1 //===- Local.cpp - Functions to perform local transformations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/Local.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/Hashing.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AssumeBundleQueries.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/MemorySSAUpdater.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/Analysis/VectorUtils.h" 34 #include "llvm/BinaryFormat/Dwarf.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DIBuilder.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/EHPersonalities.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GetElementPtrTypeIterator.h" 52 #include "llvm/IR/GlobalObject.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/IntrinsicsWebAssembly.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/MDBuilder.h" 62 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/ProfDataUtils.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/Use.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/KnownBits.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/ValueMapper.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cstdint> 83 #include <iterator> 84 #include <map> 85 #include <optional> 86 #include <utility> 87 88 using namespace llvm; 89 using namespace llvm::PatternMatch; 90 91 extern cl::opt<bool> UseNewDbgInfoFormat; 92 93 #define DEBUG_TYPE "local" 94 95 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); 96 STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 97 98 static cl::opt<bool> PHICSEDebugHash( 99 "phicse-debug-hash", 100 #ifdef EXPENSIVE_CHECKS 101 cl::init(true), 102 #else 103 cl::init(false), 104 #endif 105 cl::Hidden, 106 cl::desc("Perform extra assertion checking to verify that PHINodes's hash " 107 "function is well-behaved w.r.t. its isEqual predicate")); 108 109 static cl::opt<unsigned> PHICSENumPHISmallSize( 110 "phicse-num-phi-smallsize", cl::init(32), cl::Hidden, 111 cl::desc( 112 "When the basic block contains not more than this number of PHI nodes, " 113 "perform a (faster!) exhaustive search instead of set-driven one.")); 114 115 static cl::opt<unsigned> MaxPhiEntriesIncreaseAfterRemovingEmptyBlock( 116 "max-phi-entries-increase-after-removing-empty-block", cl::init(1000), 117 cl::Hidden, 118 cl::desc("Stop removing an empty block if removing it will introduce more " 119 "than this number of phi entries in its successor")); 120 121 // Max recursion depth for collectBitParts used when detecting bswap and 122 // bitreverse idioms. 123 static const unsigned BitPartRecursionMaxDepth = 48; 124 125 //===----------------------------------------------------------------------===// 126 // Local constant propagation. 127 // 128 129 /// ConstantFoldTerminator - If a terminator instruction is predicated on a 130 /// constant value, convert it into an unconditional branch to the constant 131 /// destination. This is a nontrivial operation because the successors of this 132 /// basic block must have their PHI nodes updated. 133 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 134 /// conditions and indirectbr addresses this might make dead if 135 /// DeleteDeadConditions is true. 136 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, 137 const TargetLibraryInfo *TLI, 138 DomTreeUpdater *DTU) { 139 Instruction *T = BB->getTerminator(); 140 IRBuilder<> Builder(T); 141 142 // Branch - See if we are conditional jumping on constant 143 if (auto *BI = dyn_cast<BranchInst>(T)) { 144 if (BI->isUnconditional()) return false; // Can't optimize uncond branch 145 146 BasicBlock *Dest1 = BI->getSuccessor(0); 147 BasicBlock *Dest2 = BI->getSuccessor(1); 148 149 if (Dest2 == Dest1) { // Conditional branch to same location? 150 // This branch matches something like this: 151 // br bool %cond, label %Dest, label %Dest 152 // and changes it into: br label %Dest 153 154 // Let the basic block know that we are letting go of one copy of it. 155 assert(BI->getParent() && "Terminator not inserted in block!"); 156 Dest1->removePredecessor(BI->getParent()); 157 158 // Replace the conditional branch with an unconditional one. 159 BranchInst *NewBI = Builder.CreateBr(Dest1); 160 161 // Transfer the metadata to the new branch instruction. 162 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 163 LLVMContext::MD_annotation}); 164 165 Value *Cond = BI->getCondition(); 166 BI->eraseFromParent(); 167 if (DeleteDeadConditions) 168 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 169 return true; 170 } 171 172 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 173 // Are we branching on constant? 174 // YES. Change to unconditional branch... 175 BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; 176 BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; 177 178 // Let the basic block know that we are letting go of it. Based on this, 179 // it will adjust it's PHI nodes. 180 OldDest->removePredecessor(BB); 181 182 // Replace the conditional branch with an unconditional one. 183 BranchInst *NewBI = Builder.CreateBr(Destination); 184 185 // Transfer the metadata to the new branch instruction. 186 NewBI->copyMetadata(*BI, {LLVMContext::MD_loop, LLVMContext::MD_dbg, 187 LLVMContext::MD_annotation}); 188 189 BI->eraseFromParent(); 190 if (DTU) 191 DTU->applyUpdates({{DominatorTree::Delete, BB, OldDest}}); 192 return true; 193 } 194 195 return false; 196 } 197 198 if (auto *SI = dyn_cast<SwitchInst>(T)) { 199 // If we are switching on a constant, we can convert the switch to an 200 // unconditional branch. 201 auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); 202 BasicBlock *DefaultDest = SI->getDefaultDest(); 203 BasicBlock *TheOnlyDest = DefaultDest; 204 205 // If the default is unreachable, ignore it when searching for TheOnlyDest. 206 if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && 207 SI->getNumCases() > 0) { 208 TheOnlyDest = SI->case_begin()->getCaseSuccessor(); 209 } 210 211 bool Changed = false; 212 213 // Figure out which case it goes to. 214 for (auto It = SI->case_begin(), End = SI->case_end(); It != End;) { 215 // Found case matching a constant operand? 216 if (It->getCaseValue() == CI) { 217 TheOnlyDest = It->getCaseSuccessor(); 218 break; 219 } 220 221 // Check to see if this branch is going to the same place as the default 222 // dest. If so, eliminate it as an explicit compare. 223 if (It->getCaseSuccessor() == DefaultDest) { 224 MDNode *MD = getValidBranchWeightMDNode(*SI); 225 unsigned NCases = SI->getNumCases(); 226 // Fold the case metadata into the default if there will be any branches 227 // left, unless the metadata doesn't match the switch. 228 if (NCases > 1 && MD) { 229 // Collect branch weights into a vector. 230 SmallVector<uint32_t, 8> Weights; 231 extractBranchWeights(MD, Weights); 232 233 // Merge weight of this case to the default weight. 234 unsigned Idx = It->getCaseIndex(); 235 // TODO: Add overflow check. 236 Weights[0] += Weights[Idx + 1]; 237 // Remove weight for this case. 238 std::swap(Weights[Idx + 1], Weights.back()); 239 Weights.pop_back(); 240 setBranchWeights(*SI, Weights, hasBranchWeightOrigin(MD)); 241 } 242 // Remove this entry. 243 BasicBlock *ParentBB = SI->getParent(); 244 DefaultDest->removePredecessor(ParentBB); 245 It = SI->removeCase(It); 246 End = SI->case_end(); 247 248 // Removing this case may have made the condition constant. In that 249 // case, update CI and restart iteration through the cases. 250 if (auto *NewCI = dyn_cast<ConstantInt>(SI->getCondition())) { 251 CI = NewCI; 252 It = SI->case_begin(); 253 } 254 255 Changed = true; 256 continue; 257 } 258 259 // Otherwise, check to see if the switch only branches to one destination. 260 // We do this by reseting "TheOnlyDest" to null when we find two non-equal 261 // destinations. 262 if (It->getCaseSuccessor() != TheOnlyDest) 263 TheOnlyDest = nullptr; 264 265 // Increment this iterator as we haven't removed the case. 266 ++It; 267 } 268 269 if (CI && !TheOnlyDest) { 270 // Branching on a constant, but not any of the cases, go to the default 271 // successor. 272 TheOnlyDest = SI->getDefaultDest(); 273 } 274 275 // If we found a single destination that we can fold the switch into, do so 276 // now. 277 if (TheOnlyDest) { 278 // Insert the new branch. 279 Builder.CreateBr(TheOnlyDest); 280 BasicBlock *BB = SI->getParent(); 281 282 SmallSet<BasicBlock *, 8> RemovedSuccessors; 283 284 // Remove entries from PHI nodes which we no longer branch to... 285 BasicBlock *SuccToKeep = TheOnlyDest; 286 for (BasicBlock *Succ : successors(SI)) { 287 if (DTU && Succ != TheOnlyDest) 288 RemovedSuccessors.insert(Succ); 289 // Found case matching a constant operand? 290 if (Succ == SuccToKeep) { 291 SuccToKeep = nullptr; // Don't modify the first branch to TheOnlyDest 292 } else { 293 Succ->removePredecessor(BB); 294 } 295 } 296 297 // Delete the old switch. 298 Value *Cond = SI->getCondition(); 299 SI->eraseFromParent(); 300 if (DeleteDeadConditions) 301 RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); 302 if (DTU) { 303 std::vector<DominatorTree::UpdateType> Updates; 304 Updates.reserve(RemovedSuccessors.size()); 305 for (auto *RemovedSuccessor : RemovedSuccessors) 306 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 307 DTU->applyUpdates(Updates); 308 } 309 return true; 310 } 311 312 if (SI->getNumCases() == 1) { 313 // Otherwise, we can fold this switch into a conditional branch 314 // instruction if it has only one non-default destination. 315 auto FirstCase = *SI->case_begin(); 316 Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), 317 FirstCase.getCaseValue(), "cond"); 318 319 // Insert the new branch. 320 BranchInst *NewBr = Builder.CreateCondBr(Cond, 321 FirstCase.getCaseSuccessor(), 322 SI->getDefaultDest()); 323 SmallVector<uint32_t> Weights; 324 if (extractBranchWeights(*SI, Weights) && Weights.size() == 2) { 325 uint32_t DefWeight = Weights[0]; 326 uint32_t CaseWeight = Weights[1]; 327 // The TrueWeight should be the weight for the single case of SI. 328 NewBr->setMetadata(LLVMContext::MD_prof, 329 MDBuilder(BB->getContext()) 330 .createBranchWeights(CaseWeight, DefWeight)); 331 } 332 333 // Update make.implicit metadata to the newly-created conditional branch. 334 MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); 335 if (MakeImplicitMD) 336 NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); 337 338 // Delete the old switch. 339 SI->eraseFromParent(); 340 return true; 341 } 342 return Changed; 343 } 344 345 if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { 346 // indirectbr blockaddress(@F, @BB) -> br label @BB 347 if (auto *BA = 348 dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { 349 BasicBlock *TheOnlyDest = BA->getBasicBlock(); 350 SmallSet<BasicBlock *, 8> RemovedSuccessors; 351 352 // Insert the new branch. 353 Builder.CreateBr(TheOnlyDest); 354 355 BasicBlock *SuccToKeep = TheOnlyDest; 356 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { 357 BasicBlock *DestBB = IBI->getDestination(i); 358 if (DTU && DestBB != TheOnlyDest) 359 RemovedSuccessors.insert(DestBB); 360 if (IBI->getDestination(i) == SuccToKeep) { 361 SuccToKeep = nullptr; 362 } else { 363 DestBB->removePredecessor(BB); 364 } 365 } 366 Value *Address = IBI->getAddress(); 367 IBI->eraseFromParent(); 368 if (DeleteDeadConditions) 369 // Delete pointer cast instructions. 370 RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); 371 372 // Also zap the blockaddress constant if there are no users remaining, 373 // otherwise the destination is still marked as having its address taken. 374 if (BA->use_empty()) 375 BA->destroyConstant(); 376 377 // If we didn't find our destination in the IBI successor list, then we 378 // have undefined behavior. Replace the unconditional branch with an 379 // 'unreachable' instruction. 380 if (SuccToKeep) { 381 BB->getTerminator()->eraseFromParent(); 382 new UnreachableInst(BB->getContext(), BB); 383 } 384 385 if (DTU) { 386 std::vector<DominatorTree::UpdateType> Updates; 387 Updates.reserve(RemovedSuccessors.size()); 388 for (auto *RemovedSuccessor : RemovedSuccessors) 389 Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor}); 390 DTU->applyUpdates(Updates); 391 } 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 //===----------------------------------------------------------------------===// 400 // Local dead code elimination. 401 // 402 403 /// isInstructionTriviallyDead - Return true if the result produced by the 404 /// instruction is not used, and the instruction has no side effects. 405 /// 406 bool llvm::isInstructionTriviallyDead(Instruction *I, 407 const TargetLibraryInfo *TLI) { 408 if (!I->use_empty()) 409 return false; 410 return wouldInstructionBeTriviallyDead(I, TLI); 411 } 412 413 bool llvm::wouldInstructionBeTriviallyDeadOnUnusedPaths( 414 Instruction *I, const TargetLibraryInfo *TLI) { 415 // Instructions that are "markers" and have implied meaning on code around 416 // them (without explicit uses), are not dead on unused paths. 417 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 418 if (II->getIntrinsicID() == Intrinsic::stacksave || 419 II->getIntrinsicID() == Intrinsic::launder_invariant_group || 420 II->isLifetimeStartOrEnd()) 421 return false; 422 return wouldInstructionBeTriviallyDead(I, TLI); 423 } 424 425 bool llvm::wouldInstructionBeTriviallyDead(const Instruction *I, 426 const TargetLibraryInfo *TLI) { 427 if (I->isTerminator()) 428 return false; 429 430 // We don't want the landingpad-like instructions removed by anything this 431 // general. 432 if (I->isEHPad()) 433 return false; 434 435 // We don't want debug info removed by anything this general. 436 if (isa<DbgVariableIntrinsic>(I)) 437 return false; 438 439 if (const DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { 440 if (DLI->getLabel()) 441 return false; 442 return true; 443 } 444 445 if (auto *CB = dyn_cast<CallBase>(I)) 446 if (isRemovableAlloc(CB, TLI)) 447 return true; 448 449 if (!I->willReturn()) { 450 auto *II = dyn_cast<IntrinsicInst>(I); 451 if (!II) 452 return false; 453 454 switch (II->getIntrinsicID()) { 455 case Intrinsic::experimental_guard: { 456 // Guards on true are operationally no-ops. In the future we can 457 // consider more sophisticated tradeoffs for guards considering potential 458 // for check widening, but for now we keep things simple. 459 auto *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)); 460 return Cond && Cond->isOne(); 461 } 462 // TODO: These intrinsics are not safe to remove, because this may remove 463 // a well-defined trap. 464 case Intrinsic::wasm_trunc_signed: 465 case Intrinsic::wasm_trunc_unsigned: 466 case Intrinsic::ptrauth_auth: 467 case Intrinsic::ptrauth_resign: 468 return true; 469 default: 470 return false; 471 } 472 } 473 474 if (!I->mayHaveSideEffects()) 475 return true; 476 477 // Special case intrinsics that "may have side effects" but can be deleted 478 // when dead. 479 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 480 // Safe to delete llvm.stacksave and launder.invariant.group if dead. 481 if (II->getIntrinsicID() == Intrinsic::stacksave || 482 II->getIntrinsicID() == Intrinsic::launder_invariant_group) 483 return true; 484 485 // Intrinsics declare sideeffects to prevent them from moving, but they are 486 // nops without users. 487 if (II->getIntrinsicID() == Intrinsic::allow_runtime_check || 488 II->getIntrinsicID() == Intrinsic::allow_ubsan_check) 489 return true; 490 491 if (II->isLifetimeStartOrEnd()) { 492 auto *Arg = II->getArgOperand(1); 493 // Lifetime intrinsics are dead when their right-hand is undef. 494 if (isa<UndefValue>(Arg)) 495 return true; 496 // If the right-hand is an alloc, global, or argument and the only uses 497 // are lifetime intrinsics then the intrinsics are dead. 498 if (isa<AllocaInst>(Arg) || isa<GlobalValue>(Arg) || isa<Argument>(Arg)) 499 return llvm::all_of(Arg->uses(), [](Use &Use) { 500 if (IntrinsicInst *IntrinsicUse = 501 dyn_cast<IntrinsicInst>(Use.getUser())) 502 return IntrinsicUse->isLifetimeStartOrEnd(); 503 return false; 504 }); 505 return false; 506 } 507 508 // Assumptions are dead if their condition is trivially true. 509 if (II->getIntrinsicID() == Intrinsic::assume && 510 isAssumeWithEmptyBundle(cast<AssumeInst>(*II))) { 511 if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) 512 return !Cond->isZero(); 513 514 return false; 515 } 516 517 if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(I)) { 518 std::optional<fp::ExceptionBehavior> ExBehavior = 519 FPI->getExceptionBehavior(); 520 return *ExBehavior != fp::ebStrict; 521 } 522 } 523 524 if (auto *Call = dyn_cast<CallBase>(I)) { 525 if (Value *FreedOp = getFreedOperand(Call, TLI)) 526 if (Constant *C = dyn_cast<Constant>(FreedOp)) 527 return C->isNullValue() || isa<UndefValue>(C); 528 if (isMathLibCallNoop(Call, TLI)) 529 return true; 530 } 531 532 // Non-volatile atomic loads from constants can be removed. 533 if (auto *LI = dyn_cast<LoadInst>(I)) 534 if (auto *GV = dyn_cast<GlobalVariable>( 535 LI->getPointerOperand()->stripPointerCasts())) 536 if (!LI->isVolatile() && GV->isConstant()) 537 return true; 538 539 return false; 540 } 541 542 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a 543 /// trivially dead instruction, delete it. If that makes any of its operands 544 /// trivially dead, delete them too, recursively. Return true if any 545 /// instructions were deleted. 546 bool llvm::RecursivelyDeleteTriviallyDeadInstructions( 547 Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU, 548 std::function<void(Value *)> AboutToDeleteCallback) { 549 Instruction *I = dyn_cast<Instruction>(V); 550 if (!I || !isInstructionTriviallyDead(I, TLI)) 551 return false; 552 553 SmallVector<WeakTrackingVH, 16> DeadInsts; 554 DeadInsts.push_back(I); 555 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 556 AboutToDeleteCallback); 557 558 return true; 559 } 560 561 bool llvm::RecursivelyDeleteTriviallyDeadInstructionsPermissive( 562 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 563 MemorySSAUpdater *MSSAU, 564 std::function<void(Value *)> AboutToDeleteCallback) { 565 unsigned S = 0, E = DeadInsts.size(), Alive = 0; 566 for (; S != E; ++S) { 567 auto *I = dyn_cast_or_null<Instruction>(DeadInsts[S]); 568 if (!I || !isInstructionTriviallyDead(I)) { 569 DeadInsts[S] = nullptr; 570 ++Alive; 571 } 572 } 573 if (Alive == E) 574 return false; 575 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU, 576 AboutToDeleteCallback); 577 return true; 578 } 579 580 void llvm::RecursivelyDeleteTriviallyDeadInstructions( 581 SmallVectorImpl<WeakTrackingVH> &DeadInsts, const TargetLibraryInfo *TLI, 582 MemorySSAUpdater *MSSAU, 583 std::function<void(Value *)> AboutToDeleteCallback) { 584 // Process the dead instruction list until empty. 585 while (!DeadInsts.empty()) { 586 Value *V = DeadInsts.pop_back_val(); 587 Instruction *I = cast_or_null<Instruction>(V); 588 if (!I) 589 continue; 590 assert(isInstructionTriviallyDead(I, TLI) && 591 "Live instruction found in dead worklist!"); 592 assert(I->use_empty() && "Instructions with uses are not dead."); 593 594 // Don't lose the debug info while deleting the instructions. 595 salvageDebugInfo(*I); 596 597 if (AboutToDeleteCallback) 598 AboutToDeleteCallback(I); 599 600 // Null out all of the instruction's operands to see if any operand becomes 601 // dead as we go. 602 for (Use &OpU : I->operands()) { 603 Value *OpV = OpU.get(); 604 OpU.set(nullptr); 605 606 if (!OpV->use_empty()) 607 continue; 608 609 // If the operand is an instruction that became dead as we nulled out the 610 // operand, and if it is 'trivially' dead, delete it in a future loop 611 // iteration. 612 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 613 if (isInstructionTriviallyDead(OpI, TLI)) 614 DeadInsts.push_back(OpI); 615 } 616 if (MSSAU) 617 MSSAU->removeMemoryAccess(I); 618 619 I->eraseFromParent(); 620 } 621 } 622 623 bool llvm::replaceDbgUsesWithUndef(Instruction *I) { 624 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 625 SmallVector<DbgVariableRecord *, 1> DPUsers; 626 findDbgUsers(DbgUsers, I, &DPUsers); 627 for (auto *DII : DbgUsers) 628 DII->setKillLocation(); 629 for (auto *DVR : DPUsers) 630 DVR->setKillLocation(); 631 return !DbgUsers.empty() || !DPUsers.empty(); 632 } 633 634 /// areAllUsesEqual - Check whether the uses of a value are all the same. 635 /// This is similar to Instruction::hasOneUse() except this will also return 636 /// true when there are no uses or multiple uses that all refer to the same 637 /// value. 