xref: /llvm-project/llvm/lib/Transforms/Utils/LoopUnroll.cpp (revision ad9da92cf6f735747ef04fd56937e1d76819e503)
1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities. It does not define any
10 // actual pass or policy, but provides a single function to perform loop
11 // unrolling.
12 //
13 // The process of unrolling can produce extraneous basic blocks linked with
14 // unconditional branches.  This will be corrected in the future.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/ScopedHashTable.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/DomTreeUpdater.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/LoopIterator.h"
33 #include "llvm/Analysis/MemorySSA.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/ScalarEvolution.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/ValueHandle.h"
52 #include "llvm/IR/ValueMap.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/GenericDomTree.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
59 #include "llvm/Transforms/Utils/Cloning.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include "llvm/Transforms/Utils/LoopSimplify.h"
62 #include "llvm/Transforms/Utils/LoopUtils.h"
63 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
64 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
65 #include "llvm/Transforms/Utils/UnrollLoop.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <assert.h>
69 #include <numeric>
70 #include <type_traits>
71 #include <vector>
72 
73 namespace llvm {
74 class DataLayout;
75 class Value;
76 } // namespace llvm
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "loop-unroll"
81 
82 // TODO: Should these be here or in LoopUnroll?
83 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
84 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
85 STATISTIC(NumUnrolledNotLatch, "Number of loops unrolled without a conditional "
86                                "latch (completely or otherwise)");
87 
88 static cl::opt<bool>
89 UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90                     cl::desc("Allow runtime unrolled loops to be unrolled "
91                              "with epilog instead of prolog."));
92 
93 static cl::opt<bool>
94 UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95                     cl::desc("Verify domtree after unrolling"),
96 #ifdef EXPENSIVE_CHECKS
97     cl::init(true)
98 #else
99     cl::init(false)
100 #endif
101                     );
102 
103 static cl::opt<bool>
104 UnrollVerifyLoopInfo("unroll-verify-loopinfo", cl::Hidden,
105                     cl::desc("Verify loopinfo after unrolling"),
106 #ifdef EXPENSIVE_CHECKS
107     cl::init(true)
108 #else
109     cl::init(false)
110 #endif
111                     );
112 
113 
114 /// Check if unrolling created a situation where we need to insert phi nodes to
115 /// preserve LCSSA form.
116 /// \param Blocks is a vector of basic blocks representing unrolled loop.
117 /// \param L is the outer loop.
118 /// It's possible that some of the blocks are in L, and some are not. In this
119 /// case, if there is a use is outside L, and definition is inside L, we need to
120 /// insert a phi-node, otherwise LCSSA will be broken.
121 /// The function is just a helper function for llvm::UnrollLoop that returns
122 /// true if this situation occurs, indicating that LCSSA needs to be fixed.
123 static bool needToInsertPhisForLCSSA(Loop *L,
124                                      const std::vector<BasicBlock *> &Blocks,
125                                      LoopInfo *LI) {
126   for (BasicBlock *BB : Blocks) {
127     if (LI->getLoopFor(BB) == L)
128       continue;
129     for (Instruction &I : *BB) {
130       for (Use &U : I.operands()) {
131         if (const auto *Def = dyn_cast<Instruction>(U)) {
132           Loop *DefLoop = LI->getLoopFor(Def->getParent());
133           if (!DefLoop)
134             continue;
135           if (DefLoop->contains(L))
136             return true;
137         }
138       }
139     }
140   }
141   return false;
142 }
143 
144 /// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
145 /// and adds a mapping from the original loop to the new loop to NewLoops.
146 /// Returns nullptr if no new loop was created and a pointer to the
147 /// original loop OriginalBB was part of otherwise.
148 const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
149                                            BasicBlock *ClonedBB, LoopInfo *LI,
150                                            NewLoopsMap &NewLoops) {
151   // Figure out which loop New is in.
152   const Loop *OldLoop = LI->getLoopFor(OriginalBB);
153   assert(OldLoop && "Should (at least) be in the loop being unrolled!");
154 
155   Loop *&NewLoop = NewLoops[OldLoop];
156   if (!NewLoop) {
157     // Found a new sub-loop.
158     assert(OriginalBB == OldLoop->getHeader() &&
159            "Header should be first in RPO");
160 
161     NewLoop = LI->AllocateLoop();
162     Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
163 
164     if (NewLoopParent)
165       NewLoopParent->addChildLoop(NewLoop);
166     else
167       LI->addTopLevelLoop(NewLoop);
168 
169     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
170     return OldLoop;
171   } else {
172     NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
173     return nullptr;
174   }
175 }
176 
177 /// The function chooses which type of unroll (epilog or prolog) is more
178 /// profitabale.
179 /// Epilog unroll is more profitable when there is PHI that starts from
180 /// constant.  In this case epilog will leave PHI start from constant,
181 /// but prolog will convert it to non-constant.
182 ///
183 /// loop:
184 ///   PN = PHI [I, Latch], [CI, PreHeader]
185 ///   I = foo(PN)
186 ///   ...
187 ///
188 /// Epilog unroll case.
189 /// loop:
190 ///   PN = PHI [I2, Latch], [CI, PreHeader]
191 ///   I1 = foo(PN)
192 ///   I2 = foo(I1)
193 ///   ...
194 /// Prolog unroll case.
