1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( 116 "max-phi-entries-increase-after-removing-empty-block", cl::init(1000), 117 cl::Hidden, 118 cl::desc("Stop removing an empty block if removing it will introduce more " 119 "than this number of phi entries in its successor")); 120 121 // Max recursion depth for collectBitParts used when detecting bswap and 122 // bitreverse idioms. 123 static const unsigned BitPartRecursionMaxDepth = 48; 124 125 //===----------------------------------------------------------------------===// 126 // Local constant propagation. 127 // 128 129 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 130 /// constant value, convert it into an unconditional branch to the constant 131 /// destination. This is a nontrivial operation because the successors of this 132 /// basic block must have their PHI nodes updated. 133 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 134 /// conditions and indirectbr addresses this might make dead if 135 /// DeleteDeadConditions is true. 136 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 137 const TargetLibraryInfo *TLI, 138 DomTreeUpdater *DTU) { 139 Instruction *T = BB->getTerminator(); 140 IRBuilder<> Builder(T); 141 142 // Branch - See if we are conditional jumping on constant 143 if (auto *BI = dyn_cast<BranchInst>(T)) { 144 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 145 146 BasicBlock *Dest1 = BI->getSuccessor(0); 147 BasicBlock *Dest2 = BI->getSuccessor(1); 148 149 if (Dest2 == Dest1) { // Conditional branch to same location? 150 // This branch matches something like this: 151 // br bool %cond, label %Dest, label %Dest 152 // and changes it into: br label %Dest 153 154 // Let the basic block know that we are letting go of one copy of it. 155 assert(BI->getParent() && "Terminator not inserted in block!"); 156 Dest1->removePredecessor(BI->getParent()); 157 158 // Replace the conditional branch with an unconditional one. 159 BranchInst *NewBI = Builder.CreateBr(Dest1); 160 161 // Transfer the metadata to the new branch instruction. 162 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 163 LLVMContext::MD_annotation}); 164 165 Value *Cond = BI->getCondition(); 166 BI->eraseFromParent(); 167 if (DeleteDeadConditions) 168 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 169 return true; 170 } 171 172 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 173 // Are we branching on constant? 174 // YES. Change to unconditional branch... 175 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 176 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 177 178 // Let the basic block know that we are letting go of it. Based on this, 179 // it will adjust it's PHI nodes. 180 OldDest->removePredecessor(BB); 181 182 // Replace the conditional branch with an unconditional one. 183 BranchInst *NewBI = Builder.CreateBr(Destination); 184 185 // Transfer the metadata to the new branch instruction. 186 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 187 LLVMContext::MD_annotation}); 188 189 BI->eraseFromParent(); 190 if (DTU) 191 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 192 return true; 193 } 194 195 return false; 196 } 197 198 if (auto *SI = dyn_cast<SwitchInst>(T)) { 199 // If we are switching on a constant, we can convert the switch to an 200 // unconditional branch. 201 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 202 BasicBlock *DefaultDest = SI->getDefaultDest(); 203 BasicBlock *TheOnlyDest = DefaultDest; 204 205 // If the default is unreachable, ignore it when searching for TheOnlyDest. 206 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 207 SI->getNumCases() > 0) { 208 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 209 } 210 211 bool Changed = false; 212 213 // Figure out which case it goes to. 214 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 215 // Found case matching a constant operand? 216 if (It->getCaseValue() == CI) { 217 TheOnlyDest = It->getCaseSuccessor(); 218 break; 219 } 220 221 // Check to see if this branch is going to the same place as the default 222 // dest. If so, eliminate it as an explicit compare. 223 if (It->getCaseSuccessor() == DefaultDest) { 224 MDNode *MD = getValidBranchWeightMDNode(*SI); 225 unsigned NCases = SI->getNumCases(); 226 // Fold the case metadata into the default if there will be any branches 227 // left, unless the metadata doesn't match the switch. 228 if (NCases > 1 && MD) { 229 // Collect branch weights into a vector. 230 SmallVector<uint32_t, 8> Weights; 231 extractBranchWeights(MD, Weights); 232 233 // Merge weight of this case to the default weight. 234 unsigned Idx = It->getCaseIndex(); 235 // TODO: Add overflow check. 236 Weights[0] += Weights[Idx + 1]; 237 // Remove weight for this case. 238 std::swap(Weights[Idx + 1], Weights.back()); 239 Weights.pop_back(); 240 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 241 } 242 // Remove this entry. 243 BasicBlock *ParentBB = SI->getParent(); 244 DefaultDest->removePredecessor(ParentBB); 245 It = SI->removeCase(It); 246 End = SI->case_end(); 247 248 // Removing this case may have made the condition constant. In that 249 // case, update CI and restart iteration through the cases. 250 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 251 CI = NewCI; 252 It = SI->case_begin(); 253 } 254 255 Changed = true; 256 continue; 257 } 258 259 // Otherwise, check to see if the switch only branches to one destination. 260 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 261 // destinations. 262 if (It->getCaseSuccessor() != TheOnlyDest) 263 TheOnlyDest = nullptr; 264 265 // Increment this iterator as we haven't removed the case. 266 ++It; 267 } 268 269 if (CI && !TheOnlyDest) { 270 // Branching on a constant, but not any of the cases, go to the default 271 // successor. 272 TheOnlyDest = SI->getDefaultDest(); 273 } 274 275 // If we found a single destination that we can fold the switch into, do so 276 // now. 277 if (TheOnlyDest) { 278 // Insert the new branch. 279 Builder.CreateBr(TheOnlyDest); 280 BasicBlock *BB = SI->getParent(); 281 282 SmallSet<BasicBlock *, 8> RemovedSuccessors; 283 284 // Remove entries from PHI nodes which we no longer branch to... 285 BasicBlock *SuccToKeep = TheOnlyDest; 286 for (BasicBlock *Succ : successors(SI)) { 287 if (DTU && Succ != TheOnlyDest) 288 RemovedSuccessors.insert(Succ); 289 // Found case matching a constant operand? 290 if (Succ == SuccToKeep) { 291 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 292 } else { 293 Succ->removePredecessor(BB); 294 } 295 } 296 297 // Delete the old switch. 298 Value *Cond = SI->getCondition(); 299 SI->eraseFromParent(); 300 if (DeleteDeadConditions) 301 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 302 if (DTU) { 303 std::vector<DominatorTree::UpdateType> Updates; 304 Updates.reserve(RemovedSuccessors.size()); 305 for (auto *RemovedSuccessor : RemovedSuccessors) 306 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 307 DTU->applyUpdates(Updates); 308 } 309 return true; 310 } 311 312 if (SI->getNumCases() == 1) { 313 // Otherwise, we can fold this switch into a conditional branch 314 // instruction if it has only one non-default destination. 315 auto FirstCase = *SI->case_begin(); 316 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 317 FirstCase.getCaseValue(), "cond"); 318 319 // Insert the new branch. 320 BranchInst *NewBr = Builder.CreateCondBr(Cond, 321 FirstCase.getCaseSuccessor(), 322 SI->getDefaultDest()); 323 SmallVector<uint32_t> Weights; 324 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 325 uint32_t DefWeight = Weights[0]; 326 uint32_t CaseWeight = Weights[1]; 327 // The TrueWeight should be the weight for the single case of SI. 328 NewBr->setMetadata(LLVMContext::MD_prof, 329 MDBuilder(BB->getContext()) 330 .createBranchWeights(CaseWeight, DefWeight)); 331 } 332 333 // Update make.implicit metadata to the newly-created conditional branch. 334 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 335 if (MakeImplicitMD) 336 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 337 338 // Delete the old switch. 339 SI->eraseFromParent(); 340 return true; 341 } 342 return Changed; 343 } 344 345 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 346 // indirectbr blockaddress(@F, @BB) -> br label @BB 347 if (auto *BA = 348 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 349 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 350 SmallSet<BasicBlock *, 8> RemovedSuccessors; 351 352 // Insert the new branch. 353 Builder.CreateBr(TheOnlyDest); 354 355 BasicBlock *SuccToKeep = TheOnlyDest; 356 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 357 BasicBlock *DestBB = IBI->getDestination(i); 358 if (DTU && DestBB != TheOnlyDest) 359 RemovedSuccessors.insert(DestBB); 360 if (IBI->getDestination(i) == SuccToKeep) { 361 SuccToKeep = nullptr; 362 } else { 363 DestBB->removePredecessor(BB); 364 } 365 } 366 Value *Address = IBI->getAddress(); 367 IBI->eraseFromParent(); 368 if (DeleteDeadConditions) 369 // Delete pointer cast instructions. 370 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 371 372 // Also zap the blockaddress constant if there are no users remaining, 373 // otherwise the destination is still marked as having its address taken. 374 if (BA->use_empty()) 375 BA->destroyConstant(); 376 377 // If we didn't find our destination in the IBI successor list, then we 378 // have undefined behavior. Replace the unconditional branch with an 379 // 'unreachable' instruction. 380 if (SuccToKeep) { 381 BB->getTerminator()->eraseFromParent(); 382 new UnreachableInst(BB->getContext(), BB); 383 } 384 385 if (DTU) { 386 std::vector<DominatorTree::UpdateType> Updates; 387 Updates.reserve(RemovedSuccessors.size()); 388 for (auto *RemovedSuccessor : RemovedSuccessors) 389 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 390 DTU->applyUpdates(Updates); 391 } 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Local dead code elimination. 401 // 402 403 /// isInstructionTriviallyDead - Return true if the result produced by the 404 /// instruction is not used, and the instruction has no side effects. 405 /// 406 bool llvm::isInstructionTriviallyDead(Instruction *I, 407 const TargetLibraryInfo *TLI) { 408 if (!I->use_empty()) 409 return false; 410 return wouldInstructionBeTriviallyDead(I, TLI); 411 } 412 413 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 414 Instruction *I, const TargetLibraryInfo *TLI) { 415 // Instructions that are "markers" and have implied meaning on code around 416 // them (without explicit uses), are not dead on unused paths. 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 418 if (II->getIntrinsicID() == Intrinsic::stacksave || 419 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 420 II->isLifetimeStartOrEnd()) 421 return false; 422 return wouldInstructionBeTriviallyDead(I, TLI); 423 } 424 425 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 426 const TargetLibraryInfo *TLI) { 427 if (I->isTerminator()) 428 return false; 429 430 // We don't want the landingpad-like instructions removed by anything this 431 // general. 432 if (I->isEHPad()) 433 return false; 434 435 // We don't want debug info removed by anything this general. 436 if (isa<DbgVariableIntrinsic>(I)) 437 return false; 438 439 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (auto *CB = dyn_cast<CallBase>(I)) 446 if (isRemovableAlloc(CB, TLI)) 447 return true; 448 449 if (!I->willReturn()) { 450 auto *II = dyn_cast<IntrinsicInst>(I); 451 if (!II) 452 return false; 453 454 switch (II->getIntrinsicID()) { 455 case Intrinsic::experimental_guard: { 456 // Guards on true are operationally no-ops. In the future we can 457 // consider more sophisticated tradeoffs for guards considering potential 458 // for check widening, but for now we keep things simple. 459 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 460 return Cond && Cond->isOne(); 461 } 462 // TODO: These intrinsics are not safe to remove, because this may remove 463 // a well-defined trap. 464 case Intrinsic::wasm_trunc_signed: 465 case Intrinsic::wasm_trunc_unsigned: 466 case Intrinsic::ptrauth_auth: 467 case Intrinsic::ptrauth_resign: 468 return true; 469 default: 470 return false; 471 } 472 } 473 474 if (!I->mayHaveSideEffects()) 475 return true; 476 477 // Special case intrinsics that "may have side effects" but can be deleted 478 // when dead. 479 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 480 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 481 if (II->getIntrinsicID() == Intrinsic::stacksave || 482 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 483 return true; 484 485 // Intrinsics declare sideeffects to prevent them from moving, but they are 486 // nops without users. 487 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 488 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 489 return true; 490 491 if (II->isLifetimeStartOrEnd()) { 492 auto *Arg = II->getArgOperand(1); 493 // Lifetime intrinsics are dead when their right-hand is undef. 494 if (isa<UndefValue>(Arg)) 495 return true; 496 // If the right-hand is an alloc, global, or argument and the only uses 497 // are lifetime intrinsics then the intrinsics are dead. 498 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 499 return llvm::all_of(Arg->uses(), [](Use &Use) { 500 if (IntrinsicInst *IntrinsicUse = 501 dyn_cast<IntrinsicInst>(Use.getUser())) 502 return IntrinsicUse->isLifetimeStartOrEnd(); 503 return false; 504 }); 505 return false; 506 } 507 508 // Assumptions are dead if their condition is trivially true. 509 if (II->getIntrinsicID() == Intrinsic::assume && 510 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 511 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 512 return !Cond->isZero(); 513 514 return false; 515 } 516 517 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 518 std::optional<fp::ExceptionBehavior> ExBehavior = 519 FPI->getExceptionBehavior(); 520 return *ExBehavior != fp::ebStrict; 521 } 522 } 523 524 if (auto *Call = dyn_cast<CallBase>(I)) { 525 if (Value *FreedOp = getFreedOperand(Call, TLI)) 526 if (Constant *C = dyn_cast<Constant>(FreedOp)) 527 return C->isNullValue() || isa<UndefValue>(C); 528 if (isMathLibCallNoop(Call, TLI)) 529 return true; 530 } 531 532 // Non-volatile atomic loads from constants can be removed. 533 if (auto *LI = dyn_cast<LoadInst>(I)) 534 if (auto *GV = dyn_cast<GlobalVariable>( 535 LI->getPointerOperand()->stripPointerCasts())) 536 if (!LI->isVolatile() && GV->isConstant()) 537 return true; 538 539 return false; 540 } 541 542 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 543 /// trivially dead instruction, delete it. If that makes any of its operands 544 /// trivially dead, delete them too, recursively. Return true if any 545 /// instructions were deleted. 546 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 547 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 548 std::function<void(Value *)> AboutToDeleteCallback) { 549 Instruction *I = dyn_cast<Instruction>(V); 550 if (!I || !isInstructionTriviallyDead(I, TLI)) 551 return false; 552 553 SmallVector<WeakTrackingVH, 16> DeadInsts; 554 DeadInsts.push_back(I); 555 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 556 AboutToDeleteCallback); 557 558 return true; 559 } 560 561 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 562 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 563 MemorySSAUpdater *MSSAU, 564 std::function<void(Value *)> AboutToDeleteCallback) { 565 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 566 for (; S != E; ++S) { 567 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 568 if (!I || !isInstructionTriviallyDead(I)) { 569 DeadInsts[S] = nullptr; 570 ++Alive; 571 } 572 } 573 if (Alive == E) 574 return false; 575 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 576 AboutToDeleteCallback); 577 return true; 578 } 579 580 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 581 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 582 MemorySSAUpdater *MSSAU, 583 std::function<void(Value *)> AboutToDeleteCallback) { 584 // Process the dead instruction list until empty. 585 while (!DeadInsts.empty()) { 586 Value *V = DeadInsts.pop_back_val(); 587 Instruction *I = cast_or_null<Instruction>(V); 588 if (!I) 589 continue; 590 assert(isInstructionTriviallyDead(I, TLI) && 591 "Live instruction found in dead worklist!"); 592 assert(I->use_empty() && "Instructions with uses are not dead."); 593 594 // Don't lose the debug info while deleting the instructions. 595 salvageDebugInfo(*I); 596 597 if (AboutToDeleteCallback) 598 AboutToDeleteCallback(I); 599 600 // Null out all of the instruction's operands to see if any operand becomes 601 // dead as we go. 602 for (Use &OpU : I->operands()) { 603 Value *OpV = OpU.get(); 604 OpU.set(nullptr); 605 606 if (!OpV->use_empty()) 607 continue; 608 609 // If the operand is an instruction that became dead as we nulled out the 610 // operand, and if it is 'trivially' dead, delete it in a future loop 611 // iteration. 612 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 613 if (isInstructionTriviallyDead(OpI, TLI)) 614 DeadInsts.push_back(OpI); 615 } 616 if (MSSAU) 617 MSSAU->removeMemoryAccess(I); 618 619 I->eraseFromParent(); 620 } 621 } 622 623 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 624 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 625 SmallVector<DbgVariableRecord *, 1> DPUsers; 626 findDbgUsers(DbgUsers, I, &DPUsers); 627 for (auto *DII : DbgUsers) 628 DII->setKillLocation(); 629 for (auto *DVR : DPUsers) 630 DVR->setKillLocation(); 631 return !DbgUsers.empty() || !DPUsers.empty(); 632 } 633 634 /// areAllUsesEqual - Check whether the uses of a value are all the same. 635 /// This is similar to Instruction::hasOneUse() except this will also return 636 /// true when there are no uses or multiple uses that all refer to the same 637 /// value. 638 static bool areAllUsesEqual(Instruction *I) { 639 Value::user_iterator UI = I->user_begin(); 640 Value::user_iterator UE = I->user_end(); 641 if (UI == UE) 642 return true; 643 644 User *TheUse = *UI; 645 for (++UI; UI != UE; ++UI) { 646 if (*UI != TheUse) 647 return false; 648 } 649 return true; 650 } 651 652 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 653 /// dead PHI node, due to being a def-use chain of single-use nodes that 654 /// either forms a cycle or is terminated by a trivially dead instruction, 655 /// delete it. If that makes any of its operands trivially dead, delete them 656 /// too, recursively. Return true if a change was made. 657 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 658 const TargetLibraryInfo *TLI, 659 llvm::MemorySSAUpdater *MSSAU) { 660 SmallPtrSet<Instruction*, 4> Visited; 661 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 662 I = cast<Instruction>(*I->user_begin())) { 663 if (I->use_empty()) 664 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 665 666 // If we find an instruction more than once, we're on a cycle that 667 // won't prove fruitful. 668 if (!Visited.insert(I).second) { 669 // Break the cycle and delete the instruction and its operands. 