638 static bool areAllUsesEqual(Instruction *I) { 639 Value::user_iterator UI = I->user_begin(); 640 Value::user_iterator UE = I->user_end(); 641 if (UI == UE) 642 return true; 643 644 User *TheUse = *UI; 645 for (++UI; UI != UE; ++UI) { 646 if (*UI != TheUse) 647 return false; 648 } 649 return true; 650 } 651 652 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively 653 /// dead PHI node, due to being a def-use chain of single-use nodes that 654 /// either forms a cycle or is terminated by a trivially dead instruction, 655 /// delete it. If that makes any of its operands trivially dead, delete them 656 /// too, recursively. Return true if a change was made. 657 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, 658 const TargetLibraryInfo *TLI, 659 llvm::MemorySSAUpdater *MSSAU) { 660 SmallPtrSet<Instruction*, 4> Visited; 661 for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); 662 I = cast<Instruction>(*I->user_begin())) { 663 if (I->use_empty()) 664 return RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 665 666 // If we find an instruction more than once, we're on a cycle that 667 // won't prove fruitful. 668 if (!Visited.insert(I).second) { 669 // Break the cycle and delete the instruction and its operands. 670 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 671 (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI, MSSAU); 672 return true; 673 } 674 } 675 return false; 676 } 677 678 static bool 679 simplifyAndDCEInstruction(Instruction *I, 680 SmallSetVector<Instruction *, 16> &WorkList, 681 const DataLayout &DL, 682 const TargetLibraryInfo *TLI) { 683 if (isInstructionTriviallyDead(I, TLI)) { 684 salvageDebugInfo(*I); 685 686 // Null out all of the instruction's operands to see if any operand becomes 687 // dead as we go. 688 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 689 Value *OpV = I->getOperand(i); 690 I->setOperand(i, nullptr); 691 692 if (!OpV->use_empty() || I == OpV) 693 continue; 694 695 // If the operand is an instruction that became dead as we nulled out the 696 // operand, and if it is 'trivially' dead, delete it in a future loop 697 // iteration. 698 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) 699 if (isInstructionTriviallyDead(OpI, TLI)) 700 WorkList.insert(OpI); 701 } 702 703 I->eraseFromParent(); 704 705 return true; 706 } 707 708 if (Value *SimpleV = simplifyInstruction(I, DL)) { 709 // Add the users to the worklist. CAREFUL: an instruction can use itself, 710 // in the case of a phi node. 711 for (User *U : I->users()) { 712 if (U != I) { 713 WorkList.insert(cast<Instruction>(U)); 714 } 715 } 716 717 // Replace the instruction with its simplified value. 718 bool Changed = false; 719 if (!I->use_empty()) { 720 I->replaceAllUsesWith(SimpleV); 721 Changed = true; 722 } 723 if (isInstructionTriviallyDead(I, TLI)) { 724 I->eraseFromParent(); 725 Changed = true; 726 } 727 return Changed; 728 } 729 return false; 730 } 731 732 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to 733 /// simplify any instructions in it and recursively delete dead instructions. 734 /// 735 /// This returns true if it changed the code, note that it can delete 736 /// instructions in other blocks as well in this block. 737 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, 738 const TargetLibraryInfo *TLI) { 739 bool MadeChange = false; 740 const DataLayout &DL = BB->getDataLayout(); 741 742 #ifndef NDEBUG 743 // In debug builds, ensure that the terminator of the block is never replaced 744 // or deleted by these simplifications. The idea of simplification is that it 745 // cannot introduce new instructions, and there is no way to replace the 746 // terminator of a block without introducing a new instruction. 747 AssertingVH<Instruction> TerminatorVH(&BB->back()); 748 #endif 749 750 SmallSetVector<Instruction *, 16> WorkList; 751 // Iterate over the original function, only adding insts to the worklist 752 // if they actually need to be revisited. This avoids having to pre-init 753 // the worklist with the entire function's worth of instructions. 754 for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); 755 BI != E;) { 756 assert(!BI->isTerminator()); 757 Instruction *I = &*BI; 758 ++BI; 759 760 // We're visiting this instruction now, so make sure it's not in the 761 // worklist from an earlier visit. 762 if (!WorkList.count(I)) 763 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 764 } 765 766 while (!WorkList.empty()) { 767 Instruction *I = WorkList.pop_back_val(); 768 MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); 769 } 770 return MadeChange; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Control Flow Graph Restructuring. 775 // 776 777 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, 778 DomTreeUpdater *DTU) { 779 780 // If BB has single-entry PHI nodes, fold them. 781 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 782 Value *NewVal = PN->getIncomingValue(0); 783 // Replace self referencing PHI with poison, it must be dead. 784 if (NewVal == PN) NewVal = PoisonValue::get(PN->getType()); 785 PN->replaceAllUsesWith(NewVal); 786 PN->eraseFromParent(); 787 } 788 789 BasicBlock *PredBB = DestBB->getSinglePredecessor(); 790 assert(PredBB && "Block doesn't have a single predecessor!"); 791 792 bool ReplaceEntryBB = PredBB->isEntryBlock(); 793 794 // DTU updates: Collect all the edges that enter 795 // PredBB. These dominator edges will be redirected to DestBB. 796 SmallVector<DominatorTree::UpdateType, 32> Updates; 797 798 if (DTU) { 799 // To avoid processing the same predecessor more than once. 800 SmallPtrSet<BasicBlock *, 2> SeenPreds; 801 Updates.reserve(Updates.size() + 2 * pred_size(PredBB) + 1); 802 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 803 // This predecessor of PredBB may already have DestBB as a successor. 804 if (PredOfPredBB != PredBB) 805 if (SeenPreds.insert(PredOfPredBB).second) 806 Updates.push_back({DominatorTree::Insert, PredOfPredBB, DestBB}); 807 SeenPreds.clear(); 808 for (BasicBlock *PredOfPredBB : predecessors(PredBB)) 809 if (SeenPreds.insert(PredOfPredBB).second) 810 Updates.push_back({DominatorTree::Delete, PredOfPredBB, PredBB}); 811 Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); 812 } 813 814 // Zap anything that took the address of DestBB. Not doing this will give the 815 // address an invalid value. 816 if (DestBB->hasAddressTaken()) { 817 BlockAddress *BA = BlockAddress::get(DestBB); 818 Constant *Replacement = 819 ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); 820 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, 821 BA->getType())); 822 BA->destroyConstant(); 823 } 824 825 // Anything that branched to PredBB now branches to DestBB. 826 PredBB->replaceAllUsesWith(DestBB); 827 828 // Splice all the instructions from PredBB to DestBB. 829 PredBB->getTerminator()->eraseFromParent(); 830 DestBB->splice(DestBB->begin(), PredBB); 831 new UnreachableInst(PredBB->getContext(), PredBB); 832 833 // If the PredBB is the entry block of the function, move DestBB up to 834 // become the entry block after we erase PredBB. 835 if (ReplaceEntryBB) 836 DestBB->moveAfter(PredBB); 837 838 if (DTU) { 839 assert(PredBB->size() == 1 && 840 isa<UnreachableInst>(PredBB->getTerminator()) && 841 "The successor list of PredBB isn't empty before " 842 "applying corresponding DTU updates."); 843 DTU->applyUpdatesPermissive(Updates); 844 DTU->deleteBB(PredBB); 845 // Recalculation of DomTree is needed when updating a forward DomTree and 846 // the Entry BB is replaced. 847 if (ReplaceEntryBB && DTU->hasDomTree()) { 848 // The entry block was removed and there is no external interface for 849 // the dominator tree to be notified of this change. In this corner-case 850 // we recalculate the entire tree. 851 DTU->recalculate(*(DestBB->getParent())); 852 } 853 } 854 855 else { 856 PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. 857 } 858 } 859 860 /// Return true if we can choose one of these values to use in place of the 861 /// other. Note that we will always choose the non-undef value to keep. 862 static bool CanMergeValues(Value *First, Value *Second) { 863 return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); 864 } 865 866 /// Return true if we can fold BB, an almost-empty BB ending in an unconditional 867 /// branch to Succ, into Succ. 868 /// 869 /// Assumption: Succ is the single successor for BB. 870 static bool 871 CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ, 872 const SmallPtrSetImpl<BasicBlock *> &BBPreds) { 873 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); 874 875 LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " 876 << Succ->getName() << "\n"); 877 // Shortcut, if there is only a single predecessor it must be BB and merging 878 // is always safe 879 if (Succ->getSinglePredecessor()) 880 return true; 881 882 // Look at all the phi nodes in Succ, to see if they present a conflict when 883 // merging these blocks 884 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 885 PHINode *PN = cast<PHINode>(I); 886 887 // If the incoming value from BB is again a PHINode in 888 // BB which has the same incoming value for *PI as PN does, we can 889 // merge the phi nodes and then the blocks can still be merged 890 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); 891 if (BBPN && BBPN->getParent() == BB) { 892 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 893 BasicBlock *IBB = PN->getIncomingBlock(PI); 894 if (BBPreds.count(IBB) && 895 !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), 896 PN->getIncomingValue(PI))) { 897 LLVM_DEBUG(dbgs() 898 << "Can't fold, phi node " << PN->getName() << " in " 899 << Succ->getName() << " is conflicting with " 900 << BBPN->getName() << " with regard to common predecessor " 901 << IBB->getName() << "\n"); 902 return false; 903 } 904 } 905 } else { 906 Value* Val = PN->getIncomingValueForBlock(BB); 907 for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { 908 // See if the incoming value for the common predecessor is equal to the 909 // one for BB, in which case this phi node will not prevent the merging 910 // of the block. 911 BasicBlock *IBB = PN->getIncomingBlock(PI); 912 if (BBPreds.count(IBB) && 913 !CanMergeValues(Val, PN->getIncomingValue(PI))) { 914 LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() 915 << " in " << Succ->getName() 916 << " is conflicting with regard to common " 917 << "predecessor " << IBB->getName() << "\n"); 918 return false; 919 } 920 } 921 } 922 } 923 924 return true; 925 } 926 927 using PredBlockVector = SmallVector<BasicBlock *, 16>; 928 using IncomingValueMap = SmallDenseMap<BasicBlock *, Value *, 16>; 929 930 /// Determines the value to use as the phi node input for a block. 931 /// 932 /// Select between \p OldVal any value that we know flows from \p BB 933 /// to a particular phi on the basis of which one (if either) is not 934 /// undef. Update IncomingValues based on the selected value. 935 /// 936 /// \param OldVal The value we are considering selecting. 937 /// \param BB The block that the value flows in from. 938 /// \param IncomingValues A map from block-to-value for other phi inputs 939 /// that we have examined. 940 /// 941 /// \returns the selected value. 942 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, 943 IncomingValueMap &IncomingValues) { 944 if (!isa<UndefValue>(OldVal)) { 945 assert((!IncomingValues.count(BB) || 946 IncomingValues.find(BB)->second == OldVal) && 947 "Expected OldVal to match incoming value from BB!"); 948 949 IncomingValues.insert(std::make_pair(BB, OldVal)); 950 return OldVal; 951 } 952 953 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 954 if (It != IncomingValues.end()) return It->second; 955 956 return OldVal; 957 } 958 959 /// Create a map from block to value for the operands of a 960 /// given phi. 961 /// 962 /// Create a map from block to value for each non-undef value flowing 963 /// into \p PN. 964 /// 965 /// \param PN The phi we are collecting the map for. 966 /// \param IncomingValues [out] The map from block to value for this phi. 967 static void gatherIncomingValuesToPhi(PHINode *PN, 968 IncomingValueMap &IncomingValues) { 969 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 970 BasicBlock *BB = PN->getIncomingBlock(i); 971 Value *V = PN->getIncomingValue(i); 972 973 if (!isa<UndefValue>(V)) 974 IncomingValues.insert(std::make_pair(BB, V)); 975 } 976 } 977 978 /// Replace the incoming undef values to a phi with the values 979 /// from a block-to-value map. 980 /// 981 /// \param PN The phi we are replacing the undefs in. 982 /// \param IncomingValues A map from block to value. 983 static void replaceUndefValuesInPhi(PHINode *PN, 984 const IncomingValueMap &IncomingValues) { 985 SmallVector<unsigned> TrueUndefOps; 986 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 987 Value *V = PN->getIncomingValue(i); 988 989 if (!isa<UndefValue>(V)) continue; 990 991 BasicBlock *BB = PN->getIncomingBlock(i); 992 IncomingValueMap::const_iterator It = IncomingValues.find(BB); 993 994 // Keep track of undef/poison incoming values. Those must match, so we fix 995 // them up below if needed. 996 // Note: this is conservatively correct, but we could try harder and group 997 // the undef values per incoming basic block. 998 if (It == IncomingValues.end()) { 999 TrueUndefOps.push_back(i); 1000 continue; 1001 } 1002 1003 // There is a defined value for this incoming block, so map this undef 1004 // incoming value to the defined value. 1005 PN->setIncomingValue(i, It->second); 1006 } 1007 1008 // If there are both undef and poison values incoming, then convert those 1009 // values to undef. It is invalid to have different values for the same 1010 // incoming block. 1011 unsigned PoisonCount = count_if(TrueUndefOps, [&](unsigned i) { 1012 return isa<PoisonValue>(PN->getIncomingValue(i)); 1013 }); 1014 if (PoisonCount != 0 && PoisonCount != TrueUndefOps.size()) { 1015 for (unsigned i : TrueUndefOps) 1016 PN->setIncomingValue(i, UndefValue::get(PN->getType())); 1017 } 1018 } 1019 1020 // Only when they shares a single common predecessor, return true. 1021 // Only handles cases when BB can't be merged while its predecessors can be 1022 // redirected. 1023 static bool 1024 CanRedirectPredsOfEmptyBBToSucc(BasicBlock *BB, BasicBlock *Succ, 1025 const SmallPtrSetImpl<BasicBlock *> &BBPreds, 1026 const SmallPtrSetImpl<BasicBlock *> &SuccPreds, 1027 BasicBlock *&CommonPred) { 1028 1029 // There must be phis in BB, otherwise BB will be merged into Succ directly 1030 if (BB->phis().empty() || Succ->phis().empty()) 1031 return false; 1032 1033 // BB must have predecessors not shared that can be redirected to Succ 1034 if (!BB->hasNPredecessorsOrMore(2)) 1035 return false; 1036 1037 if (any_of(BBPreds, [](const BasicBlock *Pred) { 1038 return isa<PHINode>(Pred->begin()) && 1039 isa<IndirectBrInst>(Pred->getTerminator()); 1040 })) 1041 return false; 1042 1043 // Get the single common predecessor of both BB and Succ. Return false 1044 // when there are more than one common predecessors. 1045 for (BasicBlock *SuccPred : SuccPreds) { 1046 if (BBPreds.count(SuccPred)) { 1047 if (CommonPred) 1048 return false; 1049 CommonPred = SuccPred; 1050 } 1051 } 1052 1053 return true; 1054 } 1055 1056 /// Check whether removing \p BB will make the phis in its \p Succ have too 1057 /// many incoming entries. This function does not check whether \p BB is 1058 /// foldable or not. 1059 static bool introduceTooManyPhiEntries(BasicBlock *BB, BasicBlock *Succ) { 1060 // If BB only has one predecessor, then removing it will not introduce more 1061 // incoming edges for phis. 1062 if (BB->hasNPredecessors(1)) 1063 return false; 1064 unsigned NumPreds = pred_size(BB); 1065 unsigned NumChangedPhi = 0; 1066 for (auto &Phi : Succ->phis()) { 1067 // If the incoming value is a phi and the phi is defined in BB, 1068 // then removing BB will not increase the total phi entries of the ir. 1069 if (auto *IncomingPhi = dyn_cast<PHINode>(Phi.getIncomingValueForBlock(BB))) 1070 if (IncomingPhi->getParent() == BB) 1071 continue; 1072 // Otherwise, we need to add entries to the phi 1073 NumChangedPhi++; 1074 } 1075 // For every phi that needs to be changed, (NumPreds - 1) new entries will be 1076 // added. If the total increase in phi entries exceeds 1077 // MaxPhiEntriesIncreaseAfterRemovingEmptyBlock, it will be considered as 1078 // introducing too many new phi entries. 1079 return (NumPreds - 1) * NumChangedPhi > 1080 MaxPhiEntriesIncreaseAfterRemovingEmptyBlock; 1081 } 1082 1083 /// Replace a value flowing from a block to a phi with 1084 /// potentially multiple instances of that value flowing from the 1085 /// block's predecessors to the phi. 1086 /// 1087 /// \param BB The block with the value flowing into the phi. 1088 /// \param BBPreds The predecessors of BB. 1089 /// \param PN The phi that we are updating. 1090 /// \param CommonPred The common predecessor of BB and PN's BasicBlock 1091 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, 1092 const PredBlockVector &BBPreds, 1093 PHINode *PN, 1094 BasicBlock *CommonPred) { 1095 Value *OldVal = PN->removeIncomingValue(BB, false); 1096 assert(OldVal && "No entry in PHI for Pred BB!"); 1097 1098 IncomingValueMap IncomingValues; 1099 1100 // We are merging two blocks - BB, and the block containing PN - and 1101 // as a result we need to redirect edges from the predecessors of BB 1102 // to go to the block containing PN, and update PN 1103 // accordingly. Since we allow merging blocks in the case where the 1104 // predecessor and successor blocks both share some predecessors, 1105 // and where some of those common predecessors might have undef 1106 // values flowing into PN, we want to rewrite those values to be 1107 // consistent with the non-undef values. 1108 1109 gatherIncomingValuesToPhi(PN, IncomingValues); 1110 1111 // If this incoming value is one of the PHI nodes in BB, the new entries 1112 // in the PHI node are the entries from the old PHI. 1113 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { 1114 PHINode *OldValPN = cast<PHINode>(OldVal); 1115 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { 1116 // Note that, since we are merging phi nodes and BB and Succ might 1117 // have common predecessors, we could end up with a phi node with 1118 // identical incoming branches. This will be cleaned up later (and 1119 // will trigger asserts if we try to clean it up now, without also 1120 // simplifying the corresponding conditional branch). 1121 BasicBlock *PredBB = OldValPN->getIncomingBlock(i); 1122 1123 if (PredBB == CommonPred) 1124 continue; 1125 1126 Value *PredVal = OldValPN->getIncomingValue(i); 1127 Value *Selected = 1128 selectIncomingValueForBlock(PredVal, PredBB, IncomingValues); 1129 1130 // And add a new incoming value for this predecessor for the 1131 // newly retargeted branch. 1132 PN->addIncoming(Selected, PredBB); 1133 } 1134 if (CommonPred) 1135 PN->addIncoming(OldValPN->getIncomingValueForBlock(CommonPred), BB); 1136 1137 } else { 1138 for (BasicBlock *PredBB : BBPreds) { 1139 // Update existing incoming values in PN for this 1140 // predecessor of BB. 1141 if (PredBB == CommonPred) 1142 continue; 1143 1144 Value *Selected = 1145 selectIncomingValueForBlock(OldVal, PredBB, IncomingValues); 1146 1147 // And add a new incoming value for this predecessor for the 1148 // newly retargeted branch. 1149 PN->addIncoming(Selected, PredBB); 1150 } 1151 if (CommonPred) 1152 PN->addIncoming(OldVal, BB); 1153 } 1154 1155 replaceUndefValuesInPhi(PN, IncomingValues); 1156 } 1157 1158 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 1159 DomTreeUpdater *DTU) { 1160 assert(BB != &BB->getParent()->getEntryBlock() && 1161 "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); 1162 1163 // We can't simplify infinite loops. 