195 ///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
196 /// loop:
197 ///   PN = PHI [I2, Latch], [NewPN, PreHeader]
198 ///   I1 = foo(PN)
199 ///   I2 = foo(I1)
200 ///   ...
201 ///
202 static bool isEpilogProfitable(Loop *L) {
203   BasicBlock *PreHeader = L->getLoopPreheader();
204   BasicBlock *Header = L->getHeader();
205   assert(PreHeader && Header);
206   for (const PHINode &PN : Header->phis()) {
207     if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
208       return true;
209   }
210   return false;
211 }
212 
213 struct LoadValue {
214   Instruction *DefI = nullptr;
215   unsigned Generation = 0;
216   LoadValue() = default;
217   LoadValue(Instruction *Inst, unsigned Generation)
218       : DefI(Inst), Generation(Generation) {}
219 };
220 
221 class StackNode {
222   ScopedHashTable<const SCEV *, LoadValue>::ScopeTy LoadScope;
223   unsigned CurrentGeneration;
224   unsigned ChildGeneration;
225   DomTreeNode *Node;
226   DomTreeNode::const_iterator ChildIter;
227   DomTreeNode::const_iterator EndIter;
228   bool Processed = false;
229 
230 public:
231   StackNode(ScopedHashTable<const SCEV *, LoadValue> &AvailableLoads,
232             unsigned cg, DomTreeNode *N, DomTreeNode::const_iterator Child,
233             DomTreeNode::const_iterator End)
234       : LoadScope(AvailableLoads), CurrentGeneration(cg), ChildGeneration(cg),
235         Node(N), ChildIter(Child), EndIter(End) {}
236   // Accessors.
237   unsigned currentGeneration() const { return CurrentGeneration; }
238   unsigned childGeneration() const { return ChildGeneration; }
239   void childGeneration(unsigned generation) { ChildGeneration = generation; }
240   DomTreeNode *node() { return Node; }
241   DomTreeNode::const_iterator childIter() const { return ChildIter; }
242 
243   DomTreeNode *nextChild() {
244     DomTreeNode *Child = *ChildIter;
245     ++ChildIter;
246     return Child;
247   }
248 
249   DomTreeNode::const_iterator end() const { return EndIter; }
250   bool isProcessed() const { return Processed; }
251   void process() { Processed = true; }
252 };
253 
254 Value *getMatchingValue(LoadValue LV, LoadInst *LI, unsigned CurrentGeneration,
255                         BatchAAResults &BAA,
256                         function_ref<MemorySSA *()> GetMSSA) {
257   if (!LV.DefI)
258     return nullptr;
259   if (LV.DefI->getType() != LI->getType())
260     return nullptr;
261   if (LV.Generation != CurrentGeneration) {
262     MemorySSA *MSSA = GetMSSA();
263     if (!MSSA)
264       return nullptr;
265     auto *EarlierMA = MSSA->getMemoryAccess(LV.DefI);
266     MemoryAccess *LaterDef =
267         MSSA->getWalker()->getClobberingMemoryAccess(LI, BAA);
268     if (!MSSA->dominates(LaterDef, EarlierMA))
269       return nullptr;
270   }
271   return LV.DefI;
272 }
273 
274 void loadCSE(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
275              BatchAAResults &BAA, function_ref<MemorySSA *()> GetMSSA) {
276   ScopedHashTable<const SCEV *, LoadValue> AvailableLoads;
277   SmallVector<std::unique_ptr<StackNode>> NodesToProcess;
278   DomTreeNode *HeaderD = DT.getNode(L->getHeader());
279   NodesToProcess.emplace_back(new StackNode(AvailableLoads, 0, HeaderD,
280                                             HeaderD->begin(), HeaderD->end()));
281 
282   unsigned CurrentGeneration = 0;
283   while (!NodesToProcess.empty()) {
284     StackNode *NodeToProcess = &*NodesToProcess.back();
285 
286     CurrentGeneration = NodeToProcess->currentGeneration();
287 
288     if (!NodeToProcess->isProcessed()) {
289       // Process the node.
290 
291       // If this block has a single predecessor, then the predecessor is the
292       // parent
293       // of the domtree node and all of the live out memory values are still
294       // current in this block.  If this block has multiple predecessors, then
295       // they could have invalidated the live-out memory values of our parent
296       // value.  For now, just be conservative and invalidate memory if this
297       // block has multiple predecessors.
298       if (!NodeToProcess->node()->getBlock()->getSinglePredecessor())
299         ++CurrentGeneration;
300       for (auto &I : make_early_inc_range(*NodeToProcess->node()->getBlock())) {
301 
302         auto *Load = dyn_cast<LoadInst>(&I);
303         if (!Load || !Load->isSimple()) {
304           if (I.mayWriteToMemory())
305             CurrentGeneration++;
306           continue;
307         }
308 
309         const SCEV *PtrSCEV = SE.getSCEV(Load->getPointerOperand());
310         LoadValue LV = AvailableLoads.lookup(PtrSCEV);
311         if (Value *M =
312                 getMatchingValue(LV, Load, CurrentGeneration, BAA, GetMSSA)) {
313           if (LI.replacementPreservesLCSSAForm(Load, M)) {
314             Load->replaceAllUsesWith(M);
315             Load->eraseFromParent();
316           }
317         } else {
318           AvailableLoads.insert(PtrSCEV, LoadValue(Load, CurrentGeneration));
319         }
320       }
321       NodeToProcess->childGeneration(CurrentGeneration);
322       NodeToProcess->process();
323     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
324       // Push the next child onto the stack.