670 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 671 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 672 return true; 673 } 674 } 675 return false; 676 } 677 678 static bool 679 simplifyAndDCEInstruction(Instruction *I, 680 SmallSetVector<Instruction *, 16> &WorkList, 681 const DataLayout &DL, 682 const TargetLibraryInfo *TLI) { 683 if (isInstructionTriviallyDead(I, TLI)) { 684 salvageDebugInfo(*I); 685 686 // Null out all of the instruction's operands to see if any operand becomes 687 // dead as we go. 688 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 689 Value *OpV = I->getOperand(i); 690 I->setOperand(i, nullptr); 691 692 if (!OpV->use_empty() || I == OpV) 693 continue; 694 695 // If the operand is an instruction that became dead as we nulled out the 696 // operand, and if it is 'trivially' dead, delete it in a future loop 697 // iteration. 698 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 699 if (isInstructionTriviallyDead(OpI, TLI)) 700 WorkList.insert(OpI); 701 } 702 703 I->eraseFromParent(); 704 705 return true; 706 } 707 708 if (Value *SimpleV = simplifyInstruction(I, DL)) { 709 // Add the users to the worklist. CAREFUL: an instruction can use itself, 710 // in the case of a phi node. 711 for (User *U : I->users()) { 712 if (U != I) { 713 WorkList.insert(cast<Instruction>(U)); 714 } 715 } 716 717 // Replace the instruction with its simplified value. 718 bool Changed = false; 719 if (!I->use_empty()) { 720 I->replaceAllUsesWith(SimpleV); 721 Changed = true; 722 } 723 if (isInstructionTriviallyDead(I, TLI)) { 724 I->eraseFromParent(); 725 Changed = true; 726 } 727 return Changed; 728 } 729 return false; 730 } 731 732 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 733 /// simplify any instructions in it and recursively delete dead instructions. 734 /// 735 /// This returns true if it changed the code, note that it can delete 736 /// instructions in other blocks as well in this block. 737 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 738 const TargetLibraryInfo *TLI) { 739 bool MadeChange = false; 740 const DataLayout &DL = BB->getDataLayout(); 741 742 #ifndef NDEBUG 743 // In debug builds, ensure that the terminator of the block is never replaced 744 // or deleted by these simplifications. The idea of simplification is that it 745 // cannot introduce new instructions, and there is no way to replace the 746 // terminator of a block without introducing a new instruction. 747 AssertingVH<Instruction> TerminatorVH(&BB->back()); 748 #endif 749 750 SmallSetVector<Instruction *, 16> WorkList; 751 // Iterate over the original function, only adding insts to the worklist 752 // if they actually need to be revisited. This avoids having to pre-init 753 // the worklist with the entire function's worth of instructions. 754 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 755 BI != E;) { 756 assert(!BI->isTerminator()); 757 Instruction *I = &*BI; 758 ++BI; 759 760 // We're visiting this instruction now, so make sure it's not in the 761 // worklist from an earlier visit. 762 if (!WorkList.count(I)) 763 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 764 } 765 766 while (!WorkList.empty()) { 767 Instruction *I = WorkList.pop_back_val(); 768 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 769 } 770 return MadeChange; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Control Flow Graph Restructuring. 775 // 776 777 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 778 DomTreeUpdater *DTU) { 779 780 // If BB has single-entry PHI nodes, fold them. 781 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 782 Value *NewVal = PN->getIncomingValue(0); 783 // Replace self referencing PHI with poison, it must be dead. 784 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 785 PN->replaceAllUsesWith(NewVal); 786 PN->eraseFromParent(); 787 } 788 789 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 790 assert(PredBB && "Block doesn't have a single predecessor!"); 791 792 bool ReplaceEntryBB = PredBB->isEntryBlock(); 793 794 // DTU updates: Collect all the edges that enter 795 // PredBB. These dominator edges will be redirected to DestBB. 796 SmallVector<DominatorTree::UpdateType, 32> Updates; 797 798 if (DTU) { 799 // To avoid processing the same predecessor more than once. 800 SmallPtrSet<BasicBlock *, 2> SeenPreds; 801 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 // This predecessor of PredBB may already have DestBB as a successor. 804 if (PredOfPredBB != PredBB) 805 if (SeenPreds.insert(PredOfPredBB).second) 806 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 807 SeenPreds.clear(); 808 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 809 if (SeenPreds.insert(PredOfPredBB).second) 810 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 811 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 812 } 813 814 // Zap anything that took the address of DestBB. Not doing this will give the 815 // address an invalid value. 816 if (DestBB->hasAddressTaken()) { 817 BlockAddress *BA = BlockAddress::get(DestBB); 818 Constant *Replacement = 819 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 820 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 821 BA->getType())); 822 BA->destroyConstant(); 823 } 824 825 // Anything that branched to PredBB now branches to DestBB. 826 PredBB->replaceAllUsesWith(DestBB); 827 828 // Splice all the instructions from PredBB to DestBB. 829 PredBB->getTerminator()->eraseFromParent(); 830 DestBB->splice(DestBB->begin(), PredBB); 831 new UnreachableInst(PredBB->getContext(), PredBB); 832 833 // If the PredBB is the entry block of the function, move DestBB up to 834 // become the entry block after we erase PredBB. 835 if (ReplaceEntryBB) 836 DestBB->moveAfter(PredBB); 837 838 if (DTU) { 839 assert(PredBB->size() == 1 && 840 isa<UnreachableInst>(PredBB->getTerminator()) && 841 "The successor list of PredBB isn't empty before " 842 "applying corresponding DTU updates."); 843 DTU->applyUpdatesPermissive(Updates); 844 DTU->deleteBB(PredBB); 845 // Recalculation of DomTree is needed when updating a forward DomTree and 846 // the Entry BB is replaced. 847 if (ReplaceEntryBB && DTU->hasDomTree()) { 848 // The entry block was removed and there is no external interface for 849 // the dominator tree to be notified of this change. In this corner-case 850 // we recalculate the entire tree. 851 DTU->recalculate(*(DestBB->getParent())); 852 } 853 } 854 855 else { 856 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 857 } 858 } 859 860 /// Return true if we can choose one of these values to use in place of the 861 /// other. Note that we will always choose the non-undef value to keep. 862 static bool CanMergeValues(Value *First, Value *Second) { 863 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 864 } 865 866 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 867 /// branch to Succ, into Succ. 868 /// 869 /// Assumption: Succ is the single successor for BB. 870 static bool 871 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 872 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 873 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 874 875 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 876 << Succ->getName() << "\n"); 877 // Shortcut, if there is only a single predecessor it must be BB and merging 878 // is always safe 879 if (Succ->getSinglePredecessor()) 880 return true; 881 882 // Look at all the phi nodes in Succ, to see if they present a conflict when 883 // merging these blocks 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 // If the incoming value from BB is again a PHINode in 888 // BB which has the same incoming value for *PI as PN does, we can 889 // merge the phi nodes and then the blocks can still be merged 890 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 891 if (BBPN && BBPN->getParent() == BB) { 892 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 893 BasicBlock *IBB = PN->getIncomingBlock(PI); 894 if (BBPreds.count(IBB) && 895 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 896 PN->getIncomingValue(PI))) { 897 LLVM_DEBUG(dbgs() 898 << "Can't fold, phi node " << PN->getName() << " in " 899 << Succ->getName() << " is conflicting with " 900 << BBPN->getName() << " with regard to common predecessor " 901 << IBB->getName() << "\n"); 902 return false; 903 } 904 } 905 } else { 906 Value* Val = PN->getIncomingValueForBlock(BB); 907 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 908 // See if the incoming value for the common predecessor is equal to the 909 // one for BB, in which case this phi node will not prevent the merging 910 // of the block. 911 BasicBlock *IBB = PN->getIncomingBlock(PI); 912 if (BBPreds.count(IBB) && 913 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 914 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 915 << " in " << Succ->getName() 916 << " is conflicting with regard to common " 917 << "predecessor " << IBB->getName() << "\n"); 918 return false; 919 } 920 } 921 } 922 } 923 924 return true; 925 } 926 927 using PredBlockVector = SmallVector<BasicBlock *, 16>; 928 using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; 929 930 /// Determines the value to use as the phi node input for a block. 931 /// 932 /// Select between \p OldVal any value that we know flows from \p BB 933 /// to a particular phi on the basis of which one (if either) is not 934 /// undef. Update IncomingValues based on the selected value. 935 /// 936 /// \param OldVal The value we are considering selecting. 937 /// \param BB The block that the value flows in from. 938 /// \param IncomingValues A map from block-to-value for other phi inputs 939 /// that we have examined. 940 /// 941 /// \returns the selected value. 942 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 943 IncomingValueMap &IncomingValues) { 944 if (!isa<UndefValue>(OldVal)) { 945 assert((!IncomingValues.count(BB) || 946 IncomingValues.find(BB)->second == OldVal) && 947 "Expected OldVal to match incoming value from BB!"); 948 949 IncomingValues.insert(std::make_pair(BB, OldVal)); 950 return OldVal; 951 } 952 953 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 954 if (It != IncomingValues.end()) return It->second; 955 956 return OldVal; 957 } 958 959 /// Create a map from block to value for the operands of a 960 /// given phi. 961 /// 962 /// Create a map from block to value for each non-undef value flowing 963 /// into \p PN. 964 /// 965 /// \param PN The phi we are collecting the map for. 966 /// \param IncomingValues [out] The map from block to value for this phi. 967 static void gatherIncomingValuesToPhi(PHINode *PN, 968 IncomingValueMap &IncomingValues) { 969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 970 BasicBlock *BB = PN->getIncomingBlock(i); 971 Value *V = PN->getIncomingValue(i); 972 973 if (!isa<UndefValue>(V)) 974 IncomingValues.insert(std::make_pair(BB, V)); 975 } 976 } 977 978 /// Replace the incoming undef values to a phi with the values 979 /// from a block-to-value map. 980 /// 981 /// \param PN The phi we are replacing the undefs in. 982 /// \param IncomingValues A map from block to value. 983 static void replaceUndefValuesInPhi(PHINode *PN, 984 const IncomingValueMap &IncomingValues) { 985 SmallVector<unsigned> TrueUndefOps; 986 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 987 Value *V = PN->getIncomingValue(i); 988 989 if (!isa<UndefValue>(V)) continue; 990 991 BasicBlock *BB = PN->getIncomingBlock(i); 992 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 993 994 // Keep track of undef/poison incoming values. Those must match, so we fix 995 // them up below if needed. 996 // Note: this is conservatively correct, but we could try harder and group 997 // the undef values per incoming basic block. 998 if (It == IncomingValues.end()) { 999 TrueUndefOps.push_back(i); 1000 continue; 1001 } 1002 1003 // There is a defined value for this incoming block, so map this undef 1004 // incoming value to the defined value. 1005 PN->setIncomingValue(i, It->second); 1006 } 1007 1008 // If there are both undef and poison values incoming, then convert those 1009 // values to undef. It is invalid to have different values for the same 1010 // incoming block. 1011 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1012 return isa<PoisonValue>(PN->getIncomingValue(i)); 1013 }); 1014 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1015 for (unsigned i : TrueUndefOps) 1016 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1017 } 1018 } 1019 1020 // Only when they shares a single common predecessor, return true. 1021 // Only handles cases when BB can't be merged while its predecessors can be 1022 // redirected. 1023 static bool 1024 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1025 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1026 BasicBlock *&CommonPred) { 1027 1028 // There must be phis in BB, otherwise BB will be merged into Succ directly 1029 if (BB->phis().empty() || Succ->phis().empty()) 1030 return false; 1031 1032 // BB must have predecessors not shared that can be redirected to Succ 1033 if (!BB->hasNPredecessorsOrMore(2)) 1034 return false; 1035 1036 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1037 return isa<PHINode>(Pred->begin()) && 1038 isa<IndirectBrInst>(Pred->getTerminator()); 1039 })) 1040 return false; 1041 1042 // Get the single common predecessor of both BB and Succ. Return false 1043 // when there are more than one common predecessors. 1044 for (BasicBlock *SuccPred : predecessors(Succ)) { 1045 if (BBPreds.count(SuccPred)) { 1046 if (CommonPred) 1047 return false; 1048 CommonPred = SuccPred; 1049 } 1050 } 1051 1052 return true; 1053 } 1054 1055 /// Check whether removing \p BB will make the phis in its \p Succ have too 1056 /// many incoming entries. This function does not check whether \p BB is 1057 /// foldable or not. 1058 static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { 1059 // If BB only has one predecessor, then removing it will not introduce more 1060 // incoming edges for phis. 1061 if (BB->hasNPredecessors(1)) 1062 return false; 1063 unsigned NumPreds = pred_size(BB); 1064 unsigned NumChangedPhi = 0; 1065 for (auto &Phi : Succ->phis()) { 1066 // If the incoming value is a phi and the phi is defined in BB, 1067 // then removing BB will not increase the total phi entries of the ir. 1068 if (auto *IncomingPhi = dyn_cast<PHINode>(Phi.getIncomingValueForBlock(BB))) 1069 if (IncomingPhi->getParent() == BB) 1070 continue; 1071 // Otherwise, we need to add entries to the phi 1072 NumChangedPhi++; 1073 } 1074 // For every phi that needs to be changed, (NumPreds - 1) new entries will be 1075 // added. If the total increase in phi entries exceeds 1076 // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as 1077 // introducing too many new phi entries. 1078 return (NumPreds - 1) * NumChangedPhi > 1079 MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; 1080 } 1081 1082 /// Replace a value flowing from a block to a phi with 1083 /// potentially multiple instances of that value flowing from the 1084 /// block's predecessors to the phi. 1085 /// 1086 /// \param BB The block with the value flowing into the phi. 1087 /// \param BBPreds The predecessors of BB. 1088 /// \param PN The phi that we are updating. 1089 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1090 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1091 const PredBlockVector &BBPreds, 1092 PHINode *PN, 1093 BasicBlock *CommonPred) { 1094 Value *OldVal = PN->removeIncomingValue(BB, false); 1095 assert(OldVal && "No entry in PHI for Pred BB!"); 1096 1097 IncomingValueMap IncomingValues; 1098 1099 // We are merging two blocks - BB, and the block containing PN - and 1100 // as a result we need to redirect edges from the predecessors of BB 1101 // to go to the block containing PN, and update PN 1102 // accordingly. Since we allow merging blocks in the case where the 1103 // predecessor and successor blocks both share some predecessors, 1104 // and where some of those common predecessors might have undef 1105 // values flowing into PN, we want to rewrite those values to be 1106 // consistent with the non-undef values. 1107 1108 gatherIncomingValuesToPhi(PN, IncomingValues); 1109 1110 // If this incoming value is one of the PHI nodes in BB, the new entries 1111 // in the PHI node are the entries from the old PHI. 1112 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1113 PHINode *OldValPN = cast<PHINode>(OldVal); 1114 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1115 // Note that, since we are merging phi nodes and BB and Succ might 1116 // have common predecessors, we could end up with a phi node with 1117 // identical incoming branches. This will be cleaned up later (and 1118 // will trigger asserts if we try to clean it up now, without also 1119 // simplifying the corresponding conditional branch). 1120 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1121 1122 if (PredBB == CommonPred) 1123 continue; 1124 1125 Value *PredVal = OldValPN->getIncomingValue(i); 1126 Value *Selected = 1127 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1128 1129 // And add a new incoming value for this predecessor for the 1130 // newly retargeted branch. 1131 PN->addIncoming(Selected, PredBB); 1132 } 1133 if (CommonPred) 1134 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1135 1136 } else { 1137 for (BasicBlock *PredBB : BBPreds) { 1138 // Update existing incoming values in PN for this 1139 // predecessor of BB. 1140 if (PredBB == CommonPred) 1141 continue; 1142 1143 Value *Selected = 1144 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1145 1146 // And add a new incoming value for this predecessor for the 1147 // newly retargeted branch. 1148 PN->addIncoming(Selected, PredBB); 1149 } 1150 if (CommonPred) 1151 PN->addIncoming(OldVal, BB); 1152 } 1153 1154 replaceUndefValuesInPhi(PN, IncomingValues); 1155 } 1156 1157 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1158 DomTreeUpdater *DTU) { 1159 assert(BB != &BB->getParent()->getEntryBlock() && 1160 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1161 1162 // We can't simplify infinite loops. 1163 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1164 if (BB == Succ) 1165 return false; 1166 1167 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1168 1169 // The single common predecessor of BB and Succ when BB cannot be killed 1170 BasicBlock *CommonPred = nullptr; 1171 1172 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1173 1174 // Even if we can not fold BB into Succ, we may be able to redirect the 1175 // predecessors of BB to Succ. 1176 bool BBPhisMergeable = BBKillable || CanRedirectPredsOfEmptyBBToSucc( 1177 BB, Succ, BBPreds, CommonPred); 1178 1179 if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) 1180 return false; 1181 1182 // Check to see if merging these blocks/phis would cause conflicts for any of 1183 // the phi nodes in BB or Succ. If not, we can safely merge. 1184 1185 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1186 // has uses which will not disappear when the PHI nodes are merged. It is 1187 // possible to handle such cases, but difficult: it requires checking whether 1188 // BB dominates Succ, which is non-trivial to calculate in the case where 1189 // Succ has multiple predecessors. Also, it requires checking whether 1190 // constructing the necessary self-referential PHI node doesn't introduce any 1191 // conflicts; this isn't too difficult, but the previous code for doing this 1192 // was incorrect. 