1164 BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); 1165 if (BB == Succ) 1166 return false; 1167 1168 SmallPtrSet<BasicBlock *, 16> BBPreds(pred_begin(BB), pred_end(BB)); 1169 SmallPtrSet<BasicBlock *, 16> SuccPreds(pred_begin(Succ), pred_end(Succ)); 1170 1171 // The single common predecessor of BB and Succ when BB cannot be killed 1172 BasicBlock *CommonPred = nullptr; 1173 1174 bool BBKillable = CanPropagatePredecessorsForPHIs(BB, Succ, BBPreds); 1175 1176 // Even if we can not fold BB into Succ, we may be able to redirect the 1177 // predecessors of BB to Succ. 1178 bool BBPhisMergeable = 1179 BBKillable || 1180 CanRedirectPredsOfEmptyBBToSucc(BB, Succ, BBPreds, SuccPreds, CommonPred); 1181 1182 if ((!BBKillable && !BBPhisMergeable) || introduceTooManyPhiEntries(BB, Succ)) 1183 return false; 1184 1185 // Check to see if merging these blocks/phis would cause conflicts for any of 1186 // the phi nodes in BB or Succ. If not, we can safely merge. 1187 1188 // Check for cases where Succ has multiple predecessors and a PHI node in BB 1189 // has uses which will not disappear when the PHI nodes are merged. It is 1190 // possible to handle such cases, but difficult: it requires checking whether 1191 // BB dominates Succ, which is non-trivial to calculate in the case where 1192 // Succ has multiple predecessors. Also, it requires checking whether 1193 // constructing the necessary self-referential PHI node doesn't introduce any 1194 // conflicts; this isn't too difficult, but the previous code for doing this 1195 // was incorrect. 1196 // 1197 // Note that if this check finds a live use, BB dominates Succ, so BB is 1198 // something like a loop pre-header (or rarely, a part of an irreducible CFG); 1199 // folding the branch isn't profitable in that case anyway. 1200 if (!Succ->getSinglePredecessor()) { 1201 BasicBlock::iterator BBI = BB->begin(); 1202 while (isa<PHINode>(*BBI)) { 1203 for (Use &U : BBI->uses()) { 1204 if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { 1205 if (PN->getIncomingBlock(U) != BB) 1206 return false; 1207 } else { 1208 return false; 1209 } 1210 } 1211 ++BBI; 1212 } 1213 } 1214 1215 if (BBPhisMergeable && CommonPred) 1216 LLVM_DEBUG(dbgs() << "Found Common Predecessor between: " << BB->getName() 1217 << " and " << Succ->getName() << " : " 1218 << CommonPred->getName() << "\n"); 1219 1220 // 'BB' and 'BB->Pred' are loop latches, bail out to presrve inner loop 1221 // metadata. 1222 // 1223 // FIXME: This is a stop-gap solution to preserve inner-loop metadata given 1224 // current status (that loop metadata is implemented as metadata attached to 1225 // the branch instruction in the loop latch block). To quote from review 1226 // comments, "the current representation of loop metadata (using a loop latch 1227 // terminator attachment) is known to be fundamentally broken. Loop latches 1228 // are not uniquely associated with loops (both in that a latch can be part of 1229 // multiple loops and a loop may have multiple latches). Loop headers are. The 1230 // solution to this problem is also known: Add support for basic block 1231 // metadata, and attach loop metadata to the loop header." 1232 // 1233 // Why bail out: 1234 // In this case, we expect 'BB' is the latch for outer-loop and 'BB->Pred' is 1235 // the latch for inner-loop (see reason below), so bail out to prerserve 1236 // inner-loop metadata rather than eliminating 'BB' and attaching its metadata 1237 // to this inner-loop. 1238 // - The reason we believe 'BB' and 'BB->Pred' have different inner-most 1239 // loops: assuming 'BB' and 'BB->Pred' are from the same inner-most loop L, 1240 // then 'BB' is the header and latch of 'L' and thereby 'L' must consist of 1241 // one self-looping basic block, which is contradictory with the assumption. 1242 // 1243 // To illustrate how inner-loop metadata is dropped: 1244 // 1245 // CFG Before 1246 // 1247 // BB is while.cond.exit, attached with loop metdata md2. 1248 // BB->Pred is for.body, attached with loop metadata md1. 1249 // 1250 // entry 1251 // | 1252 // v 1253 // ---> while.cond -------------> while.end 1254 // | | 1255 // | v 1256 // | while.body 1257 // | | 1258 // | v 1259 // | for.body <---- (md1) 1260 // | | |______| 1261 // | v 1262 // | while.cond.exit (md2) 1263 // | | 1264 // |_______| 1265 // 1266 // CFG After 1267 // 1268 // while.cond1 is the merge of while.cond.exit and while.cond above. 1269 // for.body is attached with md2, and md1 is dropped. 1270 // If LoopSimplify runs later (as a part of loop pass), it could create 1271 // dedicated exits for inner-loop (essentially adding `while.cond.exit` 1272 // back), but won't it won't see 'md1' nor restore it for the inner-loop. 1273 // 1274 // entry 1275 // | 1276 // v 1277 // ---> while.cond1 -------------> while.end 1278 // | | 1279 // | v 1280 // | while.body 1281 // | | 1282 // | v 1283 // | for.body <---- (md2) 1284 // |_______| |______| 1285 if (Instruction *TI = BB->getTerminator()) 1286 if (TI->hasMetadata(LLVMContext::MD_loop)) 1287 for (BasicBlock *Pred : predecessors(BB)) 1288 if (Instruction *PredTI = Pred->getTerminator()) 1289 if (PredTI->hasMetadata(LLVMContext::MD_loop)) 1290 return false; 1291 1292 if (BBKillable) 1293 LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); 1294 else if (BBPhisMergeable) 1295 LLVM_DEBUG(dbgs() << "Merge Phis in Trivial BB: \n" << *BB); 1296 1297 SmallVector<DominatorTree::UpdateType, 32> Updates; 1298 1299 if (DTU) { 1300 // To avoid processing the same predecessor more than once. 1301 SmallPtrSet<BasicBlock *, 8> SeenPreds; 1302 // All predecessors of BB (except the common predecessor) will be moved to 1303 // Succ. 1304 Updates.reserve(Updates.size() + 2 * pred_size(BB) + 1); 1305 1306 for (auto *PredOfBB : predecessors(BB)) { 1307 // Do not modify those common predecessors of BB and Succ 1308 if (!SuccPreds.contains(PredOfBB)) 1309 if (SeenPreds.insert(PredOfBB).second) 1310 Updates.push_back({DominatorTree::Insert, PredOfBB, Succ}); 1311 } 1312 1313 SeenPreds.clear(); 1314 1315 for (auto *PredOfBB : predecessors(BB)) 1316 // When BB cannot be killed, do not remove the edge between BB and 1317 // CommonPred. 1318 if (SeenPreds.insert(PredOfBB).second && PredOfBB != CommonPred) 1319 Updates.push_back({DominatorTree::Delete, PredOfBB, BB}); 1320 1321 if (BBKillable) 1322 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1323 } 1324 1325 if (isa<PHINode>(Succ->begin())) { 1326 // If there is more than one pred of succ, and there are PHI nodes in 1327 // the successor, then we need to add incoming edges for the PHI nodes 1328 // 1329 const PredBlockVector BBPreds(predecessors(BB)); 1330 1331 // Loop over all of the PHI nodes in the successor of BB. 1332 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { 1333 PHINode *PN = cast<PHINode>(I); 1334 redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN, CommonPred); 1335 } 1336 } 1337 1338 if (Succ->getSinglePredecessor()) { 1339 // BB is the only predecessor of Succ, so Succ will end up with exactly 1340 // the same predecessors BB had. 1341 // Copy over any phi, debug or lifetime instruction. 1342 BB->getTerminator()->eraseFromParent(); 1343 Succ->splice(Succ->getFirstNonPHIIt(), BB); 1344 } else { 1345 while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { 1346 // We explicitly check for such uses for merging phis. 1347 assert(PN->use_empty() && "There shouldn't be any uses here!"); 1348 PN->eraseFromParent(); 1349 } 1350 } 1351 1352 // If the unconditional branch we replaced contains llvm.loop metadata, we 1353 // add the metadata to the branch instructions in the predecessors. 1354 if (Instruction *TI = BB->getTerminator()) 1355 if (MDNode *LoopMD = TI->getMetadata(LLVMContext::MD_loop)) 1356 for (BasicBlock *Pred : predecessors(BB)) 1357 Pred->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopMD); 1358 1359 if (BBKillable) { 1360 // Everything that jumped to BB now goes to Succ. 1361 BB->replaceAllUsesWith(Succ); 1362 1363 if (!Succ->hasName()) 1364 Succ->takeName(BB); 1365 1366 // Clear the successor list of BB to match updates applying to DTU later. 1367 if (BB->getTerminator()) 1368 BB->back().eraseFromParent(); 1369 1370 new UnreachableInst(BB->getContext(), BB); 1371 assert(succ_empty(BB) && "The successor list of BB isn't empty before " 1372 "applying corresponding DTU updates."); 1373 } else if (BBPhisMergeable) { 1374 // Everything except CommonPred that jumped to BB now goes to Succ. 1375 BB->replaceUsesWithIf(Succ, [BBPreds, CommonPred](Use &U) -> bool { 1376 if (Instruction *UseInst = dyn_cast<Instruction>(U.getUser())) 1377 return UseInst->getParent() != CommonPred && 1378 BBPreds.contains(UseInst->getParent()); 1379 return false; 1380 }); 1381 } 1382 1383 if (DTU) 1384 DTU->applyUpdates(Updates); 1385 1386 if (BBKillable) 1387 DeleteDeadBlock(BB, DTU); 1388 1389 return true; 1390 } 1391 1392 static bool 1393 EliminateDuplicatePHINodesNaiveImpl(BasicBlock *BB, 1394 SmallPtrSetImpl<PHINode *> &ToRemove) { 1395 // This implementation doesn't currently consider undef operands 1396 // specially. Theoretically, two phis which are identical except for 1397 // one having an undef where the other doesn't could be collapsed. 1398 1399 bool Changed = false; 1400 1401 // Examine each PHI. 1402 // Note that increment of I must *NOT* be in the iteration_expression, since 1403 // we don't want to immediately advance when we restart from the beginning. 1404 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I);) { 1405 ++I; 1406 // Is there an identical PHI node in this basic block? 1407 // Note that we only look in the upper square's triangle, 1408 // we already checked that the lower triangle PHI's aren't identical. 1409 for (auto J = I; PHINode *DuplicatePN = dyn_cast<PHINode>(J); ++J) { 1410 if (ToRemove.contains(DuplicatePN)) 1411 continue; 1412 if (!DuplicatePN->isIdenticalToWhenDefined(PN)) 1413 continue; 1414 // A duplicate. Replace this PHI with the base PHI. 1415 ++NumPHICSEs; 1416 DuplicatePN->replaceAllUsesWith(PN); 1417 ToRemove.insert(DuplicatePN); 1418 Changed = true; 1419 1420 // The RAUW can change PHIs that we already visited. 1421 I = BB->begin(); 1422 break; // Start over from the beginning. 1423 } 1424 } 1425 return Changed; 1426 } 1427 1428 static bool 1429 EliminateDuplicatePHINodesSetBasedImpl(BasicBlock *BB, 1430 SmallPtrSetImpl<PHINode *> &ToRemove) { 1431 // This implementation doesn't currently consider undef operands 1432 // specially. Theoretically, two phis which are identical except for 1433 // one having an undef where the other doesn't could be collapsed. 1434 1435 struct PHIDenseMapInfo { 1436 static PHINode *getEmptyKey() { 1437 return DenseMapInfo<PHINode *>::getEmptyKey(); 1438 } 1439 1440 static PHINode *getTombstoneKey() { 1441 return DenseMapInfo<PHINode *>::getTombstoneKey(); 1442 } 1443 1444 static bool isSentinel(PHINode *PN) { 1445 return PN == getEmptyKey() || PN == getTombstoneKey(); 1446 } 1447 1448 // WARNING: this logic must be kept in sync with 1449 // Instruction::isIdenticalToWhenDefined()! 1450 static unsigned getHashValueImpl(PHINode *PN) { 1451 // Compute a hash value on the operands. Instcombine will likely have 1452 // sorted them, which helps expose duplicates, but we have to check all 1453 // the operands to be safe in case instcombine hasn't run. 1454 return static_cast<unsigned>(hash_combine( 1455 hash_combine_range(PN->value_op_begin(), PN->value_op_end()), 1456 hash_combine_range(PN->block_begin(), PN->block_end()))); 1457 } 1458 1459 static unsigned getHashValue(PHINode *PN) { 1460 #ifndef NDEBUG 1461 // If -phicse-debug-hash was specified, return a constant -- this 1462 // will force all hashing to collide, so we'll exhaustively search 1463 // the table for a match, and the assertion in isEqual will fire if 1464 // there's a bug causing equal keys to hash differently. 1465 if (PHICSEDebugHash) 1466 return 0; 1467 #endif 1468 return getHashValueImpl(PN); 1469 } 1470 1471 static bool isEqualImpl(PHINode *LHS, PHINode *RHS) { 1472 if (isSentinel(LHS) || isSentinel(RHS)) 1473 return LHS == RHS; 1474 return LHS->isIdenticalTo(RHS); 1475 } 1476 1477 static bool isEqual(PHINode *LHS, PHINode *RHS) { 1478 // These comparisons are nontrivial, so assert that equality implies 1479 // hash equality (DenseMap demands this as an invariant). 1480 bool Result = isEqualImpl(LHS, RHS); 1481 assert(!Result || (isSentinel(LHS) && LHS == RHS) || 1482 getHashValueImpl(LHS) == getHashValueImpl(RHS)); 1483 return Result; 1484 } 1485 }; 1486 1487 // Set of unique PHINodes. 1488 DenseSet<PHINode *, PHIDenseMapInfo> PHISet; 1489 PHISet.reserve(4 * PHICSENumPHISmallSize); 1490 1491 // Examine each PHI. 1492 bool Changed = false; 1493 for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { 1494 if (ToRemove.contains(PN)) 1495 continue; 1496 auto Inserted = PHISet.insert(PN); 1497 if (!Inserted.second) { 1498 // A duplicate. Replace this PHI with its duplicate. 1499 ++NumPHICSEs; 1500 PN->replaceAllUsesWith(*Inserted.first); 1501 ToRemove.insert(PN); 1502 Changed = true; 1503 1504 // The RAUW can change PHIs that we already visited. Start over from the 1505 // beginning. 1506 PHISet.clear(); 1507 I = BB->begin(); 1508 } 1509 } 1510 1511 return Changed; 1512 } 1513 1514 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB, 1515 SmallPtrSetImpl<PHINode *> &ToRemove) { 1516 if ( 1517 #ifndef NDEBUG 1518 !PHICSEDebugHash && 1519 #endif 1520 hasNItemsOrLess(BB->phis(), PHICSENumPHISmallSize)) 1521 return EliminateDuplicatePHINodesNaiveImpl(BB, ToRemove); 1522 return EliminateDuplicatePHINodesSetBasedImpl(BB, ToRemove); 1523 } 1524 1525 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { 1526 SmallPtrSet<PHINode *, 8> ToRemove; 1527 bool Changed = EliminateDuplicatePHINodes(BB, ToRemove); 1528 for (PHINode *PN : ToRemove) 1529 PN->eraseFromParent(); 1530 return Changed; 1531 } 1532 1533 Align llvm::tryEnforceAlignment(Value *V, Align PrefAlign, 1534 const DataLayout &DL) { 1535 V = V->stripPointerCasts(); 1536 1537 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1538 // TODO: Ideally, this function would not be called if PrefAlign is smaller 1539 // than the current alignment, as the known bits calculation should have 1540 // already taken it into account. However, this is not always the case, 1541 // as computeKnownBits() has a depth limit, while stripPointerCasts() 1542 // doesn't. 1543 Align CurrentAlign = AI->getAlign(); 1544 if (PrefAlign <= CurrentAlign) 1545 return CurrentAlign; 1546 1547 // If the preferred alignment is greater than the natural stack alignment 1548 // then don't round up. This avoids dynamic stack realignment. 1549 MaybeAlign StackAlign = DL.getStackAlignment(); 1550 if (StackAlign && PrefAlign > *StackAlign) 1551 return CurrentAlign; 1552 AI->setAlignment(PrefAlign); 1553 return PrefAlign; 1554 } 1555 1556 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1557 // TODO: as above, this shouldn't be necessary. 1558 Align CurrentAlign = GO->getPointerAlignment(DL); 1559 if (PrefAlign <= CurrentAlign) 1560 return CurrentAlign; 1561 1562 // If there is a large requested alignment and we can, bump up the alignment 1563 // of the global. If the memory we set aside for the global may not be the 1564 // memory used by the final program then it is impossible for us to reliably 1565 // enforce the preferred alignment. 1566 if (!GO->canIncreaseAlignment()) 1567 return CurrentAlign; 1568 1569 if (GO->isThreadLocal()) { 1570 unsigned MaxTLSAlign = GO->getParent()->getMaxTLSAlignment() / CHAR_BIT; 1571 if (MaxTLSAlign && PrefAlign > Align(MaxTLSAlign)) 1572 PrefAlign = Align(MaxTLSAlign); 1573 } 1574 1575 GO->setAlignment(PrefAlign); 1576 return PrefAlign; 1577 } 1578 1579 return Align(1); 1580 } 1581 1582 Align llvm::getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 1583 const DataLayout &DL, 1584 const Instruction *CxtI, 1585 AssumptionCache *AC, 1586 const DominatorTree *DT) { 1587 assert(V->getType()->isPointerTy() && 1588 "getOrEnforceKnownAlignment expects a pointer!"); 1589 1590 KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); 1591 unsigned TrailZ = Known.countMinTrailingZeros(); 1592 1593 // Avoid trouble with ridiculously large TrailZ values, such as 1594 // those computed from a null pointer. 1595 // LLVM doesn't support alignments larger than (1 << MaxAlignmentExponent). 1596 TrailZ = std::min(TrailZ, +Value::MaxAlignmentExponent); 1597 1598 Align Alignment = Align(1ull << std::min(Known.getBitWidth() - 1, TrailZ)); 1599 1600 if (PrefAlign && *PrefAlign > Alignment) 1601 Alignment = std::max(Alignment, tryEnforceAlignment(V, *PrefAlign, DL)); 1602 1603 // We don't need to make any adjustment. 1604 return Alignment; 1605 } 1606 1607 ///===---------------------------------------------------------------------===// 1608 /// Dbg Intrinsic utilities 1609 /// 1610 1611 /// See if there is a dbg.value intrinsic for DIVar for the PHI node. 1612 static bool PhiHasDebugValue(DILocalVariable *DIVar, 1613 DIExpression *DIExpr, 1614 PHINode *APN) { 1615 // Since we can't guarantee that the original dbg.declare intrinsic 1616 // is removed by LowerDbgDeclare(), we need to make sure that we are 1617 // not inserting the same dbg.value intrinsic over and over. 1618 SmallVector<DbgValueInst *, 1> DbgValues; 1619 SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; 1620 findDbgValues(DbgValues, APN, &DbgVariableRecords); 1621 for (auto *DVI : DbgValues) { 1622 assert(is_contained(DVI->getValues(), APN)); 1623 if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) 1624 return true; 1625 } 1626 for (auto *DVR : DbgVariableRecords) { 1627 assert(is_contained(DVR->location_ops(), APN)); 1628 if ((DVR->getVariable() == DIVar) && (DVR->getExpression() == DIExpr)) 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 /// Check if the alloc size of \p ValTy is large enough to cover the variable 1635 /// (or fragment of the variable) described by \p DII. 1636 /// 1637 /// This is primarily intended as a helper for the different 1638 /// ConvertDebugDeclareToDebugValue functions. The dbg.declare that is converted 1639 /// describes an alloca'd variable, so we need to use the alloc size of the 1640 /// value when doing the comparison. E.g. an i1 value will be identified as 1641 /// covering an n-bit fragment, if the store size of i1 is at least n bits. 1642 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { 1643 const DataLayout &DL = DII->getDataLayout(); 1644 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1645 if (std::optional<uint64_t> FragmentSize = 1646 DII->getExpression()->getActiveBits(DII->getVariable())) 1647 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1648 1649 // We can't always calculate the size of the DI variable (e.g. if it is a 1650 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1651 // intead. 1652 if (DII->isAddressOfVariable()) { 1653 // DII should have exactly 1 location when it is an address. 1654 assert(DII->getNumVariableLocationOps() == 1 && 1655 "address of variable must have exactly 1 location operand."); 1656 if (auto *AI = 1657 dyn_cast_or_null<AllocaInst>(DII->getVariableLocationOp(0))) { 1658 if (std::optional<TypeSize> FragmentSize = 1659 AI->getAllocationSizeInBits(DL)) { 1660 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1661 } 1662 } 1663 } 1664 // Could not determine size of variable. Conservatively return false. 1665 return false; 1666 } 1667 // RemoveDIs: duplicate implementation of the above, using DbgVariableRecords, 1668 // the replacement for dbg.values. 1669 static bool valueCoversEntireFragment(Type *ValTy, DbgVariableRecord *DVR) { 1670 const DataLayout &DL = DVR->getModule()->getDataLayout(); 1671 TypeSize ValueSize = DL.getTypeAllocSizeInBits(ValTy); 1672 if (std::optional<uint64_t> FragmentSize = 1673 DVR->getExpression()->getActiveBits(DVR->getVariable())) 1674 return TypeSize::isKnownGE(ValueSize, TypeSize::getFixed(*FragmentSize)); 1675 1676 // We can't always calculate the size of the DI variable (e.g. if it is a 1677 // VLA). Try to use the size of the alloca that the dbg intrinsic describes 1678 // intead. 