325       DomTreeNode *Child = NodeToProcess->nextChild();
326       if (!L->contains(Child->getBlock()))
327         continue;
328       NodesToProcess.emplace_back(
329           new StackNode(AvailableLoads, NodeToProcess->childGeneration(), Child,
330                         Child->begin(), Child->end()));
331     } else {
332       // It has been processed, and there are no more children to process,
333       // so delete it and pop it off the stack.
334       NodesToProcess.pop_back();
335     }
336   }
337 }
338 
339 /// Perform some cleanup and simplifications on loops after unrolling. It is
340 /// useful to simplify the IV's in the new loop, as well as do a quick
341 /// simplify/dce pass of the instructions.
342 void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
343                                    ScalarEvolution *SE, DominatorTree *DT,
344                                    AssumptionCache *AC,
345                                    const TargetTransformInfo *TTI,
346                                    AAResults *AA) {
347   using namespace llvm::PatternMatch;
348 
349   // Simplify any new induction variables in the partially unrolled loop.
350   if (SE && SimplifyIVs) {
351     SmallVector<WeakTrackingVH, 16> DeadInsts;
352     simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
353 
354     // Aggressively clean up dead instructions that simplifyLoopIVs already
355     // identified. Any remaining should be cleaned up below.
356     while (!DeadInsts.empty()) {
357       Value *V = DeadInsts.pop_back_val();
358       if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
359         RecursivelyDeleteTriviallyDeadInstructions(Inst);
360     }
361 
362     if (AA) {
363       std::unique_ptr<MemorySSA> MSSA = nullptr;
364       BatchAAResults BAA(*AA);
365       loadCSE(L, *DT, *SE, *LI, BAA, [L, AA, DT, &MSSA]() -> MemorySSA * {
366         if (!MSSA)
367           MSSA.reset(new MemorySSA(*L, AA, DT));
368         return &*MSSA;
369       });
370     }
371   }
372 
373   // At this point, the code is well formed.  Perform constprop, instsimplify,
374   // and dce.
375   const DataLayout &DL = L->getHeader()->getDataLayout();
376   SmallVector<WeakTrackingVH, 16> DeadInsts;
377   for (BasicBlock *BB : L->getBlocks()) {
378     // Remove repeated debug instructions after loop unrolling.
379     if (BB->getParent()->getSubprogram())
380       RemoveRedundantDbgInstrs(BB);
381 
382     for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
383       if (Value *V = simplifyInstruction(&Inst, {DL, nullptr, DT, AC}))
384         if (LI->replacementPreservesLCSSAForm(&Inst, V))
385           Inst.replaceAllUsesWith(V);
386       if (isInstructionTriviallyDead(&Inst))
387         DeadInsts.emplace_back(&Inst);
388 
389       // Fold ((add X, C1), C2) to (add X, C1+C2). This is very common in
390       // unrolled loops, and handling this early allows following code to
391       // identify the IV as a "simple recurrence" without first folding away
392       // a long chain of adds.
393       {
394         Value *X;
395         const APInt *C1, *C2;
396         if (match(&Inst, m_Add(m_Add(m_Value(X), m_APInt(C1)), m_APInt(C2)))) {
397           auto *InnerI = dyn_cast<Instruction>(Inst.getOperand(0));
398           auto *InnerOBO = cast<OverflowingBinaryOperator>(Inst.getOperand(0));
399           bool SignedOverflow;
400           APInt NewC = C1->sadd_ov(*C2, SignedOverflow);
401           Inst.setOperand(0, X);
402           Inst.setOperand(1, ConstantInt::get(Inst.getType(), NewC));
403           Inst.setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap() &&
404                                     InnerOBO->hasNoUnsignedWrap());
405           Inst.setHasNoSignedWrap(Inst.hasNoSignedWrap() &&
406                                   InnerOBO->hasNoSignedWrap() &&
407                                   !SignedOverflow);
408           if (InnerI && isInstructionTriviallyDead(InnerI))
409             DeadInsts.emplace_back(InnerI);
410         }
411       }
412     }
413     // We can't do recursive deletion until we're done iterating, as we might
414     // have a phi which (potentially indirectly) uses instructions later in
415     // the block we're iterating through.
416     RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
417   }
418 }
419 
420 // Loops containing convergent instructions that are uncontrolled or controlled
421 // from outside the loop must have a count that divides their TripMultiple.
422 LLVM_ATTRIBUTE_USED
423 static bool canHaveUnrollRemainder(const Loop *L) {
424   if (getLoopConvergenceHeart(L))
425     return false;
426 
427   // Check for uncontrolled convergent operations.
428   for (auto &BB : L->blocks()) {
429     for (auto &I : *BB) {
430       if (isa<ConvergenceControlInst>(I))
431         return true;
432       if (auto *CB = dyn_cast<CallBase>(&I))
433         if (CB->isConvergent())
434           return CB->getConvergenceControlToken();
435     }
436   }
437   return true;
438 }
439 
440 /// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
441 /// can only fail when the loop's latch block is not terminated by a conditional
442 /// branch instruction. However, if the trip count (and multiple) are not known,
443 /// loop unrolling will mostly produce more code that is no faster.
