1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( 116 "max-phi-entries-increase-after-removing-empty-block", cl::init(1000), 117 cl::Hidden, 118 cl::desc("Stop removing an empty block if removing it will introduce more " 119 "than this number of phi entries in its successor")); 120 121 // Max recursion depth for collectBitParts used when detecting bswap and 122 // bitreverse idioms. 123 static const unsigned BitPartRecursionMaxDepth = 48; 124 125 //===----------------------------------------------------------------------===// 126 // Local constant propagation. 127 // 128 129 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 130 /// constant value, convert it into an unconditional branch to the constant 131 /// destination. This is a nontrivial operation because the successors of this 132 /// basic block must have their PHI nodes updated. 133 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 134 /// conditions and indirectbr addresses this might make dead if 135 /// DeleteDeadConditions is true. 136 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 137 const TargetLibraryInfo *TLI, 138 DomTreeUpdater *DTU) { 139 Instruction *T = BB->getTerminator(); 140 IRBuilder<> Builder(T); 141 142 // Branch - See if we are conditional jumping on constant 143 if (auto *BI = dyn_cast<BranchInst>(T)) { 144 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 145 146 BasicBlock *Dest1 = BI->getSuccessor(0); 147 BasicBlock *Dest2 = BI->getSuccessor(1); 148 149 if (Dest2 == Dest1) { // Conditional branch to same location? 150 // This branch matches something like this: 151 // br bool %cond, label %Dest, label %Dest 152 // and changes it into: br label %Dest 153 154 // Let the basic block know that we are letting go of one copy of it. 155 assert(BI->getParent() && "Terminator not inserted in block!"); 156 Dest1->removePredecessor(BI->getParent()); 157 158 // Replace the conditional branch with an unconditional one. 159 BranchInst *NewBI = Builder.CreateBr(Dest1); 160 161 // Transfer the metadata to the new branch instruction. 162 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 163 LLVMContext::MD_annotation}); 164 165 Value *Cond = BI->getCondition(); 166 BI->eraseFromParent(); 167 if (DeleteDeadConditions) 168 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 169 return true; 170 } 171 172 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 173 // Are we branching on constant? 174 // YES. Change to unconditional branch... 175 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 176 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 177 178 // Let the basic block know that we are letting go of it. Based on this, 179 // it will adjust it's PHI nodes. 180 OldDest->removePredecessor(BB); 181 182 // Replace the conditional branch with an unconditional one. 183 BranchInst *NewBI = Builder.CreateBr(Destination); 184 185 // Transfer the metadata to the new branch instruction. 186 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 187 LLVMContext::MD_annotation}); 188 189 BI->eraseFromParent(); 190 if (DTU) 191 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 192 return true; 193 } 194 195 return false; 196 } 197 198 if (auto *SI = dyn_cast<SwitchInst>(T)) { 199 // If we are switching on a constant, we can convert the switch to an 200 // unconditional branch. 201 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 202 BasicBlock *DefaultDest = SI->getDefaultDest(); 203 BasicBlock *TheOnlyDest = DefaultDest; 204 205 // If the default is unreachable, ignore it when searching for TheOnlyDest. 206 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 207 SI->getNumCases() > 0) { 208 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 209 } 210 211 bool Changed = false; 212 213 // Figure out which case it goes to. 214 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 215 // Found case matching a constant operand? 216 if (It->getCaseValue() == CI) { 217 TheOnlyDest = It->getCaseSuccessor(); 218 break; 219 } 220 221 // Check to see if this branch is going to the same place as the default 222 // dest. If so, eliminate it as an explicit compare. 223 if (It->getCaseSuccessor() == DefaultDest) { 224 MDNode *MD = getValidBranchWeightMDNode(*SI); 225 unsigned NCases = SI->getNumCases(); 226 // Fold the case metadata into the default if there will be any branches 227 // left, unless the metadata doesn't match the switch. 228 if (NCases > 1 && MD) { 229 // Collect branch weights into a vector. 230 SmallVector<uint32_t, 8> Weights; 231 extractBranchWeights(MD, Weights); 232 233 // Merge weight of this case to the default weight. 234 unsigned Idx = It->getCaseIndex(); 235 // TODO: Add overflow check. 236 Weights[0] += Weights[Idx + 1]; 237 // Remove weight for this case. 238 std::swap(Weights[Idx + 1], Weights.back()); 239 Weights.pop_back(); 240 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 241 } 242 // Remove this entry. 243 BasicBlock *ParentBB = SI->getParent(); 244 DefaultDest->removePredecessor(ParentBB); 245 It = SI->removeCase(It); 246 End = SI->case_end(); 247 248 // Removing this case may have made the condition constant. In that 249 // case, update CI and restart iteration through the cases. 250 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 251 CI = NewCI; 252 It = SI->case_begin(); 253 } 254 255 Changed = true; 256 continue; 257 } 258 259 // Otherwise, check to see if the switch only branches to one destination. 260 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 261 // destinations. 262 if (It->getCaseSuccessor() != TheOnlyDest) 263 TheOnlyDest = nullptr; 264 265 // Increment this iterator as we haven't removed the case. 266 ++It; 267 } 268 269 if (CI && !TheOnlyDest) { 270 // Branching on a constant, but not any of the cases, go to the default 271 // successor. 272 TheOnlyDest = SI->getDefaultDest(); 273 } 274 275 // If we found a single destination that we can fold the switch into, do so 276 // now. 277 if (TheOnlyDest) { 278 // Insert the new branch. 279 Builder.CreateBr(TheOnlyDest); 280 BasicBlock *BB = SI->getParent(); 281 282 SmallSet<BasicBlock *, 8> RemovedSuccessors; 283 284 // Remove entries from PHI nodes which we no longer branch to... 285 BasicBlock *SuccToKeep = TheOnlyDest; 286 for (BasicBlock *Succ : successors(SI)) { 287 if (DTU && Succ != TheOnlyDest) 288 RemovedSuccessors.insert(Succ); 289 // Found case matching a constant operand? 290 if (Succ == SuccToKeep) { 291 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 292 } else { 293 Succ->removePredecessor(BB); 294 } 295 } 296 297 // Delete the old switch. 298 Value *Cond = SI->getCondition(); 299 SI->eraseFromParent(); 300 if (DeleteDeadConditions) 301 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 302 if (DTU) { 303 std::vector<DominatorTree::UpdateType> Updates; 304 Updates.reserve(RemovedSuccessors.size()); 305 for (auto *RemovedSuccessor : RemovedSuccessors) 306 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 307 DTU->applyUpdates(Updates); 308 } 309 return true; 310 } 311 312 if (SI->getNumCases() == 1) { 313 // Otherwise, we can fold this switch into a conditional branch 314 // instruction if it has only one non-default destination. 315 auto FirstCase = *SI->case_begin(); 316 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 317 FirstCase.getCaseValue(), "cond"); 318 319 // Insert the new branch. 320 BranchInst *NewBr = Builder.CreateCondBr(Cond, 321 FirstCase.getCaseSuccessor(), 322 SI->getDefaultDest()); 323 SmallVector<uint32_t> Weights; 324 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 325 uint32_t DefWeight = Weights[0]; 326 uint32_t CaseWeight = Weights[1]; 327 // The TrueWeight should be the weight for the single case of SI. 328 NewBr->setMetadata(LLVMContext::MD_prof, 329 MDBuilder(BB->getContext()) 330 .createBranchWeights(CaseWeight, DefWeight)); 331 } 332 333 // Update make.implicit metadata to the newly-created conditional branch. 334 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 335 if (MakeImplicitMD) 336 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 337 338 // Delete the old switch. 339 SI->eraseFromParent(); 340 return true; 341 } 342 return Changed; 343 } 344 345 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 346 // indirectbr blockaddress(@F, @BB) -> br label @BB 347 if (auto *BA = 348 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 349 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 350 SmallSet<BasicBlock *, 8> RemovedSuccessors; 351 352 // Insert the new branch. 353 Builder.CreateBr(TheOnlyDest); 354 355 BasicBlock *SuccToKeep = TheOnlyDest; 356 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 357 BasicBlock *DestBB = IBI->getDestination(i); 358 if (DTU && DestBB != TheOnlyDest) 359 RemovedSuccessors.insert(DestBB); 360 if (IBI->getDestination(i) == SuccToKeep) { 361 SuccToKeep = nullptr; 362 } else { 363 DestBB->removePredecessor(BB); 364 } 365 } 366 Value *Address = IBI->getAddress(); 367 IBI->eraseFromParent(); 368 if (DeleteDeadConditions) 369 // Delete pointer cast instructions. 370 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 371 372 // Also zap the blockaddress constant if there are no users remaining, 373 // otherwise the destination is still marked as having its address taken. 374 if (BA->use_empty()) 375 BA->destroyConstant(); 376 377 // If we didn't find our destination in the IBI successor list, then we 378 // have undefined behavior. Replace the unconditional branch with an 379 // 'unreachable' instruction. 380 if (SuccToKeep) { 381 BB->getTerminator()->eraseFromParent(); 382 new UnreachableInst(BB->getContext(), BB); 383 } 384 385 if (DTU) { 386 std::vector<DominatorTree::UpdateType> Updates; 387 Updates.reserve(RemovedSuccessors.size()); 388 for (auto *RemovedSuccessor : RemovedSuccessors) 389 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 390 DTU->applyUpdates(Updates); 391 } 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Local dead code elimination. 401 // 402 403 /// isInstructionTriviallyDead - Return true if the result produced by the 404 /// instruction is not used, and the instruction has no side effects. 405 /// 406 bool llvm::isInstructionTriviallyDead(Instruction *I, 407 const TargetLibraryInfo *TLI) { 408 if (!I->use_empty()) 409 return false; 410 return wouldInstructionBeTriviallyDead(I, TLI); 411 } 412 413 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 414 Instruction *I, const TargetLibraryInfo *TLI) { 415 // Instructions that are "markers" and have implied meaning on code around 416 // them (without explicit uses), are not dead on unused paths. 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 418 if (II->getIntrinsicID() == Intrinsic::stacksave || 419 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 420 II->isLifetimeStartOrEnd()) 421 return false; 422 return wouldInstructionBeTriviallyDead(I, TLI); 423 } 424 425 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 426 const TargetLibraryInfo *TLI) { 427 if (I->isTerminator()) 428 return false; 429 430 // We don't want the landingpad-like instructions removed by anything this 431 // general. 432 if (I->isEHPad()) 433 return false; 434 435 // We don't want debug info removed by anything this general. 436 if (isa<DbgVariableIntrinsic>(I)) 437 return false; 438 439 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (auto *CB = dyn_cast<CallBase>(I)) 446 if (isRemovableAlloc(CB, TLI)) 447 return true; 448 449 if (!I->willReturn()) { 450 auto *II = dyn_cast<IntrinsicInst>(I); 451 if (!II) 452 return false; 453 454 switch (II->getIntrinsicID()) { 455 case Intrinsic::experimental_guard: { 456 // Guards on true are operationally no-ops. In the future we can 457 // consider more sophisticated tradeoffs for guards considering potential 458 // for check widening, but for now we keep things simple. 459 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 460 return Cond && Cond->isOne(); 461 } 462 // TODO: These intrinsics are not safe to remove, because this may remove 463 // a well-defined trap. 464 case Intrinsic::wasm_trunc_signed: 465 case Intrinsic::wasm_trunc_unsigned: 466 case Intrinsic::ptrauth_auth: 467 case Intrinsic::ptrauth_resign: 468 return true; 469 default: 470 return false; 471 } 472 } 473 474 if (!I->mayHaveSideEffects()) 475 return true; 476 477 // Special case intrinsics that "may have side effects" but can be deleted 478 // when dead. 479 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 480 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 481 if (II->getIntrinsicID() == Intrinsic::stacksave || 482 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 483 return true; 484 485 // Intrinsics declare sideeffects to prevent them from moving, but they are 486 // nops without users. 487 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 488 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 489 return true; 490 491 if (II->isLifetimeStartOrEnd()) { 492 auto *Arg = II->getArgOperand(1); 493 // Lifetime intrinsics are dead when their right-hand is undef. 494 if (isa<UndefValue>(Arg)) 495 return true; 496 // If the right-hand is an alloc, global, or argument and the only uses 497 // are lifetime intrinsics then the intrinsics are dead. 498 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 499 return llvm::all_of(Arg->uses(), [](Use &Use) { 500 if (IntrinsicInst *IntrinsicUse = 501 dyn_cast<IntrinsicInst>(Use.getUser())) 502 return IntrinsicUse->isLifetimeStartOrEnd(); 503 return false; 504 }); 505 return false; 506 } 507 508 // Assumptions are dead if their condition is trivially true. 509 if (II->getIntrinsicID() == Intrinsic::assume && 510 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 511 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 512 return !Cond->isZero(); 513 514 return false; 515 } 516 517 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 518 std::optional<fp::ExceptionBehavior> ExBehavior = 519 FPI->getExceptionBehavior(); 520 return *ExBehavior != fp::ebStrict; 521 } 522 } 523 524 if (auto *Call = dyn_cast<CallBase>(I)) { 525 if (Value *FreedOp = getFreedOperand(Call, TLI)) 526 if (Constant *C = dyn_cast<Constant>(FreedOp)) 527 return C->isNullValue() || isa<UndefValue>(C); 528 if (isMathLibCallNoop(Call, TLI)) 529 return true; 530 } 531 532 // Non-volatile atomic loads from constants can be removed. 533 if (auto *LI = dyn_cast<LoadInst>(I)) 534 if (auto *GV = dyn_cast<GlobalVariable>( 535 LI->getPointerOperand()->stripPointerCasts())) 536 if (!LI->isVolatile() && GV->isConstant()) 537 return true; 538 539 return false; 540 } 541 542 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 543 /// trivially dead instruction, delete it. If that makes any of its operands 544 /// trivially dead, delete them too, recursively. Return true if any 545 /// instructions were deleted. 546 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 547 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 548 std::function<void(Value *)> AboutToDeleteCallback) { 549 Instruction *I = dyn_cast<Instruction>(V); 550 if (!I || !isInstructionTriviallyDead(I, TLI)) 551 return false; 552 553 SmallVector<WeakTrackingVH, 16> DeadInsts; 554 DeadInsts.push_back(I); 555 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 556 AboutToDeleteCallback); 557 558 return true; 559 } 560 561 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 562 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 563 MemorySSAUpdater *MSSAU, 564 std::function<void(Value *)> AboutToDeleteCallback) { 565 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 566 for (; S != E; ++S) { 567 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 568 if (!I || !isInstructionTriviallyDead(I)) { 569 DeadInsts[S] = nullptr; 570 ++Alive; 571 } 572 } 573 if (Alive == E) 574 return false; 575 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 576 AboutToDeleteCallback); 577 return true; 578 } 579 580 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 581 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 582 MemorySSAUpdater *MSSAU, 583 std::function<void(Value *)> AboutToDeleteCallback) { 584 // Process the dead instruction list until empty. 585 while (!DeadInsts.empty()) { 586 Value *V = DeadInsts.pop_back_val(); 587 Instruction *I = cast_or_null<Instruction>(V); 588 if (!I) 589 continue; 590 assert(isInstructionTriviallyDead(I, TLI) && 591 "Live instruction found in dead worklist!"); 592 assert(I->use_empty() && "Instructions with uses are not dead."); 593 594 // Don't lose the debug info while deleting the instructions. 595 salvageDebugInfo(*I); 596 597 if (AboutToDeleteCallback) 598 AboutToDeleteCallback(I); 599 600 // Null out all of the instruction's operands to see if any operand becomes 601 // dead as we go. 602 for (Use &OpU : I->operands()) { 603 Value *OpV = OpU.get(); 604 OpU.set(nullptr); 605 606 if (!OpV->use_empty()) 607 continue; 608 609 // If the operand is an instruction that became dead as we nulled out the 610 // operand, and if it is 'trivially' dead, delete it in a future loop 611 // iteration. 612 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 613 if (isInstructionTriviallyDead(OpI, TLI)) 614 DeadInsts.push_back(OpI); 615 } 616 if (MSSAU) 617 MSSAU->removeMemoryAccess(I); 618 619 I->eraseFromParent(); 620 } 621 } 622 623 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 624 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 625 SmallVector<DbgVariableRecord *, 1> DPUsers; 626 findDbgUsers(DbgUsers, I, &DPUsers); 627 for (auto *DII : DbgUsers) 628 DII->setKillLocation(); 629 for (auto *DVR : DPUsers) 630 DVR->setKillLocation(); 631 return !DbgUsers.empty() || !DPUsers.empty(); 632 } 633 634 /// areAllUsesEqual - Check whether the uses of a value are all the same. 635 /// This is similar to Instruction::hasOneUse() except this will also return 636 /// true when there are no uses or multiple uses that all refer to the same 637 /// value. 638 static bool areAllUsesEqual(Instruction *I) { 639 Value::user_iterator UI = I->user_begin(); 640 Value::user_iterator UE = I->user_end(); 641 if (UI == UE) 642 return true; 643 644 User *TheUse = *UI; 645 for (++UI; UI != UE; ++UI) { 646 if (*UI != TheUse) 647 return false; 648 } 649 return true; 650 } 651 652 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 653 /// dead PHI node, due to being a def-use chain of single-use nodes that 654 /// either forms a cycle or is terminated by a trivially dead instruction, 655 /// delete it. If that makes any of its operands trivially dead, delete them 656 /// too, recursively. Return true if a change was made. 657 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 658 const TargetLibraryInfo *TLI, 659 llvm::MemorySSAUpdater *MSSAU) { 660 SmallPtrSet<Instruction*, 4> Visited; 661 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 662 I = cast<Instruction>(*I->user_begin())) { 663 if (I->use_empty()) 664 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 665 666 // If we find an instruction more than once, we're on a cycle that 667 // won't prove fruitful. 668 if (!Visited.insert(I).second) { 669 // Break the cycle and delete the instruction and its operands. 