xref: /llvm-project/llvm/lib/Transforms/Utils/LowerSwitch.cpp (revision 013f4a46d1978e370f940df3cbd04fb0399a04fe)
1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/LowerSwitch.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <cassert>
42 #include <iterator>
43 #include <vector>
44 
45 using namespace llvm;
46 
47 #define DEBUG_TYPE "lower-switch"
48 
49 namespace {
50 
51 struct IntRange {
52   APInt Low, High;
53 };
54 
55 } // end anonymous namespace
56 
57 namespace {
58 // Return true iff R is covered by Ranges.
59 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
60   // Note: Ranges must be sorted, non-overlapping and non-adjacent.
61 
62   // Find the first range whose High field is >= R.High,
63   // then check if the Low field is <= R.Low. If so, we
64   // have a Range that covers R.
65   auto I = llvm::lower_bound(
66       Ranges, R, [](IntRange A, IntRange B) { return A.High.slt(B.High); });
67   return I != Ranges.end() && I->Low.sle(R.Low);
68 }
69 
70 struct CaseRange {
71   ConstantInt *Low;
72   ConstantInt *High;
73   BasicBlock *BB;
74 
75   CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
76       : Low(low), High(high), BB(bb) {}
77 };
78 
79 using CaseVector = std::vector<CaseRange>;
80 using CaseItr = std::vector<CaseRange>::iterator;
81 
82 /// The comparison function for sorting the switch case values in the vector.
83 /// WARNING: Case ranges should be disjoint!
84 struct CaseCmp {
85   bool operator()(const CaseRange &C1, const CaseRange &C2) {
86     const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
87     const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
88     return CI1->getValue().slt(CI2->getValue());
89   }
90 };
91 
92 /// Used for debugging purposes.
93 LLVM_ATTRIBUTE_USED
94 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
95   O << "[";
96 
97   for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
98     O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
99     if (++B != E)
100       O << ", ";
101   }
102 
103   return O << "]";
104 }
105 
106 /// Update the first occurrence of the "switch statement" BB in the PHI
107 /// node with the "new" BB. The other occurrences will:
108 ///
109 /// 1) Be updated by subsequent calls to this function.  Switch statements may
110 /// have more than one outcoming edge into the same BB if they all have the same
111 /// value. When the switch statement is converted these incoming edges are now
112 /// coming from multiple BBs.
113 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
114 /// multiple outcome edges are condensed into one. This is necessary to keep the
115 /// number of phi values equal to the number of branches to SuccBB.
116 void FixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
117              const APInt &NumMergedCases) {
118   for (auto &I : SuccBB->phis()) {
119     PHINode *PN = cast<PHINode>(&I);
120 
121     // Only update the first occurrence if NewBB exists.
122     unsigned Idx = 0, E = PN->getNumIncomingValues();
123     APInt LocalNumMergedCases = NumMergedCases;
124     for (; Idx != E && NewBB; ++Idx) {
125       if (PN->getIncomingBlock(Idx) == OrigBB) {
126         PN->setIncomingBlock(Idx, NewBB);
127         break;
128       }
129     }
130 
131     // Skip the updated incoming block so that it will not be removed.
132     if (NewBB)
133       ++Idx;
134 
135     // Remove additional occurrences coming from condensed cases and keep the
136     // number of incoming values equal to the number of branches to SuccBB.
137     SmallVector<unsigned, 8> Indices;
138     for (; LocalNumMergedCases.ugt(0) && Idx < E; ++Idx)
139       if (PN->getIncomingBlock(Idx) == OrigBB) {
140         Indices.push_back(Idx);
141         LocalNumMergedCases -= 1;
142       }
143     // Remove incoming values in the reverse order to prevent invalidating
144     // *successive* index.
145     for (unsigned III : llvm::reverse(Indices))
146       PN->removeIncomingValue(III);
147   }
148 }
149 
150 /// Create a new leaf block for the binary lookup tree. It checks if the
151 /// switch's value == the case's value. If not, then it jumps to the default
152 /// branch. At this point in the tree, the value can't be another valid case
153 /// value, so the jump to the "default" branch is warranted.
