1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LowerSwitch transformation rewrites switch instructions with a sequence 10 // of branches, which allows targets to get away with not implementing the 11 // switch instruction until it is convenient. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/LowerSwitch.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/AssumptionCache.h" 21 #include "llvm/Analysis/LazyValueInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/PassManager.h" 31 #include "llvm/IR/Value.h" 32 #include "llvm/InitializePasses.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/KnownBits.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "lower-switch" 48 49 namespace { 50 51 struct IntRange { 52 APInt Low, High; 53 }; 54 55 } // end anonymous namespace 56 57 namespace { 58 // Return true iff R is covered by Ranges. 59 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) { 60 // Note: Ranges must be sorted, non-overlapping and non-adjacent. 61 62 // Find the first range whose High field is >= R.High, 63 // then check if the Low field is <= R.Low. If so, we 64 // have a Range that covers R. 65 auto I = llvm::lower_bound( 66 Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); }); 67 return I != Ranges.end() && I->Low.sle(R.Low); 68 } 69 70 struct CaseRange { 71 ConstantInt *Low; 72 ConstantInt *High; 73 BasicBlock *BB; 74 75 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb) 76 : Low(low), High(high), BB(bb) {} 77 }; 78 79 using CaseVector = std::vector<CaseRange>; 80 using CaseItr = std::vector<CaseRange>::iterator; 81 82 /// The comparison function for sorting the switch case values in the vector. 83 /// WARNING: Case ranges should be disjoint! 84 struct CaseCmp { 85 bool operator()(const CaseRange &C1, const CaseRange &C2) { 86 const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low); 87 const ConstantInt *CI2 = cast<const ConstantInt>(C2.High); 88 return CI1->getValue().slt(CI2->getValue()); 89 } 90 }; 91 92 /// Used for debugging purposes. 93 LLVM_ATTRIBUTE_USED 94 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) { 95 O << "["; 96 97 for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) { 98 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]"; 99 if (++B != E) 100 O << ", "; 101 } 102 103 return O << "]"; 104 } 105 106 /// Update the first occurrence of the "switch statement" BB in the PHI 107 /// node with the "new" BB. The other occurrences will: 108 /// 109 /// 1) Be updated by subsequent calls to this function. Switch statements may 110 /// have more than one outcoming edge into the same BB if they all have the same 111 /// value. When the switch statement is converted these incoming edges are now 112 /// coming from multiple BBs. 113 /// 2) Removed if subsequent incoming values now share the same case, i.e., 114 /// multiple outcome edges are condensed into one. This is necessary to keep the 115 /// number of phi values equal to the number of branches to SuccBB. 116 void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB, 117 const APInt &NumMergedCases) { 118 for (auto &I : SuccBB->phis()) { 119 PHINode *PN = cast<PHINode>(&I); 120 121 // Only update the first occurrence if NewBB exists. 122 unsigned Idx = 0, E = PN->getNumIncomingValues(); 123 APInt LocalNumMergedCases = NumMergedCases; 124 for (; Idx != E && NewBB; ++Idx) { 125 if (PN->getIncomingBlock(Idx) == OrigBB) { 126 PN->setIncomingBlock(Idx, NewBB); 127 break; 128 } 129 } 130 131 // Skip the updated incoming block so that it will not be removed. 132 if (NewBB) 133 ++Idx; 134 135 // Remove additional occurrences coming from condensed cases and keep the 136 // number of incoming values equal to the number of branches to SuccBB. 137 SmallVector<unsigned, 8> Indices; 138 for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx) 139 if (PN->getIncomingBlock(Idx) == OrigBB) { 140 Indices.push_back(Idx); 141 LocalNumMergedCases -= 1; 142 } 143 // Remove incoming values in the reverse order to prevent invalidating 144 // *successive* index. 145 for (unsigned III : llvm::reverse(Indices)) 146 PN->removeIncomingValue(III); 147 } 148 } 149 150 /// Create a new leaf block for the binary lookup tree. It checks if the 151 /// switch's value == the case's value. If not, then it jumps to the default 152 /// branch. At this point in the tree, the value can't be another valid case 153 /// value, so the jump to the "default" branch is warranted. 