670 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 671 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 672 return true; 673 } 674 } 675 return false; 676 } 677 678 static bool 679 simplifyAndDCEInstruction(Instruction *I, 680 SmallSetVector<Instruction *, 16> &WorkList, 681 const DataLayout &DL, 682 const TargetLibraryInfo *TLI) { 683 if (isInstructionTriviallyDead(I, TLI)) { 684 salvageDebugInfo(*I); 685 686 // Null out all of the instruction's operands to see if any operand becomes 687 // dead as we go. 688 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 689 Value *OpV = I->getOperand(i); 690 I->setOperand(i, nullptr); 691 692 if (!OpV->use_empty() || I == OpV) 693 continue; 694 695 // If the operand is an instruction that became dead as we nulled out the 696 // operand, and if it is 'trivially' dead, delete it in a future loop 697 // iteration. 698 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 699 if (isInstructionTriviallyDead(OpI, TLI)) 700 WorkList.insert(OpI); 701 } 702 703 I->eraseFromParent(); 704 705 return true; 706 } 707 708 if (Value *SimpleV = simplifyInstruction(I, DL)) { 709 // Add the users to the worklist. CAREFUL: an instruction can use itself, 710 // in the case of a phi node. 711 for (User *U : I->users()) { 712 if (U != I) { 713 WorkList.insert(cast<Instruction>(U)); 714 } 715 } 716 717 // Replace the instruction with its simplified value. 718 bool Changed = false; 719 if (!I->use_empty()) { 720 I->replaceAllUsesWith(SimpleV); 721 Changed = true; 722 } 723 if (isInstructionTriviallyDead(I, TLI)) { 724 I->eraseFromParent(); 725 Changed = true; 726 } 727 return Changed; 728 } 729 return false; 730 } 731 732 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 733 /// simplify any instructions in it and recursively delete dead instructions. 734 /// 735 /// This returns true if it changed the code, note that it can delete 736 /// instructions in other blocks as well in this block. 737 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 738 const TargetLibraryInfo *TLI) { 739 bool MadeChange = false; 740 const DataLayout &DL = BB->getDataLayout(); 741 742 #ifndef NDEBUG 743 // In debug builds, ensure that the terminator of the block is never replaced 744 // or deleted by these simplifications. The idea of simplification is that it 745 // cannot introduce new instructions, and there is no way to replace the 746 // terminator of a block without introducing a new instruction. 747 AssertingVH<Instruction> TerminatorVH(&BB->back()); 748 #endif 749 750 SmallSetVector<Instruction *, 16> WorkList; 751 // Iterate over the original function, only adding insts to the worklist 752 // if they actually need to be revisited. This avoids having to pre-init 753 // the worklist with the entire function's worth of instructions. 754 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 755 BI != E;) { 756 assert(!BI->isTerminator()); 757 Instruction *I = &*BI; 758 ++BI; 759 760 // We're visiting this instruction now, so make sure it's not in the 761 // worklist from an earlier visit. 762 if (!WorkList.count(I)) 763 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 764 } 765 766 while (!WorkList.empty()) { 767 Instruction *I = WorkList.pop_back_val(); 768 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 769 } 770 return MadeChange; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Control Flow Graph Restructuring. 775 // 776 777 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 778 DomTreeUpdater *DTU) { 779 780 // If BB has single-entry PHI nodes, fold them. 781 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 782 Value *NewVal = PN->getIncomingValue(0); 783 // Replace self referencing PHI with poison, it must be dead. 784 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 785 PN->replaceAllUsesWith(NewVal); 786 PN->eraseFromParent(); 787 } 788 789 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 790 assert(PredBB && "Block doesn't have a single predecessor!"); 791 792 bool ReplaceEntryBB = PredBB->isEntryBlock(); 793 794 // DTU updates: Collect all the edges that enter 795 // PredBB. These dominator edges will be redirected to DestBB. 796 SmallVector<DominatorTree::UpdateType, 32> Updates; 797 798 if (DTU) { 799 // To avoid processing the same predecessor more than once. 800 SmallPtrSet<BasicBlock *, 2> SeenPreds; 801 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 // This predecessor of PredBB may already have DestBB as a successor. 804 if (PredOfPredBB != PredBB) 805 if (SeenPreds.insert(PredOfPredBB).second) 806 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 807 SeenPreds.clear(); 808 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 809 if (SeenPreds.insert(PredOfPredBB).second) 810 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 811 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 812 } 813 814 // Zap anything that took the address of DestBB. Not doing this will give the 815 // address an invalid value. 816 if (DestBB->hasAddressTaken()) { 817 BlockAddress *BA = BlockAddress::get(DestBB); 818 Constant *Replacement = 819 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 820 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 821 BA->getType())); 822 BA->destroyConstant(); 823 } 824 825 // Anything that branched to PredBB now branches to DestBB. 826 PredBB->replaceAllUsesWith(DestBB); 827 828 // Splice all the instructions from PredBB to DestBB. 829 PredBB->getTerminator()->eraseFromParent(); 830 DestBB->splice(DestBB->begin(), PredBB); 831 new UnreachableInst(PredBB->getContext(), PredBB); 832 833 // If the PredBB is the entry block of the function, move DestBB up to 834 // become the entry block after we erase PredBB. 835 if (ReplaceEntryBB) 836 DestBB->moveAfter(PredBB); 837 838 if (DTU) { 839 assert(PredBB->size() == 1 && 840 isa<UnreachableInst>(PredBB->getTerminator()) && 841 "The successor list of PredBB isn't empty before " 842 "applying corresponding DTU updates."); 843 DTU->applyUpdatesPermissive(Updates); 844 DTU->deleteBB(PredBB); 845 // Recalculation of DomTree is needed when updating a forward DomTree and 846 // the Entry BB is replaced. 847 if (ReplaceEntryBB && DTU->hasDomTree()) { 848 // The entry block was removed and there is no external interface for 849 // the dominator tree to be notified of this change. In this corner-case 850 // we recalculate the entire tree. 851 DTU->recalculate(*(DestBB->getParent())); 852 } 853 } 854 855 else { 856 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 857 } 858 } 859 860 /// Return true if we can choose one of these values to use in place of the 861 /// other. Note that we will always choose the non-undef value to keep. 862 static bool CanMergeValues(Value *First, Value *Second) { 863 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 864 } 865 866 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 867 /// branch to Succ, into Succ. 868 /// 869 /// Assumption: Succ is the single successor for BB. 870 static bool 871 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 872 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 873 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 874 875 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 876 << Succ->getName() << "\n"); 877 // Shortcut, if there is only a single predecessor it must be BB and merging 878 // is always safe 879 if (Succ->getSinglePredecessor()) 880 return true; 881 882 // Look at all the phi nodes in Succ, to see if they present a conflict when 883 // merging these blocks 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 // If the incoming value from BB is again a PHINode in 888 // BB which has the same incoming value for *PI as PN does, we can 889 // merge the phi nodes and then the blocks can still be merged 890 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 891 if (BBPN && BBPN->getParent() == BB) { 892 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 893 BasicBlock *IBB = PN->getIncomingBlock(PI); 894 if (BBPreds.count(IBB) && 895 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 896 PN->getIncomingValue(PI))) { 897 LLVM_DEBUG(dbgs() 898 << "Can't fold, phi node " << PN->getName() << " in " 899 << Succ->getName() << " is conflicting with " 900 << BBPN->getName() << " with regard to common predecessor " 901 << IBB->getName() << "\n"); 902 return false; 903 } 904 } 905 } else { 906 Value* Val = PN->getIncomingValueForBlock(BB); 907 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 908 // See if the incoming value for the common predecessor is equal to the 909 // one for BB, in which case this phi node will not prevent the merging 910 // of the block. 911 BasicBlock *IBB = PN->getIncomingBlock(PI); 912 if (BBPreds.count(IBB) && 913 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 914 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 915 << " in " << Succ->getName() 916 << " is conflicting with regard to common " 917 << "predecessor " << IBB->getName() << "\n"); 918 return false; 919 } 920 } 921 } 922 } 923 924 return true; 925 } 926 927 using PredBlockVector = SmallVector<BasicBlock *, 16>; 928 using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; 929 930 /// Determines the value to use as the phi node input for a block. 931 /// 932 /// Select between \p OldVal any value that we know flows from \p BB 933 /// to a particular phi on the basis of which one (if either) is not 934 /// undef. Update IncomingValues based on the selected value. 935 /// 936 /// \param OldVal The value we are considering selecting. 937 /// \param BB The block that the value flows in from. 938 /// \param IncomingValues A map from block-to-value for other phi inputs 939 /// that we have examined. 940 /// 941 /// \returns the selected value. 942 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 943 IncomingValueMap &IncomingValues) { 944 if (!isa<UndefValue>(OldVal)) { 945 assert((!IncomingValues.count(BB) || 946 IncomingValues.find(BB)->second == OldVal) && 947 "Expected OldVal to match incoming value from BB!"); 948 949 IncomingValues.insert(std::make_pair(BB, OldVal)); 950 return OldVal; 951 } 952 953 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 954 if (It != IncomingValues.end()) return It->second; 955 956 return OldVal; 957 } 958 959 /// Create a map from block to value for the operands of a 960 /// given phi. 961 /// 962 /// Create a map from block to value for each non-undef value flowing 963 /// into \p PN. 964 /// 965 /// \param PN The phi we are collecting the map for. 966 /// \param IncomingValues [out] The map from block to value for this phi. 967 static void gatherIncomingValuesToPhi(PHINode *PN, 968 IncomingValueMap &IncomingValues) { 969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 970 BasicBlock *BB = PN->getIncomingBlock(i); 971 Value *V = PN->getIncomingValue(i); 972 973 if (!isa<UndefValue>(V)) 974 IncomingValues.insert(std::make_pair(BB, V)); 975 } 976 } 977 978 /// Replace the incoming undef values to a phi with the values 979 /// from a block-to-value map. 980 /// 981 /// \param PN The phi we are replacing the undefs in. 982 /// \param IncomingValues A map from block to value. 983 static void replaceUndefValuesInPhi(PHINode *PN, 984 const IncomingValueMap &IncomingValues) { 985 SmallVector<unsigned> TrueUndefOps; 986 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 987 Value *V = PN->getIncomingValue(i); 988 989 if (!isa<UndefValue>(V)) continue; 990 991 BasicBlock *BB = PN->getIncomingBlock(i); 992 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 993 994 // Keep track of undef/poison incoming values. Those must match, so we fix 995 // them up below if needed. 996 // Note: this is conservatively correct, but we could try harder and group 997 // the undef values per incoming basic block. 998 if (It == IncomingValues.end()) { 999 TrueUndefOps.push_back(i); 1000 continue; 1001 } 1002 1003 // There is a defined value for this incoming block, so map this undef 1004 // incoming value to the defined value. 1005 PN->setIncomingValue(i, It->second); 1006 } 1007 1008 // If there are both undef and poison values incoming, then convert those 1009 // values to undef. It is invalid to have different values for the same 1010 // incoming block. 1011 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1012 return isa<PoisonValue>(PN->getIncomingValue(i)); 1013 }); 1014 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1015 for (unsigned i : TrueUndefOps) 1016 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1017 } 1018 } 1019 1020 // Only when they shares a single common predecessor, return true. 1021 // Only handles cases when BB can't be merged while its predecessors can be 1022 // redirected. 1023 static bool 1024 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1025 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1026 BasicBlock *&CommonPred) { 1027 1028 // There must be phis in BB, otherwise BB will be merged into Succ directly 1029 if (BB->phis().empty() || Succ->phis().empty()) 1030 return false; 1031 1032 // BB must have predecessors not shared that can be redirected to Succ 1033 if (!BB->hasNPredecessorsOrMore(2)) 1034 return false; 1035 1036 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1037 return isa<IndirectBrInst>(Pred->getTerminator()); 1038 })) 1039 return false; 1040 1041 // Get the single common predecessor of both BB and Succ. Return false 1042 // when there are more than one common predecessors. 1043 for (BasicBlock *SuccPred : predecessors(Succ)) { 1044 if (BBPreds.count(SuccPred)) { 1045 if (CommonPred) 1046 return false; 1047 CommonPred = SuccPred; 1048 } 1049 } 1050 1051 return true; 1052 } 1053 1054 /// Check whether removing \p BB will make the phis in its \p Succ have too 1055 /// many incoming entries. This function does not check whether \p BB is 1056 /// foldable or not. 1057 static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { 1058 // If BB only has one predecessor, then removing it will not introduce more 1059 // incoming edges for phis. 1060 if (BB->hasNPredecessors(1)) 1061 return false; 1062 unsigned NumPreds = pred_size(BB); 1063 unsigned NumChangedPhi = 0; 1064 for (auto &Phi : Succ->phis()) { 1065 // If the incoming value is a phi and the phi is defined in BB, 1066 // then removing BB will not increase the total phi entries of the ir. 1067 if (auto *IncomingPhi = dyn_cast<PHINode>(Phi.getIncomingValueForBlock(BB))) 1068 if (IncomingPhi->getParent() == BB) 1069 continue; 1070 // Otherwise, we need to add entries to the phi 1071 NumChangedPhi++; 1072 } 1073 // For every phi that needs to be changed, (NumPreds - 1) new entries will be 1074 // added. If the total increase in phi entries exceeds 1075 // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as 1076 // introducing too many new phi entries. 1077 return (NumPreds - 1) * NumChangedPhi > 1078 MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; 1079 } 1080 1081 /// Replace a value flowing from a block to a phi with 1082 /// potentially multiple instances of that value flowing from the 1083 /// block's predecessors to the phi. 1084 /// 1085 /// \param BB The block with the value flowing into the phi. 1086 /// \param BBPreds The predecessors of BB. 1087 /// \param PN The phi that we are updating. 1088 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1089 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1090 const PredBlockVector &BBPreds, 1091 PHINode *PN, 1092 BasicBlock *CommonPred) { 1093 Value *OldVal = PN->removeIncomingValue(BB, false); 1094 assert(OldVal && "No entry in PHI for Pred BB!"); 1095 1096 IncomingValueMap IncomingValues; 1097 1098 // We are merging two blocks - BB, and the block containing PN - and 1099 // as a result we need to redirect edges from the predecessors of BB 1100 // to go to the block containing PN, and update PN 1101 // accordingly. Since we allow merging blocks in the case where the 1102 // predecessor and successor blocks both share some predecessors, 1103 // and where some of those common predecessors might have undef 1104 // values flowing into PN, we want to rewrite those values to be 1105 // consistent with the non-undef values. 1106 1107 gatherIncomingValuesToPhi(PN, IncomingValues); 1108 1109 // If this incoming value is one of the PHI nodes in BB, the new entries 1110 // in the PHI node are the entries from the old PHI. 1111 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1112 PHINode *OldValPN = cast<PHINode>(OldVal); 1113 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1114 // Note that, since we are merging phi nodes and BB and Succ might 1115 // have common predecessors, we could end up with a phi node with 1116 // identical incoming branches. This will be cleaned up later (and 1117 // will trigger asserts if we try to clean it up now, without also 1118 // simplifying the corresponding conditional branch). 1119 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1120 1121 if (PredBB == CommonPred) 1122 continue; 1123 1124 Value *PredVal = OldValPN->getIncomingValue(i); 1125 Value *Selected = 1126 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1127 1128 // And add a new incoming value for this predecessor for the 1129 // newly retargeted branch. 1130 PN->addIncoming(Selected, PredBB); 1131 } 1132 if (CommonPred) 1133 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1134 1135 } else { 1136 for (BasicBlock *PredBB : BBPreds) { 1137 // Update existing incoming values in PN for this 1138 // predecessor of BB. 1139 if (PredBB == CommonPred) 1140 continue; 1141 1142 Value *Selected = 1143 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1144 1145 // And add a new incoming value for this predecessor for the 1146 // newly retargeted branch. 1147 PN->addIncoming(Selected, PredBB); 1148 } 1149 if (CommonPred) 1150 PN->addIncoming(OldVal, BB); 1151 } 1152 1153 replaceUndefValuesInPhi(PN, IncomingValues); 1154 } 1155 1156 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1157 DomTreeUpdater *DTU) { 1158 assert(BB != &BB->getParent()->getEntryBlock() && 1159 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1160 1161 // We can't simplify infinite loops. 1162 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1163 if (BB == Succ) 1164 return false; 1165 1166 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1167 1168 // The single common predecessor of BB and Succ when BB cannot be killed 1169 BasicBlock *CommonPred = nullptr; 1170 1171 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1172 1173 // Even if we can not fold BB into Succ, we may be able to redirect the 1174 // predecessors of BB to Succ. 1175 bool BBPhisMergeable = BBKillable || CanRedirectPredsOfEmptyBBToSucc( 1176 BB, Succ, BBPreds, CommonPred); 1177 1178 if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) 1179 return false; 1180 1181 // Check to see if merging these blocks/phis would cause conflicts for any of 1182 // the phi nodes in BB or Succ. If not, we can safely merge. 1183 1184 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1185 // has uses which will not disappear when the PHI nodes are merged. It is 1186 // possible to handle such cases, but difficult: it requires checking whether 1187 // BB dominates Succ, which is non-trivial to calculate in the case where 1188 // Succ has multiple predecessors. Also, it requires checking whether 1189 // constructing the necessary self-referential PHI node doesn't introduce any 1190 // conflicts; this isn't too difficult, but the previous code for doing this 1191 // was incorrect. 