1193 // 1194 // Note that if this check finds a live use, BB dominates Succ, so BB is 1195 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1196 // folding the branch isn't profitable in that case anyway. 1197 if (!Succ->getSinglePredecessor()) { 1198 BasicBlock::iterator BBI = BB->begin(); 1199 while (isa<PHINode>(*BBI)) { 1200 for (Use &U : BBI->uses()) { 1201 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1202 if (PN->getIncomingBlock(U) != BB) 1203 return false; 1204 } else { 1205 return false; 1206 } 1207 } 1208 ++BBI; 1209 } 1210 } 1211 1212 if (BBPhisMergeable && CommonPred) 1213 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1214 << " and " << Succ->getName() << " : " 1215 << CommonPred->getName() << "\n"); 1216 1217 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1218 // metadata. 1219 // 1220 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1221 // current status (that loop metadata is implemented as metadata attached to 1222 // the branch instruction in the loop latch block). To quote from review 1223 // comments, "the current representation of loop metadata (using a loop latch 1224 // terminator attachment) is known to be fundamentally broken. Loop latches 1225 // are not uniquely associated with loops (both in that a latch can be part of 1226 // multiple loops and a loop may have multiple latches). Loop headers are. The 1227 // solution to this problem is also known: Add support for basic block 1228 // metadata, and attach loop metadata to the loop header." 1229 // 1230 // Why bail out: 1231 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1232 // the latch for inner-loop (see reason below), so bail out to prerserve 1233 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1234 // to this inner-loop. 1235 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1236 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1237 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1238 // one self-looping basic block, which is contradictory with the assumption. 1239 // 1240 // To illustrate how inner-loop metadata is dropped: 1241 // 1242 // CFG Before 1243 // 1244 // BB is while.cond.exit, attached with loop metdata md2. 1245 // BB->Pred is for.body, attached with loop metadata md1. 1246 // 1247 // entry 1248 // | 1249 // v 1250 // ---> while.cond -------------> while.end 1251 // | | 1252 // | v 1253 // | while.body 1254 // | | 1255 // | v 1256 // | for.body <---- (md1) 1257 // | | |______| 1258 // | v 1259 // | while.cond.exit (md2) 1260 // | | 1261 // |_______| 1262 // 1263 // CFG After 1264 // 1265 // while.cond1 is the merge of while.cond.exit and while.cond above. 1266 // for.body is attached with md2, and md1 is dropped. 1267 // If LoopSimplify runs later (as a part of loop pass), it could create 1268 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1269 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1270 // 1271 // entry 1272 // | 1273 // v 1274 // ---> while.cond1 -------------> while.end 1275 // | | 1276 // | v 1277 // | while.body 1278 // | | 1279 // | v 1280 // | for.body <---- (md2) 1281 // |_______| |______| 1282 if (Instruction *TI = BB->getTerminator()) 1283 if (TI->hasMetadata(LLVMContext::MD_loop)) 1284 for (BasicBlock *Pred : predecessors(BB)) 1285 if (Instruction *PredTI = Pred->getTerminator()) 1286 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1287 return false; 1288 1289 if (BBKillable) 1290 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1291 else if (BBPhisMergeable) 1292 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1293 1294 SmallVector<DominatorTree::UpdateType, 32> Updates; 1295 1296 if (DTU) { 1297 // To avoid processing the same predecessor more than once. 1298 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1299 // All predecessors of BB (except the common predecessor) will be moved to 1300 // Succ. 1301 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1302 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1303 for (auto *PredOfBB : predecessors(BB)) { 1304 // Do not modify those common predecessors of BB and Succ 1305 if (!SuccPreds.contains(PredOfBB)) 1306 if (SeenPreds.insert(PredOfBB).second) 1307 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1308 } 1309 1310 SeenPreds.clear(); 1311 1312 for (auto *PredOfBB : predecessors(BB)) 1313 // When BB cannot be killed, do not remove the edge between BB and 1314 // CommonPred. 1315 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1316 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1317 1318 if (BBKillable) 1319 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1320 } 1321 1322 if (isa<PHINode>(Succ->begin())) { 1323 // If there is more than one pred of succ, and there are PHI nodes in 1324 // the successor, then we need to add incoming edges for the PHI nodes 1325 // 1326 const PredBlockVector BBPreds(predecessors(BB)); 1327 1328 // Loop over all of the PHI nodes in the successor of BB. 1329 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1330 PHINode *PN = cast<PHINode>(I); 1331 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1332 } 1333 } 1334 1335 if (Succ->getSinglePredecessor()) { 1336 // BB is the only predecessor of Succ, so Succ will end up with exactly 1337 // the same predecessors BB had. 1338 // Copy over any phi, debug or lifetime instruction. 1339 BB->getTerminator()->eraseFromParent(); 1340 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1341 } else { 1342 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1343 // We explicitly check for such uses for merging phis. 1344 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1345 PN->eraseFromParent(); 1346 } 1347 } 1348 1349 // If the unconditional branch we replaced contains llvm.loop metadata, we 1350 // add the metadata to the branch instructions in the predecessors. 1351 if (Instruction *TI = BB->getTerminator()) 1352 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1353 for (BasicBlock *Pred : predecessors(BB)) 1354 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1355 1356 if (BBKillable) { 1357 // Everything that jumped to BB now goes to Succ. 1358 BB->replaceAllUsesWith(Succ); 1359 1360 if (!Succ->hasName()) 1361 Succ->takeName(BB); 1362 1363 // Clear the successor list of BB to match updates applying to DTU later. 1364 if (BB->getTerminator()) 1365 BB->back().eraseFromParent(); 1366 1367 new UnreachableInst(BB->getContext(), BB); 1368 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1369 "applying corresponding DTU updates."); 1370 } else if (BBPhisMergeable) { 1371 // Everything except CommonPred that jumped to BB now goes to Succ. 1372 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1373 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1374 return UseInst->getParent() != CommonPred && 1375 BBPreds.contains(UseInst->getParent()); 1376 return false; 1377 }); 1378 } 1379 1380 if (DTU) 1381 DTU->applyUpdates(Updates); 1382 1383 if (BBKillable) 1384 DeleteDeadBlock(BB, DTU); 1385 1386 return true; 1387 } 1388 1389 static bool 1390 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1391 SmallPtrSetImpl<PHINode *> &ToRemove) { 1392 // This implementation doesn't currently consider undef operands 1393 // specially. Theoretically, two phis which are identical except for 1394 // one having an undef where the other doesn't could be collapsed. 1395 1396 bool Changed = false; 1397 1398 // Examine each PHI. 1399 // Note that increment of I must *NOT* be in the iteration_expression, since 1400 // we don't want to immediately advance when we restart from the beginning. 1401 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1402 ++I; 1403 // Is there an identical PHI node in this basic block? 1404 // Note that we only look in the upper square's triangle, 1405 // we already checked that the lower triangle PHI's aren't identical. 1406 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1407 if (ToRemove.contains(DuplicatePN)) 1408 continue; 1409 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1410 continue; 1411 // A duplicate. Replace this PHI with the base PHI. 1412 ++NumPHICSEs; 1413 DuplicatePN->replaceAllUsesWith(PN); 1414 ToRemove.insert(DuplicatePN); 1415 Changed = true; 1416 1417 // The RAUW can change PHIs that we already visited. 1418 I = BB->begin(); 1419 break; // Start over from the beginning. 1420 } 1421 } 1422 return Changed; 1423 } 1424 1425 static bool 1426 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1427 SmallPtrSetImpl<PHINode *> &ToRemove) { 1428 // This implementation doesn't currently consider undef operands 1429 // specially. Theoretically, two phis which are identical except for 1430 // one having an undef where the other doesn't could be collapsed. 1431 1432 struct PHIDenseMapInfo { 1433 static PHINode *getEmptyKey() { 1434 return DenseMapInfo<PHINode *>::getEmptyKey(); 1435 } 1436 1437 static PHINode *getTombstoneKey() { 1438 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1439 } 1440 1441 static bool isSentinel(PHINode *PN) { 1442 return PN == getEmptyKey() || PN == getTombstoneKey(); 1443 } 1444 1445 // WARNING: this logic must be kept in sync with 1446 // Instruction::isIdenticalToWhenDefined()! 1447 static unsigned getHashValueImpl(PHINode *PN) { 1448 // Compute a hash value on the operands. Instcombine will likely have 1449 // sorted them, which helps expose duplicates, but we have to check all 1450 // the operands to be safe in case instcombine hasn't run. 1451 return static_cast<unsigned>(hash_combine( 1452 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1453 hash_combine_range(PN->block_begin(), PN->block_end()))); 1454 } 1455 1456 static unsigned getHashValue(PHINode *PN) { 1457 #ifndef NDEBUG 1458 // If -phicse-debug-hash was specified, return a constant -- this 1459 // will force all hashing to collide, so we'll exhaustively search 1460 // the table for a match, and the assertion in isEqual will fire if 1461 // there's a bug causing equal keys to hash differently. 1462 if (PHICSEDebugHash) 1463 return 0; 1464 #endif 1465 return getHashValueImpl(PN); 1466 } 1467 1468 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1469 if (isSentinel(LHS) || isSentinel(RHS)) 1470 return LHS == RHS; 1471 return LHS->isIdenticalTo(RHS); 1472 } 1473 1474 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1475 // These comparisons are nontrivial, so assert that equality implies 1476 // hash equality (DenseMap demands this as an invariant). 1477 bool Result = isEqualImpl(LHS, RHS); 1478 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1479 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1480 return Result; 1481 } 1482 }; 1483 1484 // Set of unique PHINodes. 1485 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1486 PHISet.reserve(4 * PHICSENumPHISmallSize); 1487 1488 // Examine each PHI. 1489 bool Changed = false; 1490 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1491 if (ToRemove.contains(PN)) 1492 continue; 1493 auto Inserted = PHISet.insert(PN); 1494 if (!Inserted.second) { 1495 // A duplicate. Replace this PHI with its duplicate. 1496 ++NumPHICSEs; 1497 PN->replaceAllUsesWith(*Inserted.first); 1498 ToRemove.insert(PN); 1499 Changed = true; 1500 1501 // The RAUW can change PHIs that we already visited. Start over from the 1502 // beginning. 1503 PHISet.clear(); 1504 I = BB->begin(); 1505 } 1506 } 1507 1508 return Changed; 1509 } 1510 1511 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1512 SmallPtrSetImpl<PHINode *> &ToRemove) { 1513 if ( 1514 #ifndef NDEBUG 1515 !PHICSEDebugHash && 1516 #endif 1517 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1518 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1519 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1520 } 1521 1522 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1523 SmallPtrSet<PHINode *, 8> ToRemove; 1524 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1525 for (PHINode *PN : ToRemove) 1526 PN->eraseFromParent(); 1527 return Changed; 1528 } 1529 1530 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1531 const DataLayout &DL) { 1532 V = V->stripPointerCasts(); 1533 1534 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1535 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1536 // than the current alignment, as the known bits calculation should have 1537 // already taken it into account. However, this is not always the case, 1538 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1539 // doesn't. 1540 Align CurrentAlign = AI->getAlign(); 1541 if (PrefAlign <= CurrentAlign) 1542 return CurrentAlign; 1543 1544 // If the preferred alignment is greater than the natural stack alignment 1545 // then don't round up. This avoids dynamic stack realignment. 1546 MaybeAlign StackAlign = DL.getStackAlignment(); 1547 if (StackAlign && PrefAlign > *StackAlign) 1548 return CurrentAlign; 1549 AI->setAlignment(PrefAlign); 1550 return PrefAlign; 1551 } 1552 1553 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1554 // TODO: as above, this shouldn't be necessary. 1555 Align CurrentAlign = GO->getPointerAlignment(DL); 1556 if (PrefAlign <= CurrentAlign) 1557 return CurrentAlign; 1558 1559 // If there is a large requested alignment and we can, bump up the alignment 1560 // of the global. If the memory we set aside for the global may not be the 1561 // memory used by the final program then it is impossible for us to reliably 1562 // enforce the preferred alignment. 1563 if (!GO->canIncreaseAlignment()) 1564 return CurrentAlign; 1565 1566 if (GO->isThreadLocal()) { 1567 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1568 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1569 PrefAlign = Align(MaxTLSAlign); 1570 } 1571 1572 GO->setAlignment(PrefAlign); 1573 return PrefAlign; 1574 } 1575 1576 return Align(1); 1577 } 1578 1579 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1580 const DataLayout &DL, 1581 const Instruction *CxtI, 1582 AssumptionCache *AC, 1583 const DominatorTree *DT) { 1584 assert(V->getType()->isPointerTy() && 1585 "getOrEnforceKnownAlignment expects a pointer!"); 1586 1587 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1588 unsigned TrailZ = Known.countMinTrailingZeros(); 1589 1590 // Avoid trouble with ridiculously large TrailZ values, such as 1591 // those computed from a null pointer. 1592 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1593 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1594 1595 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1596 1597 if (PrefAlign && *PrefAlign > Alignment) 1598 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1599 1600 // We don't need to make any adjustment. 1601 return Alignment; 1602 } 1603 1604 ///===---------------------------------------------------------------------===// 1605 /// Dbg Intrinsic utilities 1606 /// 1607 1608 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1609 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1610 DIExpression *DIExpr, 1611 PHINode *APN) { 1612 // Since we can't guarantee that the original dbg.declare intrinsic 1613 // is removed by LowerDbgDeclare(), we need to make sure that we are 1614 // not inserting the same dbg.value intrinsic over and over. 1615 SmallVector<DbgValueInst *, 1> DbgValues; 1616 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1617 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1618 for (auto *DVI : DbgValues) { 1619 assert(is_contained(DVI->getValues(), APN)); 1620 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1621 return true; 1622 } 1623 for (auto *DVR : DbgVariableRecords) { 1624 assert(is_contained(DVR->location_ops(), APN)); 1625 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1626 return true; 1627 } 1628 return false; 1629 } 1630 1631 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1632 /// (or fragment of the variable) described by \p DII. 1633 /// 1634 /// This is primarily intended as a helper for the different 1635 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1636 /// describes an alloca'd variable, so we need to use the alloc size of the 1637 /// value when doing the comparison. E.g. an i1 value will be identified as 1638 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1639 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1640 const DataLayout &DL = DII->getDataLayout(); 1641 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1642 if (std::optional<uint64_t> FragmentSize = 1643 DII->getExpression()->getActiveBits(DII->getVariable())) 1644 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1645 1646 // We can't always calculate the size of the DI variable (e.g. if it is a 1647 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1648 // intead. 1649 if (DII->isAddressOfVariable()) { 1650 // DII should have exactly 1 location when it is an address. 1651 assert(DII->getNumVariableLocationOps() == 1 && 1652 "address of variable must have exactly 1 location operand."); 1653 if (auto *AI = 1654 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1655 if (std::optional<TypeSize> FragmentSize = 1656 AI->getAllocationSizeInBits(DL)) { 1657 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1658 } 1659 } 1660 } 1661 // Could not determine size of variable. Conservatively return false. 1662 return false; 1663 } 1664 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1665 // the replacement for dbg.values. 1666 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1667 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1668 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1669 if (std::optional<uint64_t> FragmentSize = 1670 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1671 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1672 1673 // We can't always calculate the size of the DI variable (e.g. if it is a 1674 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1675 // intead. 1676 if (DVR->isAddressOfVariable()) { 1677 // DVR should have exactly 1 location when it is an address. 1678 assert(DVR->getNumVariableLocationOps() == 1 && 1679 "address of variable must have exactly 1 location operand."); 1680 if (auto *AI = 1681 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1682 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1683 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1684 } 1685 } 1686 } 1687 // Could not determine size of variable. Conservatively return false. 