1679 if (DVR->isAddressOfVariable()) { 1680 // DVR should have exactly 1 location when it is an address. 1681 assert(DVR->getNumVariableLocationOps() == 1 && 1682 "address of variable must have exactly 1 location operand."); 1683 if (auto *AI = 1684 dyn_cast_or_null<AllocaInst>(DVR->getVariableLocationOp(0))) { 1685 if (std::optional<TypeSize> FragmentSize = AI->getAllocationSizeInBits(DL)) { 1686 return TypeSize::isKnownGE(ValueSize, *FragmentSize); 1687 } 1688 } 1689 } 1690 // Could not determine size of variable. Conservatively return false. 1691 return false; 1692 } 1693 1694 static void insertDbgValueOrDbgVariableRecord(DIBuilder &Builder, Value *DV, 1695 DILocalVariable *DIVar, 1696 DIExpression *DIExpr, 1697 const DebugLoc &NewLoc, 1698 BasicBlock::iterator Instr) { 1699 if (!UseNewDbgInfoFormat) { 1700 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1701 (Instruction *)nullptr); 1702 DbgVal.get<Instruction *>()->insertBefore(Instr); 1703 } else { 1704 // RemoveDIs: if we're using the new debug-info format, allocate a 1705 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1706 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1707 DbgVariableRecord *DV = 1708 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1709 Instr->getParent()->insertDbgRecordBefore(DV, Instr); 1710 } 1711 } 1712 1713 static void insertDbgValueOrDbgVariableRecordAfter( 1714 DIBuilder &Builder, Value *DV, DILocalVariable *DIVar, DIExpression *DIExpr, 1715 const DebugLoc &NewLoc, BasicBlock::iterator Instr) { 1716 if (!UseNewDbgInfoFormat) { 1717 auto DbgVal = Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, NewLoc, 1718 (Instruction *)nullptr); 1719 DbgVal.get<Instruction *>()->insertAfter(&*Instr); 1720 } else { 1721 // RemoveDIs: if we're using the new debug-info format, allocate a 1722 // DbgVariableRecord directly instead of a dbg.value intrinsic. 1723 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1724 DbgVariableRecord *DV = 1725 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1726 Instr->getParent()->insertDbgRecordAfter(DV, &*Instr); 1727 } 1728 } 1729 1730 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 1731 /// that has an associated llvm.dbg.declare intrinsic. 1732 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1733 StoreInst *SI, DIBuilder &Builder) { 1734 assert(DII->isAddressOfVariable() || isa<DbgAssignIntrinsic>(DII)); 1735 auto *DIVar = DII->getVariable(); 1736 assert(DIVar && "Missing variable"); 1737 auto *DIExpr = DII->getExpression(); 1738 Value *DV = SI->getValueOperand(); 1739 1740 DebugLoc NewLoc = getDebugValueLoc(DII); 1741 1742 // If the alloca describes the variable itself, i.e. the expression in the 1743 // dbg.declare doesn't start with a dereference, we can perform the 1744 // conversion if the value covers the entire fragment of DII. 1745 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1746 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1747 // We conservatively ignore other dereferences, because the following two are 1748 // not equivalent: 1749 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1750 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1751 // The former is adding 2 to the address of the variable, whereas the latter 1752 // is adding 2 to the value of the variable. As such, we insist on just a 1753 // deref expression. 1754 bool CanConvert = 1755 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1756 valueCoversEntireFragment(DV->getType(), DII)); 1757 if (CanConvert) { 1758 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1759 SI->getIterator()); 1760 return; 1761 } 1762 1763 // FIXME: If storing to a part of the variable described by the dbg.declare, 1764 // then we want to insert a dbg.value for the corresponding fragment. 1765 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DII 1766 << '\n'); 1767 // For now, when there is a store to parts of the variable (but we do not 1768 // know which part) we insert an dbg.value intrinsic to indicate that we 1769 // know nothing about the variable's content. 1770 DV = PoisonValue::get(DV->getType()); 1771 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1772 SI->getIterator()); 1773 } 1774 1775 static DIExpression *dropInitialDeref(const DIExpression *DIExpr) { 1776 int NumEltDropped = DIExpr->getElements()[0] == dwarf::DW_OP_LLVM_arg ? 3 : 1; 1777 return DIExpression::get(DIExpr->getContext(), 1778 DIExpr->getElements().drop_front(NumEltDropped)); 1779 } 1780 1781 void llvm::InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 1782 DIBuilder &Builder) { 1783 auto *DIVar = DII->getVariable(); 1784 assert(DIVar && "Missing variable"); 1785 auto *DIExpr = DII->getExpression(); 1786 DIExpr = dropInitialDeref(DIExpr); 1787 Value *DV = SI->getValueOperand(); 1788 1789 DebugLoc NewLoc = getDebugValueLoc(DII); 1790 1791 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1792 SI->getIterator()); 1793 } 1794 1795 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 1796 /// that has an associated llvm.dbg.declare intrinsic. 1797 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1798 LoadInst *LI, DIBuilder &Builder) { 1799 auto *DIVar = DII->getVariable(); 1800 auto *DIExpr = DII->getExpression(); 1801 assert(DIVar && "Missing variable"); 1802 1803 if (!valueCoversEntireFragment(LI->getType(), DII)) { 1804 // FIXME: If only referring to a part of the variable described by the 1805 // dbg.declare, then we want to insert a dbg.value for the corresponding 1806 // fragment. 1807 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1808 << *DII << '\n'); 1809 return; 1810 } 1811 1812 DebugLoc NewLoc = getDebugValueLoc(DII); 1813 1814 // We are now tracking the loaded value instead of the address. In the 1815 // future if multi-location support is added to the IR, it might be 1816 // preferable to keep tracking both the loaded value and the original 1817 // address in case the alloca can not be elided. 1818 insertDbgValueOrDbgVariableRecordAfter(Builder, LI, DIVar, DIExpr, NewLoc, 1819 LI->getIterator()); 1820 } 1821 1822 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, 1823 StoreInst *SI, DIBuilder &Builder) { 1824 assert(DVR->isAddressOfVariable() || DVR->isDbgAssign()); 1825 auto *DIVar = DVR->getVariable(); 1826 assert(DIVar && "Missing variable"); 1827 auto *DIExpr = DVR->getExpression(); 1828 Value *DV = SI->getValueOperand(); 1829 1830 DebugLoc NewLoc = getDebugValueLoc(DVR); 1831 1832 // If the alloca describes the variable itself, i.e. the expression in the 1833 // dbg.declare doesn't start with a dereference, we can perform the 1834 // conversion if the value covers the entire fragment of DII. 1835 // If the alloca describes the *address* of DIVar, i.e. DIExpr is 1836 // *just* a DW_OP_deref, we use DV as is for the dbg.value. 1837 // We conservatively ignore other dereferences, because the following two are 1838 // not equivalent: 1839 // dbg.declare(alloca, ..., !Expr(deref, plus_uconstant, 2)) 1840 // dbg.value(DV, ..., !Expr(deref, plus_uconstant, 2)) 1841 // The former is adding 2 to the address of the variable, whereas the latter 1842 // is adding 2 to the value of the variable. As such, we insist on just a 1843 // deref expression. 1844 bool CanConvert = 1845 DIExpr->isDeref() || (!DIExpr->startsWithDeref() && 1846 valueCoversEntireFragment(DV->getType(), DVR)); 1847 if (CanConvert) { 1848 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1849 SI->getIterator()); 1850 return; 1851 } 1852 1853 // FIXME: If storing to a part of the variable described by the dbg.declare, 1854 // then we want to insert a dbg.value for the corresponding fragment. 1855 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " << *DVR 1856 << '\n'); 1857 assert(UseNewDbgInfoFormat); 1858 1859 // For now, when there is a store to parts of the variable (but we do not 1860 // know which part) we insert an dbg.value intrinsic to indicate that we 1861 // know nothing about the variable's content. 1862 DV = PoisonValue::get(DV->getType()); 1863 ValueAsMetadata *DVAM = ValueAsMetadata::get(DV); 1864 DbgVariableRecord *NewDVR = 1865 new DbgVariableRecord(DVAM, DIVar, DIExpr, NewLoc.get()); 1866 SI->getParent()->insertDbgRecordBefore(NewDVR, SI->getIterator()); 1867 } 1868 1869 void llvm::InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 1870 DIBuilder &Builder) { 1871 auto *DIVar = DVR->getVariable(); 1872 assert(DIVar && "Missing variable"); 1873 auto *DIExpr = DVR->getExpression(); 1874 DIExpr = dropInitialDeref(DIExpr); 1875 Value *DV = SI->getValueOperand(); 1876 1877 DebugLoc NewLoc = getDebugValueLoc(DVR); 1878 1879 insertDbgValueOrDbgVariableRecord(Builder, DV, DIVar, DIExpr, NewLoc, 1880 SI->getIterator()); 1881 } 1882 1883 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 1884 /// llvm.dbg.declare intrinsic. 1885 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 1886 PHINode *APN, DIBuilder &Builder) { 1887 auto *DIVar = DII->getVariable(); 1888 auto *DIExpr = DII->getExpression(); 1889 assert(DIVar && "Missing variable"); 1890 1891 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1892 return; 1893 1894 if (!valueCoversEntireFragment(APN->getType(), DII)) { 1895 // FIXME: If only referring to a part of the variable described by the 1896 // dbg.declare, then we want to insert a dbg.value for the corresponding 1897 // fragment. 1898 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " 1899 << *DII << '\n'); 1900 return; 1901 } 1902 1903 BasicBlock *BB = APN->getParent(); 1904 auto InsertionPt = BB->getFirstInsertionPt(); 1905 1906 DebugLoc NewLoc = getDebugValueLoc(DII); 1907 1908 // The block may be a catchswitch block, which does not have a valid 1909 // insertion point. 1910 // FIXME: Insert dbg.value markers in the successors when appropriate. 1911 if (InsertionPt != BB->end()) { 1912 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1913 InsertionPt); 1914 } 1915 } 1916 1917 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 1918 DIBuilder &Builder) { 1919 auto *DIVar = DVR->getVariable(); 1920 auto *DIExpr = DVR->getExpression(); 1921 assert(DIVar && "Missing variable"); 1922 1923 if (!valueCoversEntireFragment(LI->getType(), DVR)) { 1924 // FIXME: If only referring to a part of the variable described by the 1925 // dbg.declare, then we want to insert a DbgVariableRecord for the 1926 // corresponding fragment. 1927 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1928 << *DVR << '\n'); 1929 return; 1930 } 1931 1932 DebugLoc NewLoc = getDebugValueLoc(DVR); 1933 1934 // We are now tracking the loaded value instead of the address. In the 1935 // future if multi-location support is added to the IR, it might be 1936 // preferable to keep tracking both the loaded value and the original 1937 // address in case the alloca can not be elided. 1938 assert(UseNewDbgInfoFormat); 1939 1940 // Create a DbgVariableRecord directly and insert. 1941 ValueAsMetadata *LIVAM = ValueAsMetadata::get(LI); 1942 DbgVariableRecord *DV = 1943 new DbgVariableRecord(LIVAM, DIVar, DIExpr, NewLoc.get()); 1944 LI->getParent()->insertDbgRecordAfter(DV, LI); 1945 } 1946 1947 /// Determine whether this alloca is either a VLA or an array. 1948 static bool isArray(AllocaInst *AI) { 1949 return AI->isArrayAllocation() || 1950 (AI->getAllocatedType() && AI->getAllocatedType()->isArrayTy()); 1951 } 1952 1953 /// Determine whether this alloca is a structure. 1954 static bool isStructure(AllocaInst *AI) { 1955 return AI->getAllocatedType() && AI->getAllocatedType()->isStructTy(); 1956 } 1957 void llvm::ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *APN, 1958 DIBuilder &Builder) { 1959 auto *DIVar = DVR->getVariable(); 1960 auto *DIExpr = DVR->getExpression(); 1961 assert(DIVar && "Missing variable"); 1962 1963 if (PhiHasDebugValue(DIVar, DIExpr, APN)) 1964 return; 1965 1966 if (!valueCoversEntireFragment(APN->getType(), DVR)) { 1967 // FIXME: If only referring to a part of the variable described by the 1968 // dbg.declare, then we want to insert a DbgVariableRecord for the 1969 // corresponding fragment. 1970 LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to DbgVariableRecord: " 1971 << *DVR << '\n'); 1972 return; 1973 } 1974 1975 BasicBlock *BB = APN->getParent(); 1976 auto InsertionPt = BB->getFirstInsertionPt(); 1977 1978 DebugLoc NewLoc = getDebugValueLoc(DVR); 1979 1980 // The block may be a catchswitch block, which does not have a valid 1981 // insertion point. 1982 // FIXME: Insert DbgVariableRecord markers in the successors when appropriate. 1983 if (InsertionPt != BB->end()) { 1984 insertDbgValueOrDbgVariableRecord(Builder, APN, DIVar, DIExpr, NewLoc, 1985 InsertionPt); 1986 } 1987 } 1988 1989 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set 1990 /// of llvm.dbg.value intrinsics. 1991 bool llvm::LowerDbgDeclare(Function &F) { 1992 bool Changed = false; 1993 DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); 1994 SmallVector<DbgDeclareInst *, 4> Dbgs; 1995 SmallVector<DbgVariableRecord *> DVRs; 1996 for (auto &FI : F) { 1997 for (Instruction &BI : FI) { 1998 if (auto *DDI = dyn_cast<DbgDeclareInst>(&BI)) 1999 Dbgs.push_back(DDI); 2000 for (DbgVariableRecord &DVR : filterDbgVars(BI.getDbgRecordRange())) { 2001 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) 2002 DVRs.push_back(&DVR); 2003 } 2004 } 2005 } 2006 2007 if (Dbgs.empty() && DVRs.empty()) 2008 return Changed; 2009 2010 auto LowerOne = [&](auto *DDI) { 2011 AllocaInst *AI = 2012 dyn_cast_or_null<AllocaInst>(DDI->getVariableLocationOp(0)); 2013 // If this is an alloca for a scalar variable, insert a dbg.value 2014 // at each load and store to the alloca and erase the dbg.declare. 2015 // The dbg.values allow tracking a variable even if it is not 2016 // stored on the stack, while the dbg.declare can only describe 2017 // the stack slot (and at a lexical-scope granularity). Later 2018 // passes will attempt to elide the stack slot. 2019 if (!AI || isArray(AI) || isStructure(AI)) 2020 return; 2021 2022 // A volatile load/store means that the alloca can't be elided anyway. 2023 if (llvm::any_of(AI->users(), [](User *U) -> bool { 2024 if (LoadInst *LI = dyn_cast<LoadInst>(U)) 2025 return LI->isVolatile(); 2026 if (StoreInst *SI = dyn_cast<StoreInst>(U)) 2027 return SI->isVolatile(); 2028 return false; 2029 })) 2030 return; 2031 2032 SmallVector<const Value *, 8> WorkList; 2033 WorkList.push_back(AI); 2034 while (!WorkList.empty()) { 2035 const Value *V = WorkList.pop_back_val(); 2036 for (const auto &AIUse : V->uses()) { 2037 User *U = AIUse.getUser(); 2038 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2039 if (AIUse.getOperandNo() == 1) 2040 ConvertDebugDeclareToDebugValue(DDI, SI, DIB); 2041 } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 2042 ConvertDebugDeclareToDebugValue(DDI, LI, DIB); 2043 } else if (CallInst *CI = dyn_cast<CallInst>(U)) { 2044 // This is a call by-value or some other instruction that takes a 2045 // pointer to the variable. Insert a *value* intrinsic that describes 2046 // the variable by dereferencing the alloca. 2047 if (!CI->isLifetimeStartOrEnd()) { 2048 DebugLoc NewLoc = getDebugValueLoc(DDI); 2049 auto *DerefExpr = 2050 DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); 2051 insertDbgValueOrDbgVariableRecord(DIB, AI, DDI->getVariable(), 2052 DerefExpr, NewLoc, 2053 CI->getIterator()); 2054 } 2055 } else if (BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 2056 if (BI->getType()->isPointerTy()) 2057 WorkList.push_back(BI); 2058 } 2059 } 2060 } 2061 DDI->eraseFromParent(); 2062 Changed = true; 2063 }; 2064 2065 for_each(Dbgs, LowerOne); 2066 for_each(DVRs, LowerOne); 2067 2068 if (Changed) 2069 for (BasicBlock &BB : F) 2070 RemoveRedundantDbgInstrs(&BB); 2071 2072 return Changed; 2073 } 2074 2075 // RemoveDIs: re-implementation of insertDebugValuesForPHIs, but which pulls the 2076 // debug-info out of the block's DbgVariableRecords rather than dbg.value 2077 // intrinsics. 2078 static void 2079 insertDbgVariableRecordsForPHIs(BasicBlock *BB, 2080 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2081 assert(BB && "No BasicBlock to clone DbgVariableRecord(s) from."); 2082 if (InsertedPHIs.size() == 0) 2083 return; 2084 2085 // Map existing PHI nodes to their DbgVariableRecords. 2086 DenseMap<Value *, DbgVariableRecord *> DbgValueMap; 2087 for (auto &I : *BB) { 2088 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 2089 for (Value *V : DVR.location_ops()) 2090 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2091 DbgValueMap.insert({Loc, &DVR}); 2092 } 2093 } 2094 if (DbgValueMap.size() == 0) 2095 return; 2096 2097 // Map a pair of the destination BB and old DbgVariableRecord to the new 2098 // DbgVariableRecord, so that if a DbgVariableRecord is being rewritten to use 2099 // more than one of the inserted PHIs in the same destination BB, we can 2100 // update the same DbgVariableRecord with all the new PHIs instead of creating 2101 // one copy for each. 2102 MapVector<std::pair<BasicBlock *, DbgVariableRecord *>, DbgVariableRecord *> 2103 NewDbgValueMap; 2104 // Then iterate through the new PHIs and look to see if they use one of the 2105 // previously mapped PHIs. If so, create a new DbgVariableRecord that will 2106 // propagate the info through the new PHI. If we use more than one new PHI in 2107 // a single destination BB with the same old dbg.value, merge the updates so 2108 // that we get a single new DbgVariableRecord with all the new PHIs. 2109 for (auto PHI : InsertedPHIs) { 2110 BasicBlock *Parent = PHI->getParent(); 2111 // Avoid inserting a debug-info record into an EH block. 2112 if (Parent->getFirstNonPHI()->isEHPad()) 2113 continue; 2114 for (auto VI : PHI->operand_values()) { 2115 auto V = DbgValueMap.find(VI); 2116 if (V != DbgValueMap.end()) { 2117 DbgVariableRecord *DbgII = cast<DbgVariableRecord>(V->second); 2118 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2119 if (NewDI == NewDbgValueMap.end()) { 2120 DbgVariableRecord *NewDbgII = DbgII->clone(); 2121 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2122 } 2123 DbgVariableRecord *NewDbgII = NewDI->second; 2124 // If PHI contains VI as an operand more than once, we may 2125 // replaced it in NewDbgII; confirm that it is present. 2126 if (is_contained(NewDbgII->location_ops(), VI)) 2127 NewDbgII->replaceVariableLocationOp(VI, PHI); 2128 } 2129 } 2130 } 2131 // Insert the new DbgVariableRecords into their destination blocks. 2132 for (auto DI : NewDbgValueMap) { 2133 BasicBlock *Parent = DI.first.first; 2134 DbgVariableRecord *NewDbgII = DI.second; 2135 auto InsertionPt = Parent->getFirstInsertionPt(); 2136 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2137 2138 Parent->insertDbgRecordBefore(NewDbgII, InsertionPt); 2139 } 2140 } 2141 2142 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 2143 void llvm::insertDebugValuesForPHIs(BasicBlock *BB, 2144 SmallVectorImpl<PHINode *> &InsertedPHIs) { 2145 assert(BB && "No BasicBlock to clone dbg.value(s) from."); 2146 if (InsertedPHIs.size() == 0) 2147 return; 2148 2149 insertDbgVariableRecordsForPHIs(BB, InsertedPHIs); 2150 2151 // Map existing PHI nodes to their dbg.values. 2152 ValueToValueMapTy DbgValueMap; 2153 for (auto &I : *BB) { 2154 if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { 2155 for (Value *V : DbgII->location_ops()) 2156 if (auto *Loc = dyn_cast_or_null<PHINode>(V)) 2157 DbgValueMap.insert({Loc, DbgII}); 2158 } 2159 } 2160 if (DbgValueMap.size() == 0) 2161 return; 2162 2163 // Map a pair of the destination BB and old dbg.value to the new dbg.value, 2164 // so that if a dbg.value is being rewritten to use more than one of the 2165 // inserted PHIs in the same destination BB, we can update the same dbg.value 2166 // with all the new PHIs instead of creating one copy for each. 2167 MapVector<std::pair<BasicBlock *, DbgVariableIntrinsic *>, 2168 DbgVariableIntrinsic *> 2169 NewDbgValueMap; 2170 // Then iterate through the new PHIs and look to see if they use one of the 2171 // previously mapped PHIs. If so, create a new dbg.value intrinsic that will 2172 // propagate the info through the new PHI. If we use more than one new PHI in 2173 // a single destination BB with the same old dbg.value, merge the updates so 2174 // that we get a single new dbg.value with all the new PHIs. 2175 for (auto *PHI : InsertedPHIs) { 2176 BasicBlock *Parent = PHI->getParent(); 2177 // Avoid inserting an intrinsic into an EH block. 