444 ///
445 /// If Runtime is true then UnrollLoop will try to insert a prologue or
446 /// epilogue that ensures the latch has a trip multiple of Count. UnrollLoop
447 /// will not runtime-unroll the loop if computing the run-time trip count will
448 /// be expensive and AllowExpensiveTripCount is false.
449 ///
450 /// The LoopInfo Analysis that is passed will be kept consistent.
451 ///
452 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
453 /// DominatorTree if they are non-null.
454 ///
455 /// If RemainderLoop is non-null, it will receive the remainder loop (if
456 /// required and not fully unrolled).
457 LoopUnrollResult
458 llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
459                  ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
460                  const TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE,
461                  bool PreserveLCSSA, Loop **RemainderLoop, AAResults *AA) {
462   assert(DT && "DomTree is required");
463 
464   if (!L->getLoopPreheader()) {
465     LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
466     return LoopUnrollResult::Unmodified;
467   }
468 
469   if (!L->getLoopLatch()) {
470     LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
471     return LoopUnrollResult::Unmodified;
472   }
473 
474   // Loops with indirectbr cannot be cloned.
475   if (!L->isSafeToClone()) {
476     LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
477     return LoopUnrollResult::Unmodified;
478   }
479 
480   if (L->getHeader()->hasAddressTaken()) {
481     // The loop-rotate pass can be helpful to avoid this in many cases.
482     LLVM_DEBUG(
483         dbgs() << "  Won't unroll loop: address of header block is taken.\n");
484     return LoopUnrollResult::Unmodified;
485   }
486 
487   assert(ULO.Count > 0);
488 
489   // All these values should be taken only after peeling because they might have
490   // changed.
491   BasicBlock *Preheader = L->getLoopPreheader();
492   BasicBlock *Header = L->getHeader();
493   BasicBlock *LatchBlock = L->getLoopLatch();
494   SmallVector<BasicBlock *, 4> ExitBlocks;
495   L->getExitBlocks(ExitBlocks);
496   std::vector<BasicBlock *> OriginalLoopBlocks = L->getBlocks();
497 
498   const unsigned MaxTripCount = SE->getSmallConstantMaxTripCount(L);
499   const bool MaxOrZero = SE->isBackedgeTakenCountMaxOrZero(L);
500   unsigned EstimatedLoopInvocationWeight = 0;
501   std::optional<unsigned> OriginalTripCount =
502       llvm::getLoopEstimatedTripCount(L, &EstimatedLoopInvocationWeight);
503 
504   // Effectively "DCE" unrolled iterations that are beyond the max tripcount
505   // and will never be executed.
506   if (MaxTripCount && ULO.Count > MaxTripCount)
507     ULO.Count = MaxTripCount;
508 
509   struct ExitInfo {
510     unsigned TripCount;
511     unsigned TripMultiple;
512     unsigned BreakoutTrip;
513     bool ExitOnTrue;
514     BasicBlock *FirstExitingBlock = nullptr;
515     SmallVector<BasicBlock *> ExitingBlocks;
516   };
517   DenseMap<BasicBlock *, ExitInfo> ExitInfos;
518   SmallVector<BasicBlock *, 4> ExitingBlocks;
519   L->getExitingBlocks(ExitingBlocks);
520   for (auto *ExitingBlock : ExitingBlocks) {
521     // The folding code is not prepared to deal with non-branch instructions
522     // right now.
523     auto *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
524     if (!BI)
525       continue;
526 
527     ExitInfo &Info = ExitInfos[ExitingBlock];
528     Info.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
529     Info.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
530     if (Info.TripCount != 0) {
531       Info.BreakoutTrip = Info.TripCount % ULO.Count;
532       Info.TripMultiple = 0;
533     } else {
534       Info.BreakoutTrip = Info.TripMultiple =
535           (unsigned)std::gcd(ULO.Count, Info.TripMultiple);
536     }
537     Info.ExitOnTrue = !L->contains(BI->getSuccessor(0));
538     Info.ExitingBlocks.push_back(ExitingBlock);
539     LLVM_DEBUG(dbgs() << "  Exiting block %" << ExitingBlock->getName()
540                       << ": TripCount=" << Info.TripCount
541                       << ", TripMultiple=" << Info.TripMultiple
542                       << ", BreakoutTrip=" << Info.BreakoutTrip << "\n");
543   }
544 
545   // Are we eliminating the loop control altogether?  Note that we can know
546   // we're eliminating the backedge without knowing exactly which iteration
547   // of the unrolled body exits.
548   const bool CompletelyUnroll = ULO.Count == MaxTripCount;
549 
550   const bool PreserveOnlyFirst = CompletelyUnroll && MaxOrZero;
551 
552   // There's no point in performing runtime unrolling if this unroll count
553   // results in a full unroll.
554   if (CompletelyUnroll)
555     ULO.Runtime = false;
556 
557   // Go through all exits of L and see if there are any phi-nodes there. We just
558   // conservatively assume that they're inserted to preserve LCSSA form, which
559   // means that complete unrolling might break this form. We need to either fix
560   // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
561   // now we just recompute LCSSA for the outer loop, but it should be possible
562   // to fix it in-place.
563   bool NeedToFixLCSSA =
564       PreserveLCSSA && CompletelyUnroll &&
565       any_of(ExitBlocks,
566              [](const BasicBlock *BB) { return isa<PHINode>(BB->begin()); });
567 
568   // The current loop unroll pass can unroll loops that have
569   // (1) single latch; and
570   // (2a) latch is unconditional; or
571   // (2b) latch is conditional and is an exiting block
572   // FIXME: The implementation can be extended to work with more complicated
573   // cases, e.g. loops with multiple latches.