154 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
155                          ConstantInt *UpperBound, BasicBlock *OrigBlock,
156                          BasicBlock *Default) {
157   Function *F = OrigBlock->getParent();
158   BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
159   F->insert(++OrigBlock->getIterator(), NewLeaf);
160 
161   // Emit comparison
162   ICmpInst *Comp = nullptr;
163   if (Leaf.Low == Leaf.High) {
164     // Make the seteq instruction...
165     Comp =
166         new ICmpInst(NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
167   } else {
168     // Make range comparison
169     if (Leaf.Low == LowerBound) {
170       // Val >= Min && Val <= Hi --> Val <= Hi
171       Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
172                           "SwitchLeaf");
173     } else if (Leaf.High == UpperBound) {
174       // Val <= Max && Val >= Lo --> Val >= Lo
175       Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
176                           "SwitchLeaf");
177     } else if (Leaf.Low->isZero()) {
178       // Val >= 0 && Val <= Hi --> Val <=u Hi
179       Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
180                           "SwitchLeaf");
181     } else {
182       // Emit V-Lo <=u Hi-Lo
183       Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
184       Instruction *Add = BinaryOperator::CreateAdd(
185           Val, NegLo, Val->getName() + ".off", NewLeaf);
186       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
187       Comp = new ICmpInst(NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
188                           "SwitchLeaf");
189     }
190   }
191 
192   // Make the conditional branch...
193   BasicBlock *Succ = Leaf.BB;
194   BranchInst::Create(Succ, Default, Comp, NewLeaf);
195 
196   // Update the PHI incoming value/block for the default.
197   for (auto &I : Default->phis()) {
198     PHINode *PN = cast<PHINode>(&I);
199     auto *V = PN->getIncomingValueForBlock(OrigBlock);
200     PN->addIncoming(V, NewLeaf);
201   }
202 
203   // If there were any PHI nodes in this successor, rewrite one entry
204   // from OrigBlock to come from NewLeaf.
205   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
206     PHINode *PN = cast<PHINode>(I);
207     // Remove all but one incoming entries from the cluster
208     APInt Range = Leaf.High->getValue() - Leaf.Low->getValue();
209     for (APInt j(Range.getBitWidth(), 0, false); j.ult(Range); ++j) {
210       PN->removeIncomingValue(OrigBlock);
211     }
212 
213     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
214     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
215     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
216   }
217 
218   return NewLeaf;
219 }
220 
221 /// Convert the switch statement into a binary lookup of the case values.
222 /// The function recursively builds this tree. LowerBound and UpperBound are
223 /// used to keep track of the bounds for Val that have already been checked by
224 /// a block emitted by one of the previous calls to switchConvert in the call
225 /// stack.
226 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
227                           ConstantInt *UpperBound, Value *Val,
228                           BasicBlock *Predecessor, BasicBlock *OrigBlock,
229                           BasicBlock *Default,
230                           const std::vector<IntRange> &UnreachableRanges) {
231   assert(LowerBound && UpperBound && "Bounds must be initialized");
232   unsigned Size = End - Begin;
233 
234   if (Size == 1) {
235     // Check if the Case Range is perfectly squeezed in between
236     // already checked Upper and Lower bounds. If it is then we can avoid
237     // emitting the code that checks if the value actually falls in the range
238     // because the bounds already tell us so.
239     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
240       APInt NumMergedCases = UpperBound->getValue() - LowerBound->getValue();
241       FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
242       return Begin->BB;
243     }
244     return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
245                         Default);
246   }
247 
248   unsigned Mid = Size / 2;
249   std::vector<CaseRange> LHS(Begin, Begin + Mid);
250   LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
251   std::vector<CaseRange> RHS(Begin + Mid, End);
252   LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
253 
254   CaseRange &Pivot = *(Begin + Mid);
255   LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
256                     << Pivot.High->getValue() << "]\n");
257 
258   // NewLowerBound here should never be the integer minimal value.
259   // This is because it is computed from a case range that is never
260   // the smallest, so there is always a case range that has at least
261   // a smaller value.
262   ConstantInt *NewLowerBound = Pivot.Low;
263 
264   // Because NewLowerBound is never the smallest representable integer
265   // it is safe here to subtract one.