154 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound, 155 ConstantInt *UpperBound, BasicBlock *OrigBlock, 156 BasicBlock *Default) { 157 Function *F = OrigBlock->getParent(); 158 BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock"); 159 F->insert(++OrigBlock->getIterator(), NewLeaf); 160 161 // Emit comparison 162 ICmpInst *Comp = nullptr; 163 if (Leaf.Low == Leaf.High) { 164 // Make the seteq instruction... 165 Comp = 166 new ICmpInst(NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf"); 167 } else { 168 // Make range comparison 169 if (Leaf.Low == LowerBound) { 170 // Val >= Min && Val <= Hi --> Val <= Hi 171 Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High, 172 "SwitchLeaf"); 173 } else if (Leaf.High == UpperBound) { 174 // Val <= Max && Val >= Lo --> Val >= Lo 175 Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low, 176 "SwitchLeaf"); 177 } else if (Leaf.Low->isZero()) { 178 // Val >= 0 && Val <= Hi --> Val <=u Hi 179 Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High, 180 "SwitchLeaf"); 181 } else { 182 // Emit V-Lo <=u Hi-Lo 183 Constant *NegLo = ConstantExpr::getNeg(Leaf.Low); 184 Instruction *Add = BinaryOperator::CreateAdd( 185 Val, NegLo, Val->getName() + ".off", NewLeaf); 186 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High); 187 Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound, 188 "SwitchLeaf"); 189 } 190 } 191 192 // Make the conditional branch... 193 BasicBlock *Succ = Leaf.BB; 194 BranchInst::Create(Succ, Default, Comp, NewLeaf); 195 196 // Update the PHI incoming value/block for the default. 197 for (auto &I : Default->phis()) { 198 PHINode *PN = cast<PHINode>(&I); 199 auto *V = PN->getIncomingValueForBlock(OrigBlock); 200 PN->addIncoming(V, NewLeaf); 201 } 202 203 // If there were any PHI nodes in this successor, rewrite one entry 204 // from OrigBlock to come from NewLeaf. 205 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 206 PHINode *PN = cast<PHINode>(I); 207 // Remove all but one incoming entries from the cluster 208 APInt Range = Leaf.High->getValue() - Leaf.Low->getValue(); 209 for (APInt j(Range.getBitWidth(), 0, false); j.ult(Range); ++j) { 210 PN->removeIncomingValue(OrigBlock); 211 } 212 213 int BlockIdx = PN->getBasicBlockIndex(OrigBlock); 214 assert(BlockIdx != -1 && "Switch didn't go to this successor??"); 215 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf); 216 } 217 218 return NewLeaf; 219 } 220 221 /// Convert the switch statement into a binary lookup of the case values. 222 /// The function recursively builds this tree. LowerBound and UpperBound are 223 /// used to keep track of the bounds for Val that have already been checked by 224 /// a block emitted by one of the previous calls to switchConvert in the call 225 /// stack. 226 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound, 227 ConstantInt *UpperBound, Value *Val, 228 BasicBlock *Predecessor, BasicBlock *OrigBlock, 229 BasicBlock *Default, 230 const std::vector<IntRange> &UnreachableRanges) { 231 assert(LowerBound && UpperBound && "Bounds must be initialized"); 232 unsigned Size = End - Begin; 233 234 if (Size == 1) { 235 // Check if the Case Range is perfectly squeezed in between 236 // already checked Upper and Lower bounds. If it is then we can avoid 237 // emitting the code that checks if the value actually falls in the range 238 // because the bounds already tell us so. 239 if (Begin->Low == LowerBound && Begin->High == UpperBound) { 240 APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue(); 241 FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases); 242 return Begin->BB; 243 } 244 return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock, 245 Default); 246 } 247 248 unsigned Mid = Size / 2; 249 std::vector<CaseRange> LHS(Begin, Begin + Mid); 250 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n"); 251 std::vector<CaseRange> RHS(Begin + Mid, End); 252 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n"); 253 254 CaseRange &Pivot = *(Begin + Mid); 255 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", " 256 << Pivot.High->getValue() << "]\n"); 257 258 // NewLowerBound here should never be the integer minimal value. 259 // This is because it is computed from a case range that is never 260 // the smallest, so there is always a case range that has at least 261 // a smaller value. 