574   BranchInst *LatchBI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
575 
576   // A conditional branch which exits the loop, which can be optimized to an
577   // unconditional branch in the unrolled loop in some cases.
578   bool LatchIsExiting = L->isLoopExiting(LatchBlock);
579   if (!LatchBI || (LatchBI->isConditional() && !LatchIsExiting)) {
580     LLVM_DEBUG(
581         dbgs() << "Can't unroll; a conditional latch must exit the loop");
582     return LoopUnrollResult::Unmodified;
583   }
584 
585   assert((!ULO.Runtime || canHaveUnrollRemainder(L)) &&
586          "Can't runtime unroll if loop contains a convergent operation.");
587 
588   bool EpilogProfitability =
589       UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
590                                               : isEpilogProfitable(L);
591 
592   if (ULO.Runtime &&
593       !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
594                                   EpilogProfitability, ULO.UnrollRemainder,
595                                   ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
596                                   PreserveLCSSA, ULO.SCEVExpansionBudget,
597                                   ULO.RuntimeUnrollMultiExit, RemainderLoop)) {
598     if (ULO.Force)
599       ULO.Runtime = false;
600     else {
601       LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
602                            "generated when assuming runtime trip count\n");
603       return LoopUnrollResult::Unmodified;
604     }
605   }
606 
607   using namespace ore;
608   // Report the unrolling decision.
609   if (CompletelyUnroll) {
610     LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
611                       << " with trip count " << ULO.Count << "!\n");
612     if (ORE)
613       ORE->emit([&]() {
614         return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
615                                   L->getHeader())
616                << "completely unrolled loop with "
617                << NV("UnrollCount", ULO.Count) << " iterations";
618       });
619   } else {
620     LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
621                       << ULO.Count);
622     if (ULO.Runtime)
623       LLVM_DEBUG(dbgs() << " with run-time trip count");
624     LLVM_DEBUG(dbgs() << "!\n");
625 
626     if (ORE)
627       ORE->emit([&]() {
628         OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
629                                 L->getHeader());
630         Diag << "unrolled loop by a factor of " << NV("UnrollCount", ULO.Count);
631         if (ULO.Runtime)
632           Diag << " with run-time trip count";
633         return Diag;
634       });
635   }
636 
637   // We are going to make changes to this loop. SCEV may be keeping cached info
638   // about it, in particular about backedge taken count. The changes we make
639   // are guaranteed to invalidate this information for our loop. It is tempting
640   // to only invalidate the loop being unrolled, but it is incorrect as long as
641   // all exiting branches from all inner loops have impact on the outer loops,
642   // and if something changes inside them then any of outer loops may also
643   // change. When we forget outermost loop, we also forget all contained loops
644   // and this is what we need here.
645   if (SE) {
646     if (ULO.ForgetAllSCEV)
647       SE->forgetAllLoops();
648     else {
649       SE->forgetTopmostLoop(L);
650       SE->forgetBlockAndLoopDispositions();
651     }
652   }
653 
654   if (!LatchIsExiting)
655     ++NumUnrolledNotLatch;
656 
657   // For the first iteration of the loop, we should use the precloned values for
658   // PHI nodes.  Insert associations now.
659   ValueToValueMapTy LastValueMap;
660   std::vector<PHINode*> OrigPHINode;
661   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
662     OrigPHINode.push_back(cast<PHINode>(I));
663   }
664 
665   std::vector<BasicBlock *> Headers;
666   std::vector<BasicBlock *> Latches;
667   Headers.push_back(Header);
668   Latches.push_back(LatchBlock);
669 
670   // The current on-the-fly SSA update requires blocks to be processed in
671   // reverse postorder so that LastValueMap contains the correct value at each
672   // exit.
673   LoopBlocksDFS DFS(L);
674   DFS.perform(LI);
675 
676   // Stash the DFS iterators before adding blocks to the loop.
677   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
678   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
679 
680   std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
681 
682   // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
683   // might break loop-simplified form for these loops (as they, e.g., would
684   // share the same exit blocks). We'll keep track of loops for which we can
685   // break this so that later we can re-simplify them.
686   SmallSetVector<Loop *, 4> LoopsToSimplify;
687   for (Loop *SubLoop : *L)
688     LoopsToSimplify.insert(SubLoop);
689 
690   // When a FSDiscriminator is enabled, we don't need to add the multiply
691   // factors to the discriminators.
692   if (Header->getParent()->shouldEmitDebugInfoForProfiling() &&
693       !EnableFSDiscriminator)
694     for (BasicBlock *BB : L->getBlocks())
695       for (Instruction &I : *BB)
696         if (!I.isDebugOrPseudoInst())
697           if (const DILocation *DIL = I.getDebugLoc()) {
698             auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
699             if (NewDIL)
700               I.setDebugLoc(*NewDIL);
701             else
702               LLVM_DEBUG(dbgs()
703                          << "Failed to create new discriminator: "
704                          << DIL->getFilename() << " Line: " << DIL->getLine());
705           }
706 
707   // Identify what noalias metadata is inside the loop: if it is inside the
708   // loop, the associated metadata must be cloned for each iteration.