1192 // 1193 // Note that if this check finds a live use, BB dominates Succ, so BB is 1194 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1195 // folding the branch isn't profitable in that case anyway. 1196 if (!Succ->getSinglePredecessor()) { 1197 BasicBlock::iterator BBI = BB->begin(); 1198 while (isa<PHINode>(*BBI)) { 1199 for (Use &U : BBI->uses()) { 1200 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1201 if (PN->getIncomingBlock(U) != BB) 1202 return false; 1203 } else { 1204 return false; 1205 } 1206 } 1207 ++BBI; 1208 } 1209 } 1210 1211 if (BBPhisMergeable && CommonPred) 1212 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1213 << " and " << Succ->getName() << " : " 1214 << CommonPred->getName() << "\n"); 1215 1216 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1217 // metadata. 1218 // 1219 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1220 // current status (that loop metadata is implemented as metadata attached to 1221 // the branch instruction in the loop latch block). To quote from review 1222 // comments, "the current representation of loop metadata (using a loop latch 1223 // terminator attachment) is known to be fundamentally broken. Loop latches 1224 // are not uniquely associated with loops (both in that a latch can be part of 1225 // multiple loops and a loop may have multiple latches). Loop headers are. The 1226 // solution to this problem is also known: Add support for basic block 1227 // metadata, and attach loop metadata to the loop header." 1228 // 1229 // Why bail out: 1230 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1231 // the latch for inner-loop (see reason below), so bail out to prerserve 1232 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1233 // to this inner-loop. 1234 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1235 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1236 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1237 // one self-looping basic block, which is contradictory with the assumption. 1238 // 1239 // To illustrate how inner-loop metadata is dropped: 1240 // 1241 // CFG Before 1242 // 1243 // BB is while.cond.exit, attached with loop metdata md2. 1244 // BB->Pred is for.body, attached with loop metadata md1. 1245 // 1246 // entry 1247 // | 1248 // v 1249 // ---> while.cond -------------> while.end 1250 // | | 1251 // | v 1252 // | while.body 1253 // | | 1254 // | v 1255 // | for.body <---- (md1) 1256 // | | |______| 1257 // | v 1258 // | while.cond.exit (md2) 1259 // | | 1260 // |_______| 1261 // 1262 // CFG After 1263 // 1264 // while.cond1 is the merge of while.cond.exit and while.cond above. 1265 // for.body is attached with md2, and md1 is dropped. 1266 // If LoopSimplify runs later (as a part of loop pass), it could create 1267 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1268 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1269 // 1270 // entry 1271 // | 1272 // v 1273 // ---> while.cond1 -------------> while.end 1274 // | | 1275 // | v 1276 // | while.body 1277 // | | 1278 // | v 1279 // | for.body <---- (md2) 1280 // |_______| |______| 1281 if (Instruction *TI = BB->getTerminator()) 1282 if (TI->hasNonDebugLocLoopMetadata()) 1283 for (BasicBlock *Pred : predecessors(BB)) 1284 if (Instruction *PredTI = Pred->getTerminator()) 1285 if (PredTI->hasNonDebugLocLoopMetadata()) 1286 return false; 1287 1288 if (BBKillable) 1289 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1290 else if (BBPhisMergeable) 1291 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1292 1293 SmallVector<DominatorTree::UpdateType, 32> Updates; 1294 1295 if (DTU) { 1296 // To avoid processing the same predecessor more than once. 1297 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1298 // All predecessors of BB (except the common predecessor) will be moved to 1299 // Succ. 1300 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1301 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1302 for (auto *PredOfBB : predecessors(BB)) { 1303 // Do not modify those common predecessors of BB and Succ 1304 if (!SuccPreds.contains(PredOfBB)) 1305 if (SeenPreds.insert(PredOfBB).second) 1306 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1307 } 1308 1309 SeenPreds.clear(); 1310 1311 for (auto *PredOfBB : predecessors(BB)) 1312 // When BB cannot be killed, do not remove the edge between BB and 1313 // CommonPred. 1314 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1315 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1316 1317 if (BBKillable) 1318 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1319 } 1320 1321 if (isa<PHINode>(Succ->begin())) { 1322 // If there is more than one pred of succ, and there are PHI nodes in 1323 // the successor, then we need to add incoming edges for the PHI nodes 1324 // 1325 const PredBlockVector BBPreds(predecessors(BB)); 1326 1327 // Loop over all of the PHI nodes in the successor of BB. 1328 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1329 PHINode *PN = cast<PHINode>(I); 1330 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1331 } 1332 } 1333 1334 if (Succ->getSinglePredecessor()) { 1335 // BB is the only predecessor of Succ, so Succ will end up with exactly 1336 // the same predecessors BB had. 1337 // Copy over any phi, debug or lifetime instruction. 1338 BB->getTerminator()->eraseFromParent(); 1339 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1340 } else { 1341 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1342 // We explicitly check for such uses for merging phis. 1343 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1344 PN->eraseFromParent(); 1345 } 1346 } 1347 1348 // If the unconditional branch we replaced contains non-debug llvm.loop 1349 // metadata, we add the metadata to the branch instructions in the 1350 // predecessors. 1351 if (Instruction *TI = BB->getTerminator()) 1352 if (TI->hasNonDebugLocLoopMetadata()) { 1353 MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop); 1354 for (BasicBlock *Pred : predecessors(BB)) 1355 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1356 } 1357 1358 if (BBKillable) { 1359 // Everything that jumped to BB now goes to Succ. 1360 BB->replaceAllUsesWith(Succ); 1361 1362 if (!Succ->hasName()) 1363 Succ->takeName(BB); 1364 1365 // Clear the successor list of BB to match updates applying to DTU later. 1366 if (BB->getTerminator()) 1367 BB->back().eraseFromParent(); 1368 1369 new UnreachableInst(BB->getContext(), BB); 1370 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1371 "applying corresponding DTU updates."); 1372 } else if (BBPhisMergeable) { 1373 // Everything except CommonPred that jumped to BB now goes to Succ. 1374 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1375 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1376 return UseInst->getParent() != CommonPred && 1377 BBPreds.contains(UseInst->getParent()); 1378 return false; 1379 }); 1380 } 1381 1382 if (DTU) 1383 DTU->applyUpdates(Updates); 1384 1385 if (BBKillable) 1386 DeleteDeadBlock(BB, DTU); 1387 1388 return true; 1389 } 1390 1391 static bool 1392 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1393 SmallPtrSetImpl<PHINode *> &ToRemove) { 1394 // This implementation doesn't currently consider undef operands 1395 // specially. Theoretically, two phis which are identical except for 1396 // one having an undef where the other doesn't could be collapsed. 1397 1398 bool Changed = false; 1399 1400 // Examine each PHI. 1401 // Note that increment of I must *NOT* be in the iteration_expression, since 1402 // we don't want to immediately advance when we restart from the beginning. 1403 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1404 ++I; 1405 // Is there an identical PHI node in this basic block? 1406 // Note that we only look in the upper square's triangle, 1407 // we already checked that the lower triangle PHI's aren't identical. 1408 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1409 if (ToRemove.contains(DuplicatePN)) 1410 continue; 1411 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1412 continue; 1413 // A duplicate. Replace this PHI with the base PHI. 1414 ++NumPHICSEs; 1415 DuplicatePN->replaceAllUsesWith(PN); 1416 ToRemove.insert(DuplicatePN); 1417 Changed = true; 1418 1419 // The RAUW can change PHIs that we already visited. 1420 I = BB->begin(); 1421 break; // Start over from the beginning. 1422 } 1423 } 1424 return Changed; 1425 } 1426 1427 static bool 1428 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1429 SmallPtrSetImpl<PHINode *> &ToRemove) { 1430 // This implementation doesn't currently consider undef operands 1431 // specially. Theoretically, two phis which are identical except for 1432 // one having an undef where the other doesn't could be collapsed. 1433 1434 struct PHIDenseMapInfo { 1435 static PHINode *getEmptyKey() { 1436 return DenseMapInfo<PHINode *>::getEmptyKey(); 1437 } 1438 1439 static PHINode *getTombstoneKey() { 1440 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1441 } 1442 1443 static bool isSentinel(PHINode *PN) { 1444 return PN == getEmptyKey() || PN == getTombstoneKey(); 1445 } 1446 1447 // WARNING: this logic must be kept in sync with 1448 // Instruction::isIdenticalToWhenDefined()! 1449 static unsigned getHashValueImpl(PHINode *PN) { 1450 // Compute a hash value on the operands. Instcombine will likely have 1451 // sorted them, which helps expose duplicates, but we have to check all 1452 // the operands to be safe in case instcombine hasn't run. 1453 return static_cast<unsigned>(hash_combine( 1454 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1455 hash_combine_range(PN->block_begin(), PN->block_end()))); 1456 } 1457 1458 static unsigned getHashValue(PHINode *PN) { 1459 #ifndef NDEBUG 1460 // If -phicse-debug-hash was specified, return a constant -- this 1461 // will force all hashing to collide, so we'll exhaustively search 1462 // the table for a match, and the assertion in isEqual will fire if 1463 // there's a bug causing equal keys to hash differently. 1464 if (PHICSEDebugHash) 1465 return 0; 1466 #endif 1467 return getHashValueImpl(PN); 1468 } 1469 1470 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1471 if (isSentinel(LHS) || isSentinel(RHS)) 1472 return LHS == RHS; 1473 return LHS->isIdenticalTo(RHS); 1474 } 1475 1476 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1477 // These comparisons are nontrivial, so assert that equality implies 1478 // hash equality (DenseMap demands this as an invariant). 1479 bool Result = isEqualImpl(LHS, RHS); 1480 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1481 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1482 return Result; 1483 } 1484 }; 1485 1486 // Set of unique PHINodes. 1487 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1488 PHISet.reserve(4 * PHICSENumPHISmallSize); 1489 1490 // Examine each PHI. 1491 bool Changed = false; 1492 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1493 if (ToRemove.contains(PN)) 1494 continue; 1495 auto Inserted = PHISet.insert(PN); 1496 if (!Inserted.second) { 1497 // A duplicate. Replace this PHI with its duplicate. 1498 ++NumPHICSEs; 1499 PN->replaceAllUsesWith(*Inserted.first); 1500 ToRemove.insert(PN); 1501 Changed = true; 1502 1503 // The RAUW can change PHIs that we already visited. Start over from the 1504 // beginning. 1505 PHISet.clear(); 1506 I = BB->begin(); 1507 } 1508 } 1509 1510 return Changed; 1511 } 1512 1513 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1514 SmallPtrSetImpl<PHINode *> &ToRemove) { 1515 if ( 1516 #ifndef NDEBUG 1517 !PHICSEDebugHash && 1518 #endif 1519 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1520 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1521 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1522 } 1523 1524 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1525 SmallPtrSet<PHINode *, 8> ToRemove; 1526 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1527 for (PHINode *PN : ToRemove) 1528 PN->eraseFromParent(); 1529 return Changed; 1530 } 1531 1532 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1533 const DataLayout &DL) { 1534 V = V->stripPointerCasts(); 1535 1536 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1537 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1538 // than the current alignment, as the known bits calculation should have 1539 // already taken it into account. However, this is not always the case, 1540 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1541 // doesn't. 1542 Align CurrentAlign = AI->getAlign(); 1543 if (PrefAlign <= CurrentAlign) 1544 return CurrentAlign; 1545 1546 // If the preferred alignment is greater than the natural stack alignment 1547 // then don't round up. This avoids dynamic stack realignment. 1548 MaybeAlign StackAlign = DL.getStackAlignment(); 1549 if (StackAlign && PrefAlign > *StackAlign) 1550 return CurrentAlign; 1551 AI->setAlignment(PrefAlign); 1552 return PrefAlign; 1553 } 1554 1555 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1556 // TODO: as above, this shouldn't be necessary. 1557 Align CurrentAlign = GO->getPointerAlignment(DL); 1558 if (PrefAlign <= CurrentAlign) 1559 return CurrentAlign; 1560 1561 // If there is a large requested alignment and we can, bump up the alignment 1562 // of the global. If the memory we set aside for the global may not be the 1563 // memory used by the final program then it is impossible for us to reliably 1564 // enforce the preferred alignment. 1565 if (!GO->canIncreaseAlignment()) 1566 return CurrentAlign; 1567 1568 if (GO->isThreadLocal()) { 1569 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1570 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1571 PrefAlign = Align(MaxTLSAlign); 1572 } 1573 1574 GO->setAlignment(PrefAlign); 1575 return PrefAlign; 1576 } 1577 1578 return Align(1); 1579 } 1580 1581 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1582 const DataLayout &DL, 1583 const Instruction *CxtI, 1584 AssumptionCache *AC, 1585 const DominatorTree *DT) { 1586 assert(V->getType()->isPointerTy() && 1587 "getOrEnforceKnownAlignment expects a pointer!"); 1588 1589 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1590 unsigned TrailZ = Known.countMinTrailingZeros(); 1591 1592 // Avoid trouble with ridiculously large TrailZ values, such as 1593 // those computed from a null pointer. 1594 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1595 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1596 1597 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1598 1599 if (PrefAlign && *PrefAlign > Alignment) 1600 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1601 1602 // We don't need to make any adjustment. 1603 return Alignment; 1604 } 1605 1606 ///===---------------------------------------------------------------------===// 1607 /// Dbg Intrinsic utilities 1608 /// 1609 1610 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1611 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1612 DIExpression *DIExpr, 1613 PHINode *APN) { 1614 // Since we can't guarantee that the original dbg.declare intrinsic 1615 // is removed by LowerDbgDeclare(), we need to make sure that we are 1616 // not inserting the same dbg.value intrinsic over and over. 1617 SmallVector<DbgValueInst *, 1> DbgValues; 1618 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1619 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1620 for (auto *DVI : DbgValues) { 1621 assert(is_contained(DVI->getValues(), APN)); 1622 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1623 return true; 1624 } 1625 for (auto *DVR : DbgVariableRecords) { 1626 assert(is_contained(DVR->location_ops(), APN)); 1627 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1628 return true; 1629 } 1630 return false; 1631 } 1632 1633 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1634 /// (or fragment of the variable) described by \p DII. 1635 /// 1636 /// This is primarily intended as a helper for the different 1637 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1638 /// describes an alloca'd variable, so we need to use the alloc size of the 1639 /// value when doing the comparison. E.g. an i1 value will be identified as 1640 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1641 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1642 const DataLayout &DL = DII->getDataLayout(); 1643 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1644 if (std::optional<uint64_t> FragmentSize = 1645 DII->getExpression()->getActiveBits(DII->getVariable())) 1646 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1647 1648 // We can't always calculate the size of the DI variable (e.g. if it is a 1649 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1650 // instead. 1651 if (DII->isAddressOfVariable()) { 1652 // DII should have exactly 1 location when it is an address. 1653 assert(DII->getNumVariableLocationOps() == 1 && 1654 "address of variable must have exactly 1 location operand."); 1655 if (auto *AI = 1656 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1657 if (std::optional<TypeSize> FragmentSize = 1658 AI->getAllocationSizeInBits(DL)) { 1659 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1660 } 1661 } 1662 } 1663 // Could not determine size of variable. Conservatively return false. 1664 return false; 1665 } 1666 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1667 // the replacement for dbg.values. 1668 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1669 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1670 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1671 if (std::optional<uint64_t> FragmentSize = 1672 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1673 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1674 1675 // We can't always calculate the size of the DI variable (e.g. if it is a 1676 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1677 // instead. 1678 if (DVR->isAddressOfVariable()) { 1679 // DVR should have exactly 1 location when it is an address. 1680 assert(DVR->getNumVariableLocationOps() == 1 && 1681 "address of variable must have exactly 1 location operand."); 1682 if (auto *AI = 1683 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1684 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1685 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1686 } 1687 } 1688 } 1689 // Could not determine size of variable. Conservatively return false. 1690 return false; 1691 } 1692 1693 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1694 DILocalVariable *DIVar, 1695 DIExpression *DIExpr, 1696 const DebugLoc &NewLoc, 1697 BasicBlock::iterator Instr) { 1698 if (!UseNewDbgInfoFormat) { 1699 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1700 (Instruction *)nullptr); 1701 cast<Instruction *>(DbgVal)->insertBefore(Instr); 1702 } else { 1703 // RemoveDIs: if we're using the new debug-info format, allocate a 1704 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1705 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1706 DbgVariableRecord *DV = 1707 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1708 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1709 } 1710 } 1711 1712 static void insertDbgValueOrDbgVariableRecordAfter( 1713 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1714 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1715 if (!UseNewDbgInfoFormat) { 1716 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1717 (Instruction *)nullptr); 1718 cast<Instruction *>(DbgVal)->insertAfter(Instr); 1719 } else { 1720 // RemoveDIs: if we're using the new debug-info format, allocate a 1721 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1722 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1723 DbgVariableRecord *DV = 1724 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1725 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1726 } 1727 } 1728 1729 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1730 /// that has an associated llvm.dbg.declare intrinsic. 