262 ConstantInt *NewLowerBound = Pivot.Low; 263 264 // Because NewLowerBound is never the smallest representable integer 265 // it is safe here to subtract one. 266 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(), 267 NewLowerBound->getValue() - 1); 268 269 if (!UnreachableRanges.empty()) { 270 // Check if the gap between LHS's highest and NewLowerBound is unreachable. 271 APInt GapLow = LHS.back().High->getValue() + 1; 272 APInt GapHigh = NewLowerBound->getValue() - 1; 273 IntRange Gap = {GapLow, GapHigh}; 274 if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges)) 275 NewUpperBound = LHS.back().High; 276 } 277 278 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", " 279 << NewUpperBound->getValue() << "]\n" 280 << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", " 281 << UpperBound->getValue() << "]\n"); 282 283 // Create a new node that checks if the value is < pivot. Go to the 284 // left branch if it is and right branch if not. 285 Function *F = OrigBlock->getParent(); 286 BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock"); 287 288 ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot"); 289 290 BasicBlock *LBranch = 291 SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val, 292 NewNode, OrigBlock, Default, UnreachableRanges); 293 BasicBlock *RBranch = 294 SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val, 295 NewNode, OrigBlock, Default, UnreachableRanges); 296 297 F->insert(++OrigBlock->getIterator(), NewNode); 298 Comp->insertInto(NewNode, NewNode->end()); 299 300 BranchInst::Create(LBranch, RBranch, Comp, NewNode); 301 return NewNode; 302 } 303 304 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases. 305 /// \post \p Cases wouldn't contain references to \p SI's default BB. 306 /// \returns Number of \p SI's cases that do not reference \p SI's default BB. 307 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) { 308 unsigned NumSimpleCases = 0; 309 310 // Start with "simple" cases 311 for (auto Case : SI->cases()) { 312 if (Case.getCaseSuccessor() == SI->getDefaultDest()) 313 continue; 314 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(), 315 Case.getCaseSuccessor())); 316 ++NumSimpleCases; 317 } 318 319 llvm::sort(Cases, CaseCmp()); 320 321 // Merge case into clusters 322 if (Cases.size() >= 2) { 323 CaseItr I = Cases.begin(); 324 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) { 325 const APInt &nextValue = J->Low->getValue(); 326 const APInt ¤tValue = I->High->getValue(); 327 BasicBlock *nextBB = J->BB; 328 BasicBlock *currentBB = I->BB; 329 330 // If the two neighboring cases go to the same destination, merge them 331 // into a single case. 332 assert(nextValue.sgt(currentValue) && 333 "Cases should be strictly ascending"); 334 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) { 335 I->High = J->High; 336 // FIXME: Combine branch weights. 337 } else if (++I != J) { 338 *I = *J; 339 } 340 } 341 Cases.erase(std::next(I), Cases.end()); 342 } 343 344 return NumSimpleCases; 345 } 346 347 /// Replace the specified switch instruction with a sequence of chained if-then 348 /// insts in a balanced binary search. 349 void ProcessSwitchInst(SwitchInst *SI, 350 SmallPtrSetImpl<BasicBlock *> &DeleteList, 351 AssumptionCache *AC, LazyValueInfo *LVI) { 352 BasicBlock *OrigBlock = SI->getParent(); 353 Function *F = OrigBlock->getParent(); 354 Value *Val = SI->getCondition(); // The value we are switching on... 355 BasicBlock *Default = SI->getDefaultDest(); 356 357 // Don't handle unreachable blocks. If there are successors with phis, this 358 // would leave them behind with missing predecessors. 359 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) || 360 OrigBlock->getSinglePredecessor() == OrigBlock) { 361 DeleteList.insert(OrigBlock); 362 return; 363 } 364 365 // Prepare cases vector. 366 CaseVector Cases; 367 const unsigned NumSimpleCases = Clusterify(Cases, SI); 368 IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType()); 369 const unsigned BitWidth = IT->getBitWidth(); 370 // Explicitly use higher precision to prevent unsigned overflow where 371 // `UnsignedMax - 0 + 1 == 0` 372 APInt UnsignedZero(BitWidth + 1, 0); 373 APInt UnsignedMax = APInt::getMaxValue(BitWidth); 374 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 375 << ". Total non-default cases: " << NumSimpleCases 376 << "\nCase clusters: " << Cases << "\n"); 377 378 // If there is only the default destination, just branch. 