266   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
267                                                 NewLowerBound->getValue() - 1);
268 
269   if (!UnreachableRanges.empty()) {
270     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
271     APInt GapLow = LHS.back().High->getValue() + 1;
272     APInt GapHigh = NewLowerBound->getValue() - 1;
273     IntRange Gap = {GapLow, GapHigh};
274     if (GapHigh.sge(GapLow) && IsInRanges(Gap, UnreachableRanges))
275       NewUpperBound = LHS.back().High;
276   }
277 
278   LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getValue() << ", "
279                     << NewUpperBound->getValue() << "]\n"
280                     << "RHS Bounds ==> [" << NewLowerBound->getValue() << ", "
281                     << UpperBound->getValue() << "]\n");
282 
283   // Create a new node that checks if the value is < pivot. Go to the
284   // left branch if it is and right branch if not.
285   Function *F = OrigBlock->getParent();
286   BasicBlock *NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
287 
288   ICmpInst *Comp = new ICmpInst(ICmpInst::ICMP_SLT, Val, Pivot.Low, "Pivot");
289 
290   BasicBlock *LBranch =
291       SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
292                     NewNode, OrigBlock, Default, UnreachableRanges);
293   BasicBlock *RBranch =
294       SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
295                     NewNode, OrigBlock, Default, UnreachableRanges);
296 
297   F->insert(++OrigBlock->getIterator(), NewNode);
298   Comp->insertInto(NewNode, NewNode->end());
299 
300   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
301   return NewNode;
302 }
303 
304 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
305 /// \post \p Cases wouldn't contain references to \p SI's default BB.
306 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
307 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
308   unsigned NumSimpleCases = 0;
309 
310   // Start with "simple" cases
311   for (auto Case : SI->cases()) {
312     if (Case.getCaseSuccessor() == SI->getDefaultDest())
313       continue;
314     Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
315                               Case.getCaseSuccessor()));
316     ++NumSimpleCases;
317   }
318 
319   llvm::sort(Cases, CaseCmp());
320 
321   // Merge case into clusters
322   if (Cases.size() >= 2) {
323     CaseItr I = Cases.begin();
324     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
325       const APInt &nextValue = J->Low->getValue();
326       const APInt &currentValue = I->High->getValue();
327       BasicBlock *nextBB = J->BB;
328       BasicBlock *currentBB = I->BB;
329 
330       // If the two neighboring cases go to the same destination, merge them
331       // into a single case.
332       assert(nextValue.sgt(currentValue) &&
333              "Cases should be strictly ascending");
334       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
335         I->High = J->High;
336         // FIXME: Combine branch weights.
337       } else if (++I != J) {
338         *I = *J;
339       }
340     }
341     Cases.erase(std::next(I), Cases.end());
342   }
343 
344   return NumSimpleCases;
345 }
346 
347 /// Replace the specified switch instruction with a sequence of chained if-then
348 /// insts in a balanced binary search.
349 void ProcessSwitchInst(SwitchInst *SI,
350                        SmallPtrSetImpl<BasicBlock *> &DeleteList,
351                        AssumptionCache *AC, LazyValueInfo *LVI) {
352   BasicBlock *OrigBlock = SI->getParent();
353   Function *F = OrigBlock->getParent();
354   Value *Val = SI->getCondition(); // The value we are switching on...
355   BasicBlock *Default = SI->getDefaultDest();
356 
357   // Don't handle unreachable blocks. If there are successors with phis, this
358   // would leave them behind with missing predecessors.
359   if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
360       OrigBlock->getSinglePredecessor() == OrigBlock) {
361     DeleteList.insert(OrigBlock);
362     return;
363   }
364 
365   // Prepare cases vector.
366   CaseVector Cases;
367   const unsigned NumSimpleCases = Clusterify(Cases, SI);
368   IntegerType *IT = cast<IntegerType>(SI->getCondition()->getType());
369   const unsigned BitWidth = IT->getBitWidth();
370   // Explicitly use higher precision to prevent unsigned overflow where
371   // `UnsignedMax - 0 + 1 == 0`
372   APInt UnsignedZero(BitWidth + 1, 0);
373   APInt UnsignedMax = APInt::getMaxValue(BitWidth);
374   LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
375                     << ". Total non-default cases: " << NumSimpleCases
376                     << "\nCase clusters: " << Cases << "\n");
377 
378   // If there is only the default destination, just branch.