1731 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1732 StoreInst *SI, DIBuilder &Builder) { 1733 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1734 auto *DIVar = DII->getVariable(); 1735 assert(DIVar && "Missing variable"); 1736 auto *DIExpr = DII->getExpression(); 1737 Value *DV = SI->getValueOperand(); 1738 1739 DebugLoc NewLoc = getDebugValueLoc(DII); 1740 1741 // If the alloca describes the variable itself, i.e. the expression in the 1742 // dbg.declare doesn't start with a dereference, we can perform the 1743 // conversion if the value covers the entire fragment of DII. 1744 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1745 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1746 // We conservatively ignore other dereferences, because the following two are 1747 // not equivalent: 1748 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1749 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1750 // The former is adding 2 to the address of the variable, whereas the latter 1751 // is adding 2 to the value of the variable. As such, we insist on just a 1752 // deref expression. 1753 bool CanConvert = 1754 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1755 valueCoversEntireFragment(DV->getType(), DII)); 1756 if (CanConvert) { 1757 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1758 SI->getIterator()); 1759 return; 1760 } 1761 1762 // FIXME: If storing to a part of the variable described by the dbg.declare, 1763 // then we want to insert a dbg.value for the corresponding fragment. 1764 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1765 << '\n'); 1766 // For now, when there is a store to parts of the variable (but we do not 1767 // know which part) we insert an dbg.value intrinsic to indicate that we 1768 // know nothing about the variable's content. 1769 DV = PoisonValue::get(DV->getType()); 1770 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1771 SI->getIterator()); 1772 } 1773 1774 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1775 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1776 return DIExpression::get(DIExpr->getContext(), 1777 DIExpr->getElements().drop_front(NumEltDropped)); 1778 } 1779 1780 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1781 DIBuilder &Builder) { 1782 auto *DIVar = DII->getVariable(); 1783 assert(DIVar && "Missing variable"); 1784 auto *DIExpr = DII->getExpression(); 1785 DIExpr = dropInitialDeref(DIExpr); 1786 Value *DV = SI->getValueOperand(); 1787 1788 DebugLoc NewLoc = getDebugValueLoc(DII); 1789 1790 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1791 SI->getIterator()); 1792 } 1793 1794 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1795 /// that has an associated llvm.dbg.declare intrinsic. 1796 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1797 LoadInst *LI, DIBuilder &Builder) { 1798 auto *DIVar = DII->getVariable(); 1799 auto *DIExpr = DII->getExpression(); 1800 assert(DIVar && "Missing variable"); 1801 1802 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1803 // FIXME: If only referring to a part of the variable described by the 1804 // dbg.declare, then we want to insert a dbg.value for the corresponding 1805 // fragment. 1806 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1807 << *DII << '\n'); 1808 return; 1809 } 1810 1811 DebugLoc NewLoc = getDebugValueLoc(DII); 1812 1813 // We are now tracking the loaded value instead of the address. In the 1814 // future if multi-location support is added to the IR, it might be 1815 // preferable to keep tracking both the loaded value and the original 1816 // address in case the alloca can not be elided. 1817 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1818 LI->getIterator()); 1819 } 1820 1821 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1822 StoreInst *SI, DIBuilder &Builder) { 1823 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1824 auto *DIVar = DVR->getVariable(); 1825 assert(DIVar && "Missing variable"); 1826 auto *DIExpr = DVR->getExpression(); 1827 Value *DV = SI->getValueOperand(); 1828 1829 DebugLoc NewLoc = getDebugValueLoc(DVR); 1830 1831 // If the alloca describes the variable itself, i.e. the expression in the 1832 // dbg.declare doesn't start with a dereference, we can perform the 1833 // conversion if the value covers the entire fragment of DII. 1834 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1835 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1836 // We conservatively ignore other dereferences, because the following two are 1837 // not equivalent: 1838 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1839 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1840 // The former is adding 2 to the address of the variable, whereas the latter 1841 // is adding 2 to the value of the variable. As such, we insist on just a 1842 // deref expression. 1843 bool CanConvert = 1844 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1845 valueCoversEntireFragment(DV->getType(), DVR)); 1846 if (CanConvert) { 1847 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1848 SI->getIterator()); 1849 return; 1850 } 1851 1852 // FIXME: If storing to a part of the variable described by the dbg.declare, 1853 // then we want to insert a dbg.value for the corresponding fragment. 1854 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1855 << '\n'); 1856 assert(UseNewDbgInfoFormat); 1857 1858 // For now, when there is a store to parts of the variable (but we do not 1859 // know which part) we insert an dbg.value intrinsic to indicate that we 1860 // know nothing about the variable's content. 1861 DV = PoisonValue::get(DV->getType()); 1862 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1863 DbgVariableRecord *NewDVR = 1864 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1865 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1866 } 1867 1868 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1869 DIBuilder &Builder) { 1870 auto *DIVar = DVR->getVariable(); 1871 assert(DIVar && "Missing variable"); 1872 auto *DIExpr = DVR->getExpression(); 1873 DIExpr = dropInitialDeref(DIExpr); 1874 Value *DV = SI->getValueOperand(); 1875 1876 DebugLoc NewLoc = getDebugValueLoc(DVR); 1877 1878 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1879 SI->getIterator()); 1880 } 1881 1882 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1883 /// llvm.dbg.declare intrinsic. 1884 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1885 PHINode *APN, DIBuilder &Builder) { 1886 auto *DIVar = DII->getVariable(); 1887 auto *DIExpr = DII->getExpression(); 1888 assert(DIVar && "Missing variable"); 1889 1890 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1891 return; 1892 1893 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1894 // FIXME: If only referring to a part of the variable described by the 1895 // dbg.declare, then we want to insert a dbg.value for the corresponding 1896 // fragment. 1897 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1898 << *DII << '\n'); 1899 return; 1900 } 1901 1902 BasicBlock *BB = APN->getParent(); 1903 auto InsertionPt = BB->getFirstInsertionPt(); 1904 1905 DebugLoc NewLoc = getDebugValueLoc(DII); 1906 1907 // The block may be a catchswitch block, which does not have a valid 1908 // insertion point. 1909 // FIXME: Insert dbg.value markers in the successors when appropriate. 1910 if (InsertionPt != BB->end()) { 1911 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1912 InsertionPt); 1913 } 1914 } 1915 1916 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1917 DIBuilder &Builder) { 1918 auto *DIVar = DVR->getVariable(); 1919 auto *DIExpr = DVR->getExpression(); 1920 assert(DIVar && "Missing variable"); 1921 1922 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1923 // FIXME: If only referring to a part of the variable described by the 1924 // dbg.declare, then we want to insert a DbgVariableRecord for the 1925 // corresponding fragment. 1926 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1927 << *DVR << '\n'); 1928 return; 1929 } 1930 1931 DebugLoc NewLoc = getDebugValueLoc(DVR); 1932 1933 // We are now tracking the loaded value instead of the address. In the 1934 // future if multi-location support is added to the IR, it might be 1935 // preferable to keep tracking both the loaded value and the original 1936 // address in case the alloca can not be elided. 1937 assert(UseNewDbgInfoFormat); 1938 1939 // Create a DbgVariableRecord directly and insert. 1940 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1941 DbgVariableRecord *DV = 1942 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1943 LI->getParent()->insertDbgRecordAfter(DV, LI); 1944 } 1945 1946 /// Determine whether this alloca is either a VLA or an array. 1947 static bool isArray(AllocaInst *AI) { 1948 return AI->isArrayAllocation() || 1949 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1950 } 1951 1952 /// Determine whether this alloca is a structure. 1953 static bool isStructure(AllocaInst *AI) { 1954 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1955 } 1956 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1957 DIBuilder &Builder) { 1958 auto *DIVar = DVR->getVariable(); 1959 auto *DIExpr = DVR->getExpression(); 1960 assert(DIVar && "Missing variable"); 1961 1962 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1963 return; 1964 1965 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1966 // FIXME: If only referring to a part of the variable described by the 1967 // dbg.declare, then we want to insert a DbgVariableRecord for the 1968 // corresponding fragment. 1969 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1970 << *DVR << '\n'); 1971 return; 1972 } 1973 1974 BasicBlock *BB = APN->getParent(); 1975 auto InsertionPt = BB->getFirstInsertionPt(); 1976 1977 DebugLoc NewLoc = getDebugValueLoc(DVR); 1978 1979 // The block may be a catchswitch block, which does not have a valid 1980 // insertion point. 1981 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1982 if (InsertionPt != BB->end()) { 1983 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1984 InsertionPt); 1985 } 1986 } 1987 1988 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1989 /// of llvm.dbg.value intrinsics. 1990 bool llvm::LowerDbgDeclare(Function &F) { 1991 bool Changed = false; 1992 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1993 SmallVector<DbgDeclareInst *, 4> Dbgs; 1994 SmallVector<DbgVariableRecord *> DVRs; 1995 for (auto &FI : F) { 1996 for (Instruction &BI : FI) { 1997 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1998 Dbgs.push_back(DDI); 1999 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 2000 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 2001 DVRs.push_back(&DVR); 2002 } 2003 } 2004 } 2005 2006 if (Dbgs.empty() && DVRs.empty()) 2007 return Changed; 2008 2009 auto LowerOne = [&](auto *DDI) { 2010 AllocaInst *AI = 2011 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 2012 // If this is an alloca for a scalar variable, insert a dbg.value 2013 // at each load and store to the alloca and erase the dbg.declare. 2014 // The dbg.values allow tracking a variable even if it is not 2015 // stored on the stack, while the dbg.declare can only describe 2016 // the stack slot (and at a lexical-scope granularity). Later 2017 // passes will attempt to elide the stack slot. 2018 if (!AI || isArray(AI) || isStructure(AI)) 2019 return; 2020 2021 // A volatile load/store means that the alloca can't be elided anyway. 2022 if (llvm::any_of(AI->users(), [](User *U) -> bool { 2023 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 2024 return LI->isVolatile(); 2025 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 2026 return SI->isVolatile(); 2027 return false; 2028 })) 2029 return; 2030 2031 SmallVector<const Value *, 8> WorkList; 2032 WorkList.push_back(AI); 2033 while (!WorkList.empty()) { 2034 const Value *V = WorkList.pop_back_val(); 2035 for (const auto &AIUse : V->uses()) { 2036 User *U = AIUse.getUser(); 2037 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2038 if (AIUse.getOperandNo() == 1) 2039 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2040 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2041 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2042 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2043 // This is a call by-value or some other instruction that takes a 2044 // pointer to the variable. Insert a *value* intrinsic that describes 2045 // the variable by dereferencing the alloca. 2046 if (!CI->isLifetimeStartOrEnd()) { 2047 DebugLoc NewLoc = getDebugValueLoc(DDI); 2048 auto *DerefExpr = 2049 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2050 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2051 DerefExpr, NewLoc, 2052 CI->getIterator()); 2053 } 2054 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2055 if (BI->getType()->isPointerTy()) 2056 WorkList.push_back(BI); 2057 } 2058 } 2059 } 2060 DDI->eraseFromParent(); 2061 Changed = true; 2062 }; 2063 2064 for_each(Dbgs, LowerOne); 2065 for_each(DVRs, LowerOne); 2066 2067 if (Changed) 2068 for (BasicBlock &BB : F) 2069 RemoveRedundantDbgInstrs(&BB); 2070 2071 return Changed; 2072 } 2073 2074 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2075 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2076 // intrinsics. 2077 static void 2078 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2079 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2080 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2081 if (InsertedPHIs.size() == 0) 2082 return; 2083 2084 // Map existing PHI nodes to their DbgVariableRecords. 2085 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2086 for (auto &I : *BB) { 2087 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2088 for (Value *V : DVR.location_ops()) 2089 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2090 DbgValueMap.insert({Loc, &DVR}); 2091 } 2092 } 2093 if (DbgValueMap.size() == 0) 2094 return; 2095 2096 // Map a pair of the destination BB and old DbgVariableRecord to the new 2097 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2098 // more than one of the inserted PHIs in the same destination BB, we can 2099 // update the same DbgVariableRecord with all the new PHIs instead of creating 2100 // one copy for each. 2101 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2102 NewDbgValueMap; 2103 // Then iterate through the new PHIs and look to see if they use one of the 2104 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2105 // propagate the info through the new PHI. If we use more than one new PHI in 2106 // a single destination BB with the same old dbg.value, merge the updates so 2107 // that we get a single new DbgVariableRecord with all the new PHIs. 2108 for (auto PHI : InsertedPHIs) { 2109 BasicBlock *Parent = PHI->getParent(); 2110 // Avoid inserting a debug-info record into an EH block. 2111 if (Parent->getFirstNonPHIIt()->isEHPad()) 2112 continue; 2113 for (auto VI : PHI->operand_values()) { 2114 auto V = DbgValueMap.find(VI); 2115 if (V != DbgValueMap.end()) { 2116 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2117 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2118 if (NewDI == NewDbgValueMap.end()) { 2119 DbgVariableRecord *NewDbgII = DbgII->clone(); 2120 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2121 } 2122 DbgVariableRecord *NewDbgII = NewDI->second; 2123 // If PHI contains VI as an operand more than once, we may 2124 // replaced it in NewDbgII; confirm that it is present. 2125 if (is_contained(NewDbgII->location_ops(), VI)) 2126 NewDbgII->replaceVariableLocationOp(VI, PHI); 2127 } 2128 } 2129 } 2130 // Insert the new DbgVariableRecords into their destination blocks. 2131 for (auto DI : NewDbgValueMap) { 2132 BasicBlock *Parent = DI.first.first; 2133 DbgVariableRecord *NewDbgII = DI.second; 2134 auto InsertionPt = Parent->getFirstInsertionPt(); 2135 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2136 2137 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2138 } 2139 } 2140 2141 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2142 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2143 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2144 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2145 if (InsertedPHIs.size() == 0) 2146 return; 2147 2148 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2149 2150 // Map existing PHI nodes to their dbg.values. 2151 ValueToValueMapTy DbgValueMap; 2152 for (auto &I : *BB) { 2153 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2154 for (Value *V : DbgII->location_ops()) 2155 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2156 DbgValueMap.insert({Loc, DbgII}); 2157 } 2158 } 2159 if (DbgValueMap.size() == 0) 2160 return; 2161 2162 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2163 // so that if a dbg.value is being rewritten to use more than one of the 2164 // inserted PHIs in the same destination BB, we can update the same dbg.value 2165 // with all the new PHIs instead of creating one copy for each. 2166 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2167 DbgVariableIntrinsic *> 2168 NewDbgValueMap; 2169 // Then iterate through the new PHIs and look to see if they use one of the 2170 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2171 // propagate the info through the new PHI. If we use more than one new PHI in 2172 // a single destination BB with the same old dbg.value, merge the updates so 2173 // that we get a single new dbg.value with all the new PHIs. 2174 for (auto *PHI : InsertedPHIs) { 2175 BasicBlock *Parent = PHI->getParent(); 2176 // Avoid inserting an intrinsic into an EH block. 2177 if (Parent->getFirstNonPHIIt()->isEHPad()) 2178 continue; 2179 for (auto *VI : PHI->operand_values()) { 2180 auto V = DbgValueMap.find(VI); 2181 if (V != DbgValueMap.end()) { 2182 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2183 auto [NewDI, Inserted] = NewDbgValueMap.try_emplace({Parent, DbgII}); 2184 if (Inserted) 2185 NewDI->second = cast<DbgVariableIntrinsic>(DbgII->clone()); 2186 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2187 // If PHI contains VI as an operand more than once, we may 2188 // replaced it in NewDbgII; confirm that it is present. 2189 if (is_contained(NewDbgII->location_ops(), VI)) 2190 NewDbgII->replaceVariableLocationOp(VI, PHI); 2191 } 2192 } 2193 } 2194 // Insert thew new dbg.values into their destination blocks. 