709   SmallVector<MDNode *, 6> LoopLocalNoAliasDeclScopes;
710   identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes);
711 
712   // We place the unrolled iterations immediately after the original loop
713   // latch.  This is a reasonable default placement if we don't have block
714   // frequencies, and if we do, well the layout will be adjusted later.
715   auto BlockInsertPt = std::next(LatchBlock->getIterator());
716   for (unsigned It = 1; It != ULO.Count; ++It) {
717     SmallVector<BasicBlock *, 8> NewBlocks;
718     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
719     NewLoops[L] = L;
720 
721     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
722       ValueToValueMapTy VMap;
723       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
724       Header->getParent()->insert(BlockInsertPt, New);
725 
726       assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
727              "Header should not be in a sub-loop");
728       // Tell LI about New.
729       const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
730       if (OldLoop)
731         LoopsToSimplify.insert(NewLoops[OldLoop]);
732 
733       if (*BB == Header) {
734         // Loop over all of the PHI nodes in the block, changing them to use
735         // the incoming values from the previous block.
736         for (PHINode *OrigPHI : OrigPHINode) {
737           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
738           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
739           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
740             if (It > 1 && L->contains(InValI))
741               InVal = LastValueMap[InValI];
742           VMap[OrigPHI] = InVal;
743           NewPHI->eraseFromParent();
744         }
745 
746         // Eliminate copies of the loop heart intrinsic, if any.
747         if (ULO.Heart) {
748           auto it = VMap.find(ULO.Heart);
749           assert(it != VMap.end());
750           Instruction *heartCopy = cast<Instruction>(it->second);
751           heartCopy->eraseFromParent();
752           VMap.erase(it);
753         }
754       }
755 
756       // Update our running map of newest clones
757       LastValueMap[*BB] = New;
758       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
759            VI != VE; ++VI)
760         LastValueMap[VI->first] = VI->second;
761 
762       // Add phi entries for newly created values to all exit blocks.
763       for (BasicBlock *Succ : successors(*BB)) {
764         if (L->contains(Succ))
765           continue;
766         for (PHINode &PHI : Succ->phis()) {
767           Value *Incoming = PHI.getIncomingValueForBlock(*BB);
768           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
769           if (It != LastValueMap.end())
770             Incoming = It->second;
771           PHI.addIncoming(Incoming, New);
772           SE->forgetLcssaPhiWithNewPredecessor(L, &PHI);
773         }
774       }
775       // Keep track of new headers and latches as we create them, so that
776       // we can insert the proper branches later.
777       if (*BB == Header)
778         Headers.push_back(New);
779       if (*BB == LatchBlock)
780         Latches.push_back(New);
781 
782       // Keep track of the exiting block and its successor block contained in
783       // the loop for the current iteration.
784       auto ExitInfoIt = ExitInfos.find(*BB);
785       if (ExitInfoIt != ExitInfos.end())
786         ExitInfoIt->second.ExitingBlocks.push_back(New);
787 
788       NewBlocks.push_back(New);
789       UnrolledLoopBlocks.push_back(New);
790 
791       // Update DomTree: since we just copy the loop body, and each copy has a
792       // dedicated entry block (copy of the header block), this header's copy
793       // dominates all copied blocks. That means, dominance relations in the
794       // copied body are the same as in the original body.
795       if (*BB == Header)
796         DT->addNewBlock(New, Latches[It - 1]);
797       else {
798         auto BBDomNode = DT->getNode(*BB);
799         auto BBIDom = BBDomNode->getIDom();
800         BasicBlock *OriginalBBIDom = BBIDom->getBlock();
801         DT->addNewBlock(
802             New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
803       }
804     }
805 
806     // Remap all instructions in the most recent iteration
807     remapInstructionsInBlocks(NewBlocks, LastValueMap);
808     for (BasicBlock *NewBlock : NewBlocks)
809       for (Instruction &I : *NewBlock)
810         if (auto *II = dyn_cast<AssumeInst>(&I))
811           AC->registerAssumption(II);
812 
813     {
814       // Identify what other metadata depends on the cloned version. After
815       // cloning, replace the metadata with the corrected version for both
816       // memory instructions and noalias intrinsics.
817       std::string ext = (Twine("It") + Twine(It)).str();
818       cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks,
819                                  Header->getContext(), ext);
820     }
821   }
822 
823   // Loop over the PHI nodes in the original block, setting incoming values.
824   for (PHINode *PN : OrigPHINode) {
825     if (CompletelyUnroll) {
826       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
827       PN->eraseFromParent();
828     } else if (ULO.Count > 1) {
829       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
830       // If this value was defined in the loop, take the value defined by the
831       // last iteration of the loop.
832       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
833         if (L->contains(InValI))
834           InVal = LastValueMap[InVal];
835       }
836       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
837       PN->addIncoming(InVal, Latches.back());
838     }
839   }
840 
841   // Connect latches of the unrolled iterations to the headers of the next
842   // iteration. Currently they point to the header of the same iteration.
843   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
844     unsigned j = (i + 1) % e;
845     Latches[i]->getTerminator()->replaceSuccessorWith(Headers[i], Headers[j]);
846   }
847 
848   // Update dominators of blocks we might reach through exits.
849   // Immediate dominator of such block might change, because we add more
850   // routes which can lead to the exit: we can now reach it from the copied
851   // iterations too.
