1 //===-- MoveAutoInit.cpp - move auto-init inst closer to their use site----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instruction maked as auto-init closer to the basic block that 10 // use it, eventually removing it from some control path of the function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/MoveAutoInit.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/MemorySSA.h" 18 #include "llvm/Analysis/MemorySSAUpdater.h" 19 #include "llvm/Analysis/ValueTracking.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/Dominators.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Transforms/Utils/LoopUtils.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "move-auto-init" 30 31 STATISTIC(NumMoved, "Number of instructions moved"); 32 33 static cl::opt<unsigned> MoveAutoInitThreshold( 34 "move-auto-init-threshold", cl::Hidden, cl::init(128), 35 cl::desc("Maximum instructions to analyze per moved initialization")); 36 37 static bool hasAutoInitMetadata(const Instruction &I) { 38 return I.hasMetadata(LLVMContext::MD_annotation) && 39 any_of(I.getMetadata(LLVMContext::MD_annotation)->operands(), 40 [](const MDOperand &Op) { return Op.equalsStr("auto-init"); }); 41 } 42 43 static std::optional<MemoryLocation> writeToAlloca(const Instruction &I) { 44 MemoryLocation ML; 45 if (auto *MI = dyn_cast<MemIntrinsic>(&I)) 46 ML = MemoryLocation::getForDest(MI); 47 else if (auto *SI = dyn_cast<StoreInst>(&I)) 48 ML = MemoryLocation::get(SI); 49 else 50 return std::nullopt; 51 52 if (isa<AllocaInst>(getUnderlyingObject(ML.Ptr))) 53 return ML; 54 else 55 return {}; 56 } 57 58 /// Finds a BasicBlock in the CFG where instruction `I` can be moved to while 59 /// not changing the Memory SSA ordering and being guarded by at least one 60 /// condition. 61 static BasicBlock *usersDominator(const MemoryLocation &ML, Instruction *I, 62 DominatorTree &DT, MemorySSA &MSSA) { 63 BasicBlock *CurrentDominator = nullptr; 64 MemoryUseOrDef &IMA = *MSSA.getMemoryAccess(I); 65 BatchAAResults AA(MSSA.getAA()); 66 67 SmallPtrSet<MemoryAccess *, 8> Visited; 68 69 auto AsMemoryAccess = [](User *U) { return cast<MemoryAccess>(U); }; 70 SmallVector<MemoryAccess *> WorkList(map_range(IMA.users(), AsMemoryAccess)); 71 72 while (!WorkList.empty()) { 73 MemoryAccess *MA = WorkList.pop_back_val(); 74 if (!Visited.insert(MA).second) 75 continue; 76 77 if (Visited.size() > MoveAutoInitThreshold) 78 return nullptr; 79 80 bool FoundClobberingUser = false; 81 if (auto *M = dyn_cast<MemoryUseOrDef>(MA)) { 82 Instruction *MI = M->getMemoryInst(); 83 84 // If this memory instruction may not clobber `I`, we can skip it. 85 // LifetimeEnd is a valid user, but we do not want it in the user 86 // dominator. 87 if (AA.getModRefInfo(MI, ML) != ModRefInfo::NoModRef && 88 !MI->isLifetimeStartOrEnd() && MI != I) { 89 FoundClobberingUser = true; 90 CurrentDominator = CurrentDominator 91 ? DT.findNearestCommonDominator(CurrentDominator, 92 MI->getParent()) 93 : MI->getParent(); 94 } 95 } 96 if (!FoundClobberingUser) { 97 auto UsersAsMemoryAccesses = map_range(MA->users(), AsMemoryAccess); 98 append_range(WorkList, UsersAsMemoryAccesses); 99 } 100 } 101 return CurrentDominator; 102 } 103 104 static bool runMoveAutoInit(Function &F, DominatorTree &DT, MemorySSA &MSSA) { 105 BasicBlock &EntryBB = F.getEntryBlock(); 106 SmallVector<std::pair<Instruction *, BasicBlock *>> JobList; 107 108 // 109 // Compute movable instructions. 