1688 return false; 1689 } 1690 1691 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1692 DILocalVariable *DIVar, 1693 DIExpression *DIExpr, 1694 const DebugLoc &NewLoc, 1695 BasicBlock::iterator Instr) { 1696 if (!UseNewDbgInfoFormat) { 1697 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1698 (Instruction *)nullptr); 1699 DbgVal.get<Instruction *>()->insertBefore(Instr); 1700 } else { 1701 // RemoveDIs: if we're using the new debug-info format, allocate a 1702 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1703 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1704 DbgVariableRecord *DV = 1705 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1706 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1707 } 1708 } 1709 1710 static void insertDbgValueOrDbgVariableRecordAfter( 1711 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1712 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1713 if (!UseNewDbgInfoFormat) { 1714 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1715 (Instruction *)nullptr); 1716 DbgVal.get<Instruction *>()->insertAfter(&*Instr); 1717 } else { 1718 // RemoveDIs: if we're using the new debug-info format, allocate a 1719 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1720 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1721 DbgVariableRecord *DV = 1722 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1723 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1724 } 1725 } 1726 1727 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1728 /// that has an associated llvm.dbg.declare intrinsic. 1729 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1730 StoreInst *SI, DIBuilder &Builder) { 1731 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1732 auto *DIVar = DII->getVariable(); 1733 assert(DIVar && "Missing variable"); 1734 auto *DIExpr = DII->getExpression(); 1735 Value *DV = SI->getValueOperand(); 1736 1737 DebugLoc NewLoc = getDebugValueLoc(DII); 1738 1739 // If the alloca describes the variable itself, i.e. the expression in the 1740 // dbg.declare doesn't start with a dereference, we can perform the 1741 // conversion if the value covers the entire fragment of DII. 1742 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1743 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1744 // We conservatively ignore other dereferences, because the following two are 1745 // not equivalent: 1746 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1747 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1748 // The former is adding 2 to the address of the variable, whereas the latter 1749 // is adding 2 to the value of the variable. As such, we insist on just a 1750 // deref expression. 1751 bool CanConvert = 1752 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1753 valueCoversEntireFragment(DV->getType(), DII)); 1754 if (CanConvert) { 1755 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1756 SI->getIterator()); 1757 return; 1758 } 1759 1760 // FIXME: If storing to a part of the variable described by the dbg.declare, 1761 // then we want to insert a dbg.value for the corresponding fragment. 1762 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1763 << '\n'); 1764 // For now, when there is a store to parts of the variable (but we do not 1765 // know which part) we insert an dbg.value intrinsic to indicate that we 1766 // know nothing about the variable's content. 1767 DV = PoisonValue::get(DV->getType()); 1768 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1769 SI->getIterator()); 1770 } 1771 1772 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1773 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1774 return DIExpression::get(DIExpr->getContext(), 1775 DIExpr->getElements().drop_front(NumEltDropped)); 1776 } 1777 1778 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1779 DIBuilder &Builder) { 1780 auto *DIVar = DII->getVariable(); 1781 assert(DIVar && "Missing variable"); 1782 auto *DIExpr = DII->getExpression(); 1783 DIExpr = dropInitialDeref(DIExpr); 1784 Value *DV = SI->getValueOperand(); 1785 1786 DebugLoc NewLoc = getDebugValueLoc(DII); 1787 1788 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1789 SI->getIterator()); 1790 } 1791 1792 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1793 /// that has an associated llvm.dbg.declare intrinsic. 1794 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1795 LoadInst *LI, DIBuilder &Builder) { 1796 auto *DIVar = DII->getVariable(); 1797 auto *DIExpr = DII->getExpression(); 1798 assert(DIVar && "Missing variable"); 1799 1800 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1801 // FIXME: If only referring to a part of the variable described by the 1802 // dbg.declare, then we want to insert a dbg.value for the corresponding 1803 // fragment. 1804 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1805 << *DII << '\n'); 1806 return; 1807 } 1808 1809 DebugLoc NewLoc = getDebugValueLoc(DII); 1810 1811 // We are now tracking the loaded value instead of the address. In the 1812 // future if multi-location support is added to the IR, it might be 1813 // preferable to keep tracking both the loaded value and the original 1814 // address in case the alloca can not be elided. 1815 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1816 LI->getIterator()); 1817 } 1818 1819 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1820 StoreInst *SI, DIBuilder &Builder) { 1821 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1822 auto *DIVar = DVR->getVariable(); 1823 assert(DIVar && "Missing variable"); 1824 auto *DIExpr = DVR->getExpression(); 1825 Value *DV = SI->getValueOperand(); 1826 1827 DebugLoc NewLoc = getDebugValueLoc(DVR); 1828 1829 // If the alloca describes the variable itself, i.e. the expression in the 1830 // dbg.declare doesn't start with a dereference, we can perform the 1831 // conversion if the value covers the entire fragment of DII. 1832 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1833 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1834 // We conservatively ignore other dereferences, because the following two are 1835 // not equivalent: 1836 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1837 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1838 // The former is adding 2 to the address of the variable, whereas the latter 1839 // is adding 2 to the value of the variable. As such, we insist on just a 1840 // deref expression. 1841 bool CanConvert = 1842 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1843 valueCoversEntireFragment(DV->getType(), DVR)); 1844 if (CanConvert) { 1845 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1846 SI->getIterator()); 1847 return; 1848 } 1849 1850 // FIXME: If storing to a part of the variable described by the dbg.declare, 1851 // then we want to insert a dbg.value for the corresponding fragment. 1852 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1853 << '\n'); 1854 assert(UseNewDbgInfoFormat); 1855 1856 // For now, when there is a store to parts of the variable (but we do not 1857 // know which part) we insert an dbg.value intrinsic to indicate that we 1858 // know nothing about the variable's content. 1859 DV = PoisonValue::get(DV->getType()); 1860 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1861 DbgVariableRecord *NewDVR = 1862 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1863 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1864 } 1865 1866 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1867 DIBuilder &Builder) { 1868 auto *DIVar = DVR->getVariable(); 1869 assert(DIVar && "Missing variable"); 1870 auto *DIExpr = DVR->getExpression(); 1871 DIExpr = dropInitialDeref(DIExpr); 1872 Value *DV = SI->getValueOperand(); 1873 1874 DebugLoc NewLoc = getDebugValueLoc(DVR); 1875 1876 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1877 SI->getIterator()); 1878 } 1879 1880 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1881 /// llvm.dbg.declare intrinsic. 1882 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1883 PHINode *APN, DIBuilder &Builder) { 1884 auto *DIVar = DII->getVariable(); 1885 auto *DIExpr = DII->getExpression(); 1886 assert(DIVar && "Missing variable"); 1887 1888 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1889 return; 1890 1891 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1892 // FIXME: If only referring to a part of the variable described by the 1893 // dbg.declare, then we want to insert a dbg.value for the corresponding 1894 // fragment. 1895 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1896 << *DII << '\n'); 1897 return; 1898 } 1899 1900 BasicBlock *BB = APN->getParent(); 1901 auto InsertionPt = BB->getFirstInsertionPt(); 1902 1903 DebugLoc NewLoc = getDebugValueLoc(DII); 1904 1905 // The block may be a catchswitch block, which does not have a valid 1906 // insertion point. 1907 // FIXME: Insert dbg.value markers in the successors when appropriate. 1908 if (InsertionPt != BB->end()) { 1909 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1910 InsertionPt); 1911 } 1912 } 1913 1914 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1915 DIBuilder &Builder) { 1916 auto *DIVar = DVR->getVariable(); 1917 auto *DIExpr = DVR->getExpression(); 1918 assert(DIVar && "Missing variable"); 1919 1920 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1921 // FIXME: If only referring to a part of the variable described by the 1922 // dbg.declare, then we want to insert a DbgVariableRecord for the 1923 // corresponding fragment. 1924 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1925 << *DVR << '\n'); 1926 return; 1927 } 1928 1929 DebugLoc NewLoc = getDebugValueLoc(DVR); 1930 1931 // We are now tracking the loaded value instead of the address. In the 1932 // future if multi-location support is added to the IR, it might be 1933 // preferable to keep tracking both the loaded value and the original 1934 // address in case the alloca can not be elided. 1935 assert(UseNewDbgInfoFormat); 1936 1937 // Create a DbgVariableRecord directly and insert. 1938 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1939 DbgVariableRecord *DV = 1940 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1941 LI->getParent()->insertDbgRecordAfter(DV, LI); 1942 } 1943 1944 /// Determine whether this alloca is either a VLA or an array. 1945 static bool isArray(AllocaInst *AI) { 1946 return AI->isArrayAllocation() || 1947 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1948 } 1949 1950 /// Determine whether this alloca is a structure. 1951 static bool isStructure(AllocaInst *AI) { 1952 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1953 } 1954 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1955 DIBuilder &Builder) { 1956 auto *DIVar = DVR->getVariable(); 1957 auto *DIExpr = DVR->getExpression(); 1958 assert(DIVar && "Missing variable"); 1959 1960 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1961 return; 1962 1963 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1964 // FIXME: If only referring to a part of the variable described by the 1965 // dbg.declare, then we want to insert a DbgVariableRecord for the 1966 // corresponding fragment. 1967 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1968 << *DVR << '\n'); 1969 return; 1970 } 1971 1972 BasicBlock *BB = APN->getParent(); 1973 auto InsertionPt = BB->getFirstInsertionPt(); 1974 1975 DebugLoc NewLoc = getDebugValueLoc(DVR); 1976 1977 // The block may be a catchswitch block, which does not have a valid 1978 // insertion point. 1979 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1980 if (InsertionPt != BB->end()) { 1981 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1982 InsertionPt); 1983 } 1984 } 1985 1986 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1987 /// of llvm.dbg.value intrinsics. 1988 bool llvm::LowerDbgDeclare(Function &F) { 1989 bool Changed = false; 1990 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1991 SmallVector<DbgDeclareInst *, 4> Dbgs; 1992 SmallVector<DbgVariableRecord *> DVRs; 1993 for (auto &FI : F) { 1994 for (Instruction &BI : FI) { 1995 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1996 Dbgs.push_back(DDI); 1997 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 1998 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 1999 DVRs.push_back(&DVR); 2000 } 2001 } 2002 } 2003 2004 if (Dbgs.empty() && DVRs.empty()) 2005 return Changed; 2006 2007 auto LowerOne = [&](auto *DDI) { 2008 AllocaInst *AI = 2009 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 2010 // If this is an alloca for a scalar variable, insert a dbg.value 2011 // at each load and store to the alloca and erase the dbg.declare. 2012 // The dbg.values allow tracking a variable even if it is not 2013 // stored on the stack, while the dbg.declare can only describe 2014 // the stack slot (and at a lexical-scope granularity). Later 2015 // passes will attempt to elide the stack slot. 2016 if (!AI || isArray(AI) || isStructure(AI)) 2017 return; 2018 2019 // A volatile load/store means that the alloca can't be elided anyway. 2020 if (llvm::any_of(AI->users(), [](User *U) -> bool { 2021 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 2022 return LI->isVolatile(); 2023 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 2024 return SI->isVolatile(); 2025 return false; 2026 })) 2027 return; 2028 2029 SmallVector<const Value *, 8> WorkList; 2030 WorkList.push_back(AI); 2031 while (!WorkList.empty()) { 2032 const Value *V = WorkList.pop_back_val(); 2033 for (const auto &AIUse : V->uses()) { 2034 User *U = AIUse.getUser(); 2035 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2036 if (AIUse.getOperandNo() == 1) 2037 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2038 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2039 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2040 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2041 // This is a call by-value or some other instruction that takes a 2042 // pointer to the variable. Insert a *value* intrinsic that describes 2043 // the variable by dereferencing the alloca. 2044 if (!CI->isLifetimeStartOrEnd()) { 2045 DebugLoc NewLoc = getDebugValueLoc(DDI); 2046 auto *DerefExpr = 2047 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2048 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2049 DerefExpr, NewLoc, 2050 CI->getIterator()); 2051 } 2052 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2053 if (BI->getType()->isPointerTy()) 2054 WorkList.push_back(BI); 2055 } 2056 } 2057 } 2058 DDI->eraseFromParent(); 2059 Changed = true; 2060 }; 2061 2062 for_each(Dbgs, LowerOne); 2063 for_each(DVRs, LowerOne); 2064 2065 if (Changed) 2066 for (BasicBlock &BB : F) 2067 RemoveRedundantDbgInstrs(&BB); 2068 2069 return Changed; 2070 } 2071 2072 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2073 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2074 // intrinsics. 2075 static void 2076 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2077 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2078 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2079 if (InsertedPHIs.size() == 0) 2080 return; 2081 2082 // Map existing PHI nodes to their DbgVariableRecords. 2083 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2084 for (auto &I : *BB) { 2085 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2086 for (Value *V : DVR.location_ops()) 2087 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2088 DbgValueMap.insert({Loc, &DVR}); 2089 } 2090 } 2091 if (DbgValueMap.size() == 0) 2092 return; 2093 2094 // Map a pair of the destination BB and old DbgVariableRecord to the new 2095 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2096 // more than one of the inserted PHIs in the same destination BB, we can 2097 // update the same DbgVariableRecord with all the new PHIs instead of creating 2098 // one copy for each. 2099 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2100 NewDbgValueMap; 2101 // Then iterate through the new PHIs and look to see if they use one of the 2102 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2103 // propagate the info through the new PHI. If we use more than one new PHI in 2104 // a single destination BB with the same old dbg.value, merge the updates so 2105 // that we get a single new DbgVariableRecord with all the new PHIs. 2106 for (auto PHI : InsertedPHIs) { 2107 BasicBlock *Parent = PHI->getParent(); 2108 // Avoid inserting a debug-info record into an EH block. 2109 if (Parent->getFirstNonPHI()->isEHPad()) 2110 continue; 2111 for (auto VI : PHI->operand_values()) { 2112 auto V = DbgValueMap.find(VI); 2113 if (V != DbgValueMap.end()) { 2114 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2115 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2116 if (NewDI == NewDbgValueMap.end()) { 2117 DbgVariableRecord *NewDbgII = DbgII->clone(); 2118 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2119 } 2120 DbgVariableRecord *NewDbgII = NewDI->second; 2121 // If PHI contains VI as an operand more than once, we may 2122 // replaced it in NewDbgII; confirm that it is present. 2123 if (is_contained(NewDbgII->location_ops(), VI)) 2124 NewDbgII->replaceVariableLocationOp(VI, PHI); 2125 } 2126 } 2127 } 2128 // Insert the new DbgVariableRecords into their destination blocks. 2129 for (auto DI : NewDbgValueMap) { 2130 BasicBlock *Parent = DI.first.first; 2131 DbgVariableRecord *NewDbgII = DI.second; 2132 auto InsertionPt = Parent->getFirstInsertionPt(); 2133 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2134 2135 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2136 } 2137 } 2138 2139 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2140 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2141 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2142 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2143 if (InsertedPHIs.size() == 0) 2144 return; 2145 2146 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2147 2148 // Map existing PHI nodes to their dbg.values. 2149 ValueToValueMapTy DbgValueMap; 2150 for (auto &I : *BB) { 2151 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2152 for (Value *V : DbgII->location_ops()) 2153 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2154 DbgValueMap.insert({Loc, DbgII}); 2155 } 2156 } 2157 if (DbgValueMap.size() == 0) 2158 return; 2159 2160 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2161 // so that if a dbg.value is being rewritten to use more than one of the 2162 // inserted PHIs in the same destination BB, we can update the same dbg.value 2163 // with all the new PHIs instead of creating one copy for each. 2164 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2165 DbgVariableIntrinsic *> 2166 NewDbgValueMap; 2167 // Then iterate through the new PHIs and look to see if they use one of the 2168 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2169 // propagate the info through the new PHI. If we use more than one new PHI in 2170 // a single destination BB with the same old dbg.value, merge the updates so 2171 // that we get a single new dbg.value with all the new PHIs. 2172 for (auto *PHI : InsertedPHIs) { 2173 BasicBlock *Parent = PHI->getParent(); 2174 // Avoid inserting an intrinsic into an EH block. 2175 if (Parent->getFirstNonPHI()->isEHPad()) 2176 continue; 2177 for (auto *VI : PHI->operand_values()) { 2178 auto V = DbgValueMap.find(VI); 2179 if (V != DbgValueMap.end()) { 2180 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2181 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2182 if (NewDI == NewDbgValueMap.end()) { 2183 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2184 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2185 } 2186 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2187 // If PHI contains VI as an operand more than once, we may 2188 // replaced it in NewDbgII; confirm that it is present. 