852   if (ULO.Count > 1) {
853     for (auto *BB : OriginalLoopBlocks) {
854       auto *BBDomNode = DT->getNode(BB);
855       SmallVector<BasicBlock *, 16> ChildrenToUpdate;
856       for (auto *ChildDomNode : BBDomNode->children()) {
857         auto *ChildBB = ChildDomNode->getBlock();
858         if (!L->contains(ChildBB))
859           ChildrenToUpdate.push_back(ChildBB);
860       }
861       // The new idom of the block will be the nearest common dominator
862       // of all copies of the previous idom. This is equivalent to the
863       // nearest common dominator of the previous idom and the first latch,
864       // which dominates all copies of the previous idom.
865       BasicBlock *NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
866       for (auto *ChildBB : ChildrenToUpdate)
867         DT->changeImmediateDominator(ChildBB, NewIDom);
868     }
869   }
870 
871   assert(!UnrollVerifyDomtree ||
872          DT->verify(DominatorTree::VerificationLevel::Fast));
873 
874   SmallVector<DominatorTree::UpdateType> DTUpdates;
875   auto SetDest = [&](BasicBlock *Src, bool WillExit, bool ExitOnTrue) {
876     auto *Term = cast<BranchInst>(Src->getTerminator());
877     const unsigned Idx = ExitOnTrue ^ WillExit;
878     BasicBlock *Dest = Term->getSuccessor(Idx);
879     BasicBlock *DeadSucc = Term->getSuccessor(1-Idx);
880 
881     // Remove predecessors from all non-Dest successors.
882     DeadSucc->removePredecessor(Src, /* KeepOneInputPHIs */ true);
883 
884     // Replace the conditional branch with an unconditional one.
885     auto *BI = BranchInst::Create(Dest, Term->getIterator());
886     BI->setDebugLoc(Term->getDebugLoc());
887     Term->eraseFromParent();
888 
889     DTUpdates.emplace_back(DominatorTree::Delete, Src, DeadSucc);
890   };
891 
892   auto WillExit = [&](const ExitInfo &Info, unsigned i, unsigned j,
893                       bool IsLatch) -> std::optional<bool> {
894     if (CompletelyUnroll) {
895       if (PreserveOnlyFirst) {
896         if (i == 0)
897           return std::nullopt;
898         return j == 0;
899       }
900       // Complete (but possibly inexact) unrolling
901       if (j == 0)
902         return true;
903       if (Info.TripCount && j != Info.TripCount)
904         return false;
905       return std::nullopt;
906     }
907 
908     if (ULO.Runtime) {
909       // If runtime unrolling inserts a prologue, information about non-latch
910       // exits may be stale.
911       if (IsLatch && j != 0)
912         return false;
913       return std::nullopt;
914     }
915 
916     if (j != Info.BreakoutTrip &&
917         (Info.TripMultiple == 0 || j % Info.TripMultiple != 0)) {
918       // If we know the trip count or a multiple of it, we can safely use an
919       // unconditional branch for some iterations.
920       return false;
921     }
922     return std::nullopt;
923   };
924 
925   // Fold branches for iterations where we know that they will exit or not
926   // exit.
927   for (auto &Pair : ExitInfos) {
928     ExitInfo &Info = Pair.second;
929     for (unsigned i = 0, e = Info.ExitingBlocks.size(); i != e; ++i) {
930       // The branch destination.
931       unsigned j = (i + 1) % e;
932       bool IsLatch = Pair.first == LatchBlock;
933       std::optional<bool> KnownWillExit = WillExit(Info, i, j, IsLatch);
934       if (!KnownWillExit) {
935         if (!Info.FirstExitingBlock)
936           Info.FirstExitingBlock = Info.ExitingBlocks[i];
937         continue;
938       }
939 
940       // We don't fold known-exiting branches for non-latch exits here,
941       // because this ensures that both all loop blocks and all exit blocks
942       // remain reachable in the CFG.
943       // TODO: We could fold these branches, but it would require much more
944       // sophisticated updates to LoopInfo.
945       if (*KnownWillExit && !IsLatch) {
946         if (!Info.FirstExitingBlock)
947           Info.FirstExitingBlock = Info.ExitingBlocks[i];
948         continue;
949       }
950 
951       SetDest(Info.ExitingBlocks[i], *KnownWillExit, Info.ExitOnTrue);
952     }
953   }
954 
955   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
956   DomTreeUpdater *DTUToUse = &DTU;
957   if (ExitingBlocks.size() == 1 && ExitInfos.size() == 1) {
958     // Manually update the DT if there's a single exiting node. In that case
959     // there's a single exit node and it is sufficient to update the nodes
960     // immediately dominated by the original exiting block. They will become
961     // dominated by the first exiting block that leaves the loop after
962     // unrolling. Note that the CFG inside the loop does not change, so there's
963     // no need to update the DT inside the unrolled loop.
964     DTUToUse = nullptr;
965     auto &[OriginalExit, Info] = *ExitInfos.begin();
966     if (!Info.FirstExitingBlock)
967       Info.FirstExitingBlock = Info.ExitingBlocks.back();
968     for (auto *C : to_vector(DT->getNode(OriginalExit)->children())) {
969       if (L->contains(C->getBlock()))
970         continue;
971       C->setIDom(DT->getNode(Info.FirstExitingBlock));
972     }
973   } else {
974     DTU.applyUpdates(DTUpdates);
975   }
976 
977   // When completely unrolling, the last latch becomes unreachable.