379   if (Cases.empty()) {
380     BranchInst::Create(Default, OrigBlock);
381     // Remove all the references from Default's PHIs to OrigBlock, but one.
382     FixPhis(Default, OrigBlock, OrigBlock, UnsignedMax);
383     SI->eraseFromParent();
384     return;
385   }
386 
387   ConstantInt *LowerBound = nullptr;
388   ConstantInt *UpperBound = nullptr;
389   bool DefaultIsUnreachableFromSwitch = false;
390 
391   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
392     // Make the bounds tightly fitted around the case value range, because we
393     // know that the value passed to the switch must be exactly one of the case
394     // values.
395     LowerBound = Cases.front().Low;
396     UpperBound = Cases.back().High;
397     DefaultIsUnreachableFromSwitch = true;
398   } else {
399     // Constraining the range of the value being switched over helps eliminating
400     // unreachable BBs and minimizing the number of `add` instructions
401     // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
402     // LowerSwitch isn't as good, and also much more expensive in terms of
403     // compile time for the following reasons:
404     // 1. it processes many kinds of instructions, not just switches;
405     // 2. even if limited to icmp instructions only, it will have to process
406     //    roughly C icmp's per switch, where C is the number of cases in the
407     //    switch, while LowerSwitch only needs to call LVI once per switch.
408     const DataLayout &DL = F->getDataLayout();
409     KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
410     // TODO Shouldn't this create a signed range?
411     ConstantRange KnownBitsRange =
412         ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
413     const ConstantRange LVIRange =
414         LVI->getConstantRange(Val, SI, /*UndefAllowed*/ false);
415     ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
416     // We delegate removal of unreachable non-default cases to other passes. In
417     // the unlikely event that some of them survived, we just conservatively
418     // maintain the invariant that all the cases lie between the bounds. This
419     // may, however, still render the default case effectively unreachable.
420     const APInt &Low = Cases.front().Low->getValue();
421     const APInt &High = Cases.back().High->getValue();
422     APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
423     APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
424 
425     LowerBound = ConstantInt::get(SI->getContext(), Min);
426     UpperBound = ConstantInt::get(SI->getContext(), Max);
427     DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
428   }
429 
430   std::vector<IntRange> UnreachableRanges;
431 
432   if (DefaultIsUnreachableFromSwitch) {
433     DenseMap<BasicBlock *, APInt> Popularity;
434     APInt MaxPop(UnsignedZero);
435     BasicBlock *PopSucc = nullptr;
436 
437     APInt SignedMax = APInt::getSignedMaxValue(BitWidth);
438     APInt SignedMin = APInt::getSignedMinValue(BitWidth);
439     IntRange R = {SignedMin, SignedMax};
440     UnreachableRanges.push_back(R);
441     for (const auto &I : Cases) {
442       const APInt &Low = I.Low->getValue();
443       const APInt &High = I.High->getValue();
444 
445       IntRange &LastRange = UnreachableRanges.back();
446       if (LastRange.Low.eq(Low)) {
447         // There is nothing left of the previous range.
448         UnreachableRanges.pop_back();
449       } else {
450         // Terminate the previous range.
451         assert(Low.sgt(LastRange.Low));
452         LastRange.High = Low - 1;
453       }
454       if (High.ne(SignedMax)) {
455         IntRange R = {High + 1, SignedMax};
456         UnreachableRanges.push_back(R);
457       }
458 
459       // Count popularity.
460       assert(High.sge(Low) && "Popularity shouldn't be negative.");
461       APInt N = High.sext(BitWidth + 1) - Low.sext(BitWidth + 1) + 1;
462       // Explict insert to make sure the bitwidth of APInts match
463       APInt &Pop = Popularity.insert({I.BB, APInt(UnsignedZero)}).first->second;
464       if ((Pop += N).ugt(MaxPop)) {
465         MaxPop = Pop;
466         PopSucc = I.BB;
467       }
468     }
469 #ifndef NDEBUG
470     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
471     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
472          I != E; ++I) {
473       assert(I->Low.sle(I->High));
474       auto Next = I + 1;
475       if (Next != E) {
476         assert(Next->Low.sgt(I->High));
477       }
478     }
479 #endif
480 
481     // As the default block in the switch is unreachable, update the PHI nodes
482     // (remove all of the references to the default block) to reflect this.