2195 for (auto DI : NewDbgValueMap) { 2196 BasicBlock *Parent = DI.first.first; 2197 auto *NewDbgII = DI.second; 2198 auto InsertionPt = Parent->getFirstInsertionPt(); 2199 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2200 NewDbgII->insertBefore(InsertionPt); 2201 } 2202 } 2203 2204 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2205 DIBuilder &Builder, uint8_t DIExprFlags, 2206 int Offset) { 2207 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2208 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2209 2210 auto ReplaceOne = [&](auto *DII) { 2211 assert(DII->getVariable() && "Missing variable"); 2212 auto *DIExpr = DII->getExpression(); 2213 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2214 DII->setExpression(DIExpr); 2215 DII->replaceVariableLocationOp(Address, NewAddress); 2216 }; 2217 2218 for_each(DbgDeclares, ReplaceOne); 2219 for_each(DVRDeclares, ReplaceOne); 2220 2221 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2222 } 2223 2224 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2225 DILocalVariable *DIVar, 2226 DIExpression *DIExpr, Value *NewAddress, 2227 DbgValueInst *DVI, 2228 DbgVariableRecord *DVR, 2229 DIBuilder &Builder, int Offset) { 2230 assert(DIVar && "Missing variable"); 2231 2232 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2233 // should do with the alloca pointer is dereference it. Otherwise we don't 2234 // know how to handle it and give up. 2235 if (!DIExpr || DIExpr->getNumElements() < 1 || 2236 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2237 return; 2238 2239 // Insert the offset before the first deref. 2240 if (Offset) 2241 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2242 2243 if (DVI) { 2244 DVI->setExpression(DIExpr); 2245 DVI->replaceVariableLocationOp(0u, NewAddress); 2246 } else { 2247 assert(DVR); 2248 DVR->setExpression(DIExpr); 2249 DVR->replaceVariableLocationOp(0u, NewAddress); 2250 } 2251 } 2252 2253 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2254 DIBuilder &Builder, int Offset) { 2255 SmallVector<DbgValueInst *, 1> DbgUsers; 2256 SmallVector<DbgVariableRecord *, 1> DPUsers; 2257 findDbgValues(DbgUsers, AI, &DPUsers); 2258 2259 // Attempt to replace dbg.values that use this alloca. 2260 for (auto *DVI : DbgUsers) 2261 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2262 DVI->getExpression(), NewAllocaAddress, DVI, 2263 nullptr, Builder, Offset); 2264 2265 // Replace any DbgVariableRecords that use this alloca. 2266 for (DbgVariableRecord *DVR : DPUsers) 2267 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2268 DVR->getExpression(), NewAllocaAddress, nullptr, 2269 DVR, Builder, Offset); 2270 } 2271 2272 /// Where possible to salvage debug information for \p I do so. 2273 /// If not possible mark undef. 2274 void llvm::salvageDebugInfo(Instruction &I) { 2275 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2276 SmallVector<DbgVariableRecord *, 1> DPUsers; 2277 findDbgUsers(DbgUsers, &I, &DPUsers); 2278 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2279 } 2280 2281 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2282 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2283 // Only instructions can be salvaged at the moment. 2284 if (!I) 2285 return; 2286 2287 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2288 "address-expression shouldn't have fragment info"); 2289 2290 // The address component of a dbg.assign cannot be variadic. 2291 uint64_t CurrentLocOps = 0; 2292 SmallVector<Value *, 4> AdditionalValues; 2293 SmallVector<uint64_t, 16> Ops; 2294 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2295 2296 // Check if the salvage failed. 2297 if (!NewV) 2298 return; 2299 2300 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2301 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2302 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2303 "address-expression shouldn't have fragment info"); 2304 2305 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2306 2307 // Salvage succeeds if no additional values are required. 2308 if (AdditionalValues.empty()) { 2309 Assign->setAddress(NewV); 2310 Assign->setAddressExpression(SalvagedExpr); 2311 } else { 2312 Assign->setKillAddress(); 2313 } 2314 } 2315 2316 void llvm::salvageDebugInfoForDbgValues( 2317 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2318 ArrayRef<DbgVariableRecord *> DPUsers) { 2319 // These are arbitrary chosen limits on the maximum number of values and the 2320 // maximum size of a debug expression we can salvage up to, used for 2321 // performance reasons. 2322 const unsigned MaxDebugArgs = 16; 2323 const unsigned MaxExpressionSize = 128; 2324 bool Salvaged = false; 2325 2326 for (auto *DII : DbgUsers) { 2327 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2328 if (DAI->getAddress() == &I) { 2329 salvageDbgAssignAddress(DAI); 2330 Salvaged = true; 2331 } 2332 if (DAI->getValue() != &I) 2333 continue; 2334 } 2335 2336 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2337 // pointing out the value as a DWARF memory location description. 2338 bool StackValue = isa<DbgValueInst>(DII); 2339 auto DIILocation = DII->location_ops(); 2340 assert( 2341 is_contained(DIILocation, &I) && 2342 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2343 SmallVector<Value *, 4> AdditionalValues; 2344 // `I` may appear more than once in DII's location ops, and each use of `I` 2345 // must be updated in the DIExpression and potentially have additional 2346 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2347 // DIILocation. 2348 Value *Op0 = nullptr; 2349 DIExpression *SalvagedExpr = DII->getExpression(); 2350 auto LocItr = find(DIILocation, &I); 2351 while (SalvagedExpr && LocItr != DIILocation.end()) { 2352 SmallVector<uint64_t, 16> Ops; 2353 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2354 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2355 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2356 if (!Op0) 2357 break; 2358 SalvagedExpr = 2359 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2360 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2361 } 2362 // salvageDebugInfoImpl should fail on examining the first element of 2363 // DbgUsers, or none of them. 2364 if (!Op0) 2365 break; 2366 2367 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2368 DII->replaceVariableLocationOp(&I, Op0); 2369 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2370 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2371 DII->setExpression(SalvagedExpr); 2372 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2373 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2374 MaxDebugArgs) { 2375 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2376 } else { 2377 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2378 // supported in those instructions. Also do not salvage if the resulting 2379 // DIArgList would contain an unreasonably large number of values. 2380 DII->setKillLocation(); 2381 } 2382 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2383 Salvaged = true; 2384 } 2385 // Duplicate of above block for DbgVariableRecords. 2386 for (auto *DVR : DPUsers) { 2387 if (DVR->isDbgAssign()) { 2388 if (DVR->getAddress() == &I) { 2389 salvageDbgAssignAddress(DVR); 2390 Salvaged = true; 2391 } 2392 if (DVR->getValue() != &I) 2393 continue; 2394 } 2395 2396 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2397 // are implicitly pointing out the value as a DWARF memory location 2398 // description. 2399 bool StackValue = 2400 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2401 auto DVRLocation = DVR->location_ops(); 2402 assert( 2403 is_contained(DVRLocation, &I) && 2404 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2405 SmallVector<Value *, 4> AdditionalValues; 2406 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2407 // must be updated in the DIExpression and potentially have additional 2408 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2409 // DVRLocation. 2410 Value *Op0 = nullptr; 2411 DIExpression *SalvagedExpr = DVR->getExpression(); 2412 auto LocItr = find(DVRLocation, &I); 2413 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2414 SmallVector<uint64_t, 16> Ops; 2415 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2416 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2417 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2418 if (!Op0) 2419 break; 2420 SalvagedExpr = 2421 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2422 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2423 } 2424 // salvageDebugInfoImpl should fail on examining the first element of 2425 // DbgUsers, or none of them. 2426 if (!Op0) 2427 break; 2428 2429 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2430 DVR->replaceVariableLocationOp(&I, Op0); 2431 bool IsValidSalvageExpr = 2432 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2433 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2434 DVR->setExpression(SalvagedExpr); 2435 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2436 IsValidSalvageExpr && 2437 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2438 MaxDebugArgs) { 2439 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2440 } else { 2441 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2442 // currently only valid for stack value expressions. 2443 // Also do not salvage if the resulting DIArgList would contain an 2444 // unreasonably large number of values. 2445 DVR->setKillLocation(); 2446 } 2447 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2448 Salvaged = true; 2449 } 2450 2451 if (Salvaged) 2452 return; 2453 2454 for (auto *DII : DbgUsers) 2455 DII->setKillLocation(); 2456 2457 for (auto *DVR : DPUsers) 2458 DVR->setKillLocation(); 2459 } 2460 2461 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2462 uint64_t CurrentLocOps, 2463 SmallVectorImpl<uint64_t> &Opcodes, 2464 SmallVectorImpl<Value *> &AdditionalValues) { 2465 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2466 // Rewrite a GEP into a DIExpression. 2467 SmallMapVector<Value *, APInt, 4> VariableOffsets; 2468 APInt ConstantOffset(BitWidth, 0); 2469 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2470 return nullptr; 2471 if (!VariableOffsets.empty() && !CurrentLocOps) { 2472 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2473 CurrentLocOps = 1; 2474 } 2475 for (const auto &Offset : VariableOffsets) { 2476 AdditionalValues.push_back(Offset.first); 2477 assert(Offset.second.isStrictlyPositive() && 2478 "Expected strictly positive multiplier for offset."); 2479 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2480 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2481 dwarf::DW_OP_plus}); 2482 } 2483 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2484 return GEP->getOperand(0); 2485 } 2486 2487 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2488 switch (Opcode) { 2489 case Instruction::Add: 2490 return dwarf::DW_OP_plus; 2491 case Instruction::Sub: 2492 return dwarf::DW_OP_minus; 2493 case Instruction::Mul: 2494 return dwarf::DW_OP_mul; 2495 case Instruction::SDiv: 2496 return dwarf::DW_OP_div; 2497 case Instruction::SRem: 2498 return dwarf::DW_OP_mod; 2499 case Instruction::Or: 2500 return dwarf::DW_OP_or; 2501 case Instruction::And: 2502 return dwarf::DW_OP_and; 2503 case Instruction::Xor: 2504 return dwarf::DW_OP_xor; 2505 case Instruction::Shl: 2506 return dwarf::DW_OP_shl; 2507 case Instruction::LShr: 2508 return dwarf::DW_OP_shr; 2509 case Instruction::AShr: 2510 return dwarf::DW_OP_shra; 2511 default: 2512 // TODO: Salvage from each kind of binop we know about. 2513 return 0; 2514 } 2515 } 2516 2517 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2518 SmallVectorImpl<uint64_t> &Opcodes, 2519 SmallVectorImpl<Value *> &AdditionalValues, 2520 Instruction *I) { 2521 if (!CurrentLocOps) { 2522 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2523 CurrentLocOps = 1; 2524 } 2525 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2526 AdditionalValues.push_back(I->getOperand(1)); 2527 } 2528 2529 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2530 SmallVectorImpl<uint64_t> &Opcodes, 2531 SmallVectorImpl<Value *> &AdditionalValues) { 2532 // Handle binary operations with constant integer operands as a special case. 2533 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2534 // Values wider than 64 bits cannot be represented within a DIExpression. 2535 if (ConstInt && ConstInt->getBitWidth() > 64) 2536 return nullptr; 2537 2538 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2539 // Push any Constant Int operand onto the expression stack. 2540 if (ConstInt) { 2541 uint64_t Val = ConstInt->getSExtValue(); 2542 // Add or Sub Instructions with a constant operand can potentially be 2543 // simplified. 2544 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2545 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2546 DIExpression::appendOffset(Opcodes, Offset); 2547 return BI->getOperand(0); 2548 } 2549 Opcodes.append({dwarf::DW_OP_constu, Val}); 2550 } else { 2551 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2552 } 2553 2554 // Add salvaged binary operator to expression stack, if it has a valid 2555 // representation in a DIExpression. 2556 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2557 if (!DwarfBinOp) 2558 return nullptr; 2559 Opcodes.push_back(DwarfBinOp); 2560 return BI->getOperand(0); 2561 } 2562 2563 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2564 // The signedness of the operation is implicit in the typed stack, signed and 2565 // unsigned instructions map to the same DWARF opcode. 2566 switch (Pred) { 2567 case CmpInst::ICMP_EQ: 2568 return dwarf::DW_OP_eq; 2569 case CmpInst::ICMP_NE: 2570 return dwarf::DW_OP_ne; 2571 case CmpInst::ICMP_UGT: 2572 case CmpInst::ICMP_SGT: 2573 return dwarf::DW_OP_gt; 2574 case CmpInst::ICMP_UGE: 2575 case CmpInst::ICMP_SGE: 2576 return dwarf::DW_OP_ge; 2577 case CmpInst::ICMP_ULT: 2578 case CmpInst::ICMP_SLT: 2579 return dwarf::DW_OP_lt; 2580 case CmpInst::ICMP_ULE: 2581 case CmpInst::ICMP_SLE: 2582 return dwarf::DW_OP_le; 2583 default: 2584 return 0; 2585 } 2586 } 2587 2588 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2589 SmallVectorImpl<uint64_t> &Opcodes, 2590 SmallVectorImpl<Value *> &AdditionalValues) { 2591 // Handle icmp operations with constant integer operands as a special case. 2592 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2593 // Values wider than 64 bits cannot be represented within a DIExpression. 2594 if (ConstInt && ConstInt->getBitWidth() > 64) 2595 return nullptr; 2596 // Push any Constant Int operand onto the expression stack. 2597 if (ConstInt) { 2598 if (Icmp->isSigned()) 2599 Opcodes.push_back(dwarf::DW_OP_consts); 2600 else 2601 Opcodes.push_back(dwarf::DW_OP_constu); 2602 uint64_t Val = ConstInt->getSExtValue(); 2603 Opcodes.push_back(Val); 2604 } else { 2605 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2606 } 2607 2608 // Add salvaged binary operator to expression stack, if it has a valid 2609 // representation in a DIExpression. 2610 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2611 if (!DwarfIcmpOp) 2612 return nullptr; 2613 Opcodes.push_back(DwarfIcmpOp); 2614 return Icmp->getOperand(0); 2615 } 2616 2617 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2618 SmallVectorImpl<uint64_t> &Ops, 2619 SmallVectorImpl<Value *> &AdditionalValues) { 2620 auto &M = *I.getModule(); 2621 auto &DL = M.getDataLayout(); 2622 2623 if (auto *CI = dyn_cast<CastInst>(&I)) { 2624 Value *FromValue = CI->getOperand(0); 2625 // No-op casts are irrelevant for debug info. 2626 if (CI->isNoopCast(DL)) { 2627 return FromValue; 2628 } 2629 2630 Type *Type = CI->getType(); 2631 if (Type->isPointerTy()) 2632 Type = DL.getIntPtrType(Type); 2633 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2634 if (Type->isVectorTy() || 2635 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2636 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2637 return nullptr; 2638 2639 llvm::Type *FromType = FromValue->getType(); 2640 if (FromType->isPointerTy()) 2641 FromType = DL.getIntPtrType(FromType); 2642 2643 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2644 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2645 2646 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2647 isa<SExtInst>(&I)); 2648 Ops.append(ExtOps.begin(), ExtOps.end()); 2649 return FromValue; 2650 } 2651 2652 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2653 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2654 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2655 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2656 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2657 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2658 2659 // *Not* to do: we should not attempt to salvage load instructions, 2660 // because the validity and lifetime of a dbg.value containing 2661 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2662 return nullptr; 2663 } 2664 2665 /// A replacement for a dbg.value expression. 2666 using DbgValReplacement = std::optional<DIExpression *>; 2667 2668 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2669 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2670 /// changes are made. 2671 static bool rewriteDebugUsers( 2672 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2673 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2674 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2675 // Find debug users of From. 2676 SmallVector<DbgVariableIntrinsic *, 1> Users; 2677 SmallVector<DbgVariableRecord *, 1> DPUsers; 2678 findDbgUsers(Users, &From, &DPUsers); 2679 if (Users.empty() && DPUsers.empty()) 2680 return false; 2681 2682 // Prevent use-before-def of To. 2683 bool Changed = false; 2684 2685 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2686 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2687 if (isa<Instruction>(&To)) { 2688 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2689 2690 for (auto *DII : Users) { 2691 // It's common to see a debug user between From and DomPoint. Move it 2692 // after DomPoint to preserve the variable update without any reordering. 2693 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2694 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2695 DII->moveAfter(&DomPoint); 2696 Changed = true; 2697 2698 // Users which otherwise aren't dominated by the replacement value must 2699 // be salvaged or deleted. 2700 } else if (!DT.dominates(&DomPoint, DII)) { 2701 UndefOrSalvage.insert(DII); 2702 } 2703 } 2704 2705 // DbgVariableRecord implementation of the above. 2706 for (auto *DVR : DPUsers) { 2707 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2708 Instruction *NextNonDebug = MarkedInstr; 2709 // The next instruction might still be a dbg.declare, skip over it. 2710 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2711 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2712 2713 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2714 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2715 DVR->removeFromParent(); 2716 // Ensure there's a marker. 