2189 if (is_contained(NewDbgII->location_ops(), VI)) 2190 NewDbgII->replaceVariableLocationOp(VI, PHI); 2191 } 2192 } 2193 } 2194 // Insert thew new dbg.values into their destination blocks. 2195 for (auto DI : NewDbgValueMap) { 2196 BasicBlock *Parent = DI.first.first; 2197 auto *NewDbgII = DI.second; 2198 auto InsertionPt = Parent->getFirstInsertionPt(); 2199 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2200 NewDbgII->insertBefore(&*InsertionPt); 2201 } 2202 } 2203 2204 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2205 DIBuilder &Builder, uint8_t DIExprFlags, 2206 int Offset) { 2207 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2208 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2209 2210 auto ReplaceOne = [&](auto *DII) { 2211 assert(DII->getVariable() && "Missing variable"); 2212 auto *DIExpr = DII->getExpression(); 2213 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2214 DII->setExpression(DIExpr); 2215 DII->replaceVariableLocationOp(Address, NewAddress); 2216 }; 2217 2218 for_each(DbgDeclares, ReplaceOne); 2219 for_each(DVRDeclares, ReplaceOne); 2220 2221 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2222 } 2223 2224 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2225 DILocalVariable *DIVar, 2226 DIExpression *DIExpr, Value *NewAddress, 2227 DbgValueInst *DVI, 2228 DbgVariableRecord *DVR, 2229 DIBuilder &Builder, int Offset) { 2230 assert(DIVar && "Missing variable"); 2231 2232 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2233 // should do with the alloca pointer is dereference it. Otherwise we don't 2234 // know how to handle it and give up. 2235 if (!DIExpr || DIExpr->getNumElements() < 1 || 2236 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2237 return; 2238 2239 // Insert the offset before the first deref. 2240 if (Offset) 2241 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2242 2243 if (DVI) { 2244 DVI->setExpression(DIExpr); 2245 DVI->replaceVariableLocationOp(0u, NewAddress); 2246 } else { 2247 assert(DVR); 2248 DVR->setExpression(DIExpr); 2249 DVR->replaceVariableLocationOp(0u, NewAddress); 2250 } 2251 } 2252 2253 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2254 DIBuilder &Builder, int Offset) { 2255 SmallVector<DbgValueInst *, 1> DbgUsers; 2256 SmallVector<DbgVariableRecord *, 1> DPUsers; 2257 findDbgValues(DbgUsers, AI, &DPUsers); 2258 2259 // Attempt to replace dbg.values that use this alloca. 2260 for (auto *DVI : DbgUsers) 2261 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2262 DVI->getExpression(), NewAllocaAddress, DVI, 2263 nullptr, Builder, Offset); 2264 2265 // Replace any DbgVariableRecords that use this alloca. 2266 for (DbgVariableRecord *DVR : DPUsers) 2267 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2268 DVR->getExpression(), NewAllocaAddress, nullptr, 2269 DVR, Builder, Offset); 2270 } 2271 2272 /// Where possible to salvage debug information for \p I do so. 2273 /// If not possible mark undef. 2274 void llvm::salvageDebugInfo(Instruction &I) { 2275 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2276 SmallVector<DbgVariableRecord *, 1> DPUsers; 2277 findDbgUsers(DbgUsers, &I, &DPUsers); 2278 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2279 } 2280 2281 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2282 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2283 // Only instructions can be salvaged at the moment. 2284 if (!I) 2285 return; 2286 2287 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2288 "address-expression shouldn't have fragment info"); 2289 2290 // The address component of a dbg.assign cannot be variadic. 2291 uint64_t CurrentLocOps = 0; 2292 SmallVector<Value *, 4> AdditionalValues; 2293 SmallVector<uint64_t, 16> Ops; 2294 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2295 2296 // Check if the salvage failed. 2297 if (!NewV) 2298 return; 2299 2300 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2301 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2302 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2303 "address-expression shouldn't have fragment info"); 2304 2305 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2306 2307 // Salvage succeeds if no additional values are required. 2308 if (AdditionalValues.empty()) { 2309 Assign->setAddress(NewV); 2310 Assign->setAddressExpression(SalvagedExpr); 2311 } else { 2312 Assign->setKillAddress(); 2313 } 2314 } 2315 2316 void llvm::salvageDebugInfoForDbgValues( 2317 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2318 ArrayRef<DbgVariableRecord *> DPUsers) { 2319 // These are arbitrary chosen limits on the maximum number of values and the 2320 // maximum size of a debug expression we can salvage up to, used for 2321 // performance reasons. 2322 const unsigned MaxDebugArgs = 16; 2323 const unsigned MaxExpressionSize = 128; 2324 bool Salvaged = false; 2325 2326 for (auto *DII : DbgUsers) { 2327 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2328 if (DAI->getAddress() == &I) { 2329 salvageDbgAssignAddress(DAI); 2330 Salvaged = true; 2331 } 2332 if (DAI->getValue() != &I) 2333 continue; 2334 } 2335 2336 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2337 // pointing out the value as a DWARF memory location description. 2338 bool StackValue = isa<DbgValueInst>(DII); 2339 auto DIILocation = DII->location_ops(); 2340 assert( 2341 is_contained(DIILocation, &I) && 2342 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2343 SmallVector<Value *, 4> AdditionalValues; 2344 // `I` may appear more than once in DII's location ops, and each use of `I` 2345 // must be updated in the DIExpression and potentially have additional 2346 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2347 // DIILocation. 2348 Value *Op0 = nullptr; 2349 DIExpression *SalvagedExpr = DII->getExpression(); 2350 auto LocItr = find(DIILocation, &I); 2351 while (SalvagedExpr && LocItr != DIILocation.end()) { 2352 SmallVector<uint64_t, 16> Ops; 2353 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2354 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2355 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2356 if (!Op0) 2357 break; 2358 SalvagedExpr = 2359 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2360 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2361 } 2362 // salvageDebugInfoImpl should fail on examining the first element of 2363 // DbgUsers, or none of them. 2364 if (!Op0) 2365 break; 2366 2367 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2368 DII->replaceVariableLocationOp(&I, Op0); 2369 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2370 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2371 DII->setExpression(SalvagedExpr); 2372 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2373 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2374 MaxDebugArgs) { 2375 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2376 } else { 2377 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2378 // supported in those instructions. Also do not salvage if the resulting 2379 // DIArgList would contain an unreasonably large number of values. 2380 DII->setKillLocation(); 2381 } 2382 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2383 Salvaged = true; 2384 } 2385 // Duplicate of above block for DbgVariableRecords. 2386 for (auto *DVR : DPUsers) { 2387 if (DVR->isDbgAssign()) { 2388 if (DVR->getAddress() == &I) { 2389 salvageDbgAssignAddress(DVR); 2390 Salvaged = true; 2391 } 2392 if (DVR->getValue() != &I) 2393 continue; 2394 } 2395 2396 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2397 // are implicitly pointing out the value as a DWARF memory location 2398 // description. 2399 bool StackValue = 2400 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2401 auto DVRLocation = DVR->location_ops(); 2402 assert( 2403 is_contained(DVRLocation, &I) && 2404 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2405 SmallVector<Value *, 4> AdditionalValues; 2406 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2407 // must be updated in the DIExpression and potentially have additional 2408 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2409 // DVRLocation. 2410 Value *Op0 = nullptr; 2411 DIExpression *SalvagedExpr = DVR->getExpression(); 2412 auto LocItr = find(DVRLocation, &I); 2413 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2414 SmallVector<uint64_t, 16> Ops; 2415 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2416 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2417 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2418 if (!Op0) 2419 break; 2420 SalvagedExpr = 2421 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2422 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2423 } 2424 // salvageDebugInfoImpl should fail on examining the first element of 2425 // DbgUsers, or none of them. 2426 if (!Op0) 2427 break; 2428 2429 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2430 DVR->replaceVariableLocationOp(&I, Op0); 2431 bool IsValidSalvageExpr = 2432 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2433 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2434 DVR->setExpression(SalvagedExpr); 2435 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2436 IsValidSalvageExpr && 2437 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2438 MaxDebugArgs) { 2439 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2440 } else { 2441 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2442 // currently only valid for stack value expressions. 2443 // Also do not salvage if the resulting DIArgList would contain an 2444 // unreasonably large number of values. 2445 DVR->setKillLocation(); 2446 } 2447 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2448 Salvaged = true; 2449 } 2450 2451 if (Salvaged) 2452 return; 2453 2454 for (auto *DII : DbgUsers) 2455 DII->setKillLocation(); 2456 2457 for (auto *DVR : DPUsers) 2458 DVR->setKillLocation(); 2459 } 2460 2461 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2462 uint64_t CurrentLocOps, 2463 SmallVectorImpl<uint64_t> &Opcodes, 2464 SmallVectorImpl<Value *> &AdditionalValues) { 2465 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2466 // Rewrite a GEP into a DIExpression. 2467 SmallMapVector<Value *, APInt, 4> VariableOffsets; 2468 APInt ConstantOffset(BitWidth, 0); 2469 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2470 return nullptr; 2471 if (!VariableOffsets.empty() && !CurrentLocOps) { 2472 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2473 CurrentLocOps = 1; 2474 } 2475 for (const auto &Offset : VariableOffsets) { 2476 AdditionalValues.push_back(Offset.first); 2477 assert(Offset.second.isStrictlyPositive() && 2478 "Expected strictly positive multiplier for offset."); 2479 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2480 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2481 dwarf::DW_OP_plus}); 2482 } 2483 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2484 return GEP->getOperand(0); 2485 } 2486 2487 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2488 switch (Opcode) { 2489 case Instruction::Add: 2490 return dwarf::DW_OP_plus; 2491 case Instruction::Sub: 2492 return dwarf::DW_OP_minus; 2493 case Instruction::Mul: 2494 return dwarf::DW_OP_mul; 2495 case Instruction::SDiv: 2496 return dwarf::DW_OP_div; 2497 case Instruction::SRem: 2498 return dwarf::DW_OP_mod; 2499 case Instruction::Or: 2500 return dwarf::DW_OP_or; 2501 case Instruction::And: 2502 return dwarf::DW_OP_and; 2503 case Instruction::Xor: 2504 return dwarf::DW_OP_xor; 2505 case Instruction::Shl: 2506 return dwarf::DW_OP_shl; 2507 case Instruction::LShr: 2508 return dwarf::DW_OP_shr; 2509 case Instruction::AShr: 2510 return dwarf::DW_OP_shra; 2511 default: 2512 // TODO: Salvage from each kind of binop we know about. 2513 return 0; 2514 } 2515 } 2516 2517 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2518 SmallVectorImpl<uint64_t> &Opcodes, 2519 SmallVectorImpl<Value *> &AdditionalValues, 2520 Instruction *I) { 2521 if (!CurrentLocOps) { 2522 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2523 CurrentLocOps = 1; 2524 } 2525 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2526 AdditionalValues.push_back(I->getOperand(1)); 2527 } 2528 2529 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2530 SmallVectorImpl<uint64_t> &Opcodes, 2531 SmallVectorImpl<Value *> &AdditionalValues) { 2532 // Handle binary operations with constant integer operands as a special case. 2533 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2534 // Values wider than 64 bits cannot be represented within a DIExpression. 2535 if (ConstInt && ConstInt->getBitWidth() > 64) 2536 return nullptr; 2537 2538 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2539 // Push any Constant Int operand onto the expression stack. 2540 if (ConstInt) { 2541 uint64_t Val = ConstInt->getSExtValue(); 2542 // Add or Sub Instructions with a constant operand can potentially be 2543 // simplified. 2544 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2545 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2546 DIExpression::appendOffset(Opcodes, Offset); 2547 return BI->getOperand(0); 2548 } 2549 Opcodes.append({dwarf::DW_OP_constu, Val}); 2550 } else { 2551 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2552 } 2553 2554 // Add salvaged binary operator to expression stack, if it has a valid 2555 // representation in a DIExpression. 2556 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2557 if (!DwarfBinOp) 2558 return nullptr; 2559 Opcodes.push_back(DwarfBinOp); 2560 return BI->getOperand(0); 2561 } 2562 2563 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2564 // The signedness of the operation is implicit in the typed stack, signed and 2565 // unsigned instructions map to the same DWARF opcode. 2566 switch (Pred) { 2567 case CmpInst::ICMP_EQ: 2568 return dwarf::DW_OP_eq; 2569 case CmpInst::ICMP_NE: 2570 return dwarf::DW_OP_ne; 2571 case CmpInst::ICMP_UGT: 2572 case CmpInst::ICMP_SGT: 2573 return dwarf::DW_OP_gt; 2574 case CmpInst::ICMP_UGE: 2575 case CmpInst::ICMP_SGE: 2576 return dwarf::DW_OP_ge; 2577 case CmpInst::ICMP_ULT: 2578 case CmpInst::ICMP_SLT: 2579 return dwarf::DW_OP_lt; 2580 case CmpInst::ICMP_ULE: 2581 case CmpInst::ICMP_SLE: 2582 return dwarf::DW_OP_le; 2583 default: 2584 return 0; 2585 } 2586 } 2587 2588 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2589 SmallVectorImpl<uint64_t> &Opcodes, 2590 SmallVectorImpl<Value *> &AdditionalValues) { 2591 // Handle icmp operations with constant integer operands as a special case. 2592 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2593 // Values wider than 64 bits cannot be represented within a DIExpression. 2594 if (ConstInt && ConstInt->getBitWidth() > 64) 2595 return nullptr; 2596 // Push any Constant Int operand onto the expression stack. 2597 if (ConstInt) { 2598 if (Icmp->isSigned()) 2599 Opcodes.push_back(dwarf::DW_OP_consts); 2600 else 2601 Opcodes.push_back(dwarf::DW_OP_constu); 2602 uint64_t Val = ConstInt->getSExtValue(); 2603 Opcodes.push_back(Val); 2604 } else { 2605 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2606 } 2607 2608 // Add salvaged binary operator to expression stack, if it has a valid 2609 // representation in a DIExpression. 2610 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2611 if (!DwarfIcmpOp) 2612 return nullptr; 2613 Opcodes.push_back(DwarfIcmpOp); 2614 return Icmp->getOperand(0); 2615 } 2616 2617 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2618 SmallVectorImpl<uint64_t> &Ops, 2619 SmallVectorImpl<Value *> &AdditionalValues) { 2620 auto &M = *I.getModule(); 2621 auto &DL = M.getDataLayout(); 2622 2623 if (auto *CI = dyn_cast<CastInst>(&I)) { 2624 Value *FromValue = CI->getOperand(0); 2625 // No-op casts are irrelevant for debug info. 2626 if (CI->isNoopCast(DL)) { 2627 return FromValue; 2628 } 2629 2630 Type *Type = CI->getType(); 2631 if (Type->isPointerTy()) 2632 Type = DL.getIntPtrType(Type); 2633 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2634 if (Type->isVectorTy() || 2635 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2636 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2637 return nullptr; 2638 2639 llvm::Type *FromType = FromValue->getType(); 2640 if (FromType->isPointerTy()) 2641 FromType = DL.getIntPtrType(FromType); 2642 2643 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2644 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2645 2646 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2647 isa<SExtInst>(&I)); 2648 Ops.append(ExtOps.begin(), ExtOps.end()); 2649 return FromValue; 2650 } 2651 2652 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2653 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2654 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2655 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2656 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2657 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2658 2659 // *Not* to do: we should not attempt to salvage load instructions, 2660 // because the validity and lifetime of a dbg.value containing 2661 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2662 return nullptr; 2663 } 2664 2665 /// A replacement for a dbg.value expression. 2666 using DbgValReplacement = std::optional<DIExpression *>; 2667 2668 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2669 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2670 /// changes are made. 2671 static bool rewriteDebugUsers( 2672 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2673 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2674 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2675 // Find debug users of From. 2676 SmallVector<DbgVariableIntrinsic *, 1> Users; 2677 SmallVector<DbgVariableRecord *, 1> DPUsers; 2678 findDbgUsers(Users, &From, &DPUsers); 2679 if (Users.empty() && DPUsers.empty()) 2680 return false; 2681 2682 // Prevent use-before-def of To. 2683 bool Changed = false; 2684 2685 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2686 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2687 if (isa<Instruction>(&To)) { 2688 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2689 2690 for (auto *DII : Users) { 2691 // It's common to see a debug user between From and DomPoint. Move it 2692 // after DomPoint to preserve the variable update without any reordering. 2693 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2694 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2695 DII->moveAfter(&DomPoint); 2696 Changed = true; 2697 2698 // Users which otherwise aren't dominated by the replacement value must 2699 // be salvaged or deleted. 2700 } else if (!DT.dominates(&DomPoint, DII)) { 2701 UndefOrSalvage.insert(DII); 2702 } 2703 } 2704 2705 // DbgVariableRecord implementation of the above. 2706 for (auto *DVR : DPUsers) { 2707 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2708 Instruction *NextNonDebug = MarkedInstr; 2709 // The next instruction might still be a dbg.declare, skip over it. 2710 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2711 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2712 2713 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2714 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2715 DVR->removeFromParent(); 2716 // Ensure there's a marker. 