379 if (Cases.empty()) { 380 BranchInst::Create(Default, OrigBlock); 381 // Remove all the references from Default's PHIs to OrigBlock, but one. 382 FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax); 383 SI->eraseFromParent(); 384 return; 385 } 386 387 ConstantInt *LowerBound = nullptr; 388 ConstantInt *UpperBound = nullptr; 389 bool DefaultIsUnreachableFromSwitch = false; 390 391 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) { 392 // Make the bounds tightly fitted around the case value range, because we 393 // know that the value passed to the switch must be exactly one of the case 394 // values. 395 LowerBound = Cases.front().Low; 396 UpperBound = Cases.back().High; 397 DefaultIsUnreachableFromSwitch = true; 398 } else { 399 // Constraining the range of the value being switched over helps eliminating 400 // unreachable BBs and minimizing the number of `add` instructions 401 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after 402 // LowerSwitch isn't as good, and also much more expensive in terms of 403 // compile time for the following reasons: 404 // 1. it processes many kinds of instructions, not just switches; 405 // 2. even if limited to icmp instructions only, it will have to process 406 // roughly C icmp's per switch, where C is the number of cases in the 407 // switch, while LowerSwitch only needs to call LVI once per switch. 408 const DataLayout &DL = F->getDataLayout(); 409 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI); 410 // TODO Shouldn't this create a signed range? 411 ConstantRange KnownBitsRange = 412 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false); 413 const ConstantRange LVIRange = 414 LVI->getConstantRange(Val, SI, /*UndefAllowed*/ false); 415 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange); 416 // We delegate removal of unreachable non-default cases to other passes. In 417 // the unlikely event that some of them survived, we just conservatively 418 // maintain the invariant that all the cases lie between the bounds. This 419 // may, however, still render the default case effectively unreachable. 420 const APInt &Low = Cases.front().Low->getValue(); 421 const APInt &High = Cases.back().High->getValue(); 422 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low); 423 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High); 424 425 LowerBound = ConstantInt::get(SI->getContext(), Min); 426 UpperBound = ConstantInt::get(SI->getContext(), Max); 427 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max); 428 } 429 430 std::vector<IntRange> UnreachableRanges; 431 432 if (DefaultIsUnreachableFromSwitch) { 433 DenseMap<BasicBlock *, APInt> Popularity; 434 APInt MaxPop(UnsignedZero); 435 BasicBlock *PopSucc = nullptr; 436 437 APInt SignedMax = APInt::getSignedMaxValue(BitWidth); 438 APInt SignedMin = APInt::getSignedMinValue(BitWidth); 439 IntRange R = {SignedMin, SignedMax}; 440 UnreachableRanges.push_back(R); 441 for (const auto &I : Cases) { 442 const APInt &Low = I.Low->getValue(); 443 const APInt &High = I.High->getValue(); 444 445 IntRange &LastRange = UnreachableRanges.back(); 446 if (LastRange.Low.eq(Low)) { 447 // There is nothing left of the previous range. 448 UnreachableRanges.pop_back(); 449 } else { 450 // Terminate the previous range. 451 assert(Low.sgt(LastRange.Low)); 452 LastRange.High = Low - 1; 453 } 454 if (High.ne(SignedMax)) { 455 IntRange R = {High + 1, SignedMax}; 456 UnreachableRanges.push_back(R); 457 } 458 459 // Count popularity. 460 assert(High.sge(Low) && "Popularity shouldn't be negative."); 461 APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1; 462 // Explict insert to make sure the bitwidth of APInts match 463 APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second; 464 if ((Pop += N).ugt(MaxPop)) { 465 MaxPop = Pop; 466 PopSucc = I.BB; 467 } 468 } 469 #ifndef NDEBUG 470 /* UnreachableRanges should be sorted and the ranges non-adjacent. */ 471 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end(); 472 I != E; ++I) { 473 assert(I->Low.sle(I->High)); 474 auto Next = I + 1; 475 if (Next != E) { 476 assert(Next->Low.sgt(I->High)); 477 } 478 } 479 #endif 480 481 // As the default block in the switch is unreachable, update the PHI nodes 482 // (remove all of the references to the default block) to reflect this. 483 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases; 484 for (unsigned I = 0; I < NumDefaultEdges; ++I) 485 Default->removePredecessor(OrigBlock); 486 487 // Use the most popular block as the new default, reducing the number of 488 // cases. 