110 // 111 for (Instruction &I : EntryBB) { 112 if (!hasAutoInitMetadata(I)) 113 continue; 114 115 std::optional<MemoryLocation> ML = writeToAlloca(I); 116 if (!ML) 117 continue; 118 119 if (I.isVolatile()) 120 continue; 121 122 BasicBlock *UsersDominator = usersDominator(ML.value(), &I, DT, MSSA); 123 if (!UsersDominator) 124 continue; 125 126 if (UsersDominator == &EntryBB) 127 continue; 128 129 // Traverse the CFG to detect cycles `UsersDominator` would be part of. 130 SmallPtrSet<BasicBlock *, 8> TransitiveSuccessors; 131 SmallVector<BasicBlock *> WorkList(successors(UsersDominator)); 132 bool HasCycle = false; 133 while (!WorkList.empty()) { 134 BasicBlock *CurrBB = WorkList.pop_back_val(); 135 if (CurrBB == UsersDominator) 136 // No early exit because we want to compute the full set of transitive 137 // successors. 138 HasCycle = true; 139 for (BasicBlock *Successor : successors(CurrBB)) { 140 if (!TransitiveSuccessors.insert(Successor).second) 141 continue; 142 WorkList.push_back(Successor); 143 } 144 } 145 146 // Don't insert if that could create multiple execution of I, 147 // but we can insert it in the non back-edge predecessors, if it exists. 148 if (HasCycle) { 149 BasicBlock *UsersDominatorHead = UsersDominator; 150 while (BasicBlock *UniquePredecessor = 151 UsersDominatorHead->getUniquePredecessor()) 152 UsersDominatorHead = UniquePredecessor; 153 154 if (UsersDominatorHead == &EntryBB) 155 continue; 156 157 BasicBlock *DominatingPredecessor = nullptr; 158 for (BasicBlock *Pred : predecessors(UsersDominatorHead)) { 159 // If one of the predecessor of the dominator also transitively is a 160 // successor, moving to the dominator would do the inverse of loop 161 // hoisting, and we don't want that. 162 if (TransitiveSuccessors.count(Pred)) 163 continue; 164 165 if (!DT.isReachableFromEntry(Pred)) 166 continue; 167 168 DominatingPredecessor = 169 DominatingPredecessor 170 ? DT.findNearestCommonDominator(DominatingPredecessor, Pred) 171 : Pred; 172 } 173 174 if (!DominatingPredecessor || DominatingPredecessor == &EntryBB) 175 continue; 176 177 UsersDominator = DominatingPredecessor; 178 } 179 180 // CatchSwitchInst blocks can only have one instruction, so they are not 181 // good candidates for insertion. 182 while (isa<CatchSwitchInst>(UsersDominator->getFirstNonPHIIt())) { 183 for (BasicBlock *Pred : predecessors(UsersDominator)) 184 if (DT.isReachableFromEntry(Pred)) 185 UsersDominator = DT.findNearestCommonDominator(UsersDominator, Pred); 186 } 187 188 // We finally found a place where I can be moved while not introducing extra 189 // execution, and guarded by at least one condition. 190 if (UsersDominator != &EntryBB) 191 JobList.emplace_back(&I, UsersDominator); 192 } 193 194 // 195 // Perform the actual substitution. 196 // 197 if (JobList.empty()) 198 return false; 199 200 MemorySSAUpdater MSSAU(&MSSA); 201 202 // Reverse insertion to respect relative order between instructions: 203 // if two instructions are moved from the same BB to the same BB, we insert 204 // the second one in the front, then the first on top of it. 205 for (auto &Job : reverse(JobList)) { 206 Job.first->moveBefore(*Job.second, Job.second->getFirstInsertionPt()); 207 MSSAU.moveToPlace(MSSA.getMemoryAccess(Job.first), Job.first->getParent(), 208 MemorySSA::InsertionPlace::Beginning); 209 } 210 211 if (VerifyMemorySSA) 212 MSSA.verifyMemorySSA(); 213 214 NumMoved += JobList.size(); 215 216 return true; 217 } 218 219 PreservedAnalyses MoveAutoInitPass::run(Function &F, 220 FunctionAnalysisManager &AM) { 221 222 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 223 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 224 if (!runMoveAutoInit(F, DT, MSSA)) 225 return PreservedAnalyses::all(); 226 227 PreservedAnalyses PA; 228 PA.preserve<DominatorTreeAnalysis>(); 229 PA.preserve<MemorySSAAnalysis>(); 230 PA.preserveSet<CFGAnalyses>(); 231 return PA; 232 } 233