2717 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2718 Changed = true; 2719 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2720 UndefOrSalvageDVR.insert(DVR); 2721 } 2722 } 2723 } 2724 2725 // Update debug users without use-before-def risk. 2726 for (auto *DII : Users) { 2727 if (UndefOrSalvage.count(DII)) 2728 continue; 2729 2730 DbgValReplacement DVRepl = RewriteExpr(*DII); 2731 if (!DVRepl) 2732 continue; 2733 2734 DII->replaceVariableLocationOp(&From, &To); 2735 DII->setExpression(*DVRepl); 2736 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2737 Changed = true; 2738 } 2739 for (auto *DVR : DPUsers) { 2740 if (UndefOrSalvageDVR.count(DVR)) 2741 continue; 2742 2743 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2744 if (!DVRepl) 2745 continue; 2746 2747 DVR->replaceVariableLocationOp(&From, &To); 2748 DVR->setExpression(*DVRepl); 2749 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2750 Changed = true; 2751 } 2752 2753 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2754 // Try to salvage the remaining debug users. 2755 salvageDebugInfo(From); 2756 Changed = true; 2757 } 2758 2759 return Changed; 2760 } 2761 2762 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2763 /// losslessly preserve the bits and semantics of the value. This predicate is 2764 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2765 /// 2766 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2767 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2768 /// and also does not allow lossless pointer <-> integer conversions. 2769 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2770 Type *ToTy) { 2771 // Trivially compatible types. 2772 if (FromTy == ToTy) 2773 return true; 2774 2775 // Handle compatible pointer <-> integer conversions. 2776 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2777 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2778 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2779 !DL.isNonIntegralPointerType(ToTy); 2780 return SameSize && LosslessConversion; 2781 } 2782 2783 // TODO: This is not exhaustive. 2784 return false; 2785 } 2786 2787 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2788 Instruction &DomPoint, DominatorTree &DT) { 2789 // Exit early if From has no debug users. 2790 if (!From.isUsedByMetadata()) 2791 return false; 2792 2793 assert(&From != &To && "Can't replace something with itself"); 2794 2795 Type *FromTy = From.getType(); 2796 Type *ToTy = To.getType(); 2797 2798 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2799 return DII.getExpression(); 2800 }; 2801 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2802 return DVR.getExpression(); 2803 }; 2804 2805 // Handle no-op conversions. 2806 Module &M = *From.getModule(); 2807 const DataLayout &DL = M.getDataLayout(); 2808 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2809 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2810 2811 // Handle integer-to-integer widening and narrowing. 2812 // FIXME: Use DW_OP_convert when it's available everywhere. 2813 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2814 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2815 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2816 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2817 2818 // When the width of the result grows, assume that a debugger will only 2819 // access the low `FromBits` bits when inspecting the source variable. 2820 if (FromBits < ToBits) 2821 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2822 2823 // The width of the result has shrunk. Use sign/zero extension to describe 2824 // the source variable's high bits. 2825 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2826 DILocalVariable *Var = DII.getVariable(); 2827 2828 // Without knowing signedness, sign/zero extension isn't possible. 2829 auto Signedness = Var->getSignedness(); 2830 if (!Signedness) 2831 return std::nullopt; 2832 2833 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2834 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2835 Signed); 2836 }; 2837 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2838 // than on dbg.value intrinsics. 2839 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2840 DILocalVariable *Var = DVR.getVariable(); 2841 2842 // Without knowing signedness, sign/zero extension isn't possible. 2843 auto Signedness = Var->getSignedness(); 2844 if (!Signedness) 2845 return std::nullopt; 2846 2847 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2848 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2849 Signed); 2850 }; 2851 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2852 SignOrZeroExtDVR); 2853 } 2854 2855 // TODO: Floating-point conversions, vectors. 2856 return false; 2857 } 2858 2859 bool llvm::handleUnreachableTerminator( 2860 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2861 bool Changed = false; 2862 // RemoveDIs: erase debug-info on this instruction manually. 2863 I->dropDbgRecords(); 2864 for (Use &U : I->operands()) { 2865 Value *Op = U.get(); 2866 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2867 U.set(PoisonValue::get(Op->getType())); 2868 PoisonedValues.push_back(Op); 2869 Changed = true; 2870 } 2871 } 2872 2873 return Changed; 2874 } 2875 2876 std::pair<unsigned, unsigned> 2877 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2878 unsigned NumDeadInst = 0; 2879 unsigned NumDeadDbgInst = 0; 2880 // Delete the instructions backwards, as it has a reduced likelihood of 2881 // having to update as many def-use and use-def chains. 2882 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2883 SmallVector<Value *> Uses; 2884 handleUnreachableTerminator(EndInst, Uses); 2885 2886 while (EndInst != &BB->front()) { 2887 // Delete the next to last instruction. 2888 Instruction *Inst = &*--EndInst->getIterator(); 2889 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2890 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2891 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2892 // EHPads can't have DbgVariableRecords attached to them, but it might be 2893 // possible for things with token type. 2894 Inst->dropDbgRecords(); 2895 EndInst = Inst; 2896 continue; 2897 } 2898 if (isa<DbgInfoIntrinsic>(Inst)) 2899 ++NumDeadDbgInst; 2900 else 2901 ++NumDeadInst; 2902 // RemoveDIs: erasing debug-info must be done manually. 2903 Inst->dropDbgRecords(); 2904 Inst->eraseFromParent(); 2905 } 2906 return {NumDeadInst, NumDeadDbgInst}; 2907 } 2908 2909 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2910 DomTreeUpdater *DTU, 2911 MemorySSAUpdater *MSSAU) { 2912 BasicBlock *BB = I->getParent(); 2913 2914 if (MSSAU) 2915 MSSAU->changeToUnreachable(I); 2916 2917 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2918 2919 // Loop over all of the successors, removing BB's entry from any PHI 2920 // nodes. 2921 for (BasicBlock *Successor : successors(BB)) { 2922 Successor->removePredecessor(BB, PreserveLCSSA); 2923 if (DTU) 2924 UniqueSuccessors.insert(Successor); 2925 } 2926 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2927 UI->setDebugLoc(I->getDebugLoc()); 2928 2929 // All instructions after this are dead. 2930 unsigned NumInstrsRemoved = 0; 2931 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2932 while (BBI != BBE) { 2933 if (!BBI->use_empty()) 2934 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2935 BBI++->eraseFromParent(); 2936 ++NumInstrsRemoved; 2937 } 2938 if (DTU) { 2939 SmallVector<DominatorTree::UpdateType, 8> Updates; 2940 Updates.reserve(UniqueSuccessors.size()); 2941 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2942 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2943 DTU->applyUpdates(Updates); 2944 } 2945 BB->flushTerminatorDbgRecords(); 2946 return NumInstrsRemoved; 2947 } 2948 2949 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2950 SmallVector<Value *, 8> Args(II->args()); 2951 SmallVector<OperandBundleDef, 1> OpBundles; 2952 II->getOperandBundlesAsDefs(OpBundles); 2953 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2954 II->getCalledOperand(), Args, OpBundles); 2955 NewCall->setCallingConv(II->getCallingConv()); 2956 NewCall->setAttributes(II->getAttributes()); 2957 NewCall->setDebugLoc(II->getDebugLoc()); 2958 NewCall->copyMetadata(*II); 2959 2960 // If the invoke had profile metadata, try converting them for CallInst. 2961 uint64_t TotalWeight; 2962 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2963 // Set the total weight if it fits into i32, otherwise reset. 2964 MDBuilder MDB(NewCall->getContext()); 2965 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2966 ? nullptr 2967 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2968 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2969 } 2970 2971 return NewCall; 2972 } 2973 2974 // changeToCall - Convert the specified invoke into a normal call. 2975 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2976 CallInst *NewCall = createCallMatchingInvoke(II); 2977 NewCall->takeName(II); 2978 NewCall->insertBefore(II); 2979 II->replaceAllUsesWith(NewCall); 2980 2981 // Follow the call by a branch to the normal destination. 2982 BasicBlock *NormalDestBB = II->getNormalDest(); 2983 BranchInst::Create(NormalDestBB, II->getIterator()); 2984 2985 // Update PHI nodes in the unwind destination 2986 BasicBlock *BB = II->getParent(); 2987 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2988 UnwindDestBB->removePredecessor(BB); 2989 II->eraseFromParent(); 2990 if (DTU) 2991 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2992 return NewCall; 2993 } 2994 2995 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2996 BasicBlock *UnwindEdge, 2997 DomTreeUpdater *DTU) { 2998 BasicBlock *BB = CI->getParent(); 2999 3000 // Convert this function call into an invoke instruction. First, split the 3001 // basic block. 3002 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 3003 CI->getName() + ".noexc"); 3004 3005 // Delete the unconditional branch inserted by SplitBlock 3006 BB->back().eraseFromParent(); 3007 3008 // Create the new invoke instruction. 3009 SmallVector<Value *, 8> InvokeArgs(CI->args()); 3010 SmallVector<OperandBundleDef, 1> OpBundles; 3011 3012 CI->getOperandBundlesAsDefs(OpBundles); 3013 3014 // Note: we're round tripping operand bundles through memory here, and that 3015 // can potentially be avoided with a cleverer API design that we do not have 3016 // as of this time. 3017 3018 InvokeInst *II = 3019 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 3020 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 3021 II->setDebugLoc(CI->getDebugLoc()); 3022 II->setCallingConv(CI->getCallingConv()); 3023 II->setAttributes(CI->getAttributes()); 3024 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 3025 3026 if (DTU) 3027 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 3028 3029 // Make sure that anything using the call now uses the invoke! This also 3030 // updates the CallGraph if present, because it uses a WeakTrackingVH. 3031 CI->replaceAllUsesWith(II); 3032 3033 // Delete the original call 3034 Split->front().eraseFromParent(); 3035 return Split; 3036 } 3037 3038 static bool markAliveBlocks(Function &F, 3039 SmallPtrSetImpl<BasicBlock *> &Reachable, 3040 DomTreeUpdater *DTU = nullptr) { 3041 SmallVector<BasicBlock*, 128> Worklist; 3042 BasicBlock *BB = &F.front(); 3043 Worklist.push_back(BB); 3044 Reachable.insert(BB); 3045 bool Changed = false; 3046 do { 3047 BB = Worklist.pop_back_val(); 3048 3049 // Do a quick scan of the basic block, turning any obviously unreachable 3050 // instructions into LLVM unreachable insts. The instruction combining pass 3051 // canonicalizes unreachable insts into stores to null or undef. 3052 for (Instruction &I : *BB) { 3053 if (auto *CI = dyn_cast<CallInst>(&I)) { 3054 Value *Callee = CI->getCalledOperand(); 3055 // Handle intrinsic calls. 3056 if (Function *F = dyn_cast<Function>(Callee)) { 3057 auto IntrinsicID = F->getIntrinsicID(); 3058 // Assumptions that are known to be false are equivalent to 3059 // unreachable. Also, if the condition is undefined, then we make the 3060 // choice most beneficial to the optimizer, and choose that to also be 3061 // unreachable. 3062 if (IntrinsicID == Intrinsic::assume) { 3063 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3064 // Don't insert a call to llvm.trap right before the unreachable. 3065 changeToUnreachable(CI, false, DTU); 3066 Changed = true; 3067 break; 3068 } 3069 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3070 // A call to the guard intrinsic bails out of the current 3071 // compilation unit if the predicate passed to it is false. If the 3072 // predicate is a constant false, then we know the guard will bail 3073 // out of the current compile unconditionally, so all code following 3074 // it is dead. 3075 // 3076 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3077 // guards to treat `undef` as `false` since a guard on `undef` can 3078 // still be useful for widening. 3079 if (match(CI->getArgOperand(0), m_Zero())) 3080 if (!isa<UnreachableInst>(CI->getNextNode())) { 3081 changeToUnreachable(CI->getNextNode(), false, DTU); 3082 Changed = true; 3083 break; 3084 } 3085 } 3086 } else if ((isa<ConstantPointerNull>(Callee) && 3087 !NullPointerIsDefined(CI->getFunction(), 3088 cast<PointerType>(Callee->getType()) 3089 ->getAddressSpace())) || 3090 isa<UndefValue>(Callee)) { 3091 changeToUnreachable(CI, false, DTU); 3092 Changed = true; 3093 break; 3094 } 3095 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3096 // If we found a call to a no-return function, insert an unreachable 3097 // instruction after it. Make sure there isn't *already* one there 3098 // though. 3099 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3100 // Don't insert a call to llvm.trap right before the unreachable. 3101 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3102 Changed = true; 3103 } 3104 break; 3105 } 3106 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3107 // Store to undef and store to null are undefined and used to signal 3108 // that they should be changed to unreachable by passes that can't 3109 // modify the CFG. 3110 3111 // Don't touch volatile stores. 3112 if (SI->isVolatile()) continue; 3113 3114 Value *Ptr = SI->getOperand(1); 3115 3116 if (isa<UndefValue>(Ptr) || 3117 (isa<ConstantPointerNull>(Ptr) && 3118 !NullPointerIsDefined(SI->getFunction(), 3119 SI->getPointerAddressSpace()))) { 3120 changeToUnreachable(SI, false, DTU); 3121 Changed = true; 3122 break; 3123 } 3124 } 3125 } 3126 3127 Instruction *Terminator = BB->getTerminator(); 3128 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3129 // Turn invokes that call 'nounwind' functions into ordinary calls. 3130 Value *Callee = II->getCalledOperand(); 3131 if ((isa<ConstantPointerNull>(Callee) && 3132 !NullPointerIsDefined(BB->getParent())) || 3133 isa<UndefValue>(Callee)) { 3134 changeToUnreachable(II, false, DTU); 3135 Changed = true; 3136 } else { 3137 if (II->doesNotReturn() && 3138 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3139 // If we found an invoke of a no-return function, 3140 // create a new empty basic block with an `unreachable` terminator, 3141 // and set it as the normal destination for the invoke, 3142 // unless that is already the case. 3143 // Note that the original normal destination could have other uses. 3144 BasicBlock *OrigNormalDest = II->getNormalDest(); 3145 OrigNormalDest->removePredecessor(II->getParent()); 3146 LLVMContext &Ctx = II->getContext(); 3147 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3148 Ctx, OrigNormalDest->getName() + ".unreachable", 3149 II->getFunction(), OrigNormalDest); 3150 new UnreachableInst(Ctx, UnreachableNormalDest); 3151 II->setNormalDest(UnreachableNormalDest); 3152 if (DTU) 3153 DTU->applyUpdates( 3154 {{DominatorTree::Delete, BB, OrigNormalDest}, 3155 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3156 Changed = true; 3157 } 3158 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3159 if (II->use_empty() && !II->mayHaveSideEffects()) { 3160 // jump to the normal destination branch. 3161 BasicBlock *NormalDestBB = II->getNormalDest(); 3162 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3163 BranchInst::Create(NormalDestBB, II->getIterator()); 3164 UnwindDestBB->removePredecessor(II->getParent()); 3165 II->eraseFromParent(); 3166 if (DTU) 3167 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3168 } else 3169 changeToCall(II, DTU); 3170 Changed = true; 3171 } 3172 } 3173 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3174 // Remove catchpads which cannot be reached. 3175 struct CatchPadDenseMapInfo { 3176 static CatchPadInst *getEmptyKey() { 3177 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3178 } 3179 3180 static CatchPadInst *getTombstoneKey() { 3181 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3182 } 3183 3184 static unsigned getHashValue(CatchPadInst *CatchPad) { 3185 return static_cast<unsigned>(hash_combine_range( 3186 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3187 } 3188 3189 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3190 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3191 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3192 return LHS == RHS; 3193 return LHS->isIdenticalTo(RHS); 3194 } 3195 }; 3196 3197 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3198 // Set of unique CatchPads. 3199 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3200 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3201 HandlerSet; 3202 detail::DenseSetEmpty Empty; 3203 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3204 E = CatchSwitch->handler_end(); 3205 I != E; ++I) { 3206 BasicBlock *HandlerBB = *I; 3207 if (DTU) 3208 ++NumPerSuccessorCases[HandlerBB]; 3209 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3210 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3211 if (DTU) 3212 --NumPerSuccessorCases[HandlerBB]; 3213 CatchSwitch->removeHandler(I); 3214 --I; 3215 --E; 3216 Changed = true; 3217 } 3218 } 3219 if (DTU) { 3220 std::vector<DominatorTree::UpdateType> Updates; 3221 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3222 if (I.second == 0) 3223 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3224 DTU->applyUpdates(Updates); 3225 } 3226 } 3227 3228 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3229 for (BasicBlock *Successor : successors(BB)) 3230 if (Reachable.insert(Successor).second) 3231 Worklist.push_back(Successor); 3232 } while (!Worklist.empty()); 3233 return Changed; 3234 } 3235 3236 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3237 Instruction *TI = BB->getTerminator(); 3238 3239 if (auto *II = dyn_cast<InvokeInst>(TI)) 3240 return changeToCall(II, DTU); 3241 3242 Instruction *NewTI; 3243 BasicBlock *UnwindDest; 3244 3245 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3246 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3247 UnwindDest = CRI->getUnwindDest(); 3248 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3249 auto *NewCatchSwitch = CatchSwitchInst::Create( 3250 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3251 CatchSwitch->getName(), CatchSwitch->getIterator()); 3252 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3253 NewCatchSwitch->addHandler(PadBB); 3254 3255 NewTI = NewCatchSwitch; 3256 UnwindDest = CatchSwitch->getUnwindDest(); 3257 } else { 3258 llvm_unreachable("Could not find unwind successor"); 3259 } 3260 3261 NewTI->takeName(TI); 3262 NewTI->setDebugLoc(TI->getDebugLoc()); 3263 UnwindDest->removePredecessor(BB); 3264 TI->replaceAllUsesWith(NewTI); 3265 TI->eraseFromParent(); 3266 if (DTU) 3267 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3268 return NewTI; 3269 } 3270 3271 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3272 /// if they are in a dead cycle. Return true if a change was made, false 3273 /// otherwise. 