2178 if (Parent->getFirstNonPHI()->isEHPad()) 2179 continue; 2180 for (auto *VI : PHI->operand_values()) { 2181 auto V = DbgValueMap.find(VI); 2182 if (V != DbgValueMap.end()) { 2183 auto *DbgII = cast<DbgVariableIntrinsic>(V->second); 2184 auto NewDI = NewDbgValueMap.find({Parent, DbgII}); 2185 if (NewDI == NewDbgValueMap.end()) { 2186 auto *NewDbgII = cast<DbgVariableIntrinsic>(DbgII->clone()); 2187 NewDI = NewDbgValueMap.insert({{Parent, DbgII}, NewDbgII}).first; 2188 } 2189 DbgVariableIntrinsic *NewDbgII = NewDI->second; 2190 // If PHI contains VI as an operand more than once, we may 2191 // replaced it in NewDbgII; confirm that it is present. 2192 if (is_contained(NewDbgII->location_ops(), VI)) 2193 NewDbgII->replaceVariableLocationOp(VI, PHI); 2194 } 2195 } 2196 } 2197 // Insert thew new dbg.values into their destination blocks. 2198 for (auto DI : NewDbgValueMap) { 2199 BasicBlock *Parent = DI.first.first; 2200 auto *NewDbgII = DI.second; 2201 auto InsertionPt = Parent->getFirstInsertionPt(); 2202 assert(InsertionPt != Parent->end() && "Ill-formed basic block"); 2203 NewDbgII->insertBefore(&*InsertionPt); 2204 } 2205 } 2206 2207 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, 2208 DIBuilder &Builder, uint8_t DIExprFlags, 2209 int Offset) { 2210 TinyPtrVector<DbgDeclareInst *> DbgDeclares = findDbgDeclares(Address); 2211 TinyPtrVector<DbgVariableRecord *> DVRDeclares = findDVRDeclares(Address); 2212 2213 auto ReplaceOne = [&](auto *DII) { 2214 assert(DII->getVariable() && "Missing variable"); 2215 auto *DIExpr = DII->getExpression(); 2216 DIExpr = DIExpression::prepend(DIExpr, DIExprFlags, Offset); 2217 DII->setExpression(DIExpr); 2218 DII->replaceVariableLocationOp(Address, NewAddress); 2219 }; 2220 2221 for_each(DbgDeclares, ReplaceOne); 2222 for_each(DVRDeclares, ReplaceOne); 2223 2224 return !DbgDeclares.empty() || !DVRDeclares.empty(); 2225 } 2226 2227 static void updateOneDbgValueForAlloca(const DebugLoc &Loc, 2228 DILocalVariable *DIVar, 2229 DIExpression *DIExpr, Value *NewAddress, 2230 DbgValueInst *DVI, 2231 DbgVariableRecord *DVR, 2232 DIBuilder &Builder, int Offset) { 2233 assert(DIVar && "Missing variable"); 2234 2235 // This is an alloca-based dbg.value/DbgVariableRecord. The first thing it 2236 // should do with the alloca pointer is dereference it. Otherwise we don't 2237 // know how to handle it and give up. 2238 if (!DIExpr || DIExpr->getNumElements() < 1 || 2239 DIExpr->getElement(0) != dwarf::DW_OP_deref) 2240 return; 2241 2242 // Insert the offset before the first deref. 2243 if (Offset) 2244 DIExpr = DIExpression::prepend(DIExpr, 0, Offset); 2245 2246 if (DVI) { 2247 DVI->setExpression(DIExpr); 2248 DVI->replaceVariableLocationOp(0u, NewAddress); 2249 } else { 2250 assert(DVR); 2251 DVR->setExpression(DIExpr); 2252 DVR->replaceVariableLocationOp(0u, NewAddress); 2253 } 2254 } 2255 2256 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 2257 DIBuilder &Builder, int Offset) { 2258 SmallVector<DbgValueInst *, 1> DbgUsers; 2259 SmallVector<DbgVariableRecord *, 1> DPUsers; 2260 findDbgValues(DbgUsers, AI, &DPUsers); 2261 2262 // Attempt to replace dbg.values that use this alloca. 2263 for (auto *DVI : DbgUsers) 2264 updateOneDbgValueForAlloca(DVI->getDebugLoc(), DVI->getVariable(), 2265 DVI->getExpression(), NewAllocaAddress, DVI, 2266 nullptr, Builder, Offset); 2267 2268 // Replace any DbgVariableRecords that use this alloca. 2269 for (DbgVariableRecord *DVR : DPUsers) 2270 updateOneDbgValueForAlloca(DVR->getDebugLoc(), DVR->getVariable(), 2271 DVR->getExpression(), NewAllocaAddress, nullptr, 2272 DVR, Builder, Offset); 2273 } 2274 2275 /// Where possible to salvage debug information for \p I do so. 2276 /// If not possible mark undef. 2277 void llvm::salvageDebugInfo(Instruction &I) { 2278 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 2279 SmallVector<DbgVariableRecord *, 1> DPUsers; 2280 findDbgUsers(DbgUsers, &I, &DPUsers); 2281 salvageDebugInfoForDbgValues(I, DbgUsers, DPUsers); 2282 } 2283 2284 template <typename T> static void salvageDbgAssignAddress(T *Assign) { 2285 Instruction *I = dyn_cast<Instruction>(Assign->getAddress()); 2286 // Only instructions can be salvaged at the moment. 2287 if (!I) 2288 return; 2289 2290 assert(!Assign->getAddressExpression()->getFragmentInfo().has_value() && 2291 "address-expression shouldn't have fragment info"); 2292 2293 // The address component of a dbg.assign cannot be variadic. 2294 uint64_t CurrentLocOps = 0; 2295 SmallVector<Value *, 4> AdditionalValues; 2296 SmallVector<uint64_t, 16> Ops; 2297 Value *NewV = salvageDebugInfoImpl(*I, CurrentLocOps, Ops, AdditionalValues); 2298 2299 // Check if the salvage failed. 2300 if (!NewV) 2301 return; 2302 2303 DIExpression *SalvagedExpr = DIExpression::appendOpsToArg( 2304 Assign->getAddressExpression(), Ops, 0, /*StackValue=*/false); 2305 assert(!SalvagedExpr->getFragmentInfo().has_value() && 2306 "address-expression shouldn't have fragment info"); 2307 2308 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2309 2310 // Salvage succeeds if no additional values are required. 2311 if (AdditionalValues.empty()) { 2312 Assign->setAddress(NewV); 2313 Assign->setAddressExpression(SalvagedExpr); 2314 } else { 2315 Assign->setKillAddress(); 2316 } 2317 } 2318 2319 void llvm::salvageDebugInfoForDbgValues( 2320 Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers, 2321 ArrayRef<DbgVariableRecord *> DPUsers) { 2322 // These are arbitrary chosen limits on the maximum number of values and the 2323 // maximum size of a debug expression we can salvage up to, used for 2324 // performance reasons. 2325 const unsigned MaxDebugArgs = 16; 2326 const unsigned MaxExpressionSize = 128; 2327 bool Salvaged = false; 2328 2329 for (auto *DII : DbgUsers) { 2330 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DII)) { 2331 if (DAI->getAddress() == &I) { 2332 salvageDbgAssignAddress(DAI); 2333 Salvaged = true; 2334 } 2335 if (DAI->getValue() != &I) 2336 continue; 2337 } 2338 2339 // Do not add DW_OP_stack_value for DbgDeclare, because they are implicitly 2340 // pointing out the value as a DWARF memory location description. 2341 bool StackValue = isa<DbgValueInst>(DII); 2342 auto DIILocation = DII->location_ops(); 2343 assert( 2344 is_contained(DIILocation, &I) && 2345 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2346 SmallVector<Value *, 4> AdditionalValues; 2347 // `I` may appear more than once in DII's location ops, and each use of `I` 2348 // must be updated in the DIExpression and potentially have additional 2349 // values added; thus we call salvageDebugInfoImpl for each `I` instance in 2350 // DIILocation. 2351 Value *Op0 = nullptr; 2352 DIExpression *SalvagedExpr = DII->getExpression(); 2353 auto LocItr = find(DIILocation, &I); 2354 while (SalvagedExpr && LocItr != DIILocation.end()) { 2355 SmallVector<uint64_t, 16> Ops; 2356 unsigned LocNo = std::distance(DIILocation.begin(), LocItr); 2357 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2358 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2359 if (!Op0) 2360 break; 2361 SalvagedExpr = 2362 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2363 LocItr = std::find(++LocItr, DIILocation.end(), &I); 2364 } 2365 // salvageDebugInfoImpl should fail on examining the first element of 2366 // DbgUsers, or none of them. 2367 if (!Op0) 2368 break; 2369 2370 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2371 DII->replaceVariableLocationOp(&I, Op0); 2372 bool IsValidSalvageExpr = SalvagedExpr->getNumElements() <= MaxExpressionSize; 2373 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2374 DII->setExpression(SalvagedExpr); 2375 } else if (isa<DbgValueInst>(DII) && IsValidSalvageExpr && 2376 DII->getNumVariableLocationOps() + AdditionalValues.size() <= 2377 MaxDebugArgs) { 2378 DII->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2379 } else { 2380 // Do not salvage using DIArgList for dbg.declare, as it is not currently 2381 // supported in those instructions. Also do not salvage if the resulting 2382 // DIArgList would contain an unreasonably large number of values. 2383 DII->setKillLocation(); 2384 } 2385 LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); 2386 Salvaged = true; 2387 } 2388 // Duplicate of above block for DbgVariableRecords. 2389 for (auto *DVR : DPUsers) { 2390 if (DVR->isDbgAssign()) { 2391 if (DVR->getAddress() == &I) { 2392 salvageDbgAssignAddress(DVR); 2393 Salvaged = true; 2394 } 2395 if (DVR->getValue() != &I) 2396 continue; 2397 } 2398 2399 // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they 2400 // are implicitly pointing out the value as a DWARF memory location 2401 // description. 2402 bool StackValue = 2403 DVR->getType() != DbgVariableRecord::LocationType::Declare; 2404 auto DVRLocation = DVR->location_ops(); 2405 assert( 2406 is_contained(DVRLocation, &I) && 2407 "DbgVariableIntrinsic must use salvaged instruction as its location"); 2408 SmallVector<Value *, 4> AdditionalValues; 2409 // 'I' may appear more than once in DVR's location ops, and each use of 'I' 2410 // must be updated in the DIExpression and potentially have additional 2411 // values added; thus we call salvageDebugInfoImpl for each 'I' instance in 2412 // DVRLocation. 2413 Value *Op0 = nullptr; 2414 DIExpression *SalvagedExpr = DVR->getExpression(); 2415 auto LocItr = find(DVRLocation, &I); 2416 while (SalvagedExpr && LocItr != DVRLocation.end()) { 2417 SmallVector<uint64_t, 16> Ops; 2418 unsigned LocNo = std::distance(DVRLocation.begin(), LocItr); 2419 uint64_t CurrentLocOps = SalvagedExpr->getNumLocationOperands(); 2420 Op0 = salvageDebugInfoImpl(I, CurrentLocOps, Ops, AdditionalValues); 2421 if (!Op0) 2422 break; 2423 SalvagedExpr = 2424 DIExpression::appendOpsToArg(SalvagedExpr, Ops, LocNo, StackValue); 2425 LocItr = std::find(++LocItr, DVRLocation.end(), &I); 2426 } 2427 // salvageDebugInfoImpl should fail on examining the first element of 2428 // DbgUsers, or none of them. 2429 if (!Op0) 2430 break; 2431 2432 SalvagedExpr = SalvagedExpr->foldConstantMath(); 2433 DVR->replaceVariableLocationOp(&I, Op0); 2434 bool IsValidSalvageExpr = 2435 SalvagedExpr->getNumElements() <= MaxExpressionSize; 2436 if (AdditionalValues.empty() && IsValidSalvageExpr) { 2437 DVR->setExpression(SalvagedExpr); 2438 } else if (DVR->getType() != DbgVariableRecord::LocationType::Declare && 2439 IsValidSalvageExpr && 2440 DVR->getNumVariableLocationOps() + AdditionalValues.size() <= 2441 MaxDebugArgs) { 2442 DVR->addVariableLocationOps(AdditionalValues, SalvagedExpr); 2443 } else { 2444 // Do not salvage using DIArgList for dbg.addr/dbg.declare, as it is 2445 // currently only valid for stack value expressions. 2446 // Also do not salvage if the resulting DIArgList would contain an 2447 // unreasonably large number of values. 2448 DVR->setKillLocation(); 2449 } 2450 LLVM_DEBUG(dbgs() << "SALVAGE: " << DVR << '\n'); 2451 Salvaged = true; 2452 } 2453 2454 if (Salvaged) 2455 return; 2456 2457 for (auto *DII : DbgUsers) 2458 DII->setKillLocation(); 2459 2460 for (auto *DVR : DPUsers) 2461 DVR->setKillLocation(); 2462 } 2463 2464 Value *getSalvageOpsForGEP(GetElementPtrInst *GEP, const DataLayout &DL, 2465 uint64_t CurrentLocOps, 2466 SmallVectorImpl<uint64_t> &Opcodes, 2467 SmallVectorImpl<Value *> &AdditionalValues) { 2468 unsigned BitWidth = DL.getIndexSizeInBits(GEP->getPointerAddressSpace()); 2469 // Rewrite a GEP into a DIExpression. 2470 SmallMapVector<Value *, APInt, 4> VariableOffsets; 2471 APInt ConstantOffset(BitWidth, 0); 2472 if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset)) 2473 return nullptr; 2474 if (!VariableOffsets.empty() && !CurrentLocOps) { 2475 Opcodes.insert(Opcodes.begin(), {dwarf::DW_OP_LLVM_arg, 0}); 2476 CurrentLocOps = 1; 2477 } 2478 for (const auto &Offset : VariableOffsets) { 2479 AdditionalValues.push_back(Offset.first); 2480 assert(Offset.second.isStrictlyPositive() && 2481 "Expected strictly positive multiplier for offset."); 2482 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps++, dwarf::DW_OP_constu, 2483 Offset.second.getZExtValue(), dwarf::DW_OP_mul, 2484 dwarf::DW_OP_plus}); 2485 } 2486 DIExpression::appendOffset(Opcodes, ConstantOffset.getSExtValue()); 2487 return GEP->getOperand(0); 2488 } 2489 2490 uint64_t getDwarfOpForBinOp(Instruction::BinaryOps Opcode) { 2491 switch (Opcode) { 2492 case Instruction::Add: 2493 return dwarf::DW_OP_plus; 2494 case Instruction::Sub: 2495 return dwarf::DW_OP_minus; 2496 case Instruction::Mul: 2497 return dwarf::DW_OP_mul; 2498 case Instruction::SDiv: 2499 return dwarf::DW_OP_div; 2500 case Instruction::SRem: 2501 return dwarf::DW_OP_mod; 2502 case Instruction::Or: 2503 return dwarf::DW_OP_or; 2504 case Instruction::And: 2505 return dwarf::DW_OP_and; 2506 case Instruction::Xor: 2507 return dwarf::DW_OP_xor; 2508 case Instruction::Shl: 2509 return dwarf::DW_OP_shl; 2510 case Instruction::LShr: 2511 return dwarf::DW_OP_shr; 2512 case Instruction::AShr: 2513 return dwarf::DW_OP_shra; 2514 default: 2515 // TODO: Salvage from each kind of binop we know about. 2516 return 0; 2517 } 2518 } 2519 2520 static void handleSSAValueOperands(uint64_t CurrentLocOps, 2521 SmallVectorImpl<uint64_t> &Opcodes, 2522 SmallVectorImpl<Value *> &AdditionalValues, 2523 Instruction *I) { 2524 if (!CurrentLocOps) { 2525 Opcodes.append({dwarf::DW_OP_LLVM_arg, 0}); 2526 CurrentLocOps = 1; 2527 } 2528 Opcodes.append({dwarf::DW_OP_LLVM_arg, CurrentLocOps}); 2529 AdditionalValues.push_back(I->getOperand(1)); 2530 } 2531 2532 Value *getSalvageOpsForBinOp(BinaryOperator *BI, uint64_t CurrentLocOps, 2533 SmallVectorImpl<uint64_t> &Opcodes, 2534 SmallVectorImpl<Value *> &AdditionalValues) { 2535 // Handle binary operations with constant integer operands as a special case. 2536 auto *ConstInt = dyn_cast<ConstantInt>(BI->getOperand(1)); 2537 // Values wider than 64 bits cannot be represented within a DIExpression. 2538 if (ConstInt && ConstInt->getBitWidth() > 64) 2539 return nullptr; 2540 2541 Instruction::BinaryOps BinOpcode = BI->getOpcode(); 2542 // Push any Constant Int operand onto the expression stack. 2543 if (ConstInt) { 2544 uint64_t Val = ConstInt->getSExtValue(); 2545 // Add or Sub Instructions with a constant operand can potentially be 2546 // simplified. 2547 if (BinOpcode == Instruction::Add || BinOpcode == Instruction::Sub) { 2548 uint64_t Offset = BinOpcode == Instruction::Add ? Val : -int64_t(Val); 2549 DIExpression::appendOffset(Opcodes, Offset); 2550 return BI->getOperand(0); 2551 } 2552 Opcodes.append({dwarf::DW_OP_constu, Val}); 2553 } else { 2554 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, BI); 2555 } 2556 2557 // Add salvaged binary operator to expression stack, if it has a valid 2558 // representation in a DIExpression. 2559 uint64_t DwarfBinOp = getDwarfOpForBinOp(BinOpcode); 2560 if (!DwarfBinOp) 2561 return nullptr; 2562 Opcodes.push_back(DwarfBinOp); 2563 return BI->getOperand(0); 2564 } 2565 2566 uint64_t getDwarfOpForIcmpPred(CmpInst::Predicate Pred) { 2567 // The signedness of the operation is implicit in the typed stack, signed and 2568 // unsigned instructions map to the same DWARF opcode. 2569 switch (Pred) { 2570 case CmpInst::ICMP_EQ: 2571 return dwarf::DW_OP_eq; 2572 case CmpInst::ICMP_NE: 2573 return dwarf::DW_OP_ne; 2574 case CmpInst::ICMP_UGT: 2575 case CmpInst::ICMP_SGT: 2576 return dwarf::DW_OP_gt; 2577 case CmpInst::ICMP_UGE: 2578 case CmpInst::ICMP_SGE: 2579 return dwarf::DW_OP_ge; 2580 case CmpInst::ICMP_ULT: 2581 case CmpInst::ICMP_SLT: 2582 return dwarf::DW_OP_lt; 2583 case CmpInst::ICMP_ULE: 2584 case CmpInst::ICMP_SLE: 2585 return dwarf::DW_OP_le; 2586 default: 2587 return 0; 2588 } 2589 } 2590 2591 Value *getSalvageOpsForIcmpOp(ICmpInst *Icmp, uint64_t CurrentLocOps, 2592 SmallVectorImpl<uint64_t> &Opcodes, 2593 SmallVectorImpl<Value *> &AdditionalValues) { 2594 // Handle icmp operations with constant integer operands as a special case. 2595 auto *ConstInt = dyn_cast<ConstantInt>(Icmp->getOperand(1)); 2596 // Values wider than 64 bits cannot be represented within a DIExpression. 2597 if (ConstInt && ConstInt->getBitWidth() > 64) 2598 return nullptr; 2599 // Push any Constant Int operand onto the expression stack. 2600 if (ConstInt) { 2601 if (Icmp->isSigned()) 2602 Opcodes.push_back(dwarf::DW_OP_consts); 2603 else 2604 Opcodes.push_back(dwarf::DW_OP_constu); 2605 uint64_t Val = ConstInt->getSExtValue(); 2606 Opcodes.push_back(Val); 2607 } else { 2608 handleSSAValueOperands(CurrentLocOps, Opcodes, AdditionalValues, Icmp); 2609 } 2610 2611 // Add salvaged binary operator to expression stack, if it has a valid 2612 // representation in a DIExpression. 2613 uint64_t DwarfIcmpOp = getDwarfOpForIcmpPred(Icmp->getPredicate()); 2614 if (!DwarfIcmpOp) 2615 return nullptr; 2616 Opcodes.push_back(DwarfIcmpOp); 2617 return Icmp->getOperand(0); 2618 } 2619 2620 Value *llvm::salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 2621 SmallVectorImpl<uint64_t> &Ops, 2622 SmallVectorImpl<Value *> &AdditionalValues) { 2623 auto &M = *I.getModule(); 2624 auto &DL = M.getDataLayout(); 2625 2626 if (auto *CI = dyn_cast<CastInst>(&I)) { 2627 Value *FromValue = CI->getOperand(0); 2628 // No-op casts are irrelevant for debug info. 2629 if (CI->isNoopCast(DL)) { 2630 return FromValue; 2631 } 2632 2633 Type *Type = CI->getType(); 2634 if (Type->isPointerTy()) 2635 Type = DL.getIntPtrType(Type); 2636 // Casts other than Trunc, SExt, or ZExt to scalar types cannot be salvaged. 2637 if (Type->isVectorTy() || 2638 !(isa<TruncInst>(&I) || isa<SExtInst>(&I) || isa<ZExtInst>(&I) || 2639 isa<IntToPtrInst>(&I) || isa<PtrToIntInst>(&I))) 2640 return nullptr; 2641 2642 llvm::Type *FromType = FromValue->getType(); 2643 if (FromType->isPointerTy()) 2644 FromType = DL.getIntPtrType(FromType); 2645 2646 unsigned FromTypeBitSize = FromType->getScalarSizeInBits(); 2647 unsigned ToTypeBitSize = Type->getScalarSizeInBits(); 2648 2649 auto ExtOps = DIExpression::getExtOps(FromTypeBitSize, ToTypeBitSize, 2650 isa<SExtInst>(&I)); 2651 Ops.append(ExtOps.begin(), ExtOps.end()); 2652 return FromValue; 2653 } 2654 2655 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 2656 return getSalvageOpsForGEP(GEP, DL, CurrentLocOps, Ops, AdditionalValues); 2657 if (auto *BI = dyn_cast<BinaryOperator>(&I)) 2658 return getSalvageOpsForBinOp(BI, CurrentLocOps, Ops, AdditionalValues); 2659 if (auto *IC = dyn_cast<ICmpInst>(&I)) 2660 return getSalvageOpsForIcmpOp(IC, CurrentLocOps, Ops, AdditionalValues); 2661 2662 // *Not* to do: we should not attempt to salvage load instructions, 2663 // because the validity and lifetime of a dbg.value containing 2664 // DW_OP_deref becomes difficult to analyze. See PR40628 for examples. 2665 return nullptr; 2666 } 2667 2668 /// A replacement for a dbg.value expression. 2669 using DbgValReplacement = std::optional<DIExpression *>; 2670 2671 /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, 2672 /// possibly moving/undefing users to prevent use-before-def. Returns true if 2673 /// changes are made. 2674 static bool rewriteDebugUsers( 2675 Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, 2676 function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr, 2677 function_ref<DbgValReplacement(DbgVariableRecord &DVR)> RewriteDVRExpr) { 2678 // Find debug users of From. 2679 SmallVector<DbgVariableIntrinsic *, 1> Users; 2680 SmallVector<DbgVariableRecord *, 1> DPUsers; 2681 findDbgUsers(Users, &From, &DPUsers); 2682 if (Users.empty() && DPUsers.empty()) 2683 return false; 2684 2685 // Prevent use-before-def of To. 2686 bool Changed = false; 2687 2688 SmallPtrSet<DbgVariableIntrinsic *, 1> UndefOrSalvage; 2689 SmallPtrSet<DbgVariableRecord *, 1> UndefOrSalvageDVR; 2690 if (isa<Instruction>(&To)) { 2691 bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; 2692 2693 for (auto *DII : Users) { 2694 // It's common to see a debug user between From and DomPoint. Move it 2695 // after DomPoint to preserve the variable update without any reordering. 