2717 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2718 Changed = true; 2719 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2720 UndefOrSalvageDVR.insert(DVR); 2721 } 2722 } 2723 } 2724 2725 // Update debug users without use-before-def risk. 2726 for (auto *DII : Users) { 2727 if (UndefOrSalvage.count(DII)) 2728 continue; 2729 2730 DbgValReplacement DVRepl = RewriteExpr(*DII); 2731 if (!DVRepl) 2732 continue; 2733 2734 DII->replaceVariableLocationOp(&From, &To); 2735 DII->setExpression(*DVRepl); 2736 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2737 Changed = true; 2738 } 2739 for (auto *DVR : DPUsers) { 2740 if (UndefOrSalvageDVR.count(DVR)) 2741 continue; 2742 2743 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2744 if (!DVRepl) 2745 continue; 2746 2747 DVR->replaceVariableLocationOp(&From, &To); 2748 DVR->setExpression(*DVRepl); 2749 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2750 Changed = true; 2751 } 2752 2753 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2754 // Try to salvage the remaining debug users. 2755 salvageDebugInfo(From); 2756 Changed = true; 2757 } 2758 2759 return Changed; 2760 } 2761 2762 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2763 /// losslessly preserve the bits and semantics of the value. This predicate is 2764 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2765 /// 2766 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2767 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2768 /// and also does not allow lossless pointer <-> integer conversions. 2769 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2770 Type *ToTy) { 2771 // Trivially compatible types. 2772 if (FromTy == ToTy) 2773 return true; 2774 2775 // Handle compatible pointer <-> integer conversions. 2776 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2777 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2778 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2779 !DL.isNonIntegralPointerType(ToTy); 2780 return SameSize && LosslessConversion; 2781 } 2782 2783 // TODO: This is not exhaustive. 2784 return false; 2785 } 2786 2787 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2788 Instruction &DomPoint, DominatorTree &DT) { 2789 // Exit early if From has no debug users. 2790 if (!From.isUsedByMetadata()) 2791 return false; 2792 2793 assert(&From != &To && "Can't replace something with itself"); 2794 2795 Type *FromTy = From.getType(); 2796 Type *ToTy = To.getType(); 2797 2798 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2799 return DII.getExpression(); 2800 }; 2801 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2802 return DVR.getExpression(); 2803 }; 2804 2805 // Handle no-op conversions. 2806 Module &M = *From.getModule(); 2807 const DataLayout &DL = M.getDataLayout(); 2808 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2809 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2810 2811 // Handle integer-to-integer widening and narrowing. 2812 // FIXME: Use DW_OP_convert when it's available everywhere. 2813 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2814 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2815 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2816 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2817 2818 // When the width of the result grows, assume that a debugger will only 2819 // access the low `FromBits` bits when inspecting the source variable. 2820 if (FromBits < ToBits) 2821 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2822 2823 // The width of the result has shrunk. Use sign/zero extension to describe 2824 // the source variable's high bits. 2825 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2826 DILocalVariable *Var = DII.getVariable(); 2827 2828 // Without knowing signedness, sign/zero extension isn't possible. 2829 auto Signedness = Var->getSignedness(); 2830 if (!Signedness) 2831 return std::nullopt; 2832 2833 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2834 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2835 Signed); 2836 }; 2837 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2838 // than on dbg.value intrinsics. 2839 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2840 DILocalVariable *Var = DVR.getVariable(); 2841 2842 // Without knowing signedness, sign/zero extension isn't possible. 2843 auto Signedness = Var->getSignedness(); 2844 if (!Signedness) 2845 return std::nullopt; 2846 2847 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2848 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2849 Signed); 2850 }; 2851 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2852 SignOrZeroExtDVR); 2853 } 2854 2855 // TODO: Floating-point conversions, vectors. 2856 return false; 2857 } 2858 2859 bool llvm::handleUnreachableTerminator( 2860 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2861 bool Changed = false; 2862 // RemoveDIs: erase debug-info on this instruction manually. 2863 I->dropDbgRecords(); 2864 for (Use &U : I->operands()) { 2865 Value *Op = U.get(); 2866 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2867 U.set(PoisonValue::get(Op->getType())); 2868 PoisonedValues.push_back(Op); 2869 Changed = true; 2870 } 2871 } 2872 2873 return Changed; 2874 } 2875 2876 std::pair<unsigned, unsigned> 2877 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2878 unsigned NumDeadInst = 0; 2879 unsigned NumDeadDbgInst = 0; 2880 // Delete the instructions backwards, as it has a reduced likelihood of 2881 // having to update as many def-use and use-def chains. 2882 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2883 SmallVector<Value *> Uses; 2884 handleUnreachableTerminator(EndInst, Uses); 2885 2886 while (EndInst != &BB->front()) { 2887 // Delete the next to last instruction. 2888 Instruction *Inst = &*--EndInst->getIterator(); 2889 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2890 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2891 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2892 // EHPads can't have DbgVariableRecords attached to them, but it might be 2893 // possible for things with token type. 2894 Inst->dropDbgRecords(); 2895 EndInst = Inst; 2896 continue; 2897 } 2898 if (isa<DbgInfoIntrinsic>(Inst)) 2899 ++NumDeadDbgInst; 2900 else 2901 ++NumDeadInst; 2902 // RemoveDIs: erasing debug-info must be done manually. 2903 Inst->dropDbgRecords(); 2904 Inst->eraseFromParent(); 2905 } 2906 return {NumDeadInst, NumDeadDbgInst}; 2907 } 2908 2909 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2910 DomTreeUpdater *DTU, 2911 MemorySSAUpdater *MSSAU) { 2912 BasicBlock *BB = I->getParent(); 2913 2914 if (MSSAU) 2915 MSSAU->changeToUnreachable(I); 2916 2917 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2918 2919 // Loop over all of the successors, removing BB's entry from any PHI 2920 // nodes. 2921 for (BasicBlock *Successor : successors(BB)) { 2922 Successor->removePredecessor(BB, PreserveLCSSA); 2923 if (DTU) 2924 UniqueSuccessors.insert(Successor); 2925 } 2926 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2927 UI->setDebugLoc(I->getDebugLoc()); 2928 2929 // All instructions after this are dead. 2930 unsigned NumInstrsRemoved = 0; 2931 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2932 while (BBI != BBE) { 2933 if (!BBI->use_empty()) 2934 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2935 BBI++->eraseFromParent(); 2936 ++NumInstrsRemoved; 2937 } 2938 if (DTU) { 2939 SmallVector<DominatorTree::UpdateType, 8> Updates; 2940 Updates.reserve(UniqueSuccessors.size()); 2941 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2942 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2943 DTU->applyUpdates(Updates); 2944 } 2945 BB->flushTerminatorDbgRecords(); 2946 return NumInstrsRemoved; 2947 } 2948 2949 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2950 SmallVector<Value *, 8> Args(II->args()); 2951 SmallVector<OperandBundleDef, 1> OpBundles; 2952 II->getOperandBundlesAsDefs(OpBundles); 2953 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2954 II->getCalledOperand(), Args, OpBundles); 2955 NewCall->setCallingConv(II->getCallingConv()); 2956 NewCall->setAttributes(II->getAttributes()); 2957 NewCall->setDebugLoc(II->getDebugLoc()); 2958 NewCall->copyMetadata(*II); 2959 2960 // If the invoke had profile metadata, try converting them for CallInst. 2961 uint64_t TotalWeight; 2962 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2963 // Set the total weight if it fits into i32, otherwise reset. 2964 MDBuilder MDB(NewCall->getContext()); 2965 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2966 ? nullptr 2967 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2968 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2969 } 2970 2971 return NewCall; 2972 } 2973 2974 // changeToCall - Convert the specified invoke into a normal call. 2975 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2976 CallInst *NewCall = createCallMatchingInvoke(II); 2977 NewCall->takeName(II); 2978 NewCall->insertBefore(II->getIterator()); 2979 II->replaceAllUsesWith(NewCall); 2980 2981 // Follow the call by a branch to the normal destination. 2982 BasicBlock *NormalDestBB = II->getNormalDest(); 2983 BranchInst::Create(NormalDestBB, II->getIterator()); 2984 2985 // Update PHI nodes in the unwind destination 2986 BasicBlock *BB = II->getParent(); 2987 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2988 UnwindDestBB->removePredecessor(BB); 2989 II->eraseFromParent(); 2990 if (DTU) 2991 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2992 return NewCall; 2993 } 2994 2995 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2996 BasicBlock *UnwindEdge, 2997 DomTreeUpdater *DTU) { 2998 BasicBlock *BB = CI->getParent(); 2999 3000 // Convert this function call into an invoke instruction. First, split the 3001 // basic block. 3002 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 3003 CI->getName() + ".noexc"); 3004 3005 // Delete the unconditional branch inserted by SplitBlock 3006 BB->back().eraseFromParent(); 3007 3008 // Create the new invoke instruction. 3009 SmallVector<Value *, 8> InvokeArgs(CI->args()); 3010 SmallVector<OperandBundleDef, 1> OpBundles; 3011 3012 CI->getOperandBundlesAsDefs(OpBundles); 3013 3014 // Note: we're round tripping operand bundles through memory here, and that 3015 // can potentially be avoided with a cleverer API design that we do not have 3016 // as of this time. 3017 3018 InvokeInst *II = 3019 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 3020 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 3021 II->setDebugLoc(CI->getDebugLoc()); 3022 II->setCallingConv(CI->getCallingConv()); 3023 II->setAttributes(CI->getAttributes()); 3024 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 3025 3026 if (DTU) 3027 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 3028 3029 // Make sure that anything using the call now uses the invoke! This also 3030 // updates the CallGraph if present, because it uses a WeakTrackingVH. 3031 CI->replaceAllUsesWith(II); 3032 3033 // Delete the original call 3034 Split->front().eraseFromParent(); 3035 return Split; 3036 } 3037 3038 static bool markAliveBlocks(Function &F, 3039 SmallPtrSetImpl<BasicBlock *> &Reachable, 3040 DomTreeUpdater *DTU = nullptr) { 3041 SmallVector<BasicBlock*, 128> Worklist; 3042 BasicBlock *BB = &F.front(); 3043 Worklist.push_back(BB); 3044 Reachable.insert(BB); 3045 bool Changed = false; 3046 do { 3047 BB = Worklist.pop_back_val(); 3048 3049 // Do a quick scan of the basic block, turning any obviously unreachable 3050 // instructions into LLVM unreachable insts. The instruction combining pass 3051 // canonicalizes unreachable insts into stores to null or undef. 3052 for (Instruction &I : *BB) { 3053 if (auto *CI = dyn_cast<CallInst>(&I)) { 3054 Value *Callee = CI->getCalledOperand(); 3055 // Handle intrinsic calls. 3056 if (Function *F = dyn_cast<Function>(Callee)) { 3057 auto IntrinsicID = F->getIntrinsicID(); 3058 // Assumptions that are known to be false are equivalent to 3059 // unreachable. Also, if the condition is undefined, then we make the 3060 // choice most beneficial to the optimizer, and choose that to also be 3061 // unreachable. 3062 if (IntrinsicID == Intrinsic::assume) { 3063 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3064 // Don't insert a call to llvm.trap right before the unreachable. 3065 changeToUnreachable(CI, false, DTU); 3066 Changed = true; 3067 break; 3068 } 3069 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3070 // A call to the guard intrinsic bails out of the current 3071 // compilation unit if the predicate passed to it is false. If the 3072 // predicate is a constant false, then we know the guard will bail 3073 // out of the current compile unconditionally, so all code following 3074 // it is dead. 3075 // 3076 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3077 // guards to treat `undef` as `false` since a guard on `undef` can 3078 // still be useful for widening. 3079 if (match(CI->getArgOperand(0), m_Zero())) 3080 if (!isa<UnreachableInst>(CI->getNextNode())) { 3081 changeToUnreachable(CI->getNextNode(), false, DTU); 3082 Changed = true; 3083 break; 3084 } 3085 } 3086 } else if ((isa<ConstantPointerNull>(Callee) && 3087 !NullPointerIsDefined(CI->getFunction(), 3088 cast<PointerType>(Callee->getType()) 3089 ->getAddressSpace())) || 3090 isa<UndefValue>(Callee)) { 3091 changeToUnreachable(CI, false, DTU); 3092 Changed = true; 3093 break; 3094 } 3095 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3096 // If we found a call to a no-return function, insert an unreachable 3097 // instruction after it. Make sure there isn't *already* one there 3098 // though. 3099 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3100 // Don't insert a call to llvm.trap right before the unreachable. 3101 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3102 Changed = true; 3103 } 3104 break; 3105 } 3106 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3107 // Store to undef and store to null are undefined and used to signal 3108 // that they should be changed to unreachable by passes that can't 3109 // modify the CFG. 3110 3111 // Don't touch volatile stores. 3112 if (SI->isVolatile()) continue; 3113 3114 Value *Ptr = SI->getOperand(1); 3115 3116 if (isa<UndefValue>(Ptr) || 3117 (isa<ConstantPointerNull>(Ptr) && 3118 !NullPointerIsDefined(SI->getFunction(), 3119 SI->getPointerAddressSpace()))) { 3120 changeToUnreachable(SI, false, DTU); 3121 Changed = true; 3122 break; 3123 } 3124 } 3125 } 3126 3127 Instruction *Terminator = BB->getTerminator(); 3128 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3129 // Turn invokes that call 'nounwind' functions into ordinary calls. 3130 Value *Callee = II->getCalledOperand(); 3131 if ((isa<ConstantPointerNull>(Callee) && 3132 !NullPointerIsDefined(BB->getParent())) || 3133 isa<UndefValue>(Callee)) { 3134 changeToUnreachable(II, false, DTU); 3135 Changed = true; 3136 } else { 3137 if (II->doesNotReturn() && 3138 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3139 // If we found an invoke of a no-return function, 3140 // create a new empty basic block with an `unreachable` terminator, 3141 // and set it as the normal destination for the invoke, 3142 // unless that is already the case. 3143 // Note that the original normal destination could have other uses. 3144 BasicBlock *OrigNormalDest = II->getNormalDest(); 3145 OrigNormalDest->removePredecessor(II->getParent()); 3146 LLVMContext &Ctx = II->getContext(); 3147 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3148 Ctx, OrigNormalDest->getName() + ".unreachable", 3149 II->getFunction(), OrigNormalDest); 3150 new UnreachableInst(Ctx, UnreachableNormalDest); 3151 II->setNormalDest(UnreachableNormalDest); 3152 if (DTU) 3153 DTU->applyUpdates( 3154 {{DominatorTree::Delete, BB, OrigNormalDest}, 3155 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3156 Changed = true; 3157 } 3158 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3159 if (II->use_empty() && !II->mayHaveSideEffects()) { 3160 // jump to the normal destination branch. 3161 BasicBlock *NormalDestBB = II->getNormalDest(); 3162 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3163 BranchInst::Create(NormalDestBB, II->getIterator()); 3164 UnwindDestBB->removePredecessor(II->getParent()); 3165 II->eraseFromParent(); 3166 if (DTU) 3167 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3168 } else 3169 changeToCall(II, DTU); 3170 Changed = true; 3171 } 3172 } 3173 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3174 // Remove catchpads which cannot be reached. 3175 struct CatchPadDenseMapInfo { 3176 static CatchPadInst *getEmptyKey() { 3177 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3178 } 3179 3180 static CatchPadInst *getTombstoneKey() { 3181 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3182 } 3183 3184 static unsigned getHashValue(CatchPadInst *CatchPad) { 3185 return static_cast<unsigned>(hash_combine_range( 3186 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3187 } 3188 3189 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3190 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3191 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3192 return LHS == RHS; 3193 return LHS->isIdenticalTo(RHS); 3194 } 3195 }; 3196 3197 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3198 // Set of unique CatchPads. 3199 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3200 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3201 HandlerSet; 3202 detail::DenseSetEmpty Empty; 3203 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3204 E = CatchSwitch->handler_end(); 3205 I != E; ++I) { 3206 BasicBlock *HandlerBB = *I; 3207 if (DTU) 3208 ++NumPerSuccessorCases[HandlerBB]; 3209 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHIIt()); 3210 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3211 if (DTU) 3212 --NumPerSuccessorCases[HandlerBB]; 3213 CatchSwitch->removeHandler(I); 3214 --I; 3215 --E; 3216 Changed = true; 3217 } 3218 } 3219 if (DTU) { 3220 std::vector<DominatorTree::UpdateType> Updates; 3221 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3222 if (I.second == 0) 3223 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3224 DTU->applyUpdates(Updates); 3225 } 3226 } 3227 3228 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3229 for (BasicBlock *Successor : successors(BB)) 3230 if (Reachable.insert(Successor).second) 3231 Worklist.push_back(Successor); 3232 } while (!Worklist.empty()); 3233 return Changed; 3234 } 3235 3236 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3237 Instruction *TI = BB->getTerminator(); 3238 3239 if (auto *II = dyn_cast<InvokeInst>(TI)) 3240 return changeToCall(II, DTU); 3241 3242 Instruction *NewTI; 3243 BasicBlock *UnwindDest; 3244 3245 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3246 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3247 UnwindDest = CRI->getUnwindDest(); 3248 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3249 auto *NewCatchSwitch = CatchSwitchInst::Create( 3250 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3251 CatchSwitch->getName(), CatchSwitch->getIterator()); 3252 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3253 NewCatchSwitch->addHandler(PadBB); 3254 3255 NewTI = NewCatchSwitch; 3256 UnwindDest = CatchSwitch->getUnwindDest(); 3257 } else { 3258 llvm_unreachable("Could not find unwind successor"); 3259 } 3260 3261 NewTI->takeName(TI); 3262 NewTI->setDebugLoc(TI->getDebugLoc()); 3263 UnwindDest->removePredecessor(BB); 3264 TI->replaceAllUsesWith(NewTI); 3265 TI->eraseFromParent(); 3266 if (DTU) 3267 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3268 return NewTI; 3269 } 3270 3271 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3272 /// if they are in a dead cycle. Return true if a change was made, false 3273 /// otherwise. 