3274 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3275 MemorySSAUpdater *MSSAU) { 3276 SmallPtrSet<BasicBlock *, 16> Reachable; 3277 bool Changed = markAliveBlocks(F, Reachable, DTU); 3278 3279 // If there are unreachable blocks in the CFG... 3280 if (Reachable.size() == F.size()) 3281 return Changed; 3282 3283 assert(Reachable.size() < F.size()); 3284 3285 // Are there any blocks left to actually delete? 3286 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3287 for (BasicBlock &BB : F) { 3288 // Skip reachable basic blocks 3289 if (Reachable.count(&BB)) 3290 continue; 3291 // Skip already-deleted blocks 3292 if (DTU && DTU->isBBPendingDeletion(&BB)) 3293 continue; 3294 BlocksToRemove.insert(&BB); 3295 } 3296 3297 if (BlocksToRemove.empty()) 3298 return Changed; 3299 3300 Changed = true; 3301 NumRemoved += BlocksToRemove.size(); 3302 3303 if (MSSAU) 3304 MSSAU->removeBlocks(BlocksToRemove); 3305 3306 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3307 3308 return Changed; 3309 } 3310 3311 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3312 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3313 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3314 K->dropUnknownNonDebugMetadata(KnownIDs); 3315 K->getAllMetadataOtherThanDebugLoc(Metadata); 3316 for (const auto &MD : Metadata) { 3317 unsigned Kind = MD.first; 3318 MDNode *JMD = J->getMetadata(Kind); 3319 MDNode *KMD = MD.second; 3320 3321 switch (Kind) { 3322 default: 3323 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3324 break; 3325 case LLVMContext::MD_dbg: 3326 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3327 case LLVMContext::MD_DIAssignID: 3328 K->mergeDIAssignID(J); 3329 break; 3330 case LLVMContext::MD_tbaa: 3331 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3332 break; 3333 case LLVMContext::MD_alias_scope: 3334 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3335 break; 3336 case LLVMContext::MD_noalias: 3337 case LLVMContext::MD_mem_parallel_loop_access: 3338 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3339 break; 3340 case LLVMContext::MD_access_group: 3341 K->setMetadata(LLVMContext::MD_access_group, 3342 intersectAccessGroups(K, J)); 3343 break; 3344 case LLVMContext::MD_range: 3345 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3346 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3347 break; 3348 case LLVMContext::MD_fpmath: 3349 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3350 break; 3351 case LLVMContext::MD_invariant_load: 3352 // If K moves, only set the !invariant.load if it is present in both 3353 // instructions. 3354 if (DoesKMove) 3355 K->setMetadata(Kind, JMD); 3356 break; 3357 case LLVMContext::MD_nonnull: 3358 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3359 K->setMetadata(Kind, JMD); 3360 break; 3361 case LLVMContext::MD_invariant_group: 3362 // Preserve !invariant.group in K. 3363 break; 3364 case LLVMContext::MD_mmra: 3365 // Combine MMRAs 3366 break; 3367 case LLVMContext::MD_align: 3368 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3369 K->setMetadata( 3370 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3371 break; 3372 case LLVMContext::MD_dereferenceable: 3373 case LLVMContext::MD_dereferenceable_or_null: 3374 if (DoesKMove) 3375 K->setMetadata(Kind, 3376 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3377 break; 3378 case LLVMContext::MD_preserve_access_index: 3379 // Preserve !preserve.access.index in K. 3380 break; 3381 case LLVMContext::MD_noundef: 3382 // If K does move, keep noundef if it is present in both instructions. 3383 if (DoesKMove) 3384 K->setMetadata(Kind, JMD); 3385 break; 3386 case LLVMContext::MD_nontemporal: 3387 // Preserve !nontemporal if it is present on both instructions. 3388 K->setMetadata(Kind, JMD); 3389 break; 3390 case LLVMContext::MD_prof: 3391 if (DoesKMove) 3392 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3393 break; 3394 } 3395 } 3396 // Set !invariant.group from J if J has it. If both instructions have it 3397 // then we will just pick it from J - even when they are different. 3398 // Also make sure that K is load or store - f.e. combining bitcast with load 3399 // could produce bitcast with invariant.group metadata, which is invalid. 3400 // FIXME: we should try to preserve both invariant.group md if they are 3401 // different, but right now instruction can only have one invariant.group. 3402 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3403 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3404 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3405 3406 // Merge MMRAs. 3407 // This is handled separately because we also want to handle cases where K 3408 // doesn't have tags but J does. 3409 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3410 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3411 if (JMMRA || KMMRA) { 3412 K->setMetadata(LLVMContext::MD_mmra, 3413 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3414 } 3415 } 3416 3417 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3418 bool KDominatesJ) { 3419 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3420 LLVMContext::MD_alias_scope, 3421 LLVMContext::MD_noalias, 3422 LLVMContext::MD_range, 3423 LLVMContext::MD_fpmath, 3424 LLVMContext::MD_invariant_load, 3425 LLVMContext::MD_nonnull, 3426 LLVMContext::MD_invariant_group, 3427 LLVMContext::MD_align, 3428 LLVMContext::MD_dereferenceable, 3429 LLVMContext::MD_dereferenceable_or_null, 3430 LLVMContext::MD_access_group, 3431 LLVMContext::MD_preserve_access_index, 3432 LLVMContext::MD_prof, 3433 LLVMContext::MD_nontemporal, 3434 LLVMContext::MD_noundef, 3435 LLVMContext::MD_mmra}; 3436 combineMetadata(K, J, KnownIDs, KDominatesJ); 3437 } 3438 3439 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3440 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3441 Source.getAllMetadata(MD); 3442 MDBuilder MDB(Dest.getContext()); 3443 Type *NewType = Dest.getType(); 3444 const DataLayout &DL = Source.getDataLayout(); 3445 for (const auto &MDPair : MD) { 3446 unsigned ID = MDPair.first; 3447 MDNode *N = MDPair.second; 3448 // Note, essentially every kind of metadata should be preserved here! This 3449 // routine is supposed to clone a load instruction changing *only its type*. 3450 // The only metadata it makes sense to drop is metadata which is invalidated 3451 // when the pointer type changes. This should essentially never be the case 3452 // in LLVM, but we explicitly switch over only known metadata to be 3453 // conservatively correct. If you are adding metadata to LLVM which pertains 3454 // to loads, you almost certainly want to add it here. 3455 switch (ID) { 3456 case LLVMContext::MD_dbg: 3457 case LLVMContext::MD_tbaa: 3458 case LLVMContext::MD_prof: 3459 case LLVMContext::MD_fpmath: 3460 case LLVMContext::MD_tbaa_struct: 3461 case LLVMContext::MD_invariant_load: 3462 case LLVMContext::MD_alias_scope: 3463 case LLVMContext::MD_noalias: 3464 case LLVMContext::MD_nontemporal: 3465 case LLVMContext::MD_mem_parallel_loop_access: 3466 case LLVMContext::MD_access_group: 3467 case LLVMContext::MD_noundef: 3468 // All of these directly apply. 3469 Dest.setMetadata(ID, N); 3470 break; 3471 3472 case LLVMContext::MD_nonnull: 3473 copyNonnullMetadata(Source, N, Dest); 3474 break; 3475 3476 case LLVMContext::MD_align: 3477 case LLVMContext::MD_dereferenceable: 3478 case LLVMContext::MD_dereferenceable_or_null: 3479 // These only directly apply if the new type is also a pointer. 3480 if (NewType->isPointerTy()) 3481 Dest.setMetadata(ID, N); 3482 break; 3483 3484 case LLVMContext::MD_range: 3485 copyRangeMetadata(DL, Source, N, Dest); 3486 break; 3487 } 3488 } 3489 } 3490 3491 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3492 auto *ReplInst = dyn_cast<Instruction>(Repl); 3493 if (!ReplInst) 3494 return; 3495 3496 // Patch the replacement so that it is not more restrictive than the value 3497 // being replaced. 3498 WithOverflowInst *UnusedWO; 3499 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3500 // overflowing binary operator, nuw/nsw flags may no longer hold. 3501 if (isa<OverflowingBinaryOperator>(ReplInst) && 3502 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3503 ReplInst->dropPoisonGeneratingFlags(); 3504 // Note that if 'I' is a load being replaced by some operation, 3505 // for example, by an arithmetic operation, then andIRFlags() 3506 // would just erase all math flags from the original arithmetic 3507 // operation, which is clearly not wanted and not needed. 3508 else if (!isa<LoadInst>(I)) 3509 ReplInst->andIRFlags(I); 3510 3511 // Handle attributes. 3512 if (auto *CB1 = dyn_cast<CallBase>(ReplInst)) { 3513 if (auto *CB2 = dyn_cast<CallBase>(I)) { 3514 bool Success = CB1->tryIntersectAttributes(CB2); 3515 assert(Success && "We should not be trying to sink callbases " 3516 "with non-intersectable attributes"); 3517 // For NDEBUG Compile. 3518 (void)Success; 3519 } 3520 } 3521 3522 // FIXME: If both the original and replacement value are part of the 3523 // same control-flow region (meaning that the execution of one 3524 // guarantees the execution of the other), then we can combine the 3525 // noalias scopes here and do better than the general conservative 3526 // answer used in combineMetadata(). 3527 3528 // In general, GVN unifies expressions over different control-flow 3529 // regions, and so we need a conservative combination of the noalias 3530 // scopes. 3531 combineMetadataForCSE(ReplInst, I, false); 3532 } 3533 3534 template <typename RootType, typename ShouldReplaceFn> 3535 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3536 const RootType &Root, 3537 const ShouldReplaceFn &ShouldReplace) { 3538 assert(From->getType() == To->getType()); 3539 3540 unsigned Count = 0; 3541 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3542 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 3543 if (II && II->getIntrinsicID() == Intrinsic::fake_use) 3544 continue; 3545 if (!ShouldReplace(Root, U)) 3546 continue; 3547 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3548 From->printAsOperand(dbgs()); 3549 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3550 U.set(To); 3551 ++Count; 3552 } 3553 return Count; 3554 } 3555 3556 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3557 assert(From->getType() == To->getType()); 3558 auto *BB = From->getParent(); 3559 unsigned Count = 0; 3560 3561 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3562 auto *I = cast<Instruction>(U.getUser()); 3563 if (I->getParent() == BB) 3564 continue; 3565 U.set(To); 3566 ++Count; 3567 } 3568 return Count; 3569 } 3570 3571 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3572 DominatorTree &DT, 3573 const BasicBlockEdge &Root) { 3574 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3575 return DT.dominates(Root, U); 3576 }; 3577 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3578 } 3579 3580 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3581 DominatorTree &DT, 3582 const BasicBlock *BB) { 3583 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3584 return DT.dominates(BB, U); 3585 }; 3586 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3587 } 3588 3589 unsigned llvm::replaceDominatedUsesWithIf( 3590 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3591 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3592 auto DominatesAndShouldReplace = 3593 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3594 return DT.dominates(Root, U) && ShouldReplace(U, To); 3595 }; 3596 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3597 } 3598 3599 unsigned llvm::replaceDominatedUsesWithIf( 3600 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3601 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3602 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3603 To](const BasicBlock *BB, const Use &U) { 3604 return DT.dominates(BB, U) && ShouldReplace(U, To); 3605 }; 3606 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3607 } 3608 3609 bool llvm::callsGCLeafFunction(const CallBase *Call, 3610 const TargetLibraryInfo &TLI) { 3611 // Check if the function is specifically marked as a gc leaf function. 3612 if (Call->hasFnAttr("gc-leaf-function")) 3613 return true; 3614 if (const Function *F = Call->getCalledFunction()) { 3615 if (F->hasFnAttribute("gc-leaf-function")) 3616 return true; 3617 3618 if (auto IID = F->getIntrinsicID()) { 3619 // Most LLVM intrinsics do not take safepoints. 3620 return IID != Intrinsic::experimental_gc_statepoint && 3621 IID != Intrinsic::experimental_deoptimize && 3622 IID != Intrinsic::memcpy_element_unordered_atomic && 3623 IID != Intrinsic::memmove_element_unordered_atomic; 3624 } 3625 } 3626 3627 // Lib calls can be materialized by some passes, and won't be 3628 // marked as 'gc-leaf-function.' All available Libcalls are 3629 // GC-leaf. 3630 LibFunc LF; 3631 if (TLI.getLibFunc(*Call, LF)) { 3632 return TLI.has(LF); 3633 } 3634 3635 return false; 3636 } 3637 3638 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3639 LoadInst &NewLI) { 3640 auto *NewTy = NewLI.getType(); 3641 3642 // This only directly applies if the new type is also a pointer. 3643 if (NewTy->isPointerTy()) { 3644 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3645 return; 3646 } 3647 3648 // The only other translation we can do is to integral loads with !range 3649 // metadata. 3650 if (!NewTy->isIntegerTy()) 3651 return; 3652 3653 MDBuilder MDB(NewLI.getContext()); 3654 const Value *Ptr = OldLI.getPointerOperand(); 3655 auto *ITy = cast<IntegerType>(NewTy); 3656 auto *NullInt = ConstantExpr::getPtrToInt( 3657 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3658 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3659 NewLI.setMetadata(LLVMContext::MD_range, 3660 MDB.createRange(NonNullInt, NullInt)); 3661 } 3662 3663 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3664 MDNode *N, LoadInst &NewLI) { 3665 auto *NewTy = NewLI.getType(); 3666 // Simply copy the metadata if the type did not change. 3667 if (NewTy == OldLI.getType()) { 3668 NewLI.setMetadata(LLVMContext::MD_range, N); 3669 return; 3670 } 3671 3672 // Give up unless it is converted to a pointer where there is a single very 3673 // valuable mapping we can do reliably. 3674 // FIXME: It would be nice to propagate this in more ways, but the type 3675 // conversions make it hard. 3676 if (!NewTy->isPointerTy()) 3677 return; 3678 3679 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3680 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3681 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3682 MDNode *NN = MDNode::get(OldLI.getContext(), {}); 3683 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3684 } 3685 } 3686 3687 void llvm::dropDebugUsers(Instruction &I) { 3688 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3689 SmallVector<DbgVariableRecord *, 1> DPUsers; 3690 findDbgUsers(DbgUsers, &I, &DPUsers); 3691 for (auto *DII : DbgUsers) 3692 DII->eraseFromParent(); 3693 for (auto *DVR : DPUsers) 3694 DVR->eraseFromParent(); 3695 } 3696 3697 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3698 BasicBlock *BB) { 3699 // Since we are moving the instructions out of its basic block, we do not 3700 // retain their original debug locations (DILocations) and debug intrinsic 3701 // instructions. 3702 // 3703 // Doing so would degrade the debugging experience and adversely affect the 3704 // accuracy of profiling information. 3705 // 3706 // Currently, when hoisting the instructions, we take the following actions: 3707 // - Remove their debug intrinsic instructions. 3708 // - Set their debug locations to the values from the insertion point. 3709 // 3710 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3711 // need to be deleted, is because there will not be any instructions with a 3712 // DILocation in either branch left after performing the transformation. We 3713 // can only insert a dbg.value after the two branches are joined again. 3714 // 3715 // See PR38762, PR39243 for more details. 3716 // 3717 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3718 // encode predicated DIExpressions that yield different results on different 3719 // code paths. 3720 3721 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3722 Instruction *I = &*II; 3723 I->dropUBImplyingAttrsAndMetadata(); 3724 if (I->isUsedByMetadata()) 3725 dropDebugUsers(*I); 3726 // RemoveDIs: drop debug-info too as the following code does. 3727 I->dropDbgRecords(); 3728 if (I->isDebugOrPseudoInst()) { 3729 // Remove DbgInfo and pseudo probe Intrinsics. 3730 II = I->eraseFromParent(); 3731 continue; 3732 } 3733 I->setDebugLoc(InsertPt->getDebugLoc()); 3734 ++II; 3735 } 3736 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3737 BB->getTerminator()->getIterator()); 3738 } 3739 3740 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3741 Type &Ty) { 3742 // Create integer constant expression. 3743 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3744 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3745 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3746 return InitIntOpt ? DIB.createConstantValueExpression( 3747 static_cast<uint64_t>(*InitIntOpt)) 3748 : nullptr; 3749 }; 3750 3751 if (isa<ConstantInt>(C)) 3752 return createIntegerExpression(C); 3753 3754 auto *FP = dyn_cast<ConstantFP>(&C); 3755 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3756 const APFloat &APF = FP->getValueAPF(); 3757 APInt const &API = APF.bitcastToAPInt(); 3758 if (auto Temp = API.getZExtValue()) 3759 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3760 return DIB.createConstantValueExpression(*API.getRawData()); 3761 } 3762 3763 if (!Ty.isPointerTy()) 3764 return nullptr; 3765 3766 if (isa<ConstantPointerNull>(C)) 3767 return DIB.createConstantValueExpression(0); 3768 3769 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3770 if (CE->getOpcode() == Instruction::IntToPtr) { 3771 const Value *V = CE->getOperand(0); 3772 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3773 return createIntegerExpression(*CI); 3774 } 3775 return nullptr; 3776 } 3777 3778 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3779 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3780 for (auto *Op : Set) { 3781 auto I = Mapping.find(Op); 3782 if (I != Mapping.end()) 3783 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3784 } 3785 }; 3786 auto RemapAssignAddress = [&Mapping](auto *DA) { 3787 auto I = Mapping.find(DA->getAddress()); 3788 if (I != Mapping.end()) 3789 DA->setAddress(I->second); 3790 }; 3791 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3792 RemapDebugOperands(DVI, DVI->location_ops()); 3793 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3794 RemapAssignAddress(DAI); 3795 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3796 RemapDebugOperands(&DVR, DVR.location_ops()); 3797 if (DVR.isDbgAssign()) 3798 RemapAssignAddress(&DVR); 3799 } 3800 } 3801 3802 namespace { 3803 3804 /// A potential constituent of a bitreverse or bswap expression. See 3805 /// collectBitParts for a fuller explanation. 