums.lookup(Operand); 746 assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); 747 assert(OINI < ValueInfos.size() && 748 "Value Info Number greater than size of Value Info Table"); 749 return ValueInfos[OINI]; 750 } 751 752 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, 753 AssumptionCache &AC) 754 : F(F) { 755 PredicateInfoBuilder Builder(*this, F, DT, AC); 756 Builder.buildPredicateInfo(); 757 } 758 759 // Remove all declarations we created . The PredicateInfo consumers are 760 // responsible for remove the ssa_copy calls created. 761 PredicateInfo::~PredicateInfo() { 762 // Collect function pointers in set first, as SmallSet uses a SmallVector 763 // internally and we have to remove the asserting value handles first. 764 SmallPtrSet<Function *, 20> FunctionPtrs; 765 for (const auto &F : CreatedDeclarations) 766 FunctionPtrs.insert(&*F); 767 CreatedDeclarations.clear(); 768 769 for (Function *F : FunctionPtrs) { 770 assert(F->user_begin() == F->user_end() && 771 "PredicateInfo consumer did not remove all SSA copies."); 772 F->eraseFromParent(); 773 } 774 } 775 776 std::optional<PredicateConstraint> PredicateBase::getConstraint() const { 777 switch (Type) { 778 case PT_Assume: 779 case PT_Branch: { 780 bool TrueEdge = true; 781 if (auto *PBranch = dyn_cast<PredicateBranch>(this)) 782 TrueEdge = PBranch->TrueEdge; 783 784 if (Condition == RenamedOp) { 785 return {{CmpInst::ICMP_EQ, 786 TrueEdge ? ConstantInt::getTrue(Condition->getType()) 787 : ConstantInt::getFalse(Condition->getType())}}; 788 } 789 790 CmpInst *Cmp = dyn_cast<CmpInst>(Condition); 791 if (!Cmp) { 792 // TODO: Make this an assertion once RenamedOp is fully accurate. 793 return std::nullopt; 794 } 795 796 CmpInst::Predicate Pred; 797 Value *OtherOp; 798 if (Cmp->getOperand(0) == RenamedOp) { 799 Pred = Cmp->getPredicate(); 800 OtherOp = Cmp->getOperand(1); 801 } else if (Cmp->getOperand(1) == RenamedOp) { 802 Pred = Cmp->getSwappedPredicate(); 803 OtherOp = Cmp->getOperand(0); 804 } else { 805 // TODO: Make this an assertion once RenamedOp is fully accurate. 806 return std::nullopt; 807 } 808 809 // Invert predicate along false edge. 810 if (!TrueEdge) 811 Pred = CmpInst::getInversePredicate(Pred); 812 813 return {{Pred, OtherOp}}; 814 } 815 case PT_Switch: 816 if (Condition != RenamedOp) { 817 // TODO: Make this an assertion once RenamedOp is fully accurate. 818 return std::nullopt; 819 } 820 821 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}}; 822 } 823 llvm_unreachable("Unknown predicate type"); 824 } 825 826 void PredicateInfo::verifyPredicateInfo() const {} 827 828 // Replace ssa_copy calls created by PredicateInfo with their operand. 829 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) { 830 for (Instruction &Inst : llvm::make_early_inc_range(instructions(F))) { 831 const auto *PI = PredInfo.getPredicateInfoFor(&Inst); 832 auto *II = dyn_cast<IntrinsicInst>(&Inst); 833 if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy) 834 continue; 835 836 Inst.replaceAllUsesWith(II->getOperand(0)); 837 Inst.eraseFromParent(); 838 } 839 } 840 841 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, 842 FunctionAnalysisManager &AM) { 843 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 844 auto &AC = AM.getResult<AssumptionAnalysis>(F); 845 OS << "PredicateInfo for function: " << F.getName() << "\n"; 846 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC); 847 PredInfo->print(OS); 848 849 replaceCreatedSSACopys(*PredInfo, F); 850 return PreservedAnalyses::all(); 851 } 852 853 /// An assembly annotator class to print PredicateInfo information in 854 /// comments. 855 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { 856 friend class PredicateInfo; 857 const PredicateInfo *PredInfo; 858 859 public: 860 PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} 861 862 void emitBasicBlockStartAnnot(const BasicBlock *BB, 863 formatted_raw_ostream &OS) override {} 864 865 void emitInstructionAnnot(const Instruction *I, 866 formatted_raw_ostream &OS) override { 867 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { 868 OS << "; Has predicate info\n"; 869 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { 870 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge 871 << " Comparison:" << *PB->Condition << " Edge: ["; 872 PB->From->printAsOperand(OS); 873 OS << ","; 874 PB->To->printAsOperand(OS); 875 OS << "]"; 876 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { 877 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue 878 << " Switch:" << *PS->Switch << " Edge: ["; 879 PS->From->printAsOperand(OS); 880 OS << ","; 881 PS->To->printAsOperand(OS); 882 OS << "]"; 883 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { 884 OS << "; assume predicate info {" 885 << " Comparison:" << *PA->Condition; 886 } 887 OS << ", RenamedOp: "; 888 PI->RenamedOp->printAsOperand(OS, false); 889 OS << " }\n"; 890 } 891 } 892 }; 893 894 void PredicateInfo::print(raw_ostream &OS) const { 895 PredicateInfoAnnotatedWriter Writer(this); 896 F.print(OS, &Writer); 897 } 898 899 void PredicateInfo::dump() const { 900 PredicateInfoAnnotatedWriter Writer(this); 901 F.print(dbgs(), &Writer); 902 } 903 904 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, 905 FunctionAnalysisManager &AM) { 906 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 907 auto &AC = AM.getResult<AssumptionAnalysis>(F); 908 std::make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); 909 910 return PreservedAnalyses::all(); 911 } 912 } 913