978   if (!LatchIsExiting && CompletelyUnroll) {
979     // There is no need to update the DT here, because there must be a unique
980     // latch. Hence if the latch is not exiting it must directly branch back to
981     // the original loop header and does not dominate any nodes.
982     assert(LatchBlock->getSingleSuccessor() && "Loop with multiple latches?");
983     changeToUnreachable(Latches.back()->getTerminator(), PreserveLCSSA);
984   }
985 
986   // Merge adjacent basic blocks, if possible.
987   for (BasicBlock *Latch : Latches) {
988     BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
989     assert((Term ||
990             (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
991            "Need a branch as terminator, except when fully unrolling with "
992            "unconditional latch");
993     if (Term && Term->isUnconditional()) {
994       BasicBlock *Dest = Term->getSuccessor(0);
995       BasicBlock *Fold = Dest->getUniquePredecessor();
996       if (MergeBlockIntoPredecessor(Dest, /*DTU=*/DTUToUse, LI,
997                                     /*MSSAU=*/nullptr, /*MemDep=*/nullptr,
998                                     /*PredecessorWithTwoSuccessors=*/false,
999                                     DTUToUse ? nullptr : DT)) {
1000         // Dest has been folded into Fold. Update our worklists accordingly.
1001         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
1002         llvm::erase(UnrolledLoopBlocks, Dest);
1003       }
1004     }
1005   }
1006 
1007   if (DTUToUse) {
1008     // Apply updates to the DomTree.
1009     DT = &DTU.getDomTree();
1010   }
1011   assert(!UnrollVerifyDomtree ||
1012          DT->verify(DominatorTree::VerificationLevel::Fast));
1013 
1014   // At this point, the code is well formed.  We now simplify the unrolled loop,
1015   // doing constant propagation and dead code elimination as we go.
1016   simplifyLoopAfterUnroll(L, !CompletelyUnroll && ULO.Count > 1, LI, SE, DT, AC,
1017                           TTI, AA);
1018 
1019   NumCompletelyUnrolled += CompletelyUnroll;
1020   ++NumUnrolled;
1021 
1022   Loop *OuterL = L->getParentLoop();
1023   // Update LoopInfo if the loop is completely removed.
1024   if (CompletelyUnroll) {
1025     LI->erase(L);
1026     // We shouldn't try to use `L` anymore.
1027     L = nullptr;
1028   } else if (OriginalTripCount) {
1029     // Update the trip count. Note that the remainder has already logic
1030     // computing it in `UnrollRuntimeLoopRemainder`.
1031     setLoopEstimatedTripCount(L, *OriginalTripCount / ULO.Count,
1032                               EstimatedLoopInvocationWeight);
1033   }
1034 
1035   // LoopInfo should not be valid, confirm that.
1036   if (UnrollVerifyLoopInfo)
1037     LI->verify(*DT);
1038 
1039   // After complete unrolling most of the blocks should be contained in OuterL.
1040   // However, some of them might happen to be out of OuterL (e.g. if they
1041   // precede a loop exit). In this case we might need to insert PHI nodes in
1042   // order to preserve LCSSA form.
1043   // We don't need to check this if we already know that we need to fix LCSSA
1044   // form.
1045   // TODO: For now we just recompute LCSSA for the outer loop in this case, but
1046   // it should be possible to fix it in-place.
1047   if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
1048     NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
1049 
1050   // Make sure that loop-simplify form is preserved. We want to simplify
1051   // at least one layer outside of the loop that was unrolled so that any
1052   // changes to the parent loop exposed by the unrolling are considered.
1053   if (OuterL) {
1054     // OuterL includes all loops for which we can break loop-simplify, so
1055     // it's sufficient to simplify only it (it'll recursively simplify inner
1056     // loops too).
1057     if (NeedToFixLCSSA) {
1058       // LCSSA must be performed on the outermost affected loop. The unrolled
1059       // loop's last loop latch is guaranteed to be in the outermost loop
1060       // after LoopInfo's been updated by LoopInfo::erase.
1061       Loop *LatchLoop = LI->getLoopFor(Latches.back());
1062       Loop *FixLCSSALoop = OuterL;
1063       if (!FixLCSSALoop->contains(LatchLoop))
1064         while (FixLCSSALoop->getParentLoop() != LatchLoop)
1065           FixLCSSALoop = FixLCSSALoop->getParentLoop();
1066 
1067       formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
1068     } else if (PreserveLCSSA) {
1069       assert(OuterL->isLCSSAForm(*DT) &&
1070              "Loops should be in LCSSA form after loop-unroll.");
1071     }
1072 
1073     // TODO: That potentially might be compile-time expensive. We should try
1074     // to fix the loop-simplified form incrementally.
1075     simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1076   } else {
1077     // Simplify loops for which we might've broken loop-simplify form.
1078     for (Loop *SubLoop : LoopsToSimplify)
1079       simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
1080   }
1081 
1082   return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
1083                           : LoopUnrollResult::PartiallyUnrolled;
1084 }
1085 
1086 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
1087 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
1088 /// such metadata node exists, then nullptr is returned.
1089 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
1090   // First operand should refer to the loop id itself.
1091   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1092   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1093 
1094   for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) {
1095     MDNode *MD = dyn_cast<MDNode>(MDO);
1096     if (!MD)
1097       continue;
1098 
1099     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1100     if (!S)
1101       continue;
1102 
1103     if (Name == S->getString())
1104       return MD;
1105   }
1106   return nullptr;
1107 }
1108