2696 if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { 2697 LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); 2698 DII->moveAfter(&DomPoint); 2699 Changed = true; 2700 2701 // Users which otherwise aren't dominated by the replacement value must 2702 // be salvaged or deleted. 2703 } else if (!DT.dominates(&DomPoint, DII)) { 2704 UndefOrSalvage.insert(DII); 2705 } 2706 } 2707 2708 // DbgVariableRecord implementation of the above. 2709 for (auto *DVR : DPUsers) { 2710 Instruction *MarkedInstr = DVR->getMarker()->MarkedInstr; 2711 Instruction *NextNonDebug = MarkedInstr; 2712 // The next instruction might still be a dbg.declare, skip over it. 2713 if (isa<DbgVariableIntrinsic>(NextNonDebug)) 2714 NextNonDebug = NextNonDebug->getNextNonDebugInstruction(); 2715 2716 if (DomPointAfterFrom && NextNonDebug == &DomPoint) { 2717 LLVM_DEBUG(dbgs() << "MOVE: " << *DVR << '\n'); 2718 DVR->removeFromParent(); 2719 // Ensure there's a marker. 2720 DomPoint.getParent()->insertDbgRecordAfter(DVR, &DomPoint); 2721 Changed = true; 2722 } else if (!DT.dominates(&DomPoint, MarkedInstr)) { 2723 UndefOrSalvageDVR.insert(DVR); 2724 } 2725 } 2726 } 2727 2728 // Update debug users without use-before-def risk. 2729 for (auto *DII : Users) { 2730 if (UndefOrSalvage.count(DII)) 2731 continue; 2732 2733 DbgValReplacement DVRepl = RewriteExpr(*DII); 2734 if (!DVRepl) 2735 continue; 2736 2737 DII->replaceVariableLocationOp(&From, &To); 2738 DII->setExpression(*DVRepl); 2739 LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); 2740 Changed = true; 2741 } 2742 for (auto *DVR : DPUsers) { 2743 if (UndefOrSalvageDVR.count(DVR)) 2744 continue; 2745 2746 DbgValReplacement DVRepl = RewriteDVRExpr(*DVR); 2747 if (!DVRepl) 2748 continue; 2749 2750 DVR->replaceVariableLocationOp(&From, &To); 2751 DVR->setExpression(*DVRepl); 2752 LLVM_DEBUG(dbgs() << "REWRITE: " << DVR << '\n'); 2753 Changed = true; 2754 } 2755 2756 if (!UndefOrSalvage.empty() || !UndefOrSalvageDVR.empty()) { 2757 // Try to salvage the remaining debug users. 2758 salvageDebugInfo(From); 2759 Changed = true; 2760 } 2761 2762 return Changed; 2763 } 2764 2765 /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would 2766 /// losslessly preserve the bits and semantics of the value. This predicate is 2767 /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. 2768 /// 2769 /// Note that Type::canLosslesslyBitCastTo is not suitable here because it 2770 /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, 2771 /// and also does not allow lossless pointer <-> integer conversions. 2772 static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, 2773 Type *ToTy) { 2774 // Trivially compatible types. 2775 if (FromTy == ToTy) 2776 return true; 2777 2778 // Handle compatible pointer <-> integer conversions. 2779 if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { 2780 bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); 2781 bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && 2782 !DL.isNonIntegralPointerType(ToTy); 2783 return SameSize && LosslessConversion; 2784 } 2785 2786 // TODO: This is not exhaustive. 2787 return false; 2788 } 2789 2790 bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, 2791 Instruction &DomPoint, DominatorTree &DT) { 2792 // Exit early if From has no debug users. 2793 if (!From.isUsedByMetadata()) 2794 return false; 2795 2796 assert(&From != &To && "Can't replace something with itself"); 2797 2798 Type *FromTy = From.getType(); 2799 Type *ToTy = To.getType(); 2800 2801 auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2802 return DII.getExpression(); 2803 }; 2804 auto IdentityDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2805 return DVR.getExpression(); 2806 }; 2807 2808 // Handle no-op conversions. 2809 Module &M = *From.getModule(); 2810 const DataLayout &DL = M.getDataLayout(); 2811 if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) 2812 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2813 2814 // Handle integer-to-integer widening and narrowing. 2815 // FIXME: Use DW_OP_convert when it's available everywhere. 2816 if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { 2817 uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); 2818 uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); 2819 assert(FromBits != ToBits && "Unexpected no-op conversion"); 2820 2821 // When the width of the result grows, assume that a debugger will only 2822 // access the low `FromBits` bits when inspecting the source variable. 2823 if (FromBits < ToBits) 2824 return rewriteDebugUsers(From, To, DomPoint, DT, Identity, IdentityDVR); 2825 2826 // The width of the result has shrunk. Use sign/zero extension to describe 2827 // the source variable's high bits. 2828 auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { 2829 DILocalVariable *Var = DII.getVariable(); 2830 2831 // Without knowing signedness, sign/zero extension isn't possible. 2832 auto Signedness = Var->getSignedness(); 2833 if (!Signedness) 2834 return std::nullopt; 2835 2836 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2837 return DIExpression::appendExt(DII.getExpression(), ToBits, FromBits, 2838 Signed); 2839 }; 2840 // RemoveDIs: duplicate implementation working on DbgVariableRecords rather 2841 // than on dbg.value intrinsics. 2842 auto SignOrZeroExtDVR = [&](DbgVariableRecord &DVR) -> DbgValReplacement { 2843 DILocalVariable *Var = DVR.getVariable(); 2844 2845 // Without knowing signedness, sign/zero extension isn't possible. 2846 auto Signedness = Var->getSignedness(); 2847 if (!Signedness) 2848 return std::nullopt; 2849 2850 bool Signed = *Signedness == DIBasicType::Signedness::Signed; 2851 return DIExpression::appendExt(DVR.getExpression(), ToBits, FromBits, 2852 Signed); 2853 }; 2854 return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt, 2855 SignOrZeroExtDVR); 2856 } 2857 2858 // TODO: Floating-point conversions, vectors. 2859 return false; 2860 } 2861 2862 bool llvm::handleUnreachableTerminator( 2863 Instruction *I, SmallVectorImpl<Value *> &PoisonedValues) { 2864 bool Changed = false; 2865 // RemoveDIs: erase debug-info on this instruction manually. 2866 I->dropDbgRecords(); 2867 for (Use &U : I->operands()) { 2868 Value *Op = U.get(); 2869 if (isa<Instruction>(Op) && !Op->getType()->isTokenTy()) { 2870 U.set(PoisonValue::get(Op->getType())); 2871 PoisonedValues.push_back(Op); 2872 Changed = true; 2873 } 2874 } 2875 2876 return Changed; 2877 } 2878 2879 std::pair<unsigned, unsigned> 2880 llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { 2881 unsigned NumDeadInst = 0; 2882 unsigned NumDeadDbgInst = 0; 2883 // Delete the instructions backwards, as it has a reduced likelihood of 2884 // having to update as many def-use and use-def chains. 2885 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. 2886 SmallVector<Value *> Uses; 2887 handleUnreachableTerminator(EndInst, Uses); 2888 2889 while (EndInst != &BB->front()) { 2890 // Delete the next to last instruction. 2891 Instruction *Inst = &*--EndInst->getIterator(); 2892 if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) 2893 Inst->replaceAllUsesWith(PoisonValue::get(Inst->getType())); 2894 if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { 2895 // EHPads can't have DbgVariableRecords attached to them, but it might be 2896 // possible for things with token type. 2897 Inst->dropDbgRecords(); 2898 EndInst = Inst; 2899 continue; 2900 } 2901 if (isa<DbgInfoIntrinsic>(Inst)) 2902 ++NumDeadDbgInst; 2903 else 2904 ++NumDeadInst; 2905 // RemoveDIs: erasing debug-info must be done manually. 2906 Inst->dropDbgRecords(); 2907 Inst->eraseFromParent(); 2908 } 2909 return {NumDeadInst, NumDeadDbgInst}; 2910 } 2911 2912 unsigned llvm::changeToUnreachable(Instruction *I, bool PreserveLCSSA, 2913 DomTreeUpdater *DTU, 2914 MemorySSAUpdater *MSSAU) { 2915 BasicBlock *BB = I->getParent(); 2916 2917 if (MSSAU) 2918 MSSAU->changeToUnreachable(I); 2919 2920 SmallSet<BasicBlock *, 8> UniqueSuccessors; 2921 2922 // Loop over all of the successors, removing BB's entry from any PHI 2923 // nodes. 2924 for (BasicBlock *Successor : successors(BB)) { 2925 Successor->removePredecessor(BB, PreserveLCSSA); 2926 if (DTU) 2927 UniqueSuccessors.insert(Successor); 2928 } 2929 auto *UI = new UnreachableInst(I->getContext(), I->getIterator()); 2930 UI->setDebugLoc(I->getDebugLoc()); 2931 2932 // All instructions after this are dead. 2933 unsigned NumInstrsRemoved = 0; 2934 BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); 2935 while (BBI != BBE) { 2936 if (!BBI->use_empty()) 2937 BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType())); 2938 BBI++->eraseFromParent(); 2939 ++NumInstrsRemoved; 2940 } 2941 if (DTU) { 2942 SmallVector<DominatorTree::UpdateType, 8> Updates; 2943 Updates.reserve(UniqueSuccessors.size()); 2944 for (BasicBlock *UniqueSuccessor : UniqueSuccessors) 2945 Updates.push_back({DominatorTree::Delete, BB, UniqueSuccessor}); 2946 DTU->applyUpdates(Updates); 2947 } 2948 BB->flushTerminatorDbgRecords(); 2949 return NumInstrsRemoved; 2950 } 2951 2952 CallInst *llvm::createCallMatchingInvoke(InvokeInst *II) { 2953 SmallVector<Value *, 8> Args(II->args()); 2954 SmallVector<OperandBundleDef, 1> OpBundles; 2955 II->getOperandBundlesAsDefs(OpBundles); 2956 CallInst *NewCall = CallInst::Create(II->getFunctionType(), 2957 II->getCalledOperand(), Args, OpBundles); 2958 NewCall->setCallingConv(II->getCallingConv()); 2959 NewCall->setAttributes(II->getAttributes()); 2960 NewCall->setDebugLoc(II->getDebugLoc()); 2961 NewCall->copyMetadata(*II); 2962 2963 // If the invoke had profile metadata, try converting them for CallInst. 2964 uint64_t TotalWeight; 2965 if (NewCall->extractProfTotalWeight(TotalWeight)) { 2966 // Set the total weight if it fits into i32, otherwise reset. 2967 MDBuilder MDB(NewCall->getContext()); 2968 auto NewWeights = uint32_t(TotalWeight) != TotalWeight 2969 ? nullptr 2970 : MDB.createBranchWeights({uint32_t(TotalWeight)}); 2971 NewCall->setMetadata(LLVMContext::MD_prof, NewWeights); 2972 } 2973 2974 return NewCall; 2975 } 2976 2977 // changeToCall - Convert the specified invoke into a normal call. 2978 CallInst *llvm::changeToCall(InvokeInst *II, DomTreeUpdater *DTU) { 2979 CallInst *NewCall = createCallMatchingInvoke(II); 2980 NewCall->takeName(II); 2981 NewCall->insertBefore(II); 2982 II->replaceAllUsesWith(NewCall); 2983 2984 // Follow the call by a branch to the normal destination. 2985 BasicBlock *NormalDestBB = II->getNormalDest(); 2986 BranchInst::Create(NormalDestBB, II->getIterator()); 2987 2988 // Update PHI nodes in the unwind destination 2989 BasicBlock *BB = II->getParent(); 2990 BasicBlock *UnwindDestBB = II->getUnwindDest(); 2991 UnwindDestBB->removePredecessor(BB); 2992 II->eraseFromParent(); 2993 if (DTU) 2994 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 2995 return NewCall; 2996 } 2997 2998 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, 2999 BasicBlock *UnwindEdge, 3000 DomTreeUpdater *DTU) { 3001 BasicBlock *BB = CI->getParent(); 3002 3003 // Convert this function call into an invoke instruction. First, split the 3004 // basic block. 3005 BasicBlock *Split = SplitBlock(BB, CI, DTU, /*LI=*/nullptr, /*MSSAU*/ nullptr, 3006 CI->getName() + ".noexc"); 3007 3008 // Delete the unconditional branch inserted by SplitBlock 3009 BB->back().eraseFromParent(); 3010 3011 // Create the new invoke instruction. 3012 SmallVector<Value *, 8> InvokeArgs(CI->args()); 3013 SmallVector<OperandBundleDef, 1> OpBundles; 3014 3015 CI->getOperandBundlesAsDefs(OpBundles); 3016 3017 // Note: we're round tripping operand bundles through memory here, and that 3018 // can potentially be avoided with a cleverer API design that we do not have 3019 // as of this time. 3020 3021 InvokeInst *II = 3022 InvokeInst::Create(CI->getFunctionType(), CI->getCalledOperand(), Split, 3023 UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); 3024 II->setDebugLoc(CI->getDebugLoc()); 3025 II->setCallingConv(CI->getCallingConv()); 3026 II->setAttributes(CI->getAttributes()); 3027 II->setMetadata(LLVMContext::MD_prof, CI->getMetadata(LLVMContext::MD_prof)); 3028 3029 if (DTU) 3030 DTU->applyUpdates({{DominatorTree::Insert, BB, UnwindEdge}}); 3031 3032 // Make sure that anything using the call now uses the invoke! This also 3033 // updates the CallGraph if present, because it uses a WeakTrackingVH. 3034 CI->replaceAllUsesWith(II); 3035 3036 // Delete the original call 3037 Split->front().eraseFromParent(); 3038 return Split; 3039 } 3040 3041 static bool markAliveBlocks(Function &F, 3042 SmallPtrSetImpl<BasicBlock *> &Reachable, 3043 DomTreeUpdater *DTU = nullptr) { 3044 SmallVector<BasicBlock*, 128> Worklist; 3045 BasicBlock *BB = &F.front(); 3046 Worklist.push_back(BB); 3047 Reachable.insert(BB); 3048 bool Changed = false; 3049 do { 3050 BB = Worklist.pop_back_val(); 3051 3052 // Do a quick scan of the basic block, turning any obviously unreachable 3053 // instructions into LLVM unreachable insts. The instruction combining pass 3054 // canonicalizes unreachable insts into stores to null or undef. 3055 for (Instruction &I : *BB) { 3056 if (auto *CI = dyn_cast<CallInst>(&I)) { 3057 Value *Callee = CI->getCalledOperand(); 3058 // Handle intrinsic calls. 3059 if (Function *F = dyn_cast<Function>(Callee)) { 3060 auto IntrinsicID = F->getIntrinsicID(); 3061 // Assumptions that are known to be false are equivalent to 3062 // unreachable. Also, if the condition is undefined, then we make the 3063 // choice most beneficial to the optimizer, and choose that to also be 3064 // unreachable. 3065 if (IntrinsicID == Intrinsic::assume) { 3066 if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { 3067 // Don't insert a call to llvm.trap right before the unreachable. 3068 changeToUnreachable(CI, false, DTU); 3069 Changed = true; 3070 break; 3071 } 3072 } else if (IntrinsicID == Intrinsic::experimental_guard) { 3073 // A call to the guard intrinsic bails out of the current 3074 // compilation unit if the predicate passed to it is false. If the 3075 // predicate is a constant false, then we know the guard will bail 3076 // out of the current compile unconditionally, so all code following 3077 // it is dead. 3078 // 3079 // Note: unlike in llvm.assume, it is not "obviously profitable" for 3080 // guards to treat `undef` as `false` since a guard on `undef` can 3081 // still be useful for widening. 3082 if (match(CI->getArgOperand(0), m_Zero())) 3083 if (!isa<UnreachableInst>(CI->getNextNode())) { 3084 changeToUnreachable(CI->getNextNode(), false, DTU); 3085 Changed = true; 3086 break; 3087 } 3088 } 3089 } else if ((isa<ConstantPointerNull>(Callee) && 3090 !NullPointerIsDefined(CI->getFunction(), 3091 cast<PointerType>(Callee->getType()) 3092 ->getAddressSpace())) || 3093 isa<UndefValue>(Callee)) { 3094 changeToUnreachable(CI, false, DTU); 3095 Changed = true; 3096 break; 3097 } 3098 if (CI->doesNotReturn() && !CI->isMustTailCall()) { 3099 // If we found a call to a no-return function, insert an unreachable 3100 // instruction after it. Make sure there isn't *already* one there 3101 // though. 3102 if (!isa<UnreachableInst>(CI->getNextNonDebugInstruction())) { 3103 // Don't insert a call to llvm.trap right before the unreachable. 3104 changeToUnreachable(CI->getNextNonDebugInstruction(), false, DTU); 3105 Changed = true; 3106 } 3107 break; 3108 } 3109 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 3110 // Store to undef and store to null are undefined and used to signal 3111 // that they should be changed to unreachable by passes that can't 3112 // modify the CFG. 3113 3114 // Don't touch volatile stores. 3115 if (SI->isVolatile()) continue; 3116 3117 Value *Ptr = SI->getOperand(1); 3118 3119 if (isa<UndefValue>(Ptr) || 3120 (isa<ConstantPointerNull>(Ptr) && 3121 !NullPointerIsDefined(SI->getFunction(), 3122 SI->getPointerAddressSpace()))) { 3123 changeToUnreachable(SI, false, DTU); 3124 Changed = true; 3125 break; 3126 } 3127 } 3128 } 3129 3130 Instruction *Terminator = BB->getTerminator(); 3131 if (auto *II = dyn_cast<InvokeInst>(Terminator)) { 3132 // Turn invokes that call 'nounwind' functions into ordinary calls. 3133 Value *Callee = II->getCalledOperand(); 3134 if ((isa<ConstantPointerNull>(Callee) && 3135 !NullPointerIsDefined(BB->getParent())) || 3136 isa<UndefValue>(Callee)) { 3137 changeToUnreachable(II, false, DTU); 3138 Changed = true; 3139 } else { 3140 if (II->doesNotReturn() && 3141 !isa<UnreachableInst>(II->getNormalDest()->front())) { 3142 // If we found an invoke of a no-return function, 3143 // create a new empty basic block with an `unreachable` terminator, 3144 // and set it as the normal destination for the invoke, 3145 // unless that is already the case. 3146 // Note that the original normal destination could have other uses. 3147 BasicBlock *OrigNormalDest = II->getNormalDest(); 3148 OrigNormalDest->removePredecessor(II->getParent()); 3149 LLVMContext &Ctx = II->getContext(); 3150 BasicBlock *UnreachableNormalDest = BasicBlock::Create( 3151 Ctx, OrigNormalDest->getName() + ".unreachable", 3152 II->getFunction(), OrigNormalDest); 3153 new UnreachableInst(Ctx, UnreachableNormalDest); 3154 II->setNormalDest(UnreachableNormalDest); 3155 if (DTU) 3156 DTU->applyUpdates( 3157 {{DominatorTree::Delete, BB, OrigNormalDest}, 3158 {DominatorTree::Insert, BB, UnreachableNormalDest}}); 3159 Changed = true; 3160 } 3161 if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { 3162 if (II->use_empty() && !II->mayHaveSideEffects()) { 3163 // jump to the normal destination branch. 3164 BasicBlock *NormalDestBB = II->getNormalDest(); 3165 BasicBlock *UnwindDestBB = II->getUnwindDest(); 3166 BranchInst::Create(NormalDestBB, II->getIterator()); 3167 UnwindDestBB->removePredecessor(II->getParent()); 3168 II->eraseFromParent(); 3169 if (DTU) 3170 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDestBB}}); 3171 } else 3172 changeToCall(II, DTU); 3173 Changed = true; 3174 } 3175 } 3176 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { 3177 // Remove catchpads which cannot be reached. 3178 struct CatchPadDenseMapInfo { 3179 static CatchPadInst *getEmptyKey() { 3180 return DenseMapInfo<CatchPadInst *>::getEmptyKey(); 3181 } 3182 3183 static CatchPadInst *getTombstoneKey() { 3184 return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); 3185 } 3186 3187 static unsigned getHashValue(CatchPadInst *CatchPad) { 3188 return static_cast<unsigned>(hash_combine_range( 3189 CatchPad->value_op_begin(), CatchPad->value_op_end())); 3190 } 3191 3192 static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { 3193 if (LHS == getEmptyKey() || LHS == getTombstoneKey() || 3194 RHS == getEmptyKey() || RHS == getTombstoneKey()) 3195 return LHS == RHS; 3196 return LHS->isIdenticalTo(RHS); 3197 } 3198 }; 3199 3200 SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases; 3201 // Set of unique CatchPads. 