483     const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
484     for (unsigned I = 0; I < NumDefaultEdges; ++I)
485       Default->removePredecessor(OrigBlock);
486 
487     // Use the most popular block as the new default, reducing the number of
488     // cases.
489     Default = PopSucc;
490     llvm::erase_if(Cases,
491                    [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
492 
493     // If there are no cases left, just branch.
494     if (Cases.empty()) {
495       BranchInst::Create(Default, OrigBlock);
496       SI->eraseFromParent();
497       // As all the cases have been replaced with a single branch, only keep
498       // one entry in the PHI nodes.
499       if (!MaxPop.isZero())
500         for (APInt I(UnsignedZero); I.ult(MaxPop - 1); ++I)
501           PopSucc->removePredecessor(OrigBlock);
502       return;
503     }
504 
505     // If the condition was a PHI node with the switch block as a predecessor
506     // removing predecessors may have caused the condition to be erased.
507     // Getting the condition value again here protects against that.
508     Val = SI->getCondition();
509   }
510 
511   BasicBlock *SwitchBlock =
512       SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
513                     OrigBlock, OrigBlock, Default, UnreachableRanges);
514 
515   // We have added incoming values for newly-created predecessors in
516   // NewLeafBlock(). The only meaningful work we offload to FixPhis() is to
517   // remove the incoming values from OrigBlock. There might be a special case
518   // that SwitchBlock is the same as Default, under which the PHIs in Default
519   // are fixed inside SwitchConvert().
520   if (SwitchBlock != Default)
521     FixPhis(Default, OrigBlock, nullptr, UnsignedMax);
522 
523   // Branch to our shiny new if-then stuff...
524   BranchInst::Create(SwitchBlock, OrigBlock);
525 
526   // We are now done with the switch instruction, delete it.
527   BasicBlock *OldDefault = SI->getDefaultDest();
528   SI->eraseFromParent();
529 
530   // If the Default block has no more predecessors just add it to DeleteList.
531   if (pred_empty(OldDefault))
532     DeleteList.insert(OldDefault);
533 }
534 
535 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
536   bool Changed = false;
537   SmallPtrSet<BasicBlock *, 8> DeleteList;
538 
539   // We use make_early_inc_range here so that we don't traverse new blocks.
540   for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
541     // If the block is a dead Default block that will be deleted later, don't
542     // waste time processing it.
543     if (DeleteList.count(&Cur))
544       continue;
545 
546     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
547       Changed = true;
548       ProcessSwitchInst(SI, DeleteList, AC, LVI);
549     }
550   }
551 
552   for (BasicBlock *BB : DeleteList) {
553     LVI->eraseBlock(BB);
554     DeleteDeadBlock(BB);
555   }
556 
557   return Changed;
558 }
559 
560 /// Replace all SwitchInst instructions with chained branch instructions.
561 class LowerSwitchLegacyPass : public FunctionPass {
562 public:
563   // Pass identification, replacement for typeid
564   static char ID;
565 
566   LowerSwitchLegacyPass() : FunctionPass(ID) {
567     initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
568   }
569 
570   bool runOnFunction(Function &F) override;
571 
572   void getAnalysisUsage(AnalysisUsage &AU) const override {
573     AU.addRequired<LazyValueInfoWrapperPass>();
574   }
575 };
576 
577 } // end anonymous namespace
578 
579 char LowerSwitchLegacyPass::ID = 0;
580 
581 // Publicly exposed interface to pass...
582 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
583 
584 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
585                       "Lower SwitchInst's to branches", false, false)
586 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
587 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
588 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
589                     "Lower SwitchInst's to branches", false, false)
590 
591 // createLowerSwitchPass - Interface to this file...
592 FunctionPass *llvm::createLowerSwitchPass() {
593   return new LowerSwitchLegacyPass();
594 }
595 
596 bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
597   LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
598   auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
599   AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
600   return LowerSwitch(F, LVI, AC);
601 }
602 
603 PreservedAnalyses LowerSwitchPass::run(Function &F,
604                                        FunctionAnalysisManager &AM) {
605   LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
606   AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
607   return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
608                                  : PreservedAnalyses::all();
609 }
610