3274 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3275 MemorySSAUpdater *MSSAU) { 3276 SmallPtrSet<BasicBlock *, 16> Reachable; 3277 bool Changed = markAliveBlocks(F, Reachable, DTU); 3278 3279 // If there are unreachable blocks in the CFG... 3280 if (Reachable.size() == F.size()) 3281 return Changed; 3282 3283 assert(Reachable.size() < F.size()); 3284 3285 // Are there any blocks left to actually delete? 3286 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3287 for (BasicBlock &BB : F) { 3288 // Skip reachable basic blocks 3289 if (Reachable.count(&BB)) 3290 continue; 3291 // Skip already-deleted blocks 3292 if (DTU && DTU->isBBPendingDeletion(&BB)) 3293 continue; 3294 BlocksToRemove.insert(&BB); 3295 } 3296 3297 if (BlocksToRemove.empty()) 3298 return Changed; 3299 3300 Changed = true; 3301 NumRemoved += BlocksToRemove.size(); 3302 3303 if (MSSAU) 3304 MSSAU->removeBlocks(BlocksToRemove); 3305 3306 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3307 3308 return Changed; 3309 } 3310 3311 /// If AAOnly is set, only intersect alias analysis metadata and preserve other 3312 /// known metadata. Unknown metadata is always dropped. 3313 static void combineMetadata(Instruction *K, const Instruction *J, 3314 bool DoesKMove, bool AAOnly = false) { 3315 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3316 K->getAllMetadataOtherThanDebugLoc(Metadata); 3317 for (const auto &MD : Metadata) { 3318 unsigned Kind = MD.first; 3319 MDNode *JMD = J->getMetadata(Kind); 3320 MDNode *KMD = MD.second; 3321 3322 // TODO: Assert that this switch is exhaustive for fixed MD kinds. 3323 switch (Kind) { 3324 default: 3325 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3326 break; 3327 case LLVMContext::MD_dbg: 3328 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3329 case LLVMContext::MD_DIAssignID: 3330 if (!AAOnly) 3331 K->mergeDIAssignID(J); 3332 break; 3333 case LLVMContext::MD_tbaa: 3334 if (DoesKMove) 3335 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3336 break; 3337 case LLVMContext::MD_alias_scope: 3338 if (DoesKMove) 3339 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3340 break; 3341 case LLVMContext::MD_noalias: 3342 case LLVMContext::MD_mem_parallel_loop_access: 3343 if (DoesKMove) 3344 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3345 break; 3346 case LLVMContext::MD_access_group: 3347 if (DoesKMove) 3348 K->setMetadata(LLVMContext::MD_access_group, 3349 intersectAccessGroups(K, J)); 3350 break; 3351 case LLVMContext::MD_range: 3352 if (!AAOnly && (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))) 3353 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3354 break; 3355 case LLVMContext::MD_fpmath: 3356 if (!AAOnly) 3357 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3358 break; 3359 case LLVMContext::MD_invariant_load: 3360 // If K moves, only set the !invariant.load if it is present in both 3361 // instructions. 3362 if (DoesKMove) 3363 K->setMetadata(Kind, JMD); 3364 break; 3365 case LLVMContext::MD_nonnull: 3366 if (!AAOnly && (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))) 3367 K->setMetadata(Kind, JMD); 3368 break; 3369 case LLVMContext::MD_invariant_group: 3370 // Preserve !invariant.group in K. 3371 break; 3372 case LLVMContext::MD_mmra: 3373 // Combine MMRAs 3374 break; 3375 case LLVMContext::MD_align: 3376 if (!AAOnly && (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef))) 3377 K->setMetadata( 3378 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3379 break; 3380 case LLVMContext::MD_dereferenceable: 3381 case LLVMContext::MD_dereferenceable_or_null: 3382 if (!AAOnly && DoesKMove) 3383 K->setMetadata(Kind, 3384 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3385 break; 3386 case LLVMContext::MD_memprof: 3387 if (!AAOnly) 3388 K->setMetadata(Kind, MDNode::getMergedMemProfMetadata(KMD, JMD)); 3389 break; 3390 case LLVMContext::MD_callsite: 3391 if (!AAOnly) 3392 K->setMetadata(Kind, MDNode::getMergedCallsiteMetadata(KMD, JMD)); 3393 break; 3394 case LLVMContext::MD_preserve_access_index: 3395 // Preserve !preserve.access.index in K. 3396 break; 3397 case LLVMContext::MD_noundef: 3398 // If K does move, keep noundef if it is present in both instructions. 3399 if (!AAOnly && DoesKMove) 3400 K->setMetadata(Kind, JMD); 3401 break; 3402 case LLVMContext::MD_nontemporal: 3403 // Preserve !nontemporal if it is present on both instructions. 3404 if (!AAOnly) 3405 K->setMetadata(Kind, JMD); 3406 break; 3407 case LLVMContext::MD_prof: 3408 if (!AAOnly && DoesKMove) 3409 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3410 break; 3411 case LLVMContext::MD_noalias_addrspace: 3412 if (DoesKMove) 3413 K->setMetadata(Kind, 3414 MDNode::getMostGenericNoaliasAddrspace(JMD, KMD)); 3415 break; 3416 } 3417 } 3418 // Set !invariant.group from J if J has it. If both instructions have it 3419 // then we will just pick it from J - even when they are different. 3420 // Also make sure that K is load or store - f.e. combining bitcast with load 3421 // could produce bitcast with invariant.group metadata, which is invalid. 3422 // FIXME: we should try to preserve both invariant.group md if they are 3423 // different, but right now instruction can only have one invariant.group. 3424 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3425 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3426 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3427 3428 // Merge MMRAs. 3429 // This is handled separately because we also want to handle cases where K 3430 // doesn't have tags but J does. 3431 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3432 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3433 if (JMMRA || KMMRA) { 3434 K->setMetadata(LLVMContext::MD_mmra, 3435 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3436 } 3437 } 3438 3439 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3440 bool DoesKMove) { 3441 combineMetadata(K, J, DoesKMove); 3442 } 3443 3444 void llvm::combineAAMetadata(Instruction *K, const Instruction *J) { 3445 combineMetadata(K, J, /*DoesKMove=*/true, /*AAOnly=*/true); 3446 } 3447 3448 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3449 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3450 Source.getAllMetadata(MD); 3451 MDBuilder MDB(Dest.getContext()); 3452 Type *NewType = Dest.getType(); 3453 const DataLayout &DL = Source.getDataLayout(); 3454 for (const auto &MDPair : MD) { 3455 unsigned ID = MDPair.first; 3456 MDNode *N = MDPair.second; 3457 // Note, essentially every kind of metadata should be preserved here! This 3458 // routine is supposed to clone a load instruction changing *only its type*. 3459 // The only metadata it makes sense to drop is metadata which is invalidated 3460 // when the pointer type changes. This should essentially never be the case 3461 // in LLVM, but we explicitly switch over only known metadata to be 3462 // conservatively correct. If you are adding metadata to LLVM which pertains 3463 // to loads, you almost certainly want to add it here. 3464 switch (ID) { 3465 case LLVMContext::MD_dbg: 3466 case LLVMContext::MD_tbaa: 3467 case LLVMContext::MD_prof: 3468 case LLVMContext::MD_fpmath: 3469 case LLVMContext::MD_tbaa_struct: 3470 case LLVMContext::MD_invariant_load: 3471 case LLVMContext::MD_alias_scope: 3472 case LLVMContext::MD_noalias: 3473 case LLVMContext::MD_nontemporal: 3474 case LLVMContext::MD_mem_parallel_loop_access: 3475 case LLVMContext::MD_access_group: 3476 case LLVMContext::MD_noundef: 3477 // All of these directly apply. 3478 Dest.setMetadata(ID, N); 3479 break; 3480 3481 case LLVMContext::MD_nonnull: 3482 copyNonnullMetadata(Source, N, Dest); 3483 break; 3484 3485 case LLVMContext::MD_align: 3486 case LLVMContext::MD_dereferenceable: 3487 case LLVMContext::MD_dereferenceable_or_null: 3488 // These only directly apply if the new type is also a pointer. 3489 if (NewType->isPointerTy()) 3490 Dest.setMetadata(ID, N); 3491 break; 3492 3493 case LLVMContext::MD_range: 3494 copyRangeMetadata(DL, Source, N, Dest); 3495 break; 3496 } 3497 } 3498 } 3499 3500 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3501 auto *ReplInst = dyn_cast<Instruction>(Repl); 3502 if (!ReplInst) 3503 return; 3504 3505 // Patch the replacement so that it is not more restrictive than the value 3506 // being replaced. 3507 WithOverflowInst *UnusedWO; 3508 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3509 // overflowing binary operator, nuw/nsw flags may no longer hold. 3510 if (isa<OverflowingBinaryOperator>(ReplInst) && 3511 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3512 ReplInst->dropPoisonGeneratingFlags(); 3513 // Note that if 'I' is a load being replaced by some operation, 3514 // for example, by an arithmetic operation, then andIRFlags() 3515 // would just erase all math flags from the original arithmetic 3516 // operation, which is clearly not wanted and not needed. 3517 else if (!isa<LoadInst>(I)) 3518 ReplInst->andIRFlags(I); 3519 3520 // Handle attributes. 3521 if (auto *CB1 = dyn_cast<CallBase>(ReplInst)) { 3522 if (auto *CB2 = dyn_cast<CallBase>(I)) { 3523 bool Success = CB1->tryIntersectAttributes(CB2); 3524 assert(Success && "We should not be trying to sink callbases " 3525 "with non-intersectable attributes"); 3526 // For NDEBUG Compile. 3527 (void)Success; 3528 } 3529 } 3530 3531 // FIXME: If both the original and replacement value are part of the 3532 // same control-flow region (meaning that the execution of one 3533 // guarantees the execution of the other), then we can combine the 3534 // noalias scopes here and do better than the general conservative 3535 // answer used in combineMetadata(). 3536 3537 // In general, GVN unifies expressions over different control-flow 3538 // regions, and so we need a conservative combination of the noalias 3539 // scopes. 3540 combineMetadataForCSE(ReplInst, I, false); 3541 } 3542 3543 template <typename RootType, typename ShouldReplaceFn> 3544 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3545 const RootType &Root, 3546 const ShouldReplaceFn &ShouldReplace) { 3547 assert(From->getType() == To->getType()); 3548 3549 unsigned Count = 0; 3550 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3551 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 3552 if (II && II->getIntrinsicID() == Intrinsic::fake_use) 3553 continue; 3554 if (!ShouldReplace(Root, U)) 3555 continue; 3556 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3557 From->printAsOperand(dbgs()); 3558 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3559 U.set(To); 3560 ++Count; 3561 } 3562 return Count; 3563 } 3564 3565 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3566 assert(From->getType() == To->getType()); 3567 auto *BB = From->getParent(); 3568 unsigned Count = 0; 3569 3570 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3571 auto *I = cast<Instruction>(U.getUser()); 3572 if (I->getParent() == BB) 3573 continue; 3574 U.set(To); 3575 ++Count; 3576 } 3577 return Count; 3578 } 3579 3580 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3581 DominatorTree &DT, 3582 const BasicBlockEdge &Root) { 3583 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3584 return DT.dominates(Root, U); 3585 }; 3586 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3587 } 3588 3589 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3590 DominatorTree &DT, 3591 const BasicBlock *BB) { 3592 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3593 return DT.dominates(BB, U); 3594 }; 3595 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3596 } 3597 3598 unsigned llvm::replaceDominatedUsesWithIf( 3599 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3600 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3601 auto DominatesAndShouldReplace = 3602 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3603 return DT.dominates(Root, U) && ShouldReplace(U, To); 3604 }; 3605 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3606 } 3607 3608 unsigned llvm::replaceDominatedUsesWithIf( 3609 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3610 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3611 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3612 To](const BasicBlock *BB, const Use &U) { 3613 return DT.dominates(BB, U) && ShouldReplace(U, To); 3614 }; 3615 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3616 } 3617 3618 bool llvm::callsGCLeafFunction(const CallBase *Call, 3619 const TargetLibraryInfo &TLI) { 3620 // Check if the function is specifically marked as a gc leaf function. 3621 if (Call->hasFnAttr("gc-leaf-function")) 3622 return true; 3623 if (const Function *F = Call->getCalledFunction()) { 3624 if (F->hasFnAttribute("gc-leaf-function")) 3625 return true; 3626 3627 if (auto IID = F->getIntrinsicID()) { 3628 // Most LLVM intrinsics do not take safepoints. 3629 return IID != Intrinsic::experimental_gc_statepoint && 3630 IID != Intrinsic::experimental_deoptimize && 3631 IID != Intrinsic::memcpy_element_unordered_atomic && 3632 IID != Intrinsic::memmove_element_unordered_atomic; 3633 } 3634 } 3635 3636 // Lib calls can be materialized by some passes, and won't be 3637 // marked as 'gc-leaf-function.' All available Libcalls are 3638 // GC-leaf. 3639 LibFunc LF; 3640 if (TLI.getLibFunc(*Call, LF)) { 3641 return TLI.has(LF); 3642 } 3643 3644 return false; 3645 } 3646 3647 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3648 LoadInst &NewLI) { 3649 auto *NewTy = NewLI.getType(); 3650 3651 // This only directly applies if the new type is also a pointer. 3652 if (NewTy->isPointerTy()) { 3653 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3654 return; 3655 } 3656 3657 // The only other translation we can do is to integral loads with !range 3658 // metadata. 3659 if (!NewTy->isIntegerTy()) 3660 return; 3661 3662 MDBuilder MDB(NewLI.getContext()); 3663 const Value *Ptr = OldLI.getPointerOperand(); 3664 auto *ITy = cast<IntegerType>(NewTy); 3665 auto *NullInt = ConstantExpr::getPtrToInt( 3666 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3667 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3668 NewLI.setMetadata(LLVMContext::MD_range, 3669 MDB.createRange(NonNullInt, NullInt)); 3670 } 3671 3672 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3673 MDNode *N, LoadInst &NewLI) { 3674 auto *NewTy = NewLI.getType(); 3675 // Simply copy the metadata if the type did not change. 3676 if (NewTy == OldLI.getType()) { 3677 NewLI.setMetadata(LLVMContext::MD_range, N); 3678 return; 3679 } 3680 3681 // Give up unless it is converted to a pointer where there is a single very 3682 // valuable mapping we can do reliably. 3683 // FIXME: It would be nice to propagate this in more ways, but the type 3684 // conversions make it hard. 3685 if (!NewTy->isPointerTy()) 3686 return; 3687 3688 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3689 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3690 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3691 MDNode *NN = MDNode::get(OldLI.getContext(), {}); 3692 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3693 } 3694 } 3695 3696 void llvm::dropDebugUsers(Instruction &I) { 3697 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3698 SmallVector<DbgVariableRecord *, 1> DPUsers; 3699 findDbgUsers(DbgUsers, &I, &DPUsers); 3700 for (auto *DII : DbgUsers) 3701 DII->eraseFromParent(); 3702 for (auto *DVR : DPUsers) 3703 DVR->eraseFromParent(); 3704 } 3705 3706 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3707 BasicBlock *BB) { 3708 // Since we are moving the instructions out of its basic block, we do not 3709 // retain their original debug locations (DILocations) and debug intrinsic 3710 // instructions. 3711 // 3712 // Doing so would degrade the debugging experience and adversely affect the 3713 // accuracy of profiling information. 3714 // 3715 // Currently, when hoisting the instructions, we take the following actions: 3716 // - Remove their debug intrinsic instructions. 3717 // - Set their debug locations to the values from the insertion point. 3718 // 3719 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3720 // need to be deleted, is because there will not be any instructions with a 3721 // DILocation in either branch left after performing the transformation. We 3722 // can only insert a dbg.value after the two branches are joined again. 3723 // 3724 // See PR38762, PR39243 for more details. 3725 // 3726 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3727 // encode predicated DIExpressions that yield different results on different 3728 // code paths. 3729 3730 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3731 Instruction *I = &*II; 3732 I->dropUBImplyingAttrsAndMetadata(); 3733 if (I->isUsedByMetadata()) 3734 dropDebugUsers(*I); 3735 // RemoveDIs: drop debug-info too as the following code does. 3736 I->dropDbgRecords(); 3737 if (I->isDebugOrPseudoInst()) { 3738 // Remove DbgInfo and pseudo probe Intrinsics. 3739 II = I->eraseFromParent(); 3740 continue; 3741 } 3742 I->setDebugLoc(InsertPt->getDebugLoc()); 3743 ++II; 3744 } 3745 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3746 BB->getTerminator()->getIterator()); 3747 } 3748 3749 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3750 Type &Ty) { 3751 // Create integer constant expression. 3752 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3753 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3754 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3755 return InitIntOpt ? DIB.createConstantValueExpression( 3756 static_cast<uint64_t>(*InitIntOpt)) 3757 : nullptr; 3758 }; 3759 3760 if (isa<ConstantInt>(C)) 3761 return createIntegerExpression(C); 3762 3763 auto *FP = dyn_cast<ConstantFP>(&C); 3764 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3765 const APFloat &APF = FP->getValueAPF(); 3766 APInt const &API = APF.bitcastToAPInt(); 3767 if (auto Temp = API.getZExtValue()) 3768 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3769 return DIB.createConstantValueExpression(*API.getRawData()); 3770 } 3771 3772 if (!Ty.isPointerTy()) 3773 return nullptr; 3774 3775 if (isa<ConstantPointerNull>(C)) 3776 return DIB.createConstantValueExpression(0); 3777 3778 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3779 if (CE->getOpcode() == Instruction::IntToPtr) { 3780 const Value *V = CE->getOperand(0); 3781 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3782 return createIntegerExpression(*CI); 3783 } 3784 return nullptr; 3785 } 3786 3787 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3788 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3789 for (auto *Op : Set) { 3790 auto I = Mapping.find(Op); 3791 if (I != Mapping.end()) 3792 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3793 } 3794 }; 3795 auto RemapAssignAddress = [&Mapping](auto *DA) { 3796 auto I = Mapping.find(DA->getAddress()); 3797 if (I != Mapping.end()) 3798 DA->setAddress(I->second); 3799 }; 3800 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3801 RemapDebugOperands(DVI, DVI->location_ops()); 3802 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3803 RemapAssignAddress(DAI); 3804 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3805 RemapDebugOperands(&DVR, DVR.location_ops()); 3806 if (DVR.isDbgAssign()) 3807 RemapAssignAddress(&DVR); 3808 } 3809 } 3810 3811 namespace { 3812 3813 /// A potential constituent of a bitreverse or bswap expression. See 3814 /// collectBitParts for a fuller explanation. 