3202 SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, 3203 CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> 3204 HandlerSet; 3205 detail::DenseSetEmpty Empty; 3206 for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), 3207 E = CatchSwitch->handler_end(); 3208 I != E; ++I) { 3209 BasicBlock *HandlerBB = *I; 3210 if (DTU) 3211 ++NumPerSuccessorCases[HandlerBB]; 3212 auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); 3213 if (!HandlerSet.insert({CatchPad, Empty}).second) { 3214 if (DTU) 3215 --NumPerSuccessorCases[HandlerBB]; 3216 CatchSwitch->removeHandler(I); 3217 --I; 3218 --E; 3219 Changed = true; 3220 } 3221 } 3222 if (DTU) { 3223 std::vector<DominatorTree::UpdateType> Updates; 3224 for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases) 3225 if (I.second == 0) 3226 Updates.push_back({DominatorTree::Delete, BB, I.first}); 3227 DTU->applyUpdates(Updates); 3228 } 3229 } 3230 3231 Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); 3232 for (BasicBlock *Successor : successors(BB)) 3233 if (Reachable.insert(Successor).second) 3234 Worklist.push_back(Successor); 3235 } while (!Worklist.empty()); 3236 return Changed; 3237 } 3238 3239 Instruction *llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { 3240 Instruction *TI = BB->getTerminator(); 3241 3242 if (auto *II = dyn_cast<InvokeInst>(TI)) 3243 return changeToCall(II, DTU); 3244 3245 Instruction *NewTI; 3246 BasicBlock *UnwindDest; 3247 3248 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 3249 NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI->getIterator()); 3250 UnwindDest = CRI->getUnwindDest(); 3251 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { 3252 auto *NewCatchSwitch = CatchSwitchInst::Create( 3253 CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), 3254 CatchSwitch->getName(), CatchSwitch->getIterator()); 3255 for (BasicBlock *PadBB : CatchSwitch->handlers()) 3256 NewCatchSwitch->addHandler(PadBB); 3257 3258 NewTI = NewCatchSwitch; 3259 UnwindDest = CatchSwitch->getUnwindDest(); 3260 } else { 3261 llvm_unreachable("Could not find unwind successor"); 3262 } 3263 3264 NewTI->takeName(TI); 3265 NewTI->setDebugLoc(TI->getDebugLoc()); 3266 UnwindDest->removePredecessor(BB); 3267 TI->replaceAllUsesWith(NewTI); 3268 TI->eraseFromParent(); 3269 if (DTU) 3270 DTU->applyUpdates({{DominatorTree::Delete, BB, UnwindDest}}); 3271 return NewTI; 3272 } 3273 3274 /// removeUnreachableBlocks - Remove blocks that are not reachable, even 3275 /// if they are in a dead cycle. Return true if a change was made, false 3276 /// otherwise. 3277 bool llvm::removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 3278 MemorySSAUpdater *MSSAU) { 3279 SmallPtrSet<BasicBlock *, 16> Reachable; 3280 bool Changed = markAliveBlocks(F, Reachable, DTU); 3281 3282 // If there are unreachable blocks in the CFG... 3283 if (Reachable.size() == F.size()) 3284 return Changed; 3285 3286 assert(Reachable.size() < F.size()); 3287 3288 // Are there any blocks left to actually delete? 3289 SmallSetVector<BasicBlock *, 8> BlocksToRemove; 3290 for (BasicBlock &BB : F) { 3291 // Skip reachable basic blocks 3292 if (Reachable.count(&BB)) 3293 continue; 3294 // Skip already-deleted blocks 3295 if (DTU && DTU->isBBPendingDeletion(&BB)) 3296 continue; 3297 BlocksToRemove.insert(&BB); 3298 } 3299 3300 if (BlocksToRemove.empty()) 3301 return Changed; 3302 3303 Changed = true; 3304 NumRemoved += BlocksToRemove.size(); 3305 3306 if (MSSAU) 3307 MSSAU->removeBlocks(BlocksToRemove); 3308 3309 DeleteDeadBlocks(BlocksToRemove.takeVector(), DTU); 3310 3311 return Changed; 3312 } 3313 3314 void llvm::combineMetadata(Instruction *K, const Instruction *J, 3315 ArrayRef<unsigned> KnownIDs, bool DoesKMove) { 3316 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 3317 K->dropUnknownNonDebugMetadata(KnownIDs); 3318 K->getAllMetadataOtherThanDebugLoc(Metadata); 3319 for (const auto &MD : Metadata) { 3320 unsigned Kind = MD.first; 3321 MDNode *JMD = J->getMetadata(Kind); 3322 MDNode *KMD = MD.second; 3323 3324 switch (Kind) { 3325 default: 3326 K->setMetadata(Kind, nullptr); // Remove unknown metadata 3327 break; 3328 case LLVMContext::MD_dbg: 3329 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 3330 case LLVMContext::MD_DIAssignID: 3331 K->mergeDIAssignID(J); 3332 break; 3333 case LLVMContext::MD_tbaa: 3334 K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); 3335 break; 3336 case LLVMContext::MD_alias_scope: 3337 K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); 3338 break; 3339 case LLVMContext::MD_noalias: 3340 case LLVMContext::MD_mem_parallel_loop_access: 3341 K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); 3342 break; 3343 case LLVMContext::MD_access_group: 3344 K->setMetadata(LLVMContext::MD_access_group, 3345 intersectAccessGroups(K, J)); 3346 break; 3347 case LLVMContext::MD_range: 3348 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3349 K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); 3350 break; 3351 case LLVMContext::MD_fpmath: 3352 K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); 3353 break; 3354 case LLVMContext::MD_invariant_load: 3355 // If K moves, only set the !invariant.load if it is present in both 3356 // instructions. 3357 if (DoesKMove) 3358 K->setMetadata(Kind, JMD); 3359 break; 3360 case LLVMContext::MD_nonnull: 3361 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3362 K->setMetadata(Kind, JMD); 3363 break; 3364 case LLVMContext::MD_invariant_group: 3365 // Preserve !invariant.group in K. 3366 break; 3367 case LLVMContext::MD_mmra: 3368 // Combine MMRAs 3369 break; 3370 case LLVMContext::MD_align: 3371 if (DoesKMove || !K->hasMetadata(LLVMContext::MD_noundef)) 3372 K->setMetadata( 3373 Kind, MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3374 break; 3375 case LLVMContext::MD_dereferenceable: 3376 case LLVMContext::MD_dereferenceable_or_null: 3377 if (DoesKMove) 3378 K->setMetadata(Kind, 3379 MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); 3380 break; 3381 case LLVMContext::MD_preserve_access_index: 3382 // Preserve !preserve.access.index in K. 3383 break; 3384 case LLVMContext::MD_noundef: 3385 // If K does move, keep noundef if it is present in both instructions. 3386 if (DoesKMove) 3387 K->setMetadata(Kind, JMD); 3388 break; 3389 case LLVMContext::MD_nontemporal: 3390 // Preserve !nontemporal if it is present on both instructions. 3391 K->setMetadata(Kind, JMD); 3392 break; 3393 case LLVMContext::MD_prof: 3394 if (DoesKMove) 3395 K->setMetadata(Kind, MDNode::getMergedProfMetadata(KMD, JMD, K, J)); 3396 break; 3397 } 3398 } 3399 // Set !invariant.group from J if J has it. If both instructions have it 3400 // then we will just pick it from J - even when they are different. 3401 // Also make sure that K is load or store - f.e. combining bitcast with load 3402 // could produce bitcast with invariant.group metadata, which is invalid. 3403 // FIXME: we should try to preserve both invariant.group md if they are 3404 // different, but right now instruction can only have one invariant.group. 3405 if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) 3406 if (isa<LoadInst>(K) || isa<StoreInst>(K)) 3407 K->setMetadata(LLVMContext::MD_invariant_group, JMD); 3408 3409 // Merge MMRAs. 3410 // This is handled separately because we also want to handle cases where K 3411 // doesn't have tags but J does. 3412 auto JMMRA = J->getMetadata(LLVMContext::MD_mmra); 3413 auto KMMRA = K->getMetadata(LLVMContext::MD_mmra); 3414 if (JMMRA || KMMRA) { 3415 K->setMetadata(LLVMContext::MD_mmra, 3416 MMRAMetadata::combine(K->getContext(), JMMRA, KMMRA)); 3417 } 3418 } 3419 3420 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, 3421 bool KDominatesJ) { 3422 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, 3423 LLVMContext::MD_alias_scope, 3424 LLVMContext::MD_noalias, 3425 LLVMContext::MD_range, 3426 LLVMContext::MD_fpmath, 3427 LLVMContext::MD_invariant_load, 3428 LLVMContext::MD_nonnull, 3429 LLVMContext::MD_invariant_group, 3430 LLVMContext::MD_align, 3431 LLVMContext::MD_dereferenceable, 3432 LLVMContext::MD_dereferenceable_or_null, 3433 LLVMContext::MD_access_group, 3434 LLVMContext::MD_preserve_access_index, 3435 LLVMContext::MD_prof, 3436 LLVMContext::MD_nontemporal, 3437 LLVMContext::MD_noundef, 3438 LLVMContext::MD_mmra}; 3439 combineMetadata(K, J, KnownIDs, KDominatesJ); 3440 } 3441 3442 void llvm::copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source) { 3443 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 3444 Source.getAllMetadata(MD); 3445 MDBuilder MDB(Dest.getContext()); 3446 Type *NewType = Dest.getType(); 3447 const DataLayout &DL = Source.getDataLayout(); 3448 for (const auto &MDPair : MD) { 3449 unsigned ID = MDPair.first; 3450 MDNode *N = MDPair.second; 3451 // Note, essentially every kind of metadata should be preserved here! This 3452 // routine is supposed to clone a load instruction changing *only its type*. 3453 // The only metadata it makes sense to drop is metadata which is invalidated 3454 // when the pointer type changes. This should essentially never be the case 3455 // in LLVM, but we explicitly switch over only known metadata to be 3456 // conservatively correct. If you are adding metadata to LLVM which pertains 3457 // to loads, you almost certainly want to add it here. 3458 switch (ID) { 3459 case LLVMContext::MD_dbg: 3460 case LLVMContext::MD_tbaa: 3461 case LLVMContext::MD_prof: 3462 case LLVMContext::MD_fpmath: 3463 case LLVMContext::MD_tbaa_struct: 3464 case LLVMContext::MD_invariant_load: 3465 case LLVMContext::MD_alias_scope: 3466 case LLVMContext::MD_noalias: 3467 case LLVMContext::MD_nontemporal: 3468 case LLVMContext::MD_mem_parallel_loop_access: 3469 case LLVMContext::MD_access_group: 3470 case LLVMContext::MD_noundef: 3471 // All of these directly apply. 3472 Dest.setMetadata(ID, N); 3473 break; 3474 3475 case LLVMContext::MD_nonnull: 3476 copyNonnullMetadata(Source, N, Dest); 3477 break; 3478 3479 case LLVMContext::MD_align: 3480 case LLVMContext::MD_dereferenceable: 3481 case LLVMContext::MD_dereferenceable_or_null: 3482 // These only directly apply if the new type is also a pointer. 3483 if (NewType->isPointerTy()) 3484 Dest.setMetadata(ID, N); 3485 break; 3486 3487 case LLVMContext::MD_range: 3488 copyRangeMetadata(DL, Source, N, Dest); 3489 break; 3490 } 3491 } 3492 } 3493 3494 void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { 3495 auto *ReplInst = dyn_cast<Instruction>(Repl); 3496 if (!ReplInst) 3497 return; 3498 3499 // Patch the replacement so that it is not more restrictive than the value 3500 // being replaced. 3501 WithOverflowInst *UnusedWO; 3502 // When replacing the result of a llvm.*.with.overflow intrinsic with a 3503 // overflowing binary operator, nuw/nsw flags may no longer hold. 3504 if (isa<OverflowingBinaryOperator>(ReplInst) && 3505 match(I, m_ExtractValue<0>(m_WithOverflowInst(UnusedWO)))) 3506 ReplInst->dropPoisonGeneratingFlags(); 3507 // Note that if 'I' is a load being replaced by some operation, 3508 // for example, by an arithmetic operation, then andIRFlags() 3509 // would just erase all math flags from the original arithmetic 3510 // operation, which is clearly not wanted and not needed. 3511 else if (!isa<LoadInst>(I)) 3512 ReplInst->andIRFlags(I); 3513 3514 // FIXME: If both the original and replacement value are part of the 3515 // same control-flow region (meaning that the execution of one 3516 // guarantees the execution of the other), then we can combine the 3517 // noalias scopes here and do better than the general conservative 3518 // answer used in combineMetadata(). 3519 3520 // In general, GVN unifies expressions over different control-flow 3521 // regions, and so we need a conservative combination of the noalias 3522 // scopes. 3523 combineMetadataForCSE(ReplInst, I, false); 3524 } 3525 3526 template <typename RootType, typename ShouldReplaceFn> 3527 static unsigned replaceDominatedUsesWith(Value *From, Value *To, 3528 const RootType &Root, 3529 const ShouldReplaceFn &ShouldReplace) { 3530 assert(From->getType() == To->getType()); 3531 3532 unsigned Count = 0; 3533 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3534 auto *II = dyn_cast<IntrinsicInst>(U.getUser()); 3535 if (II && II->getIntrinsicID() == Intrinsic::fake_use) 3536 continue; 3537 if (!ShouldReplace(Root, U)) 3538 continue; 3539 LLVM_DEBUG(dbgs() << "Replace dominated use of '"; 3540 From->printAsOperand(dbgs()); 3541 dbgs() << "' with " << *To << " in " << *U.getUser() << "\n"); 3542 U.set(To); 3543 ++Count; 3544 } 3545 return Count; 3546 } 3547 3548 unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { 3549 assert(From->getType() == To->getType()); 3550 auto *BB = From->getParent(); 3551 unsigned Count = 0; 3552 3553 for (Use &U : llvm::make_early_inc_range(From->uses())) { 3554 auto *I = cast<Instruction>(U.getUser()); 3555 if (I->getParent() == BB) 3556 continue; 3557 U.set(To); 3558 ++Count; 3559 } 3560 return Count; 3561 } 3562 3563 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3564 DominatorTree &DT, 3565 const BasicBlockEdge &Root) { 3566 auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { 3567 return DT.dominates(Root, U); 3568 }; 3569 return ::replaceDominatedUsesWith(From, To, Root, Dominates); 3570 } 3571 3572 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, 3573 DominatorTree &DT, 3574 const BasicBlock *BB) { 3575 auto Dominates = [&DT](const BasicBlock *BB, const Use &U) { 3576 return DT.dominates(BB, U); 3577 }; 3578 return ::replaceDominatedUsesWith(From, To, BB, Dominates); 3579 } 3580 3581 unsigned llvm::replaceDominatedUsesWithIf( 3582 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Root, 3583 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3584 auto DominatesAndShouldReplace = 3585 [&DT, &ShouldReplace, To](const BasicBlockEdge &Root, const Use &U) { 3586 return DT.dominates(Root, U) && ShouldReplace(U, To); 3587 }; 3588 return ::replaceDominatedUsesWith(From, To, Root, DominatesAndShouldReplace); 3589 } 3590 3591 unsigned llvm::replaceDominatedUsesWithIf( 3592 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 3593 function_ref<bool(const Use &U, const Value *To)> ShouldReplace) { 3594 auto DominatesAndShouldReplace = [&DT, &ShouldReplace, 3595 To](const BasicBlock *BB, const Use &U) { 3596 return DT.dominates(BB, U) && ShouldReplace(U, To); 3597 }; 3598 return ::replaceDominatedUsesWith(From, To, BB, DominatesAndShouldReplace); 3599 } 3600 3601 bool llvm::callsGCLeafFunction(const CallBase *Call, 3602 const TargetLibraryInfo &TLI) { 3603 // Check if the function is specifically marked as a gc leaf function. 3604 if (Call->hasFnAttr("gc-leaf-function")) 3605 return true; 3606 if (const Function *F = Call->getCalledFunction()) { 3607 if (F->hasFnAttribute("gc-leaf-function")) 3608 return true; 3609 3610 if (auto IID = F->getIntrinsicID()) { 3611 // Most LLVM intrinsics do not take safepoints. 3612 return IID != Intrinsic::experimental_gc_statepoint && 3613 IID != Intrinsic::experimental_deoptimize && 3614 IID != Intrinsic::memcpy_element_unordered_atomic && 3615 IID != Intrinsic::memmove_element_unordered_atomic; 3616 } 3617 } 3618 3619 // Lib calls can be materialized by some passes, and won't be 3620 // marked as 'gc-leaf-function.' All available Libcalls are 3621 // GC-leaf. 3622 LibFunc LF; 3623 if (TLI.getLibFunc(*Call, LF)) { 3624 return TLI.has(LF); 3625 } 3626 3627 return false; 3628 } 3629 3630 void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, 3631 LoadInst &NewLI) { 3632 auto *NewTy = NewLI.getType(); 3633 3634 // This only directly applies if the new type is also a pointer. 3635 if (NewTy->isPointerTy()) { 3636 NewLI.setMetadata(LLVMContext::MD_nonnull, N); 3637 return; 3638 } 3639 3640 // The only other translation we can do is to integral loads with !range 3641 // metadata. 3642 if (!NewTy->isIntegerTy()) 3643 return; 3644 3645 MDBuilder MDB(NewLI.getContext()); 3646 const Value *Ptr = OldLI.getPointerOperand(); 3647 auto *ITy = cast<IntegerType>(NewTy); 3648 auto *NullInt = ConstantExpr::getPtrToInt( 3649 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 3650 auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 3651 NewLI.setMetadata(LLVMContext::MD_range, 3652 MDB.createRange(NonNullInt, NullInt)); 3653 } 3654 3655 void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, 3656 MDNode *N, LoadInst &NewLI) { 3657 auto *NewTy = NewLI.getType(); 3658 // Simply copy the metadata if the type did not change. 3659 if (NewTy == OldLI.getType()) { 3660 NewLI.setMetadata(LLVMContext::MD_range, N); 3661 return; 3662 } 3663 3664 // Give up unless it is converted to a pointer where there is a single very 3665 // valuable mapping we can do reliably. 3666 // FIXME: It would be nice to propagate this in more ways, but the type 3667 // conversions make it hard. 3668 if (!NewTy->isPointerTy()) 3669 return; 3670 3671 unsigned BitWidth = DL.getPointerTypeSizeInBits(NewTy); 3672 if (BitWidth == OldLI.getType()->getScalarSizeInBits() && 3673 !getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 3674 MDNode *NN = MDNode::get(OldLI.getContext(), {}); 3675 NewLI.setMetadata(LLVMContext::MD_nonnull, NN); 3676 } 3677 } 3678 3679 void llvm::dropDebugUsers(Instruction &I) { 3680 SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; 3681 SmallVector<DbgVariableRecord *, 1> DPUsers; 3682 findDbgUsers(DbgUsers, &I, &DPUsers); 3683 for (auto *DII : DbgUsers) 3684 DII->eraseFromParent(); 3685 for (auto *DVR : DPUsers) 3686 DVR->eraseFromParent(); 3687 } 3688 3689 void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 3690 BasicBlock *BB) { 3691 // Since we are moving the instructions out of its basic block, we do not 3692 // retain their original debug locations (DILocations) and debug intrinsic 3693 // instructions. 3694 // 3695 // Doing so would degrade the debugging experience and adversely affect the 3696 // accuracy of profiling information. 3697 // 3698 // Currently, when hoisting the instructions, we take the following actions: 3699 // - Remove their debug intrinsic instructions. 3700 // - Set their debug locations to the values from the insertion point. 3701 // 3702 // As per PR39141 (comment #8), the more fundamental reason why the dbg.values 3703 // need to be deleted, is because there will not be any instructions with a 3704 // DILocation in either branch left after performing the transformation. We 3705 // can only insert a dbg.value after the two branches are joined again. 3706 // 3707 // See PR38762, PR39243 for more details. 3708 // 3709 // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to 3710 // encode predicated DIExpressions that yield different results on different 3711 // code paths. 3712 3713 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { 3714 Instruction *I = &*II; 3715 I->dropUBImplyingAttrsAndMetadata(); 3716 if (I->isUsedByMetadata()) 3717 dropDebugUsers(*I); 3718 // RemoveDIs: drop debug-info too as the following code does. 3719 I->dropDbgRecords(); 3720 if (I->isDebugOrPseudoInst()) { 3721 // Remove DbgInfo and pseudo probe Intrinsics. 3722 II = I->eraseFromParent(); 3723 continue; 3724 } 3725 I->setDebugLoc(InsertPt->getDebugLoc()); 3726 ++II; 3727 } 3728 DomBlock->splice(InsertPt->getIterator(), BB, BB->begin(), 3729 BB->getTerminator()->getIterator()); 3730 } 3731 3732 DIExpression *llvm::getExpressionForConstant(DIBuilder &DIB, const Constant &C, 3733 Type &Ty) { 3734 // Create integer constant expression. 3735 auto createIntegerExpression = [&DIB](const Constant &CV) -> DIExpression * { 3736 const APInt &API = cast<ConstantInt>(&CV)->getValue(); 3737 std::optional<int64_t> InitIntOpt = API.trySExtValue(); 3738 return InitIntOpt ? DIB.createConstantValueExpression( 3739 static_cast<uint64_t>(*InitIntOpt)) 3740 : nullptr; 3741 }; 3742 3743 if (isa<ConstantInt>(C)) 3744 return createIntegerExpression(C); 3745 3746 auto *FP = dyn_cast<ConstantFP>(&C); 3747 if (FP && Ty.isFloatingPointTy() && Ty.getScalarSizeInBits() <= 64) { 3748 const APFloat &APF = FP->getValueAPF(); 3749 APInt const &API = APF.bitcastToAPInt(); 3750 if (auto Temp = API.getZExtValue()) 3751 return DIB.createConstantValueExpression(static_cast<uint64_t>(Temp)); 3752 return DIB.createConstantValueExpression(*API.getRawData()); 3753 } 3754 3755 if (!Ty.isPointerTy()) 3756 return nullptr; 3757 3758 if (isa<ConstantPointerNull>(C)) 3759 return DIB.createConstantValueExpression(0); 3760 3761 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(&C)) 3762 if (CE->getOpcode() == Instruction::IntToPtr) { 3763 const Value *V = CE->getOperand(0); 3764 if (auto CI = dyn_cast_or_null<ConstantInt>(V)) 3765 return createIntegerExpression(*CI); 3766 } 3767 return nullptr; 3768 } 3769 3770 void llvm::remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst) { 3771 auto RemapDebugOperands = [&Mapping](auto *DV, auto Set) { 3772 for (auto *Op : Set) { 3773 auto I = Mapping.find(Op); 3774 if (I != Mapping.end()) 3775 DV->replaceVariableLocationOp(Op, I->second, /*AllowEmpty=*/true); 3776 } 3777 }; 3778 auto RemapAssignAddress = [&Mapping](auto *DA) { 3779 auto I = Mapping.find(DA->getAddress()); 3780 if (I != Mapping.end()) 3781 DA->setAddress(I->second); 3782 }; 3783 if (auto DVI = dyn_cast<DbgVariableIntrinsic>(Inst)) 3784 RemapDebugOperands(DVI, DVI->location_ops()); 3785 if (auto DAI = dyn_cast<DbgAssignIntrinsic>(Inst)) 3786 RemapAssignAddress(DAI); 3787 for (DbgVariableRecord &DVR : filterDbgVars(Inst->getDbgRecordRange())) { 3788 RemapDebugOperands(&DVR, DVR.location_ops()); 3789 if (DVR.isDbgAssign()) 3790 RemapAssignAddress(&DVR); 3791 } 3792 } 3793 3794 namespace { 3795 3796 /// A potential constituent of a bitreverse or bswap expression. See 3797 /// collectBitParts for a fuller explanation. 