489 Default = PopSucc; 490 llvm::erase_if(Cases, 491 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }); 492 493 // If there are no cases left, just branch. 494 if (Cases.empty()) { 495 BranchInst::Create(Default, OrigBlock); 496 SI->eraseFromParent(); 497 // As all the cases have been replaced with a single branch, only keep 498 // one entry in the PHI nodes. 499 if (!MaxPop.isZero()) 500 for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I) 501 PopSucc->removePredecessor(OrigBlock); 502 return; 503 } 504 505 // If the condition was a PHI node with the switch block as a predecessor 506 // removing predecessors may have caused the condition to be erased. 507 // Getting the condition value again here protects against that. 508 Val = SI->getCondition(); 509 } 510 511 BasicBlock *SwitchBlock = 512 SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val, 513 OrigBlock, OrigBlock, Default, UnreachableRanges); 514 515 // We have added incoming values for newly-created predecessors in 516 // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to 517 // remove the incoming values from OrigBlock. There might be a special case 518 // that SwitchBlock is the same as Default, under which the PHIs in Default 519 // are fixed inside SwitchConvert(). 520 if (SwitchBlock != Default) 521 FixPhis(Default, OrigBlock, nullptr, UnsignedMax); 522 523 // Branch to our shiny new if-then stuff... 524 BranchInst::Create(SwitchBlock, OrigBlock); 525 526 // We are now done with the switch instruction, delete it. 527 BasicBlock *OldDefault = SI->getDefaultDest(); 528 SI->eraseFromParent(); 529 530 // If the Default block has no more predecessors just add it to DeleteList. 531 if (pred_empty(OldDefault)) 532 DeleteList.insert(OldDefault); 533 } 534 535 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) { 536 bool Changed = false; 537 SmallPtrSet<BasicBlock *, 8> DeleteList; 538 539 // We use make_early_inc_range here so that we don't traverse new blocks. 540 for (BasicBlock &Cur : llvm::make_early_inc_range(F)) { 541 // If the block is a dead Default block that will be deleted later, don't 542 // waste time processing it. 543 if (DeleteList.count(&Cur)) 544 continue; 545 546 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) { 547 Changed = true; 548 ProcessSwitchInst(SI, DeleteList, AC, LVI); 549 } 550 } 551 552 for (BasicBlock *BB : DeleteList) { 553 LVI->eraseBlock(BB); 554 DeleteDeadBlock(BB); 555 } 556 557 return Changed; 558 } 559 560 /// Replace all SwitchInst instructions with chained branch instructions. 561 class LowerSwitchLegacyPass : public FunctionPass { 562 public: 563 // Pass identification, replacement for typeid 564 static char ID; 565 566 LowerSwitchLegacyPass() : FunctionPass(ID) { 567 initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry()); 568 } 569 570 bool runOnFunction(Function &F) override; 571 572 void getAnalysisUsage(AnalysisUsage &AU) const override { 573 AU.addRequired<LazyValueInfoWrapperPass>(); 574 } 575 }; 576 577 } // end anonymous namespace 578 579 char LowerSwitchLegacyPass::ID = 0; 580 581 // Publicly exposed interface to pass... 582 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID; 583 584 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch", 585 "Lower SwitchInst's to branches", false, false) 586 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 587 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 588 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch", 589 "Lower SwitchInst's to branches", false, false) 590 591 // createLowerSwitchPass - Interface to this file... 592 FunctionPass *llvm::createLowerSwitchPass() { 593 return new LowerSwitchLegacyPass(); 594 } 595 596 bool LowerSwitchLegacyPass::runOnFunction(Function &F) { 597 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 598 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>(); 599 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr; 600 return LowerSwitch(F, LVI, AC); 601 } 602 603 PreservedAnalyses LowerSwitchPass::run(Function &F, 604 FunctionAnalysisManager &AM) { 605 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); 606 AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F); 607 return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none() 608 : PreservedAnalyses::all(); 609 } 610