3806 struct BitPart { 3807 BitPart(Value *P, unsigned BW) : Provider(P) { 3808 Provenance.resize(BW); 3809 } 3810 3811 /// The Value that this is a bitreverse/bswap of. 3812 Value *Provider; 3813 3814 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3815 /// in Provider becomes bit B in the result of this expression. 3816 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3817 3818 enum { Unset = -1 }; 3819 }; 3820 3821 } // end anonymous namespace 3822 3823 /// Analyze the specified subexpression and see if it is capable of providing 3824 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3825 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3826 /// the output of the expression came from a corresponding bit in some other 3827 /// value. This function is recursive, and the end result is a mapping of 3828 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3829 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3830 /// 3831 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3832 /// that the expression deposits the low byte of %X into the high byte of the 3833 /// result and that all other bits are zero. This expression is accepted and a 3834 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3835 /// [0-7]. 3836 /// 3837 /// For vector types, all analysis is performed at the per-element level. No 3838 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3839 /// constant masks must be splatted across all elements. 3840 /// 3841 /// To avoid revisiting values, the BitPart results are memoized into the 3842 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3843 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3844 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3845 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3846 /// type instead to provide the same functionality. 3847 /// 3848 /// Because we pass around references into \c BPS, we must use a container that 3849 /// does not invalidate internal references (std::map instead of DenseMap). 3850 static const std::optional<BitPart> & 3851 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3852 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3853 bool &FoundRoot) { 3854 auto [I, Inserted] = BPS.try_emplace(V); 3855 if (!Inserted) 3856 return I->second; 3857 3858 auto &Result = I->second; 3859 auto BitWidth = V->getType()->getScalarSizeInBits(); 3860 3861 // Can't do integer/elements > 128 bits. 3862 if (BitWidth > 128) 3863 return Result; 3864 3865 // Prevent stack overflow by limiting the recursion depth 3866 if (Depth == BitPartRecursionMaxDepth) { 3867 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3868 return Result; 3869 } 3870 3871 if (auto *I = dyn_cast<Instruction>(V)) { 3872 Value *X, *Y; 3873 const APInt *C; 3874 3875 // If this is an or instruction, it may be an inner node of the bswap. 3876 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3877 // Check we have both sources and they are from the same provider. 3878 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3879 Depth + 1, FoundRoot); 3880 if (!A || !A->Provider) 3881 return Result; 3882 3883 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3884 Depth + 1, FoundRoot); 3885 if (!B || A->Provider != B->Provider) 3886 return Result; 3887 3888 // Try and merge the two together. 3889 Result = BitPart(A->Provider, BitWidth); 3890 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3891 if (A->Provenance[BitIdx] != BitPart::Unset && 3892 B->Provenance[BitIdx] != BitPart::Unset && 3893 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3894 return Result = std::nullopt; 3895 3896 if (A->Provenance[BitIdx] == BitPart::Unset) 3897 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3898 else 3899 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3900 } 3901 3902 return Result; 3903 } 3904 3905 // If this is a logical shift by a constant, recurse then shift the result. 3906 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3907 const APInt &BitShift = *C; 3908 3909 // Ensure the shift amount is defined. 3910 if (BitShift.uge(BitWidth)) 3911 return Result; 3912 3913 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3914 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3915 return Result; 3916 3917 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3918 Depth + 1, FoundRoot); 3919 if (!Res) 3920 return Result; 3921 Result = Res; 3922 3923 // Perform the "shift" on BitProvenance. 3924 auto &P = Result->Provenance; 3925 if (I->getOpcode() == Instruction::Shl) { 3926 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3927 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3928 } else { 3929 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3930 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3931 } 3932 3933 return Result; 3934 } 3935 3936 // If this is a logical 'and' with a mask that clears bits, recurse then 3937 // unset the appropriate bits. 3938 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3939 const APInt &AndMask = *C; 3940 3941 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3942 // early exit. 3943 unsigned NumMaskedBits = AndMask.popcount(); 3944 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3945 return Result; 3946 3947 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3948 Depth + 1, FoundRoot); 3949 if (!Res) 3950 return Result; 3951 Result = Res; 3952 3953 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3954 // If the AndMask is zero for this bit, clear the bit. 3955 if (AndMask[BitIdx] == 0) 3956 Result->Provenance[BitIdx] = BitPart::Unset; 3957 return Result; 3958 } 3959 3960 // If this is a zext instruction zero extend the result. 3961 if (match(V, m_ZExt(m_Value(X)))) { 3962 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3963 Depth + 1, FoundRoot); 3964 if (!Res) 3965 return Result; 3966 3967 Result = BitPart(Res->Provider, BitWidth); 3968 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3969 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3970 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3971 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3972 Result->Provenance[BitIdx] = BitPart::Unset; 3973 return Result; 3974 } 3975 3976 // If this is a truncate instruction, extract the lower bits. 3977 if (match(V, m_Trunc(m_Value(X)))) { 3978 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3979 Depth + 1, FoundRoot); 3980 if (!Res) 3981 return Result; 3982 3983 Result = BitPart(Res->Provider, BitWidth); 3984 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3985 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3986 return Result; 3987 } 3988 3989 // BITREVERSE - most likely due to us previous matching a partial 3990 // bitreverse. 3991 if (match(V, m_BitReverse(m_Value(X)))) { 3992 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3993 Depth + 1, FoundRoot); 3994 if (!Res) 3995 return Result; 3996 3997 Result = BitPart(Res->Provider, BitWidth); 3998 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3999 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 4000 return Result; 4001 } 4002 4003 // BSWAP - most likely due to us previous matching a partial bswap. 4004 if (match(V, m_BSwap(m_Value(X)))) { 4005 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4006 Depth + 1, FoundRoot); 4007 if (!Res) 4008 return Result; 4009 4010 unsigned ByteWidth = BitWidth / 8; 4011 Result = BitPart(Res->Provider, BitWidth); 4012 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 4013 unsigned ByteBitOfs = ByteIdx * 8; 4014 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 4015 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 4016 Res->Provenance[ByteBitOfs + BitIdx]; 4017 } 4018 return Result; 4019 } 4020 4021 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 4022 // amount (modulo). 4023 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4024 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4025 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 4026 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 4027 // We can treat fshr as a fshl by flipping the modulo amount. 4028 unsigned ModAmt = C->urem(BitWidth); 4029 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 4030 ModAmt = BitWidth - ModAmt; 4031 4032 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 4033 if (!MatchBitReversals && (ModAmt % 8) != 0) 4034 return Result; 4035 4036 // Check we have both sources and they are from the same provider. 4037 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4038 Depth + 1, FoundRoot); 4039 if (!LHS || !LHS->Provider) 4040 return Result; 4041 4042 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 4043 Depth + 1, FoundRoot); 4044 if (!RHS || LHS->Provider != RHS->Provider) 4045 return Result; 4046 4047 unsigned StartBitRHS = BitWidth - ModAmt; 4048 Result = BitPart(LHS->Provider, BitWidth); 4049 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 4050 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4051 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4052 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4053 return Result; 4054 } 4055 } 4056 4057 // If we've already found a root input value then we're never going to merge 4058 // these back together. 4059 if (FoundRoot) 4060 return Result; 4061 4062 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4063 // be the root input value to the bswap/bitreverse. 4064 FoundRoot = true; 4065 Result = BitPart(V, BitWidth); 4066 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4067 Result->Provenance[BitIdx] = BitIdx; 4068 return Result; 4069 } 4070 4071 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4072 unsigned BitWidth) { 4073 if (From % 8 != To % 8) 4074 return false; 4075 // Convert from bit indices to byte indices and check for a byte reversal. 4076 From >>= 3; 4077 To >>= 3; 4078 BitWidth >>= 3; 4079 return From == BitWidth - To - 1; 4080 } 4081 4082 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4083 unsigned BitWidth) { 4084 return From == BitWidth - To - 1; 4085 } 4086 4087 bool llvm::recognizeBSwapOrBitReverseIdiom( 4088 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4089 SmallVectorImpl<Instruction *> &InsertedInsts) { 4090 if (!match(I, m_Or(m_Value(), m_Value())) && 4091 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4092 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4093 !match(I, m_BSwap(m_Value()))) 4094 return false; 4095 if (!MatchBSwaps && !MatchBitReversals) 4096 return false; 4097 Type *ITy = I->getType(); 4098 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4099 return false; // Can't do integer/elements > 128 bits. 4100 4101 // Try to find all the pieces corresponding to the bswap. 4102 bool FoundRoot = false; 4103 std::map<Value *, std::optional<BitPart>> BPS; 4104 const auto &Res = 4105 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4106 if (!Res) 4107 return false; 4108 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4109 assert(all_of(BitProvenance, 4110 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4111 "Illegal bit provenance index"); 4112 4113 // If the upper bits are zero, then attempt to perform as a truncated op. 4114 Type *DemandedTy = ITy; 4115 if (BitProvenance.back() == BitPart::Unset) { 4116 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4117 BitProvenance = BitProvenance.drop_back(); 4118 if (BitProvenance.empty()) 4119 return false; // TODO - handle null value? 4120 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4121 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4122 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4123 } 4124 4125 // Check BitProvenance hasn't found a source larger than the result type. 4126 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4127 if (DemandedBW > ITy->getScalarSizeInBits()) 4128 return false; 4129 4130 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4131 // only byteswap values with an even number of bytes. 4132 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4133 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4134 bool OKForBitReverse = MatchBitReversals; 4135 for (unsigned BitIdx = 0; 4136 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4137 if (BitProvenance[BitIdx] == BitPart::Unset) { 4138 DemandedMask.clearBit(BitIdx); 4139 continue; 4140 } 4141 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4142 DemandedBW); 4143 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4144 BitIdx, DemandedBW); 4145 } 4146 4147 Intrinsic::ID Intrin; 4148 if (OKForBSwap) 4149 Intrin = Intrinsic::bswap; 4150 else if (OKForBitReverse) 4151 Intrin = Intrinsic::bitreverse; 4152 else 4153 return false; 4154 4155 Function *F = 4156 Intrinsic::getOrInsertDeclaration(I->getModule(), Intrin, DemandedTy); 4157 Value *Provider = Res->Provider; 4158 4159 // We may need to truncate the provider. 4160 if (DemandedTy != Provider->getType()) { 4161 auto *Trunc = 4162 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4163 InsertedInsts.push_back(Trunc); 4164 Provider = Trunc; 4165 } 4166 4167 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4168 InsertedInsts.push_back(Result); 4169 4170 if (!DemandedMask.isAllOnes()) { 4171 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4172 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4173 InsertedInsts.push_back(Result); 4174 } 4175 4176 // We may need to zeroextend back to the result type. 4177 if (ITy != Result->getType()) { 4178 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4179 InsertedInsts.push_back(ExtInst); 4180 } 4181 4182 return true; 4183 } 4184 4185 // CodeGen has special handling for some string functions that may replace 4186 // them with target-specific intrinsics. Since that'd skip our interceptors 4187 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4188 // we mark affected calls as NoBuiltin, which will disable optimization 4189 // in CodeGen. 4190 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4191 CallInst *CI, const TargetLibraryInfo *TLI) { 4192 Function *F = CI->getCalledFunction(); 4193 LibFunc Func; 4194 if (F && !F->hasLocalLinkage() && F->hasName() && 4195 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4196 !F->doesNotAccessMemory()) 4197 CI->addFnAttr(Attribute::NoBuiltin); 4198 } 4199 4200 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4201 // We can't have a PHI with a metadata type. 4202 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4203 return false; 4204 4205 // Early exit. 4206 if (!isa<Constant>(I->getOperand(OpIdx))) 4207 return true; 4208 4209 switch (I->getOpcode()) { 4210 default: 4211 return true; 4212 case Instruction::Call: 4213 case Instruction::Invoke: { 4214 const auto &CB = cast<CallBase>(*I); 4215 4216 // Can't handle inline asm. Skip it. 4217 if (CB.isInlineAsm()) 4218 return false; 4219 4220 // Constant bundle operands may need to retain their constant-ness for 4221 // correctness. 4222 if (CB.isBundleOperand(OpIdx)) 4223 return false; 4224 4225 if (OpIdx < CB.arg_size()) { 4226 // Some variadic intrinsics require constants in the variadic arguments, 4227 // which currently aren't markable as immarg. 4228 if (isa<IntrinsicInst>(CB) && 4229 OpIdx >= CB.getFunctionType()->getNumParams()) { 4230 // This is known to be OK for stackmap. 4231 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4232 } 4233 4234 // gcroot is a special case, since it requires a constant argument which 4235 // isn't also required to be a simple ConstantInt. 4236 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4237 return false; 4238 4239 // Some intrinsic operands are required to be immediates. 4240 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4241 } 4242 4243 // It is never allowed to replace the call argument to an intrinsic, but it 4244 // may be possible for a call. 4245 return !isa<IntrinsicInst>(CB); 4246 } 4247 case Instruction::ShuffleVector: 4248 // Shufflevector masks are constant. 4249 return OpIdx != 2; 4250 case Instruction::Switch: 4251 case Instruction::ExtractValue: 4252 // All operands apart from the first are constant. 4253 return OpIdx == 0; 4254 case Instruction::InsertValue: 4255 // All operands apart from the first and the second are constant. 4256 return OpIdx < 2; 4257 case Instruction::Alloca: 4258 // Static allocas (constant size in the entry block) are handled by 4259 // prologue/epilogue insertion so they're free anyway. We definitely don't 4260 // want to make them non-constant. 4261 return !cast<AllocaInst>(I)->isStaticAlloca(); 4262 case Instruction::GetElementPtr: 4263 if (OpIdx == 0) 4264 return true; 4265 gep_type_iterator It = gep_type_begin(I); 4266 for (auto E = std::next(It, OpIdx); It != E; ++It) 4267 if (It.isStruct()) 4268 return false; 4269 return true; 4270 } 4271 } 4272 4273 Value *llvm::invertCondition(Value *Condition) { 4274 // First: Check if it's a constant 4275 if (Constant *C = dyn_cast<Constant>(Condition)) 4276 return ConstantExpr::getNot(C); 4277 4278 // Second: If the condition is already inverted, return the original value 4279 Value *NotCondition; 4280 if (match(Condition, m_Not(m_Value(NotCondition)))) 4281 return NotCondition; 4282 4283 BasicBlock *Parent = nullptr; 4284 Instruction *Inst = dyn_cast<Instruction>(Condition); 4285 if (Inst) 4286 Parent = Inst->getParent(); 4287 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4288 Parent = &Arg->getParent()->getEntryBlock(); 4289 assert(Parent && "Unsupported condition to invert"); 4290 4291 // Third: Check all the users for an invert 4292 for (User *U : Condition->users()) 4293 if (Instruction *I = dyn_cast<Instruction>(U)) 4294 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4295 return I; 4296 4297 // Last option: Create a new instruction 4298 auto *Inverted = 4299 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4300 if (Inst && !isa<PHINode>(Inst)) 4301 Inverted->insertAfter(Inst); 4302 else 4303 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4304 return Inverted; 4305 } 4306 4307 bool llvm::inferAttributesFromOthers(Function &F) { 4308 // Note: We explicitly check for attributes rather than using cover functions 4309 // because some of the cover functions include the logic being implemented. 4310 4311 bool Changed = false; 4312 // readnone + not convergent implies nosync 4313 if (!F.hasFnAttribute(Attribute::NoSync) && 4314 F.doesNotAccessMemory() && !F.isConvergent()) { 4315 F.setNoSync(); 4316 Changed = true; 4317 } 4318 4319 // readonly implies nofree 4320 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4321 F.setDoesNotFreeMemory(); 4322 Changed = true; 4323 } 4324 4325 // willreturn implies mustprogress 4326 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4327 F.setMustProgress(); 4328 Changed = true; 4329 } 4330 4331 // TODO: There are a bunch of cases of restrictive memory effects we 4332 // can infer by inspecting arguments of argmemonly-ish functions. 4333 4334 return Changed; 4335 } 4336