3798 struct BitPart { 3799 BitPart(Value *P, unsigned BW) : Provider(P) { 3800 Provenance.resize(BW); 3801 } 3802 3803 /// The Value that this is a bitreverse/bswap of. 3804 Value *Provider; 3805 3806 /// The "provenance" of each bit. Provenance[A] = B means that bit A 3807 /// in Provider becomes bit B in the result of this expression. 3808 SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. 3809 3810 enum { Unset = -1 }; 3811 }; 3812 3813 } // end anonymous namespace 3814 3815 /// Analyze the specified subexpression and see if it is capable of providing 3816 /// pieces of a bswap or bitreverse. The subexpression provides a potential 3817 /// piece of a bswap or bitreverse if it can be proved that each non-zero bit in 3818 /// the output of the expression came from a corresponding bit in some other 3819 /// value. This function is recursive, and the end result is a mapping of 3820 /// bitnumber to bitnumber. It is the caller's responsibility to validate that 3821 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. 3822 /// 3823 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know 3824 /// that the expression deposits the low byte of %X into the high byte of the 3825 /// result and that all other bits are zero. This expression is accepted and a 3826 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to 3827 /// [0-7]. 3828 /// 3829 /// For vector types, all analysis is performed at the per-element level. No 3830 /// cross-element analysis is supported (shuffle/insertion/reduction), and all 3831 /// constant masks must be splatted across all elements. 3832 /// 3833 /// To avoid revisiting values, the BitPart results are memoized into the 3834 /// provided map. To avoid unnecessary copying of BitParts, BitParts are 3835 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to 3836 /// store BitParts objects, not pointers. As we need the concept of a nullptr 3837 /// BitParts (Value has been analyzed and the analysis failed), we an Optional 3838 /// type instead to provide the same functionality. 3839 /// 3840 /// Because we pass around references into \c BPS, we must use a container that 3841 /// does not invalidate internal references (std::map instead of DenseMap). 3842 static const std::optional<BitPart> & 3843 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, 3844 std::map<Value *, std::optional<BitPart>> &BPS, int Depth, 3845 bool &FoundRoot) { 3846 auto I = BPS.find(V); 3847 if (I != BPS.end()) 3848 return I->second; 3849 3850 auto &Result = BPS[V] = std::nullopt; 3851 auto BitWidth = V->getType()->getScalarSizeInBits(); 3852 3853 // Can't do integer/elements > 128 bits. 3854 if (BitWidth > 128) 3855 return Result; 3856 3857 // Prevent stack overflow by limiting the recursion depth 3858 if (Depth == BitPartRecursionMaxDepth) { 3859 LLVM_DEBUG(dbgs() << "collectBitParts max recursion depth reached.\n"); 3860 return Result; 3861 } 3862 3863 if (auto *I = dyn_cast<Instruction>(V)) { 3864 Value *X, *Y; 3865 const APInt *C; 3866 3867 // If this is an or instruction, it may be an inner node of the bswap. 3868 if (match(V, m_Or(m_Value(X), m_Value(Y)))) { 3869 // Check we have both sources and they are from the same provider. 3870 const auto &A = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3871 Depth + 1, FoundRoot); 3872 if (!A || !A->Provider) 3873 return Result; 3874 3875 const auto &B = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 3876 Depth + 1, FoundRoot); 3877 if (!B || A->Provider != B->Provider) 3878 return Result; 3879 3880 // Try and merge the two together. 3881 Result = BitPart(A->Provider, BitWidth); 3882 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) { 3883 if (A->Provenance[BitIdx] != BitPart::Unset && 3884 B->Provenance[BitIdx] != BitPart::Unset && 3885 A->Provenance[BitIdx] != B->Provenance[BitIdx]) 3886 return Result = std::nullopt; 3887 3888 if (A->Provenance[BitIdx] == BitPart::Unset) 3889 Result->Provenance[BitIdx] = B->Provenance[BitIdx]; 3890 else 3891 Result->Provenance[BitIdx] = A->Provenance[BitIdx]; 3892 } 3893 3894 return Result; 3895 } 3896 3897 // If this is a logical shift by a constant, recurse then shift the result. 3898 if (match(V, m_LogicalShift(m_Value(X), m_APInt(C)))) { 3899 const APInt &BitShift = *C; 3900 3901 // Ensure the shift amount is defined. 3902 if (BitShift.uge(BitWidth)) 3903 return Result; 3904 3905 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 3906 if (!MatchBitReversals && (BitShift.getZExtValue() % 8) != 0) 3907 return Result; 3908 3909 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3910 Depth + 1, FoundRoot); 3911 if (!Res) 3912 return Result; 3913 Result = Res; 3914 3915 // Perform the "shift" on BitProvenance. 3916 auto &P = Result->Provenance; 3917 if (I->getOpcode() == Instruction::Shl) { 3918 P.erase(std::prev(P.end(), BitShift.getZExtValue()), P.end()); 3919 P.insert(P.begin(), BitShift.getZExtValue(), BitPart::Unset); 3920 } else { 3921 P.erase(P.begin(), std::next(P.begin(), BitShift.getZExtValue())); 3922 P.insert(P.end(), BitShift.getZExtValue(), BitPart::Unset); 3923 } 3924 3925 return Result; 3926 } 3927 3928 // If this is a logical 'and' with a mask that clears bits, recurse then 3929 // unset the appropriate bits. 3930 if (match(V, m_And(m_Value(X), m_APInt(C)))) { 3931 const APInt &AndMask = *C; 3932 3933 // Check that the mask allows a multiple of 8 bits for a bswap, for an 3934 // early exit. 3935 unsigned NumMaskedBits = AndMask.popcount(); 3936 if (!MatchBitReversals && (NumMaskedBits % 8) != 0) 3937 return Result; 3938 3939 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3940 Depth + 1, FoundRoot); 3941 if (!Res) 3942 return Result; 3943 Result = Res; 3944 3945 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3946 // If the AndMask is zero for this bit, clear the bit. 3947 if (AndMask[BitIdx] == 0) 3948 Result->Provenance[BitIdx] = BitPart::Unset; 3949 return Result; 3950 } 3951 3952 // If this is a zext instruction zero extend the result. 3953 if (match(V, m_ZExt(m_Value(X)))) { 3954 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3955 Depth + 1, FoundRoot); 3956 if (!Res) 3957 return Result; 3958 3959 Result = BitPart(Res->Provider, BitWidth); 3960 auto NarrowBitWidth = X->getType()->getScalarSizeInBits(); 3961 for (unsigned BitIdx = 0; BitIdx < NarrowBitWidth; ++BitIdx) 3962 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3963 for (unsigned BitIdx = NarrowBitWidth; BitIdx < BitWidth; ++BitIdx) 3964 Result->Provenance[BitIdx] = BitPart::Unset; 3965 return Result; 3966 } 3967 3968 // If this is a truncate instruction, extract the lower bits. 3969 if (match(V, m_Trunc(m_Value(X)))) { 3970 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3971 Depth + 1, FoundRoot); 3972 if (!Res) 3973 return Result; 3974 3975 Result = BitPart(Res->Provider, BitWidth); 3976 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3977 Result->Provenance[BitIdx] = Res->Provenance[BitIdx]; 3978 return Result; 3979 } 3980 3981 // BITREVERSE - most likely due to us previous matching a partial 3982 // bitreverse. 3983 if (match(V, m_BitReverse(m_Value(X)))) { 3984 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3985 Depth + 1, FoundRoot); 3986 if (!Res) 3987 return Result; 3988 3989 Result = BitPart(Res->Provider, BitWidth); 3990 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 3991 Result->Provenance[(BitWidth - 1) - BitIdx] = Res->Provenance[BitIdx]; 3992 return Result; 3993 } 3994 3995 // BSWAP - most likely due to us previous matching a partial bswap. 3996 if (match(V, m_BSwap(m_Value(X)))) { 3997 const auto &Res = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 3998 Depth + 1, FoundRoot); 3999 if (!Res) 4000 return Result; 4001 4002 unsigned ByteWidth = BitWidth / 8; 4003 Result = BitPart(Res->Provider, BitWidth); 4004 for (unsigned ByteIdx = 0; ByteIdx < ByteWidth; ++ByteIdx) { 4005 unsigned ByteBitOfs = ByteIdx * 8; 4006 for (unsigned BitIdx = 0; BitIdx < 8; ++BitIdx) 4007 Result->Provenance[(BitWidth - 8 - ByteBitOfs) + BitIdx] = 4008 Res->Provenance[ByteBitOfs + BitIdx]; 4009 } 4010 return Result; 4011 } 4012 4013 // Funnel 'double' shifts take 3 operands, 2 inputs and the shift 4014 // amount (modulo). 4015 // fshl(X,Y,Z): (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4016 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4017 if (match(V, m_FShl(m_Value(X), m_Value(Y), m_APInt(C))) || 4018 match(V, m_FShr(m_Value(X), m_Value(Y), m_APInt(C)))) { 4019 // We can treat fshr as a fshl by flipping the modulo amount. 4020 unsigned ModAmt = C->urem(BitWidth); 4021 if (cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::fshr) 4022 ModAmt = BitWidth - ModAmt; 4023 4024 // For bswap-only, limit shift amounts to whole bytes, for an early exit. 4025 if (!MatchBitReversals && (ModAmt % 8) != 0) 4026 return Result; 4027 4028 // Check we have both sources and they are from the same provider. 4029 const auto &LHS = collectBitParts(X, MatchBSwaps, MatchBitReversals, BPS, 4030 Depth + 1, FoundRoot); 4031 if (!LHS || !LHS->Provider) 4032 return Result; 4033 4034 const auto &RHS = collectBitParts(Y, MatchBSwaps, MatchBitReversals, BPS, 4035 Depth + 1, FoundRoot); 4036 if (!RHS || LHS->Provider != RHS->Provider) 4037 return Result; 4038 4039 unsigned StartBitRHS = BitWidth - ModAmt; 4040 Result = BitPart(LHS->Provider, BitWidth); 4041 for (unsigned BitIdx = 0; BitIdx < StartBitRHS; ++BitIdx) 4042 Result->Provenance[BitIdx + ModAmt] = LHS->Provenance[BitIdx]; 4043 for (unsigned BitIdx = 0; BitIdx < ModAmt; ++BitIdx) 4044 Result->Provenance[BitIdx] = RHS->Provenance[BitIdx + StartBitRHS]; 4045 return Result; 4046 } 4047 } 4048 4049 // If we've already found a root input value then we're never going to merge 4050 // these back together. 4051 if (FoundRoot) 4052 return Result; 4053 4054 // Okay, we got to something that isn't a shift, 'or', 'and', etc. This must 4055 // be the root input value to the bswap/bitreverse. 4056 FoundRoot = true; 4057 Result = BitPart(V, BitWidth); 4058 for (unsigned BitIdx = 0; BitIdx < BitWidth; ++BitIdx) 4059 Result->Provenance[BitIdx] = BitIdx; 4060 return Result; 4061 } 4062 4063 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To, 4064 unsigned BitWidth) { 4065 if (From % 8 != To % 8) 4066 return false; 4067 // Convert from bit indices to byte indices and check for a byte reversal. 4068 From >>= 3; 4069 To >>= 3; 4070 BitWidth >>= 3; 4071 return From == BitWidth - To - 1; 4072 } 4073 4074 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To, 4075 unsigned BitWidth) { 4076 return From == BitWidth - To - 1; 4077 } 4078 4079 bool llvm::recognizeBSwapOrBitReverseIdiom( 4080 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 4081 SmallVectorImpl<Instruction *> &InsertedInsts) { 4082 if (!match(I, m_Or(m_Value(), m_Value())) && 4083 !match(I, m_FShl(m_Value(), m_Value(), m_Value())) && 4084 !match(I, m_FShr(m_Value(), m_Value(), m_Value())) && 4085 !match(I, m_BSwap(m_Value()))) 4086 return false; 4087 if (!MatchBSwaps && !MatchBitReversals) 4088 return false; 4089 Type *ITy = I->getType(); 4090 if (!ITy->isIntOrIntVectorTy() || ITy->getScalarSizeInBits() > 128) 4091 return false; // Can't do integer/elements > 128 bits. 4092 4093 // Try to find all the pieces corresponding to the bswap. 4094 bool FoundRoot = false; 4095 std::map<Value *, std::optional<BitPart>> BPS; 4096 const auto &Res = 4097 collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS, 0, FoundRoot); 4098 if (!Res) 4099 return false; 4100 ArrayRef<int8_t> BitProvenance = Res->Provenance; 4101 assert(all_of(BitProvenance, 4102 [](int8_t I) { return I == BitPart::Unset || 0 <= I; }) && 4103 "Illegal bit provenance index"); 4104 4105 // If the upper bits are zero, then attempt to perform as a truncated op. 4106 Type *DemandedTy = ITy; 4107 if (BitProvenance.back() == BitPart::Unset) { 4108 while (!BitProvenance.empty() && BitProvenance.back() == BitPart::Unset) 4109 BitProvenance = BitProvenance.drop_back(); 4110 if (BitProvenance.empty()) 4111 return false; // TODO - handle null value? 4112 DemandedTy = Type::getIntNTy(I->getContext(), BitProvenance.size()); 4113 if (auto *IVecTy = dyn_cast<VectorType>(ITy)) 4114 DemandedTy = VectorType::get(DemandedTy, IVecTy); 4115 } 4116 4117 // Check BitProvenance hasn't found a source larger than the result type. 4118 unsigned DemandedBW = DemandedTy->getScalarSizeInBits(); 4119 if (DemandedBW > ITy->getScalarSizeInBits()) 4120 return false; 4121 4122 // Now, is the bit permutation correct for a bswap or a bitreverse? We can 4123 // only byteswap values with an even number of bytes. 4124 APInt DemandedMask = APInt::getAllOnes(DemandedBW); 4125 bool OKForBSwap = MatchBSwaps && (DemandedBW % 16) == 0; 4126 bool OKForBitReverse = MatchBitReversals; 4127 for (unsigned BitIdx = 0; 4128 (BitIdx < DemandedBW) && (OKForBSwap || OKForBitReverse); ++BitIdx) { 4129 if (BitProvenance[BitIdx] == BitPart::Unset) { 4130 DemandedMask.clearBit(BitIdx); 4131 continue; 4132 } 4133 OKForBSwap &= bitTransformIsCorrectForBSwap(BitProvenance[BitIdx], BitIdx, 4134 DemandedBW); 4135 OKForBitReverse &= bitTransformIsCorrectForBitReverse(BitProvenance[BitIdx], 4136 BitIdx, DemandedBW); 4137 } 4138 4139 Intrinsic::ID Intrin; 4140 if (OKForBSwap) 4141 Intrin = Intrinsic::bswap; 4142 else if (OKForBitReverse) 4143 Intrin = Intrinsic::bitreverse; 4144 else 4145 return false; 4146 4147 Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy); 4148 Value *Provider = Res->Provider; 4149 4150 // We may need to truncate the provider. 4151 if (DemandedTy != Provider->getType()) { 4152 auto *Trunc = 4153 CastInst::CreateIntegerCast(Provider, DemandedTy, false, "trunc", I->getIterator()); 4154 InsertedInsts.push_back(Trunc); 4155 Provider = Trunc; 4156 } 4157 4158 Instruction *Result = CallInst::Create(F, Provider, "rev", I->getIterator()); 4159 InsertedInsts.push_back(Result); 4160 4161 if (!DemandedMask.isAllOnes()) { 4162 auto *Mask = ConstantInt::get(DemandedTy, DemandedMask); 4163 Result = BinaryOperator::Create(Instruction::And, Result, Mask, "mask", I->getIterator()); 4164 InsertedInsts.push_back(Result); 4165 } 4166 4167 // We may need to zeroextend back to the result type. 4168 if (ITy != Result->getType()) { 4169 auto *ExtInst = CastInst::CreateIntegerCast(Result, ITy, false, "zext", I->getIterator()); 4170 InsertedInsts.push_back(ExtInst); 4171 } 4172 4173 return true; 4174 } 4175 4176 // CodeGen has special handling for some string functions that may replace 4177 // them with target-specific intrinsics. Since that'd skip our interceptors 4178 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses, 4179 // we mark affected calls as NoBuiltin, which will disable optimization 4180 // in CodeGen. 4181 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin( 4182 CallInst *CI, const TargetLibraryInfo *TLI) { 4183 Function *F = CI->getCalledFunction(); 4184 LibFunc Func; 4185 if (F && !F->hasLocalLinkage() && F->hasName() && 4186 TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) && 4187 !F->doesNotAccessMemory()) 4188 CI->addFnAttr(Attribute::NoBuiltin); 4189 } 4190 4191 bool llvm::canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx) { 4192 // We can't have a PHI with a metadata type. 4193 if (I->getOperand(OpIdx)->getType()->isMetadataTy()) 4194 return false; 4195 4196 // Early exit. 4197 if (!isa<Constant>(I->getOperand(OpIdx))) 4198 return true; 4199 4200 switch (I->getOpcode()) { 4201 default: 4202 return true; 4203 case Instruction::Call: 4204 case Instruction::Invoke: { 4205 const auto &CB = cast<CallBase>(*I); 4206 4207 // Can't handle inline asm. Skip it. 4208 if (CB.isInlineAsm()) 4209 return false; 4210 4211 // Constant bundle operands may need to retain their constant-ness for 4212 // correctness. 4213 if (CB.isBundleOperand(OpIdx)) 4214 return false; 4215 4216 if (OpIdx < CB.arg_size()) { 4217 // Some variadic intrinsics require constants in the variadic arguments, 4218 // which currently aren't markable as immarg. 4219 if (isa<IntrinsicInst>(CB) && 4220 OpIdx >= CB.getFunctionType()->getNumParams()) { 4221 // This is known to be OK for stackmap. 4222 return CB.getIntrinsicID() == Intrinsic::experimental_stackmap; 4223 } 4224 4225 // gcroot is a special case, since it requires a constant argument which 4226 // isn't also required to be a simple ConstantInt. 4227 if (CB.getIntrinsicID() == Intrinsic::gcroot) 4228 return false; 4229 4230 // Some intrinsic operands are required to be immediates. 4231 return !CB.paramHasAttr(OpIdx, Attribute::ImmArg); 4232 } 4233 4234 // It is never allowed to replace the call argument to an intrinsic, but it 4235 // may be possible for a call. 4236 return !isa<IntrinsicInst>(CB); 4237 } 4238 case Instruction::ShuffleVector: 4239 // Shufflevector masks are constant. 4240 return OpIdx != 2; 4241 case Instruction::Switch: 4242 case Instruction::ExtractValue: 4243 // All operands apart from the first are constant. 4244 return OpIdx == 0; 4245 case Instruction::InsertValue: 4246 // All operands apart from the first and the second are constant. 4247 return OpIdx < 2; 4248 case Instruction::Alloca: 4249 // Static allocas (constant size in the entry block) are handled by 4250 // prologue/epilogue insertion so they're free anyway. We definitely don't 4251 // want to make them non-constant. 4252 return !cast<AllocaInst>(I)->isStaticAlloca(); 4253 case Instruction::GetElementPtr: 4254 if (OpIdx == 0) 4255 return true; 4256 gep_type_iterator It = gep_type_begin(I); 4257 for (auto E = std::next(It, OpIdx); It != E; ++It) 4258 if (It.isStruct()) 4259 return false; 4260 return true; 4261 } 4262 } 4263 4264 Value *llvm::invertCondition(Value *Condition) { 4265 // First: Check if it's a constant 4266 if (Constant *C = dyn_cast<Constant>(Condition)) 4267 return ConstantExpr::getNot(C); 4268 4269 // Second: If the condition is already inverted, return the original value 4270 Value *NotCondition; 4271 if (match(Condition, m_Not(m_Value(NotCondition)))) 4272 return NotCondition; 4273 4274 BasicBlock *Parent = nullptr; 4275 Instruction *Inst = dyn_cast<Instruction>(Condition); 4276 if (Inst) 4277 Parent = Inst->getParent(); 4278 else if (Argument *Arg = dyn_cast<Argument>(Condition)) 4279 Parent = &Arg->getParent()->getEntryBlock(); 4280 assert(Parent && "Unsupported condition to invert"); 4281 4282 // Third: Check all the users for an invert 4283 for (User *U : Condition->users()) 4284 if (Instruction *I = dyn_cast<Instruction>(U)) 4285 if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition)))) 4286 return I; 4287 4288 // Last option: Create a new instruction 4289 auto *Inverted = 4290 BinaryOperator::CreateNot(Condition, Condition->getName() + ".inv"); 4291 if (Inst && !isa<PHINode>(Inst)) 4292 Inverted->insertAfter(Inst); 4293 else 4294 Inverted->insertBefore(&*Parent->getFirstInsertionPt()); 4295 return Inverted; 4296 } 4297 4298 bool llvm::inferAttributesFromOthers(Function &F) { 4299 // Note: We explicitly check for attributes rather than using cover functions 4300 // because some of the cover functions include the logic being implemented. 4301 4302 bool Changed = false; 4303 // readnone + not convergent implies nosync 4304 if (!F.hasFnAttribute(Attribute::NoSync) && 4305 F.doesNotAccessMemory() && !F.isConvergent()) { 4306 F.setNoSync(); 4307 Changed = true; 4308 } 4309 4310 // readonly implies nofree 4311 if (!F.hasFnAttribute(Attribute::NoFree) && F.onlyReadsMemory()) { 4312 F.setDoesNotFreeMemory(); 4313 Changed = true; 4314 } 4315 4316 // willreturn implies mustprogress 4317 if (!F.hasFnAttribute(Attribute::MustProgress) && F.willReturn()) { 4318 F.setMustProgress(); 4319 Changed = true; 4320 } 4321 4322 // TODO: There are a bunch of cases of restrictive memory effects we 4323 // can infer by inspecting arguments of argmemonly-ish functions. 4324 4325 return Changed; 4326 } 4327