3815 struct BitPart { 3816 BitPart(Value *P, unsigned BW) : Provider(P) { 3817 Provenance.resize(BW); 3818 } 3819 3820 /// The Value that this is a bitreverse/bswap of. 3821 Value *Provider; 3822 3823 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3824 /// in Provider becomes bit B in the result of this expression. 3825 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3826 3827 enum { Unset = -1 }; 3828 }; 3829 3830 } // end anonymous namespace 3831 3832 /// Analyze the specified subexpression and see if it is capable of providing 3833 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3834 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3835 /// the output of the expression came from a corresponding bit in some other 3836 /// value. This function is recursive, and the end result is a mapping of 3837 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3838 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3839 /// 3840 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3841 /// that the expression deposits the low byte of %X into the high byte of the 3842 /// result and that all other bits are zero. This expression is accepted and a 3843 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3844 /// [0-7]. 3845 /// 3846 /// For vector types, all analysis is performed at the per-element level. No 3847 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3848 /// constant masks must be splatted across all elements. 3849 /// 3850 /// To avoid revisiting values, the BitPart results are memoized into the 3851 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3852 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3853 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3854 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3855 /// type instead to provide the same functionality. 3856 /// 3857 /// Because we pass around references into \c BPS, we must use a container that 3858 /// does not invalidate internal references (std::map instead of DenseMap). 3859 static const std::optional<BitPart> & 3860 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3861 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3862 bool &FoundRoot) { 3863 auto [I, Inserted] = BPS.try_emplace(V); 3864 if (!Inserted) 3865 return I->second; 3866 3867 auto &Result = I->second; 3868 auto BitWidth = V->getType()->getScalarSizeInBits(); 3869 3870 // Can't do integer/elements > 128 bits. 3871 if (BitWidth > 128) 3872 return Result; 3873 3874 // Prevent stack overflow by limiting the recursion depth 3875 if (Depth == BitPartRecursionMaxDepth) { 3876 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3877 return Result; 3878 } 3879 3880 if (auto *I = dyn_cast<Instruction>(V)) { 3881 Value *X, *Y; 3882 const APInt *C; 3883 3884 // If this is an or instruction, it may be an inner node of the bswap. 3885 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3886 // Check we have both sources and they are from the same provider. 3887 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3888 Depth + 1, FoundRoot); 3889 if (!A || !A->Provider) 3890 return Result; 3891 3892 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3893 Depth + 1, FoundRoot); 3894 if (!B || A->Provider != B->Provider) 3895 return Result; 3896 3897 // Try and merge the two together. 3898 Result = BitPart(A->Provider, BitWidth); 3899 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3900 if (A->Provenance[BitIdx] != BitPart::Unset && 3901 B->Provenance[BitIdx] != BitPart::Unset && 3902 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3903 return Result = std::nullopt; 3904 3905 if (A->Provenance[BitIdx] == BitPart::Unset) 3906 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3907 else 3908 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3909 } 3910 3911 return Result; 3912 } 3913 3914 // If this is a logical shift by a constant, recurse then shift the result. 3915 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3916 const APInt &BitShift = *C; 3917 3918 // Ensure the shift amount is defined. 3919 if (BitShift.uge(BitWidth)) 3920 return Result; 3921 3922 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3923 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3924 return Result; 3925 3926 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3927 Depth + 1, FoundRoot); 3928 if (!Res) 3929 return Result; 3930 Result = Res; 3931 3932 // Perform the "shift" on BitProvenance. 3933 auto &P = Result->Provenance; 3934 if (I->getOpcode() == Instruction::Shl) { 3935 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3936 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3937 } else { 3938 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3939 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3940 } 3941 3942 return Result; 3943 } 3944 3945 // If this is a logical 'and' with a mask that clears bits, recurse then 3946 // unset the appropriate bits. 3947 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3948 const APInt &AndMask = *C; 3949 3950 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3951 // early exit. 3952 unsigned NumMaskedBits = AndMask.popcount(); 3953 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3954 return Result; 3955 3956 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3957 Depth + 1, FoundRoot); 3958 if (!Res) 3959 return Result; 3960 Result = Res; 3961 3962 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3963 // If the AndMask is zero for this bit, clear the bit. 3964 if (AndMask[BitIdx] == 0) 3965 Result->Provenance[BitIdx] = BitPart::Unset; 3966 return Result; 3967 } 3968 3969 // If this is a zext instruction zero extend the result. 3970 if (match(V, m_ZExt(m_Value(X)))) { 3971 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3972 Depth + 1, FoundRoot); 3973 if (!Res) 3974 return Result; 3975 3976 Result = BitPart(Res->Provider, BitWidth); 3977 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3978 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3979 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3980 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3981 Result->Provenance[BitIdx] = BitPart::Unset; 3982 return Result; 3983 } 3984 3985 // If this is a truncate instruction, extract the lower bits. 3986 if (match(V, m_Trunc(m_Value(X)))) { 3987 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3988 Depth + 1, FoundRoot); 3989 if (!Res) 3990 return Result; 3991 3992 Result = BitPart(Res->Provider, BitWidth); 3993 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3994 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3995 return Result; 3996 } 3997 3998 // BITREVERSE - most likely due to us previous matching a partial 3999 // bitreverse. 4000 if (match(V, m_BitReverse(m_Value(X)))) { 4001 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4002 Depth + 1, FoundRoot); 4003 if (!Res) 4004 return Result; 4005 4006 Result = BitPart(Res->Provider, BitWidth); 4007 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4008 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 4009 return Result; 4010 } 4011 4012 // BSWAP - most likely due to us previous matching a partial bswap. 4013 if (match(V, m_BSwap(m_Value(X)))) { 4014 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4015 Depth + 1, FoundRoot); 4016 if (!Res) 4017 return Result; 4018 4019 unsigned ByteWidth = BitWidth / 8; 4020 Result = BitPart(Res->Provider, BitWidth); 4021 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 4022 unsigned ByteBitOfs = ByteIdx * 8; 4023 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 4024 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 4025 Res->Provenance[ByteBitOfs + BitIdx]; 4026 } 4027 return Result; 4028 } 4029 4030 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 4031 // amount (modulo). 4032 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4033 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4034 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 4035 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 4036 // We can treat fshr as a fshl by flipping the modulo amount. 4037 unsigned ModAmt = C->urem(BitWidth); 4038 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 4039 ModAmt = BitWidth - ModAmt; 4040 4041 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 4042 if (!MatchBitReversals && (ModAmt % 8) != 0) 4043 return Result; 4044 4045 // Check we have both sources and they are from the same provider. 4046 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4047 Depth + 1, FoundRoot); 4048 if (!LHS || !LHS->Provider) 4049 return Result; 4050 4051 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 4052 Depth + 1, FoundRoot); 4053 if (!RHS || LHS->Provider != RHS->Provider) 4054 return Result; 4055 4056 unsigned StartBitRHS = BitWidth - ModAmt; 4057 Result = BitPart(LHS->Provider, BitWidth); 4058 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 4059 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4060 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4061 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4062 return Result; 4063 } 4064 } 4065 4066 // If we've already found a root input value then we're never going to merge 4067 // these back together. 4068 if (FoundRoot) 4069 return Result; 4070 4071 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4072 // be the root input value to the bswap/bitreverse. 4073 FoundRoot = true; 4074 Result = BitPart(V, BitWidth); 4075 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4076 Result->Provenance[BitIdx] = BitIdx; 4077 return Result; 4078 } 4079 4080 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4081 unsigned BitWidth) { 4082 if (From % 8 != To % 8) 4083 return false; 4084 // Convert from bit indices to byte indices and check for a byte reversal. 4085 From >>= 3; 4086 To >>= 3; 4087 BitWidth >>= 3; 4088 return From == BitWidth - To - 1; 4089 } 4090 4091 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4092 unsigned BitWidth) { 4093 return From == BitWidth - To - 1; 4094 } 4095 4096 bool llvm::recognizeBSwapOrBitReverseIdiom( 4097 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4098 SmallVectorImpl<Instruction *> &InsertedInsts) { 4099 if (!match(I, m_Or(m_Value(), m_Value())) && 4100 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4101 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4102 !match(I, m_BSwap(m_Value()))) 4103 return false; 4104 if (!MatchBSwaps && !MatchBitReversals) 4105 return false; 4106 Type *ITy = I->getType(); 4107 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4108 return false; // Can't do integer/elements > 128 bits. 4109 4110 // Try to find all the pieces corresponding to the bswap. 4111 bool FoundRoot = false; 4112 std::map<Value *, std::optional<BitPart>> BPS; 4113 const auto &Res = 4114 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4115 if (!Res) 4116 return false; 4117 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4118 assert(all_of(BitProvenance, 4119 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4120 "Illegal bit provenance index"); 4121 4122 // If the upper bits are zero, then attempt to perform as a truncated op. 4123 Type *DemandedTy = ITy; 4124 if (BitProvenance.back() == BitPart::Unset) { 4125 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4126 BitProvenance = BitProvenance.drop_back(); 4127 if (BitProvenance.empty()) 4128 return false; // TODO - handle null value? 4129 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4130 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4131 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4132 } 4133 4134 // Check BitProvenance hasn't found a source larger than the result type. 4135 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4136 if (DemandedBW > ITy->getScalarSizeInBits()) 4137 return false; 4138 4139 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4140 // only byteswap values with an even number of bytes. 4141 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4142 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4143 bool OKForBitReverse = MatchBitReversals; 4144 for (unsigned BitIdx = 0; 4145 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4146 if (BitProvenance[BitIdx] == BitPart::Unset) { 4147 DemandedMask.clearBit(BitIdx); 4148 continue; 4149 } 4150 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4151 DemandedBW); 4152 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4153 BitIdx, DemandedBW); 4154 } 4155 4156 Intrinsic::ID Intrin; 4157 if (OKForBSwap) 4158 Intrin = Intrinsic::bswap; 4159 else if (OKForBitReverse) 4160 Intrin = Intrinsic::bitreverse; 4161 else 4162 return false; 4163 4164 Function *F = 4165 Intrinsic::getOrInsertDeclaration(I->getModule(), Intrin, DemandedTy); 4166 Value *Provider = Res->Provider; 4167 4168 // We may need to truncate the provider. 4169 if (DemandedTy != Provider->getType()) { 4170 auto *Trunc = 4171 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4172 InsertedInsts.push_back(Trunc); 4173 Provider = Trunc; 4174 } 4175 4176 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4177 InsertedInsts.push_back(Result); 4178 4179 if (!DemandedMask.isAllOnes()) { 4180 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4181 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4182 InsertedInsts.push_back(Result); 4183 } 4184 4185 // We may need to zeroextend back to the result type. 4186 if (ITy != Result->getType()) { 4187 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4188 InsertedInsts.push_back(ExtInst); 4189 } 4190 4191 return true; 4192 } 4193 4194 // CodeGen has special handling for some string functions that may replace 4195 // them with target-specific intrinsics. Since that'd skip our interceptors 4196 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4197 // we mark affected calls as NoBuiltin, which will disable optimization 4198 // in CodeGen. 4199 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4200 CallInst *CI, const TargetLibraryInfo *TLI) { 4201 Function *F = CI->getCalledFunction(); 4202 LibFunc Func; 4203 if (F && !F->hasLocalLinkage() && F->hasName() && 4204 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4205 !F->doesNotAccessMemory()) 4206 CI->addFnAttr(Attribute::NoBuiltin); 4207 } 4208 4209 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4210 // We can't have a PHI with a metadata type. 4211 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4212 return false; 4213 4214 // Early exit. 4215 if (!isa<Constant>(I->getOperand(OpIdx))) 4216 return true; 4217 4218 switch (I->getOpcode()) { 4219 default: 4220 return true; 4221 case Instruction::Call: 4222 case Instruction::Invoke: { 4223 const auto &CB = cast<CallBase>(*I); 4224 4225 // Can't handle inline asm. Skip it. 4226 if (CB.isInlineAsm()) 4227 return false; 4228 4229 // Constant bundle operands may need to retain their constant-ness for 4230 // correctness. 4231 if (CB.isBundleOperand(OpIdx)) 4232 return false; 4233 4234 if (OpIdx < CB.arg_size()) { 4235 // Some variadic intrinsics require constants in the variadic arguments, 4236 // which currently aren't markable as immarg. 4237 if (isa<IntrinsicInst>(CB) && 4238 OpIdx >= CB.getFunctionType()->getNumParams()) { 4239 // This is known to be OK for stackmap. 4240 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4241 } 4242 4243 // gcroot is a special case, since it requires a constant argument which 4244 // isn't also required to be a simple ConstantInt. 4245 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4246 return false; 4247 4248 // Some intrinsic operands are required to be immediates. 4249 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4250 } 4251 4252 // It is never allowed to replace the call argument to an intrinsic, but it 4253 // may be possible for a call. 4254 return !isa<IntrinsicInst>(CB); 4255 } 4256 case Instruction::ShuffleVector: 4257 // Shufflevector masks are constant. 4258 return OpIdx != 2; 4259 case Instruction::Switch: 4260 case Instruction::ExtractValue: 4261 // All operands apart from the first are constant. 4262 return OpIdx == 0; 4263 case Instruction::InsertValue: 4264 // All operands apart from the first and the second are constant. 4265 return OpIdx < 2; 4266 case Instruction::Alloca: 4267 // Static allocas (constant size in the entry block) are handled by 4268 // prologue/epilogue insertion so they're free anyway. We definitely don't 4269 // want to make them non-constant. 4270 return !cast<AllocaInst>(I)->isStaticAlloca(); 4271 case Instruction::GetElementPtr: 4272 if (OpIdx == 0) 4273 return true; 4274 gep_type_iterator It = gep_type_begin(I); 4275 for (auto E = std::next(It, OpIdx); It != E; ++It) 4276 if (It.isStruct()) 4277 return false; 4278 return true; 4279 } 4280 } 4281 4282 Value *llvm::invertCondition(Value *Condition) { 4283 // First: Check if it's a constant 4284 if (Constant *C = dyn_cast<Constant>(Condition)) 4285 return ConstantExpr::getNot(C); 4286 4287 // Second: If the condition is already inverted, return the original value 4288 Value *NotCondition; 4289 if (match(Condition, m_Not(m_Value(NotCondition)))) 4290 return NotCondition; 4291 4292 BasicBlock *Parent = nullptr; 4293 Instruction *Inst = dyn_cast<Instruction>(Condition); 4294 if (Inst) 4295 Parent = Inst->getParent(); 4296 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4297 Parent = &Arg->getParent()->getEntryBlock(); 4298 assert(Parent && "Unsupported condition to invert"); 4299 4300 // Third: Check all the users for an invert 4301 for (User *U : Condition->users()) 4302 if (Instruction *I = dyn_cast<Instruction>(U)) 4303 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4304 return I; 4305 4306 // Last option: Create a new instruction 4307 auto *Inverted = 4308 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4309 if (Inst && !isa<PHINode>(Inst)) 4310 Inverted->insertAfter(Inst->getIterator()); 4311 else 4312 Inverted->insertBefore(Parent->getFirstInsertionPt()); 4313 return Inverted; 4314 } 4315 4316 bool llvm::inferAttributesFromOthers(Function &F) { 4317 // Note: We explicitly check for attributes rather than using cover functions 4318 // because some of the cover functions include the logic being implemented. 4319 4320 bool Changed = false; 4321 // readnone + not convergent implies nosync 4322 if (!F.hasFnAttribute(Attribute::NoSync) && 4323 F.doesNotAccessMemory() && !F.isConvergent()) { 4324 F.setNoSync(); 4325 Changed = true; 4326 } 4327 4328 // readonly implies nofree 4329 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4330 F.setDoesNotFreeMemory(); 4331 Changed = true; 4332 } 4333 4334 // willreturn implies mustprogress 4335 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4336 F.setMustProgress(); 4337 Changed = true; 4338 } 4339 4340 // TODO: There are a bunch of cases of restrictive memory effects we 4341 // can infer by inspecting arguments of argmemonly-ish functions. 4342 4343 return Changed; 4344 } 4345